MIT课件-有机化学 04
mit化学反应原理
![mit化学反应原理](https://img.taocdn.com/s3/m/5ca5802954270722192e453610661ed9ad51558f.png)
mit化学反应原理MIT化学反应原理MIT(Methyl Isocyanate)是一种有机化合物,它在化学反应中具有重要的作用。
MIT化学反应原理涉及到MIT的生成、转化以及与其他化合物的反应等方面。
本文将从这几个方面来详细介绍MIT化学反应原理。
一、MIT的生成过程MIT的生成通常涉及到异氰酸甲酯(Methyl Isocyanate)和其他化合物之间的反应。
异氰酸甲酯是一种有机化合物,它具有高度的反应性。
在MIT的生成过程中,异氰酸甲酯与一些特定的底物反应,例如甲醇或甲胺。
这些反应通常在高温和高压的条件下进行,以促使反应的进行。
通过控制反应条件和底物的选择,可以有效地合成MIT。
二、MIT的转化过程MIT可以通过多种方式进行转化。
其中一种常见的转化方式是与水反应生成甲酸(Formic Acid)。
这是一个水解反应,通过在MIT中加入适量的水可以促使此反应的进行。
此外,MIT还可以与其他化合物发生加成、取代等反应,生成不同的产物。
这些反应的进行通常需要添加催化剂或调整反应条件,以实现所需的反应路径和产物选择。
三、MIT的反应性MIT是一种具有高度反应性的化合物。
它可以与许多化合物发生反应,包括醇、胺、酸等。
这些反应可以通过调整反应条件和底物的选择来控制。
例如,MIT与醇反应可以生成对应的酯类化合物,而与胺反应则可以生成对应的尿素类化合物。
这些反应的进行可以通过合适的催化剂和反应条件来实现。
四、MIT的应用MIT在化学工业中具有广泛的应用。
它被广泛用于合成各种有机化合物,例如聚氨酯、杀虫剂等。
MIT的高反应性使其在有机合成中成为一种重要的中间体。
通过合理设计反应路径和反应条件,可以利用MIT合成出具有特定结构和性质的化合物。
此外,MIT还被广泛应用于金属表面处理、涂料、塑料等领域。
总结:MIT化学反应原理涉及到MIT的生成、转化以及与其他化合物的反应等方面。
通过合理选择反应底物、调整反应条件以及加入适量的催化剂等手段,可以控制MIT的反应性,从而实现所需的反应路径和产物选择。
有机化学优秀课件
![有机化学优秀课件](https://img.taocdn.com/s3/m/c7d1e6c7a1116c175f0e7cd184254b35eefd1a04.png)
03
过渡金属催化
介绍过渡金属催化剂在有机合 成中的应用,如交叉偶联反应、
烯烃复分解反应等。
04
光化学与电化学合成
探讨光化学和电化学方法在有 机合成中的应用及前景。
07
实验技能室安全规章制度
详细介绍实验室安全守则,包括实验室准入制度、安全检查和隐 患排查制度等。
著的生理活性。
时也是一种成瘾性物质。
从古柯叶中提取出的一种生 物碱,具有强烈的兴奋作用 和成瘾性。
存在于麻黄中,具有收缩血 管、升高血压的作用,常用 于治疗哮喘和感冒。
06
有机合成与反应机理探讨
有机合成设计思路及策略
逆合成分析
从目标分子出发,逆向推导合成 路线,确定关键中间体和合成步
骤。
合成子与切断策略
酚的分类和命名
包括苯酚、甲酚等不同类型的酚,以及它们的命名规则 和特点。
醚的分类和命名
包括单醚、混醚等不同类型的醚,以及它们的命名规则和 特点。
醇的性质
包括物理性质(如沸点、溶解度等)和化学性质(如氧 化反应、酯化反应等)。
酚的性质
包括物理性质(如颜色、气味等)和化学性质(如酸性、 氧化反应等)。
醚的性质
消除反应
涉及E1、E2和E1cb等消除反应机制, 讨论底物结构、反应条件和产物选 择性。
重排反应
探讨常见的重排反应,如贝克曼重 排、频哪醇重排等,分析反应机理 和应用。
现代有机合成方法与技术应用
01
金属有机化学
介绍金属有机试剂在合成中的 应用,如格氏试剂、有机锂试
