专题11.1 分类加法计数原理与分布乘法计数原理(讲)(解析版)

合集下载

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 培养学生运用计数原理解决实际问题的能力。

3. 引导学生通过合作交流,提高思维能力和创新能力。

二、教学内容1. 分类加法计数原理:(1)了解分类加法计数原理的概念。

(2)学会运用分类加法计数原理解决问题。

2. 分步乘法计数原理:(1)了解分步乘法计数原理的概念。

(2)学会运用分步乘法计数原理解决问题。

三、教学重点与难点1. 教学重点:(1)分类加法计数原理的应用。

(2)分步乘法计数原理的应用。

2. 教学难点:(1)理解分类加法计数原理的含义。

(2)理解分步乘法计数原理的含义。

四、教学方法1. 采用问题驱动法,引导学生主动探究。

2. 运用实例分析,让学生直观理解计数原理。

3. 组织小组讨论,培养学生合作交流能力。

五、教学准备1. 课件、黑板、粉笔等教学工具。

2. 相关实例和练习题。

教案内容:一、分类加法计数原理1. 导入:通过生活中的实例,如“统计班级男生女生人数”,引出分类加法计数原理。

2. 讲解:解释分类加法计数原理的概念,即把总数分成几个部分,分别计算每个部分的数量,再相加得到总数。

3. 练习:让学生运用分类加法计数原理解决实际问题,如“统计学校三个年级的学生总数”。

二、分步乘法计数原理1. 导入:通过实例“做一批玩具,每组有5个,一共要做3组”,引出分步乘法计数原理。

2. 讲解:解释分步乘法计数原理的概念,即每步的数量相乘得到最终结果。

3. 练习:让学生运用分步乘法计数原理解决实际问题,如“做一批玩具,每组有5个,一共要做4组,需要多少个玩具?”教学过程:一、分类加法计数原理1. 引导学生思考生活中的计数问题,如统计人数、物品数量等。

2. 讲解分类加法计数原理的概念和步骤。

3. 让学生举例说明并计算。

二、分步乘法计数原理1. 引导学生思考生活中的计数问题,如制作玩具、做饭等。

2. 讲解分步乘法计数原理的概念和步骤。

11.1 分类加法计数原理与分步乘法计数原理

11.1  分类加法计数原理与分步乘法计数原理

A.9种
B.18种 C.12种
D.36种
-22-
考点1
考点2
考点3
解析:(1)分两类:①当取1时,1只能为真数,此时对数值为0; ②不取1时,分两步:取底数,有5种不同的取法;取真数,有4种不同的
取法.
其中log23=log49,log32=log94,log24=log39,log42=log93,
相同点 用来计算完成一件事的方法种数
分类、相加
分步、相乘
不同点 每类方案中的每一 每步依次完成才算完成这件事情 种方法都能独立地 (每步中的每一种方法都不能独立
完成这件事
地完成这件事)
注意点 类类独立,不重不漏 步步相依,缺一不可
知识梳理 考点自诊
随堂巩固
-4-
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.
(2)按区域 1 与 3 是否同色分类:
①区域 1 与 3 同色;先涂区域 1 与 3,有 4 种方法,再涂区域 2,4,5(还有
3 种颜色),有A33种方法. 所以区域 1 与 3 同色,共有 4A33=24 种涂色方法.
②区域 1 与 3 不同色:第一步,涂区域 1 与 3,有A24种涂色方法;第二步,
11.1 分类加法计数原固
-2-
1.两个计数原理
分类加法计数原理
分步乘法计数原理
条件
结论 依据
完成一件事,可以 有 n类不同的方案 .在第 1 类方案中有 m1 种不同的方 法,在第 2 类方案中有 m2 种不 同的方法,……在第 n 类方案 中有 mn 种不同的方法 完成这件事共有 N=m1+m2+…+mn 种不同的 方法
随堂巩固

分类加法计数原理与分布乘法计数原理

分类加法计数原理与分布乘法计数原理
解析:当公比为2时,等比数列可为1,2,4或2,4,8; 当公比为3时,等比数列可为1,3,9; 当公比为 2 时,等比数列可为4,6,9. 同理,公比为 答案: D
1 1 2 , , 2 3 3
3
时,也有4个.
返回导航页
结束放映
考向大突破二:分步乘法计数原理
例2:已知集合M={-3,-2,-1,0,1,2},P(a,b)表示 平面上的点(a,b∈M),问: (1)P可表示平面上多少个不同的点? (2)P可表示平面上多少个第二象限的点? (3)P可表示多少个不在直线y=x上的点?
返回导航页 结束放映
应用两个计数原理的注意点 (1)注意在应用两个原理解决问题时,一般是先 分类再分步.在分步时可能又用到分类加法计数原 理. (2)注意对于较复杂的两个原理综合应用的问题, 可恰当地列出示意图或列出表格,使问题形象化、直 观化.
返回导航页
结束放映
变式训练3:上海某区政府召集5家企业的负责人开年终 总结经验交流会,其中甲企业有2人到会,其余4家企业 各有1人到会,会上推选3人发言,则这3人来自3家不同 企业的可能情况的种数为________.
因此y=ax2+bx+c可以表示5×6×6=180(个)不同的二次函 数.
(2)y=ax2+bx+c的开口向上时,a的取值有2种情况,b、c的 取值均有6种情况, 因此y=ax2+bx+c可以表示2×6×6=72(个)图象开口向上的 二次函数.
返回导航页
结束放映
考向大突破三:两个计数原理的综合应用
解析:若3人中有一人来自甲企业,则共有C21C42种情况, 若3人中没有甲企业的,则共有C43种情况, 由分类加法计数原理可得, 这3人来自3家不同企业的可能情况共有C21C42+C43= 16(种). 答案: 16

高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 分类加法计数原理与分步乘法计数原理)

高中数学知识点总结(第十一章 计数原理与概率、随机变量及其分布 分类加法计数原理与分步乘法计数原理)

