苏科版七年级数学期末测试卷

合集下载

苏科七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库

苏科七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库

苏科七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 22.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CDB .AD ∥BC C .∠B =∠D D .∠1=∠2 3.若2200.3,3,(3)a b c -==-=-,那么a 、b 、c 三数的大小为( ).A .a c b >>B .c a b >>C .a b c >>D .c b a >> 4.现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒 5.把面值20元的纸币换成1元或5元的纸币,则换法共有 ( ) A .4种B .5种C .6种D .7种 6.下列线段能构成三角形的是( )A .2,2,4B .3,4,5C .1,2,3D .2,3,6 7.下列方程组中,解是-51x y =⎧⎨=⎩的是( ) A .64x y x y +=⎧⎨-=⎩ B .6-6x y x y +=⎧⎨-=⎩ C .-4-6x y x y +=⎧⎨-=⎩ D .-4-4x y x y +=⎧⎨-=⎩8.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米 B .2.62米 C .3.62米 D .4.62米9.将下列三条线段首尾相连,能构成三角形的是( ) A .1,2,3 B .2,3,6C .3,4,5D .4,5,9 10.在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A .钝角三角形B .直角三角形C .锐角三角形D .无法确定 11.平面直角坐标系中,点A 到x 轴的距离为1,到y 轴的距离为3,且在第二象限,则点A 的坐标为( )A .()1,3-B .()3,1-C .()1,3-D .()3,1-12.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( ) A .23m ≤ B .23m < C .23m ≥ D .23m > 二、填空题13.计算:m 2•m 5=_____.14.多项式2412xy xyz +的公因式是______.15.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.16.若多项式x 2-kx +25是一个完全平方式,则k 的值是______.17.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.18.若(x ﹣2)x =1,则x =___.19.一个n 边形的内角和为1080°,则n=________.20.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.21.如图,将长方形纸片ABCD 沿着EF ,折叠后,点D ,C 分别落在点D ,C '的位置,ED '的延长线交BC 于点G .若∠1=64°,则∠2等于_____度.22.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.23.PM2.5是指大气中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学计数法表示为________________.24.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.三、解答题25.如图,△ABC 的顶点都在方格纸的格点上,将△ABC 向下平移3格,再向右平移4格.(1)请在图中画出平移后的△A′B′C′;(2)在图中画出△A′B′C′的高C′D′.26.某口罩加工厂有,A B 两组工人共150人,A 组工人每人每小时可加工口罩70只,B 组工人每小时可加工口罩50只,,A B 两组工人每小时一共可加工口罩9300只. (1)求A B 、两组工人各有多少人?(2)由于疫情加重,A B 、两组工人均提高了工作效率,一名A 组工人和一名B 组工人每小时共可生产口罩200只,若A B 、两组工人每小时至少加工15000只口罩,那么A 组工人每人每小时至少加工多少只口罩?27.(1)已知2(1)()2x x x y ---=,求222x y xy +-的值. (2)已知等腰△ABC 的三边长为,,a b c ,其中,a b 满足:a 2+b 2=6a+12b-45,求△ABC 的周长.28.解不等式(组)(1)解不等式 114136x x x +-+≤-,并把解集在数轴上....表示出来. (2)解不等式835113x x x x ->⎧⎪+⎨≥-⎪⎩,并写出它的所有整数解. 29.若x ,y 为任意有理数,比较6xy 与229x y +的大小.30.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 31.如图①,将一副直角三角板放在同一条直线AB 上,其中∠ONM=30°,∠OCD=45°.(1)将图①中的三角尺OCD 沿AB 的方向平移至图②的位置,使得顶点O 与点N 重合,CD 与MN 相交于点E ,求∠CEN 的度数;(2)将图①中三角尺OCD 绕点O 按顺时针方向旋转,使一边OD 在∠MON 的内部,如图③,且OD 恰好平分∠MON ,CD 与MN 相交于点E ,求∠CEN 的度数;(3)将图①中三角尺OCD 绕点O 按每秒15°的速度沿顺时针方向旋转一周,在旋转过程中,在第 秒时,边CD 恰好与边MN 平行;在第 秒时,直线CD 恰好与直线MN 垂直.32.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2. 33.解下列方程组: (1)32316x y x y -=⎧⎨+=⎩ (2)234229x y z x y z ⎧==⎪⎨⎪-+=-⎩ 34.因式分解:(1)3()6()x a b y b a ---(2)222(1)6(1)9y y ---+35.若规定a c b d =a ﹣b +c ﹣3d ,计算:223223xy x x --- 2574xy x xy-+-+的值,其中x =2,y =﹣1.36.己知关于,x y 的方程组4325x y a x y a -=-⎧⎨+=-⎩, (1)请用a 的代数式表示y ;(2)若,x y 互为相反数,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.2.A解析:A【解析】【分析】根据内错角相等,两直线平行即可得出结论.【详解】∵∠1=∠2,∴AB∥DC(内错角相等,两直线平行).故选A.【点睛】考查平行线的判定定理,平行线的概念,关键在于根据图形找到被截的两直线.3.B解析:B【分析】先根据乘方运算法则、负整数指数幂及零指数幂分别计算,再判断大小即可得.【详解】解:a=0.32=0.09,b= -3-2=19,c=(-3)0=1,∴c>a>b,故选B.【点睛】本题考查有理数的大小比较,解题的关键是熟练掌握乘方运算法则、负整数指数幂及零指数幂.4.B解析:B【解析】试题解析:已知三角形的两边是40cm和50cm,则10<第三边<90.故选40cm的木棒.故选B.点睛:三角形的三边关系:三角形任意两边之和大于第三边.5.B解析:B【分析】设1元和5元的纸币分别有x、y张,得到方程x+5y=20,然后根据x、y都是正整数即可确定x、y的值.【详解】解:设1元和5元的纸币分别有x、y张,则x+5y=20,∴x=20-5y,而x≥0,y≥0,且x、y是整数,∴y=0,x=20;y=1,x=15;y=2,x=10;y=3,x=5;y=4,x=0,共有5种换法.故选:B.【点睛】此题主要考查了二元一次方程的应用,列出方程并确定未知数的取值范围是解题的关键.6.B解析:B【解析】试题分析:A、2+2=4,不能构成三角形,故本选项错误;B、3、4、5,满足任意两边之和大于第三边,能构成三角形,故本选项正确;C、1+2=3,不能构成三角形,故本选项错误;D、2+3<6,不能构成三角形,故本选项错误.故选B.考点:三角形三边关系.7.C解析:C【解析】试题解析:A. 的解是51xy=⎧⎨=⎩,故A不符合题意;B. 的解是6xy=⎧⎨=⎩,故B不符合题意;C. 的解是51x y =-⎧⎨=⎩,故C 符合题意; D. 的解是40x y =-⎧⎨=⎩,故D 不符合题意; 故选C.点睛:解二元一次方程的方法有:代入消元法,加减消元法.8.A解析:A【分析】根据平移的性质即可得到结论.【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米, 故选:A .【点睛】本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.9.C解析:C【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误.【详解】解:A 选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形;B 选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C 选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D 选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形,故选:C .【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.10.A解析:A【分析】根据三角形的内角和是180︒列方程即可;【详解】 ∵1135A B C ∠=∠=∠,∴3B A ∠=∠,5C A ∠=∠,∵180A B C ∠+∠+∠=︒,∴35180A A A ∠+∠+∠=︒,∴30A ∠=︒,∴100C ∠=︒,∴△ABC 是钝角三角形.故答案选A .【点睛】本题主要考查了三角形内角和定理的应用,在准确进行分析列式是解题的关键.11.B解析:B【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵P 在第二象限,且点P 到x 轴、y 轴的距离分别是1,3,∴点P 的横坐标为-3,纵坐标为1,∴P 点的坐标为(-3,1).故选:B .【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.12.A解析:A【分析】分别求出各不等式的解集,再根据不等式组无解即可得出m 的取值范围.【详解】解:202x m x m -<⎧⎨+>⎩①② 解不等式①,得x<2m.解不等式②,得x>2-m.因为不等式组无解,∴2-m ≥2m. 解得23m ≤. 故选A.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键. 二、填空题13.m7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m2•m5=m2+5=m7.故答案为:m7.【点睛】本题考查了同底数幂的乘法,熟练掌握同解析:m 7【分析】根据同底数幂的乘法法则,同底数幂相乘,底数不变,指数相加,据此计算即可.【详解】解:m 2•m 5=m 2+5=m 7.故答案为:m 7.【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法法则是解答本题的关键.14.【分析】根据公因式的定义即可求解.【详解】∵=(y+3z ),∴多项式的公因式是,故答案为:.【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.解析:4xy【分析】根据公因式的定义即可求解.【详解】∵2412xy xyz +=4xy (y+3z ),∴多项式2412xy xyz +的公因式是4xy , 故答案为:4xy .【点睛】此题主要考查公因式,解题的关键是熟知公因式的定义.15.【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>,∵不等式3x - m+1>解析:4<7m ≤【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>-13m , ∵不等式3x - m+1>0的最小整数解为2,∴1≤-13m <3, 解之得4<7m ≤. 故答案为:4<7m ≤.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.16.±10【解析】【分析】根据完全平方公式,可知-kx=±2×5•x ,求解即可.【详解】解:∵x2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±1解析:±10【分析】根据完全平方公式()2222a b a ab b ±=±+,可知-kx=±2×5•x ,求解即可.【详解】解:∵x 2-kx+25是一个完全平方式,∴-kx=±2×5•x ,解得k=±10.故答案为±10【点睛】本题考查了完全平方公式,熟练掌握相关公式是解题关键. 17.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 18.0或3.【解析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.解析:0或3.【解析】【分析】直接利用零指数幂的性质以及有理数的乘方运算法则求出答案.【详解】∵(x﹣2)x=1,∴x=0时,(0﹣2)0=1,当x=3时,(3﹣2)3=1,则x=0或3.故答案为:0或3.【点睛】此题主要考查了零指数幂以及有理数的乘方运算,正确掌握运算法则是解题关键.19.8【分析】直接根据内角和公式计算即可求解.【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.解析:8【分析】n-⋅︒计算即可求解.直接根据内角和公式()2180【详解】(n﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】n-⋅︒.主要考查了多边形的内角和公式.多边形内角和公式:()218020.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a﹣b=1,∴(a+1)2﹣(b﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.21.128【分析】由ADBC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵A解析:128【分析】由AD//BC,∠1=64°,根据两直线平行,内错角相等,可求得∠DEF的度数,然后由折叠的性质,可得∠FEG的度数,进而再利用两直线平行内错角相等得到∠2的度数.【详解】解:∵AD//BC,∠1=64°,∴∠DEF=∠1=64°,由折叠的性质可得∠FEG=∠DEF=64°,∴∠2=∠1+∠EFG=64°+64°=128°.故答案为:128.【点睛】本题主要考察两直线平行的性质、折叠的性质以及矩形的性质,重点在于利用已知条件找到角度之间的关系.22.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为- 解析:72【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键. 23.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.24.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=±18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.三、解答题25.(1)图见解析;(2)图见解析.【详解】解:(1)△A′B′C′如下图;(2)高C′D′如下图.26.(1)A 组工人有90人、B 组工人有60人(2)A 组工人每人每小时至少加工100只口罩【分析】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意列方程健康得到结论; (2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意列不等式健康得到结论.【详解】(1)设A 组工人有x 人、B 组工人有(150−x )人,根据题意得,70x +50(150−x )=9300,解得:x =90,150−x =60,答:A 组工人有90人、B 组工人有60人;(2)设A 组工人每人每小时加工a 只口罩,则B 组工人每人每小时加工(200−a )只口罩;根据题意得,90a +60(200−a )≥15000,解得:a ≥100,答:A 组工人每人每小时至少加工100只口罩.【点睛】本题考查了一元一次方程的应用,一元一次不等式的应用,正确的理解题意是解题的关键.27.(1)2;(2)15.【分析】(1)先化简条件,再把求值的代数式变形,整体代入即可,(2)利用两个非负数之和为0的性质得到等腰三角形的两边长,后分类讨论即可得到答案.【详解】解:(1) 2(1)()2x x x y ---=,222,x x x y ∴--+=2,y x ∴-=2222222()2 2.2222x y x xy y y x xy +-+-∴-==== (2) a 2+b 2=6a+12b-45,226912360,a a b b ∴-++-+=22(3)(6)0,a b ∴-+-=3,6,a b ∴==当3a =为腰时,三角形不存在,当6b =为腰时,三角形三边分别为:6,6,3,∴ △ABC 的周长为:15.【点睛】本题考查的是代数式的求值,熟练整体代入的方法,同时考查非负数之和为零的性质,三角形三边的关系,等腰三角形的性质,掌握以上知识是解题的关键.28.(1)x ≤2,图见详解;(2)22x -≤<;-2、-1、0、1.【分析】(1)由题意直接根据解不等式的步骤逐步进行计算求解,并把解集在数轴上表示出来即可.(2)根据题意分别解出两个不等式,取公共部分得出其解集从而写出它的所有整数解即可.解:(1)去分母,得 6x+2(x+1)≤6-(x-14),去括号,得 6x+2x+2≤6-x+14,移项,合并同类项,得 9x ≤18,两边都除以9,得 x ≤2.解集在数轴上表示如下:(2)835113x x x x ->⎧⎪⎨+≥-⎪⎩①② 解①得:2x <,解②得:2x ≥-,则不等式组的解集是:22x -≤<.它的所有整数解有:-2、-1、0、1.【点睛】本题考查的是一元一次不等式(组)的解法,注意掌握求不等式(组)的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.29.2296x y xy +≥【分析】根据题意直接利用作差法对两个代数式进行大小比较即可.【详解】解:∵x ,y 为任意有理数,22296(3)0x y xy x y +-=-≥,∴2296x y xy +≥.【点睛】本题考查整式加减,注意掌握利用作差法对两个代数式进行大小比较以及配方法的应用是解题的关键. 30.(1)218524k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)52k =或12k =-;(3)1或2. 【分析】(1)根据题意直接利用加减消元法进行计算求解即可;(2)由题意根据01(0)a a =≠和11n =以及2(1)1n -=(n 为整数)得到三个关于k 的方程,求出k 即可;(3)根据题意用含m 的代数式表示出k ,根据14k ≤,确定m 的取值范围,由m 为正整数,求得m 的值即可.解:(1)21322x y x y k ⎧+=⎪⎪⎨⎪-=-⎪⎩①②, ①+②得:3412x k =+-,解得:218k x -=, ①-②得:3212y k =-+,解得:524k y -=, ∴二元一次方程组的解为:218524k x k y -⎧=⎪⎪⎨-⎪=⎪⎩. (2)∵01(0)a a =≠,2(42)1y x +=,∴20y =,即52204k -⨯=,解得:52k =; ∵11n =,2(42)1y x +=,∴421x +=,即214218k -⨯+=,解得:12k =-; ∵2(1)1n -=(n 为正整数),2(42)1y x +=, ∴4212x y +=-,为偶数,即214218k -⨯+=-,解得:52k =-; 当52k =-时,3532115222y k =-+=++=,为奇数,不合题意,故舍去. 综上52k =或12k =-. (3)∵215213643647842k k m x y k --=+=⨯+⨯=+,即172m k =+, ∴2114m k -=, ∵14k ≤, ∴211144m k -=≤,解得94m ≤, ∵m 为正整数,∴m=1或2.【点睛】本题考查解二元一次方程组以及解一元一次不等式,根据题意列出不等式是解题的关键.31.(1)105°;(2)150°;(3)5或17;11或23.(1)根据三角形的内角和定理可得180CEN DCN MNO ∠=︒-∠-∠,代入数据计算即可得解;(2)根据角平分线的定义求出45DON ∠=︒,利用内错角相等两直线平行求出//CD AB ,再根据两直线平行,同旁内角互补求解即可;(3)①分CD 在AB 上方时,//CD MN ,设OM 与CD 相交于F ,根据两直线平行,同位角相等可得60OFD M ∠=∠=︒,然后根据三角形的内角和定理列式求出MOD ∠,即可得解;CD 在AB 的下方时,//CD MN ,设直线OM 与CD 相交于F ,根据两直线平行,内错角相等可得60DFO M ∠=∠=︒,然后利用三角形的内角和定理求出DOF ∠,再求出旋转角即可;②分CD 在OM 的右边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出CGN ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和求出CON ∠,再求出旋转角即可,CD 在OM 的左边时,设CD 与AB 相交于G ,根据直角三角形两锐角互余求出NGD ∠,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出AOC ∠ ,然后求出旋转角,计算即可得解.【详解】解:(1)在CEN ∆中,180CEN DCN MNO ∠=︒-∠-∠1804530=︒-︒-︒105=︒;(2)OD 平分MON ∠,11904522DON MPN ∴∠=∠=⨯︒=︒, 45DON D ∴∠=∠=︒,//CD AB ∴,180********CEN MNO ∴∠=︒-∠=︒-︒=︒;(3)如图1,CD 在AB 上方时,设OM 与CD 相交于F ,//CD MN ,60OFD M ∴∠=∠=︒,在ODF ∆中,180MOD D OFD ∠=︒-∠-∠,1804560=︒-︒-︒,75=︒,∴旋转角为75︒,75155t =︒÷︒=秒;CD 在AB 的下方时,设直线OM 与CD 相交于F ,//CD MN ,60DFO M ∴∠=∠=︒,在DOF ∆中,180180456075DOF D DFO ∠=︒-∠-∠=︒-︒-︒=︒,∴旋转角为75180255︒+︒=︒,2551517t =︒÷︒=秒;综上所述,第5或17秒时,边CD 恰好与边MN 平行;如图2,CD 在OM 的右边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGC MNO ∴∠=︒-∠=︒-︒=︒,604515CON NGC OCD ∴∠=∠-∠=︒-︒=︒,∴旋转角为180********CON ︒-∠=︒-︒=︒,1651511t =︒÷︒=秒,CD 在OM 的左边时,设CD 与AB 相交于G ,CD MN ⊥,90903060NGD MNO ∴∠=︒-∠=︒-︒=︒,604515AOC NGD C ∴∠=∠-∠=︒-︒=︒,∴旋转角为36036015345AOC ︒-∠=︒-︒=︒,3451523t =︒÷︒=秒,综上所述,第11或23秒时,直线CD 恰好与直线MN 垂直.故答案为:5或17;11或23.【点睛】本题考查了旋转的性质,三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,直角三角形两锐角互余的性质,熟记各性质并熟悉三角板的度数特点是解题的关键.32.4ab+10b 2;36.【解析】【分析】先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可化简原式,继而将a ,b 的值代入计算可得.【详解】原式=4a 2+4ab +b 2﹣(4a 2﹣9b 2)=4a 2+4ab +b 2﹣4a 2+9b 2=4ab +10b 2当a 12=,b =﹣2时,原式=412⨯⨯(﹣2)+10×(﹣2)2=﹣4+10×4=﹣4+40=36. 【点睛】 本题考查了整式的混合运算﹣化简求值,涉及的知识有:完全平方公式,平方差公式,去括号法则,以及合并同类项法则,熟练掌握运算法则是解答本题的关键.33.(1)52x y =⎧⎨=⎩(2)234x y z =-⎧⎪=-⎨⎪=-⎩【分析】(1)用加减消元法求解即可;(2)令234x y z k ===,用k 表示出x ,y 和z ,代入229x y z -+=-中,求出k 值,从而得到方程组的解.【详解】解:(1)32316x y x y -=⎧⎨+=⎩①②, ①×3+②得:525x =,解得:x=5,代入①中,解得:y=2,∴方程组的解为:52x y =⎧⎨=⎩; (2)∵设234x y z k ===, ∴x=2k ,y=3k ,z=4k ,代入229x y z -+=-中,4389k k k -+=-,解得:k=-1,∴x=-2,y=-3,z=-4,∴方程组的解为:234x y z =-⎧⎪=-⎨⎪=-⎩. 【点睛】本题考查了二元一次方程组和三元一次方程组,解题的关键是选择合适的方法求解.34.(1)3()(2)a b x y -+;(2)22(2)(2)y y +-【分析】(1)提取公因式3(a-b),即可求解.(2)将(y 2-1)看成一项,根据完全平方公式进行因式分解,之后再利用平方差公式即可求解.【详解】(1)原式=3()6()x a b y b a ---=3()(2)a b x y -+故答案为:3()(2)a b x y -+(2)原式=222(1)6(1)9y y ---+=22(y 13)--=22(4)y -=22(2)(2)y y +-故答案为:22(2)(2)y y +-【点睛】本题考查了因式分解的方法,本题分别采用了提取公因式法和公式法进行因式分解,一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.运用公式法因式分解,一般有平方差公式,完全平方公式,立方和公式,完全立方公式.35.﹣5x 2﹣4xy +18,6.【分析】将原式利用题中的新定义化简得到最简结果,把x 与y 的值代入计算即可求值.【详解】原式=(3xy ﹣2x 2)﹣(﹣5xy +x 2)+(﹣2x 2﹣3)﹣3(﹣7+4xy )=3xy ﹣2x 2+5xy ﹣x 2﹣2x 2﹣3+21﹣12xy=﹣5x 2﹣4xy +18,当x =2,y =﹣1时,原式=﹣20+8+18=6.【点睛】本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.36.(1)31y a =-+;(2)12a =-. 【分析】(1)通过消元的方法,消去x ,即可用a 的代数式表示y ;(2)令y x =-,再将x 、x -代入方程组,即可求解.【详解】解:(1)由43x y a -=-得:43x a y =-+,将其代入25x y a +=-得:4325a y y a -++=-,整理得:393y a =-+,即31y a =-+.故答案为31y a =-+.(2)若x 、y 互为相反数,则y x =- 再将x 、y 代入方程组:4325x x a x x a +=-⎧⎨-=-⎩,解得12a=-.故答案为12 a=-.【点睛】本题考查次二元一次方程组的运用,难度一般,熟练掌握消元法是顺利解题的关键.。

苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库

苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库

苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.计算(﹣2a 2)•3a 的结果是( )A .﹣6a 2B .﹣6a 3C .12a 3D .6a 32.如图所示图形中,把△ABC 平移后能得到△DEF 的是( )A .B .C .D .3.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩C .53502115900.9x y x y +=-⎧⎨+=⨯⎩D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 4.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1). B .(﹣1,1) C .(1,1)D .(1,﹣1) 5.若关于x 的不等式组2034x x a x-<⎧⎨+>-⎩恰好只有2个整数解,且关于x 的方程21236x a a x +++=+的解为非负整数解,则所有满足条件的整数a 的值之和是( ) A .1 B .3 C .4 D .66.计算a •a 2的结果是( )A .aB .a 2C .a 3D .a 47.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩ 8.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )A .B .C .D .9.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个 10.若一个三角形的两边长分别为3和6,则第三边长可能是( )A .6B .3C .2D .10 11.将一副三角板如图放置,作CF //AB ,则∠EFC 的度数是( )A .90°B .100°C .105°D .110°12.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;A .①B .②C .③D .④二、填空题13.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m .14.已知:()521x x ++=,则x =______________.15.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .16.已知某新型感冒病毒的直径约为0.000000823米,将0.000000823用科学记数法表示为___________17.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.18.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中()1,0→()2,0→()2,1→()1,1→1,2→()2,2…根据这个规律,则第2020个点的坐标为_________.19.若29x kx -+是完全平方式,则k =_____.20.一艘船从A 港驶向B 港的航向是北偏东25°,则该船返回时的航向应该是_______.21.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件80元的价格购进某品牌衬衫500件,并以每件120元的价格销售400件.该商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫至多降价______元,销售完这批衬衫才能达到盈利45%的预期目标.22.已知(a +b )2=7,a 2+b 2=5,则ab 的值为_____.三、解答题23.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-.24.仔细阅读下列解题过程:若2222690a ab b b ++-+=,求a b 、的值.解:2222690a ab b b ++-+=222222690()(3)003033a ab b b b a b b a b b a b ∴+++-+=∴++-=∴+=-=∴=-=,,根据以上解题过程,试探究下列问题:(1)已知2222210x xy y y -+-+=,求2x y +的值;(2)已知2254210a b ab b +--+=,求a b 、的值;(3)若248200m n mn t t =++-+=,,求2m t n -的值.25.(知识生成)通常情况下、用两种不同的方法计算同一图形的面积,可以得到一个恒等式.(1)如图 1,请你写出()()22,a b a b ab +-,之间的等量关系是(知识应用)(2)根据(1)中的结论,若74,4x y xy +==,则x y -= (知识迁移)类似地,用两种不同的方法计算同一几何体的情况,也可以得到一个恒等式.如图 2 是边长为+a b 的正方体,被如图所示的分割成 8块.(3)用不同的方法计算这个正方体的体积,就可以得到一个等式,这个等式可以是 (4)已知4a b +=,1ab =,利用上面的规律求33+a b 的值.26.解方程组(1)21325x y x y +=⎧⎨-=⎩ (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩ 27.某公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量如表所示:体积(m 3/件) 质量(吨/件) A 两种型号0.8 0.5 B 两种型号 2 1(1)已知一批商品有A 、B 两种型号,体积一共是20m 3,质量一共是10.5吨,求A 、B 两种型号商品各有几件;(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m 3,其收费方式有以下两种:按车收费:每辆车运输货物到目的地收费900元;按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元.28.如图:在正方形网格中有一个△ABC ,按要求进行下列作图(只能借助网格). (1)画出△ABC 中BC 边上的高线AH .(2)画出先将△ABC 向右平移6格,再向上平移3格后的△DEF .(3)画一个锐角△ABP (要求各顶点在格点上),使其面积等于△ABC 的面积的2倍.29.解方程组:(1)2531y x x y =-⎧⎨+=-⎩; (2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩. 30.利用多项式乘法法则计算:(1)()()22+-+a b a ab b = ;()()22a b a ab b -++ = .在多项式的乘法公式中,除了平方差公式,完全平方公式之外,如果把上面计算结果作为结论逆运用,则成为因式分解中的立方和与立方差公式.已知2,1a b ab -==,利用自己所学的数学知识,以及立方和与立方差公式,解决下列问题:(2)22a b += ;(直接写出答案)(3)33a b -= ;(直接写出答案)(4)66a b += ;(写出解题过程)【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】用单项式乘单项式的法则进行计算.【详解】解:(-2a 2)·3a=(-2×3)×(a 2·a)=-6a 3 故选:B .本题考查单项式乘单项式,掌握运算法则正确计算是解题关键.2.A解析:A【分析】根据平移的概念判断即可,注意区分图形的平移和旋转.【详解】根据平移的概念,平移后的图形与原来的图形完全重合.A 是通过平移得到;B 通过旋转得到;C 通过旋转加平移得到;D 通过旋转得到. 故选A【点睛】本题主要考查图形的平移,特别要注意区分图形的旋转和平移.3.B解析:B【解析】【分析】设馒头每个x 元,包子每个y 元,分别利用买5个馒头,3个包子,老板少收2元,只要5元以及11个馒头,5个包子,老板以售价的九折优惠,只要9元,得出方程组.【详解】设馒头每个x 元,包子每个y 元,根据题意可得:53502115900.9x y x y +=+⎧⎨+=÷⎩, 故选B .【点睛】本题考查了由实际问题抽象出二元一次方程组,难度一般,关键是读懂题意设出未知数找出等量关系.4.C解析:C【分析】直接利用角平分线上点的坐标特点得出2x ﹣3=3﹣x ,进而得出答案.【详解】解:∵点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,∴2x ﹣3=3﹣x ,解得:x =2,故2x ﹣3=1,3﹣x =1,则M 点的坐标为:(1,1).故选:C .【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.解析:C【分析】先解不等式组,根据只有2个整数解得到a 的范围,再解方程,得到a 的范围,再根据a 是整数,综合得出a 的值之和.【详解】解:解不等式2034x x a x-<⎧⎨+>-⎩得: 44a -<x <2, ∵不等式组恰好只有2个整数解,∴-1≤44a -<0, ∴0≤a <4; 解方程21236x a a x +++=+得: x=52a -, ∵方程的解为非负整数, ∴52a -≥0, ∴a ≤5,又∵0≤a <4,∴a=1, 3,∴1+3=4, ∴所有满足条件的整数a 的值之和为4.故选:C .【点睛】本题考查一元一次不等式组及一元一次方程的特殊解,熟练掌握一元一次不等式组及一元一次方程的解法是解题的关键.6.C解析:C【分析】根据同底数幂的乘法法则计算即可.【详解】解:a •a 2=a 1+2=a 3.故选:C .【点睛】本题考查了幂的运算性质,准确应用同底数幂的乘法是解题的关键.解析:B【分析】把x与y的值代入方程检验即可.【详解】解:A、把31xy=⎧⎨=⎩代入得:左边=15﹣1=14,右边=4,∵左边≠右边,∴31xy=⎧⎨=⎩不是方程的解;B、把11xy=⎧⎨=⎩代入得:左边=5﹣1=4,右边=4,∵左边=右边,∴11xy=⎧⎨=⎩是方程的解;C、把4xy=⎧⎨=⎩代入得:左边=0﹣4=﹣4,右边=4,∵左边≠右边,∴4xy=⎧⎨=⎩不是方程的解;D、把13xy=⎧⎨=⎩代入得:左边=5﹣3=2,右边=4,∵左边≠右边,∴13xy=⎧⎨=⎩不是方程的解,故选:B.【点睛】本题主要考查了二元一次方程的解的知识点,准确代入求职是解题的关键.8.A解析:A【解析】【分析】利用平移的性质,结合轴对称、旋转变换和位似图形的定义判断得出即可.【详解】A、可以通过平移得到,故此选项正确;B、可以通过旋转得到,故此选项错误;C、是位似图形,故此选项错误;D、可以通过轴对称得到,故此选项错误;故选A.【点睛】本题考查了平移的性质以及轴对称、旋转变换和位似图形,正确把握定义是解题的关键.解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.10.A解析:A【分析】根据三角形三边关系即可确定第三边的范围,进而可得答案.【详解】解:设第三边为x,则3<x<9,纵观各选项,符合条件的整数只有6.故选:A.【点睛】本题考查了三角形的三边关系,属于基础题型,熟练掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.11.C解析:C【分析】根据等腰直角三角形求出∠BAC,根据平行线求出∠ACF,根据三角形内角和定理求出即可.【详解】解:∵△ACB是等腰直角三角形,∴∠BAC=45°,∵CF//AB,∴∠ACF=∠BAC=45°,∵∠E=30°,∴∠EFC=180°﹣∠E﹣∠ACF=105°,故选:C.【点睛】本题考查了三角形的内角和定理和平行线的性质,能求出各个角的度数是解此题的关键.解析:B【分析】根据平行线的判定定理求解,即可求得答案.【详解】解:①∵∠B+∠BCD=180°,∴AB ∥CD ;②∵∠1=∠2,∴AD ∥BC ;③∵∠3=∠4,∴AB ∥CD ;④∵∠B=∠5,∴AB ∥CD ;∴不能得到AB ∥CD 的条件是②.故选:B .【点睛】此题考查了平行线的判定.此题难度不大,注意掌握数形结合思想的应用,弄清截线与被截线.二、填空题13..【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为 与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:89.110-⨯.【解析】【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.000000091m 用科学记数法表示为89.110m -⨯.故答案为89.110-⨯.【点睛】考查科学记数法,掌握绝对值小于1的数的表示方法是解题的关键.14.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.15.或 2【分析】可分相等的两边的长为1cm,2cm,3cm,4cm,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm,则解析:或 2【分析】可分相等的两边的长为1cm,2cm,3cm,4cm,依此讨论,根据三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边)即可求解.【详解】解:相等的两边的长为1cm,则第三边为:10-1×2=8(cm),1+1<8,不符合题意;相等的两边的长为2cm,则第三边为:10-2×2=6(cm),2+2<6,不符合题意;相等的两边的长为3cm,则第三边为:10-3×2=4(cm),3+3>4,符合题意;相等的两边的长为4cm,则第三边为:10-4×2=2(cm),2+4>4,符合题意.故第三边长为4或2cm.故答案为:4或2.【点睛】此题考查了三角形三边关系(三角形两边之和大于第三边,两边只差小于第三边),等腰三角形的性质和周长计算,分类思想的运用是解题的关键.16.23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的解析:23×10-7【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000000823=8.23×10-7.故答案为: 8.23×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.17.【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.18.【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角解析:()45,5【分析】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴,按照此方法计算即可;【详解】有图形可知,图中各点分别组成了正方形点阵,内个正方形点阵的整点数量依次为最右下角点横坐标的平方,且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x 轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x 轴,∵245=2025,∴第2025个点在x 轴上的坐标为()45,0,则第2020个点在()45,5.故答案为()45,5.【点睛】本题主要考查了规律题型点的坐标,准确判断是解题的关键. 19.【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出的值 .【详解】解:∵是完全平方式,即.故答案为:.【点睛】此题考查了完全平方式, 熟练掌握完全平方公式解析:6±【分析】根据两数的平方和加上或减去两数积的2倍,等于两数和或差的平方,即可求出k 的值 .【详解】解:∵29x kx -+是完全平方式,即()2293x kx x -+=± 236k ∴=±⨯=±.故答案为:6±.【点睛】此题考查了完全平方式,熟练掌握完全平方公式的结构特点是解本题的关键20.南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西,故答案为:南偏西.【点睛】解答此类题需要从运动的角度解析:南偏西25°,【分析】根据方位角的概念,画图正确表示出方位角,即可求解.【详解】解:从图中发现船返回时航行的正确方向是南偏西25︒,故答案为:南偏西25︒.【点睛】解答此类题需要从运动的角度,正确画出方位角,找准中心是做这类题的关键.21.【分析】设每件衬衫降价x元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x元,正好达到预期目标,根据题意得:120解析:20【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x 元,正好达到预期目标,根据题意得:120×400+(120-x )×(500-400)-80×500=80×500×45%,解得:x=20.答:每件衬衫降价10元,正好达到预期目标.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键. 22.1【分析】利用完全平方公式得到a2+2ab+b2=7,然后把a2+b2=5代入可计算出ab 的值.【详解】解:∵(a+b )2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴5+2ab解析:1【分析】利用完全平方公式得到a 2+2ab +b 2=7,然后把a 2+b 2=5代入可计算出ab 的值.【详解】解:∵(a +b )2=7,∴a 2+2ab +b 2=7,∵a 2+b 2=5,∴5+2ab =7,∴ab =1.故答案为1.【点睛】本题主要考查了完全平方差公式的运用,掌握完全平方差公式是解题的关键.三、解答题23.2243x xy y -++,19【分析】根据整式的乘法运算法则,将多项式乘积展开,再合并同类项,即可化简,再代入x ,y 即可求值.【详解】解:原式2222222=44424243x x xy y xy x y xy x xy y -+---++=-++,将1x =-,2y =-代入,则原代数式的值为:2243=x xy y -++()()()()22141232=1812=19--+⋅-⋅-+⋅--++.【点睛】本题考查整式的乘法,难度一般,是中考的常考点,熟练掌握多项式与多项式相乘的法则,即可顺利解题.24.(1)23x y +=;(2)21a b ==,;(3)21m t n -=.【分析】(1)首先把第3项22y 裂项,拆成22y y +,再用完全平方公式因式分解,利用非负数的性质求得x y 、代入求得数值;(2)首先把第2项25b 裂项,拆成224b b +,再用完全平方公式因式分解,利用非负数的性质求得a b 、代入求得数值;(3)先把4m n =+代入28200mn t t +-+=,得到关于n 和 t 的式子,再仿照(1)(2)题.【详解】解:(1)2222210x xy y y -+-+=2222210x xy y y y ∴-++-+=22()(1)0x y y ∴-+-=010x y y ∴-=-=,,11x y ∴==,,23x y ∴+=;(2)2254210a b ab b +--+=22244210a b ab b b ∴+-+-+=22(2)(1)0a b b ∴-+-=2010a b b ∴-=-=,21a b ∴==,;(3)4m n =+,2(4)8200n n t t ∴++-+=22448160n n t t ∴+++-+=22(2)(4)0n t ∴++-=2040n t ∴+=-=,24n t ∴=-=,42m n ∴=+=20(2)1m t n -∴=-=【点睛】本题考查的分组分解法、配方法和非负数的性质,对于项数较多的多项式因式分解,分组分解法是一个常用的方法. 首先要观察各项特征,寻找熟悉的式子,熟练掌握平方差公式和完全平方公式是基础.25.(1)22()4()a b ab a b +-=-.(2)3x y -= .(3)33322()33a b a b a b ab +=+++.(4)54.【分析】(1)根据两种面积的求法的结果相等,即可得到答案;(2)根据第(1)问中已知的等式,将数值分别代入,即可求得答案.(3)根据正方体的体积公式,正方体的边长的立方就是正方体的体积;2个正方体和6个长方体的体积和就是大长方体的体积,则可得到等式;(4)结合4a b +=,1ab =,根据(3)中的公式,变形进行求解即可.【详解】(1)22()4()a b ab a b +-=-.(2)4x y +=,74xy =,()()22274441679.4x y x y xy -=+-=-⨯=-= 故3x y -= . (3)33322()33a b a b a b ab +=+++ .(4)由4a b +=,1ab =,根据第(3)得到的公式可得()()()()333322333641254a b a b a b ab a b ab a b +=+-+=+-+=-=.【点睛】本题考查完全平方公式以及立方公式的几何背景,从整体和局部两种情况分析并写出面积以及体积的表达式是解题的关键. 26.(1)3214x y ⎧=⎪⎪⎨⎪=-⎪⎩;(2)14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩. 【分析】(1)直接利用加减消元法解方程组,即可得到答案;(2)直接利用加减消元法解方程组,即可得到答案;【详解】解:(1)21325x y x y +=⎧⎨-=⎩①②, 由①+②,得46x =, ∴32x =, 把32x =代入①,得14y =-,∴方程组的解为:3214x y ⎧=⎪⎪⎨⎪=-⎪⎩; (2)111231233x y x y ⎧-=⎪⎪⎨⎪--=⎪⎩①②, 由①3⨯-②,得:11763x =, ∴1411x =, 把1411x =代入①,解得:1211y =-, ∴方程组的解为:14111211x y ⎧=⎪⎪⎨⎪=-⎪⎩; 【点睛】本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组.27.(1)A 种商品有5件,B 种商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为3000元【分析】(1)设A 、B 两种型号商品各有x 件和y 件,根据体积一共是20m 3,质量一共是10.5吨列出方程组再解即可;(2)分别计算出①按车收费的费用,②按吨收费的费用,③两种方式混合用的花费,进而可得答案.【详解】解:(1)设A 、B 两种型号商品各有x 件和y 件,由题意得,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得:58x y =⎧⎨=⎩, 答:A 、B 两种型号商品各有5件、8件;(2)①按车收费:10.5÷3.5=3(辆),但车辆的容积为:6×3=18<20,所以3辆车不够,需要4辆车,此时运费为:4×900=3600元;②按吨收费:300×10.5=3150元,③先用3辆车运送A商品5件,B商品7件,共18m3,按车付费3×900=2700(元).剩余1件B型产品,再运送,按吨付费300×1=300(元).共需付2700+300=3000(元).∵3000<3150<3600,∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.【点睛】本题考查二元一次方程组的应用,关键是正确理解题意,找出题中的等量关系.28.(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据三角形高的定义求解可得;(2)根据平移的定义作出变换后的对应点,再顺次连接即可得;(3)计算得出格点△ABC的面积是3,得出格点△ABP的面积为6,据此画出格点△ABP 即可.【详解】解:(1)如图所示,(2)如图所示;(3)S△ABC=1323 2⨯⨯=S△ABP=2S△ABC=6画格点△ABP如图所示,(答案不唯一).【点睛】本题主要考查作图-平移变换,解题的关键是熟练掌握平移变换的定义和性质,并据此得出变换后的对应点.29.(1)21xy=⎧⎨=-⎩;(2)175125xy=⎧⎨=⎩.【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y x x y =-⎧⎨+=-⎩①②, 把①代入②得:x +6x ﹣15=﹣1,解得:x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得:3005537500x y x y +=⎧⎨+=⎩①②, ①×53﹣②得:48x =8400,解得:x =175,把x =175代入①得:y =125,则方程组的解为175125x y =⎧⎨=⎩. 【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.30.(1)33+a b ,33a b -;(2)6;(3)14;(4)198【分析】(1)根据整式的混合运算法则展开计算即可;(2)利用完全平方公式变形,再代入求值;(3)利用立方差公式和完全平方公式变形,再代入求值;(4)利用立方差公式和完全平方公式变形,再代入求值;【详解】解:(1)()()22+-+a b a ab b=322223a a b ab a b ab b -++-+=33+a b()()22a b a ab b -++=322223a a b ab a b ab b ++---=33a b -,故答案为:33+a b ,33a b -;(2)22a b +=()22a b ab -+=2221+⨯=6;(3)33a b - =()()22a b a ab b -++=()()23a b a b ab ⎡⎤--+⎣⎦ =()22231⨯+⨯ =14;(4)66a b + =()()224224a b a a b b +-+=()()22222223a b ab a b a b ⎡⎤⎡⎤-++-⎢⎥⎣⎦⎣⎦ =()()2222163+⨯- =198【点睛】本题考查了因式分解-运用公式法,正确的理解已知条件中的公式是解题的关键.。