剂等。
02
不对称合成
探讨手性辅助剂、手性催化剂 等在手性合成中的应用,以及 不对称合成的策略和方法。
有机化学课件4
![有机化学课件4](https://img.taocdn.com/s3/m/3230e8ee58fafab069dc02ab.png)
CaC2 + CO
CaC2 + H2O
HC CH + Ca(OH)2
(2) 由天然气或石油生产乙炔 ——甲烷的部分氧化法
2 CH4
1500 oC 0.01-0.1s
HC CH + 3H2
4 CH4 + O2
2020/3/9
HC CH + 2CO + 7H2
2020/3/9
2020/3/9
2020/3/9
2020/3/9
2020/3/9
2020/3/9
第二步: 溴离子( Br- )加成
δ+
δ+
CH2 CH CH CH3 + Br
2020/3/9
C-2加成
CH2 CH CH CH3
Br
1,2-加成产物
C-4加成
CH2 CH CH CH3
Br
1,4-加成产物
2020/3/9
2020/3/9
2020/3/9
•键的伸缩振动只改变瞬间的键长,但不改变键角.
2020/3/9
(2) 键的弯曲振动
平面箭式弯曲振动
平面摇摆弯曲振动
平面外摇摆弯曲振动 平面外扭曲弯曲振动
•键的弯曲振动不改变键长,但发生了键角的变化.
2020/3/9
2020/3/9
2020/3/9
2020/3/9
2020/3/9
2020/3/9
醇; • 要学会用炔化物的烷基化反应来增加碳链。
2020/3/9
3.聚合反应 在催化剂存在下,共轭二烯烃可以聚合为高分子化合
物。 如1,3-丁二烯在金属钠催化下,聚合成聚丁二烯,又
称为丁钠橡胶。工业上使用齐格勒-纳塔催化剂,1,3丁二烯按1,4-加成方式聚合为顺-1,4-聚丁二烯,简称顺 丁橡胶。
有机化学课件第四版详解演示文稿
![有机化学课件第四版详解演示文稿](https://img.taocdn.com/s3/m/d615b72359fb770bf78a6529647d27284b733733.png)
H3C C
C CH3
H
H
顺–2–丁烯
b.p: 3.7℃
H3C C
H C
H
CH3
反–2–丁烯 b.p: 0.9 ℃
第13页,共95页。
反–2–丁烯
顺–2–丁烯 图 3.6 2–丁烯顺反异构体的模型
第14页,共95页。
构型和构象都是用来描述分子 中各原子或基团在空间的不同的 排列,但,其涵义不同。
选择含碳碳双键在内的连续最长碳链作为母 体,根据其碳原子的个数称“某烯”。
• 编号
使碳碳双键的编号最小;即碳原子的编号从距离双键 最近的一端开始。
• 指出取代基的位次、数目、名称 此步骤与烷烃同。
• 当碳原子数超过10时,称“某碳烯”。
CH3CH2
C CH3CH2CH2
C
H H
2–乙基–1–戊烯
CH3
第27页,共95页。
1、加成反应 通式:
CC +
Y--Z
1、1个π 键 2个σ键; 2、sp2杂化的碳 sp3杂化的碳; 3、构型的改变:平面 四面体。
CC YZ
第28页,共95页。
(1) 烯烃的催化氢化(还原反应)
烯烃在催化剂存在下,与氢气进行加成反 应,生成烷烃:
CC
+
H2
催化剂 室温
HH CC
有机化学课件第四版详解演示 文稿
第1页,共95页。
优选有机化学课件第四版
第2页,共95页。
3-1 烯烃的结构
一、碳碳双键的组成
基态
激发态
2p
2p
sp2 杂化态
2p
sp2
2s
2s
1s
1s
有机化学(第四版)全套课件(新)
![有机化学(第四版)全套课件(新)](https://img.taocdn.com/s3/m/5df21ec8d5d8d15abe23482fb4daa58da1111c68.png)
酚的命名、结构和性质
命名
01
酚的命名与醇相似,通常以羟基所连的芳环作为母体,再加上
羟基的位置和数目来命名,如苯酚、甲酚等。
结构
02
酚的分子结构中含有羟基直接连在芳环上的结构。根据羟基的
