邻补角、对顶角、同位角、内错角、同旁内角经典习题-一对一专用

合集下载

同位角、内错角、同旁内角(习题及答案)

同位角、内错角、同旁内角(习题及答案)
∴∠ABE=∠DBE(角平分线的定义)
∵∠DBE=∠A(______________________________)
∴_______=∠A(______________________________)
∴BE_____AC(______________________________)
6.已知:如图,E为DF上的点,B为AC上的点,∠1=∠2,AC∥DF.
推理就是由一个或几个已知的判断(前提),推导出一个未知的结论的思维过程.其作用是从已知的知识得到未知的知识,特别是可以得到不可能通过感觉经验掌握的未知知识.几何推理是我们中学接触最多的一种推理形式.
要想进行严格的几何推理,首先要有一些对应前提.这些前提我们叫做“基本事实”或“定理”,比如我们学过的“同位角相等,两直线平行”、“两点确定一条直线”等都是一些基本事实.这些作为大前提,是我们进行推理的主要依据.而根据这些“基本事实”或“定理”,我们对某个句子进行判断或说明的过程就是证明.
例如,如下的推理:
已知:如图,∠ABC=∠1.
求证:AD∥BC.
证明:如图,
∵∠ABC=∠1(已知)
∴AD∥BC(同位角相等,两直线平行)
我们分析可知,每一个判断都有自己的条件和结论.上述推理中的条件就是∠ABC=∠1,代表着一组同位角相等,而结论就是AD∥BC.由条件得到结论的过程叫做证明,而这个证明必须依据基本事实.我们把基本事实放在结论后的括号中,表明我们是以此为依据进行推理的.
6.已知
对顶角相等
等量代换
同位角相等,两直线平行
两直线平行,同位角相等
已知
两直线平行,内错角相等
思考小结
1.同位角相等,两直线平行(或内错角相等,两直线平行,或同旁内角互补,两直线平行)

同位角、内错角、同旁内角练习(含答案)

同位角、内错角、同旁内角练习(含答案)

同位角、内错角、同旁内角练习1.填空、(1)如图2-43,直线AB、CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角,如果∠1=∠5.那么∠1 ∠3.(2)上题中(图2-43)如果∠5=∠1,那么∠1=∠3的推理过程如下,请在括号内注明理由:∵∠5=∠1()又∵∠5=∠3()∴∠1=∠3()(3)如图2-44,∠1和∠4是AB、被所截得的角,∠3和∠5是、被所截得的角,∠2和∠5是、所截得的角,AC、BC被AB所截得的同旁内角是 .∠(4)如图2-45,AB、DC被BD所截得的内错角是,AB、CD被AC所截是的内错角是,AD、BC被BD所截得的内错角是,AD、BC被AC所截得的内错角是 .2.选择题(1)如图2-46,∠1与∠2是同位角的个数有()A.1个B.2个C.3个D.4个(2)如图2-47,()是内错角A. ∠1和∠2B. ∠3和∠4C. ∠2和∠3D. ∠1和∠4(3)如图2-48,图中的同位角的对数是()A.4B.6C.8D.123.如图2-49,已知∠1的同旁内角等于57°28′,求∠1的内错的度数.4.如图2-50图中,共有几对内错角?这几对内错角分别是哪两条直线被哪一条直线所截构成的?5.如图2-51,直线AB、CD被EF所截,如果∠1与∠2互补,且∠1=110°,那么∠3、∠4的度数是多少?1、如图,∠1的内错角是,它们是直线、被直线所截得的;∠1的同位角是,它们是直线、被直线所截得的;∠1的同旁内角是,它们是直线、被直线所截的;2.如图,下列判断:①∠A与∠1是同位角;②∠A与∠B是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角.其中正确的是…………………………………()(A)①、②、③(B)①、②、④(C)②、③、④(D)①、②、③、④3、如图,图中的同位角共有……………………………………………………………()(A)6对(B)8对(C)10对(D)12对4.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.3121212125.三条直线两两相交于同一点时,对顶角有m对,交于不同三点时,对顶角有n对,则m与n的关系是()A.m = n B.m>n C.m<n D.m + n = 10 6.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠EOD = 38°,则∠AOC = ,∠COB = 。

同位角、内错角、同旁内角练习题及答案

同位角、内错角、同旁内角练习题及答案

同位角、错角、同旁角测试题A卷一、填空题1.如图1,直线a、b被直线c所截,∠1和∠2是,∠3和∠4是,∠3和∠2是。

2.如图2,∠1和∠2是直线和直线被直线所截得的角。

3.如图3,∠1的错角是,∠A的同位角是,∠B的同旁角是。

4.如图4,和∠1构成错角的角有个;和∠1构成同位角的角有个;和∠1构成同旁角的角有个。

5.如图5,指出同位角是,错角是,同旁角是。

二、选择题6.如图6,和∠1互为同位角的是( )(A)∠2; (B)∠3;(C)∠4; (D)∠5。

7.如图7,已知∠1与∠2是错角,则下列表达正确的是( )(A)由直线AD、AC被CE所截而得到的;(B)由直线AD、AC被BD所截而得到的;(C)由直线DA、DB被CE所截而得到的;(D)由直线DA、DB被AC所截而得到的。

