第一章 固体晶格结构.

合集下载

第一章 晶体结构(Crystal Structure)

第一章 晶体结构(Crystal Structure)

基元( basis)
构成晶体的基本结构单元。 基元是化学组成、空间结构、排列取向、周 围环境相同的原子、分子、离子或离子团的集 合。 可以是一个原子(如铜、金、银等),可以是 两个或两个以上原子(如金刚石、氯化钠、磷化 镓等),有些无机物晶体的一个基元可有多达 100个以上的原子,如金属间化合物NaCd2的基 元包含1000 多个原子,而蛋白质晶体的一个基 元包含多达10000 个以上的原子。
六角密堆积晶格结构是一个复式晶格
基元为两个原子 2 1 1 (0,0,0)、( , , ) 3 3 2
c
a
b
三、致密度
反映粒子排列的紧密程度,或也称堆积因 子。 定义: 晶胞内所有粒子的体积与晶胞体积之比。
例1:计算简单立方晶胞的致密度
解: 3 简单立方晶胞的体积为 a,
晶胞内有一个原子,原 子半径为 0 .5 a
a ( a a ) 1 2 3
就是布拉菲格子的晶胞。 晶胞基矢的选取使得平行六面体有尽可能多的相等的棱和 角,有尽可能多的直角,尽可能地反映空间点阵的对称性。 ,一般 晶胞体积为 。 a ( b c )
c构成的最小的平行六面体 以不共面的晶胞基矢 a 、b 、
如果将A、B两个原子看作为一 个基元,则点阵结构就如前页所示 ,格子就是布拉菲格子了。
二维蜂窝格子 (非布拉菲格子)
二、布拉菲格子的原胞与晶胞 a3 以不共面的原胞基矢 a 、 、 a 1 2 构成的最小的平行六面体就是
布拉菲格子的原胞。其体积为:
基矢的取法不唯一,故原胞的取法也不唯一。 无论如何选取,原胞均有相同的体积。 对于布拉菲格子,原胞只含有一个基元(格点)。
原胞体积为:

固体物理 第一章 晶体结构 晶格的周期性

固体物理 第一章  晶体结构 晶格的周期性
固体物理学
Ch1晶体结构 1.2晶格的周期性
1
前课回顾
• 什么是晶格?什么是基元? • 常见的晶格结构?
2
本节内容
• 晶格具有周期性,用原胞和基矢描述。 • 原胞:一个晶格最小的重复单元。 • 晶体学单胞(晶胞):反映晶格对称性,选取较大的
周期单元。
• 基矢:原胞或晶胞的边矢量,α1、α2、α3 。 • 简立方、面心立方、体心立方、六角密堆积的原胞、
34
Click to edit Master title style
Click to edit Master subtitle style
35
Click to edit Master title style
Click to edit Master subtitle style
36
Click to edit Master title style
Click to edit Master subtitle style
42
Click to edit Master title style
晶向、晶面和它们的标志
Click to edit Master subtitle style
43
本课小结
晶体结构=晶格+基元 布拉维格子、基矢、格矢、格点 原胞,晶体中体积最小的周期性重复单元 维格纳-塞茨(WS)原胞及其构造方法 常见的布拉维格子及其WS原胞
原胞是晶体中体积最小的周期性重复单元,常取 以基矢为棱边的平行六面体; 对某一晶格,尽管习惯上常取三个不共面的最短 格矢为基矢,但基矢的取法并不唯一,因此原胞 的取法也不唯一。
无论如何选取,原 胞都具有相同的体 积,每个原胞只含 有一个格点。

半导体物理与器件习题

半导体物理与器件习题

半导体物理与器件习题目录半导体物理与器件习题 (1)一、第一章固体晶格结构 (2)二、第二章量子力学初步 (2)三、第三章固体量子理论初步 (2)四、第四章平衡半导体 (3)五、第五章载流子输运现象 (5)六、第六章半导体中的非平衡过剩载流子 (5)七、第七章pn结 (6)八、第八章pn结二极管 (6)九、第九章金属半导体和半导体异质结 (7)十、第十章双极晶体管 (7)十一、第十一章金属-氧化物-半导体场效应晶体管基础 (8)十二、第十二章MOSFET概念的深入 (9)十三、第十三章结型场效应晶体管 (9)一、第一章固体晶格结构1.如图是金刚石结构晶胞,若a 是其晶格常数,则其原子密度是。