数目和位置,可分为一元酚、二元酚等。
性质
03
酚具有弱酸性,能与碱反应生成盐。此外,酚还能发生氧化、
取代、缩合等反应。
• 溶剂效应:溶剂对亲核取代反应也有影响。极性溶剂有利于SN2反应的进行, 而非极性溶剂有利于SN1反应的进行。此外,溶剂的粘度、极性等性质也会影 响反应的速率和选择性。
• 温度和催化剂:温度对亲核取代反应的速率也有影响。一般来说,升高温度有 利于反应的进行。有些卤代烃的亲核取代反应需要催化剂的参与,如路易斯酸 等,它们可以降低反应的活化能,从而加快反应速率。
芳香烃存在同分异构现象,即分子式相同但结构不同的化合物。例如,二甲苯有三 种同分异构体:邻二甲苯、间二甲苯和对二甲苯。
芳香烃的性质
芳香烃的物理性质与其结构密切 相关,如熔点、沸点、溶解度等
。
芳香烃的化学性质主要表现为亲 电取代反应,如硝化、磺化、卤 化等。此外,还可以发生加成反
应和氧化反应等。
不同结构的芳香烃具有不同的化 学性质。例如,苯环上带有给电 子基团的芳香烃更容易发生亲电
苯分子中的碳原子采取sp2杂化,形成一个平面六 边形结构,每个碳原子与相邻的两个碳原子和一 个氢原子形成σ键。
苯具有一些特殊的化学性质,如亲电取代反应、 加成反应和氧化反应等。
芳香烃的命名和同分异构现象
芳香烃的命名通常以苯环为母体,侧链作为取代基进行命名。
当苯环上有多个取代基时,需要遵循一定的命名原则,如编号最小原则、优先顺序 原则等。
有机化学第四版课件
![有机化学第四版课件](https://img.taocdn.com/s3/m/31881ebb900ef12d2af90242a8956bec0975a501.png)
农药
有机化合物中的许多农药 ,如杀虫剂和除草剂,用 于控制农作物病虫害和杂 草。
肥料
有机化合物也可用作肥料 ,如尿素和磷酸盐,为农 作物提供所需的营养。
转基因作物
通过基因工程手段将有机 化合物转入农作物中,以 提高其抗病、抗虫和抗逆 能力。
有机化合物在工业领域的应用
燃料
有机化合物中的石油和天然气是工业和交通领域 的主要能源来源。
有机化学的发展推动了相关学科的进步,如生物学、物理学和工程学等, 促进了整个科学技术的进步。
有机化学基础知识
02
碳的成键特性
碳原子的电子构型
碳原子在形成有机化合物时,倾向于形成4个共价键,其 电子构型为1s²2s²2p²。
键合形式
碳原子可以形成单键、双键和三键,这些键合形式决定了 有机化合物的结构和性质。
塑料
有机化合物中的烯烃、芳烃和醛类等可合成各种 塑料,广泛应用于包装、建筑和电子等领域。
橡胶
有机化合物中的烯烃和二烯烃可合成各种橡胶, 用于制造轮胎、输送带和密封件等。
有机化合物在食品领域的应用
食品添加剂
有机化合物中的许多食 品添加剂,如防腐剂、 调味剂和色素等,用于 延长食品保质期和改善 食品口感。
自由基取代反应
总结词
自由基取代反应是有机化学中一类重要的反应机理,其特点是进攻试剂首先形成自由基,然后该自由基对目标分 子进行亲电或亲核进攻,从而替换掉负电性原子或基团。
详细描述
自由基取代反应通常在加热或光照条件下进行。在反应过程中,进攻试剂首先被激活形成自由基,然后该自由基 与目标分子发生亲电或亲核进攻,生成新的碳-碳键或使已有基团发生异构化。此外,自由基取代反应还可能涉 及链式反应,导致多个碳-氢键的断裂和形成。
有机化学PPT完整全套教学课件
![有机化学PPT完整全套教学课件](https://img.taocdn.com/s3/m/0c53e70ba9956bec0975f46527d3240c8447a1a5.png)
有机化合物种类繁多,结构复杂 ,具有独特的物理和化学性质。
有机化学的历史与发展
01
02
03
早期历史
有机化学的起源可以追溯 到古代,但真正的发展始 于18世纪。
近代发展
19世纪以后,随着化学理 论的不断完善和实验技术 的进步,有机化学得到了 迅速发展。
现代有机化学