苏科七年级苏科初一数学下学期期末测试题及答案(共五套)

苏科七年级苏科初一数学下学期期末测试题及答案(共五套)

苏科七年级苏科初一数学下学期期末测试题及答案(共五套)一、选择题1.下列条件中,能判定△ABC 为直角三角形的是( ). A .∠A=2∠B -3∠CB .∠A+∠B=2∠CC .∠A-∠B=30°D .∠A=12∠B=13∠C 2.把一块直尺与一块含30°的直角三角板如图放置,若∠1=34°,则∠2的度数为( )A .114°B .126°C .116°D .124°3.如图,ABC ∆中,100ABC ∠=︒,且AEF AFE ∠=∠,CFD CDF ∠=∠,则EFD ∠ 的度数为( )A .80°B .60°C .40°D .20° 4.已知∠1与∠2是同位角,则( )A .∠1=∠2B .∠1>∠2C .∠1<∠2D .以上都有可能5.下列方程组中,解是-51x y =⎧⎨=⎩的是( ) A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩6.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 27.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .2568.某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x 和男生y ,则列方程组为( ) A .500(14%)(13%)500(1 3.4)x y x y +=⎧⎨+++=⨯+⎩ B .5003%4% 3.4%x y x y +=⎧⎨+=⎩C .500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩ D .5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩9.如图,△ABC 中∠A=30°,E 是AC 边上的点,先将△ABE 沿着BE 翻折,翻折后△ABE 的AB 边交AC 于点D ,又将△BCD 沿着BD 翻折,C 点恰好落在BE 上,此时∠CDB=82°,则原三角形的∠B 的度数为( )A .75°B .72°C .78°D .82° 10.一个多边形的每个内角都等于140°,则这个多边形的边数是( ) A .7B .8C .9D .1011.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④ 12.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( )A .4B .5C .6D .8二、填空题13.已知方程组,则x+y=_____.14.若(3x+2y )2=(3x ﹣2y )2+A ,则代数式A 为______.15.计算:312-⎛⎫ ⎪⎝⎭= .16.233、418、810的大小关系是(用>号连接)_____.17.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____. 18.已知:()521x x ++=,则x =______________.19.分解因式:ab ﹣ab 2=_____. 20.计算(﹣2xy )2的结果是_____.21.有两个正方形A 、B ,现将B 放在A 的内部得图甲,将A 、B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和10,则正方形A ,B 的面积之和为_________.22.已知关于x 的不等式3()50a b x a b -+->的解集是1x <,则关于x 的不等式4ax b >的解集为_______.三、解答题23.探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)观察“规形图”,试探究∠BDC 与∠A 、∠B 、∠C 之间的关系,并说明理由; (2)请你直接利用以上结论,解决以下三个问题:①如图2,把一块三角尺XYZ 放置在△ABC 上,使三角尺的两条直角边XY 、XZ 恰好经过点B 、C ,若∠A =50°,则∠ABX+∠ACX = °;②如图3,DC 平分∠ADB ,EC 平分∠AEB ,若∠DAE =50°,∠DBE =130°,求∠DCE 的度数;③如图4,∠ABD ,∠ACD 的10等分线相交于点G 1、G 2…、G 9,若∠BDC =140°,∠BG 1C =77°,求∠A 的度数.24.计算: (1)2a (a ﹣2a 2); (2)a 7+a ﹣(a 2)3; (3)(3a +2b )(2b ﹣3a ); (4)(m ﹣n )2﹣2m (m ﹣n ).25.已知m2,3na a ==,求①m n a +的值; ②3m-2n a 的值26.如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3. (1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ;(2)记(3,5)=a,(3,6)=b,(3,30)=c.判断a,b,c之间的等量关系,并说明理由.27.如图,在△ABC中,∠ACB=90°,∠ABC与∠BAC的角平分线相交于点P,连接CP,过点P作DE⊥CP分别交AC、BC于点D、E,(1)若∠BAC=40°,求∠APB与∠ADP度数;(2)探究:通过(1)的计算,小明猜测∠APB=∠ADP,请你说明小明猜测的正确性(要求写出过程).28.南通某校为了了解家长和学生参与南通安全教育平台“5.12防灾减灾”专题教育活动的情况,在本校学生中随机抽取部分学生做调查,把收集的数据分为以下4类情形:A.仅学生自己参与;B.家长和学生一起参与;C.仅家长参与;D.家长和学生都未参与请根据上图中提供的信息,解答下列问题:(1)在这次抽样调查中,共调查了多少名学生?(2)补全条形统计图,并在扇形统计图中计算C类所对应扇形的圆心角的度数;(3)根据抽样调查结果,估计该校3600名学生中“家长和学生都未参与”的人数.29.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S=1+2+22+23+24+…+22009则2S=2+22+23+24+…+22009+22010因此2S﹣S=(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S=22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.30.装饰公司为小明家设计电视背景墙时需要A、B型板材若干块,A型板材规格是a⨯b,B型板材规格是b⨯b.现只能购得规格是150⨯b的标准板材.(单位:cm)(1)若设a=60cm,b=30cm.一张标准板材尽可能多的裁出A型、B型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一裁法二裁法三A型板材块数120B型板材块数3m n则上表中,m=___________,n=__________;(2)为了装修的需要,小明家又购买了若干C型板材,其规格是a⨯a,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a2+5ab+3b2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C,则∠A=108011°,所以A选项错误;B、∠A+∠B+∠C=180°,而∠A+∠B=2∠C,则∠C=60°,不能确定△ABC为直角三角形,所以B选项错误;C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;D、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C,则∠C=90°,所以D选项正确.故选:D.【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.2.D解析:D【分析】利用平行线的性质求出∠3即可解决问题.【详解】如图,∵a∥b,∴∠2=∠3,∵∠3=∠1+90°,∠1=34°,∴∠3=124°,∴∠2=∠3=124°,故选:D.【点睛】此题考查平行线的性质,三角形的外角的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.3.C解析:C【分析】连接FB,根据三角形内角和和外角知识,进行角度计算即可.【详解】解:如图连接FB,∵AEF AFE ∠=∠,CFD CDF ∠=∠,∴AEF AFE EFB EBF ∠=∠=∠+∠,CFD CDF BFD FBD ∠=∠=∠+∠ ∴AFE CFD EFB EBF BFD FBD ∠+∠=∠+∠+∠+∠, 即AFE CFD EFD EBD ∠+∠=∠+∠, 又∵180AFE EFD DFC ∠+∠+∠=︒, ∴2180EFD EBD ∠+∠=︒, ∵100ABC ∠=︒, ∴180100=402EFD ︒-︒∠=︒, 故选:C . 【点睛】此题考查三角形内角和和外角定义,掌握三角形内角和为180°,三角形一个外角等于不相邻两内角之和是解题关键.4.D解析:D 【分析】根据同位角的定义和平行线的性质判断即可. 【详解】解:∵只有两直线平行时,同位角才可能相等,∴当没有限定“两直线平行”时,已知∠1与∠2是同位角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能. 故选:D . 【点睛】本题考查了同位角的定义和平行线的性质,正确理解同位角的定义是解此题的关键,“两直线平行”这个前提条件易遗漏.5.C解析:C 【解析】试题解析:A. 的解是51x y =⎧⎨=⎩, 故A 不符合题意;B. 的解是06x y =⎧⎨=⎩,故B 不符合题意;C. 的解是51x y =-⎧⎨=⎩,故C 符合题意;D. 的解是40x y =-⎧⎨=⎩,故D 不符合题意;故选C.点睛:解二元一次方程的方法有:代入消元法,加减消元法.6.C解析:C 【分析】直接利用图形面积求法得出等式,进而得出答案. 【详解】梯形面积等于:()()()()122a b a b a b a b ⨯⨯+⨯-=+-, 正方形中阴影部分面积为:a 2-b 2, 故a 2-b 2=(a +b )(a -b ). 故选:C . 【点睛】此题主要考查了平方差公式的几何背景,正确表示出图形面积是解题关键.7.D解析:D 【分析】根据同底数幂的乘法:同底数幂相乘,底数不变,指数相加,以及幂的乘方,底数不变,指数相乘,即可求解. 【详解】 解:∵()222=84256x y x y a a a +⋅=⋅=.故选D . 【点睛】本题考查同底数幂的乘法、幂的乘方运算法则,难度不大,熟练掌握运算法则是顺利解题的关键.8.C解析:C 【分析】本题有两个相等关系:现有女生人数x +现有男生人数y =现有学生500;一年后女生在校生增加3%后的人数+男生在校生增加4%后的人数=现在校学生增加3.4%后的人数;据此即可列出方程组.【详解】解:设该校现有女生人数x 和男生y ,则列方程组为()()()50013%14%5001 3.4%x y x y +=⎧⎨+++=⨯+⎩. 故选:C . 【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键.9.C解析:C 【分析】在图①的△ABC 中,根据三角形内角和定理,可求得∠B+∠C=150°;结合折叠的性质和图②③可知:∠B=3∠CBD ,即可在△CBD 中,得到另一个关于∠B 、∠C 度数的等量关系式,联立两式即可求得∠B 的度数. 【详解】在△ABC 中,∠A=30°,则∠B+∠C=150°…①; 根据折叠的性质知:∠B=3∠CBD ,∠BCD=∠C ; 在△CBD 中,则有:∠CBD+∠BCD=180°-82°,即:13∠B+∠C=98°…②; ①-②,得:23∠B=52°, 解得∠B=78°. 故选:C . 【点睛】此题主要考查的是图形的折叠变换及三角形内角和定理的应用,能够根据折叠的性质发现∠B 和∠CBD 的倍数关系是解答此题的关键.10.D解析:D 【分析】一个外角的度数是:180°-140°=40°, 则多边形的边数为:360°÷40°=9; 故选C . 【详解】11.C解析:C 【分析】根据同位角的定义逐一判断即得答案. 【详解】解:图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.... 故选:C . 【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.12.C解析:C 【分析】设出外角的度数,表示出内角的度数,根据一个内角与它相邻的外角互补列出方程,解方程得到答案. 【详解】解:设外角为x ,则相邻的内角为2x , 由题意得,2180x x +=︒, 解得,60x =︒,多边形的边数为:360606÷︒=, 故选:C . 【点睛】本题考查的是多边形内、外角的知识,理解一个多边形的一个内角与它相邻外角互补是解题的关键.二、填空题 13.2【解析】由题意得,两个方程左右相加可得,4x+4y=8⇒x+y=2,故答案为2.解析:2【解析】由题意得,两个方程左右相加可得,,故答案为2.14.24xy 【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x )2+2×3x×2y+(2y)2=(3x )2-2×3x×2y+(2y)2+A, 即9x2+12xy+4y2=9x2-12xy+解析:24xy 【解析】∵(3x+2y )2=(3x ﹣2y )2+A ,∴(3x )2+2×3x×2y+(2y)2=(3x )2-2×3x×2y+(2y)2+A, 即9x 2+12xy+4y 2=9x 2-12xy+4y 2+A ∴A=24xy, 故答案为24xy.【点睛】本题考查了完全平方公式,熟记完全平方公式是解题的关键.完全平方公式:(a±b)2=a 2±2ab+b 2. 15.8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式==8.故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.解析:8【解析】分析:根据幂的负整数指数运算法则进行计算即可.解:原式=3112⎛⎫ ⎪⎝⎭=8. 故答案为8.点评:负整数指数幂的运算,先把底数化成其倒数,然后将负整数指数幂当成正的进行计算.16.418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵,,∴236>233>230,∴418>233>810.故答案为:418>233>81解析:418>233>810【分析】直接利用幂的乘方运算法则将原式变形,进而比较得出答案.【详解】解:∵()18182364=2=2,()10103308=2=2, ∴236>233>230,∴418>233>810.故答案为:418>233>810【点睛】比较不同底数的幂的大小,当无法直接计算或计算过程比较麻烦时,可以转化为同底数幂,比较指数大小或同指数幂,比较底数大小进行.能熟练运用幂的乘方进行变形是解题关键.17.4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:4×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000094=9.4×10﹣8,故答案是:9.4×10﹣8.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.18.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.19.ab(1﹣b)【分析】根据题意直接提取公因式ab,进而分解因式即可得出答案.【详解】解:ab﹣ab2=ab(1﹣b).故答案为:ab(1﹣b).【点睛】本题主要考查提取公因式法分解因式解析:ab(1﹣b)【分析】根据题意直接提取公因式ab,进而分解因式即可得出答案.【详解】解:ab﹣ab2=ab(1﹣b).故答案为:ab(1﹣b).【点睛】本题主要考查提取公因式法分解因式,熟练掌握并正确找出公因式是解题的关键.20.4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.解析:4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.21.11【分析】设A的边长为a,B的边长为b,根据阴影面积得到关于a、b的方程组,求出方程组的解即可得到答案.【详解】设A的边长为a,B的边长为b,由图甲得,即,由图乙得,得2ab=10,解析:11【分析】设A 的边长为a ,B 的边长为b ,根据阴影面积得到关于a 、b 的方程组,求出方程组的解即可得到答案.【详解】设A 的边长为a ,B 的边长为b ,由图甲得222()1a b a b b ---=,即2221a ab b -+=,由图乙得222()10a b a b +--=,得2ab=10,∴2211a b +=,故答案为:11.【点睛】此题考查完全平方公式的几何背景,正确理解图形的面积关系是解题的关键. 22.【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵的解集是,∴=1,a-b<0,∴a=2b,b<0.则不等式可以化为2bx>4b.∵b<解析:2x <【分析】根据已知不等式的解集,即可确定a,b 之间得关系以及b 的符号,从而解不等式.【详解】解:∵3()50a b x a b -+->的解集是1x <,∴()53a b a b --=1,a-b<0, ∴a=2b,b<0.则不等式4ax b >可以化为2bx>4b.∵b<0.∴x<2.即关于x 的不等式4ax b >的解集为x<2.【点睛】本题考查了不等式的解法,正确确定b 的符号是关键.三、解答题23.(1)∠BDC=∠A+∠B+∠C,理由见解析;(2)①40°;②90°;③70°.【分析】(1)根据题意观察图形连接AD并延长至点F,根据一个三角形的外角等于与它不相邻的两个内角的和可证∠BDC=∠BDF+∠CDF;(2)①由(1)的结论可得∠ABX+∠ACX+∠A=∠BXC,然后把∠A=50°,∠BXC=90°代入上式即可得到∠ABX+∠ACX的值;②结合图形可得∠DBE=∠DAE+∠ADB+∠AEB,代入∠DAE=50°,∠DBE=130°即可得到∠ADB+∠AEB的值,再利用上面得出的结论可知∠DCE=12(∠ADB+∠AEB)+∠A,易得答案.③由②方法,进而可得答案.【详解】解:(1)连接AD并延长至点F,由外角定理可得∠BDF=∠BAD+∠B,∠CDF=∠C+∠CAD;∵∠BDC=∠BDF+∠CDF,∴∠BDC=∠BAD+∠B+∠C+∠CAD.∵∠BAC=∠BAD+∠CAD;∴∠BDC=∠BAC +∠B+∠C;(2)①由(1)的结论易得:∠ABX+∠ACX+∠A=∠BXC,又因为∠A=50°,∠BXC=90°,所以∠ABX+∠ACX=90°﹣50°=40°;②由(1)的结论易得∠DBE=∠DAE +∠ADB+∠AEB,∵∠DAE=50°,∠DBE=130°,∴∠ADB+∠AEB=80°;∴∠DCE=12(ADB+∠AEB)+A=40°+50°=90°;③由②知,∠BG1C=110(ABD+∠ACD)+A,∵∠BG1C=77°,∴设∠A为x°,∵∠ABD+∠ACD=140°﹣x°,∴110(40﹣x)x=77,∴14﹣110x+x=77,∴x=70,∴∠A为70°.【点睛】本题考查三角形外角的性质,三角形的内角和定理的应用,能求出∠BDC=∠A+∠B+∠C是解答的关键,注意:三角形的内角和等于180°,三角形的一个外角等于和它不相邻的两个内角的和.24.(1)2a2﹣4a3;(2)a7+a﹣a6;(3)4b2﹣9a2;(4)n2﹣m2【分析】(1)由题意根据单项式乘以多项式法则求出即可;(2)根据题意先算乘方,再合并同类项即可;(3)由题意直接根据平方差公式求出即可;(4)由题意先根据完全平方公式和单项式乘以多项式进行计算,再合并同类项即可.【详解】解:(1)2a(a﹣2a2)=2a2﹣4a3;(2)a7+a﹣(a2)3=a7+a﹣a6;(3)(3a+2b)(2b﹣3a)=4b2﹣9a2;(4)(m﹣n)2﹣2m(m﹣n)=m2﹣2mn+n2﹣2m2+2mn=n2﹣m2.【点睛】本题考查整式的混合运算,乘法公式等知识点,能正确根据整式的运算法则进行化简是解此题的关键.25.①6;②8 9【解析】解:①②26.(1)3,0,﹣2;(2)a+b=c,理由见解析.【分析】(1)直接根据新定义求解即可;(2)先根据新定义得出关于a,b,c的等式,然后根据幂的运算法则求解即可.【详解】(1)∵33=27,∴(3,27)=3,∵40=1,∴(4,1)=0,∵2﹣2=14, ∴(2,0.25)=﹣2.故答案为:3,0,﹣2;(2)a +b =c .理由:∵(3,5)=a ,(3,6)=b ,(3,30)=c ,∴3a =5,3b =6,3c =30,∴3a ×3b =5×6=3c =30,∴3a ×3b =3c ,∴a +b =c .【点睛】本题考查了新定义运算,明确新定义的运算方法是解答本题的关键,本题也考查了有理数的乘方、同底数幂的乘法运算.27.(1)135APB ∠=︒,135PDA ∠=︒;(2)正确,理由见解析.【分析】(1)根据三角形的三条角平分线交于一点可知CP 平分∠BCA ,可得∠PCD =45°,从而由三角形外角性质可求∠ADP =135°,再∠BAC =40°,可求∠BAC 度数,根据角平分线的定义求出PBA PAB ∠+∠,然后利用三角形的内角和定理列式计算即可得解.(2)同理(1)直接可得135PDA ∠=︒.由角平分线可求()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒,进而可得135APB ∠=︒,由此得出结论. 【详解】解:(1)180ABC ACB BAC ∠+∠+∠=︒,90ACB ∠=︒,∠BAC =40°,50ABC =∴∠︒.ABC ∠与ACB ∠的角平分线相交于点P ,1252PBA ABC ∴∠=∠=︒,1202PAB BAC ∠=∠=︒. 114522PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.终上所述:135APB ∠=︒,135PDA ∠=︒.∴PCD+ADP ∠=∠∠ ∠ADP =(2)小明猜测是正确的,理由如下:ABC ∠与ACB ∠的角平分线相交于点P ,∴CP 是∠ACB 的角平分线,∴∠PCD =1452∠=︒ACB , ∵DE ⊥CP ,∴45PDC ∠=︒,∴135PDA ∠=︒.ABC ∠与ACB ∠的角平分线相交于点P ,12PBA ABC ∴∠=∠,12PAB BAC ∠=∠. ∵90ACB ∠=︒,∴90ABC BAC ∠+∠=︒()1452PBA PAB ABC BAC ∴∠+∠=∠+∠=︒ 180PBA PAB APB ∠+∠+∠=︒,18045135APB ∴∠=︒-︒=︒.故∠APB =∠ADP .【点睛】本题考查三角形的内角和定理,三角形的角平分线的定义,整体思想的利用和有效的进行角的等量代换是正确解答本题的关键.28.(1)400;(2)补全条形统计图见解析,54°;(3)180人【分析】(1)根据A 类的人数和所占的百分比可以求得本次调查的学生数;(2)根据(1)中的结果和条形统计图中的数据可以求得B 类的人数,从而可以将条形统计图补充完整,进而求得在扇形统计图中计算C 类所对应扇形的圆心角的度数;(3)根据统计图中的数据可以求得该校3600名学生中“家长和学生都未参与”的人数.【详解】解:(1)在这次抽样调查中,共调查了80÷20%=400名学生,故答案为:400;(2)B 种情况下的人数为:400-80-60-20=240(人),补全的条形统计图如图所示,在扇形统计图中计算C类所对应扇形的圆心角的度数为:60360400︒⨯=54°,故答案为:54°;(3)203600400⨯=180(人),即该校3200名学生中“家长和学生都未参与”的有180人.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解题的关键是明确题意,利用数形结合的思想解答.29.2021 514-【分析】根据题目信息,设S=1+5+52+53+…+52020,求出5S,然后相减计算即可得解.【详解】解:设S=1+5+52+53+ (52020)则5S=5+52+53+54 (52021)两式相减得:5S﹣S=4S=52021﹣1,则202151.4S-=∴1+5+52+53+54+…+52020的值为2021514-.【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.30.(1)m=1,n=5;(2)(a+2b)2=a2+4ab+4b2;(3)2a2+5ab+3b2=(a+b)(2a+3b),详见解析【分析】(1)结合图形和条件分析可以得出按裁法二裁剪时,可以裁出B型板1块,按裁法三裁剪时,可以裁出5块B型板;(2)看图即可得出所求的式子;(3)通过画图能更好的理解题意,从而得出结果.由于构成的是长方形,它的面积等于所给图片的面积之和,从而因式分解.【详解】(1)按裁法二裁剪时,2块A型板材块的长为120cm,150-120=30,所以可裁出B型板1块,按裁法三裁剪时,全部裁出B型板,150÷30=5,所以可裁出5块B型板;∴m=1,n=5.故答案为:1,5;(2)如下图:发现的等式为:(a+2b)2=a2+4ab+4b2;故答案为:(a+2b)2=a2+4ab+4b2.(3)按题意画图如下:∵构成的长方形面积等于所给图片的面积之和,∴2a2+5ab+3b2=(a+b)(2a+3b).【点睛】本题考查了完全平方公式和几何图形的应用及一元一次方程的应用,关键是根据学生的画图能力,计算能力来解答.。

2023-2024学年苏科版七年级数学上学期期末考试卷(含解析)

2023-2024学年苏科版七年级数学上学期期末考试卷(含解析)