2.所有晶体都有的一类缺陷是:原子的热振动,另外晶体中常的缺陷有点缺陷、线缺陷。

3.半导体的电阻率为10-3~109Ωcm。

4.什么是晶体?晶体主要分几类?5.什么是掺杂?常用的掺杂方法有哪些?答:为了改变导电性而向半导体材料中加入杂质的技术称为掺杂。

常用的掺杂方法有扩散和离子注入。

6.什么是替位杂质?什么是填隙杂质?7.什么是晶格?什么是原胞、晶胞?二、第二章量子力学初步1.量子力学的三个基本原理是三个基本原理能量量子化原理、波粒二相性原理、不确定原理。

2.什么是概率密度函数?3.描述原子中的电子的四个量子数是:、、、。

三、第三章固体量子理论初步1.能带的基本概念◼能带(energy band)包括允带和禁带。

◼允带(allowed band):允许电子能量存在的能量范围。

◼禁带(forbidden band):不允许电子存在的能量范围。

◼允带又分为空带、满带、导带、价带。

◼空带(empty band):不被电子占据的允带。

◼满带(filled band):允带中的能量状态(能级)均被电子占据。

导带:有电子能够参与导电的能带,但半导体材料价电子形成的高能级能带通常称为导带。

价带:由价电子形成的能带,但半导体材料价电子形成的低能级能带通常称为价带。

固体物理第一章(2)

固体物理第一章(2)

例2解答:
c
b
0a (101)
c
b
0a (1-22)
c
b
0a (021)
c
b
a (2-10)
例3、在六角晶系中,晶面指数常用(hkml)表示, 它们代表一个晶面的基矢的截距分别为a1/h,a2/k, a3/m,在c轴上的截距为c/l。
证明(1)h+k=-m;
(2)求出O’A1A3、A1A3B3B1、A2B2B5A5和 A1A3A5四个面的面指数。
例1解答:
晶面族(123)截a1、a2和a3分别为1、2、3等份,ABC面是离原点O最近 的晶面,OA长度等于a1的长度,OB长度等于a2长度的1/2,OC长度等于a3 长度的1/3,所以只有A点是格点。若ABC面的指数为(234)的晶面族,则 A、B和C都不是格点。
例2、在简立方晶胞中,画出(101)、(021)、(1-22)和(2-10)晶面。
ra1 n ra1 cos a1, n d
sa2 n sa2 cos a2 , n d
ta3 n tas cos a3 , n d
由此得: c o sa 1 ,n:c o sa 2 ,n:c o sa 3 ,n1:1:1
r a 1 s a 2 ta 3
与上式相比较,有
cos
h1h2k1k2l1l2
h12k12l12 h22k22l22
指数简单的面是最重要的晶面,如(100)、(110)、(111)之类。 这些面指数低的晶面系,其面间距d 较大,原子层之间的结合力弱,晶 体往往在这些面劈裂,成为解理面,一般容易显露。如Ge、Si、金刚石 的解理面是(111)面,而III-V族化合物半导体的解离面是(110)面。
立方晶格的等效晶面

1.1 晶体结构

1.1 晶体结构

直径约7埃
五边型键长1.46A,六边型相邻双键长1.39A
44
始熔化,且在熔化过程中保持不变,直到晶体全部熔化,
温度才开始上升,即晶体有固定的熔点。
5
固体物理
固体物理学
晶体的宏观特性: 自限性、晶面夹角守恒、解理性、晶体的各向异性、 晶体的均匀性、晶体的对称性、固定的熔点。
思 考 晶体的宏观特性是由晶体内部结构的周期
性决定的,即晶体的宏观特性是微观特性的反映。
固体物理学
体心立方晶格结构金属 —— Iron
21
固体物理
固体物理学
c. 六角密排晶格
原子在晶体中的平衡位置,排列应该采取尽可能的紧密方式 —— 结合能最低的位置 密堆积 —— 晶体由全同一种粒子组成,将粒子看作小圆球 这些全同的小圆球最紧密的堆积
密堆积所对应的配位数 —— 晶体结构中最大的配位数
C层原子球排列之一 —— 六角密排晶格
C层原子球排列
25
固体物理
固体物理学
原子球排列为:AB AB AB ……
六角密排晶格结构晶体
( hexagonal close-packed, hcp )
Be、Mg、Zn、Cd
hcp的配位数为12;
26
固体物理
固体物理学
d. 面心立方晶格 C层原子球排列之二 —— 面心立方晶格
9
固体物理
固体物理学
多晶体 —— 由两个以上的同种或异种单晶组成的结晶物 质,各单晶通过晶界结合在一起
—— 多晶由成千上万的晶粒构成,尺寸大多在厘米级至微 米级范围内变化,没有单晶所特有的各向异性特征
液晶 —— 一些晶体当加热至某一温度T1时转变为介于固 体与液体之间的物质,在一维或二维方向上具有长程有序 —— 当继续加热至温度T2时,转变为液体,用于显示器件 准晶体 —— 1984 年Shechtman用快速冷却方法制备的 AlMn准晶,结构有别于晶体和非晶体 有长程的取向序,沿取向序的对称轴方向, 有准周期 性,但无长程周期性