第十一章计数原理与概率、随机变量及其分布第一节分类加法计数原理与分步乘法计数原理两个计数原理(1)每类方法都能独立完成这件事,它是独立的、一次的,且每次得到的是最后结果,只需一种方法就可完成这件事.(2)各类方法之间是互斥的、并列的、独立的.(1)每一步得到的只是中间结果,任何一步都不能独立完成这件事,只有各个步骤都完成了才能完成这件事.(2)各步之间是相互依存的,并且既不能重复也不能遗漏.二、常用结论1.完成一件事可以有n类不同方案,各类方案相互独立,在第1类方案中有m1种不同的方法,在第2类方案中有m2种不同的方法……在第n类方案中有m n种不同的方法.那么,完成这件事共有N=m1+m2+…+m n种不同的方法.2.完成一件事需要经过n个步骤,缺一不可,做第1步有m1种不同的方法,做第2步有m2种不同的方法……做第n步有m n种不同的方法.那么,完成这件事共有N=m1×m2×…×m n种不同的方法.考点一分类加法计数原理1.在所有的两位数中,个位数字大于十位数字的两位数的个数为________.解析:按十位数字分类,十位可为1,2,3,4,5,6,7,8,共分成8类,在每一类中满足条件的两位数分别有8个,7个,6个,5个,4个,3个,2个,1个,则共有8+7+6+5+4+3+2+1=36个两位数.答案:362.如图,从A 到O 有________种不同的走法(不重复过一点).解析:分3类:第一类,直接由A 到O ,有1种走法;第二类,中间过一个点,有A →B →O 和A →C →O 2种不同的走法;第三类,中间过两个点,有A →B →C →O 和A →C →B →O 2种不同的走法.由分类加法计数原理可得共有1+2+2=5种不同的走法.答案:53.若椭圆x 2m +y 2n=1的焦点在y 轴上,且m ∈{1,2,3,4,5},n ∈{1,2,3,4,5,6,7},则这样的椭圆的个数为________.解析:当m =1时,n =2,3,4,5,6,7,共6个;当m =2时,n =3,4,5,6,7,共5个;当m =3时,n =4,5,6,7,共4个;当m =4时,n =5,6,7,共3个;当m =5时,n =6,7,共2个.故共有6+5+4+3+2=20个满足条件的椭圆.答案:204.如果一个三位正整数如“a 1a 2a 3”满足a 1<a 2且a 2>a 3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为________.解析:若a 2=2,则百位数字只能选1,个位数字可选1或0,“凸数”为120与121,共2个.若a 2=3,则百位数字有两种选择,个位数字有三种选择,则“凸数”有2×3=6(个).若a 2=4,满足条件的“凸数”有3×4=12(个),…,若a 2=9,满足条件的“凸数”有8×9=72(个).所以所有凸数有2+6+12+20+30+42+56+72=240(个).答案:240考点二 分步乘法计数原理[典例精析](1)已知集合M ={-3,-2,-1,0,1,2},P (a ,b )(a ,b ∈M )表示平面上的点,则P 可表示坐标平面上第二象限的点的个数为( )A.6B.12C.24D.36(2)有6名同学报名参加三个智力项目,每项限报一人,且每人至多参加一项,则共有________种不同的报名方法.[解析] (1)确定第二象限的点,可分两步完成:第一步确定a,由于a<0,所以有3种方法;第二步确定b,由于b>0,所以有2种方法.由分步乘法计数原理,得到第二象限的点的个数是3×2=6.(2)每项限报一个,且每人至多参加一项,因此可由项目选人,第一个项目有6种选法,第二个项目有5种选法,第三个项目有4种选法,根据分步乘法计数原理,可得不同的报名方法共有6×5×4=120(种).[答案](1)A(2)120[解题技法]利用分步乘法计数原理解决问题的策略(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足的两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.[题组训练]1.如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.解析:因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.答案:632.从-1,0,1,2这四个数中选三个不同的数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).解析:一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18(个)二次函数.若二次函数为偶函数,则b=0,同上可知共有3×2=6(个)偶函数.答案:186考点三两个计数原理的综合应用[典例精析](1)如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为()A.24B.48C.72D.96(2)如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是()A.48B.18C.24D.36(3)如果一条直线与一个平面平行,那么称此直线与平面构成一个“平行线面组”.在一个长方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面组”的个数是()A.60B.48C.36D.24[解析](1)分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂法.故共有24+48=72种涂色方法.(2)第1类,对于每一条棱,都可以与两个侧面构成“正交线面对”,这样的“正交线面对”有2×12=24(个);第2类,对于每一条面对角线,都可以与一个对角面构成“正交线面对”,这样的“正交线面对”有12个.所以正方体中“正交线面对”共有24+12=36(个).(3)长方体的6个表面构成的“平行线面组”的个数为6×6=36,另含4个顶点的6个面(非表面)构成的“平行线面组”的个数为6×2=12,故符合条件的“平行线面组”的个数是36+12=48.[答案](1)C(2)D(3)B[解题技法]1.利用两个计数原理解决应用问题的一般思路(1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类.(3)弄清分步、分类的标准是什么.(4)利用两个计数原理求解.2.涂色、种植问题的解题关注点和关键(1)关注点:首先分清元素的数目,其次分清在不相邻的区域内是否可以使用同类元素.(2)关键:是对每个区域逐一进行,选择下手点,分步处理.[题组训练]1.如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有________种.解析:按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).答案:722.如图所示,在连接正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).解析:把与正八边形有公共边的三角形分为两类:第一类,有一条公共边的三角形共有8×4=32(个).第二类,有两条公共边的三角形共有8个.由分类加法计数原理知,共有32+8=40(个).答案:40[课时跟踪检测]A级1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一对有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15D.21解析:选B当x=2时,x≠y,点的个数为1×7=7.当x≠2时,∵P⊆Q,∴x=y.∴x可从3,4,5,6,7,8,9中取,有7种方法.因此满足条件的点共有7+7=14(个).2.某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504B.210C.336D.120解析:选A分三步,先插第一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.3.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13D.10解析:选C分两类情况讨论:第1类,直线a 分别与直线b 上的8个点可以确定8个不同的平面;第2类,直线b 分别与直线a 上的5个点可以确定5个不同的平面.根据分类加法计数原理知,共可以确定8+5=13个不同的平面.4.从集合{1,2,3,4,…,10}中,选出5个数组成子集,使得这5个数中任意两个数的和都不等于11,则这样的子集有( )A.32个B.34个C.36个D.38个解析:选A 将和等于11的放在一组:1和10,2和9,3和8,4和7,5和6.从每一小组中取一个,有C 12=2(种).共有2×2×2×2×2=32(个)子集.5.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( )A.3B.4C.6D.8解析:选D 当公比为2时,等比数列可为1,2,4或2,4,8;当公比为3时,等比数列可为1,3,9;当公比为32时,等比数列可为4,6,9.同理,公比为12,13,23时,也有4个.故共有8个等比数列.6.将1,2,3,…,9这9个数字填在如图所示的空格中,要求每一行从左到右、每一列从上到下分别依次增大,当3,4固定在图中的位置时,填写空格的方法为( )A.6种B.12种C.18种D.24种解析:选A 根据数字的大小关系可知,1,2,9的位置是固定的,如图所示,则剩余5,6,7,8这4个数字,而8只能放在A 或B 处,若8放在B 处,则可以从5,6,7这3个数字中选一个放在C 处,剩余两个位置固定,此时共有3种方法,同理,若8放在A 处,也有3种方法,所以共有6种方法.7.(2019·郴州模拟)用六种不同的颜色给如图所示的六个区域涂色,要求相邻区域不同色,则不同的涂色方法共有( )A.4 320种B.2 880种C.1 440种D.720种解析:选A 分步进行:1区域有6种不同的涂色方法,2区域有5种不同的涂色方法,3区域有4种不同的涂色方法,4区域有3种不同的涂色方法,6区域有4种不同的涂色方法,5区域有3种不同的涂色方法.根据分步乘法计数原理可知,共有6×5×4×3×3×4=4 320(种)不同的涂色方法.3 4 12 D 34 A C B 98.(2019·惠州调研)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有()A.18个B.15个C.12个D.9个解析:选B由题意知,这个四位数的百位数,十位数,个位数之和为4.由4,0,0组成3个数,分别为400,040,004;由3,1,0组成6个数,分别为310,301,130,103,013,031;由2,2,0组成3个数,分别为220,202,022;由2,1,1组成3个数,分别为211,121,112,共有3+6+3+3=15(个).9.在某一运动会百米决赛上,8名男运动员参加100米决赛.其中甲、乙、丙三人必须在1,2,3,4,5,6,7,8八条跑道的奇数号跑道上,则安排这8名运动员比赛的方式共有________种.解析:分两步安排这8名运动员.第一步:安排甲、乙、丙三人,共有1,3,5,7四条跑道可安排.故安排方式有4×3×2=24(种).第二步:安排另外5人,可在2,4,6,8及余下的一条奇数号跑道上安排,所以安排方式有5×4×3×2×1=120(种).故安排这8人的方式共有24×120=2 880(种).答案:2 88010.有A,B,C型高级电脑各一台,甲、乙、丙、丁4个操作人员的技术等级不同,甲、乙会操作三种型号的电脑,丙不会操作C型电脑,而丁只会操作A型电脑.从这4个操作人员中选3人分别去操作这三种型号的电脑,则不同的选派方法有________种(用数字作答).解析:由于丙、丁两位操作人员的技术问题,要完成“从4个操作人员中选3人去操作这三种型号的电脑”这件事,则甲、乙两人至少要选派一人,可分四类:第1类,选甲、乙、丙3人,由于丙不会操作C型电脑,分2步安排这3人操作的电脑的型号,有2×2=4种方法;第2类,选甲、乙、丁3人,由于丁只会操作A型电脑,这时安排3人分别去操作这三种型号的电脑,有2种方法;第3类,选甲、丙、丁3人,这时安排3人分别去操作这三种型号的电脑,只有1种方法;第4类,选乙、丙、丁3人,同样也只有1种方法.根据分类加法计数原理,共有4+2+1+1=8种选派方法.答案:8B级1.把3封信投到4个信箱,所有可能的投法共有()A.24种B.4种C.43种D.34种解析:选C第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法.只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种投法.2.用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个解析:选B由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72个偶数.故符合条件的偶数共有48+72=120(个).3.如图是一个由四个全等的直角三角形与一个小正方形拼成的大正方形,现在用四种颜色给这四个直角三角形区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方法有()A.24种B.72种C.84种D.120种解析:选C如图,设四个直角三角形顺次为A,B,C,D,按A―→B―→C―→D顺序涂色,下面分两种情况:(1)A,C不同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的2种颜色中任意取一色):有4×3×2×2=48种不同的涂法.(2)A,C同色(注意:B,D可同色、也可不同色,D只要不与A,C同色,所以D可以从剩余的3种颜色中任意取一色):有4×3×1×3=36种不同的涂法.故共有48+36=84种不同的涂色方法.4.(2018·湖南十二校联考)若m,n均为非负整数,在做m+n的加法时各位均不进位(例如:134+3 802=3 936),则称(m,n)为“简单的”有序对,而m+n称为有序对(m,n)的值,那么值为1 942的“简单的”有序对的个数是________.解析:第1步,1=1+0,1=0+1,共2种组合方式;第2步,9=0+9,9=1+8,9=2+7,9=3+6,…,9=9+0,共10种组合方式;第3步,4=0+4,4=1+3,4=2+2,4=3+1,4=4+0,共5种组合方式;第4步,2=0+2,2=1+1,2=2+0,共3种组合方式.根据分步乘法计数原理,值为1 942的“简单的”有序对的个数是2×10×5×3=300.答案:300-3,-2,-1,0,1,2,若a,b,c∈M,则:5.已知集合M={}(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.解:(1)a的取值有5种情况,b的取值有6种情况,c的取值有6种情况,因此y=ax2+bx+c可以表示5×6×6=180个不同的二次函数.(2)y=ax2+bx+c的图象开口向上时,a的取值有2种情况,b,c的取值均有6种情况,因此y=ax2+bx+c可以表示2×6×6=72个图象开口向上的二次函数.。

2020年高考数学(理)热点专练11 计数原理(解析版)

2020年高考数学(理)热点专练11 计数原理(解析版)