20世纪以来,有机化学在 理论、实验方法和应用领 域等方面都取得了巨大进 展。
通过有机合成制备具有特定功能的材料, 如光电材料、催化剂等。
合成具有生物活性的化合物,如酶抑制剂、 受体配体等,并进行生物活性评价。
05
有机化合物的鉴定与分析
Chapter
有机化合物的分离与纯化技术
蒸馏法
利用物质沸点的差异进行分离, 包括简单蒸馏、分馏、减压蒸馏
等。
萃取法
利用物质在两种不互溶溶剂中的 溶解度差异进行分离,包括液-
有机化合物的化学性质
• 取代反应:有机化合物分子中的某些原子或原子团被其他原子或原子团所代替的反应,如卤代烃的水解反应、 酯的水解反应等。
• 加成反应:有机化合物分子中不饱和键(双键或三键)两端的原子与其他原子或原子团直接结合生成新的化合 物的反应,如烯烃与氢气的加成反应、炔烃与卤素的加成反应等。
对已知化合物进行结构修饰和改造, 优化其性能,满足特定需求。
有机合成的基本策略与方法
逆合成分析
从目标分子出发,逆向分析其结 构,设计合理的合成路线。
保护与去保护策略
在合成过程中,对某些官能团进 行保护,以避免不必要的副反应 ,合成完成后再进行去保护。
01 02 03 04
合成子的选择与连接
选择合适的合成子,通过化学键 的连接形成目标分子。
有机化学课件第四版
![有机化学课件第四版](https://img.taocdn.com/s3/m/3904e9bf25c52cc58ad6be55.png)
瑞 尼 Ni H2 RCH2R
“亲电”的碳转变为“亲核”的碳,这种极性的 变换称“极性反转”。它已成为有机合成重要的 合成手段。
有机化学课件第四版
总目录
合成结构复杂的醛、酮或烃
HgCl2CdCO3
乙二醇,水
O
有机化学课件第四版
总目录
2.亚砜和砜碳负离子的反应
O -
H C 3 SC H 2
O
+ R XS N 2H C 3 SC H 2 R+X -
道扩散,与H的1s轨道交盖不如2p有效, 因此易解离。
有机化学课件第四版
总目录
2. 氧化
RSH
< O > RSSR
[H ]
(1)氧化剂:
I2,稀H2O2,O2/Fe或Cu催化 (2)反应本质:自由基反应
有机化学课件第四版
总目录
(3)意义 S—S键和S—H键之间的氧化还原是一
个极为重要的生理过程。
烃基亚膦酸酯 二烃基次亚膦酸酯
五价磷(膦)酸及其酯:
磷酸
膦酸
次膦酸
有机化学课件第四版
总目录
磷酸酯
膦酸酯
膦烷及亚甲基膦烷:
次膦酸酯
三苯膦
五苯膦
命名:(自学)
有机化学课件第四版
亚甲基三烃基膦
总目录
二、膦和季鏻盐
1. 膦的制备 ⑴ 格氏反应制备叔膦 ⑵ 傅-克反应 制备二氯苯膦,进而引入烃基
有机化学课件第四版
② P、S有空d轨道,可形成高价化合物(如PCl5、(C6H5)5P、 SF6),还可形成d-pπ键;
③ S、P常取sp3杂化态,未成键电子对对立体化学有重要影 响。
有机化学课件第四版
有机化学(第四版)全套课件(新)
![有机化学(第四版)全套课件(新)](https://img.taocdn.com/s3/m/d97b2c422e3f5727a5e9625e.png)
CH3CHCH2CH3 CH3
结构简式、缩简式
结构式、短线式、蛛网式
CH3
CH CH3
CH2
CH3
OH
键线式
结构简式、缩简式
1.3 共价键 1.3.1共价键的形成 价键理论 和分子轨道理论
①共用电子对理论
离子键:稳定的正、负离子通过静电引力而形成。 共价键:两个带正电的原子核对共用电子对的吸引 , 使两原子结合在一起而形成的化学键。 ②原子轨道交盖理论: 原子轨道:原子中,电子的空间运动状态。 形成共价键的两个原子,必须带有自旋方向相反 的未成对电子,并且它们的能量相差不大,由于引力 而互相靠近,两个原子轨道彼此交盖,交盖的部分电 子云密度较大,把两个原子核吸引在一起,使两个原 子结合起来,形成共价键。
CH3. + Cl. CH3Cl H = -339 CH3. + H. CH4 H = -423