2023-2024学年苏科版七年级数学上学期期末考试卷学校:___________姓名:___________班级:___________考号:___________一、单选题(每小题3分,共24分)A .B .3.在,,…中,已知的最大整数,例如5-1x 2x 3x []2.62=A .1B .28.一副三角板ABC 、DBE ,如图1放置,①在图1的情况下,在内作②在旋转过程中,若平分,③在旋转过程中,两块三角板的边所在直线夹角成④的角度恒为.其中正确的结论个数为( )A .1个B .2个DBC ∠DBF ∠BM DBA ∠BN DBC ABE ∠+∠105︒15.已知直线与直线16.如图,AB OE AB ⊥三、解答题(共52分)(1)直接写出这个几何体的表面积;(2)按要求在方格中画出从这个几何体不同的方向看到的形状图.小墩从郑州西站开始乘坐地铁,在图中12个地铁站点做值勤志愿服务,到约定向郑州火车站方向为正,当天的乘车记录如下(单位:站):(1)请你通过计算说明A 站是哪一站?(2)已知相邻两站之间的平均距离为千米,求小墩在志愿者服务期间乘坐地铁行进的路程是多少千米?21.已知点在线段上,,点、在直线上,点(1)若,,线段在线段上移动.①如图1,当为中点时,求的长;(1)点表示的有理数是 ,点表示的有理数是 ,点1.5C AB 2AC BC =D E AB 18AB =8DE =DE AB E BC AD A C(1)如图1,,,请判断(2)若平分,且为的“分余线(3)如图2,,在的内部作射线的“分余线”.当为的“分余线”时,请直接写出70AOB ∠=︒50AOC ∠=︒OC AOB ∠OC AOB ∠155AOB ∠=︒AOB ∠OC MON ∠答案解析A.B.5-【答案】A【分析】本题考查了一元一次方程的应用,根据解题的关键.【详解】解:设每条边上四个数之和为则我们可以确定其中有三个数的边上的圆圈里的数,再求另外两个空圆圈里的数,,将其填入相应的圆圈中,如图,统计已填入的具体数有没有填入的数有:,2,(2)0(5)3m m ----+=-(2)(4)(6)4m m ---+--=6-5-A.1B.2【答案】D【分析】根据图形以及数字的摆放,第一图可得第二个图可知的下面是5,5的右边是2将正方形展开如图所示,∴的对面是,故选:D .【点睛】本题考查了正方体展开图,相对面上的字,注意数字的摆放是解题的关键.8.一副三角板ABC 、DBE ,如图1放置,(、),将三角板绕点B 逆时针旋转一定角度,如图2所示,且,有下列四个结论:①在图1的情况下,在内作,则平分;②在旋转过程中,若平分,平分,的角度恒为定值;③在旋转过程中,两块三角板的边所在直线夹角成的次数为3次;④的角度恒为.其中正确的结论个数为( )A .1个B .2个C .3个D .4个【答案】C【分析】结合图形根据题意正确进行角的和差计算即可判断.【详解】①如图可得,所以平分,①正确;②当时,设,∵平分,∴,∴ ,,45630D ∠=︒45BAC ∠=︒DBE 090CBE ︒<∠<︒DBC ∠DBF EBF ∠=∠BA DBF ∠BM DBA ∠BN EBC ∠MBN ∠90︒DBC ABE ∠+∠105︒15DBA ABF ∠=∠=︒BA DBF ∠045CBE ︒<∠<︒DBM x ∠=BM DBA ∠x ABM DBM ∠==∠602ABE x ∠=︒-()45602215EBC x x ∠=︒-︒-=-︒∴,当时,设,∵平分,∴,∴,∴,∴,∴,故②正确;③时,时,时故③正确;④当时,当时,故④错误;综上所述,正确的结论为①②③;故选:C .【点睛】本题主要考查了角的和差,角的平分线,旋转的性质,关键根据题意正确进行角的和差计算.二、填空题(每小题3分,共24分)【答案】/7.5EBN x ∠=-︒6027.552.5M BN x x x ∠=+︒-+-︒=︒4590CBE ︒<∠<︒DBM x ∠=BM DBA ∠x ABM DBM ∠==∠602ABE x ∠=︒-215EBC x ∠=-︒60M BE x∠=︒-7.5EBN C BN x ∠=∠=-︒607.552.5M BN x x ∠=︒-+-︒=︒30CBE ∠=︒BD BC ⊥45CBE ∠=︒AB DE ⊥75CBE ∠=︒DB AB ⊥045CBE ︒<∠<︒105D BC ABE ∠+∠=︒4590CBE ︒<∠<︒105D BC ABE ∠+∠>︒1b +1b+【答案】10【分析】本题主要考查了求圆柱的体积,先求出圆柱的底面积,再根据圆柱的体积【详解】解:一个高∴底面面积:102=5dm÷,,,;如图,,,.故答案为:或.【点睛】本题考查了垂线的性质及角的计算,EO CD ⊥ 90EOC ∴∠=︒60AOC ∠=︒ 906030AOE ∴∠=︒-︒=︒EO CD ⊥ 90EOC ∴∠=︒9060150AOE ∴∠=︒+︒=︒30︒150︒【答案】或【分析】分和,两种情况进行讨论求解即可.【详解】解:由题意,得:的运动时间为:秒,的运动时间为:秒;∴运动的时间相同;设运动时间为秒,则:,∵,∴,当时:,∴,,∴,∴,∴,即:;当,在上方时:如图,,2255x y +=2105x y -=90AOM ∠≤︒90AOM ∠>︒OM 180603︒÷︒=ON 90303︒÷︒=,OM ON t 60,30AOM t BON t ∠=︒∠=︒OE AB ⊥90AOE BOE ∠=∠=︒90AOM ∠≤︒COM AOM AOC AOM AOE COE ∠=∠+∠=∠+∠-∠6090156075x t t =+-=+NOE BOE BON ∠=∠-∠9030y t =-3090t y =-()29075x y =-+2255x y +=90AOM ∠>︒ON OD 1180COM BOM BOE EOC AOM AOE COE ∠=∠+∠+∠=︒-∠+∠+∠∴,,∴,∴,∴,即:;当,在下方时:如图2,,∴,,∴,∴,∴,即:;综上:与之间的数量关系为或;故答案为:或.【点睛】本题考查几何图形中角度的计算.正确的识图,理清角之间的和差关系,是解题的关键.三、解答题(共52分)18060901528560x t t =-++=-NOE BOE BON ∠=∠-∠9030y t =-3090t y =-()285290x y =--2105x y -=90AOM ∠>︒ON OD 180COM BOM BOE EOC AOM AOE COE ∠=∠+∠+∠=︒-∠+∠+∠18060901528560x t t =-++=-NOE BOE BON ∠=∠-∠9030y t =-3090t y =-()285290x y =--2105x y -=x y 2255x y +=2105x y -=2255x y +=2105x y -=移项得:,合并得:,解得:.19.如图是由棱长都为的6块小正方体搭成的简单几何体.(1)直接写出这个几何体的表面积;(2)按要求在方格中画出从这个几何体不同的方向看到的形状图.【答案】(1)(2)见解析【分析】本题考查求简单组合体的表面积,以及三视图.熟练掌握三视图的画法,是解题的关键.(1)先数出各个方向正方形的个数,相加后乘一个小正方形的面积即可求解..(2)从正面看得到从左往右4列正方形的个数依次为1,2,1,1;从左面看得到从左往右2列正方形的个数依次为2,1;从上面看得到从左往右4列正方形的个数依次为2,1,1,1,依此画出图形即可.【详解】(1),∴这个几何体的表面积为.(2)如图所示.20.郑州地铁10号线于2023年9月28日开通运营,起于荥阳市郑州西站,途经中原区,止于二七区郑州火车站,线路主要沿中原路、康复后街呈东西向布置,其中的12个站点如图所示.91014312y y -=-++1y -=1y =-1cm 226cm ()211665226cm⨯⨯⨯-⨯=226cm小墩从郑州西站开始乘坐地铁,在图中12个地铁站点做值勤志愿服务,到约定向郑州火车站方向为正,当天的乘车记录如下(单位:站):(1)请你通过计算说明A 站是哪一站?(2)已知相邻两站之间的平均距离为千米,求小墩在志愿者服务期间乘坐地铁行进的路程是多少千米?【答案】(1)A 站是郑州西站(2)小墩在志愿者服务期间乘坐地铁行进的路程是45千米(1)若,,线段在线段上移动.①如图1,当为中点时,求的长;1.518AB =8DE =DE AB E BC AD为中点,,E BC 3CE EF +=设,,则设,,则CE x =DC y =DE CE x =DC y =DE y =-(1)点表示的有理数是 ,点表示的有理数是 ,点A C元;当时,甲的用水量超过,乙的用水量超过但不超过,∴元,当时,甲的用水量超过,乙的用水量不超过,∴元;综上所述,当时,甲,乙两户一个月共缴纳的水费元;当时,甲,乙两户一个月共缴纳的水费元;当时,甲,乙两户一个月共缴纳的水费元.【点睛】本题主要考查了有理数的四则混合计算的实际应用,整式加减计算的实际应用,正确理解题意利用分类讨论的思想求解是解题的关键.24.在抗洪抢险中,解放军战士的冲锋舟加满油沿东西方向的河流抢救灾民,早晨从地出发,晚上到达地,约定向东为正方向,当天的航行路程记录如下(单位:千米).,,,,,,,,.(1)请你帮忙确定地位于地的什么方向,距离地有多少千米?(2)救灾过程中,冲锋舟离出发点最远处有_____千米.(3)若冲锋舟每千米耗油0.5升,油箱容量为30升,求冲锋舟当天救灾过程中至少还需补充多少升油?【答案】(1)地位于地东方,距离地有22千米(2)25(3)8升【分析】(1)根据有理数的加法,可得和,再根据向东为正,结合和的符号可判定方向及距离;(2)首先计算每次行程后与出发点的距离,再比较有理数的大小,可得答案;(3)首先计算当天航行的总里程,进而可得当天耗油量,再根据耗油量与已有的油量,可得答案.【详解】(1)解:∵,∴地位于地东方,距离地有22千米;()116x =-2028x <<320m 312m 320m ()()()1222012 1.52202212240122 1.5x x ⨯+-⨯⨯+-⨯⨯+⨯+--⨯⨯242448024843x x=++-++-()76x =+2840x ≤≤320m 312m ()()()1222012 1.522022402x x ⨯+-⨯⨯+-⨯⨯+-⨯2424480802x x=++-+-()248x =+1220x <≤()116x -2028x <<()76x +2840x ≤≤()248x +A B 14+9-8+7-13+6-12+5-2+B A A A B A A (14)(9)(8)(7)(13)(6)(12)(5)(2)22++-+++-+++-+++-++=+B A A(1)如图1,,,请判断70AOB ∠=︒50AOC ∠=︒∴,∵,∴,即:,∴,此时:,故这种情况不存在;综上:当为的“分余线”时,或或100°.【点睛】本题考查角的和差计算.理解并掌握“分余线”的定义,是解题的关键.注意分类讨论.24∠∠=1234155AOB ∠=∠+∠+∠+∠=︒334155∠+∠=︒902434155︒-∠+∠=︒465∠=︒390240∠=︒-∠<︒OC MON ∠88AOC ∠=︒775︒.。

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试题一、单选题1.2022的相反数是()A .2022B .2022-C .12022D .12022-2.下列计算正确的是()A .2m ﹣m =2B .2m+n =2mnC .2m 3+3m 2=5m 5D .m 3n ﹣nm 3=03.将一副三角尺按下列几种方式摆放,则能使αβ∠=∠的摆放方式为()A .B .C .D .4.小丽同学在做作业时,不小心将方程2(x -3)-■=x +1中的一个常数污染了,在询问老师后,老师告诉她方程的解是x =9,请问这个被污染的常数■是()A .4B .3C .2D .15.马龙同学沿直线将一三角形纸板剪掉一个角,发现剩下纸板的周长比原纸板的周长要小,能正确解释这一现象的数学知识是()A .经过一点有无数条直线B .两点之间,线段最短C .经过两点,有且仅有一条直线D .垂线段最短6.若(﹣2x+a )(x ﹣1)的结果中不含x 的一次项,则a 的值为()A .1B .﹣1C .2D .﹣27.如图所示几何体的左视图是()A .B .C .D .8.如图,点A 表示的实数是()A 6B 5C .15D .169.如图,数轴上A ,B 两点分别对应实数a ,b ,则下列结论正确的是()A .ab >0B .﹣a+b >0C .a+b <0D .|a|﹣|b|>010.如图,点O 在直线AB 上,∠AOC 与∠BOD 互余,∠AOD =148°,则∠BOC 的度数为()A .122°B .132°C .128°D .138°二、填空题11.﹣690000000用科学记数法表示_____.12.若单项式2xmy 5和﹣x 2yn 是同类项,则n ﹣3m 的值为______.13.若2|35|(3)0m n -++=,则()9m n -=________.14.根据数值转换机的示意图,输出的值为_____.15.如图所示,一块长为m ,宽为n 的长方形地板中间有一条裂缝,若把裂缝右边的一块向右平移距离为d 的长度,则由此产生的裂缝面积是______.16.一个立方体的表面展开图如图所示,将其折叠成立方体后,与“你”对面的字为______.17.有一群鸽子和一些鸽笼,如果每个鸽笼住6只鸽子,则剩余3只鸽子无鸽笼可住;如果再飞来5只鸽子,连同原来的鸽子,每个鸽笼刚好住8只鸽子.设原有x 只鸽子,则可列方程_____.18.如图,已知图①是一块边长为1,周长记为C 1的等边三角形卡纸,把图①的卡纸剪去一个边长为12的等边三角形纸板后得到图②,然后沿同一底边再剪去一个边长为14的等边三角形后得到图③,依次剪去一个边长为18、116、132…的等边三角形后,得到图④、⑤、⑥、…,记图n (n≥3)中的卡纸的周长为Cn ,则Cn ﹣Cn ﹣1=_____.三、解答题19.计算:(1)31125(25)25()424⨯--⨯+⨯-;(2)201721(1)(132(3)2⎡⎤---÷⨯--⎣⎦.20.解方程:(1)2(1)25(2)x x -=-+(2)5172124x x ++-=21.先化简,再求值:2(x 2y+3xy )﹣3(x 2y ﹣1)﹣2xy ﹣2,其中x =﹣2,y =2.22.如图,网格线的交点叫格点,格点P 是AOB ∠的边OB 上的一点(请利用网格作图,保留作图痕迹).(1)过点P画OB的垂线,交OA于点C;(2)线段的长度是点O到PC的距离;<的理由是;(3)PC OC(4)过点C画OB的平行线;23.现规定一种新运算,规则如下:a※b ab a bx-=,求x的值.=++,已知3※32424.某人乘船由A地顺流而下到达B地,然后又逆流而上到C地,共用了3小时.已知船在静水中速度为每小时8千米,水流速度是每小时2千米.已知A、B、C三地在一条直线上,若AC两地距离是2千米,则AB两地距离多少千米?(C在A、B之间)25.如图,C是线段AB上的一点,N是线段BC的中点.若AB=12,AC=8,求AN的长.26.如图,直线AB与CD相交于点O,OE是∠COB的平分线,OE⊥OF.(1)图中∠BOE的补角是;(2)若∠COF=2∠COE,求△BOE的度数;(3)试判断OF是否平分∠AOC,请说明理由.27.若在一个两位正整数A的个位数字之后添上数字6,组成一个三位数,我们称这个三位数为A的“添彩数”,如78的“添彩数”为786,若将一个两位正整数B减去6得到一个新数,我们称这个新数为B的“减压数”,如78的“减压数”为72.(1)求证:对任意一个两位正整数M,其“添彩数”与“减压数”之和能被11整除.(2)对任意一个两位正整数N ,我们将其“添彩数”与“减压数”之比记作()f N ,若()f N 为整数且()18f N ≤,求出所有符合题意的N 的值.参考答案1.B【分析】根据相反数的定义直接求解.【详解】解:实数2022的相反数是2022-,故选:B .【点睛】本题主要考查相反数的定义,解题的关键是熟练掌握相反数的定义.2.D【分析】根据合并同类项逐项分析判断即可【详解】A.2m ﹣m =m ,故该选项不正确,不符合题意;B.2m 与n 不是同类项,不能合并,故该选项不正确,不符合题意;C.2m 3与3m 2不是同类项,不能合并,故该选项不正确,不符合题意;D.m 3n ﹣nm 3=0,故该选项正确,符合题意;故选:D .【点睛】本题考查了合并同类项,掌握合并同类项是解题的关键.3.B【分析】根据三角板的特殊角分别进行判断即可;【详解】由图形摆放可知,αβ∠≠∠;由图形摆放可知,αβ∠=∠;由图形摆放可知,15α∠=︒,=30β∠︒,αβ∠≠∠;由图形摆放可知,180αβ∠+∠=︒,αβ∠≠∠;故答案选B .【点睛】本题主要考查了直角三角板的角度求解,准确分析判断是解题的关键.4.C【分析】把x=9代入原方程即可求解.【详解】把x=9代入方程2(x-3)-■=x+1得2×6-■=10∴■=12-10=2故选C.【点睛】此题主要考查方程的解,解题的关键是把方程的根代入原方程.5.B【分析】根据两点之间,线段最短进行解答即可.【详解】解:某同学用剪刀沿虚线将三角形剪掉一个角,发现四边形的周长比原三角形的周长要小,能正确解释这一现象的数学知识是:两点之间,线段最短.故选:B.【点睛】此题主要考查了线段的性质,关键是掌握两点之间,线段最短.6.D【分析】根据多项式乘多项式的运算法则进行化简,然后令含x的一次项系数为零即可求出答案.【详解】解:(﹣2x+a)(x﹣1)=﹣22x+(a+2)x﹣a,∴a+2=0,∴a=﹣2,故选:D.【点睛】本题考查了整式的乘法中的不含某项的计算,正确理解题意是解题的关键.7.A【分析】视线从左面观察几何体所得的视图叫左视图,能够看到的线用实线,看不到的线用虚线.【详解】解:从左边看,底层是一个矩形,上层是一个直角三角形(三角形与矩形之间没有实线隔开),左齐.故选:A.【点睛】本题主要考查的是几何体的三视图,熟练掌握三视图的画法是解题的关键.8.B【分析】利用勾股定理求出OA长度,然后得到A点表示的实数即可【详解】解:∵OA =∴点A 故选B .【点睛】本题考查勾股定理,能够灵活运用勾股定理解题是本题的关键9.B【分析】根据a ,b 两数在数轴上的位置确定它们的符号和绝对值的大小,再对各个选项逐一分析判断即可.【详解】解:A .由数轴可知,﹣1<a <0<1<b ,|b|>|a|,因为a <0,b >0,所以ab <0,故选项错误,不符合题意;B .因为a <0,所以﹣a >0,又因为b >0,所以﹣a+b >0,故选项错正确,符合题意;C .因为a <0,b >0,|b|>|a|,所以a+b >0,故选项错误,不符合题意;D .因为|b|>|a|,所以|a|﹣|b|<0,故选项错误,不符合题意.故选:B【点睛】本题考查了实数与数轴上点的对应关系,解题的关键是确定a ,b 的符号和绝对值的大小关系.10.A【分析】利用∠AOC 与∠BOD 互余得出∠AOC+∠BOD =90°,再由平角的定义求出∠COD ,即可求出答案.【详解】解:∵点O 在直线AB 上,∠AOC 与∠BOD 互余,∴∠AOC+∠BOD =90°,∴∠COD =180°﹣(∠AOC+∠BOD )=180°﹣90°=90°,∵∠AOD =148°,∴∠BOD =180°﹣∠AOD =180°﹣148°=32°,∴∠BOC =∠COD+∠BOD =90°+32°=122°,故选:A .11.﹣6.9×108【分析】用科学记数法表示绝对值大于1的数,形如,11001,n a n <⨯<为正整数,据此解答.【详解】解:﹣690000000用科学记数法表示为﹣6.9×108故答案为:﹣6.9×108.12.-1【详解】解:∵单项式2xmy 5和﹣x 2yn 是同类项,∴m =2,n =5,∴n ﹣3m =5﹣6=-1.故答案为:-1.13.-20【分析】利用非负性,确定m=53,n=-3,代入计算即可.【详解】∵2|35|(3)0m n -++=,∴m=53,n=-3,∴()59(12)3m n -=⨯-=-20,故答案为:-20.14.19【详解】解:当x =﹣3时,31+x =3﹣2=19,故答案为:19.15.dn【分析】根据平移后的图形面积-平移前的面积=裂缝面积列式即可计算出结果.【详解】裂缝面积=(m+d)n-mn=mn+dn-mn=dn .故答案为dn .16.顺【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“试”是相对面,“你”与“顺”是相对面,“考”与“利”是相对面.故答案为:顺.17.36x -=58x+【分析】直接利用鸽笼的数量不变得出方程,即可得出答案.【详解】解:设原有x 只鸽子,则可列方程:3568x x -+=.故答案为:3568x x -+=.18.112n -【分析】利用等边三角形的性质(三边相等)求出等边三角形的周长C 1,C 2,C 3,C 4,根据周长相减的结果能找到规律即可求出答案.【详解】解:∵C 1=1+1+1=3,C 2=1+1+12=52,C 3=1+1+14×3=114,C 4=1+1+14×2+18×3=238,…∴C 3﹣C 2=12,C 3﹣C 2=114﹣52=14=(12)2;C 4﹣C 3=238﹣114=18=(12)3,…则C n ﹣Cn ﹣1=(12)n ﹣1=112n -.故答案为:112n -.19.(1)25;(2)16【详解】解:(1)原式=311252525424⨯+⨯-⨯=31125(424⨯+-=25×1=25;(2)原式=111(29)23--⨯⨯-=111(7)23--⨯⨯-=716-+=16.20.(1)67x =-;(2)43x =【分析】(1)首先去括号,然后移项,合并同类项,系数化为1即可;(2)去分母,然后去括号,移项,合并同类项,系数化为1即可求解.【详解】(1)解:222510x x -=--,76x =-,67x =-;(2)102724x x +--=,34x =,43x =.21.﹣x 2y+4xy+1,-23【分析】原式去括号再合并即可得到最简结果,将x 与y 的值代入计算即可求出值.【详解】原式=2x 2y+6xy ﹣3x 2y+3﹣2xy ﹣2=﹣x 2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.22.(1)见解析;(2)OP ;(3)垂线段最短;(4)见解析【详解】试题分析:(1)先以点P 为圆心,以任意长为半径画弧,与OB 交于两点,然后再分别以这两点为圆心,作弧在OB 两侧交于两点,过这两点作直线即可;(2)根据点到直线的距离的概念即可得;(3)根据垂线段最短即可得;(4)根据“同位角相等,两直线平行”作∠BOA 的同位角即可得.试题解析:(1)如图所示:PC 即为所求作的;(2)根据点到直线的距离的定义可知线段OP 的长度是点O 到PC 的距离,故答案为OP ;(3)PC<OC 的理由是垂线段最短,故答案为垂线段最短;(4)如图所示.23.6x =【分析】根据题意,可得:3※333324x x x -=++-=,据此求出x 的值即可.【详解】解:a ※b ab a b =++,3∴※333324x x x -=++-=,32433x x ∴+=-+,424x ∴=,解得:6x =.【点睛】此题主要考查了解一元一次方程的方法,解题的关键是要熟练掌握解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.24.AB 两地距离为252千米.【分析】根据路程、速度、时间之间的关系列出方程,解方程即可.【详解】设AB 两地距离为x 千米,则CB 两地距离为(x ﹣2)千米.根据题意,得238282x x -+=+-解得x =252.答:AB 两地距离为252千米.【点睛】考查了一元一次方程的应用,解题关键是理解题意找到等量关系,根据等量关系列出方程.25.10【分析】先根据已知求出BC的长,再根据N是线段BC的中点求出CN,从而求出AN.【详解】解:∵AB=12,AC=8,∴BC=AB﹣AC=12﹣8=4,∵N是线段BC的中点,∴CN=12BC=12×4=2,∴AN=AC+CN=8+2=10.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及中点的性质是解答此题的关键.26.(1)∠AOE和∠DOE;(2)∠BOE=30°;(3)OF平分AOC.理由见解析.【分析】(1)根据补角的定义,依据图形可直接得出答案;(2)根据互余和∠COF=2∠COE,可求出∠COF、∠COE,再根据角平分线的意义可求答案;(3)根据互余,互补、角平分线的意义,证明∠FOA=∠COF即可.【详解】解:(1)∵∠AOE+∠BOE=∠AOB=180°,∠COE+∠DOE=∠COD=180°,∠COE=∠BOE∴∠BOE的补角是∠AOE,∠DOE故答案为:∠AOE或∠DOE;(2)∵OE⊥OF.∠COF=2∠COE,∴∠COF=23×90°=60°,∠COE=13×90°=30°,∵OE是∠COB的平分线,∴∠BOE=∠COE=30°;(3)OF平分∠AOC,∵OE是∠COB的平分线,OE⊥OF.∴∠BOE=∠COE,∠COE+∠COF=90°,∵∠BOE+∠EOC+∠COF+∠FOA=180°,∴∠COE+∠FOA=90°,∴∠FOA=∠COF,即,OF 平分∠AOC .【点睛】考查互为余角、互为补角、角平分线的意义,解题的关键是熟知:如果两角之和等于180°,那么这两个角互为补角.其中一个角叫做另一个角的补角;如果两个角的和是直角,那么称这两个角“互为余角”,简称“互余”,也可以说其中一个角是另一个角的余角.27.(1)证明见解析;(2)17.【分析】(1)设M 的十位数字为a ,个位数字为b ,分别写出M 的“添彩数”和“减压数”,求和,化简,表示出11的倍数,即可证明;【详解】(1)证明:设M 的十位数字为a ,个位数字为b则其“添彩数”与“减压数”分别为:100a+10b+6;10a+b-6它们的差为:100a+10b+6+(10a+b-6)=110a+11b=11(10a+b )∴对任意一个两位正整数M ,其“添彩数”与“减压数”之和能被11整除.(2)设N 的十位数字为x ,个位数字为y则其“添彩数”与“减压数”分别为:100x+10y+6;10x+y-6∴100()18106106x y f N x y +++-=≤∵10x+y-6>0∴整理得40457x y +≥∵x 为1-9的整数,y 为0-9的整数∴x 值只能为1,此时,解得174y ≥,则y 的可能值为5,6,7,8,9,则N 的可能值为15,16,17,18,19∵()f N 为整数∴只有N=17时,176(117)161=f =为整数∴N 的值为17.。

苏科版2023-2024学年七年级数学下册期末测试卷(解析版)

苏科版2023-2024学年七年级数学下册期末测试卷(解析版)