热点11 计数原理【命题趋势】计数原理包含排列组合与二项式定理,在高考数学中通常是以选择题的形式呈现.另外在解答题中与统计概率相结合比较普遍.高考中通常难度不是很大,主要考查是排列与组合的先后顺序或者是有条件限制的排列与组合.二项式定理也是高考考查的一个重点,主要考查二项式定理的展开.本专题通过列举排列组合与二项式定理常见的考题类型,总结此些类型题目的解题方法以及易错点,能够让你在高考中遇到计数原理类型的题目能够迎刃而解. 【满分技巧】捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如 此继续下去,依次即可完成.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 对于二项式定理的应用,只要会求对应的常数项以及对应的n 项即可,但是应注意是二项式系数还是系数. 【考查题型】选择题【限时检测】(建议用时:35分钟)1.(2019·广西高三月考)()()()()()423401234211111x a a x a x a x a x -=+-+---++等式中,则1234+++a a a a =( ) A .81 B .80C .65D .64【答案】B 【解析】 【分析】分别令1x =,2x =代入原式,即可求出结果. 【详解】因为()()()()()423401234211111x a a x a x a x a x -=+-+---++ 令1x =,可得()4021-=a ,即01a =;令2x =,可得:()40123441++-=++a a a a a ,即0123481++++=a a a a a , 所以1234+++81180=-=a a a a . 故选:B【名师点睛】本题主要考查二项式定理的应用,熟记二项式定理即可,属于常考题型.2.(2019·广西柳州一中高三月考)()26112x x x ⎛⎫+- ⎪⎝⎭展开式中,含2x 项系数是() A .-40 B .-25C .25D .55【答案】B 【解析】 【分析】写出二项式61x x ⎛⎫- ⎪⎝⎭的展开式中的通项,然后观察含2x 的项有两种构成,一种是()212x +中的1与61x x ⎛⎫- ⎪⎝⎭中的二次项相乘得到,一种是()212x +中的22x 与61x x ⎛⎫- ⎪⎝⎭中的常数项相乘得到,将系数相加即可得出结果. 【详解】二项式61x x ⎛⎫- ⎪⎝⎭的展开式中的通项6621661C (1)C kk k k k kk T x xx --+⎛⎫=-=- ⎪⎝⎭,含2x 的项的系数为223366(1)2(1)25C C -+⨯-=-,故选B .【名师点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.3.(2019·湖南高二期中(理))9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品来检查,至少有两件一等品的种数是( )A .C 42⋅C 52B .C 42+C 43+C 44C .C 42+C 52 D . C 42⋅C 52+C 43⋅C 51+C 44⋅C 50【答案】D 【解析】试题分析:有两件一等品的种数C 42C 52,有三件一等品的种数C 43C 51,有四件一等品的种数C 44C 50, 所以至少有两件一等品的种数是C 42⋅C 52+C 43⋅C 51+C 44⋅C 50,故选D .考点:组合的应用.4.(2019·四川高三月考(理))()()42121x x x -++的展开式中含3x 的项的系数为( )A .8-B .6-C .8D .6【答案】D 【解析】 【分析】将二项式变形后得出()()()()()4244241112121x x x x x x xx =+-++++-+,得出其展开式通项为124442r r m m n n C x C x C x ++⋅-⋅+⋅,然后令123r m n =+=+=,求出r 、m 、n 的值,再代入展开式通项可得出展开式中含3x 项的系数.【详解】()()()()()()()442244421211211121x x x x x x x x x x x -++-++==+-+++Q ,其展开式通项为21244444422r r m m n n r r m m n n C x xC x x C x C x C x C x ++⋅-⋅+⋅=⋅-⋅+⋅,令123r m n =+=+=,得3r =,2m =,1n =,因此,展开式中含3x 的系数为321444246246C C C -+=-+⨯=,故选:D.【名师点睛】本题考查二项展开式中指定项系数的求解,一般先得出其展开式通项,根据x 的指数求出参数的值,代入计算即可,考查运算求解能力,属于中等题.5.(2019·上海华师大二附中高三)《九章算术》中将四个面都是直角三角形的四面体 称为“鳖臑”,则以正方体1111ABCD A B C D -的顶点为顶点的“鳖臑”的个数为( ) A .12 B .24C .48D .58【答案】B【解析】每个顶点对应6个鳖臑,所以8个顶点对应48个鳖臑.但每个鳖臑都重复一次,再除2.【详解】当顶点为A 时,三棱锥A ﹣EHG ,A ﹣EFG ,A ﹣DCG ,A ﹣DHG ,A ﹣BCG , A ﹣BFG ,为鳖臑.所以8个顶点为8×6=48个.但每个鳖臑都重复一次,再除2.所以个数为24个. 故选:B .6.(2019·山东高三月考)汽车维修师傅在安装好汽车轮胎后,需要紧固轮胎的五个螺栓,记为A 、B 、C 、D 、E (在正五边形的顶点上),紧固时需要按一定的顺序固定每一个螺栓,但不能连续固定相邻的两个,则不同固定螺栓顺序的种数为( ) A .20 B .15 C .10 D .5【答案】C 【解析】正五边形ABCDE ,考虑先固定A ,第二步只能固定C 或D ,依次确定第三步和第四第五步,共两种顺序,同理先固定其他四个位置各两种,一共十种顺序. 【详解】此题相当于在正五边形ABCDE 中,对五个字母排序,要求五边形的任意相邻两个字母不能排在相邻位置,考虑A 放第一个位置,第二步只能C 或D ,依次ACEBD 或ADBEC 两种; 同理分别让B 、C 、D 、E 放第一个位置,分别各有两种,一共十种不同的顺序. 故选:C【名师点睛】此题考查计数原理的应用,需要弄清完成一件事情是通过如何分类或分步完成,适当的情况下列举出部分基本情况对解题大有帮助.7.(2018·河南高考模拟(理))若2017(12018)x -=220170122017a a x a x a x +++L ()x R ∈,则2017122017201820182018a a a+++L 的值为( ) A .20172018 B .1C .0D .1-【答案】D【解析】分析:先由题意求得01a = ,再令12018x = ,可得2017122017201820182018a a a +++L 的值.详解:根据 ()201712018x -= 220170122017a a x a x a x +++L ()x R ∈,令0x = ,可得01a =. 再令12018x =,可得20172017121220172017101201820182018201820182018a a a a a a +++⋯+=++⋯+=-,故, 故选D .8.(2019·湖南长沙一中高三月考(理))中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)的一种,现有十二生肖的吉物各一个,甲、乙、丙三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、兔、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取的礼物都满意,那么不同的选法有( ) A .50种 B .60种 C .70种 D .90种【答案】C 【解析】【分析】根据题意,按同学甲的选择分2种情况讨论,求出每种情况的选法数目,由加法原理计算可得答案. 【详解】根据题意,分2种情况讨论:如果同学甲选牛,那么同学乙只能选兔、狗和羊中的一种, 丙同学可以从剩下的10种中任意选,∴选法有1131030C C ⋅=种;如果同学甲选马,那么同学乙能选牛、兔、狗和羊中的一种,丙同学可以从剩下的10种中任意选,∴选法有种1141040C C ⋅=,不同的选法共有304070+=种,故选C. 【名师点睛】本题主要考查排列、组合的应用,涉及分类计数原理的运用,属于基础题.9.(2019·湖北高二期末)《红海行动》是一部现代海军题材影片,该片讲述了中国海军“蛟龙突击队”奉命执行撤侨任务的故事.撤侨过程中,海军舰长要求队员们依次完成六项任务,并对任务的顺序提出了如下要求:重点任务A 必须排在前三位,且任务E 、F 必须排在一起,则这六项任务的不同安排方案共有( ) A .240种 B .188种 C .156种 D .120种【答案】D 【解析】当E,F 排在前三位时,2231223()N A A A ==24,当E,F 排后三位时,122223322()()N C A A A ==72,当E,F 排3,4位时,112232322()N C A A A ==24,N=120种,选D.二、填空题10.若()82301232x a a x a x a x +=++++4567845678a x a x a x a x a x ++++,则1245245a a a a --+-678678a a a +-=_______.(用数字作答). 【答案】5368- 【解析】 【分析】对等式()82301232x a a x a x a x +=++++4567845678a x a x a x a x a x ++++两边同时求导得()723123482234x a a x a x a x +=++++456756785678a x a x a x a x +++,令1x =-,和单独求出3a ,代入可得结果. 【详解】解:Q ()82301232x a a x a x a x +=++++4467845678a x a x a x a x a x ++++,∴()723123482234x a a x a x a x +=++++456756785678a x a x a x a x +++,令1x =-,有()71234812234a a a a -+=-+-+56785678a a a a -+-, 即1234234a a a a -+-+567856788a a a a -+-=.又553821792a C ==,故所求值为8179235368-⨯=-. 故答案为:5368- 【名师点睛】本题考查二项展开式系数的相关计算,关键在于对展开式两边同时求导,和利用赋值法,是中档题11.(2019·北京高考模拟(理))2019年3月2日,昌平 “回天”地区开展了7种不同类型的 “三月雷锋月,回天有我”社会服务活动. 其中有2种活动既在上午开展、又在下午开展,3种活动只在上午开展,2种活动只在下午开展 . 小王参加了两种不同的活动,且分别安排在上、下午,那么不同安排方案的种数是___________. 【答案】18 【解析】 【详解】小王参加的是两种不同的活动,有2种活动既在上午开展、又在下午开展,(1)设小王没参加既在上午开展、又在下午开展的2种活动,则有:1132C C ⨯=6种方案; (2)设小王参加了既在上午开展、又在下午开展的2种活动,(a )上午参加了既在上午开展、又在下午开展的2种活动之一,则有:1122C C ⨯=4种方案;(b )下午参加了既在上午开展、又在下午开展的2种活动之一,则有:1132C C ⨯=6种方案;(c )上下午都参加了既在上午开展、又在下午开展的2种活动,则有:1121C C ⨯=2种方案;所以,不同的安排方案有:6+4+6+2=18种. 【名师点睛】本题主要考查分类加法计数原理,分步乘法计数原理等知识,意在考查学生的转化能力和计算求解能力.12.(2019·北京清华附中高考模拟(理))《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有__________种.(用数字作答) 【答案】144 【解析】 【分析】由特殊位置优先处理,先排最后一个节目,共14C =4(种),相邻问题由捆绑法求解即剩余五个节目按A 与F 不相邻排序,共524524A A A -⋅=72(种)排法,定序问题用倍缩法求解即可B 排在D 的前面,只需除以22A 即可, 【详解】《沁园春•长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐•六盘山》,分别记为A ,B ,C ,D ,E ,F ,由已知有B 排在D 的前面,A 与F 不相邻且不排在最后.第一步:在B ,C ,D ,E 中选一个排在最后,共14C =4(种)选法第二步:将剩余五个节目按A 与F 不相邻排序,共524524A A A -⋅=72(种)排法, 第三步:在前两步中B 排在D 的前面与后面机会相等,则B 排在D 的前面,只需除以22A =2即可,即六场的排法有4×72÷2=144(种) 故答案为:144. 【名师点睛】本题考查了排列、组合及简单的计数原理,属中档题. 13.(2019·山东高三月考)设2018220180122018(1)ax x a x a a x a -=++++L ,若12320182320182018a a a a a +++⋯+=()0a ≠,则实数a =________.【答案】2 【解析】【分析】将左右两边的函数分别求导,取1x =代入导函数得到答案. 【详解】2018220180122018(1)ax x a x a a x a -=++++L两边分别求导:201720171220182018(1)22018a ax a a a x x --=+++L取1x =201712201820182018(1)22018a a a a a a -+=-=++L2a =故答案为2 【名师点睛】本题考查了二项式定理的计算,对两边求导是解题的关键. 三、解答题14.(2019·天津实验中学高考模拟(理))(10分)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机抽出2个球,求取出的2个球的颜色相同的概率;(2)从盒中一次随机抽出4个球,其中红球、黄球、绿球的个数分别为123,,x x x ,随机变量X 表示123,,x x x 的最大数,求X 的概率分布和数学期望()E X .【答案】(1)518;(2)20()9E X =. 【解析】试题分析:(1)从9个球中抽2个球共有2936C =种方法,而两个球同色,可能同为红,同为黄或同为绿,方法为22243210C C C ++=,概率为1053618P ==;(2)首先抽4个球中,红、黄、绿色球的个数至少有一个不小于2,因此X 的可能值为2,3,4,4X =,说明抽出的4个球都是红球,3X =,说明抽出的4个球中有3个红球、1个其他色或者3个黄球、1个其他色,2X =说明4个球中2个红球、其他两色各1个,或2个黄球、其他两色各1个,或2个绿球、其他两色各1个,当然求(2)P X =时,可用(2)(3)(4)1P X P X P X =+=+==来求.试题解析:(1)由题意22243229518C C C P C ++==; (2)随机变量X 的取值可能为2,3,4,44491(4)126C P X C ===, 313145364913(3)63C C C C P X C +===, 11(2)1(3)(4)14P X P X P X ==-=-==, 所以X 的分布列为13120()21434631269E X =⨯+⨯+⨯=. 【考点】排列与组合,离散型随机变量的分布列与均值(数学期望).15.(2019·河北阜平中学高二月考(理))(1)在(1+x)n 的展开式中,若第3项与第6项系数相等,则n 等于多少?(2)n⎛⎝的展开式奇数项的二项式系数之和为128,求展开式中二项式系数最大项.【答案】(1)n =7(2)70x【解析】(1)由已知得2n C =5n C 得n =7.(2)由已知得0n C +2n C +4n C +…=128,2n -1=128,n =8,而展开式中二项式系数最大项是T 4+1=48C 44=70x。

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

自然数2520有多少个约数? 有多少个约数? 例3.自然数 自然数 有多少个约数 解:2520=23×32×5×7 = × 分四步完成: 分四步完成: 第一步: 第一步:取20,21,22,23,24有4种; 种 第二步: 第二步:取30,31,32有3种; 种 第三步:取50,51有2种; 第三步: 种 第四步: 第四步:取70,71有2种。 种 由分步计数原理,共有4× × × = 种 由分步计数原理,共有 ×3×2×2=48种 练习: 张 元币 元币, 张 角币 角币, 张 分币 分币, 张 分币 分币, 练习:5张1元币,4张1角币,1张5分币,2张2分币,可组成 多少种不同的币值?( 张不取, ?(1张不取 角不计在内) 多少种不同的币值?( 张不取,即0元0分0角不计在内) 元 分 角不计在内 元:0,1,2,3,4,5 , , , , , 角:0,1,2,3,4 , , , , 分:0,2,4,5,7,9 , , , , , 6×5×6-1=179 × × - =
பைடு நூலகம்
(染色问题) 染色问题)
1.如图 要给地图 、B、C、D四个区域分别涂上 种 如图,要给地图 四个区域分别涂上3种 如图 要给地图A、 、 、 四个区域分别涂上 不同颜色中的某一种,允许同一种颜色使用多次 允许同一种颜色使用多次,但相 不同颜色中的某一种 允许同一种颜色使用多次 但相 邻区域必须涂不同的颜色,不同的涂色方案有多少种 不同的涂色方案有多少种? 邻区域必须涂不同的颜色 不同的涂色方案有多少种?
深化理解 4. 何时用分类计数原理、分步计数原理呢 何时用分类计数原理、分步计数原理呢? 完成一件事情有n类方法 答:完成一件事情有 类方法 若每一类方法中的任 完成一件事情有 类方法,若每一类方法中的任 何一种方法均能将这件事情从头至尾完成,则计算完 何一种方法均能将这件事情从头至尾完成 则计算完 成这件事情的方法总数用分类计数原理. 成这件事情的方法总数用分类计数原理 完成一件事情有n个步骤 若每一步的任何一种 完成一件事情有 个步骤,若每一步的任何一种 个步骤 方法只能完成这件事的一部分,并且必须且只需完成 方法只能完成这件事的一部分 并且必须且只需完成 互相独立的这n步后 才能完成这件事,则计算完成这 步后,才能完成这件事 互相独立的这 步后 才能完成这件事 则计算完成这 件事的方法总数用分步计数原理. 件事的方法总数用分步计数原理