8.在图8中1和2是同位角的有( )(A)(1)、(2); (B)(2)、(3); (C)(1)、(3); (D)(2)、(4)。

9.如图9,在指明的角中,下列说法不正确的是( )(A)同位角有2对; (B)同旁角有5对;(C)错角有4对; (D)∠1和∠4不是错角。

10.如图10,则图中共有( )对错角(A)3; (B)4; (C)5; (D)6。

三、简答题11.如图11(1)说出∠1与∠2互为什么角?(2)写出与∠1成同位角的角;(3)写出与∠1成错角的角。

12.如图12(1)说出∠A与∠1互为什么角?(2) ∠B与∠2是否是同位角;(3)写出与∠2成错角的角。

13.如图13,指出同位角、错角、同旁角。

B卷一、填空题1.如图1,∠1和∠2可以看作直线和直线被直线所截得的角。

2.如图2,∠1和∠2是直线和直线被直线被直线所截得的角。

3.如图3,直线DE、BC被直线AC所截得的错角是;∠B与∠C可以看作直线、被直线所截得的角。

4.如图4,与∠EFC构成错角的是;与∠EFC构成同旁角的是。

5.如图5,与∠1构成错角的角有个;与∠1构成同位角的角有个;与∠1构成同旁角的角有个。

七年级数学下册同位角、内错角、同旁内角练习题

七年级数学下册同位角、内错角、同旁内角练习题

七年级数学下册同位角、内错角、同旁内角练习题(含答案解析)学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,直线l 1,l 2被直线l 3所截,则( )A .∠1和∠2是同位角B .∠1和∠2是内错角C .∠1和∠3是同位角D .∠1和∠3是内错角2.如图,直线a 、b 被直线c 所截,则下列说法错误的是( )A .1∠与2∠是邻补角B .1∠与3∠是对顶角C .2∠与4∠是同位角D .3∠与4∠是内错角3.下列各图中,∠1与∠2是对顶角的是( )A .B .C .D .4.如图所示,下列说法错误的是( )A.∠1和∠3是同位角B.∠1和∠5是同位角C.∠1和∠2是同旁内角D.∠5和∠6是内错角5.给出下列说法:(1)两条直线被第三条直线所截,同位角相等;(2)平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;(3)相等的两个角是对顶角;(4)从直线外一点到这条直线的垂线段,叫作这点到直线的距离.其中正确的有()A.0个B.1个C.2个D.3个6.在下图中,1∠和2∠是同位角的是()A.(1)、(2)B.(1)、(3)C.(2)、(3)D.(2)、(4)7.下列四幅图中,1∠和2∠是同位角的是()A.(1)(2)B.(3)(4)C.(1)(2)(3)D.(1)(3)(4)8.如图,下列两个角是同旁内角的是( )A .1∠与2∠B .1∠与3∠C .1∠与4∠D .2∠与4∠9.如图所示,下列说法正确的是( )A .∠2与∠1是内错角B .∠2与∠3是同位角C .∠3与∠B 是同旁内角D .∠A 与∠3是内错角10.下列图形中,1∠与2∠是同位角的是( )A .B .C .D .11.下列所示的四个图形中,∠1和∠2是同位角的是( )A .∠∠B .∠∠∠C .∠∠∠D .∠∠12.下列说法正确的是( )A .同位角相等B .在同一平面内,如果a ∠b ,b ∠c ,则a ∠cC .相等的角是对顶角D .在同一平面内,如果a ∠b ,b ∠c ,则a ∠c二、填空题13.如图所示,(1)1∠和2∠是直线______和直线_______被第三条直线_______所截而成的_______角;(2)2∠和3∠是直线______和直线_______被第三条直线______所截而成的______角;(3)4∠和A ∠是直线______和直线______被第三条直线______所截而成的_______角.14.如图,直线,AB CD 与直线,EF GH 分别相交,图中的同旁内角共有_______对.15.如图,∠1和∠B 是直线____和直线____被直线____所截得到的_____角;∠2和∠4是直线____和直线____被直线____所截得到的_____角;∠D和∠4是直线___和直线___被直线___所截得到的_____角.16.如图,四边形ABCD是正方形,点E在BC上,∠ABE绕正方形的中心经顺时针旋转后与∠DAF重合,则∠DGE=______度.17.回顾之前所学内容填空:同位角:图中∠1与∠5,这两个角分别在直线AB,CD的同一方(上方),并且都在直线EF的同侧(右侧),具有这种位置关系的一对角叫做__________.图中还有同位角:__________.内错角:∠3与∠5,这两个角分别在直线AB,CD之间,并且分别在直线EF两侧,(∠3在直线EF左侧,∠5在直线EF右侧),具有这种位置关系的一对角叫做__________.图中还有内错角:__________.同旁内角:∠3与∠6,这两个角分别在直线AB,CD之间,但它们在直线EF的同一旁(左侧),具有这种位置关系的一对角叫做__________.图中还有同旁内角:__________.18.如图所示,1∠与2∠是________角,2∠与4∠是______角,2∠与3∠是__________角.19.空间两条不重合的直线的位置关系有________、________、________三种.三、解答题20.如图中,共有几对内错角?这几对内错角分别是哪两条直线被哪一条直线所截构成的?21.根据图形填空:(1)若直线,ED BC 被直线AB 所截,则1∠和_____是同位角;(2)若直线,ED BC 被直线AF 所截,则3∠和_____是内错角;(3)1∠和3∠是直线,AB AF 被直线______所截构成的内错角;(4)2∠和4∠是直线AB ,______被直线BC 所截构成的_____角.22.如图∠1、∠2、∠3、∠4、∠5中,哪些是同位角?哪些是内错角?哪些是同旁内角?参考答案:1.C【分析】两条直线a、b被第三条直线c所截,在截线c的同旁,被截两直线a、b的同一侧的角(都在左侧或者都在右侧),把这样的两个角称为同位角;根据定义分别判断即可.【详解】解:∠1和∠2既不是同位角,也不是内错角,故选项A、B错误;∠1和∠3是同位角,故选项C正确,选项D错误;故答案为:C.【点睛】本题考查了同位角、内错角、同旁内角,掌握同位角的边构成“F”形,内错角的边构成“Z”形,同旁内角的边构成“U”形是解题的关键.2.D【分析】利用邻补角、对顶角、同位角、同旁内角定义解答即可.【详解】解:A 、1∠与2∠是邻补角,故原题说法正确;B 、1∠与3∠是对顶角,故原题说法正确;C 、2∠与4∠是同位角,故原题说法正确;D 、3∠与4∠是同旁内角,故原题说法错误;答案:D .【点睛】此题主要考查了邻补角、对顶角、同位角、同旁内角,关键是掌握各种角的定义.3.A【分析】根据对顶角的定义,即可一一判定.【详解】解:A 、∠1与∠2是对顶角,故A 选项正确;B 、∠1与∠2不是对顶角,故B 选项错误;C 、∠1与∠2不是对顶角,故C 选项错误;D 、∠1与∠2不是对顶角,故D 选项错误.故选:A .【点睛】本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.4.B【分析】根据同位角、内错角、同旁内角的意义:两条直线被第三条直线所截,在截线的同旁,在被截的两直线的同一侧的角叫做同位角;两条直线被第三条直线所截,两个角分别在截线的两侧,且夹在两条被截直线之间的两个角叫做内错角;两条直线被第三条直线所截,在截线同旁,且在被截两条直线之内的两角叫做同旁内角,可得答案.【详解】解:A 、∠1和∠3是同位角,故此选项不符合题意;B 、∠1和∠5不存在直接联系,故此选项符合题意;C 、∠1和∠2是同旁内角,故此选项不符合题意;D 、∠1和∠6是内错角,故此选项不符合题意;故选B .【点睛】本题考查了同位角、内错角、用旁内角,利用同位角、内错角、同旁内角的意义是解题关键. 5.B【分析】正确理解对顶角、同位角、相交线、平行线、点到直线的距离的概念,逐一判断.【详解】解:(1)同位角只是一种位置关系,只有两条直线平行时,同位角相等,错误;(2)强调了在平面内,正确;(3)不符合对顶角的定义,错误;(4)直线外一点到这条直线的垂线段的长度,叫做点到直线的距离,不是指点到直线的垂线段的本身,而是指垂线段的长度.故选:B.【点睛】本题主要考查了对顶角、同位角、相交线、平行线、点到直线的距离,正确理解相关概念是解题的关键.6.B【分析】根据同位角的特征:两条直线被第三条直线所截形成的角中,两个角都在两条被截直线的同侧,并且在第三条直线(截线)的同旁,由此判断即可.【详解】解:∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角;∠∠1和∠2是同位角;∠∠1的两边所在的直线没有任何一条和∠2的两边所在的直线公共,∠1和∠2不是同位角.故选:B.【点睛】本题考查三线八角中的某两个角是不是同位角,同位角完全由两个角在图形中的相对位置决定.在复杂的图形中判别同位角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形.7.A【分析】互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.【详解】解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选:A.【点睛】本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.8.B【分析】根据同旁内角的概念求解即可.【详解】解:由图可知,∠1与∠3是同旁内角,∠1与∠2是内错角,∠4与∠2是同位角,故选:B .【点睛】本题考查了同旁内角的概念,属于基础题,熟练掌握同位角,同旁内角,内错角的概念是解决本题的关键.9.C【分析】根据内错角、同位角、同旁内角的定义进行判断即可.【详解】∠2与∠1不是内错角,A 选项错误,不符合题意;∠2与∠3是邻补角,B 选项错误,不符合题意;∠3与∠B 是同旁内角,C 选项正确,符合题意;∠A 与∠3是同位角,D 选项错误,不符合题意;故选:C .【点睛】本题考查了内错角、同位角、同旁内角的定义,即同位角:在截线的同旁,在被截两直线的同方向;内错角:在截线的两旁,在被截两直线的内部;同旁内角:在截线的同一侧,夹在被截两直线的之间;熟练掌握知识点是解题的关键.10.D【分析】根据同位角的定义解答.【详解】A 、B 、C 中的1∠与2∠不是同位角,D 中的1∠与2∠是同位角;故选:D .【点睛】此题考查同位角的定义,熟记定义是解题的关键.11.C【分析】在截线的同侧,并且在被截线的同一方的两个角是同位角,所以∠∠∠符合要求.【详解】解:图∠、∠、∠中,∠1与∠2在截线的同侧,并且在被截线的同一方,是同位角;图∠中,∠1与∠2的两条边都不在同一条直线上,不是同位角.故选:C .【点睛】此题主要考查了内错角、同位角和同旁内角的定义,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.12.D【分析】根据同位角的定义、垂线的性质、对顶角的性质、平行公理依次判断.【详解】解:A. 同位角不一定相等,故该项不符合题意;B. 在同一平面内,如果a ∠b ,b ∠c ,则a //c ,故该项不符合题意;C. 相等的角不一定是对顶角,故该项不符合题意;D. 在同一平面内,如果a//b,b//c,则a//c,故该项符合题意;故选:D.【点睛】此题考查了语句的判断,正确掌握同位角的定义、垂线的性质、对顶角的性质、平行公理是解题的关键.13.BA CE BD同位BA CA BD同旁内BA CE AC内错【分析】根据同位角、内错角及同旁内角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形即可得出答案.【详解】解:由图可知:(1)1∠和2∠是直线BA和直线CE被第三条直线BD所截而成的同位角;∠是直线BA和直线CA被第三条直线BD所截而成的同旁内角;(2)2∠和3(3)4∠和A∠是直线BA和直线CE被第三条直线AC所截而成的内错角,故答案为:BA;CE;BD;同位;BA;CA;BD;同旁内;BA;CE;AC;内错.【点睛】此题考查了同位角、内错角及同旁内角的知识,属于基础题,掌握定义是关键.14.16【分析】根据同旁内角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的内部的两个角是同旁内角,注意每一个“三线八角”基本图形都有两对同旁内角,从对原图形进行分解入手即可求得答案.【详解】解:直线AB、CD被EF所截有2对同旁内角;直线AB、CD被GH所截有2对同旁内角;直线CD、EF被GH所截有2对同旁内角;直线CD、GH被EF所截有2对同旁内角;直线GH、EF被CD所截有2对同旁内角;直线AB、EF被GH所截有2对同旁内角;直线AB、GH被EF所截有2对同旁内角;直线EF、GH被AB所截有2对同旁内角.共有16对同旁内角.故答案为:16.【点睛】此题考查了同旁内角的知识,属于基础题,掌握定义是关键.15.(1)AD(2)BC(3)AB(4)同位(5)AB(6)CD(7)AC(8)同位(9)AC(10)AD(11)CD(12)同旁内【分析】根据两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形解答.【详解】∠1和∠B是直线AD和直线BC被直线A所截得到的同位角;∠2和∠4是直线AB和直线CD被直线AC所截得到的同位角;∠D和∠4是直线AC和直线AD被直线DC所截得到的同旁内角.【点睛】本题主要考查了三线八角的问题,熟记同位角、内错角、同旁内角的位置关系是解决此类问题的关键.16.90【分析】由旋转的性质得∠ADF=∠BAE,再根据正方形的性质,得∠DAF=90°,从而得∠AFD+∠ADF=90°,即∠AFD+∠BAE=90°,再由三角形内角和定理得出∠AGF=90°,即可由对顶角相等求得答案.【详解】解:∠△ABE绕正方形的中心经顺时针旋转后与△DAF重合,∠∠ADF=∠BAE,∠四边形ABCD是正方形,∠∠DAF=90°,∠∠AFD+∠ADF=90°,∠∠AFD+∠BAE=90°,∠∠AFD+∠BAE+∠AGF=180°,∠∠AGF=90°,∠∠DGE=∠AGF=90°,故答案为:90.【点睛】本题考查旋转的性质,三角形内角和定理,对顶角性质,熟练掌握旋转的性质是解题的关键.17.同位角∠2和∠6;∠3和∠7;∠4和∠8内错角∠4和∠6同旁内角∠4和∠5【解析】略18.同位同旁内内错【分析】根据同位角、内错角及同旁内角的定义:两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形即可得出答案.【详解】解:由图形可得,∠1与∠2是同位角;∠2与∠4是同旁内角;∠2与∠3是内错角.故答案为:同位、同旁内、内错.【点睛】此题考查了同位角、内错角及同旁内角的知识,属于基础题,掌握定义是关键.19.相交平行异面【分析】在空间,直线与直线的位置关系有平行、相交、异面三种,在同一平面内两条不重合的直线的位置关系是平行或相交,根据两条直线所在的空间解答即可.【详解】在空间,直线与直线的位置关系有相交、平行、异面,故答案为:相交、平行、异面.【点睛】此题考查相交于平行的特征及性质,关键是要明确两条直线所在的平面是在空间或是在同一平面内.20.BC、BE被DF截得的两对内错角;∠DFB和∠CDF;∠FDB和∠FDB;AC、AD被BE截得的两对内错角:∠AFE和∠CEF,∠AEF和∠EFD【分析】根据内错角的定义:两条直线被第三条直线所截形成的角中,若两个角都在两直线之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.所以由图形可得答案.【详解】∠DFB和∠CDF,∠FDB和∠FDB 是BC、BE被DF截得的内错角;∠AFE和∠CEF,∠AEF和∠EFD是AC、AD被BE截得的内错角.【点睛】本题主要考查了内错角的定义,三线八角中的某两个角是不是内错角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别内错角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.内错角的边构成“Z“形,认真识图是关键.21.(1)2∠;(3)ED;(4)AF,同位∠;(2)4【分析】(1)根据图形及同位角的概念可直接进行求解;(2)根据图形及内错角的概念可直接进行求解;(3)根据图形及内错角的概念可直接进行求解;(4)根据图形及同位角的概念可直接进行求解.【详解】解:由图可得:(1)若直线,ED BC 被直线AB 所截,则1∠和2∠是同位角;故答案为2∠;(2)若直线,ED BC 被直线AF 所截,则3∠和4∠是内错角;故答案为4∠;(3)1∠和3∠是直线,AB AF 被直线ED 所截构成的内错角;故答案为ED ;(4)2∠和4∠是直线AB ,AF 被直线BC 所截构成的同位角;故答案为AF ,同位.【点睛】本题主要考查内错角及同位角的概念,熟练掌握同位角及内错角的概念是解题的关键. 22.同位角有∠1和∠5;∠4和∠3;内错角有∠2和∠3;∠1和∠4;同旁内角有∠3和∠5;∠4和∠5;∠4和∠2.【分析】同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.依此即可得出答案.【详解】解:∠∠1和∠5在截线AC 同侧,在被截直线BE ,CE 同方向所成的角;∠4和∠3,在截线CE 的上方,被截直线DB 、EB 的左侧,∠同位角有∠1和∠5;∠4和∠3,共2对;∠∠2和∠3在截线BD 两侧,被截直线AC 与CE 内部;∠1和∠4在截线BE 两侧,被截直线AC 与CE 内部, ∠内错角有∠2和∠3;∠1和∠4,共2对;∠∠3和∠5在截线CD 同侧,被截直线CB 与DB 内部;∠4和∠5在截线CE 同侧,被截直线CB 与EB 的内部;∠4和∠2在截线BE 同侧,被截直线DB 与DE 的内部,∠同旁内角有∠3和∠5;∠4和∠5;∠4和∠2,共3对.【点睛】本题考查了同位角、内错角、同旁内角,三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.。