苏科版2023-2024学年七年级数学下册期末测试卷一、单选题1.下列计算正确的是( )A .B .C .D .【答案】C【分析】根据同底数幂相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;积的乘方法则,把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.【解析】解:A 、,故A 错误;B 、,故B 错误;C 、,故C 正确;D 、,故D 错误.故选C .【点睛】本题考查同底数幂的除法、同底数幂的乘法、幂的乘方与积的乘方,熟练掌握运算性质和法则是解题的关键.2.不等式的解集是( )A .B .C .D .3.正多边形的一个内角等于,则该多边形是正( )边形.A .8B .9C .10D .11【答案】A【分析】首先根据正多边形的内角,计算出正多边形的一个外角,然后根据多边形的外角和等于,用824a a a ÷=236a a a ⋅=()236a a =()32628a a -=826a a a ÷=235a a a ⋅=()236a a =()32628a a -=-23x -<23x <-23x >-32x <-32x >-135︒360︒除以一个外角的度数,即可得出正多边形的边数.【解析】解:∵正多边形的一个内角等于,∴正多边形的一个外角为:,∴,则这个多边形是正八边形.故选:A【点睛】本题考查了多边形的内角和外角,解本题的关键在熟练掌握多边形的内角与外角互补,多边形的内角和为.4.如图是我们学过的用直尺和三角尺画平行线的方法示意图,其画图原理是( )A .同位角相等,两直线平行B .内错角相等,两直线平行C .同旁内角互补,两直线平行D .两直线平行,同旁内角互补【答案】A 【分析】由已知可知∠DPF =∠BAF ,从而得出同位角相等,两直线平行.【解析】如图,根据题意可知∠DPF=∠BAF ,∴(同位角相等,两直线平行).故选A .【点睛】此题主要考查了基本作图与平行线的判定,正确理解题目的含义是解决本题的关键.5.若关于x ,y 的二元一次方程组的解满足,则k 的值为( )360︒135︒18013545︒-︒=︒360458÷=360︒//AB PD 24133x y k x y -=-⎧⎨+=⎩5x y -=A .B .-1C .D .6.若是完全平方式,则m 的值是( ).A .6或B .10或C .或10D .或6【答案】C 【分析】本题考查了完全平方式:利用完全平方公式得到或,从而得到,然后解关于的方程.【解析】解:是一个完全平方式,或,,或.故选:C .7.我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x 、y 的二元一次方程组中符合题意的是( )13-83-113-()2216x m x +-+6-10-6-10-22(2)16(4)x m x x +-+=+22(2)16(4)x m x x +-+=-28m -=±m 2(2)16x m x +-+ 22(2)16(4)x m x x ∴+-+=+22(2)16(4)x m x x +-+=-28m ∴-=±10m ∴=6-A .B .C .D .8.如图,平分,点E ,F 分别在和上,平分交于点G ,.下列结论:①;②;③;④,其中所有正确结论的序号是( )A .①②B .②③C .①③D .②④【答案】C 【分析】①根据平行线的性质得出,根据角平分线的定义得出,即可证明①正确;②根据与不一定相等,得出,根据,得出,判断②错误;③设,,得出,求出,根据999114100097x y x y +=⎧⎪⎨+=⎪⎩100011499997x y x y +=⎧⎪⎨+=⎪⎩999971000114x y x y +=⎧⎪⎨+=⎪⎩100097999114x y x y +=⎧⎪⎨+=⎪BD ABC ∠BA BC EG AEF ∠BD ED BC ∥EBD EDB ∠=∠CBD DEG ∠=∠2BFE BGE ∠=∠2FEG D ∠=∠EDB DBC ∠=∠EBD DBC ∠=∠DG EG BDE DEG ∠≠∠CBD BDE ∠=∠CBD DEG ∠≠∠CBD x ∠=DEG y ∠=2AED ABC x ∠=∠=2AEG GEF x y ∠=∠=+,得出,根据,得出,可判断③正确;④根据,,得出,判断④错误.【解析】解:①∵,∴,∵平分,∴,∴,故①正确;②∵与不一定相等,∴,∵,∴,故②错误;③设,,则,∵,∴,∵平分,∴,∵,∴,∵,∴,故③正确;④∵,,∴,故④错误;综上分析可知,正确的是①③,故C 正确.故选:C .【点睛】本题主要考查了平行线的性质,角平分线的定义,三角形外角的性质,解题的关键是熟练掌握平行线的性质,两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.BGE D DEG ∠=∠+∠BGE x y ∠=+ED BC ∥()22222BFE DEF x y y x y x y BGE ∠=∠=++=+=+=∠2FEG x y ∠=+D x ∠=2FEG D ∠≠∠ED BC ∥EDB DBC ∠=∠BD ABC ∠EBD DBC ∠=∠EBD EDB ∠=∠DG EG BDE DEG ∠≠∠CBD BDE ∠=∠CBD DEG ∠≠∠CBD x ∠=DEG y ∠=EBD DBC D x ∠=∠=∠=ED BC ∥2AED ABC x ∠=∠=EG AEF ∠2AEG GEF x y ∠=∠=+BGE D DEG ∠=∠+∠BGE x y ∠=+ED BC ∥()22222BFE DEF x y y x y x y BGE ∠=∠=++=+=+=∠2FEG x y ∠=+D x ∠=2FEG D ∠≠∠二、填空题9.因式分解: .【答案】【分析】本题主要考查利用提取公因式和平方差公式进行因式分解,首先提取公因式再利用平方差公式进行因式分解即可.【解析】解:,故答案为:.10.把命题“等角的补角相等”改写成“如果……,那么……”的形式: 【答案】如果两个角相等,那么这两个角的补角相等【分析】本题考查了命题的改写;根据命题的条件与结论即可改写.【解析】解:命题“等角的补角相等”改写成“如果……,那么……”的形式为:如果两个角相等,那么这两个角的补角相等;故答案为:如果两个角相等,那么这两个角的补角相等;11.若方程是关于,的二元一次方程,则 .【答案】5【分析】先根据二元一次方程的定义列出关于m 、n 的方程组,求出m 、n 的值,再代入进行计算即可.【解析】解:∵方程是关于x ,y 的二元一次方程,∴ ,解得,∴.故答案为:5.【点睛】本题考查的是二元一次方程的定义和解二元一次方程组,根据题意列出关于m 、n 的方程组,求出m 、n 的值是解答此题的关键.12.如图,将沿方向平移cm 得到,若的周长为cm ,则四边形的周长为 cm .39m m -=()()33m m m +-329(9)(3)(3)m m m m m m m -=-=+-()()33m m m +-322322m n m n x y ++--=x y m n +=m n +322322m n m n x y ++--=31221m n m n +=⎧⎨+-=⎩72m n =⎧⎨=-⎩725m n +=-=ABC BC 4DEF ABC 20ABFD【答案】【分析】本题考查了平移的性质,熟悉掌握平移的性质是解题的关键.根据平移的性质得到,,,再利用周长的运算方法求解即可.【解析】解:根据题意,将周长为的沿方向平移得到,∴,,;又∵,∴四边形的周长,故答案为:.13.若不等式组有3个整数解,则a 的取值范围是 .【答案】【分析】可求不等式组的解集为,从而可求整数解为、、,即可求解.【解析】解:由题意得,不等式组有整数解,,有个整数解,整数解为、、,.故答案:.【点睛】本题考查了由一元一次不等式组的整数解个数求参数取值范围,掌握求法是解题的关键.14.一把直尺和一个含,角的三角板如图所示摆放,直尺一边与三角板的两直角边分别交于F ,A 两点,另一边与三角板的两直角边分别交于D ,E 两点,且,那么的大小为 .284AD CF ==BF BC CF =+DF AC =20ABC BC 4DEF 4AD CF ==BF BC CF =+DF AC =20AB BC AC ++=ABFD 4428AD AB BF DF AB BC AC =+++=++++=2832x a x >⎧⎨-≤⎩23a ≤<5a x <≤3455x a x >⎧⎨≤⎩ 5a x ∴<≤ 3∴345∴23a ≤<23a ≤<30︒60︒50CED ∠=︒BAF ∠【答案】/10度【分析】根据题意得出,根据两直线平行同位角相等,得出,最后根据,即可求解.【解析】解:根据题意可得:,∵,,∴,∵,∴.故答案为:.【点睛】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.15.若的乘积中不含x 的一次项,则= .16.如图,把图(a )称为二环三角形,它的内角和∠A +∠B +∠C +∠A 1+∠B 1+∠C 1;把图(b )称为二环四形边,它的内角和∠A +∠B +∠C +∠D +∠A 1+∠B 1+∠C 1+∠D 1⋯⋯;依此规律,请你探究:二环n 边形的内角和为 度.(用含n 的式子表示)10︒60,BAC AF DE ∠=︒∥50C CAF ED ∠=︒∠=BAC CAF BAF ∠=-∠∠60,BAC AF DE ∠=︒∥50CED ∠=︒AF DE ∥50C CAF ED ∠=︒∠=60BAC ∠=︒605010BAC CAF BAF ∠-∠=︒-︒=︒∠=10︒()()225x x ax +-+a【答案】360(n-2)【分析】连接BB1,可得∠A1+∠C=∠BB1A1+∠B1BC,再根据四边形的内角和公式即可求解;AA1之间添加两条边,可得∠B1+∠C1+∠D1=∠EAD1+∠AEA1+∠EA1B1,再根据边形的内角和公式即可求解;二环n 边形添加(n-2)条边,再根据多边形的内角和公式即可求解.【解析】解:如图(a),连接BB1,则∠A1+∠C=∠BB1A1+∠B1BC,∠A+∠ABC+∠C+∠A1+∠A1B1C1+∠C1=∠A+∠ABB1+∠BB1C1+∠C1=360度;如图(b),AA1之间添加两条边,可得∠B1+∠C1+∠D1=∠EAD1+∠AEA1+∠EA1B1则∠BAD1+∠B+∠C+∠D+∠DA1B1+∠B1+∠C1+∠D1=∠EAB+∠B+∠C+∠D+∠DA1E+∠E=720°;二环n边形添加(n-2)条边,二环n边形的内角和成为(2n-2)边形的内角和.其内角和为180(2n-4)=360(n-2)度.故答案为:360(n -2).【点睛】本题考查了多边形内角和定理:(n -2)•180°(n ≥3)且n 为整数),正确画出辅助线是解题关键.三、解答题17.计算:(1);(2).18.分解因式:(1);(2).【答案】(1)(2)()()2321222-⎛⎫-÷-⨯- ⎪⎝⎭()()3224232a a a a ⋅+---21832a -269y xy x y -+()()23434a a -+()213y x -【分析】(1)先提取公因式2,再运用平方差公式因式分解即可;(1)先提取公因式y ,再运用完全平方公式因式分解即可.【解析】(1)解:,,.(2)解:,,.【点睛】本题主要考查了因式分解,掌握运用提取公因式和公式法进行因式分解是解答本题的关键.19.(1)解方程组;(2)解不等式组,并写出它的整数解.21832a -()22916a =-()()23434a a =-+269y xy x y -+()2169y x x =-+()213y x =-23324x y x y -=⎧⎨-=⎩()2112151132x x x x ⎧--≥⎪⎨-+-<⎪⎩∴不等式组的解集为,∴不等式组的整数解为,.【点睛】本题主要考查解二元一次方程组,解一元一次不等式组的综合,掌握以上解方程的方法,运算法则是解题的关键.20.已知:,求的值.【答案】【分析】本题考查了整式的混合运算化简求值,完全平方公式,准确熟练地进行计算是解题的关键.利用完全平方公式,多项式乘多项式的法则进行计算,然后把代入化简后式子进行计算,即可解答.【解析】解:,,,当时,原式,的值为.21.为开展好“每天锻炼一小时”体育活动,学校准备购进一批排球和篮球.已知2个排球和1个篮球共需220元,1个排球和3个篮球共需410元.求一个排球和一个篮球的售价各是多少元?【答案】一个排球的售价是50元,一个篮球的售价是120元.【分析】本题主要考查了二元一次方程组的应用,理解题意,弄清数量关系是解题关键.设一个排球的售价是元,一个篮球的售价是元,根据题意列出二元一次方程组,求解即可获得答案.【解析】解:设一个排球的售价是元,一个篮球的售价是元,根据题意,可得,解得.11x -<≤012310x x --=()()()21312x x x -+-+3--231x x -=()()()21312x x x -+-+()2233144x x x x x =+---++2233144x x x x x =+-----2265x x =--2310x x --= 231x x ∴-=∴231x x -=()2235215253x x =--=⨯-=-=-2(1)(31)(2)x x x ∴-+-+3-x y x y 22203410x y x y +=⎧⎨+=⎩50120x y =⎧⎨=⎩答:一个排球的售价是50元,一个篮球的售价是120元.22.已知方程的解x 为非正数,y 为负数.(1)求a 的取值范围;(2)在(1)的条件下,若不等式的解为,求整数a 的值.713x y a x y a +=--⎧⎨-=+⎩221ax x a +<+1x >∴整数a 的值为.【点睛】本题主要考查了解二元一次方程组和求不等式组的解集,解题的关键是掌握用消元法解二元一次方程组以及根据不等式的性质求不等式的解集.23.如图,在中,点,在边上,点在边上,,且.(1)求证:;(2)若平分,,求的度数.【答案】(1)见解析(2)【分析】本题考查了平行线的性质与判定,角平分线的定义,熟练掌握平行线的性质与判定是解题的关键.(1)根据平行线的性质可得,根据已知得出,即可得出,根据平行线的性质即可求解;(2)根据平行线的性质得出,根据角平分线的定义可得进而根据平行线的性质即可求解.【解析】(1)证明:,,,,,;(2)解:,,,平分,,由(1)知,1-ABC D E AB F AC EF ∥DC 12180∠+∠=︒A BDH ∠=∠CD ACB ∠30AFE ∠=︒BHD ∠60BHD ∠=︒2180FCD ∠+∠=︒1FCD ∠=∠DH ∥AC 30ACD AFE ∠=∠=︒223060ACB ACD ∠=∠=⨯︒=︒EF ∥DC 2180FCD ∴∠+∠=︒12180∠+∠=︒ 1FCD ∴∠=∠DH ∴∥AC A BDH ∴∠=∠EF ∥DC 30AFE ∠=︒30ACD AFE ∴∠=∠=︒CD ACB ∠223060ACB ACD ∴∠=∠=⨯︒=︒DH ∥AC.24.鸡兔同笼是同学们耳熟能详的问题,那么请大家研究一道新鸡兔同笼问题,阿凡提带了1500元去农场买鸡兔,鸡每只30元,兔每只20元.他发现有一笼鸡兔共有94只脚.(1)若鸡的的数量是m 只,则兔的数量是______(用含m 的代数式表示);(2)若笼中鸡兔不超过40只,则鸡最多是多少只?阿凡提带的钱够买这笼鸡兔吗?25.画图并填空:如图,方格纸中每个小正方形的边长都为1,的顶点都在方格纸的格点上,将经过一次平60BHD ACB ∴∠=∠=︒ABC ABC移,使点C 移到点的位置.(1)请画出;(2)在方格纸中,画出的高;(3)连接、,则这两条线段的关系是 ;(4)线段在平移过程中扫过区域的面积为 .【答案】(1)见解析(2)见解析(3)且(4)12【分析】(1)利用点和点的位置确定平移的方向与距离,然后根据此平移规律确定、的位置;(2)根据网格特点和三角形高线的定义作图;(3)根据平移的性质进行判断即可;(4)利用平行四边形的面积进行计算即可.【解析】(1)解:如图,根据此平移规律确定、,然后顺次连接,则即为所求;(2)解:如图,即为的高(3)解:如图,连接、,则且;C 'A B C ''' ABC CE AA 'BB 'AB AA BB ''∥AA BB ''=C C 'A 'B 'A 'B 'A B C ''' CE ABC AA 'BB 'AA BB ''∥AA BB ''=故答案为:且;(4)解:线段在平移过程中扫过区域为平行四边形,则面积.故答案为:12.【点睛】本题考查了作图平移变换:作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.26.(1)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式,例如:从边长为a 的正方形中剪掉一个边长为b 的正方形如图1,然后将剩余部分拼成一个长方形如图2.图1中阴影部分面积为 ,图2中阴影部分面积为 ,请写出这个乘法公式 ;(2)应用(1)中的公式,完成下面任务:若m 是不为0的有理数,已知,,比较P 、Q 大小.(3)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图3表示的是一个边长为x 的正方体挖去一个小正方体后重新拼成一个新长方体,请你根据图3中图形的变化关系,写出一个代数恒等式 .AA BB ''∥AA BB ''=AB 3412=⨯=-()()222121P m m m m =++-+()()2211Q m m m m =++-+【答案】(1),,(2)(3)【分析】(1)根据图1中阴影部分的面积看作成两个正方形的面积差,图2中的阴影部分是长为,宽为的长方形,即可求得阴影部分的面积,从而可得到乘法公式;(2)利用作差法可得,根据,即可得出结果;(3)分别求出图3左右两侧图形的体积,即可求得恒等式.【解析】解:(1)由图可得,图1中,图2中,因此,乘法公式为,故答案为:,,;(2)∵,∵若m 是不为0的有理数,∴,即,∴;(3)∵图3左图的体积为,22a b -()()a b a b +-()()22a b a b a b+-=-P Q <()()311x x x x x -=+-()a b +()a b -2=3P Q m --230m -<22S a b =-阴影()()S a b a b =+-阴影()()22a b a b a b -=+-22a b -()()a b a b +-()()22a b a b a b -=+-()()()()2222=212111P Q m m m m m m m m -++-+-++-+()()222222=141m m m m +--++23m =-230m -<0P Q -<P Q <311=x x x x x x ⋅⋅-⨯⋅-图3右图的体积为,∴,故答案为:.【点睛】本题考查列代数式的应用,理解题意,正确列出代数式是解题的关键.27.【问题背景】中,是角平分线,点E 是边上的一动点.【初步探索】如图1,当点E 与点A 重合时,的平分线交于点O .(1)若,,则 ____________;(2)若,则___________;(用含m 的代数式表示)【变式拓展】当点E 与点A 不重合时,连接,设,.(1)如图2,的平分线交于点O .①当,时,____________;②用、的代数式表示____________.(2)如图3,的平分线与相交于点O ,与的平分线所在的直线相交于点F (点F 与点E 不重合),直接写出点F 在不同位置时与之间的数量关系.(用含、的代数式表示)()()11x x x +⋅⋅-()()311x x x x x -=+-()()311x x x x x -=+-ABC BC AB BED ∠BD 50BAC ∠=︒60ABC ∠=︒EOD ∠=︒C m ∠=︒EOD ∠=︒ED ADE α∠=ACB β∠=BED ∠BD 50α=︒80β=︒EOD ∠=︒αβEOD ∠=ACB ∠BD AED ∠F ∠COD ∠αβ②,,,,,,平分,平分,,ADE α∠= ACB β∠=CDG α∴∠=180ACG β∠=︒-180G CDG ACG βα∴∠=︒-∠-∠=-180180ABG BEG G αβ∴∠+∠=︒-∠=︒+-BD Q ABC ∠EO BED ∠11122ACF ACB β∴∠=∠=ADE ACF CHD ∠=∠+∠ CHD ACF αα∴∠=-∠=-,,,1122ACF ACB β∴∠=∠=12CKB A ACF A β∴∠=∠+∠=∠+12AKF A β∴∠=∠+180180AED A ADE ∠=︒-∠-∠=︒- 11。

苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库

苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库

苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.如图,∠1=∠2,则下列结论一定成立的是( )A .AB ∥CDB .AD ∥BC C .∠B =∠D D .∠1=∠22.下列分解因式正确的是( ) A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y )3.下列等式从左到右的变形,属于因式分解的是( ) A .8x 2 y 3=2x 2⋅4 y 3B .( x +1)( x ﹣1)=x 2﹣1C .3x ﹣3y ﹣1=3( x ﹣y )﹣1D .x 2﹣8x +16=( x ﹣4)24.下列方程组中,解是-51x y =⎧⎨=⎩的是( )A .64x y x y +=⎧⎨-=⎩B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩D .-4-4x y x y +=⎧⎨-=⎩5.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°6.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒ 7.计算12x a a a a ⋅⋅=,则x 等于( ) A .10B .9C .8D .48.下列运算正确的是( )A .a 2·a 3=a 6B .a 5+a 3=a 8C .(a 3)2=a 5D .a 5÷a 5=1 9.若一个三角形的两边长分别为3和6,则第三边长可能是( ) A .6 B .3 C .2 D .10 10.若多项式224a kab b ++是完全平方式,则k 的值为( ) A .4 B .2± C .4± D .8± 11.一个三角形的两边长分别是2和4,则第三边的长可能是( ) A .1B .2C .4D .712.下列方程组中,是二元一次方程组的为( )A .1512n mm n ⎧+=⎪⎪⎨⎪+=⎪⎩B .2311546a b b c -=⎧⎨-=⎩C .292x y x⎧=⎨=⎩D .00x y =⎧⎨=⎩二、填空题13.已知等腰三角形的两边长分别为4和8,则它的周长是_______. 14.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.15.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为______.16.()7(y x -+________ 22)49y x =-.17.已知x 2+2kx +9是完全平方式,则常数k 的值是____________. 18.关于,x y 的方程组3x y m x my n -=⎧⎨-=⎩的解是11x y =⎧⎨=⎩,则n 的值是______.19.小马在解关于x 的一元一次方程3232a xx -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.20.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____.21.科学家发现2019nCoV -冠状肺炎病毒颗粒平均直径约为0.00000012m ,数据0.00000012用科学记数法表示_______.22.若2a x =,5b x =,那么2a b x +的值是_______ ; 23.计算:x (x ﹣2)=_____ 24.已知21x y =⎧⎨=⎩是方程2x ﹣y +k =0的解,则k 的值是_____.三、解答题25.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高. (1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).26.计算:(1)()2202011 3.142π-⎛⎫-+-+ ⎪⎝⎭(2)()2462322x y x xy --(3)()()22342a b a a b --- (4)()()2323m n m n -++-27.定义:对于任何数a ,符号[]a 表示不大于a 的最大整数. (1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x -⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x 。

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试卷及答案

苏科版七年级上册数学期末考试试题一、单选题1.12-的倒数是()A.-2B.2C.12-D.122.下列各式中,与ab2是同类项的是()A.﹣ab2B.﹣3a2b C.a2b2D.2ab 3.沿图中虚线旋转一周,能围成的几何体是()A.B.C.D.4.代数式3a+1与3a﹣1互为相反数,则a的值是()A.13B.13-C.0D.﹣35.在﹣0.2418中,若用3去替换其中的一个非0数字,并使所得的数最大,则替换的数字是()A.1B.2C.4D.86.已知y=ax5+bx3+cx﹣5.当x=﹣3时,y=7,那么,当x=3时,y=()A.﹣3B.﹣7C.﹣17D.77.如图,已知点A是射线BE上一点,过A作CA⊥BE交射线BF于点C,AD⊥BF交射线BF于点D,给出下列结论:①∠1是∠B的余角;②图中互余的角共有3对;③∠1的补角只有∠ACF;④与∠ADB互补的角共有3个.则上述结论正确的个数有()A.1个B.2个C.3个D.4个8.按下面的程序计算:当输入x=100时,输出结果是299;当输入x=50时,输出结果是446;如果输入x的值是正整数,输出结果是257,那么满足条件的x的值最多有()A.1个B.2个C.3个D.4个9.已知a+4b=﹣15,那么代数式9(a+2b)﹣2(2a﹣b)的值是()A.﹣15B.﹣1C.15D.110.如图所示,点O在直线AB上,∠EOD=90°,∠COB=90°,那么下列说法错误的是()A.∠1与∠2相等B.∠AOE与∠2互余C.∠AOE与∠COD互余D.∠AOC与∠COB互补二、填空题11.计算:35--=_____.12.如图,在直线l上有A,B,C三点,则图中的线段共有_____条.13.小明的爸爸存折上原有1000元钱,近一段时间的存取情况(存入为正,取出为负)是﹣240元,+350元,+220元,﹣130元,﹣470元,小明的爸爸存折中现有_____元(不计利息).14.已知(a2﹣1)x2+ax+x﹣1=0是关于x的一元一次方程,则a的值是_____.15.如图,直线AB、CD相交于O点,射线OE平分∠BOC,已知∠AOC=50°,则∠BOE 的大小是_____度.16.用铝片做听装饮料瓶,现有100张铝片,每张铝片可制瓶身16个或瓶底45个,一个瓶身和两个瓶底可配成一套.用多少张制瓶身,多少张制瓶底可以正好制成配套的饮料瓶?设用x 张铝片制瓶身,则可列方程为____________.17.一个正方体的每个面上各写有一个数,图中是它的两幅表面展开图,则字母A 表示的数是_____.三、解答题18.(1)计算:3172-;(2)化简:﹣[﹣2x ﹣(3﹣2x )].19.计算:(2355[3)262⎛⎫⎤--⨯÷- ⎪⎦⎝⎭.20.先化简,再求值:2(x 2y+xy )﹣3(x 2y ﹣xy ),其中x =1,y =﹣1.21.解方程:(1)2x-3=1-x ;(2)212134x x -+=-.22.如图,直线AB 、CD 相交于O ,OE ⊥CD ,且∠BOD =5∠AOD ,求∠BOE 的度数.23.某商场计划销售一批商品,如果每天销售10件,可以按计划完成销售任务,如果每天多销售2件,就可以提前1天完成任务.(1)该商场计划几天完成销售任务?(2)若该商品的标价为200元/件,按标价的八折进行促销,每件仍可以盈利60元,该批商品的总成本为多少元?24.如图,在△ABC中,∠B=90°,P为斜边AC上一点.(1)将△ABC沿射线AC平移,使点A与点P重合,画出平移后的△PEF(点B、C的对应点分别是点E、F);(2)设PE与BC交于点O,若四边形ABOP的面积等于22,则四边形COEF的面积等于多少?(3)若OB=3,OE=2,BC=a,四边形ABOP的面积等于S,用含a的代数式表示四边形ABOP的面积.25.如图,在长方形ABCD中,AD=16cm,AB=12cm,动点P从点A出发,沿线段AB、BC向点C运动,速度为2cm/s;动点Q从点B出发,沿线段BC向点C运动,速度为1cm/s.P,Q同时出发,当其中一点到达终点,另一点也停止运动,设运动时间是t(s).(1)请用含有t的代数式表示:当点P在AB上运动时,BP=;当点P在BC上运动时,BP=;(2)在运动过程中,t为何值,能使PB=BQ?26.如图,已知四点A、B、C、D.(1)用圆规和无刻度的直尺按下列要求与步骤画出图形:①画直线AB.②画射线DC..(保留作图痕迹)③延长线段DA至点E,使AE AB④画一点P ,使点P 既在直线AB 上,又在线段CE 上.(2)在(1)中所画图形中,若2AB =cm ,1AD =cm ,点F 为线段DE 的中点,求AF 的长.27.如图在长方形ABCD 中,12AB cm =,8BC cm =,点P 从A 点出发,沿A B C D →→→路线运动,到D 点停止;点Q 从D 点出发,沿D C B A →→→运动,到A 点停止若点P 、点Q 同时出发,点P 的速度为每秒1cm ,点Q 的速度为每秒2cm ,用x (秒)表示运动时间.(1)当x =__________秒时,点P 和点Q 相遇.(2)连接PQ ,当PQ 平分长方形ABCD 的面积时,求此时x 的值(3)若点P 、点Q 运动到6秒时同时改变速度,点P 的速度变为每秒3cm ,点Q 的速度变为每秒1cm ,求在整个运动过程中,点P 点Q 在运动路线上相距路程为20cm 时运动时间x 的值.参考答案1.A 2.A 3.C 4.C 5.C 6.C 7.C 8.C9.B 10.C 11.-812.313.73014.-115.6516.2×16x=45(100-x )17.2或618.(1)114-;(2)3.(2)先去小括号,然后去中括号,化简即可得.【详解】解:(1)3172-,671414=-,114=-;(2)()232x x ⎡⎤----⎣⎦,()232x x =---+,()3=--,3=.19.13-【分析】先算乘方,再算括号内的,再算乘除.【详解】解:原式()529865⎛⎫=-⨯- ⎪⎝⎭52165⎛⎫=⨯⨯- ⎪⎝⎭13=-.【点睛】本题考查含乘方的有理数四则混合运算,掌握运算顺序是解决本题的关键.20.25x y xy -+,-4【分析】先去括号,然后合并同类项,最后代值求解即可.【详解】解:()()2223x y xy x y xy+--222233x y xy x y xy =+-+25x y xy=-+将1,1x y ==-代入25x y xy -+中得()()115114-⨯-+⨯⨯-=-∴原式的值为4-.【点睛】本题考查了整式的加减运算,代数式求值.解题的关键在于正确的去括号和计算.21.(1)43x =;(2)25x =-.【分析】(1)直接进行移项合并同类项,然后系数化为1求解即可得;(2)先去分母,然后去括号,移项,合并同类项,最后系数化为1求解即可得.(1)解:231x x -=-,移项得:213x x +=+,合并同类项得:34x =,系数化为1得:43x =;(2)解:212134x x -+=-,去分母得:()()4213212x x -=+-,去括号得:843612x x -=+-,移项得:836124x x -=-+,合并同类项得:52x =-,系数化为1得:25x =-.【点睛】本题考查了解一元一次方程,掌握解一元一次方程的方法步骤是解题的关键.22.60°【分析】根据∠BOD+∠AOD=180°和∠BOD=5∠AOD 求出∠BOC ,∠EOC ,代入∠BOE=∠EOC-∠BOC 求出即可.【详解】解:∵AB 是直线(已知),∴∠BOD+∠AOD=180°,∵∠BOD 的度数是∠AOD 的5倍,∴∠AOD=16×180°=30°,∴∠BOC=∠AOD=30°,OE ⊥DC ,∴∠EOC=90°,∴∠BOE=∠EOC-∠BOC=90°-30°=60°.【点睛】本题考查了垂直,邻补角,对顶角,角的有关计算的应用,主要考查学生的计算能力.23.(1)该商场计划6天完成销售任务(2)该批商品的总成本为6000元【分析】(1)设该商场计划x 天完成销售任务,则由题意得()()101021x x =+⨯-,计算求解即可;(2)由题意知商品的成本为2008060⨯%-元/件,该批商品共有10660⨯=件,该批商品的总成本为60100⨯,计算求解即可.(1)解:设该商场计划x 天完成销售任务则由题意得()()101021x x =+⨯-解得6x =∴该商场计划6天完成销售任务.(2)解:由题意知商品的成本为2008060100⨯=%-元/件该批商品共有10660⨯=件∵601006000⨯=∴该批商品的总成本为6000元.【点睛】本题考查了一元一次方程的应用.解题的关键在于根据题意列方程.24.(1)图见解析;(2)22;(3)2a-3.【分析】(1)由题意画出图形即可;(2)由平移的性质得ABCPEF S S ∆∆=,进而得出COEF ABOP S S =四边形四边形=22;(3)由平移的性质和直角梯形面积公式求解即可.(1)如图1,延长AC 到F ,使CF=AP ,过点P 作PE ∥AB ,且PE=AB ,连接EF ,得到平移后的△PEF ;(2)如图2,由平移的性质得:AB=PE ,BC=EF ,AC=PF ,∠B=∠E=90°,∴ABC PEF S S ∆∆=,ABC POC ABOP S S S ∆∆=+四边形,22COEF ABOP S S ∴==四边形四边形,故答案为:22.(3)由平移的性质得:AB=PE ,BC=EF ,AC=PF ,∠B=∠E=90°,BC ∥EF ,AB ∥PE ,∴四边形ABOP 、四边形COEF 都是直角梯形,OC=BC-OB=a-3,EF=BC=a ,11=()(3)22322COEF S OC EF OE a a a ∴+⨯=⨯-+⨯=-,∴由(2)得:COEFABOP SS =四边形四边形,∴四边形ABOP 的面积为:2a-3,故答案为:2a-3.【点睛】本题是四边形综合题目,考查了平移的性质、直角梯形的性质、三角形面积等知识,本题综合性强,熟练掌握平移的性质和直角梯形的性是解题的关键.25.(1)()122t cm -;()212t cm -;(2)当t 为4或12时,PB BQ =.【分析】(1)结合图形,根据速度、时间、路程之间的关系即可列出代数式;(2)根据(1)中结论分两种情况进行讨论:①点P 在AB 上运动时;②当点P 运动到BC 上时;列出相应一元一次方程求解即可得.(1)解:点P 在AB 上运动时,2AP tcm =,()122PB t cm =-;当点P 运动到BC 上时,()212PB t cm =-,故答案为:()122t cm -;()212t cm -;(2)解:点P 运动过程中总的运动时间为:()1216214s +÷=,点Q 运动过程中总的运动时间为:16116s ÷=,∴总的运动时间为14s ,①点P 在AB 上运动时,PB BQ =,则122t t -=,解得:4t =s ;②当点P 运动到BC 上时,212t t -=,解得:12t =s ,综合可得当t 为4s 或12s 时,PB BQ =.【点睛】题目主要考查列代数式的应用及一元一次方程的应用,理解题意,结合图形,进行分类讨论列出方程是解题关键.26.(1)见解析;(2)0.5cm.【分析】(1)①画直线AB,直线向两边无限延伸;②画射线DC,D为端点,再沿CD方向延长;③画线段DA和AE,线段不能向两方无限延伸;④画线段CE,与直线AB相交于P;(2)利用线段之间的关系解答即可;【详解】解:(1)如图,该图为所求,(2)∵AB=2cm,AB=AE,∴AE=2cm,AD=1cm,∵点F为DE的中点,∴EF=12DE=32cm,∴AF=AE-EF=2-32=12cm;∴AF=0.5cm.【点睛】本题主要考查了作图—应用与设计作图,两点间的距离,掌握作图—应用与设计作图,两点间的距离是解题的关键.27.(1)323;(2)4或20;(3)4或14.5【分析】(1)根据点P运动的路程+点Q运动的路程=全程长度,即可得出关于x的一元一次方程,解之即可得出结论;(2)分点P在AB边上时,点Q在CD边上和点Q运动到A点,点P运动到点C两种情况进行讨论即可求解.(3)先分析变速前和变速后两种情况进行即可得.【详解】(1)根据题意得:x+2x=12×2+8,解得:x=32 3.故答案:当x的值为323时,点P和点Q相遇.(2)∵PQ平分矩形ABCD的面积,当点P在AB边上时,点Q在CD边上,有题意可知:2x=12−x,解得:x=4.当点Q运动到点A时,用时(12+8+12)÷2=16秒,此时点P运动到点C时,PQ平分矩形ABCD 面积,此时用时:(12+8)÷1=20秒故答案:当运动4秒或20秒时,PQ平分矩形ABCD的面积.(3)变速前:x+2x=32-20解得x=4变速后:12+(x-6)+6+3×(x-6)=32+20解得x=14.5综上所述:x的值为4或14.5。

新苏科版七年级苏科初一下学期数学《期末考试试题》含答案.百度文库

新苏科版七年级苏科初一下学期数学《期末考试试题》含答案.百度文库

新苏科版七年级苏科初一下学期数学《期末考试试题》含答案.百度文库一、选择题1.下列运算正确的是( )A .236a a a ⋅=B .222()ab a b =C .()325a a =D .623a a a ÷=2.若(x+2)(2x-n)=2x 2+mx-2,则( ) A .m=3,n=1; B .m=5,n=1; C .m=3,n=-1; D .m=5,n=-1;3.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( )A .a ﹣bB .a +bC .b ﹣aD .﹣a ﹣b 4.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x +=D .xy ﹣1=05.如图所示的四个图形中,∠1和∠2不是同位角的是( )A .B .C .D .6.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .7.已知4m =a ,8n =b ,其中m ,n 为正整数,则22m +6n =( )A .ab 2B .a +b 2C .a 2b 3D .a 2+b 3 8.等腰三角形的两边长分别为3和6,那么该三角形的周长为( ) A .12B .15C .10D .12或15 9.如果多项式x 2+2x+k 是完全平方式,则常数k 的值为( ) A .1 B .-1 C .4 D .-4 10.在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .无法确定11.下列各组数中,是二元一次方程5x ﹣y =4的一个解的是( )A .31x y =⎧⎨=⎩B .11x y =⎧⎨=⎩C .04x y =⎧⎨=⎩D .13x y =⎧⎨=⎩12.下列计算不正确的是( )A .527a a a =B .623a a a ÷=C .2222a a a +=D .(a 2)4=a 8二、填空题13.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S=,则图中阴影部分的面积是 ________.14.若等式0(2)1x -=成立,则x 的取值范围是_________. 15.分解因式:m 2﹣9=_____.16.最薄的金箔的厚度为0.000000091m ,用科学记数法表示为________m .17.已知:()521x x ++=,则x =______________.18.三角形的周长为10cm ,其中有两边的长相等且长为整数,则第三边长为______cm .19.分解因式:x 2﹣4x=__.20.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.21.一个两位数的十位上的数是个位上的数的2倍,若把两个数字对调,则新得到的两位数比原两位数小36,则原两位数是_______.22.已知(x ﹣4)(x +6)=x 2+mx ﹣24,则m 的值为_____.三、解答题23.观察下列式子:2×4+1=9;4×6+1=25;6×8+1=49;…(1)请你根据上面式子的规律直接写出第4个式子: ;(2)探索以上式子的规律,试写出第n 个等式,并说明等式成立的理由.24.计算:(1)022019()32020-- (2)4655x x x x ⋅+⋅25.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+12∠A,(请补齐空白处......)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB)=12(180º-∠A)=90º-12∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+12∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.26.解方程或不等式(组)(1)24 231 x yx y+=⎧⎨-=⎩(2)2151132 x x-+-≥(3)312(2)15233x xx x+<+⎧⎪⎨-≤+⎪⎩27.若关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与方程组14x ymx ny-=⎧⎨-=⎩有相同的解.(1)求这个相同的解;(2)求m n-的值.28.解不等数组:3(2)4 121 3x xxx--≤-⎧⎪+⎨>-⎪⎩,并在数轴上表示出它的解集.29.在南通市中小学标准化建设工程中,某校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元;(2)根据学校实际,需购进电脑和电子白板共31台,若总费用不超过30万元,则至多购买电子白板多少台?30.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(2)根据(1)中的结论,若x+y=5,x•y=94,则x﹣y=;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=15,求(2019﹣m)(m﹣2020)的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】A.235a a a⋅=,故本选项错误;B. ()222ab a b=,故本选项正确;C. ()326a a=,故本选项错误;D. 624a a a÷=,故本选项错误。

苏科七年级苏科初一数学下学期期末测试题及答案(共五套)

苏科七年级苏科初一数学下学期期末测试题及答案(共五套)

苏科七年级苏科初一数学下学期期末测试题及答案(共五套)一、选择题1.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( ) A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b 2.在ABC ∆中,::1:2:3A B C ∠∠∠=,则ABC ∆一定是( ) A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或直角三角形3.下列代数运算正确的是( ) A .x•x 6=x 6 B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 3 4.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4 B .2C .3D .4 5.已知()22316x m x --+是一个完全平方式,则m 的值可能是( )A .7-B .1C .7-或1D .7或1- 6.下列计算错误的是( )A .2a 3•3a =6a 4B .(﹣2y 3)2=4y 6C .3a 2+a =3a 3D .a 5÷a 3=a 2(a≠0) 7.在餐馆里,王伯伯买了5个菜,3个馒头,老板少收2元,只收50元,李太太买了11个菜,5个馒头,老板以售价的九折优惠,只收90元,若菜每个x 元,馒头每个y 元,则下列能表示题目中的数量关系的二元一次方程组是( )A .53502115900.9x y x y +=+⎧⎨+=⨯⎩B .53502115900.9x y x y +=+⎧⎨+=÷⎩ C .53502115900.9x y x y +=-⎧⎨+=⨯⎩ D .53502115900.9x y x y +=+⎧⎨+=⨯⎩ 8.下列各式中,计算结果为x 2﹣1的是( ) A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+ 9.能把一个三角形的面积分成相等的两部分的线是这个三角形的( ) A .一条高B .一条中线C .一条角平分线D .一边上的中垂线 10.计算a 10÷a 2(a≠0)的结果是( )A .5aB .5a -C .8aD .8a - 11.如图,在△ABC 中,CE ⊥AB 于 E ,DF ⊥AB 于 F ,AC ∥ED ,CE 是∠ACB 的平分线, 则图中与∠FDB 相等的角(不包含∠FDB )的个数为( )A .3B .4C .5D .612.如图,有以下四个条件:其中不能判定//AB CD 的是( )①180B BCD ∠+∠=︒;②12∠=∠;③34∠=∠;④5B ∠=∠;A .①B .②C .③D .④二、填空题13.已知2x +3y -5=0,则9x •27y 的值为______.14.若等式0(2)1x -=成立,则x 的取值范围是_________. 15.若多项式29x mx ++是一个完全平方式,则m =______.16.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .17.如果9-mx +x 2是一个完全平方式,则m 的值为__________.18.a m =2,b m =3,则(ab )m =______.19.如图,D 、E 分别是△ABC 边AB 、BC 上的点,AD=2BD ,BE=CE ,设△ADC 的面积为S l ,△ACE 的面积为S 2,若S △ABC =12,则S 1+S 2=______.20.若(x ﹣2)x =1,则x =___.21.因式分解:=______.22.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.23.如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD=______.24.计算:x (x ﹣2)=_____三、解答题25.如图,大圆的半径为r ,直径AB 上方两个半圆的直径均为r ,下方两个半圆的直径分别为a ,b .(1)求直径AB 上方阴影部分的面积S 1;(2)用含a ,b 的代数式表示直径AB 下方阴影部分的面积S 2= ;(3)设a =r +c ,b =r ﹣c (c >0),那么( )(A )S 2=S 1;(B )S 2>S 1;(C )S 2<S 1;(D )S 2与S 1的大小关系不确定;(4)请对你在第(3)小题中所作的判断说明理由.26.计算:(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++- 27.如图所示,点B ,E 分别在AC ,DF 上,BD ,CE 均与AF 相交,∠1=∠2,∠C =∠D ,求证:∠A =∠F .28.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•- 29.⑴ 如图,试用a 的代数式表示图形中阴影部分的面积;⑵ 当a =2时,计算图中阴影部分的面积.30.已和,如图,BE 平分∠ABC ,∠1=∠2,请说明∠AED =∠C .根据提示填空.∵BE 平分∠ABC (已知)∴∠1=∠3,( )又∵∠1=∠2,(已知)∴ =∠2,( )∴ ∥ ,( )∴∠AED = .( )31.先化简,再求值:(2a +b )2﹣(2a +3b )(2a ﹣3b ),其中a =12,b =﹣2. 32.解不等数组:3(2)41213x x x x --≤-⎧⎪+⎨>-⎪⎩,并在数轴上表示出它的解集. 33.3321130y x --=,|1|24z x y -=--+,求x y z ++的平方根.34.因式分解:(1)x 4﹣16;(2)2ax 2﹣4axy +2ay 2.35.已知:5x y +=,(2)(2)3x y --=-.求下列代数式的的值.(1)xy ;(2)224x xy y ++;(3)25x xy y ++.36.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。