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案

分类加法计数原理与分步乘法计数原理教案一、教学目标:1. 让学生理解分类加法计数原理和分步乘法计数原理的概念。

2. 培养学生运用分类加法计数原理和分步乘法计法原理解决实际问题的能力。

3. 提高学生对数学的兴趣,培养学生的逻辑思维能力。

二、教学重点与难点:1. 教学重点:分类加法计数原理和分步乘法计数原理的理解和应用。

2. 教学难点:如何引导学生运用分类加法计数原理和分步乘法计数原理解决实际问题。

三、教学方法:1. 采用问题驱动的教学方法,让学生在解决问题的过程中理解分类加法计数原理和分步乘法计数原理。

2. 使用案例分析和小组讨论的方式,培养学生的合作能力和沟通能力。

3. 运用数形结合的方法,帮助学生直观地理解分类加法计数原理和分步乘法计数原理。

四、教学准备:1. 教具准备:黑板、粉笔、多媒体教学设备。

2. 学具准备:学生用书、练习本、文具。

3. 教学素材:相关案例分析题、小组讨论题。

五、教学过程:1. 导入新课:通过一个实际问题,引入分类加法计数原理和分步乘法计数原理。

2. 讲解分类加法计数原理:解释分类加法计数原理的概念,并通过实例讲解如何运用。

3. 讲解分步乘法计数原理:解释分步乘法计数原理的概念,并通过实例讲解如何运用。

4. 案例分析:给出一个案例,让学生运用分类加法计数原理和分步乘法计数原理解决问题。

5. 小组讨论:学生分组讨论,分享各自解决问题的方法和答案。

7. 课堂练习:给出一些练习题,让学生巩固所学内容。

8. 课后作业:布置一些相关的作业题,让学生进一步巩固所学知识。

9. 课堂小结:对本节课的内容进行小结,强调重点和难点。

六、教学评价:1. 评价目标:通过课堂表现、练习完成情况和课后作业来评价学生对分类加法计数原理和分步乘法计数原理的理解和应用能力。

2. 评价方法:a) 课堂表现:观察学生在课堂上的参与程度、提问回答情况以及小组讨论的表现。

b) 练习完成情况:检查学生练习题的完成质量,包括解题思路、步骤和答案的正确性。

第一讲-分类加法原理与分步乘法原理(解析版)

第一讲-分类加法原理与分步乘法原理(解析版)

第一讲分类与分步计数原理入门测例1.由数字0,1,2,3这四个数字,可组成多少个:(1)无重复数字的三位数?(2)可以有重复数字的三位数?(3)无重复数字的三位偶数?【答案】18;48;10例2.如果,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通.问从甲地到丙地共有多少种不同的走法?【答案】14例3.有三项体育运动项目,每个项目均设冠军和亚军各一名奖项:(1)学生甲参加了这三个运动项目,但只获得一个奖项,学生甲获奖的不同情况有多少种?(2)有4名学生参加这三个运动项目,若一个学生可以获得多项冠军,那么各项冠军获得者的不同情况有多少种?【答案】6;64题型一:分类加法计数原理 知识清单知识1:分类加法计数原理(1)分类加法计数原理的概念做一件事,完成它有n 类办法,做第一类办法有1m 种不同的方法,做第二类办法有2m 种不同的方法……做第n 类办法有n m 种不同的方法,那么完成这件事共有12++n N m m m =+种不同的方法.(2)分类加法计数原理的特点分类加法计数原理又称分类计数原理或加法原理,其特点是各类中的每一种方法都可以完成要做的事情,我们可以用11m 第有第种方法类,22m 第有第种方法类,…,n m 第n 有第种方法类来表示分类加法计数原理,一共有12++n m m m +种方法,强调每一类中的一种方法就可以完成这件事.(3)分类的原则分类计数时,首先要根据问题的特点,确定一个适当的分类标准,然后利用这个分类标准进行分类,分类时要注意两条基本原则:一是完成这件事的任何一种方法必须分为相应的类:二是不同类的任何方法必须是不同的方法,只要满足这两条基本原则,就可以确保计数的不重不漏.①明确题目中所指的“完成一件事”是指什么事,完成这件事可以有哪些办法,怎样才算完成这件事.②完成这件事的n 种方法是相互独立的,无论哪种方案中的哪种方法部可以单独完成这件事,而不需要再用到其他的方法.③确立恰当的分类标准,准确地对这件事进行分类,要求每一种方法必定属于某一类方案,不同类方案的任意两种方法是不同的方法,也就是分类时必须做到既不重复也不遗漏. ④分类加法计数原理的集合表述形式做一件事,完成它的办法用集合S 表示,S 被分成n 类,分别用集合12,,n S S S 表示,即12n S S S S =,且()i j S S i j =∅≠,12,,n S S S 中分别有12,,n m m m 种不同的方法,即集合12,,n S S S 中分别有12,,n m m m 个元素,那么完成这件事共有的方法,即集合S 中的元素的个数为12++n m m m +.典型例题例1.一部记录影片在4个单位轮映,每一单位放映1场,有多少种轮映次序?【答案】24例2.从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.假定火车每日1班,汽车每日3班,轮船每日2班,那么一天中从甲地到乙地有多少种不同的走法?【答案】1+2+3=6(种)男生数女生数总数高三(1)班302050高三(2)班303060高三(3)班352055(2)从高三(1)班、高三(2)班男生中或从高三(3)班戈生中选1名学生任学生会解析(1)从三个班中选1名学生任学生会主席,共有三类不同的方案:第1类,从高三(1)班学生中选出1名学生,有50种不同的选法;第2类,从高三(2)班学生中选出1名学生,有60种不同的选法;第3类,从高三(3)班学生中选出1名学生,有55种不同的选法.根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55=165(种)不同的选法.(2)从高三(1)班、高三(2)班男生中或从高三(3)班女生中选1名学生任学生会生活部部长,共有三类不同的方案:第1类,从高三(1)班男生中选出1名学生,有30种不同的选法;第2类,从高三(2)班男生中选出1名学生,有30种不同的选法;第3类,从高三(3)班女生中选出1名学生,有20种不同的选法.根据分类加法计数原理知,从高三(1)班,高三(2)班男生中或从高三(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80(种)不同的选法.方法总结:根据已知条件确定好分类标准后,分类应满足:完成一件事的任何一种方法,必属于某一类而且仅属于某一类,即“类”与“类”之间是相互独立的,是确定的.在解题时,应首先分清楚怎样才算完成这件事,完成这件事有n类方法,其中的每一种都可以独立完成这件事.题型二:分步乘法计数原理 知识清单知识1:分步乘法计数原理(1)分步乘法计数原理的慨念做一件事,完成它需要分成n 个步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同的方法……做第n 个步骤有n m 种不同的方法,那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.(2)分步乘法计数原理的特点分步乘法计数原理的特点是在所有的各步之中,每一步中都要使用一种方法才能完成要做的事情,可以利用图形11m 第有第种方法类→22m 第有第种方法类→…→n m 第n 有第种方法类来表示分步乘法计数原理,图中的“→”强调要依次完成各个步骤才能完成要做的事情,从而共m1×m2×…mn 种不同的方法可以完成这件事. (3)分步的原则应用分步乘法计数原理解题时要注意以下几点:①明确题目中所指的“完成一件事”是指什么事,单独用题目中所给的某种方法是不是能完成这件事,也就是说,是否必须经过几步才能完成这件事:②完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少任何一步,这件事就不可能完成:③根据题意正确分步,要求各步之间必须连续,只有按照这n 个步骤逐步去做,才能完成这件事,各个步骤之中既不能重复也不能遗漏.典型例题例1.一个三层书架的上层放有5本不同的数学书,中层放有3本不同的语文书,下层放有2本不同的英语书:(1)从书架上任取一本书,有多少种不同的取法? (2)从书架上任取三本书,其中数学书、语文书、英文书各一本,有多少种不同种的取法? 【答案】10种,30种例2.用0,1,2,3,4这五个数字可以组成多少个无重复数字的: (1)银行存折的四位密码? (2)四位数? (3)四位奇数?【答案】120个;96个;36个.例3.我们把壹元硬币有牡丹的一面叫做正面,有币值的一面叫做反面.现依次抛出5,枚壹元硬币,按照抛出的顺序得到一个由5个“正”或“反”组成的序列,如“正、反、反、反、正”.问:一共可以得到多少个不同的这样的序列? 【答案】32个例4.乘积1212()()m n a a a b b b ++⋅⋅⋅+++⋅⋅⋅+展开后,共有_______项; 【答案】mn ;方法总结:应用分步乘法计数原理时,关键是确定分步的步骤,必须是连续做完几步,要不漏不重.题型三:综合问题知识清单知识1:分类加法计算原理与分步乘法计数原理的关系(1)分类加法计数原理和分步乘法计数原理解决的都是有关做一件事的不同方法的种数问题,都是计数的方法,二者的区别在于:分类加法计数原理针对的是分类问题,其各种方法之间是相互独立的,其中的任何一种方法都可以单独完成这件事:分步乘法计数原理针对的是分步问题,各个步骤之间相互依存,只有各个步骤都完成,才算完成这件事,单独的一步或几步不能完成这件事.(2)两个计数原理的区别在于分类加法计数原理每次得到的都是最后结果,而分步乘法计数原理每步得到的都是中间结果,可以用下表表示:区别分类加法计数原理分步乘法计数原理①完成一件事,共有n类办法,关键词是分类完成一件事.共分n个步骤,关键同是分步②每类办法都能独立完成这件事,它们是独立的,一次性的,且每一次得到的部是最后结果,只需一种方法就可以完成这件事每一步得到的只是中间结果,任何一步都不可能独立完成这件事,只有各个步骤都完成了,才算完成这件事③各类办法之间是互斥的,并列的,独立的各步之问是有关联的,不独立的,关键确保不遗漏、不重复(3)计数原理的选择如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能完成这件事情,求完成这件事情的方法种数,就用分类加法计数原理;如果完成一件事情要分成n个步骤,各个步骤都是不可或缺的,需要依次完成所有的步骤,才能完成这件事情,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数,就用分步乘法计数原理.从思想方法的角度看,分类加法计数原理是将问题进行“分类”思考;分步乘法计数原理是将问题进行“分步”思考,这两种方法贯穿本章的始终.典型例题例1.由数字0,1,2,3这四个数字,可组成多少个:(1)无重复数字的三位数?(2)可以有重复数字的三位数?(3)无重复数字的三位偶数?【答案】18;48;10例2.如果,从甲地到乙地有2条路可通,从乙地到丙地有3条路可通;从甲地到丁地有4条路可通,从丁地到丙地有2条路可通.问从甲地到丙地共有多少种不同的走法?【答案】14例3.有三项体育运动项目,每个项目均设冠军和亚军各一名奖项:(1)学生甲参加了这三个运动项目,但只获得一个奖项,学生甲获奖的不同情况有多少种?(2)有4名学生参加这三个运动项目,若一个学生可以获得多项冠军,那么各项冠军获得者的不同情况有多少种?【答案】6;64十个数字,可以组成多少个:例4.用0,1,,9(1)三位数?(2)无重复数字的三位数?(3)小于500的无重复的三位数字?(4)小于500,且末位数字是8或9的无重复数字的三位数?(5)小于100的无重复数字的自然数?【答案】900;648;288;64;91方法总结:在解决计数问题时,最重要的是在开始汁算之前要进行仔细分析——需要分类还是需要分步.①分类要做到“不重不漏”.分类后再分别对每一类进行计数.最后用分类加法计数原理求和,得到总数.②分步要做到“步骤完整”——完成了所有步骤,恰好完成任务,当然步与步之间要相互独立.分步后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.。