(3) 键角:两个共价键之间的夹角。 共键价的方向性决定键角的形成。CH4中H—C—H为
10928‘,
(4)共价键的极性 极性键 :键距 μ=e.d 极性分子:偶极距
H3C Cl H C μ=0 C H
共价键的形成可看成是电子云的重叠,电子云重叠越 多,共价键就越牢固。 由原子轨道组成分子轨道,必须符合三个条件: (1) 对称匹配(位相相同)(2) 最大重叠(3)能量相近。
共价键的饱和性:原子的价键数等于其未成键电子数。
共价键的方向性:原子轨道必须最大重叠。
轨道:以H2为例,s轨道重叠生成的轨道是呈圆柱形对称, 键轴是它的对称轴,这样的轨道叫轨道。 键:生成轨道的重叠方式叫做重叠, 轨道上的电子 叫做电子,形成的键叫做键。
官 能 团 结 构 (名 称 ) 碳 -碳 双 键 碳 -碳 叁 键 卤 素 羟 基 醚 键 醛 基 酮 基 羧 基 氨 基 硝 基 磺 酸 基 ( ( ( ( ( ( ( ( C ( C C C X ) OH ) O C O C H ) O C O C ) OH ) ) ) )
《有机化学》PPT课件
![《有机化学》PPT课件](https://img.taocdn.com/s3/m/1687eb55640e52ea551810a6f524ccbff021ca43.png)
《有机化学》PPT课件•有机化学概述•烃类化合物•卤代烃和醇酚醚类化合物•醛酮醌类化合物目录•羧酸及其衍生物•含氮有机化合物•杂环化合物和生物碱01有机化学概述有机化学定义与发展定义研究有机化合物结构、性质、合成、反应机理及应用的科学发展历程从早期经验总结到现代科学理论体系的建立,经历了漫长的发展历程当前研究热点绿色合成、不对称合成、超分子化学等分类方法按碳骨架分类(开链化合物、碳环化合物、杂环化合物)、按官能团分类(烃类、醇类、酚类、醛类、酮类等)特点种类繁多,结构复杂,性质各异重要类别烃类、醇类、酚类、醛类、酮类、羧酸类、胺类等有机化合物特点与分类03发展趋势绿色化学合成方法的研究与应用,有机光电材料的研究与开发等01研究意义揭示有机化合物结构与性质关系,指导有机合成和新材料开发02应用领域医药、农药、染料、涂料、塑料、橡胶等化学工业领域,以及生命科学、环境科学等领域有机化学研究意义及应用领域02烃类化合物碳原子间以单键相连,其余价键被氢原子饱和。
结构特点物理性质化学性质随碳原子数增加,沸点、熔点逐渐升高,密度逐渐增大。
相对稳定,主要发生自由基取代反应,如卤代反应。
030201结构特点含有一个或多个碳碳双键。
物理性质随碳原子数增加,沸点、熔点逐渐升高,但密度比相应烷烃小。
化学性质较为活泼,可发生加成、氧化、聚合等反应。
结构特点含有一个或多个碳碳三键。
物理性质与烯烃相似,但更为活泼。
化学性质容易发生加成反应,也可发生氧化、聚合等反应。
含有苯环或其他芳香体系的烃类化合物。
结构特点具有特殊芳香气味,沸点、熔点较高。
物理性质相对稳定,可发生亲电取代反应,如硝化、磺化等反应。
化学性质芳香烃结构与性质03卤代烃和醇酚醚类化合物卤代烃命名、结构及物理性质命名卤代烃的命名遵循系统命名法,以烃为母体,卤素作为取代基进行命名。
结构卤代烃分子中,卤素原子与烃基通过共价键连接,形成极性分子。
物理性质卤代烃多为无色或淡黄色液体,具有特殊气味。
有机化学ppt课件完整版
![有机化学ppt课件完整版](https://img.taocdn.com/s3/m/56d869a75ff7ba0d4a7302768e9951e79b8969c2.png)
氨基酸、蛋白质和多肽
氨基酸
构成蛋白质的基本单元,分为必需氨基酸和非必 需氨基酸。
蛋白质
由氨基酸通过肽键连接而成的高分子化合物,具 有多种生物功能。
多肽
由多个氨基酸通过肽键连接而成的化合物,生物 活性多样,包括激素、生长因子等。
脂类化合物
脂肪酸
构成脂肪的基本单元,分为饱和脂肪酸和不饱和脂肪酸。
甘油酯
原理。
现代时期