新苏科版七年级苏科初一数学下册期末测试题及答案(共五套)

新苏科版七年级苏科初一数学下册期末测试题及答案(共五套)

新苏科版七年级苏科初一数学下册期末测试题及答案(共五套)一、选择题1.已知,则a2-b2-2b的值为A.4 B.3 C.1 D.02.如图,P1是一块半径为1的半圆形纸板,在P1的右上端剪去一个直径为1的半圆后得到图形P2,然后依次剪去一个更小的半圆(其直径为前一个被剪去的半圆的半径)得到图形P3、P4…P n…,记纸板P n的面积为S n,则S n-S n+1的值为( )A.12nπ⎛⎫⎪⎝⎭B.14nπ⎛⎫⎪⎝⎭C.2112nπ+⎛⎫⎪⎝⎭D.2112nπ-⎛⎫⎪⎝⎭3.要使(4x﹣a)(x+1)的积中不含有x的一次项,则a等于()A.﹣4 B.2 C.3 D.44.如果x2﹣kx﹣ab=(x﹣a)(x+b),则k应为()A.a﹣b B.a+b C.b﹣a D.﹣a﹣b5.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为()A.12 B.15 C.12或15 D.186.如图,∠1=50°,如果AB∥DE,那么∠D=()A.40°B.50°C.130°D.140°7.如图,下列结论中不正确的是()A.若∠1=∠2,则AD∥BC B.若AE∥CD,则∠1+∠3=180°C.若∠2=∠C,则AE∥CD D.若AD∥BC,则∠1=∠B8.如果多项式x2+2x+k是完全平方式,则常数k的值为()A.1 B.-1 C.4 D.-49.某中学现有学生500人,计划一年后女生在校生增加3%,男生在校生增加4%,这样,在校学生将增加3.4%,设该校现有女生人数x和男生y,则列方程组为()A.500(14%)(13%)500(1 3.4)x yx y+=⎧⎨+++=⨯+⎩B.5003%4% 3.4%x yx y+=⎧⎨+=⎩C .500(13%)(14%)500(1 3.4%)x y x y +=⎧⎨+++=⨯+⎩D .5004%3%500 3.4%x y x y +=⎧⎨+=⨯⎩10.计算28+(-2)8所得的结果是( )A .0B .216C .48D .2911.如图,在△ABC 中,BC =6,∠A =90°,∠B =70°.把△ABC 沿BC 方向平移到△DEF 的位置,若CF =2,则下列结论中错误的是( )A .BE =2B .∠F =20°C .AB ∥DED .DF =612.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A .115°B .130°C .135°D .150°二、填空题13.已知2x +3y -5=0,则9x •27y 的值为______.14.计算:23()a =____________.15.如果62x y =⎧⎨=-⎩是关于x 、y 的二元一次方程mx -10=3y 的一个解,则m 的值为_____. 16.如图,点B 在线段AC 上(BC>AB ),在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB=1时,△AME 的面积记为S 1;当AB=2时,△AME 的面积记为S 2;当AB=3时,△AME 的面积记为S 3;则S 2020﹣S 2019=_____.17.如果9-mx +x 2是一个完全平方式,则m 的值为__________.18.因式分解:224x x -=_________.19.在第八章“幂的运算”中,我们学习了①同底数幂的乘法:a m ⋅a n =a m +n ;②积的乘方:(ab )n =a n b n ;③幂的乘方:(a m )n =a mn ;④同底数幂的除法:a m ÷a n =a m -n 等运算法则,请问算式()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭中用到以上哪些运算法则_________(填序号).20.一个n边形的内角和为1080°,则n=________.21.已知点m(3a-9,1-a),将m点向左平移3个单位长度后落在y轴上,则a=__________ .22.PM2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学计数法表示为________________.23.若二次三项式x2+kx+81是一个完全平方式,则k的值是 ________.24.若(x2+x-1)(px+2)的乘积中,不含x2项,则p的值是 ________.三、解答题25.已知在△ABC中,试说明:∠A+∠B+∠C=180°方法一:过点A作DE∥BC. 则(填空)∠B=∠,∠C=∠∵ ∠DAB+∠BAC+ ∠CAE=180°∴∠A+∠B+∠C=180°方法二:过BC上任意一点D作DE∥AC,DF∥AB分别交AB、AC于E、F(补全说理过程)26.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+12∠A,(请补齐空白处......)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB)=12(180º-∠A)=90º-12∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+12∠A.(探究2):如图2,已知O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB中,∠AOB=90º,已知AB不平行与CD,AC、BD分别是∠BAO和∠ABO的角平分线,又CE、DE分别是∠ACD和∠BDC的角平分线,则∠E=_______;(拓展):如图4,直线MN与直线PQ相交于O,∠MOQ=60º,点A在射线OP上运动,点B在射线OM上运动,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及其延长线交于E、F,在ΔAEF中,如果有一个角是另一个角的4倍,则∠ABO=______.27.如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC的度数.28.解下列二元一次方程组:(1)70231x yx y+=⎧⎨-=-⎩①②;(2)239345x yx y-=⎧⎨+=⎩①②.29.若关于x,y 的二元一次方程组 38x y mx ny +=⎧⎨+=⎩与方程组14x y mx ny -=⎧⎨-=⎩有相同的解. (1)求这个相同的解;(2)求m n -的值.30.已知m 2,3n a a ==,求①m n a +的值; ②3m-2n a 的值31.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S =1+2+22+23+24+…+22009则2S =2+22+23+24+…+22009+22010因此2S ﹣S =(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1 所以S =22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.32.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:15162401 6 8080 0 2221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆ 得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x 2+2x 2-x -2进行因式分解,进行到了:x 3+2x 2-x -2=(x +2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x 3+2x 2-x -2因式分解.33.因式分解:(1)3()6()x a b y b a ---(2)222(1)6(1)9y y ---+34.解方程组:(1)23 38 y xx y=-⎧⎨-=⎩(2)7 43832x yx y⎧+=⎪⎪⎨⎪+=⎪⎩35.先化简,再求值:(a-1)(2a+1)+(1+a)(1-a),其中a=2.36.如图,D、E、F分别在ΔABC的三条边上,DE//AB,∠1+∠2=180º.(1)试说明:DF//AC;(2)若∠1=120º,DF平分∠BDE,则∠C=______º.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先将原式化简,然后将a−b=1整体代入求解.【详解】()()2212221a ba b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C.【点睛】此题考查的是整体代入思想在代数求值中的应用.2.C解析:C【分析】首先分析题意,找到规律,并进行推导得出答案.【详解】根据题意得,n≥2,S1=12π×12=12π,S2=12π﹣12π×(12)2,…S n=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2,S n+1=12π﹣12π×(12)2﹣12π×[(12)2]2﹣…﹣12π×[(12)n﹣1]2﹣12π×[(12)n]2,∴S n﹣S n+1=12π×(12)2n=(12)2n+1π.故选C.【点睛】考查学生通过观察、归纳、抽象出数列的规律的能力.3.D解析:D【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x的一次项,所以让一次项的系数等于0,得a的等式,再求解.【详解】解:(4x-a)(x+1),=4x2+4x-ax-a,=4x2+(4-a)x-a,∵积中不含x的一次项,∴4-a=0,解得a=4.故选D.【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.4.A解析:A【分析】根据多项式与多项式相乘知(x﹣a)(x+b)=x2+(b﹣a)x﹣ab,据此可以求得k的值.【详解】解:∵(x﹣a)(x+b)=x2+(b﹣a)x﹣ab,又∵x2﹣kx﹣ab=(x﹣a)(x+b),∴x2﹣kx﹣ab=x2+(b﹣a)x﹣ab,∴﹣k=b﹣a,k=a﹣b,故选:A.【点睛】本题主要考查多项式与多项式相乘,熟记计算方法是解题的关键.5.B解析:B【解析】试题分析:根据题意,要分情况讨论:①、3是腰;②、3是底.必须符合三角形三边的关系,任意两边之和大于第三边.解:①若3是腰,则另一腰也是3,底是6,但是3+3=6,∴不构成三角形,舍去.②若3是底,则腰是6,6.3+6>6,符合条件.成立.∴C=3+6+6=15.故选B.考点:等腰三角形的性质.6.C解析:C【解析】试题分析:∵∠1与∠2为对顶角,∴∠1=∠2=50°,∵AB∥DE,∴∠2+∠D=180°,则∠D=130°,故选C.考点:平行线的性质.7.D解析:D【分析】由平行线的性质和判定解答即可.【详解】解:A、∵∠1=∠2,∴AD∥BC,原结论正确,故此选项不符合题意;B、∵AE∥CD,∴∠1+∠3=180°,原结论正确,故此选项不符合题意;C 、∵∠2=∠C ,∴AE ∥CD ,原结论正确,故此选项不符合题意;D 、∵AD ∥BC ,∴∠1=∠2,原结论不正确,故此选项符合题意;故选:D .【点睛】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质是解决问题的关键,注意它们之间的区别.8.A解析:A【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可.【详解】解:∵2x=2×1•x ,∴k=12=1,故选A .【点睛】本题考查了对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是解题的关键.9.C解析:C【分析】本题有两个相等关系:现有女生人数x +现有男生人数y =现有学生500;一年后女生在校生增加3%后的人数+男生在校生增加4%后的人数=现在校学生增加3.4%后的人数;据此即可列出方程组.【详解】解:设该校现有女生人数x 和男生y ,则列方程组为()()()50013%14%5001 3.4%x y x y +=⎧⎨+++=⨯+⎩. 故选:C .【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题关键.10.D解析:D【分析】利用同底数幂的乘法与合并同类项的知识求解即可求得答案.【详解】解:28+(-2)8=28+28=2×28=29.故选:D .【点睛】此题考查了同底数幂的乘法的知识.此题比较简单,注意掌握指数与符号的变化是解此题的关键.11.D解析:D【分析】根据平移的性质可得BC=EF ,然后求出BE=CF .【详解】∵△ABC 沿BC 方向平移得到△DEF ,∴BC=EF ,∴BC-EC=EF-EC ,即BE=CF ,∵CF=2cm ,∴BE=2cm .∵BC=6,∠A=90°,∠B=70°,∴∠ACB=20°,根据平移的性质可得AB ∥DE ,∴∠F=20°;故选:D .【点睛】本题考查了平移的性质,主要利用了平移对应点所连的线段平行且相等.12.A解析:A【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论.【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°. ∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°,∴∠B +∠C =∠AMN +∠DNM =115°.故选:A .【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.二、填空题13.243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x27y=32x解析:243【解析】【分析】先将9x•27y变形为32x+3y,然后再结合同底数幂的乘法的概念和运算法则进行求解即可.【详解】∵2x+3y−5=0,∴2x+3y=5,∴9x⋅27y=32x⋅33y=32x+3y=35=243.故答案为:243.【点睛】本题考查了同底数幂的乘法,解题的关键是熟练的掌握同底数幂乘法的概念和运算法则. 14..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.解析:6a【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236a a a.()=(1)()故答案为:6a -.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.15.【分析】把x 、y 的值代入方程计算即可求出m 的值.【详解】解:把代入方程得:6m -10=﹣6,解得:m =故答案为:【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右 解析:23【分析】把x 、y 的值代入方程计算即可求出m 的值.【详解】解:把62x y =⎧⎨=-⎩代入方程得:6m -10=﹣6, 解得:m =23故答案为:23 【点睛】本题考查二元一次方程的解,解题的关键是理解方程的解能使方程左右两边相等.16.【分析】先连接BE ,则BE∥AM,利用△AME 的面积=△AMB 的面积即可得出 , ,即可得出Sn-Sn-1的值,再把n=2020代入即可得到答案【详解】如图,连接BE ,∵在线段AC 同侧作 解析:40392【分析】 先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出212n S n =,211122n S n n -=-+ ,即可得出S n -S n-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF ,∴BE ∥AM ,∴△AME 与△AMB 同底等高,∴△AME 的面积=△AMB 的面积,∴当AB=n 时,△AME 的面积记为212n S n =, 221111(1)222n S n n n -=-=-+ ∴当n ≥2时,221111121()22222n n n S S n n n n ---=--+=-= , ∴S 2020﹣S 2019=220201403922⨯-= , 故答案为:40392. 【点睛】此题主要考查了三角形面积求法以及正方形的性质,根据已知得出正确图形,得出S 与n 的关系是解题关键. 17.±6【分析】如果9-mx+x2是一个完全平方式,则方程9-mx+x2=0对应的判别式△=0,即可得到一个关于m 的方程,即可求解.【详解】解:∵9-mx+x2是一个完全平方式,∴方程9-mx解析:±6【分析】如果9-mx+x 2是一个完全平方式,则方程9-mx+x 2=0对应的判别式△=0,即可得到一个关于m 的方程,即可求解.【详解】解:∵9-mx+x 2是一个完全平方式,∴方程9-mx+x 2=0对应的判别式△=0,因此得到:m 2-36=0,解得:m=±6,故答案为:±6.【点睛】本题主要考查了完全平方式,正确理解一个二次三项式是完全平方式的条件是解题的关键.18.【分析】直接提取公因式即可.【详解】.故答案为:.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.解析:2(2)x x -【分析】直接提取公因式即可.【详解】2242(2)x x x x -=-.故答案为:2(2)x x -.【点睛】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.19.②③【分析】在的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】在的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方解析:②③【分析】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,第一步用到了积的乘方,第二步用到了幂的乘方,据此判断即可.【详解】 在()()3333232369111228x y x y x y ⎛⎫⎛⎫-=-⋅⋅=- ⎪ ⎪⎝⎭⎝⎭的运算过程中,运用了上述幂的运算中的②③.故答案为:②③.【点睛】此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m )n =a mn (m ,n 是正整数);②(ab )n =a n b n (n 是正整数).20.8【分析】直接根据内角和公式计算即可求解.【详解】(n ﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:.解析:8【分析】直接根据内角和公式()2180n -⋅︒计算即可求解.【详解】(n ﹣2)•180°=1080°,解得n=8.故答案为8.【点睛】主要考查了多边形的内角和公式.多边形内角和公式:()2180n -⋅︒.21.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y轴上的点的坐标特征.22.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解析:5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.0000025=2.5×10-6,故答案为2.5×10-6.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.23.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=± 18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.24.【分析】先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案.【详解】解:而上式不含项,故答案为:【点睛】本题考查的是多项式的乘法运算,同时解析:2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.三、解答题25.DAB ,CAE ;见解析【分析】方法一:根据平行线的性质:两直线平行,内错角相等解答;方法二:根据平行线的性质:两直线平行、同位角相等解答.【详解】方法一:∵DE ∥BC,∴∠B=∠DAB ,∠C=∠CAE ,故答案为:DAB ,CAE ;方法二:∵DE ∥AC ,∴∠A =∠BED ,∠C =∠BDE ,∵DF ∥AB ,∴∠EDF =∠BED ,∠B =∠CDF ,∵∠CDF +∠EDF +∠BDE =180°,∴∠A +∠B +∠C =180°.【点睛】此题考查平行线的性质,三角形内角和定理的证明过程,解题的关键是熟记平行线的性质并运用于解题.26.【探究1】∠2=12∠ACB,90º-12∠A;【探究2】∠BOC=90°﹣12∠A,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=12∠ABC,∠2=12∠ACB,根据三角形的内角和定理可得∠1+∠2=90º-12∠A,再根据三角形的内角和定理即可得出结论;【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC=1 2(∠A+∠ACB),∠OCB=12(∠A+∠ABC),然后再根据三角形的内角和定理即可得出结论;【应用】延长AC与BD,设交点为G,如图5,由【探究1】的结论可得∠G的度数,于是可得∠GCD+∠GDC的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;【拓展】根据角平分线的定义和平角的定义可得∠EAF=90°,然后分三种情况讨论:若∠EAF=4∠E,则∠E=22.5°,根据角平分线的定义和三角形的外角性质可得∠ABO=2∠E,于是可得结果;若∠EAF=4∠F,则∠F=22.5°,由【探究2】的结论可求出∠ABO=135°,然后由三角形的外角性质即可判断此种情况不存在;若∠F=4∠E,则∠E=18°,然后再由第一种情况的结论∠ABO=2∠E即可求出结果,进而可得答案.【详解】解:【探究1】理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,∠2=12∠ACB,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB)=12(180º-∠A)=90º-12∠A,∴∠BOC=180º-(∠1+∠2)=180º-(90º-12∠A)=90º+12∠A;故答案为:∠2=12∠ACB,90º-12∠A;【探究2】∠BOC=90°﹣12∠A;理由如下:如图2,由三角形的外角性质和角平分线的定义,∠OBC =12(∠A +∠ACB ),∠OCB =12(∠A +∠ABC ), 在△BOC 中,∠BOC =180°﹣∠OBC ﹣∠OCB=180°﹣12(∠A +∠ACB )﹣12(∠A +∠ABC ), =180°﹣12(∠A +∠ACB +∠A +∠ABC ), =180°﹣12(180°+∠A ), =90°﹣12∠A ;【应用】延长AC 与BD ,设交点为G ,如图5,由【探究1】的结论可得:∠G=1901352O ︒+∠=︒, ∴∠GCD+∠GDC=45°, ∵CE 、DE 分别是∠ACD 和∠BDC 的角平分线,∴∠1=12∠ACD=()11802GCD ︒-∠,∠2=12∠BDC=()11802GDC ︒-∠, ∴∠1+∠2=()11802GCD ︒-∠+()11802GDC ︒-∠=()136045157.52︒-︒=︒, ∴()1801222.5E ∠=︒-∠+∠=︒;故答案为:22.5°;【拓展】如图4,∵AE 、AF 是∠BAO 和∠OAG 的角平分线,∴∠EAQ+∠FAQ=()111809022BAO GAO ∠+∠=⨯︒=︒, 即∠EAF=90°, 在Rt △AEF 中,若∠EAF=4∠E ,则∠E=22.5°,∵∠EOQ=∠E+∠EAQ ,∠BOQ=2∠EOQ ,∠BAO=2∠EAQ ,∴∠BOQ=2∠E+∠BAO ,又∠BOQ=∠BAO+∠ABO ,∴∠ABO=2∠E=45°;若∠EAF=4∠F ,则∠F=22.5°,则由【探究2】知:19022.52F ABO ∠=︒-∠=︒,∴ ∠ABO=135°, ∵∠ABO <∠BOQ=60°,∴此种情况不存在;若∠F=4∠E ,则∠E=18°,由第一种情况可知:∠ABO=2∠E ,∴∠ABO=36°;综上,∠ABO=45°或36°;故答案为:45°或36°.【点睛】 本题主要考查了角平分线的定义、三角形的内角和定理、平角的定义和三角形的外角性质等知识,具有一定的综合性,熟练掌握上述知识、灵活应用整体思想是解题的关键. 27.131°【解析】【分析】先根据∠A=65°,∠ACB=72°得出∠ABC 的度数,再由∠ABD=30°得出∠CBD 的度数,根据CE 平分∠ACB 得出∠BCE 的度数,根据∠BEC=180°-∠BCE-∠CBD 即可得出结论【详解】在△ABC 中,∵∠A=65°,∠ACB=72°∴∠ABC=43°∵∠ABD=30°∴∠CBD=∠ABC ﹣∠ABD=13°∵CE 平分∠ACB∴∠BCE=∠ACB=36°∴在△BCE中,∠BEC=180°﹣13°﹣36°=131°.【点睛】本题考察了三角形内角和定理,在两个三角形中,三个角之间的关系是解决此题的关键28.(1)43xy=⎧⎨=⎩;(2)31xy=⎧⎨=-⎩【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【详解】解:(1)由①得:x=7﹣y③,把③代入②得:2(7﹣y)﹣3y=﹣1,解得:y=3,把y=3代入③得:x=4,所以这个二元一次方程组的解为:43 xy=⎧⎨=⎩;(2)①×4+②×3得:17x=51,解得:x=3,把x=3代入①得:y=﹣1,所以这个方程组的解为31 xy=⎧⎨=-⎩.【点睛】本题主要考查了方程组的解法,准确运用代入消元法和加减消元法解题是解题的关键.29.(1)这个相同的解为21xy=⎧⎨=⎩;(2)1【分析】(1)根据两个方程组有相同解可得方程组31x yx y+=⎧⎨-=⎩,解此方程组即可得出答案;(2)将(1)求解出的x和y的值代入其余两个式子,解出m和n的值,再代入m-n中即可得出答案.【详解】解:(1)∵关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与14x ymx ny-=⎧⎨-=⎩有相同的解,∴31 x yx y+=⎧⎨-=⎩解得21 xy=⎧⎨=⎩∴这个相同的解为21 xy=⎧⎨=⎩(2)∵关于x,y的二元一次方程组38x ymx ny+=⎧⎨+=⎩与14x ymx ny-=⎧⎨-=⎩相同的解为21xy=⎧⎨=⎩,∴28 24 m nm n+=⎧⎨-=⎩解得32 mn=⎧⎨=⎩∴m-n=3-2=1【点睛】本题考查的是二元一次方程组的同解问题:将两组方程组中只含有x和y的方程组合到一起,求解即可.30.①6;②8 9【解析】解:①②31.2021 514-【分析】根据题目信息,设S=1+5+52+53+…+52020,求出5S,然后相减计算即可得解.【详解】解:设S=1+5+52+53+ (52020)则5S=5+52+53+54 (52021)两式相减得:5S﹣S=4S=52021﹣1,则202151.4S-=∴1+5+52+53+54+…+52020的值为2021514-.【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.32.[初步应用]5,3;[深入研究]x3+2x2-x-2=(x+2)(x+1)(x-1);详见解析;【分析】[初步应用]列出竖式结合已知可得:2☆-6=0,2-=☆,求出□与☆即可.[深入研究]列出竖式可得x3+2x2-x-2÷(x+2),即可将多项式x3+2x2-x-2因式分解.【详解】[初步应用]∵多项式x2+□x+6能被x+2整除,∴2☆-6=0,2-=☆,∴☆= 3,□=5,故答案为:5,3;[深入研究]∵2323212222 22 0x x x x x x x x x -++--+----, ∴()()()()()3222221211x x x x x x x x +--=+-=++-. 【点睛】本题考查整式的除法;理解题意,仿照整数的除法列出竖式进行运算是解题的关键.33.(1)3()(2)a b x y -+;(2)22(2)(2)y y +-【分析】(1)提取公因式3(a-b),即可求解.(2)将(y 2-1)看成一项,根据完全平方公式进行因式分解,之后再利用平方差公式即可求解.【详解】(1)原式=3()6()x a b y b a ---=3()(2)a b x y -+故答案为:3()(2)a b x y -+(2)原式=222(1)6(1)9y y ---+ =22(y 13)--=22(4)y -=22(2)(2)y y +-故答案为:22(2)(2)y y +-【点睛】本题考查了因式分解的方法,本题分别采用了提取公因式法和公式法进行因式分解,一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.运用公式法因式分解,一般有平方差公式,完全平方公式,立方和公式,完全立方公式. 34.(1)57x y =⎧⎨=⎩;(2)6024x y =⎧⎨=-⎩ 【分析】(1)2338y x x y =-⎧⎨-=⎩①②,由①得2x-y=3③,②-③可求得x ,将x 值代入①可得y 值,即可求得方程组的解.(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①②,先将①×12去分母,将分式方程化为整式方程,得3x+4y=84③,将②×6,由分式方程化为整式方程,得2x+3y=48④,③和④再利用加减消元法即可求解方程组的解.【详解】(1)2338y x x y =-⎧⎨-=⎩①② 由①,得2x-y=3③②-③,得x=5将x=5代入①,得2×5-y=3∴y=7故方程组的解为:57x y =⎧⎨=⎩故答案为:57x y =⎧⎨=⎩(2)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② ①×12,得3x+4y=84③②×6,得2x+3y=48④③×2,得6x+8y=168⑤④×3,得6x+9y=144⑥⑤-⑥,得y=-24将y=-24代入①,得874x -= ∴x=60故方程组的解为:6024x y =⎧⎨=-⎩故答案为:6024x y =⎧⎨=-⎩ 【点睛】 本题考查了一元二次方程的解法—加减消元法,将方程组中的各个方程化简成标准形式,方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等,把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程,解这个一元一次方程,求出一个未知数的值;35.a2-a,2【分析】分别根据多项式的乘法法则和平方差公式计算每一项,再合并同类项,然后把a的值代入化简后的式子计算即可.【详解】解:(a-1)(2a+1)+(1+a)(1-a)=2a2-a-1+1-a2= a2-a,当a=2时,原式=22-2=2.【点睛】本题考查了整式的混合运算和代数式求值,属于基本题型,熟练掌握多项式的乘法法则是解题的关键.36.(1)见解析;(2)60.【分析】(1)根据平行线的性质得出∠A=∠2,求出∠1+∠A=180°,根据平行线的判定得出即可.(2)根据平行线的性质解答即可.【详解】证明:(1)∵DE∥AB,∴∠A=∠2,∵∠1+∠2=180°.∴∠1+∠A=180°,∴DF∥AC;(2)∵DE∥AB,∠1=120°,∴∠FDE=60°,∵DF平分∠BDE,∴∠FDB=60°,∵DF∥AC,∴∠C=∠FDB=60°【点睛】本题考查了平行线的性质和判定定理,解题的关键是能灵活运用平行线的判定和性质定理进行推理.。

新苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库

新苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库

新苏科七年级苏科初一数学下学期期末测试题及答案(共五套) 百度文库一、选择题1.已知,则a 2-b 2-2b 的值为 A .4 B .3 C .1 D .02.不等式3x+2≥5的解集是( )A .x≥1B .x≥73C .x≤1D .x≤﹣13.在ABC ∆中,::1:2:3A B C ∠∠∠=,则ABC ∆一定是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或直角三角形 4.下列等式从左到右的变形属于因式分解的是( ) A .a 2﹣2a+1=(a ﹣1)2B .a (a+1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .211()x x x x+=+ 5.已知方程组5430x y x y k -=⎧⎨-+=⎩的解也是方程3x -2y=0的解,则k 的值是( ) A .k=-5 B .k=5 C .k=-10 D .k=106.身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为( ) A .1.62米B .2.62米C .3.62米D .4.62米 7.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=-8.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒ 9.计算12x a a a a ⋅⋅=,则x 等于( ) A .10B .9C .8D .4 10.若25a=,23b =,则232a b -等于( ) A .2725 B .109 C .35 D .252711.下列调查中,适宜采用全面调查方式的是( )A .考察南通市民的环保意识B .了解全国七年级学生的实力情况C .检查一批灯泡的使用寿命D .检查一枚用于发射卫星的运载火箭的各零部件12.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b >的是( )A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->- 二、填空题13.已知等腰三角形的两边长分别为4和8,则它的周长是_______.14.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.15.如图,把△ABC 沿线段DE 折叠,使点A 落在点F 处,BC ∥DE ,若∠B =50°,则∠BDF =_______°.16.已知关于x 的不等式3x - m+1>0的最小整数解为2,则实数m 的取值范围是___________.17.分解因式:29a -=__________.18.()()3a 3b 13a 3b 1899+++-=,则a b += ______ .19.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.20.如图,两块三角板形状、大小完全相同,边//AB CD 的依据是_______________.21.对有理数x ,y 定义运算:x*y=ax+by ,其中a ,b 是常数.例如:3*4=3a+4b ,如果2*(﹣1)=﹣4,3*2>1,则a 的取值范围是_______.22.计算:()20202019133⎛⎫-⋅-= ⎪⎝⎭_____.23.科学家发现2019nCoV -冠状肺炎病毒颗粒平均直径约为0.00000012m ,数据0.00000012用科学记数法表示_______.24.一个容量为40的样本的最大值为35,最小值为15,若取组距为4,则应该分的组数是为_______.三、解答题25.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高.(1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE= °(直接用m 、n 表示).26.分解因式(1)321025a a a ++;(2)(1)(2)6t t ++- .27.如图,在数轴上,点A 、B 分别表示数1、23x -+.(1)求x 的取值范围.(2)数轴上表示数2x -+的点应落在( )A .点A 的左边B .线段AB 上C .点B 的右边28.解不等式-3+3+121-3-18-x x x x ⎧≥⎪⎨⎪<⎩()29.A 市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.(1)求提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案.30.已知:直线//AB CD ,点E ,F 分别在直线AB ,CD 上,点M 为两平行线内部一点. (1)如图1,∠AEM ,∠M ,∠CFM 的数量关系为________;(直接写出答案)(2)如图2,∠MEB 和∠MFD 的角平分线交于点N ,若∠EMF 等于130°,求∠ENF 的度数;(3)如图3,点G 为直线CD 上一点,延长GM 交直线AB 于点Q ,点P 为MG 上一点,射线PF 、EH 相交于点H ,满足13PFG MFG ∠=∠,13BEH BEM ∠=∠,设∠EMF =α,求∠H 的度数(用含α的代数式表示).31.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+ 32.⑴ 如图,试用a 的代数式表示图形中阴影部分的面积;⑵ 当a =2时,计算图中阴影部分的面积.33.计算:(1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭; (2)m 2•m 4+(﹣m 3)2;(3)(x +y )(2x ﹣3y );(4)(x +3)2﹣(x +1)(x ﹣1).34.如图①所示,在三角形纸片ABC 中,70C ∠=︒,65B ∠=︒,将纸片的一角折叠,使点A 落在ABC 内的点A '处.(1)若140∠=︒,2∠=________.(2)如图①,若各个角度不确定,试猜想1∠,2∠,A ∠之间的数量关系,直接写出结论.②当点A 落在四边形BCDE 外部时(如图②),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,A ∠,1∠,2∠之间又存在什么关系?请说明.(3)应用:如图③:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的123456∠+∠+∠+∠+∠+∠和是________.35.同一平面内的两条直线有相交和平行两种位置关系.(1)如图a ,若//AB CD ,点P 在AB 、CD 外部,我们过点P 作AB 、CD 的平行线PE ,则有////AB CD PE ,则BPD ∠,B ,D ∠之间的数量关系为_________.将点P 移到AB 、CD 内部,如图b ,以上结论是否成立?若成立,说明理由;若不成立,则BPD ∠、B 、D ∠之间有何数量关系?请证明你的结论.(2)迎“20G ”科技节上,小兰制作了一个“飞旋镖”,在图b 中,将直线AB 绕点B 逆时针方向旋转一定角度交直线CD 于点Q ,如图c ,他很想知道BPD ∠、ABP ∠、D ∠、BQD ∠之间的数量关系,请你直接写出它们之间的数量关系:__________.(3)设BF 交AC 于点P ,AE 交DF 于点Q ,已知126APB ∠=︒,100AQF ∠=︒,直接写出B E F ∠+∠+∠的度数为_______度,A ∠比F ∠大______度.36.计算:(1)()()122012514--⎛⎫+-⨯-- ⎪⎝⎭; (2)52342322)(a a a a a +÷-.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先将原式化简,然后将a−b =1整体代入求解.【详解】()()2212221a b a b b a b a b ba b ba b-∴--+--+--=,====.故答案选:C .【点睛】此题考查的是整体代入思想在代数求值中的应用. 2.A解析:A【解析】分析:根据一元一次不等式的解法即可求出答案.详解:3x+2≥5,3x≥3,∴x≥1.故选A .点睛:本题考查了一元一次不等式的解法,解题的关键是熟练运用一元一次不等式的解法,本题属于基础题型.3.B解析:B【分析】根据三角形内角和为180°,求出三个角的度数进行判断即可.【详解】解:∵三角形内角和为180°, ∴118030123A ∠=⨯︒=︒++ 218060123B ∠=⨯︒=︒++ 318090123C ∠=⨯︒=︒++, ∴△ABC 为直角三角形,故选:B .【点睛】此题考查三角形内角和,熟知三角形内角和为180°,根据各角占比求出各角度数即可判断.4.A解析:A【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.A、是因式分解,故A正确;B、是整式的乘法运算,故B错误;C、是单项式的变形,故C错误;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积的形式.5.A解析:A【分析】根据方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,可得方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值,再代入4x-3y+k=0即可求得k的值.【详解】∵方程组5430x yx y k-=⎧⎨-+=⎩的解也是方程3x-2y=0的解,∴5320x yx y-=⎧⎨-=⎩,解得,1015xy=-⎧⎨=-⎩;把1015xy=-⎧⎨=-⎩代入4x-3y+k=0得,-40+45+k=0,∴k=-5.故选A.【点睛】本题考查了解一元二次方程,根据题意得出方程组5320x yx y-=⎧⎨-=⎩,解方程组求得x、y的值是解决问题的关键.6.A解析:A【分析】根据平移的性质即可得到结论.【详解】解:身高1.62米的小明乘升降电梯从1楼上升到3楼,则此时小明的身高为1.62米,故选:A.本题考查了生活中的平移现象,熟练正确平移的性质是解题的关键.7.A解析:A【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案.【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙. 所以()()a b a b +-22=a b -故选A .【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.8.C解析:C【分析】先根据平行线的性质求出∠EFB 的度数,再利用三角形的外角性质解答即可.【详解】解:∵AB ∥CD ,115C ∠=︒,∴115EFB C ∠=∠=︒,∵EFB A E ∠=∠+∠,25A ∠=︒∴1152590E ∠=︒-︒=︒.故选:C .【点睛】本题考查了平行线的性质和三角形的外角性质,属于基础题型,熟练掌握上述基本知识是解题关键.9.A解析:A【解析】【分析】利用同底数幂的乘法即可求出答案,【详解】解:由题意可知:a 2+x =a 12,∴2+x =12,∴x =10,故选:A .【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.10.D【分析】根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.【详解】222233332(2)5252=2(2)327a a ab b b -=== 故选:D【点睛】 本题考查了同底数幂的除法的逆运算法,一般地,(0mm nn a a a a-=≠,m ,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m ,n 都是正整数).11.D 解析:D【分析】调查方式的选择需要将全面调查的局限性和抽样调查的必要性结合起来,具体问题具体分析,全面调查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择全面调查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,全面调查就受到限制,这时就应选择抽样调查.【详解】解:A 、考察南通市民的环保意识,人数较多,不适合全面调查;B 、了解全国七年级学生的实力情况,人数较多,不适合全面调查;C 、检查一批灯泡的使用寿命,数量较多,且具有破坏性,不适合全面调查;D 、检查一枚用于发射卫星的运载火箭的各零部件,较为严格,必须采用全面调查, 故选D.【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果和普查得到的调查结果比较近似.12.C解析:C【分析】根据不等式的性质逐项判断即可.【详解】解:A. ac bc >,由于不知道c 的符号,故无法得到a b >,故该选项不合题意;B. ma mb -<-,由于不知道-m 的符号,故无法得到a b >,故该选项不合题意;C. 22ac bc >,∵20c ≠,∴2c >0,∴a b >,故该选项符合题意;D. 22ac bc ->-,∵20c ≠,∴20c -<,∴a b <,故该选项不合题意.故选:C本题考查了不等式的性质,熟知不等式的性质是解题关键.二、填空题13.20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8解析:20【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8cm时,三角形的三边是8、8、4,∴三角形的周长是8+8+4=20.故答案为:20【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.14.30°【解析】【分析】设较小的锐角是,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x,则另一个锐角是2x,由题意得,x+2x=90°,解得x=30°,即此三角解析:30°【解析】【分析】设较小的锐角是x ,然后根据直角三角形两锐角互余列出方程求解即可.【详解】设较小的锐角是x ,则另一个锐角是2x ,由题意得,x +2x =90°,解得x =30°,即此三角形中最小的角是30°.故答案为:30°.【点睛】本题考查了直角三角形的性质,熟练掌握该知识点是本题解题的关键.15.80°【解析】∵BC ∥DE ,∴∠ADE=∠B=50°,∵∠EDF=∠ADE=50°,∴∠BDF=180°-50°-50°=80°.故答案为80°.解析:80°【解析】∵BC ∥DE ,∴∠ADE =∠B =50°,∵∠EDF =∠ADE =50°,∴∠BDF =180°-50°-50°=80°.故答案为80°.16.【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>,∵不等式3x - m+1>解析:4<7m【解析】【分析】先用含m 的代数式表示出不等式的解集,再根据最小整数解为2即可求出实数m 的取值范围.【详解】∵3x - m+1>0,∴3x> m -1,∴x>-13m , ∵不等式3x - m+1>0的最小整数解为2,∴1≤-13m <3, 解之得4<7m ≤. 故答案为:4<7m ≤.【点睛】本题考查了一元一次不等式的解法,根据最小整数解为2列出关于m 的不等式是解答本题的关键.17.【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点解析:()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式.a 2-9=a 2-32=(a+3)(a-3).故答案为(a+3)(a-3).考点:因式分解-运用公式法.18.【解析】【分析】原式利用平方差公式化简,整理即可求出a+b 的值.【详解】已知等式整理得:9(a+b )2-1=899,即(a+b )2=100,开方得:a+b=±10,故答案为:±10【解析:10±【解析】【分析】原式利用平方差公式化简,整理即可求出a+b 的值.【详解】已知等式整理得:9(a+b )2-1=899,即(a+b )2=100,开方得:a+b=±10,故答案为:±10【点睛】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.19.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】 本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 20.内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】解:由题意:,(内错角相等,两直线平行)故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的解析:内错角相等,两直线平行【分析】利用平行线的判定方法即可解决问题.【详解】∠=∠,解:由题意:ABD CDB∴(内错角相等,两直线平行)//AB CD故答案为:内错角相等,两直线平行.【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.21.a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解析:a>﹣1【分析】根据新运算法则可得关于a、b的方程与不等式:2a﹣b=﹣4①,3a+2b>1②,于是由①可用含a的代数式表示出b,所得的式子代入②即得关于a的不等式,解不等式即得答案.【详解】解:∵2*(﹣1)=﹣4,3*2>1,∴2a﹣b=﹣4①,3a+2b>1②,由①得,b=2a+4③,把③代入②,得3a+2(2a+4)>1,解得:a>﹣1.故答案为:a>﹣1.【点睛】本题是新运算题型,主要考查了一元一次不等式的解法,正确理解运算法则、熟练掌握一元一次不等式的解法是关键.22.【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:故答案为【点睛】此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键. 解析:1.3- 【分析】先根据同底数幂的乘法逆运算化简,再根据积的乘方逆运算计算.【详解】解:()20202019133⎛⎫-⋅- ⎪⎝⎭()2019201911333⎛⎫⎛⎫=-⋅-⨯- ⎪ ⎪⎝⎭⎝⎭ ()201911333⎡⎤⎛⎫⎛⎫=-⨯-⨯- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 1.3=- 故答案为1.3-【点睛】 此题重点考察学生对同底数幂的乘法和积的乘方的理解,掌握其计算方法是解题的关键.23.【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是解析:71.210-⨯【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:根据科学记数法的定义:0.00000012=71.210-⨯故答案为:71.210-⨯.【点睛】此题考查的是科学记数法,掌握科学记数法的定义是解决此题的关键.24.5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是,已知组距为4,那么由于,故可以分成5组.故答案为:解析:5【分析】根据组数=(最大值-最小值)÷组距计算,注意小数部分要进位.【详解】解:在样本数据中最大值为35,最小值为15,它们的差是351520-=,已知组距为4,那么由于2054=,故可以分成5组.故答案为:5.【点睛】本题考查的是组数的计算,属于基础题,只要根据组数的定义“数据分成的组的个数称为组数”来解即可.三、解答题25.(1)20°;(2)11 22 n m-【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE =12∠CAB =90°﹣(12m )°﹣(12n )°, ∵AD ⊥BC ,∴∠ADC =90°,∴∠DAC =90°﹣n °,∴∠DAE =∠EAC ﹣∠DAC =(12n ﹣12m )°, 故答案为:(12n ﹣12m ). 【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(1)()25a a +;(2)()()41t t +-. 【分析】(1)首先利用提公因式法,提出a ,再利用公式法,即可分解因式;(2)首先将两个多项式的乘积展开,合并同类项后,再利用十字相乘法即可分解因式.【详解】解:(1)()()23221025=10255a a a a a a a a ++++=+; (2)()()22(1)(2)6=3263441t t t t t t t t ++-++-=+-=+-. 【点睛】本题考查因式分解,难度不大,是中考的常考点,熟练掌握分解因式的方法是顺利解题的关键.27.(1)1x <.(2)B.【解析】分析:(1)根据点B 在点A 的右侧列出不等式即可求出;(2)利用(1)的结果可判断-x+2的位置.详解:(1)根据题意,得231x -+>.解得1x <.(2)B.点睛:本题考查了数轴的运用.关键是利用数轴,数形结合求出答案.28.﹣2<x≤1.【详解】试题分析:根据不等式的解法,分别解两个不等式,然后取其公共部分即可. 试题解析:331(1)213(1)8(2)x x x x -⎧++⎪⎨⎪--<-⎩, ∵解不等式①得:x≤1,解不等式②得:x >﹣2,∴不等式组的解集为﹣2<x≤1.点睛:此题主要考查了不等式组的解法,解题关键是利用一元一次不等式的解法,分别解不等式,然后根据不等式组的解集确定法:“都大取大,都小取小,大小小大取中间,大大小小无解了”,确定其解集即可.29.(1)50元,150元;(2)提示牌50个,垃圾箱50个;提示牌51个,垃圾箱49个;提示牌52个,垃圾箱48个;【分析】1)根据“购买2个提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论; (2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【详解】解:(1)设提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意得,233550x x +⨯=,50x ∴=,3150x ∴=,即:提示牌和垃圾箱的单价各是50元和150元;(2)设购买提示牌y 个(y 为正整数),则垃圾箱为(100)y -个,根据题意得,1004850150(100)10000y y y ,5052y , y 为正整数,y ∴为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.30.(1)M AEM CFM ∠=∠+∠;(2)115ENF ∠=︒;(3)1603H α∠=︒-.【分析】(1)过点M 作//ML AB ,利用平行线的性质可得1AEM ∠=∠,2CFM ∠=∠,由12EMF ∠=∠+∠,经过等量代换可得结论; (2)过M 作//ME AB ,利用平行线的性质以及角平分线的定义计算即可.(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .证明H x y ∠=-,求出x y -即可解决问题.【详解】(1)如图1,过点M 作//ML AB ,//AB CD ,////ML AB CD ∴,1AEM ∴∠=∠,2CFM ∠=∠,12EMF ∠=∠+∠,M AEM CFM ∴∠=∠+∠;(2)过M 作//ME AB ,//AB CD ,//ME CD ∴,24180BEM DFM ∴∠+∠=∠+∠=︒,1802BEM ∴∠=︒-∠,1804DFM ∠=︒-∠, EN ,FN 分别平分MEB ∠和DFM ∠, 112BEM ∴∠=∠,132DFM ∠=∠, 111113(1802)(1804)180(24)1801301152222∴∠+∠=︒-∠+︒-∠=︒-∠+∠=︒-⨯︒=︒, 36013360115130115ENF EMF ∴∠=︒-∠-∠-∠=︒-︒-︒=︒;(3)如图②中设BEH x ∠=,PFG y ∠=,则3BEM x ∠=,3MFG y ∠=,设EH 交CD 于K .//AB CD ,BEH DKH x ∴∠=∠=,PFG HFK y ∠=∠=,DKH H HFK ∠=∠+∠,H x y ∴∠=-,EMF MGF α∠=∠=,180BQG MGF ∠+∠=︒,180BQG α∴∠=︒-,QMF QMF EMF MGF MFG ∠=∠+∠=∠+∠,3QME MFG y ∴∠=∠=,BEM QME MQE ∠=∠+∠,33180x y α∴-=︒-,1603x y α∴-=︒-, 1603H α∴∠=︒-. 【点睛】本题考查平行线的性质和判定,三角形的外角的性质,三角形的内角和定理等知识,作出平行线,利用参数解决问题是解题的关键.31.(1)374-.(2)16x 4−8x 2+1. 【分析】(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果;(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.【点睛】本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.32.24【分析】(1)由2个矩形面积之和表示出阴影部分面积即可;(2)将x 的值代入计算即可求出值.【详解】(1)根据题意得:阴影部分的面积=a(2a+3)+a(2a+3−a)=3a 2+6a ;(2)当a =2时,原式=3×22+2×6=24.答:图中阴影部分的面积是24.【点睛】本题考查代数式求值和列代数式,解题的关键是根据题意列代数式.33.(1)18-;(2)2m 6;(3)2x 2﹣xy ﹣3y 2;(4)6x +10.【分析】(1)根据同底数幂的乘法法则进行计算;(2)先根据同底数幂的乘法法则和幂的乘方法则进行计算,再根据合并同类项法则进行计算;(3)根据多项式乘以多项式法则进行计算,再合并同类项;(4)先根据完全平方公式,平方差公式进行计算,再合并同类项.【详解】解:(1)21122⎛⎫⎛⎫-⨯- ⎪ ⎪⎝⎭⎝⎭=312⎛⎫- ⎪⎝⎭ 18=-; (2)m 2•m 4+(﹣m 3)2=m 6+m 6=2m 6;(3)(x +y )(2x ﹣3y )=2x 2﹣3xy +2xy ﹣3y 2=2x 2﹣xy ﹣3y 2;(4)(x +3)2﹣(x +1)(x ﹣1)=x 2+6x +9﹣x 2+1=6x +10.【点睛】此题考查的是幂的运算性质和整式的运算,掌握同底数幂的乘法法则、幂的乘方法则、多项式乘以多项式法则、完全平方公式和平方差公式是解决此题的关键.34.(1)50°;(2)①见解析;②见解析;(3)360°.【分析】(1)根据题意,已知70C ∠=︒,65B ∠=︒,可结合三角形内角和定理和折叠变换的性质求解;(2)①先根据折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,由两个平角∠AEB 和∠ADC 得:∠1+∠2等于360°与四个折叠角的差,化简得结果;②利用两次外角定理得出结论;(3)由折叠可知∠1+∠2+∠3+∠4+∠5+∠6等于六边形的内角和减去(∠B'GF+∠B'FG)以及(∠C'DE+∠C'ED)和(∠A'HL+∠A'LH),再利用三角形的内角和定理即可求解.【详解】解:(1)∵70C ∠=︒,65B ∠=︒,∴∠A ′=∠A=180°-(65°+70°)=45°,∴∠A ′ED+∠A ′DE =180°-∠A ′=135°,∴∠2=360°-(∠C+∠B+∠1+∠A ′ED+∠A ′DE )=360°-310°=50°;(2)①122A ∠+∠=∠,理由如下由折叠得:∠ADE=∠A ′DE ,∠AED=∠A ′ED ,∵∠AEB+∠ADC=360°,∴∠1+∠2=360°-∠ADE-∠A ′DE-∠AED-∠A ′ED=360°-2∠ADE-2∠AED ,∴∠1+∠2=2(180°-∠ADE-∠AED )=2∠A ;②221A ∠=∠+∠,理由如下:∵2∠是ADF 的一个外角∴2A AFD ∠=∠+∠.∵AFD ∠是A EF '△的一个外角∴1AFD A '∠=∠+∠又∵A A '∠=∠∴221A ∠=∠+∠(3)如图由题意知,∠1+∠2+∠3+∠4+∠5+∠6=720°-(∠B'GF+∠B'FG)-(∠C'DE+∠C'ED)-(∠A'HL+∠A'LH)=720°-(180°-∠B')-(180°-C')-(180°-A')=180°+(∠B'+∠C'+∠A')又∵∠B=∠B',∠C=∠C',∠A=∠A',∠A+∠B+∠C=180°,∴∠1+∠2+∠3+∠4+∠5+∠6=360°.【点睛】题主要考查了折叠变换、三角形、四边形内角和定理.注意折叠前后图形全等;三角形内角和为180°;四边形内角和等于360度.35.(1)∠BPD=∠B-∠D ;将点P 移到AB 、CD 内部,∠BPD=∠B-∠D 不成立,∠BPD=∠B+∠D ,证明见解析;(2)∠BPD=∠ABP+∠D+∠BQD ;(3)80,46.【分析】(1)由平行线的性质得出∠B=∠BPE,∠D=∠DPE,即可得出∠BPD=∠B-∠D;将点P移到AB、CD内部,延长BP交DC于M,由平行线的性质得出∠B=∠BMD,即可得出∠BPD=∠B+∠D;(2)由平行线的性质得出∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,即可得出结论;(3)过点E作EN∥BF,则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,得出∠EQF=∠B+∠E+∠F,求出∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,由∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F,∠AMP=∠FMQ,得出126°-∠A=80°-∠F,即可得出结论.【详解】解(1)∵AB∥CD∥PE,∴∠B=∠BPE,∠D=∠DPE,∵∠BPE=∠BPD+∠DPE,∴∠BPD=∠B-∠D,故答案为:∠BPD=∠B-∠D;将点P移到AB、CD内部,∠BPD=∠B-∠D不成立,∠BPD=∠B+∠D,理由如下:延长BP交DC于M,如图b所示:∵AB∥CD,∴∠B=∠BMD,∵∠BPD=∠BMD+∠D,∴∠BPD=∠B+∠D;(2)∵A′B∥CD,∴∠A′BQ=∠BQD,同(1)得:∠BPD=∠A′BP+∠D,∴∠BPD=∠ABP+∠D+∠BQD,故答案为:∠BPD=∠ABP+∠D+∠BQD;(3)过点E作EN∥BF,如图d所示:则∠B=∠BEN,同(1)得:∠FQE=∠F+∠QEN,∴∠EQF=∠B+∠E+∠F,∵∠AQF=100°,∴∠EQF=180°-100°=80°,即∠B+∠E+∠F=80°,∵∠AMP=∠APB-∠A=126°-∠A,∠FMQ=180°-∠AQF-∠F=180°-100°-∠F=80°-∠F;∵∠AMP=∠FMQ,∴126°-∠A=80°-∠F,∴∠A-∠F=46°,故答案为:80,46.【点睛】本题考查了平行线性质,三角形外角性质、三角形内角和定理等知识,熟练掌握平行线的性质是解题的关键.36.(1)7;(2)55a.【分析】(1)直接利用负整数指数幂的性质、零指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则、整式的除法运算法则计算得出答案.【详解】解:(1)(14)﹣1+(﹣2)2×50﹣(﹣1)﹣2;=4+4×1﹣1=4+4﹣1=7;(2)2a5﹣a2•a3+(2a4)2÷a3=2a5﹣a5+4a8÷a3=2a5﹣a5+4a5=5a5.【点睛】此题主要考查了整式乘除和乘法运算,以及有理数乘方的运算,熟练掌握运算法则是解本题的关键.。

苏科版七年级上册数学期末考试试卷附答案

苏科版七年级上册数学期末考试试卷附答案

苏科版七年级上册数学期末考试试题一、单选题1.﹣5的绝对值是()A .5B .﹣5C .15-D .152.下列四个数中,是无理数的为()A .0B .πC .-2D .0.53.方程360x +=的解是().A .2x =B .2x =-C .3x =D .3x =-4.数据1370000000用科学记数法可表示为()A .91.3710⨯B .100.13710⨯C .813.710⨯D .81.3710⨯5.下列各项中是同类项的是()A .-mn 与12mnB .2ab 与2abcC .x 2y 与x 2zD .a 2b 与ab 26.观察如图所示的几何体,从左边看到的是()A .B .C .D .7.点C 在线段AB 上,下列条件中不能确定点C 是线段AB 中点的是()A .AC BC=B .AC BC AB+=C .2AB AC=D .12BC AB =8.按下面的程序计算:当输入x=100时,输出结果是299;当输入x=50时,输出结果是446;如果输入x 的值是正整数,输出结果是257,那么满足条件的x 的值最多有()A .1个B .2个C .3个D .4个9.形如ac bd的式子叫做二阶行列式,它的运算法则用公式表示为ac bd=ad ﹣bc ,依此法则计算2134-的结果为()A .11B .﹣11C .5D .﹣210.如图所示,点O 在直线AB 上,∠EOD =90°,∠COB =90°,那么下列说法错误的是()A .∠1与∠2相等B .∠AOE 与∠2互余C .∠AOE 与∠COD 互余D .∠AOC 与∠COB 互补二、填空题11.收入200元记作+200,那么﹣100表示___________.12.已知(x ﹣2)2+|y+1|=0,则x+y =___________.13.若x 2+2x 的值是6,则2x 2+4x ﹣7的值是__________.14.a 的3倍与b 的差用代数式表示为______.15.如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明了:_______.16.如图是某个几何体的展开图,写出该几何体的名称__________.17.如图,线段AB =3,延长AB 到点C ,使2BC AB =,则AC =_________.18.如图,每一幅图中均含有若干个正方形,第1幅图中有2个正方形;第2幅图中有8个正方形;…按这样的规律下去,第7幅图中有___个正方形.三、解答题19.计算:(1)2×(﹣2)+3(2)375244812⎛⎫⨯-+ ⎪⎝⎭20.解方程:(1)2x+5=5﹣3x (2)4(x ﹣1)=1﹣x21.化简求值:()()4232x y x y ---,其中x =2,y =﹣1.22.如图是小明用10块棱长都为1cm 的正方体搭成的几何体.(1)分别画出从正面、从左面、从上面看到的所搭几何体的形状图并涂阴影;(2)小明所搭几何体的表面积(包括与桌面接触的部分)是.23.如图,已知∠AOB=90°,∠BOC=60°,OD 平分∠AOC .求∠BOD 的度数.24.关于x 、y 的多项式my 3+3nx 2y+2y 3-x 2y+xy+y 不含三次项,求m+3n 的值25.用正方形的白色水泥砖和灰色水泥砖按如图所示的方式铺人行道(1)第①个图中有灰色水泥砖块,第②个图中有灰色水泥砖块,第③个图中有灰色水泥砖块;(2)依次铺下去,第n 个图中有灰色水泥砖块.26.某种铂金饰品在甲、乙两种商店销售,甲店标价每克468元,按标价出售,不优惠,乙店标价每克525元,但若买的铂金饰品重量超过3克,则超出部分可打八折出售.若购买的铂金饰品重量为x 克,其中3x >.(1)分别列出到甲、乙商店购买该种铂金饰品所需费用(用含x 的代数式表示);(2)李阿姨要买一条重量10克的此种铂金饰品,到哪个商店购买最合算;(3)要买一条重量多少克的此种铂金饰品,才能到乙商店购买比到甲商店优惠300元.27.数轴是初中数学的一个重要工具,利用数轴可以将数与形完美结合.研究数轴时,我们发现有许多重要的规律:例如,若数轴上点A ,B 表示的数分别为a ,b ,则A ,B 两点之间的距离AB=a-b ,线段AB 的中点M 表示的数为2a b+.如图,在数轴上,点A,B,C 表示的数分别为-8,2,20.(1)如果点A 和点C 都向点B 运动,且都用了4秒钟,那么这两点的运动速度分别是点A 每秒_______个单位长度、点C 每秒______个单位长度;(2)如果点A 以每秒1个单位长度沿数轴的正方向运动,点C 以每秒3个单位长度沿数轴的负方向运动,设运动时间为t 秒,请问当这两点与点B 距离相等的时候,t 为何值?(3)如果点A 以每秒1个单位长度沿数轴的正方向运动,点B 以每秒3个单位长度沿数轴的正方向运动,且当它们分别到达C 点时就停止不动,设运动时间为t 秒,线段AB 的中点为点P ;①t 为何值时PC=12;②t 为何值时PC=4.参考答案1.A【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2.B【分析】根据无限不循环小数是无理数对各选项进行判断即可.【详解】解:A 、C 、D 中均为有理数,不符合题意;B 中为无理数,符合题意,故选:B .【点睛】本题考查了无理数.解题的关键在于理解无理数.3.B【分析】移项、系数化为1,求解即可.【详解】解:360x +=移项得:36x =-系数化为1得:2x =-故选B .【点睛】本题考查了解一元一次方程,熟练掌握解一元一次方程的一般步骤是解题的关键.4.A【分析】根据科学记数法的定义即可得.【详解】解:91370000000 1.3710=⨯,故选:A .【点睛】本题考查了科学记数法,熟记科学记数法的定义(将一个数表示成10n a ⨯的形式,其中110a ≤<,n 为整数,这种记数的方法叫做科学记数法)是解题关键.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.5.A【分析】根据同类项是字母相同且相同字母的指数也相同,可得答案.【详解】A .-mn 与12mn 是同类项,符合题意;B .2ab 与2abc 所含字母不相同,不符合题意;C.x2y与x2z所含字母不相同,不符合题意;D.a2b与ab2相同字母的指数不相同,不符合题意;故选A.【点睛】本题考查了同类项定义,要熟记同类项的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.6.A【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看到第一层一个小正方形,第二层能看到两个小正方形.故选:A.【点睛】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.7.B【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、C、D都可以确定点C是线段AB中点.【详解】解:A、AC=BC,则点C是线段AB中点;B、AC+BC=AB,则C可以是线段AB上任意一点;C、AB=2AC,则点C是线段AB中点;D、BC=12AB,则点C是线段AB中点.故选:B.【点睛】本题主要考查线段中点,根据线段的中点能够写出正确的表达式.反过来,也要会根据线段的表达式来判断是否为线段的中点.8.C【详解】解:第一个数就是直接输出其结果的:3x-1=257,解得:x=86,第二个数是(3x-1)×3-1=257解得:x=29;第三个数是:3[3(3x-1)-1]-1=257,解得:x=10,第四个数是3{3[3(3x-1)-1]-1}-1=257,解得:x=113(不合题意舍去);第五个数是3(81x-40)-1=257,解得:x=149(不合题意舍去);故满足条件所有x的值是86、29或10.故选:C.9.A【详解】由题目中所给的运算方法可得2134-=2×4-(-3)×1=8+3=11,故选A.点睛:本题为信息题.根据题中给出的信息来答题,首先要理解信息,熟悉规则,然后运用.10.C【分析】根据垂直的定义和互余解答即可.【详解】解:∵∠EOD=90°,∠COB=90°,∴∠1+∠DOC=∠2+∠DOC=90°,∴∠1=∠2,∴∠AOE+∠2=90°,∵∠1+∠AOE=∠1+∠COD,∴∠AOE=∠COD,故选:C.【点睛】本题考查了垂线的定义,关键是熟悉当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直;平角的度数是180°.11.支出100元【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【详解】∵“正”和“负”相对,收入200元记作+200元,∴−100元,记作支出100元,故答案为支出100元.【点睛】此题考查正数和负数,解题关键在于掌握其定义.12.1【分析】根据偶数次幂和绝对值的非负性,求出x,y的值,进而即可求解.【详解】 (x﹣2)2+|y+1|=0,2,1x y∴==-∴+=-=x y211故答案为:1【点睛】本题考查了代数式求值,求得,x y的值是解题的关键.13.5【分析】把x2+2x当做一个整体代入所求即可求解.【详解】∵x2+2x=6∴2x2+4x﹣7=2(x2+2x)﹣7=2×6-7=5故填:5.【点睛】此题主要考查代数式求值,解题的关键是熟知整体代入的方法.14.3a b-【分析】根据题意,列出代数式,即可得到答案.-;【详解】解:根据题意,得:3a b-.故答案为:3a b【点睛】本题考查了列代数式,解题的关键是正确理解题意,列出代数式.15.两点确定一条直线【分析】根据直线的公理确定求解.【详解】解:答案为:两点确定一条直线.【点睛】本题考查直线的确定:两点确定一条直线,熟练掌握数学公理是解题的关键.16.圆柱【分析】根据几何体的平面展开图的特征进行识别.【详解】观察几何体的展开图可知,该几何体是圆柱.故答案为:圆柱.【点睛】考查的是几何体的展开图,掌握圆柱的侧面展开图是长方形是解题的关键.17.9【分析】根据AB=3,BC=2AB得出BC的长,从而得出AC的长.【详解】解:∵AB=3,∴BC=2AB=6,∴AC=AB+BC=3+6=9,故答案为:9.【点睛】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.18.168【分析】根据已知图形找出每幅图中正方形个数的变化规律,即可计算出第7幅图中正方形的个数.【详解】解:第1幅图中有2=2×1个正方形;第2幅图中有8=(3×2+2×1)个正方形;第3幅图中有20=(4×3+3×2+2×1)个正方形;∴第7幅图中有8×7+7×6+6×5+5×4+4×3+3×2+2×1=168个正方形故答案为:168.【点睛】此题考查的是探索规律题,找出正方形个数的变化规律是解决此题的关键.19.(1)-1;(2)7【解析】(1)解:2×(﹣2)+3=-4+3=-1(2)解:375244812⎛⎫⨯-+ ⎝⎭3752424244812⎛⎫=⨯+⨯-+⨯⎪⎝⎭()182110=+-+7=【点睛】此题主要考查了有理数的混合运算,熟悉运算法则是解题关键.20.(1)x =0;(2)x =1【分析】(1)移项合并,然后系数化为1即可;(2)先去括号,然后移项合并,最后系数化为1即可.(1)解:2553x x +=-移项合并得:50x =系数化为1得:0x =∴方程的解为0x =.(2)解:()411x x -=-去括号得:441x x -=-移项合并得:55=x 系数化为1得:1x =∴方程的解为1x =.【点睛】本题考查了解一元一次方程.解题的关键在于正确的去括号.21.x-2y ,4【分析】先去括号,再合并同类项,即可得到化简后的答案,再把x =2,y =﹣1代入化简后的代数式进行计算即可.【详解】解:()()4232x y x y ---=4x-8y -3x+6y =x-2y当x =2,y =﹣1时,原式=2-2×(-1)=4【点睛】本题考查的是整式的化简求值,掌握“去括号的法则”是解本题的关键.22.(1)见解析(2)38cm 2【分析】(1)根据几何体的特征可直接进行求解;(2)由(1)可知前后共有12个小正方形面,左右有12个小正方形面,上下也有12个小正方形面,然后把这些小正方形的面积加起来即为几何体的表面积.(1)三视图如图所示:(2)由(1)可知:前后共有12个小正方形面,左右有12个小正方形面,上下也有12个小正方形面,还有中间凹槽两个面,∴小明所搭几何体的表面积(包括与桌面接触的部分)为(12+12+12+2)×1×1=38cm²;故答案为38cm².【点睛】本题主要考查从不同角度看几何体,熟练掌握几何体的特征是解题的关键.23.∠BOD=15°.【分析】本题需先结合图形,得出∠AOC的度数,再根据OD平分∠AOC,得出∠AOD的度数,最后即可求出正确答案.【详解】解:∵∠AOB=90°,∠BOC=60°,∴∠AOC=∠AOB+∠BOC=150°.∵OD平分∠AOC,∴∠AOD=∠COD=12∠AOC=75°,∴∠BOD=∠AOB-∠AOD=15°.【点睛】本题主要考查了角平分线定义的应用以及角的计算.利用图形计算角的和差是解题的关键.24.m+3n=-1【分析】根据多项式my3+3nx2y+2y3-x2y+xy+y不含三次项,得出m+2=0,3n﹣1=0,求出m,n的值,再代入计算即可.【详解】解:my3+3nx2y+2y3-x2y+xy+y=(m+2)y3+(3n-1)x2y+xy+y,因为多项式不含三次项,所以m+2=0,3n﹣1=0,即m=﹣2,n=1 3,m+3n=﹣2+1=-1.【点睛】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.同时考查了多项式的定义,利用多项式不含三次项得出三次项系数和为0,进而求出答案是解题关键.25.(1)4,7,10(2)(3n+1)【分析】(1)直接根据图形得出灰色水泥砖的块数即可;(2)根据(1)中数据的个数得出变化规律为:3n+1,即可得出答案.(1)解:根据图形可得图①中有灰色水泥砖1+3=4块,图②中有灰色水泥砖1+2×3=7块,图③中有灰色水泥砖1+3×3=10块;故答案为:4;7;10;(2)解:根据图形可得图①中有灰色水泥砖1+3=4块,图②中有灰色水泥砖1+2×3=7块,图③中有灰色水泥砖1+3×3=10块;……依次铺下去,第n个图形中有灰色水泥砖(3n+1)块;故答案为:(3n+1).【点睛】此题主要考查了图形的变化类,对于找规律的题目首先应找出发生变化的位置,并且观察变化规律.注意由特殊到一般的分析方法.26.(1)甲商店:468x元;乙商店:(420x+315)元;(2)到乙商店购买最合算;(3)12.8125克.【分析】(1)根据两个商店的销售方法分别列式整理即可;(2)把x=10分别代入(1)中列出的两个式子进行计算,然后比较即可得出结果;(3)根据到乙商店购买比到甲商店优惠300元列方程求解即可.【详解】解:(1)甲商店:468x;乙商店:525×3+(x-3)×525×0.8=420x+315;答:甲商店购买该种铂金饰品的费用为468x元;乙商店购买该种铂金饰品的费用为(420x+315)元;(2)当x=10时,甲商店:468×10=4680(元),乙商店:420×10+315=4515(元),∵4680>4515,答:到乙商店购买最合算;(3)由题意得,468x-300=420x+315,解得x=12.8125.答:要买一条重量12.8125克的此种铂金饰品,才能到乙商店购买比到甲商店优惠300元.27.(1)2.5;4.5;(2)t=4或7;(3)①112;②20【分析】(1)根据数轴上两点之间的距离公式求出AB的长和BC的长,然后根据速度=路程÷时间即可得出结论;(2)分点A和点C相遇前AB=BC、相遇时AB=BC和相遇后AB=BC三种情况,分别画出对应的图形,然后根据AB=BC列出方程求出t的即可;(3)①分点B到达点C之前和点B到达点C之后且点A到点C之前两种情况,分别画出对应的图形,利用中点公式、两点之间的距离公式和PC=12列方程即可求出t的值;②分点B到达点C之前和点B到达点C之后且点A到点C之前两种情况,分别画出对应的图形,利用中点公式、两点之间的距离公式和PC=12列方程即可求出t的值;【详解】解:(1)∵点A,B,C表示的数分别为-8,2,20.∴AB=2-(-8)=10,BC=20-2=18∵点A和点C都向点B运动,且都用了4秒钟,∴点A的速度为每秒:AB÷4=2.5个单位长度,点C的速度为每秒:BC÷4=4.5个单位长度,故答案为:2.5;4.5.(2)AC=20-(-8)=28∴点A和点C相遇时间为AC÷(1+3)=7s当点A和点C相遇前,AB=BC时,此时0<t<7,如下图所示此时点A运动的路程为1×t=t,点C运动的路程为3×t=3t∴此时AB=10-t,BC=18-3t∵AB=BC∴10-t=18-3t解得:t=4;当点A和点C相遇时,此时t=7,如下图所示此时点A和点C重合∴AB=BC即t=7;当点A和点C相遇后,此时t>7,如下图所示由点C的速度大于点A的速度∴此时BC>AB故此时不存在t,使AB=BC.综上所述:当A、C两点与点B距离相等的时候,t=4或7.(3)点B到达点C的时间为:BC÷3=6s,点A到达点C的时间为:AC÷1=28s ①当点B到达点C之前,即0<t<6时,如下图所示此时点A所表示的数为-8+t,点B所表示的数为2+3t∴线段AB的中点P表示的数为()() 823232t tt-+++=-∴PC=20-(2t-3)=12解得:t=11 2;当点B到达点C之后且点A到点C之前,即6≤t<28时,如下图所示此时点A所表示的数为-8+t,点B所表示的数为20∴线段AB的中点P表示的数为()820622t t-++=+∴PC=20-(62t +)=12解得:t=4,不符合前提条件,故舍去.综上所述:t=112时,PC=12;②当点B 到达点C 之前,即0<t <6时,如下图所示此时点A 所表示的数为-8+t ,点B 所表示的数为2+3t∴线段AB 的中点P 表示的数为()()823232t t t -+++=-∴PC=20-(2t -3)=4解得:t=192,不符合前提条件,故舍去;当点B 到达点C 之后且点A 到点C 之前,即6≤t <28时,如下图所示此时点A 所表示的数为-8+t ,点B 所表示的数为20∴线段AB 的中点P 表示的数为()820622t t -++=+∴PC=20-(62t +)=4解得:t=20.综上所述:当t=20时,PC=4.。

新苏科版七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库

新苏科版七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库
24.已知下列等式:
①32-12=8,
②52-32=16,
③72-52=24,

(1)请仔细观察,写出第5个式子;
(2)根据以上式子的规律,写出第n个式子,并用所学知识说明第n个等式成立.
25.定义:对于任何数 ,符号 表示不大于 的最大整数.
(1)
(2)如果 ,求满足条件的所有整数 。
26.因式分解:
9.将下列三条线段首尾相连,能构成三角形的是()
A.1,2,3B.2,3,6C.3,4,5D.4,5,9
10.下列各式从左到右的变形中,是因式分解的为( )
A.ab+ac+d=a(b+c)+dB.(x+2)(x﹣2)=x2﹣4
C.6ab=2a⋅3bD.x2﹣8x+16=(x﹣4)2
11.下列图形中,能将其中一个三角形平移得到另一个三角形的是( )
15.最薄的金箔的厚度为 ,用科学记数法表示为________ .
16.若am=6 , an=2,则am−n=________
17.已知 , ,则 ______________.
18.如图, 、 、 、 是五边形 的4个外角,若 ,则 _______°.
19.如图,已知AE是△ABC的边BC上的中线,若AB=8cm,△ACE的周长比△AEB的周长多2cm,则AC=_____.