5.1.3 同位角、内错角、同旁内角100题(含解析)

5.1.3 同位角、内错角、同旁内角100题(含解析)

绝密★启用前一、单选题1.[单选题]下列图形中1∠与2∠是内错角的是A .B .C .D .答案:A 解析:A. <2与<1是内错角,故此选项正确;B. <2与<1的对顶角是内错角,故此选项错误;C. <2与<1 是同旁内角,故此选项错误;D. <2与<1的邻补角是内错角,故此选项错误;线的两侧,且夹在两条被截直线之间,具有这样位置关系的一对角叫做内错角.掌握内错角的定义是解答本题的关键.2.[单选题]已知如图AB 、BE 被AC 所截,下列说法不正确的是( )A .1∠与2∠是同旁内角B .1∠与ACE ∠是内错角C .B 与ACB ∠是同位角D .1∠与3∠不是同位角 答案:C 解析: 解析:根据同位角、内错角、同旁内角的定义可以直接得到答案. 【详解】 解:A. 1∠与2∠是同旁内角,正确但不符合题意;B. 1∠与ACE ∠是内错角,正确但不符合题意;C. B ∠与ACB ∠是同位角,错误符合题意;D.1∠与3∠不是同位角,正确但不符合题意.故选:C. 【点睛】本题主要考查了三线八角.3.[单选题]如图,∠1与∠2不能构成同位角的图形的是( )A .B.C.D.答案:D解析:解析:根据同位角的定义来分析判断即可,两条直线被第三条直线所截,在截线的同旁,被截两直线的同一方,把这种位置关系的角称为同位角.【详解】由同位角的定义可知图A、B、C中的∠1和∠2可以构成同位角,D中的∠1和∠2构不成同位角.故本题答案为:D.【点睛】同位角的定义是本题的考点,根据同位角的定义正确识别同位角是解题的关键. 4.[单选题]如图,下列说法错误的是()A.∠1与∠3是对顶角B.∠3与∠4是内错角C.∠2与∠6是同位角D.∠3与∠5是同旁内角答案:C解析:根据对顶角定义、内错角定义、同位角定义、同旁内角定义进行分析即可.【详解】A、∠1与∠3是对顶角,故A说法正确;B、∠3与∠4是内错角,故B说法正确;C、∠2与∠6不是同位角,故C说法错误;D、∠3与∠5是同旁内角,故D说法正确;故选:C.【点睛】本题考查对顶角、内错角、同位角和同旁内角的定义,掌握其定义是选择本题答案的关键.5.[单选题]下列选项中,∠ 5和∠6不是同旁内角的是()A.B.C.D.答案:B解析:根据同旁内角的定义:两条直线被第三条直线所截,在截线同旁,且在被截线之内的两角,叫做同旁内角.进行解答【详解】A. ∠5和∠6是同旁内角,不合题意,故此选项错误.B.∠5和∠6不是同旁内角,符合题意,故此选项正确C.∠5和∠6是同旁内角,不合题意,故此选项错误D.∠5和∠6是同旁内角,不合题意,故此选项错误【点睛】本题考查同旁内角的定义,理解掌握同旁内角定义是解题关键6.[单选题]如图,直线1l和2l被直线3l所截,则()A .1∠和2∠是同位角B .1∠和2∠是内错角C .1∠和3∠是同位角D .1∠和3∠是内错角 答案:C 解析:根据同位角和内错角的定义进行分析即可. 【详解】同位角是位于两直线及截线的同侧,内错角是位于两直线内侧及截线两侧,故1∠和3∠是同位角; 故选:C . 【点睛】本题考查了同位角和内错角的判断,熟练掌握基本概念是解决这类问题的关键. 8.[单选题]如图,点D 、E 分别为三角形ABC 边BC 、AC 上一点,作射线DE ,则下列说法错误的是( )A .∠1与∠3是对顶角B .∠2与∠A 是同位角C .∠2与∠C 是同旁内角D .∠1与∠4是内错角解析:根据同位角、内错角以及同旁内角的概念进行判断.【详解】解:A、∠1与∠3是对顶角,说法正确;B、∠2与∠A是同位角,说法正确;C、∠2与∠C是同旁内角,说法正确;D、∠2与∠4是内错角,说法错误.故选:D.【点睛】考查了同位角、内错角以及同旁内角,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.9.[单选题]如图,下列结论正确的是().A.∠5与∠2是对顶角;B.∠1与∠3是同位角;C.∠2与∠3是同旁内角;D.∠1与∠2是同旁内角.根据对顶角即三线八角的特征可得∠1与∠2是同旁内角,故选D。

《同位角、内错角、同旁内角》练习题(含答案)

《同位角、内错角、同旁内角》练习题(含答案)

5.1.3 同位角、内错角、同旁内角1.如图,有以下判断:①∠1与∠3是内错角;②∠2与∠3是内错角;③∠2与∠4是同旁内角;④∠2与∠3是同位角.其中说法正确的有__________(填序号).2.看图填空:(1)∠1和∠3是直线__________被直线__________所截得的__________;(2)∠1和∠4是直线__________被直线__________所截得的__________;(3)∠B和∠2是直线__________被直线__________所截得的__________;(4)∠B和∠4是直线__________被直线__________所截得的__________.3.如图所示,若∠1=∠2,在①∠3和∠2;②∠4和∠2;③∠3和∠6;④∠4和∠8中相等的有( )A.1对B.2对C.3对D.4对4.如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于__________,∠3的内错角等于__________,∠3的同旁内角等于__________.5.如图,下列说法错误的是( )A.∠1和∠3是同位角B.∠A和∠C是同旁内角C.∠2和∠3是内错角D.∠3和∠B是同旁内角6.如图所示,∠B与∠CAD是由直线__________和直线__________被直线__________所截得到的__________角.7.如图,__________是∠1和∠6的同位角,__________是∠1和∠6的内错角,__________是∠6的同旁内角.8.根据图形说出下列各对角是什么位置关系?(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.9.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?10.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有__________对,内错角有__________对,同旁内角有__________对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有__________对,内错角有__________对,同旁内角有__________对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有__________对,内错角有__________对,同旁内角有__________对.(用含n的式子表示)5.2平行线及其判定参考答案1.①③2.(1)AB,BC AC 同旁内角(2)AB,BC AC 同位角(3)AB,AC BC 同位角(4)AC,BC AB 内错角3.C4.80° 80° 100°5.A6.BC AC BD 同位7.∠3 ∠5 ∠48.(1)∠1和∠2是同旁内角;(2)∠1和∠7是同位角;(3)∠3和∠4是内错角;(4)∠4和∠6是同旁内角;(5)∠5和∠7是内错角.9.∠1和∠2是直线EF,DC被直线AB所截形成的同位角,∠1和∠3是直线AB,CD被直线EF所截形成的同位角.10.(1)4 2 2(2)12 6 6(3)2n(n-1) n(n-1) n(n-1)。

同位角,内错角,同旁内角同步练习

同位角,内错角,同旁内角同步练习

5.1.3同位角,内错角,同旁内角同步练习(含答案)(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2同位角 内错角 同旁内角班级 姓名 座号 月日主要内容:同位角、内错角、同旁内角的认识 一、课堂练习:1.下列图形中,1∠和2∠不是同位角的是( B )2.如图,属于内错角的是( D )A.∠1和∠2B.∠2和∠3 C .∠1和∠4 D.∠3和∠43.看图填空:(1)如图1,同位角一共有 对,分别是 ;内错角一共有 对,分别是 ;同旁内角一共有 对,分别是 ; (2)如图2,同位角一共有 对,分别是 ;内错角一共有 对,分别是 ;第2题3421A B C12121212同旁内角一共有 对,分别是 .4.如图,1∠与哪个角是内错角,与哪个角是同旁内角 2∠与哪个角是内错角,与哪个角是同旁内角(只需写一个角)它们分别是哪两条直线被哪一条直线所截形成的二、课后作业: 5.看图填空 (1)如右图:①∠1和∠4是 邻补 角; ②∠1和∠3是 对顶 角; ③∠2和∠D 是 内错 角; ④∠3和∠D 是 同旁内 角; ⑤∠4和∠D 是 同位 角; ⑥∠4和∠B 是 同位 角. (2)如右图:①∠ABC 与 是同位角; ②∠ADB 与 是内错角; ③∠ABC 与 是同旁内角. 6.如图所示,同位角一共有 对, 分别是 ;cA BCDE ABC DEF123412A BCDE同旁内角一共有对,分别是 . 7.如图,∠1和∠2,∠3和∠4各是哪两条直线被哪一条直线所截形成的它们各是什么角8.如图,用数字标注的角中,共有四对内错角,请把它们一一写出,并说明是哪两条直线被哪一条直线所截得的内错角.三、新课预习:9.画图回答问题:如图,P、Q分别是直线EF外两点,(1)过P画AB∥EF,过Q画CD∥EF.E FPQA B图1 图245(2)过点P 能画几条直线与EF 平行为什么解:过点P 只能画一条直线与EF 平行.理由:经过直线外一点,有且只有一条直线与这条直线平行.(3)AB 与CD 平行吗为什么 解:AB 与CD 平行.理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.参考答案一、课堂练习:1.下列图形中,1∠和2∠不是同位角的是( B )2.如图,属于内错角的是( D )A.∠1和∠2B.∠2和∠3 C .∠1和∠4 D.∠3和∠43.看图填空:(1)如图1,同位角一共有 4 对,分别是 ∠l 和∠5,∠2和∠6,∠3和∠7,∠4和∠8 ;第2题 3421A B C121212126内错角一共有 2 对,分别是 ∠3和∠6,∠4和∠5 ;同旁内角一共有 2 对,分别是 ∠3和∠5,∠4和∠6 ;(2)如图2,同位角一共有 2 对,分别是 ∠l 和∠3,∠2和∠4 ;内错角一共有 0 对,分别是 ;同旁内角一共有 1 对,分别是 ∠2和∠3 .4.如图,1∠与哪个角是内错角,与哪个角是同旁内角 2∠与哪个角是内错角,与哪个角是同旁内角(只需写一个角)它们分别是哪两条直线被哪一条直线所截形成的解:1∠与DAB ∠是内错角,它是直线DE 、BC 被直线AB所截形成的;1∠与EAB ∠是同旁内角,它是直线DE 、BC 被直线AB 所截形成的;1∠与2∠是同旁内角,它是直线AB 、AC 被直线BC 所截形成的; 1∠与BAC ∠是同旁内角,它是直线BC 、AC 被直线AB 所截形成的; 2∠与EAC ∠是内错角,它是直线DE 、BC 被直线AC 所截形成的; 2∠与BAC ∠是同旁内角,它是直线AB 、BC 被直线AC 所截形成的.(2∠与DAC ∠是同旁内角,它是直线DE 、BC 被直线AC 所截形成的.)二、课后作业:c12A BCD E75.看图填空 (1)如右图:①∠1和∠4是 邻补 角; ②∠1和∠3是 对顶 角;③∠2和∠D 是 内错 角; ④∠3和∠D 是 同旁内 角; ⑤∠4和∠D 是同位 角; ⑥∠4和∠B 是 同位 角.(2)如右图:①∠ABC 与 ∠EAD 是同位角;②∠ADB 与 ∠DBC 、 ∠EAD 是内错角; ③∠ABC 与 ∠DAB 、 ∠BCD 是同旁内角. 6.如图所示,同位角一共有 6 对,分别是 ∠1和∠5,∠2和∠6,∠3和∠7,∠4和∠8,∠7和∠9,∠4和∠9 ;同旁内角一共有 4 对分别是 ∠1和∠6, ∠1和∠9, ∠4和∠7, ∠6和∠9 .7.如图,∠1和∠2,∠3和∠4各是哪两条直线被哪一条直线所截形成的它们各是什么角 解:如图1中,∠1和∠2是直线AB 、CD 被直线BD 所截, 它们是内错角;∠3和∠4是直线AD 、CB 被直线BD 所截, 它们也是内错角. 如图2中,∠1和∠2是直线AB 、CD 被直线BC 所截,它们是同旁内角;AB CDEABC D EF1234A B 图1 图28∠3和∠4是直线AD 、CB 被直线AB 所截,它们是同位角.8.如图,用数字标注的角中,共有四对内错角,请把它们一一写出,并说明是哪两条直线被哪一条直线所截得的内错角.解:∠1和∠5是内错角,它们是由直线AD 、BC 被直线AC∠2和∠6是内错角,它们是由直线AB 、CD 被直线AC 所截形成的; ∠3和∠7是内错角,它们是由直线AB 、CD 被直线BD 所截形成的; ∠4和∠8是内错角,它们是由直线AD 、BC 被直线BD 所截形成的.三、新课预习: 9.画图回答问题:如图,P 、Q 分别是直线EF 外两点, (1)过P 画AB ∥EF ,过Q 画CD ∥EF .(2)过点P 能画几条直线与EF 平行为什么解:过点P 只能画一条直线与EF 平行.理由:经过直线外一点,有且只有一条直线与这条直线平行.(3)AB 与CD 平行吗为什么 解:AB 与CD 平行.理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A B C DEFPQ。