固体物理各章节知识点详细总结

固体物理各章节知识点详细总结

3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32

2π Kh
d h1h2h3

d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···

固体物理第一章1

固体物理第一章1

晶格物理性质周期性(平移对称性):
Γ (x+na) = Γ (x)
上式表示原胞中任一处x的物理性质,同另一原胞相应处的物 理性质相同。
原子
一维的喇菲格子
例:一维复式格子
定义:晶格中含有n(n≥2)类原子,其周围情况不一样,它们组成一维无
限周期性点列,周期为a。 原胞:长为a的一根直线段,一类原子在其两端点,其余原子在线段上。 每个原胞含n个原子。 周期性: Γ (x+na) = Γ (x)
晶体分单晶体和多晶体
单晶体( Single Crystal ) 原子排列的周期性是在整个固体内部存在的;无限大的严格的单 晶体可以看成是完美晶体。 多晶体( Multiple Crystal ) 由很多不同取向的单晶体的晶粒组成的固体;仅在各晶粒内原子 才有序排列,不同晶粒内的原子排列是不同的。
单晶体是个凸多面体,围成这个凸多面体的面是光滑的,称 为晶面。 晶面的大小和形状受晶体生长条件的影响,它们不是晶体品 种的特征因素。
1 a 1 ( a b c ) 2 1 a 2 (a b c ) 2 1 a 3 (a b c ) 2


a a1 ( i j k) 2 a a 2 (i - j k) 2 a a 3 (i j k) 2
四、各向异性
晶带:单晶体的晶面排列成带状,晶面的交线(称为晶棱)互相平行, 这些晶面的组合称为晶带。晶棱的方向称为带轴。 晶轴:重要的带轴,互相平行的晶棱(晶面的交线)的共同方向。
各向异性: 晶体的物理性质,常随方向不同而有量的 差异,晶体所具有的这种性质——各向异性。
如介电常数、压电常数、弹性常数等。

固体物理课件 第一章 晶体结构

固体物理课件 第一章 晶体结构

晶面指数(122)
a
c b
(100)
(110)
(111)

在固体物理学中,为了从本质上分析固体的性质,经常要研究晶体中的 波。根据德布罗意在1924年提出的物质波的概念,任何基本粒子都可以 看成波,也就是具备波粒二象性。这是物理学中的基本概念,在固体物 理学中也是一个贯穿始终的概念。

在研究晶体结构时,必须分析x射线(电磁波)在晶体中的传播和衍射 在解释固体热性质的晶格振动理论中,原子的振动以机械波的形式在晶 体中传播;
1 3 Ω = a1 ⋅ a 2 × a 3 = a 2
(
)

金刚石
c
c
面心立方

钙钛矿 CaTiO3 (ABO3)
Ca
O
Ti
简单立方
所有的格点都分布在相互平行的一族平面 上,且每个平面上都有格点分布,这样的 平面称为晶面,该平面组称为晶面族。
特征: (1)同一晶面族中的晶面相互平行; (2)相邻晶面之间的间距相等;(面间距是
至今为止,晶体内部结构的观测还需要依靠衍射现象来进行。
(1)X射线 -由高速电子撞击物质的原子所产生的电磁波。 早在1895年伦琴发现x射线之后不久,劳厄等在1912年就意识到X射线的 波长在0.1nm量级,与晶体中的原子间距相同,晶体中的原子如果按点阵排 列,晶体必可成为X射线的天然三维衍射光栅,会发生衍射现象。在 Friedrich和Knipping的协助下,照出了硫酸铜晶体的衍射斑,并作出了正确 的理论解释。随后,1913年布拉格父子建立了X射线衍射理论,并制造了第 一台X射线摄谱仪,建立了晶体结构研究的第一个实验分析方法,先后测定 了氯化钠、氯化钾、金刚石、石英等晶体的结构。从而历史性地一举奠定 了用X射线衍射测定晶体的原子周期性长程序结构的地位。 时至今日,X射线衍射(XRD)仍为确定晶体结构,包括只具有短程序的无 定型材料结构的重要工具。