分类加法原理与分布乘法原理

分类加法原理与分布乘法原理

分类加法计数原理和分步乘法计数原理第一课时1 分类加法计数原理 (1)提出问题问题 1.1:用一个大写的英文字母或一个阿拉伯数字给教室里的座位编号,总共能够编出多少种不同的号码?问题1.2:从甲地到乙地,可以乘火车,也可以乘汽车.如果一天中火车有3班,汽车有2班.那么一天中,乘坐这些交通工具从甲地到乙地共有多少种不同的走法?(2)发现新知分类加法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N += 种不同的方法. (3)知识应用例1.在填写高考志愿表时,一名高中毕业生了解到,A,B 两所大学各有一些自己感兴趣的强项专业,具体情况如下:A 大学B 大学 生物学 数学 化学 会计学 医学 信息技术学 物理学 法学 工程学如果这名同学只能选一个专业,那么他共有多少种选择呢?变式:若还有C 大学,其中强项专业为:新闻学、金融学、人力资源学.那么,这名同学可能的专业选择共有多少种?探究:如果完成一件事有三类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,在第3类方案中有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情有n 类不同方案,在每一类中都有若干种不同方法,那么应当如何计数呢? 一般归纳:完成一件事情,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法……在第n 类办法中有n m 种不同的方法.那么完成这件事共有n m m m N +⋅⋅⋅++=21种不同的方法.理解分类加法计数原理:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事.例2.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条? 练习1.填空: ( 1 )一件工作可以用 2 种方法完成,有 5 人只会用第 1 种方法完成,另有 4 人只会用第 2 种方法完成,从中选出 l 人来完成这件工作,不同选法的种数是_ ;( 2 )从 A 村去 B 村的道路有 3 条,从 B 村去 C 村的道路有 2 条,从 A 村经 B 的路线有_条.第二课时2 分步乘法计数原理 (1)提出问题问题2.1:用前6个大写英文字母和1—9九个阿拉伯数字,以1A ,2A ,…,1B ,2B ,…的方式给教室里的座位编号,总共能编出多少个不同的号码?(2)发现新知分步乘法计数原理 完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法. 那么完成这件事共有n m N ⨯= 种不同的方法. (3)知识应用例1.设某班有男生30名,女生24名. 现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?探究:如果完成一件事需要三个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,做第3步有3m 种不同的方法,那么完成这件事共有多少种不同的方法?如果完成一件事情需要n 个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢? 一般归纳:完成一件事情,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法……做第n 步有n m 种不同的方法.那么完成这件事共有n m m m N ⨯⋅⋅⋅⨯⨯=21种不同的方法.理解分步乘法计数原理:分步计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事.3.理解分类加法计数原理与分步乘法计数原理异同点 ①相同点:都是完成一件事的不同方法种数的问题②不同点:分类加法计数原理针对的是“分类”问题,完成一件事要分为若干类,各类的方法相互独立,各类中的各种方法也相对独立,用任何一类中的任何一种方法都可以单独完成这件事,是独立完成;而分步乘法计数原理针对的是“分步”问题,完成一件事要分为若干步,各个步骤相互依存,完成任何其中的一步都不能完成该件事,只有当各个步骤都完成后,才算完成这件事,是合作完成.例2 .如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?变式1,如图,要给地图A、B、C、D四个区域分别涂上3种不同颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂不同的颜色,不同的涂色方案有多少种?2若颜色是2种,4种,5种又会什么样的结果呢?练习2.现有高一年级的学生 3 名,高二年级的学生 5 名,高三年级的学生 4 名. ( 1 )从中任选1 人参加接待外宾的活动,有多少种不同的选法?村去 C 村,不同 ( 2 )从 3 个年级的学生中各选 1 人参加接待外宾的活动,有多少种不同的选法?第三课时3 综合应用例1. 书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放2本不同的体育书. ①从书架上任取1本书,有多少种不同的取法?②从书架的第1、2、3层各取1本书,有多少种不同的取法? ③从书架上任取两本不同学科的书,有多少种不同的取法?例2. 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,问共有多少种不同的挂法?例3.随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和 3 个不重复的阿拉伯数字,并且 3 个字母必须合成一组出现,3个数字也必须合成一组出现.那么这种办法共能给多少辆汽车上牌照?练习1.乘积12312312345)()()a a a b b b c c c c c ++++++++(展开后共有多少项?2.某电话局管辖范围内的电话号码由八位数字组成,其中前四位的数字是不变的,后四位数字都是。

分类加法计数原理和分步乘法计数原理

分类加法计数原理和分步乘法计数原理

分类加法计数原理和分步乘法计数原理【要点梳理】要点一:分类加法计数原理(也称加法原理)1.分类加法计数原理:完成一件事,有n 类办法.在第1类办法中有1m 种不同方法,在第2类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同方法,那么完成这件事共有n m m m N +++=Λ21种不同的方法.2.加法原理的特点是:① 完成一件事有若干不同方法,这些方法可以分成n 类;② 用每一类中的每一种方法都可以完成这件事;③ 把每一类的方法数相加,就可以得到完成这件事的所有方法数.要点诠释:使用分类加法计数原理计算完成某件事的方法数,第一步是对这件事确定一个标准进行分类,第二步是确定各类的方法数,第三步是取和。

3.图示分类加法计数原理:由A 到B 算作完成一件事.直线型流程线表示第1类方案中包括的方法数,折线型流程线表示第2类方案中包括的方法数。

从图中可以看出,完成由A 到B 这件事,共有方法m+n 种。

要点诠释:用分类加法计数原理计算完成某件事的方法数,“类”要一竿到底,它的起点、终点就是完成这件事的开始与结束,图示分类加法计数原理,用意就在其中。

要点二、分步乘法计数原理1.分步乘法计数原理“做一件事,完成它需要分成n 个步骤”,就是说完成这件事的任何一种方法,都要分成n 个步骤,要完成这件事必须并且只需连续完成这n 个步骤后,这件事才算完成.2.乘法原理的特点:① 完成一件事需要经过n 个步骤,缺一不可;② 完成每一步有若干种方法;③ 把每一步的方法数相乘,就可以得到完成这件事的所有方法数.要点诠释:使用分步乘法计数原理计算完成某件事的方法数,第一步是对完成这件事进行分步,第二步是确定各步的方法数,第三步是求积。

3.图示分步乘法计数原理:由A到C算作完成一件事.设完成这件事的两个步骤为从A到B、从B到C。

要点诠释:从A到C算作完成一件事,A是起点,C是终点,点B是中间单元,从A到B是第1步,从B到C是第2步。

分类加法计数原理与分步乘法计数原理知识点与习题

分类加法计数原理与分步乘法计数原理知识点与习题

理解分类加法计数原理和分步乘法计数原理,能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.知识聚焦不简单罗列1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有叫种不同的方法,在第二类方案中有吗种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事情,共有N =种不同的方法.2.分步乘法计数原理完成一件事情需要n个不同的步骤,完成第一步有1^种不同的方法,完成第二步有1^ 种不同的方法,……,完成第n步有mn种不同的方法,那么完成这件事情共有N = 种不同的方法.3.两个计数原理的区别分类加法计数原理与分步乘法计数原理,都涉及完成一件事情的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.正本清源不单纯记忆■链接教材1.[教材改编]现有高一年级的学生3名,高二年级的学生5名,从中任选1人参加接待外宾的活动,有种不同的选法.2.[教材改编]5位同学站成一排准备照相的时候,有2位老师碰巧路过,同学们强烈要求与老师合影留念,如果5位同学顺序一定,那么2位老师与同学们站成一排照相的站法总数为.3.[教材改编]如图9551所示,使电路接通,开关不同的开闭方式有种.图9551■易错问题4.分类加法计数原理:每一种方法都能完成这件事情;类与类之间是独立的.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友1本,则不同的赠送方法共有种.5.分步乘法计数原理:所有步骤完成才算完成;步与步之间是相关联的.将甲、乙、丙等6人分配到高中三个年级,每个年级2人,要求甲必须在高一年级,乙和丙均不能在高三年级,则不同的安排种数为.■通性通法6.分类计数原理:分类时标准要明确.如果把个位数是1,且恰有三个数字相同的四位数叫作“好数”,那么在由1, 2, 3, 4 四个数字组成的有重复数字的四位数中,“好数”共有.7.分步计数原理:步骤互相独立,互不干扰;步与步确保连续,逐步完成.某市汽车牌照号码可以上网自编,但规定从左到右第二个号码只能从字母B, C, D中选择,其他四个号码可以从0〜9这十个数字中选择(数字可以重复),某车主第一个号码(从左到右)只想在数字3, 5, 6, 8, 9中选择,其他号码只想在1, 3, 6, 9中选择,则他的车牌号码可选的所有可能情况有种.探究点一分类加法计数原理1某校开设A类选修课2门,B类选修课3门,一位同学从中选3门.若要求两类课程中各至少选一门,则不同的选法共有()A. 3种B. 6种C. 9 种D. 18 种(2)现有5种不同的颜色可供使用,将一个五棱锥的各个侧面涂色,5个侧面分别编号为1, 2, 3, 4, 5,而有公共边的两个面不能涂同一种颜色,则不同的涂色方法有______________ 种.[总结反思]分类标准是运用分类计数原理的难点所在,重点在于抓住题目中的关键词、关键元素或关键位置.首先,根据题目特点恰当选择一个分类标准;其次,分类时应注意完成这件事情的任何一种方法必须属于某一类.应用分类加法计数原理时,应先明确分类标准,确保计数不重复,不遗漏.式题(1)某班班会准备从甲、乙等7名学生中选4名学生发言,要求甲、乙2人至少有1人参加,则不同的发言顺序的种数为()A. 840B. 720C. 600D. 30(2)如图9552所示为某旅游区各景点的分布图,图中一支箭头表示一段有方向的路,试计算顺着箭头方向,从A到H可走的不同的旅游路线的条数为()图9552A. 15B. 16C. 17D. 18探究点二分步乘法计数原理2(1)将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有种.(2)将A, B, C, D, E, F六个字母排成一排,且A, B均在C的同侧,则不同的排法共有种.(用数字作答)[总结反思]利用分步乘法计数原理解决问题时应注意:(1)要按事件发生的过程合理分步,即分步是有先后顺序的,以元素(或位置)为主体的计数问题,通常先满足特殊元素(或位置),再考虑其他元素(或位置);(2)对完成每一步的不同方法种数要根据条件准确确定.式题(1)某节目制作组选取了6户家庭到4个村庄体验农村生活,要求将6户家庭分成4组,其中2组各有2户家庭,另外2组各有1户家庭,则不同的分配方案的种数是()A. 216B. 420C. 720D. 1080(2)用5种不同的颜色为如图9553所示的广告牌着色,要求在①②③④四个不同区域中相邻的区域不用同一种颜色,则不同的着色方法种数为()图9553A. 320B. 240C. 180D. 135探究点三两个计数原理的综合3 (1)设集合A={(xj x2, x3, x4, xj|x产{—1, 0, 1), i = 1, 2, 3, 4, 5},那么集合A中满足条件“1WI XJ + I XJ + I X3I + I XJ + I X5IW3”的元素个数为()A. 60B. 90C. 120D. 130(2)用红、黄、蓝三种颜色去涂图中标号为1, 2,…,9的9个小正方形(如图9554), 使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1, 5, 9的小正方形涂相同的颜色,则符合条件的所有涂法共有种.图9554[总结反思](1)分类加法计数原理中,完成一件事的方法属于其中一类并且只属于其中一类.(2)分步乘法计数原理中,各个步骤相互依存,只有完成每一步,整件事才算完成.(3)若综合利用两个计数原理,一般先分类再分步.式题设集合1={1,2, 3, 4, 5},选择集合I的两个非空子集A和B,若集合B中最小的元素大于集合A中最大的元素,则不同的选择方法共有()A. 50 种B. 49 种C. 48 种D. 47 种学科能力自主阅读型误区警示21.分类与分步不当致误【典例】若从1, 2, 3,…,9这9个整数中取4个不同的数,其和为偶数,则不同的取法共有()A. 60 种B. 63 种C. 65 种D. 66 种解析D先找出|①和为偶数的各种情况,]再利用分类加法计数原理求解.满足题设的取法可分为三类:一是4个都是奇数,在奇数1, 3,5,7,9中,任意取4个,有C4 = 5(种);二是2个奇数2 5个偶数,在5个奇数中任取2个,再在偶数2, 4, 6, 8中任取2个,有②C,-C 2 = 60 (种)--- 5 --4--------三是4个都是偶数,取法有1种.所以满足条件的取法共有5 + 60+1 = 66(种).【踉踪练习】(1)[2015 •唐山二模]一种团体竞技比赛的积分规则是:每队胜、平、负分别得2分、1分、0分.已知甲球队已赛4场,积4分,则在这4场比赛中,甲球队胜、平、负(包括顺序)的情况共有()A. 7 种B. 13 种C. 18 种D. 19 种(2)给一个各边不等的凸五边形的各边染色,每条边可以染红、黄、蓝三种颜色中的一种,但是不允许相邻的边有相同的颜色,则不同的染色方法共有种.。