邻补角、对顶角、同位角、内错角、同旁内角经典习题-一对一专用

邻补角、对顶角、同位角、内错角、同旁内角经典习题-一对一专用

邻补角、对顶角、同位角、内错角、同旁内角一、学习目标1、了解两条直线相交所构成的角,理解并掌握邻补角、对顶角的概念和性质;2、理解并掌握垂线的概念和性质;3、了解同位角、内错角、同旁内角的概念并会辨别二、主要内容1、邻补角:两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。

2、对顶角:两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为对顶角;对顶角的性质:对顶角相等。

注意:1、对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;2、如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角3、如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

4、两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

习题巩固1.下面四个图形中,∠1与∠2是对顶角的图形的个数是()A.0 B.1 C.2 D.3121212122、下面各图中∠1和∠2是对顶角的是()A.B.C.D.3、下列语句正确的是().A、相等的角是对顶角B、相等的两个角是邻补角C、对顶角相等D、邻补角不一定互补,但可能相等4、下列语句错误的有()个.(1)两个角的两边分别在同一条直线上,这两个角互为对顶角(2)有公共顶点并且相等的两个角是对顶角(3)如果两个角相等,那么这两个角互补(4)如果两个角不相等,那么这两个角不是对顶角A、1B、2C、3D、45、已知∠1与∠2是邻补角,∠2是∠3的邻补角,那么∠1与∠3的关系是().A、对顶角B、相等但不是对顶角C、邻补角D、互补但不是邻补角6、下列说法正确的是().A、有公共顶点的两个角是对顶角B、两条直线相交所成的两个角是对顶角C、有公共顶点且有一条公共边的两个角是邻补角D、两条直线相交所成的无公共边的两个角是对顶角7、已知:如图所示,AB⊥CD,垂足为点O,EF为过点O•的一条直线,则∠1与∠2的关系一定成立的是()A.相等 B.互余 C.互补 D.互为对顶角8、下列判断正确的个数是_____个。

对顶角、邻补角、同位角、内错角练习

对顶角、邻补角、同位角、内错角练习

O F E D C B A 34D C B A 12O D C B A 12O D C B A(一)邻补角、对顶角的内容一、邻补角、对顶角的定义1、(1)∠AOC 和∠BOC 有一条公共边.....OC ,它们的另一边互为 ,称这两个角互为 。

用量角器量一量这两个角的度数,会发现它们的数量关系是(2)∠AOC 和∠BOD (有或没有)公共边,但∠AOC 的两边分别是∠BOD两边的 ,称这两个角互为2.如图3所示,AB 与CD 相交所成的四个角中,∠1的邻补角是______,∠1的对顶角___.(3) (4) (5)3.如图3所示,若∠1=25°,则∠2=_______,∠3=______,∠4=_______.4.如图4所示,直线AB,CD,EF 相交于点O,则∠AOD 的对顶角是_____,∠AOC 的邻补角是_______;若∠AOC=50°,则∠BOD=______,∠COB=_______.5.如图5所示,直线AB,CD 相交于点O,若∠1-∠2=70,则∠BOD=_____,∠2=____.二、邻补角、对顶角的性质1、邻补角的性质:邻补角 。

注意:邻补角是互补的一种特殊的情况,数量上 ,位置上有一条 。

2、对顶角 。

3、 如图,已知直线a 、b 相交。

∠1=40°,求∠2、∠3、∠4的度数解:∠3=∠1=40°( )。

∠2=180°-∠1=180°-40°=140°( )。

∠4=∠2=140°( )。

4、如图,直线AB 、CD 相交于点O (1)若∠AOC+∠BOD=100°,求各角的度数. (2)若∠BOC 比∠AOC 的2倍多33°,求各角的度数(二)同位角、内错角、同旁内角(一)如图,直线AB、CD与EF相交(或两条直线AB、CD被第三条直线EF所截)构成个角。

我们来研究其中没有公共顶点......的两个角的关系。

同位角、内错角、同旁内角练习题及答案

同位角、内错角、同旁内角练习题及答案

同位角、内错角、同旁内角测试题及答案A卷一、填空题1.如图1,直线a、b被直线c所截,∠1和∠2是,∠3和∠4是,∠3和∠2是。

2.如图2,∠1和∠2是直线和直线被直线所截得的角。

3.如图3,∠1的内错角是,∠A的同位角是,∠B的同旁内角是。

4.如图4,和∠1构成内错角的角有个;和∠1构成同位角的角有个;和∠1构成同旁内角的角有个。

5.如图5,指出同位角是,内错角是,同旁内角是。

二、选择题6.如图6,和∠1互为同位角的是( )(A)∠2; (B)∠3;(C)∠4; (D)∠5。

7.如图7,已知∠1与∠2是内错角,则下列表达正确的是( )(A)由直线AD、AC被CE所截而得到的;(B)由直线AD、AC被BD所截而得到的;(C)由直线DA、DB被CE所截而得到的;(D)由直线DA、DB被AC所截而得到的。

8.在图8中1和2是同位角的有( )(A)(1)、(2); (B)(2)、(3); (C)(1)、(3); (D)(2)、(4)。

9.如图9,在指明的角中,下列说法不正确的是( )(A)同位角有2对; (B)同旁内角有5对;(C)内错角有4对; (D)∠1和∠4不是内错角。

10.如图10,则图中共有( )对内错角(A)3; (B)4; (C)5; (D)6。

三、简答题11.如图11(1)说出∠1与∠2互为什么角?(2)写出与∠1成同位角的角;(3)写出与∠1成内错角的角。

12.如图12(1)说出∠A与∠1互为什么角?(2) ∠B与∠2是否是同位角;(3)写出与∠2成内错角的角。

13.如图13,指出同位角、内错角、同旁内角。

B卷一、填空题1.如图1,∠1和∠2可以看作直线和直线被直线所截得的角。

2.如图2,∠1和∠2是直线和直线被直线被直线所截得的角。

3.如图3,直线DE、BC被直线AC所截得的内错角是;∠B与∠C可以看作直线、被直线所截得的角。

4.如图4,与∠EFC构成内错角的是;与∠EFC构成同旁内角的是。

同位角,内错角,同旁内角练习题

同位角,内错角,同旁内角练习题

5.1.3同位角、内错角、同旁内角练习题一、选择题1.如图,∠1和∠2不是同位角的是( )2.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成3.如图,与∠α构成同旁内角的角有()个个个个4.如右图所示(1) ∠1与∠4是内错角;(2) ∠1与∠2是同位角;(3) ∠2与∠4是内错角;(4) ∠4与∠5是同旁内角;(5) ∠3与∠4是同位角;(6) ∠2与∠5是内错角。

其中正确的共有( )45321(A)1个(B)2个(C)3个(D)4个5.如右图,下列说法中错误的是( )A.13∠∠、是同位角B.12∠∠、是同旁内角C.15∠∠、是同位角D.56∠∠、是内错角6.如图中共有内错角()A. 2对B. 3对C. 4对D. 5对7.如图所示,图中有( )对同旁内角.对.对.对.对.二.填空题8.如右图所示,图中用数字标出的角中,同位角有______ ;内错角有______ ;同旁内角有______ .9.如图所示,(1)∠AED和∠ABC可看成是直线______、______被直线_____ _所截得的____ ___角;(2)∠EDB和∠DBC可看成是直线______、______被直线____ ___所截得的____ __角;(3)∠EDC和∠C可看成是直线_______、____被直线__ ___所截得的___ _ __角.三.简答题10.(1)说出∠1与∠2互为什么角(2)写出与∠1成同位角的角;(3)写出与∠1成同旁内角的角。

11.如图, 直线DE截AB, AC, 构成八个角:21HNMFEDCBANMGFEDCBA87654321E DCBA①指出图中所有的同位角、内错角、同旁内角.②∠A与∠5, ∠A与∠6, ∠A与∠8,分别是哪一条直线截哪两条直线而成的什么角。