固体物理-第一章

固体物理-第一章
B A
B
C
(3)金刚石晶格
金刚石和石墨 金刚石由碳原子构成,在一个面心立方 原胞内还有四个原子,这四个原子分别 位于四个空间对角线的 1/4处。一个碳 原子和其它四个碳原子构成一个正四面 体。
金刚石晶格
c
c
金刚石晶格是由两个面心晶格重叠相嵌而成。两个面心立方 子晶格沿体对角线位移1/4的长度套构而成,
ak
a1
aj
a2 a3
ai
典型的晶体结构
结构型 单胞中的 原子在单胞 最近邻 原子个数 中的位置 距离 配位数
(Cu)
fcc
4 2
Cs+ 1
bcc
11 ( (000) 0) 22 1 1 ( 0 ) (0 1 1 ) 2 2 22
2a 2 3a 2 3a 2
12
(W)
(000)
11 1 ( ) 22 2
§1.1
一些晶格的实例
一、晶格(晶体的格子)中原子排列的具体形式。
(1)考虑原子球层的正方排列形成的晶格结构
原子正方排列: 把原子看成原子球,一层层排列,一个原子与相邻原 子组成正方形,每层都为正方排列.
如此堆积而成的晶格分为两类:
(i) 简单立方晶格
原子球规则排列最简单的形式为正方排列,如果把这样的原子层叠起来,各层的 球完全对应,上下对称,为简单立方晶格。
(1 ,2 ,3 )为一组整数
对于金刚石晶格,面心立方顶点位置的原子的位置:
1 a1 2 a 2 3 a 3
面心立方体对角线1/4处位置的原子位置: 1 a1 2 a 2 3 a 3 r 一组 1 a1 2 a 2 3 a 3 可以包括所有的格点 布拉伐格子: 由 1 a1 2 a 2 3 a 3 确定的空间格子 任一点的位矢 r,V(r ) V(r 1 a1 2 a 2 3 a 3 ),

固体物理基础第1章-晶体结构

固体物理基础第1章-晶体结构

ˆ a3 ck
*
*
一个原胞中包含A层
和B层原子各一个 共两个原子
六角密排晶格的原胞和单胞一样
第一讲回顾
什么是固体? 研究固体的思路?复杂到简单
为什么从研究晶体开始? 原胞的选取唯一吗?
1-3 晶格的周期性
1.3.3 复式晶格
• 简单晶格:原胞中仅包含1个原子,所有原子的几何位置和化 学性质完全等价 • 复式晶格:包含两种或更多种等价的原子(或离子) * 两种不同原子或离子构成:NaCl, CsCl * 同种原子但几何位置不等价:金刚石结构、六方密排结构
管原子是金或银还是铜,不管原子之间间距的大小,那他们是完全相 同的,就是他们的结构完全相同!

数学方法抽象描写:不区分物理、化学成分,每个原子都是不可区分
的,只有原子(数学上仅仅是一个几何点)的相对几何排列有意义。
1-2 晶格
• 理想晶体:实际晶体的数学抽象 以完全相同的基本结构单元(基元)规则地,重复的以完 全相同的方式无限地排列而成 • 格点(结点):基元位置,代表基元的几何点 • 晶格(点阵):格点(结点)的总和
1-4 晶向和晶面
1.4.1 晶向
晶向指数
晶向指数
1-4 晶向和晶面
1.4.1 晶向 简单立方晶格的主要晶向
# 立方边OA的晶向
立方边共有6个不同的晶向<100>
# 面对角线OB的晶向
面对角线共有12个不同的晶向<110>
# 体对角线OC晶向
体对角线共有?个不同的晶向<111>
1-4 晶向和晶面
1-3 晶格的周期性
Wigner-Seitz 原胞
以某个格点为中心,作其与邻近格点的中垂面,这些 中垂面所包含最小体积的区域为维格纳-赛兹原胞