分类加法与分步乘法计数原理

分类加法与分步乘法计数原理
(2)
济宁育才中学
C123
【分类加法计数原理】
如果完成一件事有n类不同方案,在第
1类方案中有m1种不同的方法,在第2 类方案中有m2种不同的方法,…,在 第n类方案中有mn种不同的方法,那么 完成这件事的方法总数为
N=m1+m2+…+mn
【分步乘法计数原理】
如果完成一件事需要n个步骤,做第1 步有m1种不同的方法,做第2步有m2 种不同的方法,…,做第n步有mn种 不同的方法,那么完成这件事的方法 总数为N=m1×m2×…×mn
P6例5:给程序模块命名,需要用3个字符
其中首字符要求用字母A~G或U~Z,后两 个要求用数字1~9,问最多可以给
多少个程序命名? 答:(7+6) ×9 × 9=1053,
故最多可以给1053个程序命名.
P7例6:核糖核酸(RNA)分子是在生物细胞
中发现的化学成分,一个RNA分子是一个有着 数百个甚至数千个位置的长链,长链中每一 个位置上都由一种称为碱基的化学成分所占 据.总共有4种不同的碱基,分别用A,C,G, U表示.在一个RNA分子中,各种碱基能够以任 意次序出现,所以在任意一个位置上的碱基 与其他位置上的碱基无关.假设有一类RNA分 子由100个碱基组成,那么能有多少个不同的 RNA分子?
1.答:35 2.答:53
课下讨论:书P41B组13.
P7例7:电子元件很容易实现电路的通与断、电
位的高与低等两种状态,而这也是最容易控制的 两种状态.因此计算机内部就采用了每一位只有0 或1两种数字的记数法,即二进制.为了使计算机 能够识别字符,需要对字符进行编码,每个字符 可以用一个或多个字节来表示,其中字节是计算 机中数据存储的最小计量单位,每个字节由8个二 进制位构成.问: (1)一个字节(8位)最多可以表示多少个不同

分类加法计数原理与分步乘法计数原理 课件

分类加法计数原理与分步乘法计数原理 课件

一件上衣配成一套,那么不同的配法种数为 ( )
A.11
B.28
C.16 384
D.2 401
解析:要完成配套,分两步.第1步,选上衣,从4件上衣中任选一件,有4
种不同的选法;第2步,选长裤,从7条长裤中任选一条,有7种不同的
选法.故共有4×7=28种不同的配法.
答案:B
3.某商场共有4个门,购物者从一个门进,从另一个门出,不同的走法 种数是( ) A.8 B.7
法.
解析:若这个人来自(1)班,则有54种不同的选法;若来自(2)班,则有
56种不同的选法,所以共有110种不同的选法.
答案:110
2.分步乘法计数原理
完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有
n种不同的方法,那么完成这件事共有N=m×n种不同的方法.
【做一做2】 已知某乒乓球队有男队员9人,女队员8人,现从男、
解:(1)从三个班中任选1名学生担任学生会主席,共有三类不同的 方案.
第1类,从高三(1)班中选出1名学生,有50种不同的选法; 第2类,从高三(2)班中选出1名学生,有60种不同的选法; 第3类,从高三(3)班中选出1名学生,有55种不同的选法. 根据分类加法计数原理知,从三个班中任选1名学生担任学生会 主席,共有50+60+55=165种不同的选法.
高三(2)班
30
30
60
高三(3)班
35
20
55
(1)从三个班中任选1名学生担任学生会主席,有多少种不同的选
法? (2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生担
任学生会生活部部长,有多少种不同的选法? 思路分析:(1)从每个班任选1名学生担任学生会主席都能独立地

分类加法计数原理和分步乘法计数原理汇报

分类加法计数原理和分步乘法计数原理汇报
应用示例
例如,一个班里有30名学生,其中10名是男生,20名是女生,现在要从中选出5名学 生参加比赛,要求选出的学生中必须有男生和女生。根据分类加法计数原理,可以先分 别计算选出5名男生和选出5名女生的情况下的方法数,然后将两种情况下的方法数相
加,得到总的方法数。
分类加法计数原理的实例
实例
一个班里有30名学生,其中10名是男生,20名是女生,现在要从中选出5名学生参加比赛。根据分类 加法计数原理,选出5名男生有$C_{10}^{5}$种方法,选出5名女生有$C_{20}^{5}$种方法,因此总 共有$C_{10}^{5} + C_{20}^{5}$种不同的方法可以选出5名学生参加比赛。
计算机科学中的应用
计算机科学应用
分类加法计数原理和分步乘法计数原理在计算机科学 中也有着广泛的应用。例如,在算法设计、数据结构 、人工智能等领域中,这两个原理可以帮助我们设计 更高效的算法和数据结构,从而提高计算机程序的执 行效率和性能。
计算机科学应用实例
在计算机科学中,我们经常需要设计算法和数据结构 来处理各种问题。分类加法计数原理可以帮助我们将 问题分解为多个子问题,然后分别设计算法和数据结 构来解决每个子问题,最后将它们组合起来形成完整 的解决方案。而分步乘法计数原理则可以帮助我们将 问题分解为多个步骤,然后分别设计算法和数据结构 来解决每一步的问题,最后将它们组合起来形成完整 的解决方案。
分步乘法计数原理适用于事件需要按 照一定的顺序和步骤进行分解的情况 ,例如计算完成某项任务需要经过几 个步骤,每个步骤的概率是多少等。
优缺点比较
分类加法计数原理的优点在于能够清晰地展示不同类别的数 量,便于比较和分析;缺点在于对于复杂事件,可能难以准 确地划分类别。