同位角,内错角,同旁内角的题型

同位角,内错角,同旁内角的题型

一.选择题(共13小题)1.(2012•桂林)如图,与∠1是内错角的是()A .∠2B .∠3C .∠4D .∠52.(2010•桂林)如图,直线AB 、CD 被直线EF 所截,则∠3的同旁内角是()A .∠1B .∠2C .∠4D .∠53.(2009•桂林)如图,在所标识的角中,同位角是()A .∠1和∠2B .∠1和∠3C .∠1和∠4D .∠2和∠34.下图中,∠1和∠2是同位角的是()A .B .C .D .5.下列四幅图中,∠1和∠2是同位角的是()A .(1)、(2)B .(3)、(4)C .(1)、(2)、(3)D .(2)、(3)、(4)6.若∠1与∠2是同旁内角,∠1=30°,则()A .∠2=150°B.∠2=30°C .∠2=150°或30°D.∠2的大小不能确定7.在图中,∠1与∠2是同位角的有()A .①②B.①③C.②③D.②④8.下列说法中正确的有()个①对顶角的角平分线成一条直线;②相邻二角的角平分线互相垂直;③同旁内角的角平分线互相垂直;④邻补角的角平分线互相垂直.A .1个B.2个C.3个D.4个9.如图所示,下列说法不正确的是()A .∠1与∠B是同位角B.∠1与∠4是内错角C .∠3与∠B是同旁内角D.∠C与∠A不是同旁内角10.如图,射线c,b被a所截,则∠1与∠2是()A .同位角B.内错角C.同旁内角D.对顶角11.如图,下列判断错误的是()A .∠1与∠2是同旁内角B.∠3与∠4是内错角C .∠5与∠6是同旁内角D.∠5与∠8与是同位角12.下列命题中,真命题有()(1)直线外一点与直线上各点连接的所有线段中,垂线段最短;(2)两条直线被第三条直线所截,内错角相等;(3)经过两点有一条直线,并且只有一条直线;(4)如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直.A .1个B.2个C.3个D.4个13.如图所示,下列说法错误的是()A .∠A和∠B是同旁内角B.∠A和∠3是内错角C .∠1和∠3是内错角D.∠C和∠3是同位角二.填空题(共15小题)14.如图,标有角号的7个角中共有_________对内错角,_________对同位角,_________对同旁内角.15.如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于_________度,∠3的内错角等于_________度,∠3的同旁内角等于_________度.16.如图,按角的位置关系填空:∠A与∠1是_________;∠A与∠3是_________;∠2与∠3是_________.17.如图,图中内错角的对数是_________.18.如图,∠A的同位角是_________,∠1的内错角是_________,∠2的同旁内角是_________.19.如图,∠1和∠3是直线_________,_________被直线_________所截得到的_________角;∠3和∠2是直线_________,_________被直线_________所截得到的_________角;∠1和∠2是直线_________,_________被直线_________所截得到的_________角.20.如图,按角的位置关系填空:∠A与∠1是_________,是由直线_________与_________被_________所截构成的;∠A与∠3是_________,是由直线_________与_________被_________所截构成的;∠2与∠3是_________,是由直线_________与_________被_________所截构成的.21.如图,在直线DE与∠O的两边相交,则∠O的同位角是_________,∠8的内错角是_________,∠1的同旁内角是_________.22.请在图中任意找出一对内错角可以为:_________与_________(或_________与_________).23.如图,在∠1、∠2、∠3、∠4、∠5、∠B、∠D、∠ACE中,与∠D是同位角的是_________;与∠2是内错角的是_________.24.如图填空.(1)若ED,BC被AB所截,则∠1与_________是同位角.(2)若ED,BC被AF所截,则∠3与_________是内错角.(3)∠1与∠3是AB和AF被_________所截构成的_________角.(4)∠2与∠4是_________和_________被BC所截构成的_________角.25.如图,与∠1构成同位角的是_________,与∠2构成内错角的是_________.26.如图,直线AB,CD与直线EF相交,∠5和_________是同位角,和_________是内错角,和_________是同旁内角.∠2和_________是直线_________、_________被_________所截而形成的同位角.27.如图,在图上标出∠β的所有同位角,并标上数字_________.28.如图,∠1的同旁内角是_________.三.解答题(共1小题)29.(1)如果把图看成是直线AB,EF被直线CD所截,那么∠1与∠2是一对什么角?∠2与∠3呢?(2)如果把图看成是直线AB,CD被直线EF所截,那么∠4与∠5是一对什么角?∠5与∠6呢?参考答案与试题解析一.选择题(共13小题)1.(2012•桂林)如图,与∠1是内错角的是()A .∠2B.∠3C.∠4D.∠5考点:同位角、内错角、同旁内角.分析:根据内错角的定义找出即可.解答:解:根据内错角的定义,∠1的内错角是∠3.故选B.点评:本题考查了“三线八角”问题,确定三线八角的关键是从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.2.(2010•桂林)如图,直线AB、CD被直线EF所截,则∠3的同旁内角是()A .∠1B.∠2C.∠4D.∠5考点:同位角、内错角、同旁内角.分析:解答此题的关键是理解同旁内角的定义:“同旁”指在截线的同侧;“内”指在被截两条线之间.可据此进行判断.解答:解:由图知:∠3和∠2在截线EF的同侧,且都在被截直线AB、CD的内侧,所以∠3和∠2是同旁内角,故选B.点评:熟练掌握“三线八角”的含义,是解答此类题目的关键.3.(2009•桂林)如图,在所标识的角中,同位角是()A .∠1和∠2B.∠1和∠3C.∠1和∠4D.∠2和∠3考点:同位角、内错角、同旁内角.分析:同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角.解答:解:根据同位角、邻补角、对顶角的定义进行判断,A 、∠1和∠2是邻补角,错误;B 、∠1和∠3是邻补角,错误;C 、∠1和∠4是同位角,正确;D 、∠2和∠3是对顶角,错误.故选C .点评:解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.4.下图中,∠1和∠2是同位角的是()A .B .C .D .考点:同位角、内错角、同旁内角.分析:本题考查同位角的定义,在截线的同侧,并且在被截线的同一方的两个角是同位角.根据定义,逐一判断.解答:解:A 、∠1、∠2的两边都不在同一条直线上,不是同位角;B 、∠1、∠2的两边都不在同一条直线上,不是同位角;C 、∠1、∠2的两边都不在同一条直线上,不是同位角;D 、∠1、∠2有一边在同一条直线上,又在被截线的同一方,是同位角.故选D .点评:判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.5.下列四幅图中,∠1和∠2是同位角的是()A .(1)、(2)B .(3)、(4)C .(1)、(2)、(3)D .(2)、(3)、(4)考点:同位角、内错角、同旁内角.分析:互为同位角的两个角,都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.解答:解:根据同位角的定义,图(1)、(2)中,∠1和∠2是同位角;图(3)∠1、∠2的两边都不在同一条直线上,不是同位角;图(4)∠1、∠2不在被截线同侧,不是同位角.故选A .点评:本题考查同位角的概念,是需要熟记的内容.即两个都在截线的同旁,又分别处在被截的两条直线同侧的位置的角叫做同位角.6.若∠1与∠2是同旁内角,∠1=30°,则()A .∠2=150°B .∠2=30°C .∠2=150°或30°D .∠2的大小不能确定考点:同位角、内错角、同旁内角.分析:两直线平行时同旁内角互补,不平行时无法确定同旁内角的大小关系.解答:解:同旁内角只是一种位置关系,并没有一定的大小关系,只有两直线平行时,同旁内角才互补.故选D.点评:特别注意,同旁内角互补的条件是两直线平行.7.在图中,∠1与∠2是同位角的有()A .①②B.①③C.②③D.②④考点:同位角、内错角、同旁内角.分析:根据同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位角,所以只有②③是同位角.解答:解:①图中,∠1与∠2的两边都不在同一条直线上,不是同位角,②图中,∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,③图中,∠1与∠2有一条边在同一条直线上,另一条边在被截线的同一方,是同位角,④图中,∠1与∠2的两边都不在同一条直线上,不是同位角.故选C.点评:判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.8.下列说法中正确的有()个①对顶角的角平分线成一条直线;②相邻二角的角平分线互相垂直;③同旁内角的角平分线互相垂直;④邻补角的角平分线互相垂直.A .1个B.2个C.3个D.4个考点:同位角、内错角、同旁内角;角平分线的定义;对顶角、邻补角.分析:本题考查几个类别图形的角平分线的关系,要从两个角的位置及大小上,进行判断.解答:解:①因为对顶角相等,其角平分线所分得的角也相等,可构成新的对顶角,故对顶角的角平分线成一条直线,正确;②相邻二角互补时角平分线互相垂直,其它情况下就不垂直,错误;③同旁内角互补时角平分线互相垂直,其它情况下就不垂直,错误;④由于邻补角互补,又有位置关系,故邻补角的角平分线互相垂直,正确.故选B.点评:对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.9.如图所示,下列说法不正确的是()A .∠1与∠B是同位角B.∠1与∠4是内错角C .∠3与∠B是同旁内角D.∠C与∠A不是同旁内角考点:同位角、内错角、同旁内角.分析:本题考查同位角、内错角、同旁内角的概念,要根据概念判断,分清楚截线与被截线.解答:解:A、∠1与∠B是两直线DE、BC被直线AB所截的同位角,正确;B、∠1与∠4是两直线AB、AC被直线DE所截的内错角,正确;C、∠3与∠4是两直线AB、AC被直线DE所截的同旁内角,正确;D、∠C与∠A是两直线AB、BC被直线AC所截的同旁内角,判断错误.故选D.点评:对概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义,要善于区分不同概念之间的联系和区别.10.如图,射线c,b被a所截,则∠1与∠2是()A .同位角B.内错角C.同旁内角D.对顶角考点:同位角、内错角、同旁内角.分析:根据同位角的定义作答.解答:解:∵射线c,b被a所截,∠1与∠2在截线a的同侧,在两条被截直线c,b的同旁,∴∠1与∠2是同位角.故选A.点评:两条直线被第三条直线所截,在截线的同侧,在两条被截直线的同旁的两个角是同位角.如果两个角是同位角,那么它们一定有一条边所在的直线公共.11.如图,下列判断错误的是()A .∠1与∠2是同旁内角B.∠3与∠4是内错角C .∠5与∠6是同旁内角D.∠5与∠8与是同位角考点:同位角、内错角、同旁内角.分析:根据同位角、内错角和同旁内角的定义,结合图形判断.解答:解:因为∠5与∠6没有位置上的直接联系,不是三线八角问题,错误;故选C.点评:本题主要考查“三线八角”问题,正确掌握各种角的定义是解题的关键.12.下列命题中,真命题有()(1)直线外一点与直线上各点连接的所有线段中,垂线段最短;(2)两条直线被第三条直线所截,内错角相等;(3)经过两点有一条直线,并且只有一条直线;(4)如果一条直线和两条直线中的一条垂直,那么这条直线也和另一条垂直.A .1个B.2个C.3个D.4个考点:同位角、内错角、同旁内角;直线、射线、线段;垂线;垂线段最短.