尼曼半导体物理与器件第一章课件

尼曼半导体物理与器件第一章课件

广义原胞
尼曼半导体物理与器件第一章
12
1.3.2 基本的晶体结构
立方晶系基本的晶体结构:
常见的三个基本的立方结构 (1)简单立方结构(sc) (2)体心立方结构(bcc) (3)面心立方结构(fcc)
尼曼半导体物理与器件第一章
13
➢简立方结构 Simple Cubic
每个顶角有一个原子
z
➢ 体心立方结构 Body Centered Cubic
• 原胞:可以复制得到整个晶格的最小单元。
单晶晶格二维表示
•晶格、原胞的选取都不是唯一的。
尼曼半导体物理与器件第一章
11
•晶胞和晶格的关系用矢量 a 、b 、c 表示,三个矢 量可不必互相垂直,长度可以不相等,基矢长度称 为晶格常数 。
•每个等效格点可用下述矢量表示
rpaqbsc
•其中,p、q、s为整数。
1. 离子晶体:离子键,例如NaCl晶体等; 2. 共价晶体:共价键,例如Si、Ge以及GaAs晶体等; 3. 金属晶体:金属键,例如Li、Na、K、Be、Mg以及Fe、 Cu、Au、Ag等; 4. 分子晶体:范德华键,例如惰性元素氖、氩、氪、氙等 在低温下则形成分子晶体,HF分子之间在低温下也通过范 德华键形成分子晶体。
• 第六章 半导体中的非平衡过剩载流子
半 • 第七章 pn结
导 • 第八章 pn结二极管
体 器
• 第九章 金属半导体和半导体异质结
件 • 第十章 金属-氧化物-半导体场效应晶体管基础
基 • 第十一章 金属-氧化物-半导体场效应晶体管:概念深入
础 • 第十二章 双极晶体管
• 第十三章 结型场效应晶体管 • 第十四章 光器件
1.11(a)-(c) 1.16 1.24(Si晶格常数5.43Å)

固体物理学第一章1

固体物理学第一章1
一个平行六面体的体积等于:V=| 1 • 2 x 3 |。
选取原胞的另一种方式如下:用直线连接一个给定格点的所有近邻格点,在这些 连线的中点作垂直平分线或垂直平分面,这样所包围的最小体积就是维格纳-塞茨 原胞(Wigner-Seitz cell)。
赵铧
16
简单立方晶格的立方单元已是最小的周期性单元,所以就取它为原胞,晶 格基矢1, 2, 3 就沿三个立方边,长短相等:
六角密排晶格的原胞
六角密排晶格的典型单元
Be, Mg, Zn, Cd 等金属
具有六角密排晶格结构
赵铧
7
4. 金刚石晶格
由面心立方单元的中心 到顶角引8条对角线, 在 其中互不相邻的4条对角 线的中点,各加上一个原 子, 就得到金刚石晶格 结构
其特点: 每个原子有4个 最近邻, 它们正 好在一个正四 面体的顶角 A
B
AB
A B
金刚石晶格结构的典型单元
赵铧
8
5. 化合物晶体的结构
(1) 岩盐NaCl晶体结构
它好象是一个简单立方晶格, 但是, 在每一行相间地排列着 正的Na+离子和负的Cl–离子.
碱金属 Li, Na, K, Rb 和卤 族元素 F, Cl, Br, I 的化合物 都具有 NaCl 晶体结构.
Na+
Cl–
Na+
Cl–
NaCl晶格结构中的典型单元
赵铧
9
(2) CsCl晶体结构
它好象一个体心立方, 体心位置有一种离子, 顶角为另一个离子.
体心位置和顶角位置 完全等价, 各占一半, 正好容纳数目相等的 正,负离子.
Cs+ ( Cl– )
Cl– ( Cs+ )