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理

分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法.分类加法计数原理的理解分类加法计数原理中的“完成一件事有两个不同方案”,是指完成这件事的所有方法可以分为两类,即任何一类中的任何一种方法都可以完成任务,两类中没有相同的方法,且完成这件事的任何一种方法都在某一类中.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.分步乘法计数原理的理解分步乘法计数原理中的“完成一件事需要两个步骤”,是指完成这件事的任何一种方法,都需要分成两个步骤.在每一个步骤中任取一种方法,然后相继完成这两个步骤就能完成这件事,即各个步骤是相互依存的,每个步骤都要做完才能完成这件事.判断正误(正确的打“√”,错误的打“×”)(1)在分类加法计数原理中,两类不同方案中的方法可以相同.( )(2)在分类加法计数原理中,每类方案中的方法都能完成这件事.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(4)在分步乘法计数原理中,事情若是分两步完成的,那么其中任何一个单独的步骤都不能完成这件事,只有两个步骤都完成后,这件事情才算完成.( )答案:(1)×(2)√(3)√(4)√某校开设A类选修课3门,B类选修课4门,若要求从两类课程中选一门,则不同的选法共有( )A.3种B.4种C.7种D.12种答案:C已知x∈{2,3,7},y∈{-31,-24,4},则(x,y)可表示不同的点的个数是( ) A.1 B.3C.6 D.9答案:D某学生去书店,发现2本好书,决定至少买其中一本,则购买方式共有________种.答案:3加工某个零件分三道工序,第一道工序有5人可以选择,第二道工序有6人可以选择,第三道工序有4人可以选择,每两道工序中可供选择的人各不相同,如果从中选3人每人做一道工序,则选法有________种.答案:120探究点1 分类加法计数原理[学生用书P2]在所有的两位数中,个位数字大于十位数字的两位数共有多少个?【解】法一:按十位上的数字分别是1,2,3,4,5,6,7,8分成8类,在每一类中满足条件的两位数分别有8个、7个、6个、5个、4个、3个、2个、1个.由分类加法计数原理知,满足条件的两位数共有8+7+6+5+4+3+2+1=36(个).法二:按个位上的数字分别是2,3,4,5,6,7,8,9分成8类,在每一类中满足条件的两位数分别有1个、2个、3个、4个、5个、6个、7个、8个.由分类加法计数原理知,满足条件的两位数共有1+2+3+4+5+6+7+8=36(个).[变问法]在本例条件下,个位数字小于十位数字且为偶数的两位数有多少个?解:当个位数字是8时,十位数字取9,只有1个.当个位数字是6时,十位数字可取7,8,9,共3个.当个位数字是4时,十位数字可取5,6,7,8,9,共5个.同理可知,当个位数字是2时,共7个,当个位数字是0时,共9个.由分类加法计数原理知,符合条件的两位数共有1+3+5+7+9=25(个).利用分类加法计数原理计数时的解题流程某校高三共有三个班,各班人数如下表:男生人数女生人数总人数高三(1)班30 20 50 高三(2)班30 30 60 高三(3)班 35 20 55(1)(2)从高三(1)班、(2)班男生中或从高三(3)班女生中选1名学生任学生会生活部部长,有多少种不同的选法?解:(1)从每个班选1名学生任学生会主席,共有3类不同的方案:第1类,从高三(1)班中选出1名学生,有50种不同的选法;第2类,从高三(2)班中选出1名学生,有60种不同的选法;第3类,从高三(3)班中选出1名学生,有55种不同的选法.根据分类加法计数原理知,从三个班中选1名学生任学生会主席,共有50+60+55=165(种)不同的选法.(2)从高三(1)班、(2)班男生或高三(3)班女生中选1名学生任学生会生活部部长,共有3类不同的方案:第1类,从高三(1)班男生中选出1名学生,有30种不同的选法;第2类,从高三(2)班男生中选出1名学生,有30种不同的选法;第3类,从高三(3)班女生中选出1名学生,有20种不同的选法.根据分类加法计数原理知,从高三(1)班、(2)班男生或高三(3)班女生中选1名学生任学生会生活部部长,共有30+30+20=80(种)不同的选法.探究点2 分步乘法计数原理[学生用书P2]从-2,-1,0,1,2,3这六个数字中任选3个不重复的数字作为二次函数y =ax 2+bx +c 的系数a ,b ,c ,则可以组成抛物线的条数为多少?【解】 由题意知a 不能为0,故a 的值有5种选法; b 的值也有5种选法;c 的值有4种选法.由分步乘法计数原理得:5×5×4=100(条).1.[变问法]若本例中的二次函数图象开口向下,则可以组成多少条抛物线?解:需分三步完成,第一步确定a 有2种方法,第二步确定b 有5种方法,第三步确定c 有4种方法,故可组成2×5×4=40条抛物线.2.[变条件、变问法]若从本例的六个数字中选2个作为椭圆x 2m +y 2n=1的参数m ,n ,则可以组成椭圆的个数是多少?解:据条件知m >0,n >0,且m ≠n ,故需分两步完成,第一步确定m ,有3种方法,第二步确定n ,有2种方法,故确定椭圆的个数为3×2=6(个).利用分步乘法计数原理计数时的解题流程从1,2,3,4中选三个数字,组成无重复数字的整数,则满足下列条件的数有多少个?(1)三位数;(2)三位偶数.解:(1)分三步:第1步,排个位,有4种方法;第2步,排十位,从剩下的3个数字中选1个,有3种方法;第3步,排百位,从剩下的2个数字中选1个,有2种方法.故共有4×3×2=24个满足要求的三位数.(2)第1步,排个位,只能从2,4中选1个,有2种方法;第2步,排十位,从剩下的3个数中选1个,有3种方法;第3步,排百位,只能从剩下的2个数字中选1个,有2种方法.故共有2×3×2=12个满足要求的三位偶数.探究点3 两个计数原理的综合应用[学生用书P3]甲同学有5本不同的数学书、4本不同的物理书、3本不同的化学书,现在乙同学向甲同学借书,(1)若借1本书,则有多少种借法?(2)若每科各借1本书,则有多少种借法?(3)若任借2本不同学科的书,则有多少种借法?【解】(1)需完成的事情是“借1本书”,所以借给乙数学、物理、化学书中的任何1本,都可以完成这件事情.根据分类加法计数原理,共有5+4+3=12种借法.(2)需完成的事情是“每科各借1本书”,意味着要借给乙3本书,只有从数学、物理、化学三科中各借1本,才能完成这件事情.根据分步乘法计数原理,共有5×4×3=60种借法.(3)需完成的事情是“从三种学科的书中借2本不同学科的书”,可分三类:第1类,借1本数学书和1本物理书,只有2本书都借,事情才能完成,根据分步乘法计数原理,有5×4=20种借法;第2类,借1本数学书和1本化学书,有5×3=15种借法;第3类,借1本物理书和1本化学书,有4×3=12种借法.根据分类加法计数原理,共有20+15+12=47种借法.利用两个计数原理的解题策略用两个计数原理解决具体问题时,首先,要分清是“分类”还是“分步”,区分分类还是分步的关键是看这种方法能否完成这件事情.其次,要清楚“分类”或“分步”的具体标准,在“分类”时要遵循“不重不漏”的原则,在“分步”时要正确设计“分步”的程序,注意步与步之间的连续性;有些题目中“分类”与“分步”同时进行,即“先分类后分步”或“先分步后分类”.现有3名医生、5名护士、2名麻醉师.(1)从中选派1名去参加外出学习,有多少种不同的选法?(2)从这些人中选出1名医生、1名护士和1名麻醉师组成1个医疗小组,有多少种不同的选法?解:(1)分三类:第一类,选出的是医生,有3种选法;第二类,选出的是护士,有5种选法;第三类,选出的是麻醉师,有2种选法.根据分类加法计数原理,共有3+5+2=10(种)选法.(2)分三步:第一步,选1名医生,有3种选法;第二步,选1名护士,有5种选法;第三步,选1名麻醉师,有2种选法.根据分步乘法计数原理知,共有3×5×2=30(种)选法.1.某一数学问题可用综合法和分析法两种方法证明,有5名同学只会用综合法证明,有3名同学只会用分析法证明,现从这些同学中任选1名同学证明这个问题,不同的选法种数为( )A.8 B.15C.18 D.30解析:选A.共有5+3=8种不同的选法.2.已知集合A={1,2},B={3,4,5},从集合A、B中先后各取一个元素构成平面直角坐标系中的点的横、纵坐标,则可确定的不同点的个数为( )A.5 B.6C.10 D.12解析:选B.完成这件事可分两步:第一步,从集合A中任选一个元素,有2种不同的方法;第二步,从集合B中任选一个元素,有3种不同的方法.由分步乘法计数原理得,一共有2×3=6种不同的方法.3.体育场南侧有4个大门,北侧有3个大门,某人到该体育场晨练,则他进、出门的方案有( )A.12种B.7种C.14种D.49种解析:选D.要完成进、出门这件事,需要分两步,第一步进体育场,第二步出体育场,第一步进门有4+3=7种方法;第二步出门也有4+3=7种方法,由分步乘法计数原理知进、出门的方案有7×7=49种.4.现有高一学生50人,高二学生42人,高三学生30人,组成冬令营.(1)若从中选1人作总负责人,共有多少种不同的选法?(2)若每年级各选1名负责人,共有多少种不同的选法?(3)若从中推选两人作为中心发言人,要求这两人要来自不同的年级,则有多少种选法?解:(1)从高一选1人作总负责人有50种选法;从高二选1人作总负责人有42种选法;从高三选1人作总负责人有30种选法.由分类加法计数原理,可知共有50+42+30=122种选法.(2)从高一选1名负责人有50种选法;从高二选1名负责人有42种选法;从高三选1名负责人有30种选法.由分步乘法计数原理,可知共有50×42×30=63 000种选法.(3)①高一和高二各选1人作中心发言人,有50×42=2 100 种选法;②高二和高三各选1人作中心发言人,有42×30=1 260种选法;③高一和高三各选1人作中心发言人,有50×30=1 500种选法.故共有2 100+1 260+1 500=4 860种选法.[A 基础达标]1.完成一项工作,有两种方法,有5个人只会用第一种方法,另外有4个人只会用第二种方法,从这9个人中选1人完成这项工作,不同的选法种数是( )A.5 B.4C.9 D.20解析:选C.由分类加法计数原理求解,5+4=9(种).故选C.2.已知集合M={1,-2,3},N={-4,5,6,-7},从两个集合中各取一个元素作为点的坐标,可得直角坐标系中第一、二象限不同点的个数是( )A.18 B.16C.14 D.10解析:选C.分两类:第一类M中取横坐标,N中取纵坐标,共有3×2=6(个)第一、二象限的点;第二类M中取纵坐标,N中取横坐标,共有2×4=8(个)第一、二象限的点.综上可知,共有6+8=14(个)不同的点.3.现有4名同学去听同时进行的3个课外知识讲座,每名同学可自由选择其中的一个讲座,不同选法的种数是( )A.81 B.64C.48 D.24解析:选A.每个同学都有3种选择,所以不同选法共有34=81(种),故选A.4.如果x,y∈N,且1≤x≤3,x+y<7,那么满足条件的不同的有序自然数对(x,y)的个数是( )A.15 B.12C.5 D.4解析:选A.分情况讨论:①当x=1时,y=0,1,2,3,4,5,有6种情况;②当x=2时,y=0,1,2,3,4,有5种情况;③当x=3时,y=0,1,2,3,有4种情况.由分类加法计数原理可得,满足条件的有序自然数对(x,y)的个数是6+5+4=15.5.十字路口来往的车辆,如果不允许回头,则不同的行车路线有( )A.24种B.16种C.12种D.10种解析:选C.完成该任务可分为四类,从每一个方向的入口进入都可作为一类,如图,从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12种不同的行车路线,故选C.6.已知集合A={0,3,4},B={1,2,7,8},集合C={x|x∈A或x∈B},则当集合C中有且只有一个元素时,C的情况有________种.解析:分两种情况:当集合C中的元素属于集合A时,有3种;当集合C中的元素属于集合B时,有4种.因为集合A与集合B无公共元素,所以集合C的情况共有3+4=7(种).答案:77.某班小张等4位同学报名参加A,B,C三个课外活动小组,每位同学限报其中一个小组,且小张不能报A小组,则不同的报名方法有________种.解析:小张的报名方法有2种,其他3位同学各有3种,所以由分步乘法计数原理知共有2×3×3×3=54种不同的报名方法.答案:548.直线方程Ax+By=0,若从0,1,2,3,5,7这6个数字中每次取两个不同的数作为A,B的值,则可表示________条不同的直线.解析:若A或B中有一个为零时,有2条;当AB≠0时,有5×4=20条,则共有20+2=22(条),即所求的不同的直线共有22条.答案:229.(2018·云南丽江测试)现有高二四个班学生34人,其中一、二、三、四班各7人、8人、9人、10人,他们自愿组成数学课外小组.(1)选其中一人为负责人,有多少种不同的选法?(2)每班选一名组长,有多少种不同的选法?(3)推选二人作中心发言,这二人需来自不同的班级,有多少种不同的选法?解:(1)分四类:第一类,从一班学生中选1人,有7种选法;第二类,从二班学生中选1人,有8种选法;第三类,从三班学生中选1人,有9种选法;第四类,从四班学生中选1人,有10种选法.所以,共有不同的选法N=7+8+9+10=34(种).(2)分四步,第一、二、三、四步分别从一、二、三、四班学生中选一人任组长,所以共有不同的选法N=7×8×9×10=5 040(种).(3)分六类,每类又分两步,从一、二班学生中各选1人,有7×8种不同的选法;从一、三班学生中各选1人,有7×9种不同的选法;从一、四班学生中各选1人,有7×10种不同的选法;从二、三班学生中各选1人,有8×9种不同的选法;从二、四班学生中各选1人,有8×10种不同的选法;从三、四班学生中各选1人,有9×10种不同的选法.所以共有不同的选法N=7×8+7×9+7×10+8×9+8×10+9×10=431(种).10.(1)如图,在由电键组A与B所组成的并联电路中,要接通电源且仅闭合其中一个电键,使电灯C发光的方法有多少种?(2)如图,由电键组A,B组成的电路中,要闭合两个电键接通电源,使电灯C发光的方法有几种?解:(1)只要闭合图中的任一电键,电灯即发光.由于在电键组A中有2个电键,电键组B 中有3个电键,且分别并联,应用分类加法计数原理,所以共有2+3=5(种)接通电源使电灯发光的方法.(2)只有在闭合A组中2个电键中的一个之后,再闭合B组中3个电键中的一个,才能使电灯的电源接通,电灯才能发光.根据分步乘法计数原理,共有2×3=6(种)不同的接通方法使电灯发光.[B 能力提升]11.(2018·郑州高二检测)从集合{1,2,3,…,10}中任意选出3个不同的数,使这3个数成等比数列,这样的等比数列的个数为( )A.3 B.4C.6 D.8解析:选D.以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.把这4个数列的顺序颠倒,又得到4个数列,所以所求的数列共有2×(2+1+1)=8(个).12.(2018·长沙高二检测)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为( )A.14 B.13C.12 D.10解析:选B.对a进行讨论,为0与不为0,当a不为0时还需考虑判别式与0的大小.若a=0,则b=-1,0,1,2,此时(a,b)的取值有4个;若a≠0,则方程ax2+2x+b=0有实根,需Δ=4-4ab≥0,所以ab≤1,此时(a,b)的取值为(-1,0),(-1,1),(-1,-1),(-1,2),(1,1),(1,0),(1,-1),(2,-1),(2,0),共9个.所以(a,b)的个数为4+9=13.故选B.13.已知集合M={-3,-2,-1,0,1,2},点P(a,b)表示平面上的点(a,b∈M).(1)点P可以表示平面上的多少个不同点?(2)点P可以表示平面上的多少个第二象限的点?(3)点P可以表示多少个不在直线y=x上的点?解:(1)完成这件事分为两个步骤:a的取法有6种,b的取法有6种.由分步乘法计数原理知,点P可以表示平面上6×6=36(个)不同点.(2)根据条件,需满足a<0,b>0.完成这件事分两个步骤:a的取法有3种,b的取法有2种,由分步乘法计数原理知,点P 可以表示平面上3×2=6(个)第二象限的点.(3)因为点P不在直线y=x上,所以第一步a的取法有6种,第二步b的取法有5种,根据分步乘法计数原理可知,点P可以表示6×5=30(个)不在直线y=x上的点.14.(选做题)某节目中准备了两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果?解:抽奖过程分三步完成,考虑到幸运之星可分别出现在两个信箱中,故可分两种情形考虑,分两大类:(1)幸运之星在甲箱中抽,先定幸运之星,再在两箱中各定一名幸运伙伴有30×29×20=17 400种结果.(2)幸运之星在乙箱中抽,同理有20×19×30=11 400种结果.因此共有不同结果17 400+11 400=28 800种.。