分析:根据所学公理和性质定理,对各选项分析判断后再计算个数.解答:解:(1)直线外一点与直线上各点连接的所有线段中,垂线段最短,正确;(2)应为两条平行直线被第三条直线所截,内错角相等,故本选项错误;(3)经过两点有一条直线,并且只有一条直线,正确;(4)应为如果一条直线和两条平行直线中的一条垂直,那么这条直线也和另一条垂直,故本选项错误.所以(1)(3)两项是真命题.故选B.点评:本题主要是对公理和定理的考查,熟记公理定理是解题的关键.13.如图所示,下列说法错误的是()A .∠A和∠B是同旁内角B.∠A和∠3是内错角C .∠1和∠3是内错角D.∠C和∠3是同位角考点:同位角、内错角、同旁内角.分析:内错角的定义,两个角分别在截线的两侧,且在两条被截线之间,具有这样位置关系的一对角叫做内错角.∠A和∠3不是在截线的两侧,不是内错角.解答:解:根据内错角、同旁内角和同位角的定义可知:A、C、D均是正确的,只有B错误.故选B.点评:判断是否是内错角,必须符合三线八角中,两个角分别在截线的两侧,且在两条被截线之间,具有这样位置关系的一对角叫做内错角.二.填空题(共15小题)14.如图,标有角号的7个角中共有4对内错角,2对同位角,4对同旁内角.考点:同位角、内错角、同旁内角.分析:根据内错角,同位角及同旁内角的定义即可求得此题.解答:解:如图,共有4对内错角:分别是∠1和∠4,∠2和∠5,∠6和∠1,∠5和∠7;2对同位角:分别是∠7和∠1,∠5和∠6;4对同旁内角:分别是∠1和∠5、∠3和∠4、∠3和∠2、∠4和∠2.点评:此题主要考查了内错角,同位角,同旁内角的定义.15.如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于80度,∠3的内错角等于80度,∠3的同旁内角等于100度.考点:同位角、内错角、同旁内角;对顶角、邻补角.专题:计算题.分析:在截线的同旁找同位角和同旁内角,在截线的两旁找内错角.要结合图形,熟记同位角、内错角、同旁内角的位置特点,比较它们的区别与联系.解答:解:∵∠1=40°,∠2=100°,∴∠3的同位角=∠4=180°﹣∠2=180°﹣100°=80°.∠3的内错角=∠5=180°﹣∠2=180°﹣100°=80°.∠3的同旁内角=∠6=∠2=100°.点评:两条直线被第三条直线所截,构成八个角(简称“三线八角”),其中同位角4对,内错角2对,同旁内角2对.本题同时考查了邻补角和对顶角的定义.16.如图,按角的位置关系填空:∠A与∠1是同旁内角;∠A与∠3是同位角;∠2与∠3是内错角.考点:同位角、内错角、同旁内角.分析:根据两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形找出即可.解答:解:根据图形,∠A与∠1是直线AC、MN被直线AB所截形成的同旁内角,∠A与∠3是直线AC、MN 被直线AB所截形成的同位角,∠2与∠3是直线AC、AB被直线MN所截形成的内错角.故应填:同旁内角,同位角,内错角.点评:本题考查了三线八角中的同旁内角,同位角,内错角的概念,知同位角、内错角、同旁内角是两直线被第三条直线所截而成的角.17.如图,图中内错角的对数是4.考点:同位角、内错角、同旁内角.专题:几何图形问题.分析:根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.解答:解:由内错角定义,直线AB、CD被BC所截,内错角有:∠ABC与∠DCB;直线EC、AB被BC所截,内错角有:∠ABC与∠ECB为内错角;直线FB、CD被BC所截,内错角有:∠FBC与∠DCB;直线EC、FB被BC所截,内错角有:∠FBC与∠ECB为内错角.共有4对.故答案为:4.点评:本题主要考查内错角的定义,要灵活掌握变形直线相交所成的内错角.18.如图,∠A的同位角是∠BFG,∠CGF,∠1的内错角是∠CGF,∠2的同旁内角是∠CGF或∠B 或∠A.考点:同位角、内错角、同旁内角.分析:准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.解答:解:∠A与∠BDG是直线AC、DE被直线AB所截形成的同位角,∠A与∠CGF是直线AB、DE被直线AC所截形成的同位角;∠1与∠CGF是直线AC、AB被直线DE所截形成的内错角;∠A与∠2是直线AB、BC被直线AC所截形成的同旁内角,∠2与∠B是直线AC、AB被直线BC所截形成的同旁内角,∠2与∠CGF是直线BC、DE被直线AC所截形成的同位角;故∠A的同位角是∠BFG,∠CGF,∠1的内错角是∠CGF,∠2的同旁内角是∠CGF或∠B或∠A.点评:在复杂的图形中识别同位角、内错角、同旁内角时,应当沿着角的边将图形补全,或者把多余的线暂时略去,找到三线八角的基本图形,进而确定这两个角的位置关系.19.如图,∠1和∠3是直线a,b被直线c所截得到的同旁内角;∠3和∠2是直线a,c被直线b所截得到的内错角角;∠1和∠2是直线b,c被直线a所截得到的同位角角.考点:同位角、内错角、同旁内角.分析:根据两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形解答.解答:解:∠1和∠3是直线a,b被直线c所截得到的同旁内角;∠3和∠2是直线a,c被直线b所截得到的内错角;∠1和∠2是直线b,c被直线a所截得到的同位角.故填:a,b,c,同旁内角;a,c,b,内错角;b,c,a,同位角.点评:本题主要考查了三线八角的问题,熟记同位角、内错角、同旁内角的位置关系是解决此类问题的关键.20.如图,按角的位置关系填空:∠A与∠1是同旁内角,是由直线AC与DE被AB所截构成的;∠A与∠3是同位角,是由直线AC与DE被AB所截构成的;∠2与∠3是内错角,是由直线AC 与AB被DE所截构成的.考点:同位角、内错角、同旁内角.专题:几何图形问题.分析:根据同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角作答.解答:解:图中:∠A与∠1是同旁内角,是由直线AC与DE被AB所截构成的;∠A与∠3是同位角;是由直线AC与DE被AB所截构成的;∠2与∠3是内错角,是由直线AC与AB被DE所截构成的.故答案为:同旁内角,AC,DE,AB;同位角,AC,DE,AB;内错角,AC,AB,DE.点评:本题考查了同位角、内错角、同旁内角的概念.三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.21.如图,在直线DE与∠O的两边相交,则∠O的同位角是∠2和∠5,∠8的内错角是∠2,∠1的同旁内角是∠8和∠O.考点:同位角、内错角、同旁内角.分析:准确识别同位角、内错角、同旁内角的关键,是弄清哪两条直线被哪一条线所截.也就是说,在辨别这些角之前,要弄清哪一条直线是截线,哪两条直线是被截线.解答:解:∠O与∠2在截线OB和ED的同侧,被截线OA的同侧,∠O与∠5在截线OA和ED的同侧,被截线OB的同侧,故∠O的同位角是∠2和∠5;∠8与∠2在截线OA和OB的内部,被截线DE的两侧,故∠8与∠2是内错角;∠1与∠8在截线OA和OB的内部,被截线DE的同侧,故∠1与∠8是同旁内角,∠1与∠O在截线DE 和OB的内部,被截线OA的同侧,故∠1与∠O是同旁内角.故∠O的同位角是∠2和∠5;∠8的内错角是∠2;∠1的同旁内角是∠8和∠O.点评:本题考查同位角、内错角和同旁内角的定义,是需要熟记的内容.22.请在图中任意找出一对内错角可以为:∠1与∠3(或∠3与∠4).考点:同位角、内错角、同旁内角.专题:开放型.分析:根据内错角是在截线两旁,被截线之内的两角,内错角的边构成”Z“形作答.解答:解:如图:一对内错角有∠1与∠3(或∠3与∠4).故答案为:∠1,∠3(或∠3,∠4).点评:本题考查了内错角的定义,正确记忆内错角的定义是解决本题的关键.23.如图,在∠1、∠2、∠3、∠4、∠5、∠B、∠D、∠ACE中,与∠D是同位角的是∠5、∠ACE;与∠2是内错角的是∠4、∠ACE.考点:同位角、内错角、同旁内角.专题:应用题.分析:根据同位角的定义,以及内错角的定义,在截线的两旁找内错角,即可得出答案.解答:解:根据图形可知:与∠D是同位角的是∠5、∠ACE,与∠2是内错角的是∠4、∠ACE,故答案为∠5、∠ACE,∠4、∠ACE.点评:本题主要考查了同位角与内错角的定义,同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角就是在截线的两旁,比较简单.24.如图填空.(1)若ED,BC被AB所截,则∠1与∠2是同位角.(2)若ED,BC被AF所截,则∠3与∠4是内错角.(3)∠1与∠3是AB和AF被ED所截构成的内错角.(4)∠2与∠4是AB和AF被BC所截构成的同位角.考点:同位角、内错角、同旁内角.分析:根据同位角、内错角的定义进行分析解答即可,两个角分别在截线的两侧,且在两条直线之间,具有这样位置关系的一对角互为内错角,两个角都在截线的同旁,又分别处在被截的两条线的同侧,具有这样位置关系的一对角叫做同位角.解答:解:(1)如图:若ED,BC被AB所截,则∠1与∠2是同位角,(2)若ED,BC被AF所截,则∠3与∠4是内错角,(3)∠1与∠3是AB和AF被ED所截构成的内错角,(4)∠2与∠4是AB和AF被BC所截构成的同位角.故答案为∠2;∠4;ED,内错;AB,AF,同位.点评:本题主要考查内错角、同位角的定义,解答此类题确定三线八角是关键,可直接从截线入手.25.如图,与∠1构成同位角的是∠B,与∠2构成内错角的是∠BDE.考点:同位角、内错角、同旁内角.分析:两个角分别在被截线的同一方,并且都在截线的同侧,具有这种位置关系的两个角叫做同位角,与∠1构成同位角的是∠B;两个角都在被截线之间,并且都在截线的两侧,具有这种位置关系的两个角,叫做内错角,与∠2构成内错角的是∠BDE.解答:解;根据同位角、内错角的定义,与∠1构成同位角的是∠B,与∠2构成内错角的是∠BDE.点评:正确记忆同位角以及内错角的定义是解决本题的关键.26.如图,直线AB,CD与直线EF相交,∠5和∠1是同位角,和∠3是内错角,和∠2是同旁内角.∠2和∠6是直线AB、CD被EF所截而形成的同位角.考点:同位角、内错角、同旁内角.分析:根据两直线被第三条直线所截,在截线的同一侧,被截线的同一方向的两个角是同位角;在截线的两侧,被截线的内部的两个角是内错角;在截线的同一侧,被截线的内部的两个角是同旁内角,结合图形解答.解答:解:根据图形∠5与∠1是同位角,和∠3是内错角,和∠2是同旁内角.∠2和∠6是直线AB、CD被EF 所截而形成的同位角.故应填:∠1,∠3,∠2,∠6,AB,CD,EF.点评:本题主要考查同位角、内错角和同旁内角的定义,从图形中准确找出同位角、内错角或同旁内角是考查的重点之一.27.如图,在图上标出∠β的所有同位角,并标上数字1、2、3.考点:同位角、内错角、同旁内角.专题:推理填空题.分析:同位角的判断要把握几个要点:①分析截线与被截直线;②作为同位角要把握两个相同,在截线同旁,在被截直线同侧.解答:解:根据同位角的定义标出∠β的所有同位角,如图:故答案为:1、2、3.点评:此题考查的知识点是同位角,此类题的解题要点在概念的掌握.28.如图,∠1的同旁内角是∠3,∠GEN.考点:同位角、内错角、同旁内角.分析:根据同旁内角的定义即两个内角都在截线的同一侧,且在两条被截线之间,具有这样位置关系的一对角互为同旁内角进行解答即可.解答:解:根据同旁内角的定义可知∠1的同旁内角是∠3,∠GEN.故答案为:∠3,∠GEN.点评:本题主要考查了同旁内角的定义.解答此题时要结合图形和同旁内角的定义进行解答,比较简单.三.解答题(共1小题)29.(1)如果把图看成是直线AB,EF被直线CD所截,那么∠1与∠2是一对什么角?∠2与∠3呢?(2)如果把图看成是直线AB,CD被直线EF所截,那么∠4与∠5是一对什么角?∠5与∠6呢?考点:同位角、内错角、同旁内角.专题:计算题.分析:根据同位角、同旁内角、同位角、对顶角的定义进行判断.解答:解:(1)内错角,同旁内角;(2)同位角,对顶角.点评:解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意理解它们所包含的意义.。