20世纪至今,以量子力学和统计 力学为基础,发展出了现代有机 化学的理论和方法,如分子轨道 理论、价键理论、反应机理理论
等。
有机化学与生产生活的关系
材料领域
合成纤维、塑料、橡胶等高分子材料广泛应用于服装、家 居用品、交通工具等领域。
医药领域
合成药物如抗生素、抗癌药物等对于治疗疾病具有重要意 义。同时,天然药物中提取的有效成分也是有机化学的研 究对象。
炔烃
炔烃的通式与结构特点
通式为CnH2n-2,含有碳碳三键。
炔烃的物理性质
与烷烃和烯烃相比,炔烃的物理性质有所不同。
炔烃的化学性质
主要包括加成反应、氧化反应、聚合反应等,与烯烃类似但也有所 不同。
芳香烃
01
02
03
04
芳香烃的结构特点
含有苯环或其他芳香体系的烃 类化合物。
芳香烃的分类
根据苯环上取代基的不同,可 分为苯、甲苯、二甲苯等。
感谢观看
01
分子式相同但连接方式不同,如正丁烷和异丁烷。
立体异构
02
分子式相同、连接方式也相同,但空间构型不同,如顺反异构
、对映异构等。
同分异构体的性质差异
03
由于结构上的差异,同分异构体在物理性质、化学性质以及生
有机化学教学课件第四版
![有机化学教学课件第四版](https://img.taocdn.com/s3/m/881ea8cfb8d528ea81c758f5f61fb7360b4c2bf1.png)
影响亲核取代反应的因素包括底物结构、离去基团性质、亲核试剂的性质和反应条 件等。
卤代烯烃和卤代芳烃的化学性质
卤代烯烃的化学性质
卤代烯烃具有烯烃和卤代烃的双重性 质,可发生加成、氧化、还原等反应。 此外,卤代烯烃还可发生消除反应和 重排反应等。
卤代芳烃的化学性质
卤代芳烃具有芳香性和卤代烃的性质, 可发生亲电取代反应、亲核取代反应 和消除反应等。其中,氟代芳烃的反 应活性最高,碘代芳烃的反应活性最 低。
命名
卤代烃的命名遵循系统命名法,以烃为母体,卤原子作为取代基进行命名。
卤代烃的物理性质
状态
常温下,低级卤代烃为气体或液体,高级卤代烃为固体。
溶解性
低级卤代烃不溶于水,易溶于有机溶剂;高级卤代烃在水中的溶解 度增大。
密度
卤代烃的密度一般比水大。
卤代烃的化学性质
亲核取代反应
卤代烃中的卤原子可被 亲核试剂取代,生成相 应的醇或醚等化合物。
有机化学的建立
18世纪至19世纪初,有机化合物的分离和提 纯技术的发展
有机化学的结构理论
现代有机化学的发展
19世纪末至20世纪初,价键理论、分子轨道 理论和配位场理论等的提
20世纪后半叶至今,有机合成、天然产物化 学、生物有机化学、金属有机化学、超分子 化学等分支领域的快速发展
有机化学与生产生活的关系
命名规则
选择包含环的最长碳链作为主链,从靠 近环的一端开始编号,用“环”字表示 环状结构。
环烷烃的物理性质
熔沸点
随着分子量的增加和环的增大,熔沸点逐渐升高。
溶解性
低级环烷烃不溶于水,易溶于有机溶剂;高级环烷烃难溶于有机溶 剂。
颜色与气味
纯净的环烷烃通常是无色、无味的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B. Bond Strengths/Bond Dissociation Energies (BDEs): Energy for homolytic bond cleavage to uncharged radical fragments X X X. X. Bond strengths are bond energies for a certain bond averaged over many different molecules. Bond dissociation energies are for a particular molecule and are dependent on the specific molecular structure (Bond Strength ± 20 kcal/mol) Multiple Bonding: Bond strength depends strongly on bond order (strength: single < double < triple)