固体物理学:第一章 第一节 晶格及其平移对称性

固体物理学:第一章 第一节 晶格及其平移对称性

其它晶体结构
Ruddlesden-Popper structures层状结构
Pyrochlores 烧绿石结构
Rutile 金红石结构
一维晶格
一维单原子链 一维双原子链
二维?
简单晶格和复式晶格
简单晶格:只有一个不等价原子,如sc, bcc, fcc等。 复式晶格:存在2个或者2个以上的不等价原 子,hcp, 金刚石结构,NaCl, CsCl,ZnS, ABO3结构。
a
a1 i j k 2
a
a2 i j k 2
a
a3 i j k 2
Ω a1 a2 a3 1 a3 2
fcc点阵
面心立方以顶点为原点,到其近邻的三个面 心为基矢。立方体的边长为a。
a1 a2
a
a1 j k 2
a
a2 i k 2
a 3 a i j 2
三种常见的元胞
初基元胞(primitive cell)
初基元胞是一个空间体积,当通过所有 的平移矢量平移时,它可以正好(既无多余, 有无重叠)填满整个空间。由基矢 a1,a2,a3 所 确定的平行六面体就是初基元胞,其体积为:
Ω a1 a2 a3
由于基矢选择不唯一,所以初级元胞选择也 不唯一。但对于每一种点阵,通常都有一个 公认的基矢和初级元胞选择方法
1个原子,1个不等价原子 配位数: 6 堆积效率(packing efficienty) f = 0.53
该结构中,所有原子完全等价,不管以哪个原 子作为原点,其晶体结构式完全一样的。
体心立方(bcc, body-centered cubic)
在简单立方的基础上,将一个相同原子放在立方体 中心,便得到体心立方晶体结构。
简单晶格中,从一个原子平移到任意另一个原子 ,晶格完全复原。而复式晶格中,这种任意的平 移,晶格不一定能复原。

固体物理学第一章 晶体的结构(1)

固体物理学第一章 晶体的结构(1)

1.3 晶向、晶面和它们的标志 晶体周期性的描述通常还要用到:晶列、晶向、晶 面和密勒指数、面间距等概念。
(1)晶列
• 通过Bravias格子的任意两点连一条直线,该直线上包括无限多 个格点,这样的直线称晶列.晶体外观上所见的晶棱为个别晶列。
• 通过其它任一格点可引出与原晶列平行的晶列,这些
相互平行的晶列族将包含全部的格点。 • 晶列的性质:同一晶列族上,格点具有 相同的周期分布 • 通过一个格点可以引出无数晶列,晶列 数目是无限的,(晶列的性质)。
固体由大量原子(离子)组成,1022—1023/cm3。晶体中原子、 离子的排列是有规律的,这种排列方式称固体晶体的结构。固体 的宏观物理性质是由组成材料的[原子、分子和离子]成分和原子 分子的排列方式共同决定的。
可以将固体分为:晶体和非晶体。 晶体:原子严格按一定周期性的规则排列,具有周期性和平移对 称性 ,即长程有序。 非晶:原子排列短程有序,长程无序。 何为长程有序呢?主要是与原子的尺寸相比。 晶体分为:单晶:理想的大块晶体 多晶:有许多晶粒组成的晶体 1984年 D.Shechtman等从实验上发现了具有五重旋转对称性的 不同于晶体和非晶体的固体,称准晶。准晶从结构上讲,其有序 程度是介于晶体和非晶之间的。
(2) 体心立方结构(bcc) • 排列方式:ABABAB….. • a为原子间的距离, 称为晶格常数。对角线距离
0.31ro
a
ro
• 体心立方结构晶体自然界中很多:Li, Na, K,ro 2ro 3
(3)六角密排结构(主要是金属晶体) • 排列方式:ABABAB….. • 层内原子密排列,层之 间原子紧密接触。 • 自然界中。碱土金属Be, Mg 及Zn, Cd, Ti等三十多种晶体