故选: .
【点睛】
本题考查了整式的混合运算在几何图形问题中的应用,数形结合并根据题意正确表示出两部分阴影的面积之差是解题的关键.
3.C
解析:C
【分析】
直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解.
【详解】
∵ , , , ,

最新苏科七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库

最新苏科七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库

最新苏科七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库一、选择题1.下列计算正确的是( ) A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a =2.下列各式从左到右的变形中,是因式分解的是( ) A .2(3)(3)9a a a +-=- B .2323(2)a a a a a--=-- C .245(4)5a a a a --=-- D .22()()a b a b a b -=+-3.下列分解因式正确的是( ) A .x 3﹣x=x (x 2﹣1)B .m 2+m ﹣6=(m+3)(m ﹣2)C .(a+4)(a ﹣4)=a 2﹣16D .x 2+y 2=(x+y )(x ﹣y ) 4.已知,则a 2-b 2-2b 的值为A .4B .3C .1D .05.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( )A .12a b =⎧⎨=⎩B .21a b =⎧⎨=⎩C .12a b =-⎧⎨=-⎩D .21a b =⎧⎨=-⎩6.若(x+2)(2x-n)=2x 2+mx-2,则( ) A .m=3,n=1; B .m=5,n=1; C .m=3,n=-1;D .m=5,n=-1; 7.计算23x x 的结果是( )A .5xB .6xC .8xD .23x8.能把一个三角形的面积分成相等的两部分的线是这个三角形的( )A .一条高B .一条中线C .一条角平分线D .一边上的中垂线9.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( ) A .8312x y x y +=⎧⎨-=⎩B .8312x y x y -=⎧⎨-=⎩C .18312x y x y +=⎧⎨+=⎩D .8312x y x y -=⎧⎨+=⎩10.如图,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A .B .C .D .11.下列不等式:ac bc >;ma mb -<-;22ac bc >;22ac bc ->-,其中能推出a b>的是( ) A .ac bc >B .ma mb -<-C .22ac bc >D .22ac bc ->-12.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题13.如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有______个.14.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.15.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB =____.16.若多项式29x mx ++是一个完全平方式,则m =______.17.如图,点B 在线段AC 上(BC>AB ),在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB=1时,△AME 的面积记为S 1;当AB=2时,△AME的面积记为S 2;当AB=3时,△AME 的面积记为S 3;则S 2020﹣S 2019=_____.18.已知△ABC 中,∠A =60°,∠ACB =40°,D 为BC 边延长线上一点,BM 平分∠ABC ,E 为射线BM 上一点.若直线CE 垂直于△ABC 的一边,则∠BEC =____°.19.已知关于x 的不等式组521{0x x a -≥-->无解,则a 的取值范围是________.20.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.21.已知:()521x x ++=,则x =______________.22.计算:2020(0.25)-×20194=_________.23.已知关于x ,y 的方程22146m n m n xy --+++=是二元一次方程,那么点(),M m n 位于平面直角坐标系中的第______象限.24.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______.三、解答题25.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-. 26.已知:方程组2325x y ax y +=-⎧⎨+=⎩,是关于x 、y 的二元一次方程组.(1)求该方程组的解(用含a 的代数式表示);(2)若方程组的解满足0x <,0y >,求a 的取值范围.27.A 市准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的提示牌和垃圾箱,若购买2个提示牌和3个垃圾箱共需550元,且垃圾箱的单价是提示牌单价的3倍.(1)求提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案.28.如图,在△ABC中,∠ABC=56º,∠ACB=44º,AD是BC边上的高,AE是△ABC的角平分线,求出∠DAE的度数.轴于B,点C在29.如图(1),在平面直角坐标系中,点A在x轴负半轴上,直线l x直线l上,点C在x轴上方.(1)(),0A a ,(),2C b ,且,a b 满足2()|4|0a b a b ++-+=,如图(2),过点C 作MN ∥AB ,点Q 是直线MN 上的点,在x 轴上是否存在点P ,使得ABC ∆的面积是BPQ 的面积的23?若存在,求出P 点坐标;若不存在,请说明理由.(2)如图(3),直线l 在y 轴右侧,点E 是直线l 上动点,且点E 在x 轴下方,过点E 作DE ∥AC 交y 轴于D ,且AF 、DF 分别平分CAB ∠、ODE ∠,则AFD ∠的度数是否发生变化?若不变,求出AFD ∠的度数;若变化,请说明理由. 30.计算: (1)2a (a ﹣2a 2); (2)a 7+a ﹣(a 2)3; (3)(3a +2b )(2b ﹣3a ); (4)(m ﹣n )2﹣2m (m ﹣n ).31.如图,△ABC 中,AD 是高,AE 、BF 是角平分线,它们相交于点O ,∠BAC=60°,∠C=50°,求∠DAC 及∠BOA 的度数.32.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中x =﹣2.33.定义:若实数x ,y 满足22x y t =+,22y x t =+,且x ≠y ,则称点M (x ,y )为“好点”.例如,点(0,-2)和 (-2,0)是“好点”.已知:在直角坐标系xOy 中,点P (m ,n ).(1)P 1(3,1)和P 2(-3,1)两点中,点________________是“好点”. (2)若点P (m ,n )是“好点”,求m +n 的值.(3)若点P 是“好点”,用含t 的代数式表示mn ,并求t 的取值范围.34.已知关于x,y 的方程组260250x y x y mx +-=⎧⎨-++=⎩(1)请直接写出方程260x y +-=的所有正整数解(2)若方程组的解满足x+y=0,求m 的值(3)无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,请直接写出这个解? 35.如图,已知:点A C 、、B 不在同一条直线,AD BE .(1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有ACQB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.36.计算: (1)()()1202001113π-⎛⎫--+- ⎪⎝⎭; (2)(x +1)(2x ﹣3).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据同底幂的运算法则依次判断各选项. 【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a =,错误 故选:C . 【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.2.D解析:D 【分析】根据因式分解的定义,需要将式子变形为几个整式相乘的形式,据此可判断. 【详解】A 、C 不是几个式子相乘的形式,错误;B 中,32a a--不是整式,错误; D 是正确的 故选:D . 【点睛】本题考查因式分解的定义,注意一定要化成多个整式相乘的形式才叫因式分解.3.B解析:B 【解析】试题分析:因式分解是指将几个多项式的和的形式转化个几个多项式或多项式的积的形式.A 、没有完全分解,还可以利用平方差公式进行;B 、正确;C 、不是因式分解;D 、无法进行因式分解. 考点:因式分解4.C解析:C 【分析】先将原式化简,然后将a−b =1整体代入求解. 【详解】()()2212221a b a b b a b a b ba b b a b -∴--+--+--=,====.故答案选:C . 【点睛】此题考查的是整体代入思想在代数求值中的应用.5.A解析:A【分析】 把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得到关于a ,b 的二元一次方程组,解之即可.【详解】解:把21x y =⎧⎨=-⎩代入方程组03210ax by ax by +=⎧⎨-=⎩得:2=06210a b a b -⎧⎨+=⎩, 解得:=1=2a b ⎧⎨⎩,故选A. 【点睛】本题考查了二元一次方程组的解,正确掌握代入法和解二元一次方程组的方法是解题的关键.6.A解析:A 【解析】先根据多项式乘多项式的法则展开,再根据对应项的系数相等求解即可.∵(x+2)(2x-n )=2x 2+4x-nx-2n , 又∵(x+2)(2x-n)=2x 2+mx-2,∴2x 2+(4-n)x-2n=2x 2+mx-2, ∴m=3,n=1.“点睛”本题考查多项式乘以多项式的法则,利用多项式的乘法法则展开多项式,根据对应项系数相等列式是求解的关键,明白乘法运算和分解因式是互逆运算.7.A解析:A 【分析】根据同底数幂相乘,底数不变,指数相加即可求解. 【详解】解:∵23235x x x x +==, 故选A . 【点睛】本题考查同底数幂的运算性质,较容易,熟练掌握同底数幂的运算法则是解题的关键.8.B解析:B 【分析】根据三角形中线的性质作答即可. 【详解】解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线. 故选:B . 【点睛】本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.9.A解析:A 【分析】设这个队胜x 场,负y 场,根据在8场比赛中得到12分,列方程组即可. 【详解】解:设这个队胜x 场,负y 场,根据题意,得8312x y x y +=⎧⎨-=⎩.故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.10.D解析:D 【分析】根据平移的性质,不改变图形的形状和大小,经过平移,对应点所连的线段平行且相等,对应线段平行且相等. 【详解】通过图案①平移得到必须与图案①完全相同,角度也必须相同, 观察图形可知D 可以通过图案①平移得到. 故答案选:D. 【点睛】本题考查的知识点是生活中的平移现象,解题的关键是熟练的掌握生活中的平移现象.11.C解析:C 【分析】根据不等式的性质逐项判断即可. 【详解】解:A. ac bc >,由于不知道c 的符号,故无法得到a b >,故该选项不合题意; B. ma mb -<-,由于不知道-m 的符号,故无法得到a b >,故该选项不合题意; C. 22ac bc >,∵20c ≠,∴2c >0,∴a b >,故该选项符合题意; D. 22ac bc ->-,∵20c ≠,∴20c -<,∴a b <,故该选项不合题意. 故选:C【点睛】本题考查了不等式的性质,熟知不等式的性质是解题关键.12.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题13.6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案解析:6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案为6.点睛:此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.14.95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE交AB于F,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE交AB于F,∵AB∥CD,∴∠B=180°﹣∠C=180°﹣105°=75°,∵BC∥DE,∴∠AFE=∠B=75°,在△AEF中,∠AED=∠A+∠AFE=20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.15.105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BD解析:105°.【分析】先根据直角三角形的特殊角可知:∠ECD=45°,∠BDC=60°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°.故答案为:105°.【点睛】此题考查三角形外角的性质,掌握三角形的一个外角等于与它不相邻的两个内角的和的性质是解题的关键.16.-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为解析:-6或6【分析】首末两项是x和3这两个数的平方,那么中间一项为加上或减去x和3积的2倍.【详解】解:∵x2+mx+9=x2+mx+32,∴mx=±2×3×x,解得m=6或-6.故答案为-6或6.【点睛】本题考查完全平方式,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.17.【分析】先连接BE,则BE∥AM,利用△AME的面积=△AMB的面积即可得出,,即可得出Sn-Sn-1的值,再把n=2020代入即可得到答案【详解】如图,连接BE,∵在线段AC同侧作解析:4039 2【分析】先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出212n S n = ,211122n S n n -=-+ ,即可得出S n -S n-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF ,∴BE ∥AM ,∴△AME 与△AMB 同底等高,∴△AME 的面积=△AMB 的面积,∴当AB=n 时,△AME 的面积记为212n S n =, 221111(1)222n S n n n -=-=-+ ∴当n ≥2时,221111121()22222n n n S S n n n n ---=--+=-= , ∴S 2020﹣S 2019=220201403922⨯-= , 故答案为:40392. 【点睛】此题主要考查了三角形面积求法以及正方形的性质,根据已知得出正确图形,得出S 与n 的关系是解题关键. 18.10°或50°或130°【分析】分三种情况讨论:①当CE⊥BC 时;②当CE⊥AB 时;③当CE⊥AC 时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC 时,解析:10°或50°或130°【分析】分三种情况讨论:①当CE ⊥BC 时;②当CE ⊥AB 时;③当CE ⊥AC 时;根据垂直的定义和三角形内角和计算即可得到结论.【详解】解:①如图1,当CE⊥BC时,∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠CBE=12∠ABC=40°,∴∠BEC=90°-40°=50°;②如图2,当CE⊥AB时,∵∠ABE=12∠ABC=40°,∴∠BEC=90°+40°=130°;③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°-90°-40°-40°=10°;综上所述:∠BEC的度数为10°,50°,130°,故答案为:10°,50°,130°.【点睛】本题考查了垂直的定义和三角形的内角和,考虑全情况是解题关键.19.a≥3【详解】解:解5-2x≥-1,得x≤3;解x-a>0,得x>a,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.20.【分析】设,代入原式化简即可得出结果.【详解】原式故答案为:.【点睛】本题考查了整式的混合运算,设将式子进行合理变形是解题的关键. 解析:12020【分析】 设1120182019m =+,代入原式化简即可得出结果. 【详解】 原式()111120202020m m m m ⎛⎫⎛⎫=-+--- ⎪ ⎪⎝⎭⎝⎭ 221202*********m m m m m m =-+--++ 12020= 故答案为:12020. 【点睛】本题考查了整式的混合运算,设1120182019m =+将式子进行合理变形是解题的关键. 21.-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x+2≠0时,x+5=0,解得:x=﹣5.当x+2=1时,x=﹣1,当x+2解析:-5或-1或-3【分析】根据零指数幂和1的任何次幂都等于1分情况讨论求解.【详解】解:根据0指数的意义,得:当x +2≠0时,x +5=0,解得:x =﹣5.当x +2=1时,x =﹣1,当x +2=﹣1时,x =﹣3,x +5=2,指数为偶数,符合题意. 故答案为:﹣5或﹣1或﹣3.【点睛】本题考查零指数幂和有理数的乘方,掌握零指数幂和1的任何次幂都是1是本题的解题关键.22.【分析】先将写成的形式,再利用积的乘方逆运算将指数相同的因数相乘即可得到答案.【详解】×,,,=,故答案为:.【点睛】此题考查高次幂的乘法运算,同底数幂相乘的逆运算,积的乘方的逆 解析:14【分析】先将2020(0.25)-写成201911()44⨯的形式,再利用积的乘方逆运算将指数相同的因数相乘即可得到答案.【详解】 2020(0.25)-×20194,2019201911()444=⨯⨯, 201911(4)44=⨯⨯, =14, 故答案为:14. 【点睛】此题考查高次幂的乘法运算,同底数幂相乘的逆运算,积的乘方的逆运算,正确掌握公式是解此题的关键.23.四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得,解得,∴点M 坐标为,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元解析:四【分析】根据题意得到关于m 、n 的二元一次方程组,确定点M 坐标,判断M 所在象限即可.【详解】解:由题意得22111m n m n --=⎧⎨++=⎩, 解得11m n =⎧⎨=-⎩, ∴点M 坐标为()1,1-,∴点M 在第四象限.故答案为:四【点睛】本题考查了二元一次方程定义,二元一次方程组解法,点的坐标等知识,综合性较强,根据题意列出方程组是解题关键.24.【分析】先把二元一次方程组求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:,把①②式相加得到:,即: ,要二元一次方程组有整数解,即为整数,又∵为正整数,故解析:2【分析】先把二元一次方程组210320mx y x y +=⎧⎨-=⎩求解出来,用m 表示,再根据有整数解求解m 的值即可得到答案;【详解】解:210320mx y x y +=⎧⎨-=⎩①②, 把①②式相加得到:310+=mx x , 即:103x m =+ , 要二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解, 即103x m =+为整数, 又∵m 为正整数,故m=2, 此时10223x ==+,3y = , 故,x y 均为整数,故答案为:2;【点睛】本题主要考查了二元一次方程组的求解,掌握二元一次方程组的求解步骤是解题的关键;三、解答题25.2243x xy y -++,19【分析】根据整式的乘法运算法则,将多项式乘积展开,再合并同类项,即可化简,再代入x ,y 即可求值.【详解】解:原式2222222=44424243x x xy y xy x y xy x xy y -+---++=-++,将1x =-,2y =-代入,则原代数式的值为:2243=x xy y -++()()()()22141232=1812=19--+⋅-⋅-+⋅--++.【点睛】本题考查整式的乘法,难度一般,是中考的常考点,熟练掌握多项式与多项式相乘的法则,即可顺利解题.26.(1)1213x a y a=+⎧⎨=-⎩;(2)12a <- 【分析】(1)利用加减消元法求解可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)①2⨯,得 2242x y a +=-.③②-③,得12x a =+把12x a =+代入①,得13y a =-所以原方程组的解是1213x a y a =+⎧⎨=-⎩(2)根据题意,得 120130a a +<⎧⎨->⎩解不等式组,得,12a <- 所以a 的取值范围是:12a <-. 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.27.(1)50元,150元;(2)提示牌50个,垃圾箱50个;提示牌51个,垃圾箱49个;提示牌52个,垃圾箱48个;【分析】1)根据“购买2个提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论; (2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【详解】解:(1)设提示牌的单价为x 元,则垃圾箱的单价为3x 元,根据题意得,233550x x +⨯=,50x ∴=,3150x ∴=,即:提示牌和垃圾箱的单价各是50元和150元;(2)设购买提示牌y 个(y 为正整数),则垃圾箱为(100)y -个,根据题意得,1004850150(100)10000y y y ,5052y , y 为正整数,y ∴为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,【点睛】此题主要考查了一元一次不等式组,一元一次方程的应用,正确找出相等关系是解本题的关键.28.6°【解析】试题分析:先根据三角形内角和求出∠BAC 的度数,由AE 是△ABC 的角平分线,求出∠DAC 的度数,由AD 是BC 边上的高,求出∠EAC 的度数,再利用角的和差求出∠DAE 的度数.解:∵在△ABC 中,∠ABC =56°,∠ACB =44°∴∠BA C =180°-∠ABC-∠ACB =80°∵AE 是△ABC 的角平分线∴∠EAC=12∠BA C =40° ∵AD 是BC 边上的高,∠ACB =44°∴∠DAC=90°-∠ACB =46°∴∠DAE=∠DAC-∠EAC=6°29.(1)存在,P 点为()8,0或()4,0-;(2)AFD ∠的度数不变,AFD ∠=45︒【分析】(1)由非负数的性质可得a 、b 的方程组,解方程组即可求出a 、b 的值,于是可得点A 、C 坐标,进而可得S △ABC ,若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ ,可得关于m 的方程,解方程即可求出m 的值,从而可得点P 坐标;(2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,根据平行公理的推论可得AC ∥FH ∥DE ,然后根据平行线的性质和角的和差可得∠AFD =∠GAF +∠1,由角平分线的性质和三角形的内角和定理可得2∠GAF +2∠1=90°,于是可得∠AFD =45°,从而可得结论.【详解】解:(1)∵,a b 满足2()|4|0a b a b ++-+=,∴040a b a b +=⎧⎨-+=⎩,解得:22a b =-⎧⎨=⎩, ∴()2,0A -,()2,2C , ∴S △ABC =14242⨯⨯=, ∵点Q 是直线MN 上的点,∴2Q y =, 若x 轴上存在点P (m ,0),满足S △ABC =23S △BPQ , 则2122432m ⨯⋅-⨯=,解得:m =8或﹣4, 所以存在点P 满足S △ABC =23S △BPQ ,且P 点坐标为()8,0或()4,0-; (2)如图4,过点F 作FH ∥AC ,设AC 交y 轴于点G ,∵DE ∥AC ,∴AC ∥FH ∥DE ,∴∠GAF =∠AFH ,∠HFD =∠1,∠AGO =∠GDE ,∴∠AFD =∠AFH +∠HFD =∠GAF +∠1, ∵AF 、DF 分别平分CAB ∠、ODE ∠,∴∠CAB =2∠GAF ,∠ODE =2∠1=∠AGO ,∵∠CAB +∠AGO =90°,∴2∠GAF +2∠1=90°,∴∠GAF +∠1=45°,即∠AFD =45°;∴AFD ∠的度数不会发生变化,且∠AFD =45°.【点睛】本题考查了非负数的性质、二元一次方程组的解法、坐标系中三角形的面积、平行线的性质、角平分线的定义以及三角形的内角和定理等知识,综合性强、但难度不大,正确添加辅助线、熟练掌握上述是解题的关键.30.(1)2a 2﹣4a 3;(2)a 7+a ﹣a 6;(3)4b 2﹣9a 2;(4)n 2﹣m 2【分析】(1)由题意根据单项式乘以多项式法则求出即可;(2)根据题意先算乘方,再合并同类项即可;(3)由题意直接根据平方差公式求出即可;(4)由题意先根据完全平方公式和单项式乘以多项式进行计算,再合并同类项即可.【详解】解:(1)2a (a ﹣2a 2)=2a 2﹣4a 3;(2)a 7+a ﹣(a 2)3=a 7+a ﹣a 6;(3)(3a +2b )(2b ﹣3a )=4b 2﹣9a 2;(4)(m ﹣n )2﹣2m (m ﹣n )=m 2﹣2mn +n 2﹣2m 2+2mn=n 2﹣m 2.【点睛】本题考查整式的混合运算,乘法公式等知识点,能正确根据整式的运算法则进行化简是解此题的关键.31.∠DAC=40°,∠BOA=115°【解析】试题分析:在Rt △ACD 中,根据两锐角互余得出∠DAC 度数;△ABC 中由内角和定理得出∠ABC 度数,再根据AE ,BF 是角平分线可得∠BAO、∠ABO,最后在△ABO 中根据内角和定理可得答案.解:∵AD 是BC 边上的高,∴∠ADC=90°,又∵∠C=50°,∴在△ACD 中,∠DAC=90°-∠C=40°,∵∠BAC=60°,∠C=50°,∴在△ABC 中,∠ABC=180°-∠BAC-∠C=70°,又∵AE 、BF 分别是∠BAC 和∠ABC 的平分线,∴∠BAO=12∠BAC=30°,∠ABO=12∠ABC=35°, ∴∠BOA=180°-∠BAO -∠ABO =180°-30°-35°=115°. 32.23x x +-;1-【分析】先通过整式的乘法及乘法公式对原式进行去括号,然后通过合并同类项进行计算即可化简原式,再将2x =-代入即可得解.【详解】解:原式222221343x x x x x x x =-+-++-=+-将2x =-代入,原式2(2)(2)34231=-+--=--=-.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的乘法公式及合并同类项的运算方法是解决本题的关键.33.(1)2P ;(2)2-;(3)3t >【分析】(1)将P 1(3,1)和P 2(-3,1)分别代入等式即可得出结果;(2)将点P (m ,n )代入等式即可得出m+n 的值;(3)根据“好点”的定义,将P 点代入即可得到关于m 和n 的等式,将两个等式结合即可得出结果.【详解】解:(1)对于1(3,1)P ,2321,7t t =⨯+=,2123,5t t =⨯+=- 对于2(3,1)P -,2(3)21,7t t -=⨯+=,212(3),7t t =⨯-+=,所以2P 是“好点” (2)∵点(,)P m n 是好点,∴222,2m n t n m t =+=+, 222()m n n m -=-,∴2m n +=-(3)∵222,2m n t n m t =+=+,2222m n n t m t -=+--①,2222m n m t n t +=+++②,得()()2()0m n m n m n -++-=,即()(2)0m n m n -++=,由题知,,2m n m n ≠∴+=-,由②得2()22()2m n mn m n t +-=++,∴4242,4mn t mn t -=-+=-,∵m n ≠,∴2()0m n ->,∴2()40m n mn +->,∴44(4)0t -->,所以3t >,【点睛】本题主要考查的是新定义“好点”,正确的掌握整式的乘法解题的关键.34.(1)24,21x x y y ==⎧⎧⎨⎨==⎩⎩(2)-136(3)02.5x y =⎧⎨=⎩【解析】分析:(1)先对方程变形为x=6-2y ,然后可带入数值求解;(2)把已知的x+y=0和方程x+2y-6=0组合成方程组,求解方程组的解,然后代入方程x-2y+mx+5=0即可求m 的值;(3)方程整理后,根据无论m 如何变化,二元一次方程组总有一个固定的解,列出方程组,解方程组即可;详解:(1)∵x+2y-6=0∴x=6-2y当y=1时,x=4,当y=2时,x=2∴24,21x x y y ==⎧⎧⎨⎨==⎩⎩ (2)根据题意,把x+y=6和x+2y-6=0构成方程组为:6260x y x y +=⎧⎨+-=⎩和 解得66x y =-⎧⎨=⎩把66x y =-⎧⎨=⎩代入x-2y+mx+5=0, 解得m=136- (3)∵无论实数m 取何值,方程x -2y+mx+5=0总有一个固定的解,∴x=0时,m 的值与题目无关∴y=2.5∴02.5x y =⎧⎨=⎩ 点睛:此题主要考查了二元一次方程组的应用,对方程组中的方程灵活变形,构成可解方程是解题关键,有一定的难度,合理选择加减消元法和代入消元法解题是关键.35.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒ (2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠∵2180C AQB ∠+∠=︒ ∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒ ∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.36.(1)﹣1;(2)223x x --【分析】(1)分别根据﹣1的偶次幂、负整数指数幂的运算法则和0指数幂的意义计算每一项,再合并即可;(2)根据多项式乘以多项式的法则解答即可.【详解】解:(1)()()1202001113π-⎛⎫--+- ⎪⎝⎭=131-+=﹣1; (2)(x +1)(2x ﹣3)=22232323x x x x x -+-=--.【点睛】本题考查了负整数指数幂的运算法则和0指数幂的意义以及多项式的乘法法则等知识,属于基本题型,熟练掌握上述基础知识是解题关键.。

苏科七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库

苏科七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库

苏科七年级苏科初一数学下册期末测试题及答案(共五套) 百度文库一、选择题1.如图,能判断AB ∥CE 的条件是( )A .∠A =∠ECDB .∠A =∠ACEC .∠B =∠BCAD .∠B =∠ACE 2.现有两根木棒,它们长分别是40cm 和50cm ,若要钉成一个三角形木架,则下列四根木棒应选取( )A .10cm 的木棒B .40cm 的木棒C .90cm 的木棒D .100cm 的木棒3.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 4.下列代数运算正确的是( ) A .x•x 6=x 6 B .(x 2)3=x 6C .(x+2)2=x 2+4D .(2x )3=2x 3 5.下列计算正确的是( )A .a 4÷a 3=aB .a 4+a 3=a 7C .(-a 3)2=-a 6D .a 4⋅a 3=a 12 6.观察下列等式: 133=,239=,3327=,4381=,53243=,63729=,732187=,试利用上述规律判断算式234202033333+++++…结果的末位数字是( ) A .0 B .1 C .3 D .77.如图,∠1=50°,如果AB ∥DE ,那么∠D=( )A .40°B .50°C .130°D .140°8.下列图形中,不能通过其中一个四边形平移得到的是( )A .B .C .D .9.已知点M (2x ﹣3,3﹣x ),在第一、三象限的角平分线上,则M 点的坐标为( ) A .(﹣1,﹣1). B .(﹣1,1) C .(1,1) D .(1,﹣1)10.下列运算正确的是( )A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 11.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG的面积是( )A .4.5B .5C .5.5D .6 12.下列各式中,不能够用平方差公式计算的是( ) A .(y +2x )(2x ﹣y )B .(﹣x ﹣3y )(x +3y )C .(2x 2﹣y 2 )(2x 2+y 2 )D .(4a +b ﹣c )(4a ﹣b ﹣c )二、填空题13.计算:m 2•m 5=_____.14.分解因式:m 2﹣9=_____.15.若a m =5,a n =3,则a m +n =_____________.16.根据不等式有基本性质,将()23m x -<变形为32x m >-,则m 的取值范围是__________.17.已知()223420x y x y -+--=,则x=__________,y=__________.18.计算:5-2=(____________) 19.计算212⎛⎫= ⎪⎝⎭______. 20.若2m =3,2n =5,则2m+n =______.21.小马在解关于x 的一元一次方程3232a x x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.22.计算:22020×(12)2020=_____. 23.将一张长方形纸片ABCD 沿EF 折叠后ED 与BC 的交点为G 、D 、C 分别在M 、N 的位置上,若52EFG ∠=︒,则21∠-∠=_____________︒.24.在平面直角坐标系中,将点()2,3P -先向上平移1个单位长度,再向左平移3个单位长度后,得到点P ',则点P '的坐标为_______.三、解答题25.先化简后求值:224(2)(2)(2)x x y x y y x --+---,其中1x =-,2y =-.26.计算:(1)()20202011 3.142π-⎛⎫-+-+ ⎪⎝⎭ (2)()2462322x y x xy -- (3)()()22342a b a a b --- (4)()()2323m n m n -++-27.已知a+b=2,ab=-1,求下面代数式的值:(1)a 2+b 2;(2)(a-b )2.28.阅读下列各式:(a•b )2=a 2b 2,(a•b )3=a 3b 3,(a•b )4=a 4b 4…回答下列三个问题:(1)验证:(2×12)100= ,2100×(12)100= ; (2)通过上述验证,归纳得出:(a•b )n = ; (abc )n = .(3)请应用上述性质计算:(﹣0.125)2017×22016×42015.29.如果a c =b ,那么我们规定(a ,b )=c .例如;因为23=8,所以(2,8)=3. (1)根据上述规定填空:(3,27)= ,(4,1)= ,(2,0.25)= ; (2)记(3,5)=a ,(3,6)=b ,(3,30)=c .判断a ,b ,c 之间的等量关系,并说明理由.30.阅读材料:把形如2ax bx c ++的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即222)2(a ab b a b ±+=±.例如:2224213x x x x -+=-++2(1)3x =-+是224x x -+的一种形式的配方;所以,()213x -+,2(2)x -2x +,22213224x x ⎛⎫-+ ⎪⎝⎭是224x x -+的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项).请根据阅读材料解决下列问题:(1)比照上面的例子,写出249x x -+三种不同形式的配方;(2)已知22610340x y x y +-++=,求32x y -的值;(3)已知2223240a b c ab b c ++---+=,求a b c ++的值.31.在平面直角坐标系中,点A 、B 的坐标分别为(),0a ,()0,b ,其中a ,b 满足218|273|0a b a b +-+--=.将点B 向右平移15个单位长度得到点C ,如图所示.(1)求点A ,B ,C 的坐标;(2)动点M 从点C 出发,沿着线段CB 、线段BO 以1.5个单位长度/秒的速度运动,同时点N 从点O 出发沿着线段OA 以1个单位长度秒的速度运动,设运动时间为t 秒()012t <<.当BM AN <时,求t 的取值范围;是否存在一段时间,使得OACM OCN S S ≤四边形三角形?若存在,求出t 的取值范围;若不存在,说明理由.32.解方程组:(1)2531y x x y =-⎧⎨+=-⎩; (2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩. 33.把几个图形拼成一个新的图形,再通过两种不同的方式计算同一个图形的面积,可以得到一个等式,也可以求出一些不规则图形的面积.例如,由图1,可得等式:(a+2b )(a+b )=a 2+3ab+2b 2.(1)由图2,可得等式 ;(2)利用(1)所得等式,解决问题:已知a+b+c =11,ab+bc+ac =38,求a 2+b 2+c 2的值. (3)如图3,将两个边长为a 、b 的正方形拼在一起,B ,C ,G 三点在同一直线上,连接BD和BF,若这两个正方形的边长a、b如图标注,且满足a+b=10,ab=20.请求出阴影部分的面积.(4)图4中给出了边长分别为a、b的小正方形纸片和两边长分别为a、b的长方形纸片,现有足量的这三种纸片.①请在下面的方框中用所给的纸片拼出一个面积为2a2+5ab+2b2的长方形,并仿照图1、图2画出拼法并标注a、b;②研究①拼图发现,可以分解因式2a2+5ab+2b2=.34.装饰公司为小明家设计电视背景墙时需要A、B型板材若干块,A型板材规格是a⨯b,B型板材规格是b⨯b.现只能购得规格是150⨯b的标准板材.(单位:cm)(1)若设a=60cm,b=30cm.一张标准板材尽可能多的裁出A型、B型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一裁法二裁法三A型板材块数120B型板材块数3m n则上表中,m=___________,n=__________;(2)为了装修的需要,小明家又购买了若干C型板材,其规格是a⨯a,并做成如下图的背景墙.请写出下图中所表示的等式:__________;(3)若给定一个二次三项式2a2+5ab+3b2,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)35.对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解.(1)求式子中m、n 的值;(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x3+5x2+8x+4.36.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。