sp –sp
3பைடு நூலகம்
3
C C 1.54
sp –sp
3
3
C O 1.42
sp2–sp2 C C 1.34 sp–sp C C 1.20
sp2–sp2 C O 1.22
Multiple Bonding: Bond length depends strongly on bond order (length: single > double > triple)
Bond Lengths ()
sp3 C H 1.09 sp2 C H 1.086 sp C H 1.06
sp3–sp3 C C 1.54 sp3–sp2 C C 1.50 sp3–sp
C C 1.47
Effect of hybridization on length of single bonds: C–H and C–C bonds shorten slightly with increased s character on carbon
– – – – – – – –
alkane-sp3
alkene-sp2
amine
hydrogen
alkyne-sp
alcohol
water
thiol
ammonium
nitrile (cyanide)
phenol
carboxylic acid
H–CH3 H–CH=CH2 H–NH2 H–H H–C≡CH H–OCR3 H–OH H–SR H–+NR3 H–C≡N H–OAr H–OC(O)R H–F
CH3 CH=CH2 NH2 H C≡CH OCR3 OH SR
NR3
– – – –
C≡N OAr OC(O)R F
hydronium
H–+OH2 H–Cl H–I increasing acidity
OH2
– –
Cl I
Acidity increases across a row: H–C < H–N < H–O < H–F (electronegativity) Acidity increases down a period: H–F < H–Cl < H–Br < H–I (size) Neutral species less acidic than corresponding positively charged species: H–OH < H–+OH2 pKa data from: Advanced Organic Chemisry, 4th Ed., J. March
Handout #3, 5.12 Spring 2003, 2/12/03
Physical Properties: Bond Length, Bond Strength & Acidity
A. Bond Lengths: mostly dependent on atomic size, bond order, and hybridization Bond Lengths ()
Common Bond Strengths (kcal/mol) C C C C C C 81 145 198 C O C O C H 79 173 98
Data taken from: Advanced Organic Chemistry, 3rd Edition, F. A. Carey and R. J. Sundberg
C. Acidity of Organic Molecules
Functional Group Acid Approximate pKaValues Conjugate Base (in water) increasing basicity 48 44 38 35 25 17 15.7 10–11 10–11 9.2 8–11 4–5 3.17 –1.74 –7 –10