固体物理与半导体物理第一章 晶格结构-晶面晶向

固体物理与半导体物理第一章 晶格结构-晶面晶向
4
一. 晶向符号(三轴,如立方)
用三指数u,v,w表示晶向符号。 确定三轴坐标系下晶向指数[uvw]的步骤如下: (1)设坐标 以晶胞的某一阵点O为原点,过原点O的晶轴为坐标轴x, y , z, 以晶胞点阵矢量的长度作为坐标轴的长度单位。
立方 晶系 中阵 点坐 标
5
(2) 求坐标 过原点O作一直线OP,使其平行于待定晶向。在直线 OP上任取(除原点外)一个阵点P,确定P点的3个坐 标值X、Y、Z。
15
<111>=?
<111>=[111]+[111]+[111]+[111]+ [TT1]+[1TT]+[T1T]+[TTT] 晶向族:任意交换指数的位置和改变符号后的所有指数。
<112>=?
<123>=?
16
二. 晶面指数(三轴,如立方)
晶面符号中应用最广的是米氏符号,由英国学者米勒尔在 1839年创立。 1、确定立方晶系晶面指数(hkl)的步骤如下: 设坐标: 在点阵中设定参考坐标系,设置方法与确定晶向指数时 相同;原点设在待求晶面以外。
e.g., x-axis [100] y-axis [010] z-axis [001]
[110]
8
9
若原点不在待标晶向上,还可以这样操作:
(1)找出该晶向上两点的坐标(x1,y1,z1)和(x2,y2,z2); (2)将(x1-x2),(y1-y2),(zl-z2)化成互质整数u,v,w; (3)满足u:v:w=(x1一x2):(y1一y2) :(zl—z2)。
32
晶面间距的计算
晶面间距可根据一些几何关系求得
h、k、l为晶面指数(hkl),a、b、c为点阵常数, α、β、γ为晶面法线方向与晶轴夹角。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 2 固体类型
(a)无定形 (b)多晶 (c)单晶
多晶和准晶
多晶:由两个以上的同种或异种单晶组成的结
晶物质。多晶没有单晶所特有的各向异性特征
准晶体: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
2011诺贝尔化学奖 准晶:似晶非晶 Daniel Shechtman
2 d 4.83 sin 4.83 3.415 A 4 2

三种晶向
(a)(100) [100] (b)(110) [110] (c) (111) [111]
1. 3. 4 金刚石结构
金刚石结构
铅锌矿结构
例题分析 I:
计算硅原子的体密度,其晶格常数为 a 5.43 A

5.43 10
8
8 3
5 1022 个原子/cm3
1. 4 原子价键
化学键:使原子结合形成固体的相互作用 分类:共价键——共价晶体 离子键——离子晶体 金属键——金属晶体 分子键——分子晶体
共价键:共用价电子
作业:
1. 如果硅的晶格常数是5.43A,计算(a)两 最近原子中心距离;(b)硅原子体密度
1. 3. 1 原胞和晶胞
原胞是可以重复形成晶格的最小晶胞 晶胞就是可以复制出整个晶体的小部分晶体
1. 3. 2 基本的晶体结构
(a)简立方 (b)体心立方 (c)面心立方
1 个原子 2 个原子 4 个原子
例题分析 I:
计算简立方、体心立方和面立方单晶的原 子体密度,晶格常数为 a 5 A
(a)(100) (b)(110) (c) (111)
特定原子面密度 例题分析 I:

2 a 2a

2 5 10
1014 个原子/cm2
说明:不同晶面的面密度是不同的
例题分析 II:
计算简立方晶格最近(110)平面间的距离, a 4.83 A 其晶格常数为
22 3
晶格常数
1 a 3.22 A 22 3 10
3
原子半径
a r 1.61A 2
1. 3. 3 晶面和密勒指数
例题分析 I: 平面截距
3
2 1
密勒指数(截距的倒数)
1 3 1 1 2 1
说明:密勒指数描述晶面的方向,任何平行 平面都有相同的密勒指数。
三种晶面的密勒指数

5 10
2
1
8 3
0.8 1022 个原子/cm3


5 10
5 10
4
8 3
1.6 1022 个原子/cm3
3.2 1022 个原子/cm3
8 3
说明:以上计算的原子体密度代表了大多数 材料的密度数量级
例题分析 II: 简立方单晶的原子体密度 3 10 cm 假定原子为刚球并与最近的原子相切,计 算原子的晶格常数和原子半径
2. 单晶的晶格常数为4.5A,对于晶格(a)简 立方(b)体心立方,(c)面心立方,分别计 算如下平面(i)(100),(ii)(110), (iii)(111)面密度
第1章 固体晶格结构
湖南大学信息科学与工程学院 罗海陆
微纳光电器件及应用教育部重点实验室 hailuluo@
主要内容
半导体材料
固体类型 空间晶格 原子价键
固体中的缺陷和杂质 半导体材料的生长
1. 1 半导体材料
元素半导体,如:Si、Ge 化合物半导体,如:GaAs、InP、ZnS
相关文档
最新文档