新苏科版七年级数学下学期期末测试题及答案(共五套)

新苏科版七年级数学下学期期末测试题及答案(共五套)

新苏科版七年级数学下学期期末测试题及答案(共五套)一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 22.如图所示,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 3.计算:202020192(2)--的结果是( ) A .40392 B .201932⨯ C .20192- D .24.如图,能判定EB ∥AC 的条件是( )A .∠C=∠1B .∠A=∠2C .∠C=∠3D .∠A=∠1 5.如果 x 2﹣kx ﹣ab =(x ﹣a )(x +b ),则k 应为( ) A .a ﹣bB .a +bC .b ﹣aD .﹣a ﹣b 6.若8x a =,4y a =,则2x y a +的值为( )A .12B .20C .32D .256 7.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106 B .3.8×106 C .3.8×105 D .38×1048.科学家发现2019﹣nCoV 冠状肺炎病毒颗粒的平均直径约为0.00000012m .数据0.00000012用科学记数法表示为( )A .1.2×107B .0.12×10﹣6C .1.2×10﹣7D .1.2×10﹣89.下面图案中可以看作由图案自身的一部分经过平移后而得到的是( )A .B .C .D . 10.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .011.下列各式中,不能够用平方差公式计算的是( )A.(y+2x)(2x﹣y) B.(﹣x﹣3y)(x+3y) C.(2x2﹣y2 )(2x2+y2 ) D.(4a+b﹣c)(4a﹣b﹣c) 12.下列方程组中,是二元一次方程组的为()A.1512nmmn⎧+=⎪⎪⎨⎪+=⎪⎩B.2311546a bb c-=⎧⎨-=⎩C.292xy x⎧=⎨=⎩D.xy=⎧⎨=⎩二、填空题13.直角三角形中,一个锐角等于另一个锐角的2倍,则较小的锐角是_______.14.如图,将一张长方形纸片沿EF折叠后,点D、C分别落在点D'、C'的位置,ED'的延长线与BC相交于点G,若∠EFG=50°,则∠1=_______.15.已知22a b-=,则24a b÷的值是____.16.如果9-mx+x2是一个完全平方式,则m的值为__________.17.已知x2+2kx+9是完全平方式,则常数k的值是____________.18.某红外线波长为0.00000094米,数字0.00000094用科学记数法表示为_____.19.一个n边形的内角和为1080°,则n=________.20.计算(﹣2xy)2的结果是_____.21.已知ma=2,n a=3,则2m na-=_______________.22.在平面直角坐标系中,将点()2,3P-先向上平移1个单位长度,再向左平移3个单位长度后,得到点P',则点P'的坐标为_______.23.已知关于x,y的方程22146m n m nx y--+++=是二元一次方程,那么点(),M m n位于平面直角坐标系中的第______象限.24.已知关于x的不等式3()50a b x a b-+->的解集是1x<,则关于x的不等式4ax b>的解集为_______.三、解答题25.因式分解:(1)16x2-9y2(2)(x2+y2)2-4x2y226.定义:对于任何数a,符号[]a表示不大于a的最大整数.(1)103⎡⎤-=⎢⎥⎣⎦(2)如果2333x -⎡⎤=-⎢⎥⎣⎦,求满足条件的所有整数x 。

最新苏科七年级苏科初一数学下学期期末测试题及答案(共五套)

最新苏科七年级苏科初一数学下学期期末测试题及答案(共五套)

最新苏科七年级苏科初一数学下学期期末测试题及答案(共五套)一、选择题1.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 22.下列计算正确的是( )A .a 3.a 2=a 6B .a 2+a 4=2a 2C .(a 3)2=a 6D .224(3)6a a =3.下列条件中,能判定△ABC 为直角三角形的是( ).A .∠A=2∠B -3∠C B .∠A+∠B=2∠C C .∠A-∠B=30°D .∠A=12∠B=13∠C 4.下列方程组中,解是-51x y =⎧⎨=⎩的是( ) A .64x y x y +=⎧⎨-=⎩ B .6-6x y x y +=⎧⎨-=⎩C .-4-6x y x y +=⎧⎨-=⎩ D .-4-4x y x y +=⎧⎨-=⎩ 5.下列各式中,计算结果为x 2﹣1的是( ) A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+6.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106 B .3.8×106C .3.8×105D .38×104 7.在ABC 中,1135A B C ∠=∠=∠,则ABC 是( ) A .钝角三角形 B .直角三角形 C .锐角三角形 D .无法确定8.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( )A .8312x y x y +=⎧⎨-=⎩B .8312x y x y -=⎧⎨-=⎩C .18312x y x y +=⎧⎨+=⎩D .8312x y x y -=⎧⎨+=⎩ 9.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .610.下列计算不正确的是( )A .527a a a =B .623a a a ÷=C .2222a a a +=D .(a 2)4=a 8 11.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( )A .8B .6C .2D .0 12.若关于x 的二次三项式x 2-ax +36是一个完全平方式,那么a 的值是( )A .12B .12±C .6D .6± 二、填空题13.如图,已知AB ∥CD ,BC ∥DE .若∠A =20°,∠C =105°,则∠AED 的度数是_____.14.如图,ABC 三边的中线AD 、BE 、CF 的公共点为G ,18ABC S =,则图中阴影部分的面积是 ________.15.不等式1x 2x 123>+-的非负整数解是______. 16.学校计划购买A 和B 两种品牌的足球,已知一个A 品牌足球60元,一个B 品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.17.已知一个多边形的每一个外角都等于,则这个多边形的边数是 .18.已知满足不等式()()325416x x -+<-+的最小整数解是方程23x ax -=的解,则a 的值为________.19.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 20.一副三角板按如图所示叠放在一起,其中点B 、D 重合,若固定三角形AOB ,改变三角板ACD 的位置(其中A 点位置始终不变),当∠BAD =_____时,CD ∥AB .21.若(x 2+x-1)(px+2)的乘积中,不含x 2项,则p 的值是 ________.22.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件80元的价格购进某品牌衬衫500件,并以每件120元的价格销售400件.该商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫至多降价______元,销售完这批衬衫才能达到盈利45%的预期目标.三、解答题23.因式分解(1) 228ax a (2) a 3-6a 2 b+9ab 2 (3) (a ﹣b )2+4ab24.如图,已知AB ∥CD ,∠1=∠2,求证:AE ∥DF .25.已知a +a 1-=3, 求(1)a 2+21a (2)a 4+41a 26.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由.27.计算:(1)203211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭(2)()3242(3)2a a a-⋅+- 28.解方程组:(1)2531y x x y =-⎧⎨+=-⎩; (2)3000.050.530.25300x y x y +=⎧⎨+=⨯⎩. 29.已知关于x 、y 的方程组354526x y ax by -=⎧⎨+=-⎩与2348x y ax by +=-⎧⎨-=⎩有相同的解,求a 、b 的值.30.(1)解二元一次方程组3423x y x y -=⎧⎨-=⎩; (2)解不等式组29421333x x x x <-⎧⎪⎨+≥-⎪⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A 、(ab 2)2=a 2b 4,故此选项正确;B 、a 2+a 2=2a 2,故此选项错误;C 、a 2•a 3=a 5,故此选项错误;D 、a 6÷a 3=a 3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.2.C解析:C【分析】根据同底幂的运算法则依次判断各选项.【详解】A 中,a 3.a 2=a 5,错误;B 中,不是同类项,不能合并,错误;C 中,(a 3)2=a 6,正确;D 中,224(3)9a a ,错误故选:C .【点睛】本题考查同底幂的运算,注意在加减运算中,不是同类项是不能合并的.3.D解析:D【分析】根据三角形内角和定理和各选项中的条件计算出△ABC 的内角,然后根据直角三角形的判定方法进行判断.【详解】解:A 、∠A+∠B+∠C=180°,而∠A=2∠B=3∠C ,则∠A=108011°,所以A 选项错误; B 、∠A+∠B+∠C=180°,而∠A+∠B=2∠C ,则∠C=60°,不能确定△ABC 为直角三角形,所以B选项错误;C、∠A+∠B+∠C=180°,而∠A=∠B=30°,则∠C=150°,所以B选项错误;D、∠A+∠B+∠C=180°,而∠A=12∠B=13∠C,则∠C=90°,所以D选项正确.故选:D.【点睛】此题考查三角形内角和定理,直角三角形的定义,解题关键在于掌握三角形内角和是180°.4.C解析:C【解析】试题解析:A. 的解是51xy=⎧⎨=⎩,故A不符合题意;B. 的解是6xy=⎧⎨=⎩,故B不符合题意;C. 的解是51xy=-⎧⎨=⎩,故C符合题意;D. 的解是4xy=-⎧⎨=⎩,故D不符合题意;故选C.点睛:解二元一次方程的方法有:代入消元法,加减消元法.5.C解析:C【分析】运用多项式乘法法则对各个算式进行计算,再确定答案.【详解】解:A.原式=x2﹣2x+1,B.原式=﹣(x﹣1)2=﹣x2+2x﹣1;C.(x+1)(x﹣1)=x2﹣1;D.原式=x2+2x﹣x﹣2=x2+x﹣2;∴计算结果为x2﹣1的是C.故选:C.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.6.C解析:C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:380000=3.8×105.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.A解析:A【分析】根据三角形的内角和是180︒列方程即可;【详解】 ∵1135A B C ∠=∠=∠,∴3B A ∠=∠,5C A ∠=∠,∵180A B C ∠+∠+∠=︒,∴35180A A A ∠+∠+∠=︒,∴30A ∠=︒,∴100C ∠=︒,∴△ABC 是钝角三角形.故答案选A .【点睛】本题主要考查了三角形内角和定理的应用,在准确进行分析列式是解题的关键.8.A解析:A【分析】设这个队胜x 场,负y 场,根据在8场比赛中得到12分,列方程组即可.【详解】解:设这个队胜x 场,负y 场,根据题意,得8312x y x y +=⎧⎨-=⎩. 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.9.A解析:A【解析】试题分析:∵点D ,E ,F ,G 分别是BC ,AD ,BE ,CE 的中点,∴AD 是△ABC 的中线,BE 是△ABD 的中线,CF 是△ACD 的中线,AF 是△ABE 的中线,AG 是△ACE 的中线,∴△AEF 的面积=×△ABE 的面积=×△ABD 的面积=×△ABC 的面积=, 同理可得△AEG 的面积=, △BCE 的面积=×△ABC 的面积=6,又∵FG 是△BCE 的中位线,∴△EFG 的面积=×△BCE 的面积=,∴△AFG 的面积是×3=, 故选A .考点:三角形中位线定理;三角形的面积. 10.B解析:B【分析】根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 .【详解】解:∵527a a a =,∴选项A 计算正确,不符合题意;∵624a a a ÷=,∴选项B 计算不正确,符合题意;2222a a a ,∴选项C 计算正确,不符合题意;428()a a =,∴选项D 计算正确,不符合题意;故选:B .【点睛】此题主要考查了同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 要熟练掌握 .11.D解析:D【分析】先将2变形为()31-,再根据平方差公式求出结果,根据规律得出答案即可.【详解】解:2416(31)(31)(31)(31)(31)-+++⋯+22416(31)(31)(31)(31)=-++⋯+4416(31)(31)(31)=-+⋯+3231=-133=,239=,3327=,4381=,53243=,63729=,732187=,836561=,⋯∴3n 的个位是以指数1到4为一个周期,幂的个位数字重复出现,3248÷=,故323与43的个位数字相同即为1,∴3231-的个位数字为0,∴248162(31)(31)(31)(31)(31)⨯+++++的个位数字是0.故选:D .【点睛】本题考查了平方差公式的应用,能根据规律得出答案是解此题的关键. 12.B解析:B【解析】【分析】利用完全平方公式的结构特征判断即可确定出a 的值.【详解】解:∵x 2-ax+36是一个完全平方式,∴a=±12,故选:B .【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.二、填空题13.95°.【分析】延长DE 交AB 于F ,根据两直线平行,同旁内角互补求出∠B,再根据两直线平行,同位角相等求出∠AFE,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解解析:95°.【分析】延长DE 交AB 于F ,根据两直线平行,同旁内角互补求出∠B ,再根据两直线平行,同位角相等求出∠AFE ,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长DE 交AB 于F ,∵AB ∥CD ,∴∠B =180°﹣∠C =180°﹣105°=75°,∵BC ∥DE ,∴∠AFE =∠B =75°,在△AEF 中,∠AED =∠A +∠AFE =20°+75°=95°,故答案为:95°.【点睛】本题考查了平行线的性质,三角形的外角的性质,熟练掌握平行线的性质是解题的关键.14.【分析】利用三角形重心的性质证明图中个小三角形的面积相等即可得到答案.【详解】解: 三边的中线AD 、BE 、CF 的公共点为G ,图中阴影部分的面积是故答案为:6.【点睛】解析:6.【分析】利用三角形重心的性质证明图中6个小三角形的面积相等即可得到答案.【详解】 解: ABC 三边的中线AD 、BE 、CF 的公共点为G ,,,,GBDGCD GCE AGE AGF BGF S S S S S S ∴=== 2,BG GE = 2,BGCGEC S S ∴= ,DGC CGE S S ∴=GBD GCD GCE AGE AGF BGF S S S S S S ∴=====∴ 图中阴影部分的面积是182 6.6⨯= 故答案为:6.【点睛】本题考查的是三角形中线的性质,三角形重心的性质,掌握以上知识解决三角形的面积问题是解题的关键.15.0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x)>2(2x-1)去括号得3+3x>4x解析:0,1,2,3,4【解析】【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【详解】解:去分母得3(1+x)>2(2x-1)去括号得3+3x>4x-2移项合并同类项得x<5非负整数解是0,1,2,3,4.【点睛】本题考查不等式的解法及整数解的确定.解不等式要用到不等式的性质:(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.16.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.17.5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.解析:5【详解】∵多边形的每个外角都等于72°,∵多边形的外角和为360°,∴360°÷72°=5,∴这个多边形的边数为5.故答案为5.18.【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a的值即可;【详解】解不等式,去括号,得,移项,得,合并同类项,得,系数化为1,得,则最小的整数解为-解析:72【分析】首先解不等式求的不等式的解集,然后确定解集中的最小整数值,代入方程求得a 的值即可;【详解】解不等式()()325416x x -+<-+,去括号,得365446-+<-+x x ,移项,得344665-<-++-x x ,合并同类项,得3x -<,系数化为1,得3x >-,则最小的整数解为-2.把2x =-代入23x ax -=中,得423a -+=, 解得:72a =. 故答案为72. 【点睛】本题主要考查了一元一次方程的解与一元一次不等式的整数解,准确计算是解题的关键. 19.5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:,①②得:,则,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法解析:5【分析】方程组两方程左右两边相加即可求出所求.【详解】解:2728x y x y +=⎧⎨+=⎩①②,①+②得:3315x y +=,则5x y +=,故答案为:5.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD∥AB 时,∠BAD=∠D=30°;如图所示,当AB∥CD 时,∠C=∠BAC=6解析:150°或30°.【分析】分两种情况,再利用平行线的性质,即可求出∠BAD 的度数【详解】解:如图所示:当CD ∥AB 时,∠BAD =∠D =30°;如图所示,当AB ∥CD 时,∠C =∠BAC =60°,∴∠BAD =60°+90°=150°;故答案为:150°或30°.【点睛】本题主要考查了平行线的判定,平行线的判掌握平行线的判定定理和全面思考并分类讨论是解答本题的关键.21.【分析】先按照多项式乘以多项式,再把同类项合并,利用不含项即这一项的系数为,即可得到答案.【详解】解:而上式不含项,,故答案为:【点睛】本题考查的是多项式的乘法运算,同时解析:2.-【分析】先按照多项式乘以多项式,再把同类项合并,利用不含2x 项即这一项的系数为0,即可得到答案.【详解】解:()()232212222x x px px x px x px +-+=+++--()()32222px p x p x =+++--而上式不含2x 项,20p ∴+=,2,p ∴=-故答案为: 2.-【点睛】本题考查的是多项式的乘法运算,同时考查多项式的概念中的项的次数,及不含某项的条件,掌握以上知识是解题的关键.22.【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x 元,正好达到预期目标,根据题意得:120解析:20【分析】设每件衬衫降价x 元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x 元,正好达到预期目标,根据题意得:120×400+(120-x )×(500-400)-80×500=80×500×45%,解得:x=20.答:每件衬衫降价10元,正好达到预期目标.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题23.(1)2a (x+2)(x-2); (2)2a a 3b -();(3)2a b)+(. 【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式提取公因式,再利用完全平方公式分解即可;(3)原式先将(a ﹣b )2展开,再利用完全平方公式分解即可.【详解】(1)原式=22(4)a x -=2a (x+2)(x-2);(2)原式=22(69)a a ab b =2a a 3b -()(3)原式=2224a ab b ab -++=222a ab b ++=2a b)+( 【点睛】本题主要考查了多项式的因式分解,在因式分解时,有公因式的首先提公因式,然后用公式法进行因式分解,注意分解要彻底.24.见解析.【分析】首先根据直线平行得到∠CDA=∠DAB ,结合题干条件得到∠FDA=∠DAE ,进而得到结论.【详解】证明:∵AB ∥CD ,∴∠CDA =∠DAB ,∵∠1=∠2,∴∠CDA ﹣∠1=∠DAB ﹣∠2,∴∠FDA =∠DAE ,∴AE ∥DF .【点睛】本题主要考查了平行线的判断与性质,解题的关键是掌握两直线平行,内错角相等,此题比较简单.25.(1)7;(2)47.【分析】(1)根据13a a -+=得出13a a +=,进而得出219a a ⎛⎫+= ⎪⎝⎭,从而可得出结论; (2)根据(1)中的结论可知2217a a +=,故2221()49a a +=,从而得出441a a +的值. 【详解】解:(1)∵13a a -+=, ∴13a a+=, ∴21()9a a +=,即:22129a a++=, ∴2217a a +=; (2)由(1)知:2217a a +=, ∴2221()49a a +=,即:441249a a ++=, ∴44147a a +=. 【点睛】本题主要考查的是负整数指数幂和分式的运算,解题的关键是熟练掌握完全平方公式的灵活应用.26.△ABC 是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c ,则△ABC 是等边三角形.【详解】解:△ABC 是等边三角形,理由如下:∵a 2+c 2=2ab +2bc -2b 2∴a 2-2ab+ b 2+ b 2- 2bc +c 2=0∴(a-b )2+(b-c )2=0∴a-b=0,b-c=0,∴a=b ,b=c ,∴a=b=c∴△ABC 是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.27.(1)5;(2)6a【分析】(1)先算负整数指数幂,乘法和同底数幂的除法,最后进行加法运算即可;(2)先算积的乘方和同底数幂的乘法,再合并同类项即可.【详解】解:(1)233211(5)(5)36-⎛⎫⎛⎫-++-÷- ⎪ ⎪⎝⎭⎝⎭232(3)1(5)-=-++-91(5)=++-105=-5=(2)()3242(3)2a a a -⋅+-()24698a a a =⋅+- 6698a a =- 6a =【点睛】此题主要考查了实数的运算和积的乘方运算,整式的加法等,正确掌握相关计算法则是解题关键.28.(1)21x y =⎧⎨=-⎩;(2)175125x y =⎧⎨=⎩. 【分析】(1)利用代入消元法解二元一次方程组即可;(2)方程组整理后,利用加减消元法解二元一次方程组即可.【详解】解:(1)2531y x x y =-⎧⎨+=-⎩①②, 把①代入②得:x +6x ﹣15=﹣1,解得:x =2,把x =2代入①得:y =﹣1,则方程组的解为21x y =⎧⎨=-⎩; (2)方程组整理得:3005537500x y x y +=⎧⎨+=⎩①②, ①×53﹣②得:48x =8400,解得:x =175,把x =175代入①得:y =125,则方程组的解为175125x y =⎧⎨=⎩.【点睛】此题考查的是解二元一次方程组,掌握利用代入消元法和加减消元法解二元一次方程组是解决此题的关键.29.149299a b ⎧=⎪⎪⎨⎪=⎪⎩【分析】因为两个方程组有相同的解,故只需把两个方程组中不含未知数和含未知数的方程分别组成方程组,求出未知数的值,再代入另一组方程组即可.【详解】354526x y ax by -=⎧⎨+=-⎩①③ 和2348x y ax by +=-⎧⎨-=⎩②④ 解:联立①②得:35234x y x y -=⎧⎨+=-⎩解得:12x y =⎧⎨=-⎩将12x y =⎧⎨=-⎩代入③④得:4102628a b a b -=-⎧⎨+=⎩解得:149299a b ⎧=⎪⎪⎨⎪=⎪⎩【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.30.(1)11x y =⎧⎨=-⎩;(2)13x ≤< 【分析】(1)根据代入消元法解答即可;(2)先解不等式组中的每个不等式,再取其解集的公共部分即可.【详解】解:(1)3423x y x y -=⎧⎨-=⎩①②, 由①,得34y x =-③,把③代入②,得()2343x x --=,解得:x =1,把x =1代入③,得y =3-4=﹣1,所以方程组的解为11x y =⎧⎨=-⎩; (2)29421333x x x x <-⎧⎪⎨+≥-⎪⎩①②, 解不等式①,得3x <,解不等式②,得1x ≥,所以不等式组的解集为13x ≤<.【点睛】本题考查了二元一次方程组和一元一次不等式组的解法,属于基础题型,熟练掌握上述基本知识是解题关键.。

苏科七年级数学下学期期末测试题及答案(共五套)

苏科七年级数学下学期期末测试题及答案(共五套)

苏科七年级数学下学期期末测试题及答案(共五套)一、选择题1.对于算式20203﹣2020,下列说法错误的是( )A .能被2019整除B .能被2020整除C .能被2021整除D .能被2022整除 2.12-等于( )A .2-B .12C .1D .12- 3.下列运算正确的是 () A .()23524a a -= B .()222a b a b -=- C .61213a a +=+ D .325236a a a ⋅= 4.已知一粒米的质量是0.00021kg ,这个数用科学记数法表示为 ( ) A .4 2.110-⨯kg B .52.110-⨯kgC .42110-⨯kgD .62.110-⨯kg 5.若一个多边形的每个内角都为108°,则它的边数为( ) A .5 B .8C .6D .10 6.下列各式中,不能用平方差公式计算的是( )A .(x -y )(-x +y )B .(-x -y )(-x +y )C .(x -y )(-x -y )D .(x +y )(-x +y ) 7.分别表示出下图阴影部分的面积,可以验证公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a +2b )(a -b )=a 2+ab -2b 2 8.下列方程中,是二元一次方程的是( )A .x ﹣y 2=1B .2x ﹣y =1C .11y x+= D .xy ﹣1=09.如图,∠1=50°,如果AB ∥DE ,那么∠D=( )A .40°B .50°C .130°D .140°10.如图,已知直线AB ∥CD ,115C ∠=︒,25A ∠=︒,则E ∠=( )A .25︒B .65︒C .90︒D .115︒11.如图所示的四个图形中,∠1和∠2是同位角...的是( )A .②③B .①②③C .①②④D .①④12.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是( )A .0个B .1个C .2个D .3个二、填空题13.分解因式:m 2﹣9=_____.14.若(2x +3)x +2020=1,则x =_____.15.已知()4432234464a b a a b a b ab b +=++++,则()4a b -=__________. 16.计算:32(2)xy -=___________.17.多项式4a 3bc +8a 2b 2c 2各项的公因式是_________.18.若2(1)(23)2x x x mx n +-=++,则m n +=________.19.如图,已知AE 是△ABC 的边BC 上的中线,若AB=8cm,△ACE 的周长比△AEB 的周长多2cm,则AC=_____.20.一个容量为40的样本的最大值为35,最小值为15,若取组距为4,则应该分的组数是为_______.21.已知m 为正整数,且关于x ,y 的二元一次方程组210320mx y x y +=⎧⎨-=⎩有整数解,则m 的值为_______.22.若a m =2,a n =3,则a m +n 的值是_____.三、解答题23.已知下列等式:①32-12=8,②52-32=16,③72-52=24,…(1)请仔细观察,写出第5个式子;(2)根据以上式子的规律,写出第n 个式子,并用所学知识说明第n 个等式成立. 24.已知有理数,x y 满足:1x y -=,且221x y ,求22x xy y ++的值.25.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•- 26.已知关于x 、y 的二元一次方程组21322x y x y k +=⎧⎪⎨-=-⎪⎩(k 为常数). (1)求这个二元一次方程组的解(用含k 的代数式表示);(2)若()2421y x +=,求k 的值; (3)若14k ≤,设364m x y =+,且m 为正整数,求m 的值. 27.如图,在△ABC 中,∠ABC =56º,∠ACB =44º,AD 是BC 边上的高,AE 是△ABC 的角平分线,求出∠DAE 的度数.28.计算:(1)201()2016|5|2----;(2)(3a 2)2﹣a 2•2a 2+(﹣2a 3)2+a 2.29.已知关于x 的方程3m x +=的解满足325x y a x y a-=-⎧⎨+=⎩,若15y -<<,求实数m 的取值范围.30.在平面直角坐标系中,点A 、B 的坐标分别为(),0a ,()0,b ,其中a ,b 满足218|273|0a b a b +-+--=.将点B 向右平移15个单位长度得到点C ,如图所示.(1)求点A ,B ,C 的坐标;(2)动点M 从点C 出发,沿着线段CB 、线段BO 以1.5个单位长度/秒的速度运动,同时点N 从点O 出发沿着线段OA 以1个单位长度秒的速度运动,设运动时间为t 秒()012t <<.当BM AN <时,求t 的取值范围;是否存在一段时间,使得OACM OCN S S ≤四边形三角形?若存在,求出t 的取值范围;若不存在,说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【详解】解:20203﹣2020=2020×(20202﹣1)=2020×(2020+1)×(2020﹣1)=2020×2021×2019,故能被2020、2021、2019整除,故选:D .2.B解析:B【分析】由题意直接根据负指数幂的运算法则进行分析计算即可.【详解】解: 12-=12. 故选:B.【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.3.D解析:D【解析】A 选项:(﹣2a 3)2=4a 6,故是错误的;B 选项:(a ﹣b )2=a 2-2ab+b 2,故是错误的;C 选项:6123a a +=+13,故是错误的; 故选D .4.A解析:A【分析】科学记数法的形式是:10n a ⨯ ,其中1a ≤<10,n 为整数.所以 2.1,a =,n 取决于原数小数点的移动位数与移动方向,n 是小数点的移动位数,往左移动,n 为正整数,往右移动,n 为负整数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级第一学期数学试题
(时间:90分钟;满分:120分)
一、选择题(本大题有10小题,每小题3分,共30分。

在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填写在答题栏内)
1、12
--的相反数是( )
A 、2
B 、-2
C 、12-
D 、12
2、已知代数式x+ 2y 的值是3, 则代数式2x + 4y + 1 的值是: ( )
A: 1 B: 4 C: 7 D: 不能确定。

3、实数a 、b 在数轴上的位置如图所示,则化简a b a -+的结果为( )
A 、b a +2
B 、b -
C 、b a --2
D 、 b
4、一家商店将某种服装按成本提高40%标价,又以8
折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是( )
A 、120元;
B 、125元;
C 、135元;
D 、140元. 5、如果单项式-22m x y +与n x y 的和仍然是一个单项式,则m 、n 的值是( )
A 、m = 2,n = 2;
B 、m =-2,n = 2;
C 、m = -1,n = 2;
D 、m = 2 ,n =-1。

6、x=1是方程3x —m+1=0的解,则m 的值是( )
A .-4
B .4
C .2
D .-2 7、下列图形中,线段PQ 的长表示点P 到直线MN 的距离是( )
8、如下图所示的立方体,如果把它展开,可以是下列图形中的( )
9、如果a,b 互为相反数,x,y 互为倒数,则()174
2
a b xy ++的值是( )
A .2 B. 3 C. 3.5 D. 4
10、点C 在线段AB 上,下列条件中不能确定....点C 是线段AB 中点的是( ) A .AC =BC
B .A
C + BC= AB C .AB =2AC
D .BC =2
1AB
二、 填空题(本大题有8小题,每小题3分,共24分)
11、一个多项式加上22x x -+-得到12-x ,则这个多项式是 。

12、一个角的补角是它的余角的3倍,则这个角是 。

13、如果关于x 的方程2x +1=3和方程03
2=--
x
k 的解相同,那么k 的值为________ 。

14、 某商品原价m 元,现在降价20%,则价是 。

15、点A 、B 、C 在直线l 上,AB = 4cm ,BC = 6cm ,点E 是AB 中点,点F 是
BC 的中点,EF= 。

16、若x x 22+的值是6,则5632-+x x 的值是 。

17、某校女生占全体学生人数的52%,比男生多80人。

若设这个学校的学生数为x ,那么可出列方程 .
18、用小立方块积木塔出一个主视图和俯视图如图所示的几何体,它最少需要 块小正方体积木,最多需要 块小正方体积木。

主视图 俯视图
三、解答题(本大题有4题,19-20题每题6分,第21题8分,22题10分,共30分。

解答时应写出文字说明、说理过程或演算步骤) 19 、 计算:22138(3)2()42()4
2
3
-÷⨯-++÷-
解:
20、 解方程
2151
136
x x +--= 解:
21、 先化简,再求值:
)3123()31(22
122n m n m m ----,其中1,31
-==n m
解:
22、(1)(4分)左下图是有几个大小完全一样的小正方体搭成的几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,请你画出该几何体的主视图和左视图.
1
2
123主视图 左视图
(2) (6分)如图,点P 是AOB ∠的边OB 上的一点
①过点P 画OB 的垂线,交OA 于点C
②过点P 画OA 的垂线,垂足为H
③线段PH 的长度是点P 到 的距离, 是点C 到直线OB 的距离。

因为 所以线段PC 、PH 、OC 这三条线段大小关系是 (用“<”号连接)
(23--25题每题8分,共24分)
23、“五一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?
24.如图,正方形的边长为x ,用代数式表示图中阴影部分的面积,并计算当4=x 时,阴影部分的面积.(π取3.14)
25、阅读材料:我们知道:点A 、B 在数轴上分别表示有理数a 、b ,A 、B 两点之间的距离表示为AB ,在数轴上A 、B 两点之间的距离AB a b =-.所以式子
3x -的几何意义是数轴上表示有理数3的点与表示有理数x 的点之间的距离.
根据上述材料,解答下列问题:
(1)若31x x -=+,则x=____________;(2分)
(2)式子31x x -++的最小值为_______________;(2分) (3)若317x x -++=,求x 的值.(4分) 26、充满信心,成功在望(共12分) 请根据图中提供的信息,回答下列问题 : (1)一个暖瓶与一个水杯分别是多少元?
(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定: 这两种商品都打九折;乙商场规定:买一个暖瓶赠送一个水杯。

若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.
38元 84元。

相关文档
最新文档