同位角、内错角、同旁内角练习(含答案)

同位角、内错角、同旁内角练习(含答案)

同位角、内错角、同旁内角练习1.填空(1)如图2-43,直线AB、CD被DE所截,则∠1和是同位角,∠1和是内错角,∠1和是同旁内角,如果∠1=∠5.那么∠1 ∠3.(2)上题中(图2-43)如果∠5=∠1,那么∠1=∠3的推理过程如下,请在括号内注明理由:∵∠5=∠1()又∵∠5=∠3()∴∠1=∠3()(3)如图2-44,∠1和∠4是AB、被所截得的角,∠3和∠5是、被所截得的角,∠2和∠5是、所截得的角,AC、BC被AB所截得的同旁内角是 .∠(4)如图2-45,AB、DC被BD所截得的内错角是,AB、CD被AC所截是的内错角是,AD、BC被BD所截得的内错角是,AD、BC被AC所截得的内错角是 .2.选择题(1)如图2-46,∠1与∠2是同位角的个数有()A.1个B.2个C.3个D.4个(2)如图2-47,()是内错角A. ∠1和∠2B. ∠3和∠4C. ∠2和∠3D. ∠1和∠4(3)如图2-48,图中的同位角的对数是()A.4B.6C.8D.123.如图2-49,已知∠1的同旁内角等于57°28′,求∠1的内错的度数.1.如图1,直线a、b被直线c所截,∠1和∠2是,∠3和∠4是,∠3和∠2是。

2.如图2,∠1和∠2是直线和直线被直线所截得的角。

3.如图3,∠1的内错角是,∠A的同位角是,∠B的同旁内角是。

4.如图4,和∠1构成内错角的角有个;和∠1构成同位角的角有个;和∠1构成同旁内角的角有个。

5.如图5,指出同位角是,内错角是,同旁内角是。

二、选择题6.如图6,和∠1互为同位角的是( )(A)∠2; (B)∠3;(C)∠4; (D)∠5。

7.如图7,已知∠1与∠2是内错角,则下列表达正确的是( )(A)由直线AD、AC被CE所截而得到的;(B)由直线AD、AC被BD所截而得到的;(C)由直线DA、DB被CE所截而得到的;(D)由直线DA、DB被AC所截而得到的。

8.在图8中1和2是同位角的有( )(A)(1)、(2); (B)(2)、(3); (C)(1)、(3); (D)(2)、(4)。

人教版七年级下第五章同位角、内错角、同旁内角同步练习题含解析

人教版七年级下第五章同位角、内错角、同旁内角同步练习题含解析
综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.
故答案为三.
20.图1中同位角有:∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角有:∠3与∠6,∠4与∠5;同旁内角有:∠3与∠5,∠4与∠6.;图2中同位角有:∠1与∠3,∠2与∠4;同旁内角有:∠3与∠2.
【分析】根据两直线被第三条直线所截,两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角是同位角,可得同位角;两个角在截线的两侧,被截两直线的中间的角是内错角,可得内错角;两个角在截线的同侧,被截两直线的中间的角是同旁内角,可得同旁内角.
17.指出图中各对角的位置关系:
(1)∠C和∠D是_____角;
(2)∠B和∠GEF是____角;
(3)∠A和∠D是____角;
(4)∠AGE和∠BGE是____角;
(5)∠CFD和∠AFB是____角.
18.如图,直线AB,CD被直线EF所截,如果∠2=100°,那么∠1的同位角等于____度.
19.平面内四条直线共有三个交点,则这四条直线中最多有________条平行线.
【详解】解:∵题目并未告诉,∠1和∠2是属于两条平行线被截的同旁内角,
∴∠2的度数大小不能确定,
故选D.
【点睛】本题主要考查了同旁内角的定义,解题的关键在于能够熟练掌握相关知识进行求解.
9.C
【分析】根据对顶角、邻补角、同位角、内错角的定义分别分析即可.
【详解】解:A、∠1与∠2是邻补角,故原题说法错误;
内错角有2对,它们是 与 , 与 ;
同旁内角有2对,它们是 与 , 与 ;
对顶角有4对,它们是 与 , 与 , 与 , 与 .
故答案为:4; 与 , 与 , 与 , 与 ;2; 与 , 与 ;2; 与 , 与 ;4; 与 , 与 , 与 , 与

《同位角、内错角、同旁内角》练习题(含答案)

《同位角、内错角、同旁内角》练习题(含答案)

5.1.3 同位角、内错角、同旁内角1.如图,有以下判断:①∠1与∠3是内错角;②∠2与∠3是内错角;③∠2与∠4是同旁内角;④∠2与∠3是同位角.其中说法正确的有__________(填序号).2.看图填空:(1)∠1和∠3是直线__________被直线__________所截得的__________;(2)∠1和∠4是直线__________被直线__________所截得的__________;(3)∠B和∠2是直线__________被直线__________所截得的__________;(4)∠B和∠4是直线__________被直线__________所截得的__________.3.如图所示,若∠1=∠2,在①∠3和∠2;②∠4和∠2;③∠3和∠6;④∠4和∠8中相等的有( )A.1对B.2对C.3对D.4对4.如图,如果∠1=40°,∠2=100°,那么∠3的同位角等于__________,∠3的内错角等于__________,∠3的同旁内角等于__________.5.如图,下列说法错误的是( )A.∠1和∠3是同位角B.∠A和∠C是同旁内角C.∠2和∠3是内错角D.∠3和∠B是同旁内角6.如图所示,∠B与∠CAD是由直线__________和直线__________被直线__________所截得到的__________角.7.如图,__________是∠1和∠6的同位角,__________是∠1和∠6的内错角,__________是∠6的同旁内角.8.根据图形说出下列各对角是什么位置关系?(1)∠1和∠2;(2)∠1和∠7;(3)∠3和∠4;(4)∠4和∠6;(5)∠5和∠7.9.如图,∠1和∠2是哪两条直线被哪一条直线所截形成的?它们是什么角?∠1和∠3是哪两条直线被哪一条直线所截形成的?它们是什么角?10.探究题:(1)如图1,两条水平的直线被一条竖直的直线所截,同位角有__________对,内错角有__________对,同旁内角有__________对;(2)如图2,三条水平的直线被一条竖直的直线所截,同位角有__________对,内错角有__________对,同旁内角有__________对;(3)根据以上探究的结果,n(n为大于1的整数)条水平直线被一条竖直直线所截,同位角有__________对,内错角有__________对,同旁内角有__________对.(用含n的式子表示)5.2平行线及其判定参考答案1.①③2.(1)AB,BC AC 同旁内角(2)AB,BC AC 同位角(3)AB,AC BC 同位角(4)AC,BC AB 内错角3.C4.80° 80° 100°5.A6.BC AC BD 同位7.∠3 ∠5 ∠48.(1)∠1和∠2是同旁内角;(2)∠1和∠7是同位角;(3)∠3和∠4是内错角;(4)∠4和∠6是同旁内角;(5)∠5和∠7是内错角.9.∠1和∠2是直线EF,DC被直线AB所截形成的同位角,∠1和∠3是直线AB,CD被直线EF所截形成的同位角.10.(1)4 2 2(2)12 6 6(3)2n(n-1) n(n-1) n(n-1)。

同位角、内错角、同旁内角经典练习题(附答案)

同位角、内错角、同旁内角经典练习题(附答案)

同位角、内错角、同旁内角经典练习题1.如图,点D E ,分别为ABC △边BC AC ,上一点,作射线DE ,则下列说法错误的是( )第1题图 第2题图A .1∠与3∠是对顶角B .2∠与A ∠是同位角C .2∠与C ∠是同旁内角D .1∠与4∠是内错角2.如图,已知1∠与2∠是内错角,则下列表述正确的是( )A.由直线AD BC ,被AC 所截而得到的B.由直线AB CD ,被BC 所截而得到的C.由直线AB CD ,被AC 所截而得到的D.由直线AD BC ,被CD 所截而得到的3.如图,直线AD BE ,被直线BF 和AC 所截,则1∠的同位角和5∠的内错角分别是( )A.42∠∠,B.26∠∠,C.54∠∠,D.24∠∠,4.如图,B ∠的同位角可以是( )A.1∠B.2∠C.3∠D.4∠5.如图所示,以下几种说法,其中正确的个数是( )①3∠和4∠是同位角;②6∠和7∠是同位角;③4∠和5∠是内错角;④2∠和5∠是同旁内角⑤2∠和7∠是同位角;⑥1∠和2∠是同位角A.3B.4C.5D.66.如图所示,与∠A 是同旁内角的角共有 个.7.如图,2∠的内错角是 ,3∠与B ∠是 角,B ∠的同旁内角是 .第7题图第8题图8.如图(1)找出直线DC AC ,被直线BE 所截形成的同旁内角; (2)指出DEF ∠与CFE ∠是由哪两条直线被哪一条直线所截形成的什么角;(3)试找出图中与DAC ∠是同位角的所有角.答案以及解析1.答案:D解析:根据同位角、内错角以及同旁内角的概念进行判断:A 、B 、C 、正确D 错误.2.答案:C解析:因为1∠的两边为AB AC ,,2∠的两边为AC CD ,,所以1∠与2∠是由直线AB CD ,被AC 所而得到的,故选C3.答案:B解析:由题意,知1∠的同位角是25∠∠,的内错角是6∠,故选B.4.答案:D解析:根据同位角的特征可知,∠B 的同位角可以是4∠.故选D.5.答案:B解析:根据同位角、内错角、同旁内角的特征可知,3∠和4∠是同位角,1∠和2∠是同位角,4∠和5∠是内错角,2∠和5∠是同旁内角,6∠和7∠不是同位角,2∠和7∠不是同位角则正确的为③④①,共4个,故选B6.答案:4解析:与A ∠是同旁内角的有,,,ABC ADC ADE AED ∠∠∠∠,共4个.7.答案:C ∠ 内错 1∠或DAB ∠或C ∠解析:2∠和C ∠在被截线AD 和BC 的内部,截线AC 的两侧,故2∠的内错角是C ∠;3∠与B ∠在被截线AE 和BC 的内部,截线AB 的两侧,故3∠与B ∠是内错角;B ∠的同旁内角是1∠或DAB ∠或C ∠8.答案:解:(1)FBC ∠和CFB ∠,DFB ∠和FBA ∠是直线DC AC ,被直线BE 所截形成的同旁内角.(2)DEF ∠与CFE ∠是由直线AG DF ,被直线EF 所截形成的内错角.(3)DAC ∠的同位角有EBH DCH EDF GEF ∠∠∠∠,,,.。

同位角、内错角、同旁内角专项练习41题(有答案)

同位角、内错角、同旁内角专项练习41题(有答案)