第01讲 分类加法计数原理与分步乘法计数原理 (高频考点,精讲)(原卷版)

第01讲 分类加法计数原理与分步乘法计数原理 (高频考点,精讲)(原卷版)

n m ++种不2种不同的方n m ⨯⨯种不同例题4.(2022·江苏连云港·高二期中)用0,1,2,3,…,9十个数字可组成多少个不同的(1)三位数?(2)无重复数字的三位数?(3)小于500且没有重复数字的自然数?同类题型归类练1.(2022·吉林油田第十一中学高二期末)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有( )A .288个B .240个C .144个D .126个2.(2022·全国·高三专题练习)我们把各位数字之和为6的四位数称为“六合数”(如2 013是“六合数”),则“六合数”中首位为2的“六合数”共有( )A .18个B .15个C .12个D .9个3.(2022·全国·高二课时练习)设集合A ={0,1,2,3,4,5,6,7},如果方程x 2-mx -n =0 (m ,n ∈A )至少有一个根x 0∈A ,就称方程为合格方程,则合格方程的个数为( )A .13B .15C .17D .194.(2022·全国·高二课时练习)已知集合{}2,4,6,8A =,{}1,3,5,7,9B =,从A 中取一个数作为十位数字,从B 中取一个数作为个位数字,能组成______个不同的两位数,能组成______个十位数字小于个位数字的两位数.角度2:与几何有关的问题典型例题例题1.(2022·全国·高三专题练习)已知60C 分子是一种由60个碳原子构成的分子,它形似足球,因此又名足球烯,60C 是单纯由碳原子结合形成的稳定分子,它具有60个顶点和若干个面,.各个面的形状为正五边形或正六边形,结构如图.已知其中正六边形的面为20个,则正五边形的面为( )个.A.10 B.12C.16 D.20例题2.(2022·全国·高二期末)从正十五边形的顶点中选出3个构成钝角三角形,则不同的选法有().A.105种B.225种C.315种D.420种同类题型归类练1.(2022·全国·高三专题练习)若一个正方体绕着某直线l旋转不到一周后能与自身重合,那么这样的直线l的条数为()A.3B.4C.6D.13 2.(2022·全国·高三专题练习)一个国际象棋棋盘(由8×8个方格组成),其中有一个小方格因破损而被剪去(破损位置不确定).“L”形骨牌由三个相邻的小方格组成,如图所示.现要将这个破损的棋盘剪成数个“L”形骨牌,则()A.至多能剪成19块“L”形骨牌B.至多能剪成20块“L”形骨牌C.最多能剪成21块“L”形骨牌D.前三个答案都不对3.(2022·上海交大附中高二期中)正方体的8个顶点中,选取4个共面的顶点,有______种不同选法角度3:涂色问题典型例题例题1.(2022·吉林·长春吉大附中实验学校高二阶段练习)用4种不同颜色给如图所示的地图上色,要求相邻两块涂不同的颜色,不同的涂色方法共有()A.24种B.36种C.48种D.72种例题2.(2022·广东·佛山市顺德区东逸湾实验学校高二期中)用5种不同颜色给右图所示的五个圆环涂色,要求相交的两个圆环不能涂相同的颜色,共有()种不同的涂色方案.A.1140 B.1520 C.1400 D.1280例题3.(2022·内蒙古·赤峰二中高二阶段练习(理))如图,一花坛分成1,2,3,4,5五个区域,现有4种不同的花供选种,要求在每个1区域里面种1种花,且相邻的两个区域种不同的花,则不同的种法总数为_______.例题4.(2022·全国·高二课时练习)现有4种不同颜色要对如图的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有______种.同类题型归类练1.(2022·全国·高二课时练习)用红、黄、蓝三种颜色给如图所示的六个相连的圆涂色,若每种颜色只能涂两个圆,且相邻两个圆所涂颜色不能相同,则不同的涂色方案的种数是A.12 B.24 C.30 D.36 2.(2022·全国·高二课时练习)四色定理又称四色猜想,是世界近代三大数学难题之一.它是于1852年由毕业于伦敦大学的格斯里提出来的,其内容是“任何一张地图只用四种颜色就的能使具有共同边界的国家着上不同的颜色”.某校数学兴趣小组在研究给四棱锥P ABCD各个面涂颜色时,提出如下的“四色问题”:要求相邻面(含公共棱的面)不得使用同一颜色,现有4种颜色可供选择,则不同的涂法有()A.36种B.72种C.48种D.24种3.(2022·全国·高三专题练习)如图,一个地区分为5个行政区域,现给地图着色,要求相邻地区不得使用同一颜色,现有4种颜色可供选择,则不同的着色方法共有种___________.(以数字作答)4.(2022·广东·罗定邦中学高二期中)现有5种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法种数为______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题11.1 分类加法计数原理与分布乘法计数原理
1.理解分类加法计数原理和分步乘法计数原理;
2.会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.
知识点一分类加法计数原理
完成一件事有两类不同方案,在第1类方案中有m种不同的方法,在第2类方案中有n种不同的方法.那么完成这件事共有N=m+n种不同的方法.
知识点二分步乘法计数原理
完成一件事需要两个步骤,做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有N=m×n种不同的方法.
【特别提醒】分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.
【知识必备】
分类加法计数原理与分步乘法计数原理是解决排列组合问题的基础,并贯穿其始终.
1.分类加法计数原理中,完成一件事的方法属于其中一类,并且只属于其中一类.
2.分步乘法计数原理中,各个步骤相互依存,步与步之间“相互独立,分步完成”.
考点一分类加法计数原理的应用
【典例1】(河北衡水中学2019届模拟)
(1)从甲地到乙地有三种方式可以到达.每天有8班汽车、2班火车和2班飞机.一天一人从甲地去乙地,共有________种不同的方法.
(2)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为________.
【答案】(1)12(2)13
【解析】(1)分三类:一类是乘汽车有8种方法;一类是乘火车有2种方法;一类是乘飞机有2种方法,由分类加法计数原理知,共有8+2+2=12(种)方法.
(2)当a=0时,b的值可以是-1,0,1,2,故(a,b)的个数为4;当a≠0时,要使方程ax2+2x+b=0
有实数解,需使Δ=4-4ab≥0,即ab≤1.
若a=-1,则b的值可以是-1,0,1,2,(a,b)的个数为4;
若a=1,则b的值可以是-1,0,1,(a,b)的个数为3;
若a=2,则b的值可以是-1,0,(a,b)的个数为2.
由分类加法计数原理可知,(a,b)的个数为4+4+3+2=13.
【方法技巧】分类标准是运用分类加法计数原理的难点所在,应抓住题目中的关键词、关键元素和关键位置.
(1)根据题目特点恰当选择一个分类标准.
(2)分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分别属于不同种类的两种方法才是不同的方法,不能重复.
(3)分类时除了不能交叉重复外,还不能有遗漏,如本例(2)中易漏a=0这一类.
【变式1】(北京师范大学附中2019届模拟)
(1)从3名女同学和2名男同学中选1人主持主题班会,则不同的选法种数为()
A.6
B.5
C.3
D.2
(2)从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()
A.3
B.4
C.6
D.8
【答案】(1)B(2)D
【解析】(1)5个人中每一个都可主持,所以共有5种选法.
(2)以1为首项的等比数列为1,2,4;1,3,9;
以2为首项的等比数列为2,4,8;
以4为首项的等比数列为4,6,9;
把这4个数列的顺序颠倒,又得到另外的4个数列,
∴所求的数列共有2(2+1+1)=8个.
考点二分步乘法计数原理的应用
【典例2】(湖南浏阳一中2019届质检)
(1)用0,1,2,3,4,5可组成无重复数字的三位数的个数为________.
(2)五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有________种.
【答案】(1)100(2)4554
【解析】(1)可分三步给百、十、个位放数字,第一步:百位数字有5种放法;第二步:十位数字有5种放法;第三步:个位数字有4种放法,根据分步乘法计数原理,三位数的个数为5×5×4=100.
(2)五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性.
【方法技巧】
1.利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.
2.分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.
【变式2】(山西康杰中学2019届模拟)
已知a∈{1,2,3},b∈{4,5,6,7},则方程(x-a)2+(y-b)2=4可表示不同的圆的个数为()
A.7
B.9
C.12
D.16
【答案】C
【解析】得到圆的方程分两步:第一步:确定a有3种选法;第二步:确定b有4种选法,由分步乘法计数原理知,共有3×4=12(个).
考点三与数字有关的问题
【典例3】(河北衡水二中2019届调研)在三位正整数中,若十位数字小于个位和百位数字,则称该数为“驼峰数”.比如“102”,“546”为“驼峰数”,由数字1,2,3,4可构成无重复数字的“驼峰数”有________个.【答案】8
【解析】十位上的数为1时,有213,214,312,314,412,413,共6个,十位上的数为2时,有324,423,共2个,所以共有6+2=8(个).
【变式3】(内蒙古呼和浩特市二中2019届模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()
A.243
B.252
C.261
D.279
【答案】B
【解析】(1)0,1,2,…,9共能组成9×10×10=900(个)三位数,其中无重复数字的三位数有9×9×8=648(个),∴有重复数字的三位数有900-648=252(个).
考点四与涂色、种植问题
【典例4】(辽宁沈阳二中2019届质检)如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法种数。

【答案】420
【解析】法一按所用颜色种数分类.
第一类:5种颜色全用,共有A55种不同的方法;
第二类:只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×A45种不同的方法;
第三类:只用3种颜色,则A与C,B与D必定同色,共有A35种不同的方法.
由分类加法计数原理,得不同的染色方法种数为A55+2×A45+A35=420(种).
法二以S,A,B,C,D顺序分步染色.
第一步:S点染色,有5种方法;
第二步:A点染色,与S在同一条棱上,有4种方法;
第三步:B点染色,与S,A分别在同一条棱上,有3种方法;
第四步:C点染色,也有3种方法,但考虑到D点与S,A,C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S,B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420(种).
【变式4】(吉林长春市实验中学2019届模拟)
(1)如图所示,用4种不同的颜色涂入图中的矩形A,B,C,D中,要求相邻的矩形涂色不同,则不同的涂法有()
A.72种
B.48种
C.24种
D.12种
(2)如图所示,在连结正八边形的三个顶点而成的三角形中,与正八边形有公共边的三角形有________个(用数字作答).
【答案】(1)A(2)40
【解析】
(1)法一首先涂A有4种涂法,则涂B有3种涂法,C与A,B相邻,则C有2种涂法,D只与C相邻,则D有3种涂法,所以共有4×3×2×3=72种涂法.
法二按要求涂色至少需要3种颜色,故分两类:一是4种颜色都用,这时A有4种涂法,B有3种涂法,C有2种涂法,D有1种涂法,共有4×3×2×1=24(种)涂法;二是用3种颜色,这时A,B,C的涂法
有4×3×2=24(种),D只要不与C同色即可,故D有2种涂法,所以不同的涂法共有24+24×2=72(种).
(2)把与正八边形有公共边的三角形分为两类:
第一类,有一条公共边的三角形共有8×4=32(个).
第二类,有两条公共边的三角形共有8个.
由分类加法计数原理知,共有32+8=40(个).。

相关文档
最新文档