同位角.内错角.同旁内角专项练习50题知识点:1、两条直线被第三条直线所截形成八个角,它们构成了同位角、内错角与同旁内角。

如图,直线“上被直线/所截①Z1与Z5在截线/的同侧,同在被截直线("的上方,叫做同位角(位置相同)②Z5与Z3在截线/的两旁(交错),在被截直线4b之间(内),叫做内错角(位置在内且交错)③Z5与Z4在截线/的同侧,在被截直线之间(内),叫做同旁内角“④三线八角也可以成模型中看出。

同位角是"A”型;内错角是“Z”型:同旁内角是“U”型。

2、如何判别三线八角判别同位角.内错角或同旁内角的关键是找到构成这两个角的“三线S有时需要将有关的部分“抽出”或把无关的线略去不看,有时又需要把图形补全。

例如:A 1如图,判断下列各对角的位置关系:(DZ1与Z2:(2)Z1与Z7:(30 与ZBAD:(4)Z2与Z6:(5)/5与Z8。

我们将各对角从图形中抽岀来(或者说略去与有关角无关的线),得到下列各图。

如图所示,不难看出Z1与Z2是同旁内角:Z1与Z7是同位角:Z1与ZBAD是同旁内角;Z2与Z6是内错角:Z5与Z8对顶角。

专项练习:所截得的 角,AC 、BC 被AB 所截得的同旁内角是8、 如图2・45, AB. DC 被BD 所截得的内错角是 _________ 是 ____________ ,AD 、BC 被BD 所截得的内错角是 Z • AB 、______ 所角。

12、如图2-49,已知Z1的同旁内角等于57° 28’,求Z1的内错的度数.13、如图1, Z1和Z2可以看作直线 _________ 和直线 _________ 被直线 _______ 所截得的角。

15、如图3,直线DE 、BC 被直线AC 所截得的内错角是 ______ : ZB 与ZC 可以看作直线 __________ 、 __________ 被E )是内错角 个 10.如图 2-47,( 11、如图2-48,图中的同位角的对数是( )14、如图2, Z1和Z2是直线 和直线 被直线直线 ________ 所截得的________ 角o图316、如图4.与ZEFC构成内错角的是.2 1、如下图6,和Z1互为同位角的是(图I______________ :与ZEFC构成同旁内角的____ 个;与Z2构成同位角的角有 _______ 个:个。

七年级数学下册-同位角、内错角、同旁内角练习含答案

七年级数学下册-同位角、内错角、同旁内角练习含答案

同位角、内错角、同旁内角练习要求:熟悉并掌握三线八角。

A卷一、填空题1.如图1,直线a、b被直线c所截,∠1和∠2是,∠3和∠4是,∠3和∠2是。

2.如图2,∠1和∠2是直线和直线被直线所截得的角。

3.如图3,∠1的内错角是,∠A的同位角是,∠B的同旁内角是。

4.如图4,和∠1构成内错角的角有个;和∠1构成同位角的角有个;和∠1构成同旁内角的角有个。

5.如图5,指出同位角是,内错角是,同旁内角是。

二、选择题6.如图6,和∠1互为同位角的是( )(A)∠2; (B)∠3;(C)∠4;(D)∠5。

7.如图7,已知∠1与∠2是内错角,则下列表达正确的是( )(A)由直线AD、AC被CE所截而得到的;(B)由直线AD、AC被BD所截而得到的;(C)由直线DA、DB被CE所截而得到的;(D)由直线DA、DB被AC所截而得到的。

8.在图8中1和2是同位角的有( )(A)(1)、(2); (B)(2)、(3); (C)(1)、(3); (D)(2)、(4)。

9.如图9,在指明的角中,下列说法不正确的是( )(A)同位角有2对; (B)同旁内角有5对;(C)内错角有4对; (D)∠1和∠4不是内错角。

10.如图10,则图中共有( )对内错角 (A)3;(B)4; (C)5; (D)6。

三、简答题11.如图11(1)说出∠1与∠2互为什么角?(2)写出与∠1成同位角的角;(3)写出与∠1成内错角的角。

12.如图12(1)说出∠A与∠1互为什么角?(2) ∠B与∠2是否是同位角;(3)写出与∠2成内错角的角。

B卷一、填空题1.如图1,∠1和∠2可以看作直线和直线被直线所截得的角。

2.如图2,∠1和∠2是直线和直线被直线被直线所截得的角。

3.如图3,直线DE、BC被直线AC所截得的内错角是;∠B与∠C可以看作直线、被直线所截得的角。

4.如图4,与∠EFC构成内错角的是;与∠EFC构成同旁内角的是。

5.如图5,与∠1构成内错角的角有个;与∠1构成同位角的角有个;与∠1构成同旁内角的角有个。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

邻补角、对顶角、同位角、内错角、同旁内角
一、学习目标
1、了解两条直线相交所构成的角,理解并掌握邻补角、对顶角的概念和性质;
2、理解并掌握垂线的概念和性质;
3、了解同位角、内错角、同旁内角的概念并会辨别 二、主要内容
1、邻补角:两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为邻补角。

2、对顶角:两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为对顶角;对顶角的性质:对顶角相等。

图形 顶点 边的关系 大小关系 对顶角
∠1与∠2 有公共顶点
∠1的两边与∠2的两边互为反向延长线
对顶角相等 即∠1=∠2
邻补角
∠3与∠4
有公共顶点
∠3与∠4有一条边公共,另一边互为反向延长线。

∠3+∠4=180°
注意:
1、对顶角是成对出现的,对顶角是具有特殊位置关系的两个角;
2、如果∠α与∠β是对顶角,那么一定有∠α=∠β;反之如果∠α=∠β,那么∠α与∠β不一定是对顶角
3、如果∠α与∠β互为邻补角,则一定有∠α+∠β=180°;反之如果∠α+∠β=180°,则∠α与∠β不一定是邻补角。

4、两直线相交形成的四个角中,每一个角的邻补角有两个,而对顶角只有一个。

习题巩固
1.下面四个图形中,∠1与∠2是对顶角的图形的个数是( ) A .0 B .1 C .2 D .3
12
1
2
1
2
1
2
2、下面各图中∠1和∠2是对顶角的是( )
1 2 4 3
A.B.C.D.
3、下列语句正确的是().
A、相等的角是对顶角
B、相等的两个角是邻补角
C、对顶角相等
D、邻补角不一定互补,但可能相等
4、下列语句错误的有()个.
(1)两个角的两边分别在同一条直线上,这两个角互为对顶角
(2)有公共顶点并且相等的两个角是对顶角
(3)如果两个角相等,那么这两个角互补
(4)如果两个角不相等,那么这两个角不是对顶角
A、1
B、2
C、3
D、4
5、已知∠1与∠2是邻补角,∠2是∠3的邻补角,那么∠1与∠3的关系是().
A、对顶角
B、相等但不是对顶角
C、邻补角
D、互补但不是邻补角
6、下列说法正确的是().
A、有公共顶点的两个角是对顶角
B、两条直线相交所成的两个角是对顶角
C、有公共顶点且有一条公共边的两个角是邻补角
D、两条直线相交所成的无公共边的两个角是对顶角
7、已知:如图所示,AB⊥CD,垂足为点O,EF为过点O•的一条直线,则∠1与∠2的关系一定成立的是()
A.相等 B.互余 C.互补 D.互为对顶角
8、下列判断正确的个数是_____个。

⑴如果两个角相等,那么这两个角是对顶角。

⑵如果两个角有共公顶点,且角平分线互为反向延长线,那么这两个角是对顶角。

⑶对顶角的平分线在同一条直线上。

⑷以同一个角为邻补角且不重合的两个角是对顶角。

9、如图,直线AB 、CD 相交于点O ,∠1=∠2.则∠1的对顶角是_____,∠4的邻补角是______.∠2的补角是_________.
10、如图,已知直线AB 、CD 相交于点O ,∠AOC =50°,求∠BOD 、∠AOD 、∠BOC 的度数.
解:∵∠BOD 与∠AOC 是对顶角 ∴ = = °( )
∵ 与 是邻补角 ∴∠AOD =180°-∠AOC =180°-50°=130° ∵ 与 是对顶角 ∴∠BOC =∠AOD =130°
11、如图所示,直线AB ,CD 相交于点O ,∠BOE=90°,若∠COE=55°,•求∠BOD 的度数.
C
O
E D B
A
12、如图所示,直线AB 与CD 相交于点O ,OE 平分∠AOD ,∠AOC=•120•°. 求∠BOD ,∠AOE 的度数.
50
O
A
D C B
13、如图,直线AB 、CD 相交于点O ,OE 平分∠BOC.已知∠BOE=65°,求∠AOD 、∠AOC 的度数.
3、两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互垂直;垂线的性质:⑴过一点有且只有一条直线与已知直线垂直。

⑵连接直线外一点与直线上各点的所在线段中,垂线段最短。

习题巩固
1、下列说法中正确的是( )
A .有且只有一条直线垂直于已知直线。

B .从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离。

C .互相垂直的两条直线一定相交。

D .直线c 外一点A 与直线c 上各点连接而成的所有线段中,最短线段的长是3cm ,则点A 到直线c
的距离是3cm 。

2、点到直线的距离是指这点到这条直线的( )
A 、垂线段
B 、垂线的长
C 、长度
D 、垂线段的长
4、两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,
⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做同位角; ⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做内错角; ⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做同旁内角。

习题巩固
1.如图,若直线a ,b 被直线c 所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?
(1)∠1与∠2是_______;(2)∠5与∠7是______;
(3)∠1与∠5是_______;(4)∠5与∠3是______;
(5)∠5与∠4是_______;(6)∠8与∠4是______;
(7)∠4与∠6是_______;(8)∠6与∠3是______;
(9)∠3与∠7是______;(10)∠6与∠2是______.
E
65
O A
D
C B
2、如图所示,
(1)∠AED 和∠ABC 可看成是直线______、______被直线_____ _所截得的____ ___角;
(2)∠EDB 和∠DBC 可看成是直线______、______被直线____ ___所截得的____ __角;
(3)∠EDC 和∠C 可看成是直线_______、____ 被直线__ ___所截得的___ _ __角.
3、已知图①~④,
图① 图② 图③ 图④ 在上述四个图中,∠1与∠2是同位角的有( ). (A)①②③④ (B)①②③ (C)①③ (D)①
4、如图,下列结论正确的是( ). (A)∠5与∠2是对顶角 (B)∠1与∠3是同位角
(C)∠2与∠3是同旁内角 (D)∠1与∠2是同旁内角
5、如图,∠1和∠2是内错角,可看成是由直线( ). (A)AD ,BC 被AC 所截构成 (B)AB ,CD 被AC 所截构成
(C)AB ,CD 被AD 所截构成 (D)AB ,CD 被BC 所截构成 6、下列图形中,1∠和2∠不是同位角的是( )
A B C D
1
2
1
2
1
21
2
7、如图,属于内错角的是( )
A.∠1和∠2
B.∠2和∠3 C .∠1和∠4 D.∠3和∠4
8、如图所示,同位角一共有 对,
分别是 ; 内错角一共有 对,
分别是 ;
同旁内角一共有 对,
分别是 .
3
42
1a
b
c
1
2
3456
789。

相关文档
最新文档