2013年高考试题——北京高考数学文科试题及解析
2013年高考试题及解析:文科数学(新课标Ⅰ卷)
绝密★启封并使用完毕前2013年普通高等学校招生全国统一考试文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={1,2,3,4},B={x |x =n 2,n ∈A },则A ∩B= ( ) (A ){0} (B ){-1,,0} (C ){0,1} (D ){-1,,0,1} 【答案】A 【解析】【难度】容易【点评】本题考查集合之间的运算关系,即包含关系.在高一数学强化提高班上学期课程讲座1,第一章《集合》中有详细讲解,其中第02节中有完全相同类型题目的计算.在高考精品班数学(文)强化提高班中有对集合相关知识的总结讲解. (2)1+2i(1-i)2= ( ) (A )-1-12i(B )-1+12i(C )1+12i(D )1-12i【答案】B 【解析】【难度】容易【点评】本题考查复数的计算。
在高二数学(文)强化提高班下学期,第四章《复数》中有详细讲解,其中第02节中有完全相同类型题目的计算。
在高考精品班数学(文)强化提高班中有对复数相关知识的总结讲解。
(3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( )(A )12(B )13(C )14(D )16【答案】B【难度】容易【点评】本题考查几何概率的计算方法。
在高二数学(文)强化提高班,第三章《概率》有详细讲解,在高考精品班数学(文)强化提高班中有对概率相关知识的总结讲解。
(2021年整理)2013年高考北京文科数学试题及答案(word解析版)
(完整)2013年高考北京文科数学试题及答案(word解析版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2013年高考北京文科数学试题及答案(word解析版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2013年高考北京文科数学试题及答案(word解析版)的全部内容。
2013年普通高等学校招生全国统一考试(北京卷)数学(文科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2013年北京,文1,5分】已知集合{}101A =-,,,{}|11B x x =-≤<,则A B =( ) (A ){0} (B ){}10-, (C){}01,(D){}101-,, 【答案】B【解析】1,0,11{11,}{|}{}0x x --≤<-=,故选B . (2)【2013年北京,文2,5分】设a ,b ,c R ∈,且a b >,则( )(A )ac bc > (B )11ab< (C )22a b > (D )33a b > 【答案】D 【解析】:A 选项中若c 小于等于0则不成立,B 选项中若a 为正数b 为负数则不成立,C 选项中若a ,b 均为负数则不成立,故选D .(3)【2013年北京,文3,5分】下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )(A )1y x =(B )x y e -= (C )21y x =-+(D )lg y x =【答案】C【解析】A 选项为奇函数,B 选项为非奇非偶函数,D 选项虽为偶函数但在(0)+∞,上是增函数,故选C . (4)【2013年北京,文4,5分】在复平面内,复数i(2i)-对应的点位于( )(A )第一象限 (B )第二象限 (C)第三象限 (D )第四象限【答案】A【解析】()i 2i 12i -=+,其在复平面上的对应点为()1,2,该点位于第一象限,故选A . (5)【2013年北京,文5,5分】在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )(A )15(B)59 (C ) (D)1【答案】B【解析】根据正弦定理,sin sin a b A B =,则515sin sin 339b B A a ==⋅=,故选B . (6)【2013年北京,文6,5分】执行如图所示的程序框图,输出的S 值为( )(A )1 (B )23 (C )1321(D )610987【答案】C【解析】依次执行的循环为1S =,i 0=;23S =,i 1=;1321S =,i 2=,故选C .(7)【2013年北京,文7,5分】双曲线221y x m-=的离心率大于2的充分必要条件是( )(A )12m > (B )1m ≥ (C )1m > (D )2m >【答案】C【解析】该双曲线离心率1me +=,由已知1>2m +,故1m >,故选C . (8)【2013年北京,文8,5分】如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )(A )3个 (B )4个 (C )5个 (D)6个 【答案】B【解析】设正方体的棱长为a .建立空间直角坐标系,如图所示.则()0,0,0D ,10,()0D a ,,1()0C a a ,,,,(0)0C a ,,0(,)B a a ,,1()B a a a ,,,(),0,0A a ,1,()0A a a ,,221,,333P a a a ⎛⎫⎪⎝⎭,则2221113999PB a a a a =++=,222441999PD a a a a =++=, 222144423999PD a a a a =++=,22211414999PC PA a a a a ==++=, 2224116999PC PA a a a a ==++=,22211146999PB a a a a =++=,故共有4个不同取值,故选B .第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分.(9)【2013年北京,文9,5分】若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 . 【答案】2;1-【解析】根据抛物线定义12p =,∴2p =,又准线方程为12px =-=-. (10)【2013年北京,文10,5分】某四棱锥的三视图如图所示,则该四棱锥的体积为 .【答案】3【解析】由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式133133V =⨯⨯⨯=,故该棱锥的体积为3.(11)【2013年北京,文11,5分】若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = . 【答案】2;122n +-【解析】由题意知352440220a a q a a +===+.由222421())10(12a a a q a q q +=+=+=,∴12a =.∴12122212n n n S +(-)==--.(12)【2013年北京,文12,5分】设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 .【解析】区域D 表示的平面部分如图阴影所示:根据数形结合知()1,0到D 的距离最小值为()1,0到直线2x -y =0=. (13)【2013年北京,文13,5分】函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为_______. 【答案】()2-∞,【解析】当1x ≥时,1122log log 1x ≤,即12log 0x ≤,当1x <时,1022x <<,即022x <<;故()f x 的值域为()2-∞,.(14)【2013年北京,文14,5分】向量(1,1)A -,(3,0)B ,(2,1)C ,若平面区域D 由所有满足AP AB AC λμ=+(12λ≤≤,01μ≤≤)的点P 组成,则D 的面积为 .【答案】3【解析】AP AB AC λμ=+,()2,1AB =,()1,2AC =.设()P x y ,,则()1,1AP x y =-+.∴1212x y λμλμ-=+⎧⎨-=+⎩得233233x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩,∵12λ≤≤,01μ≤≤,可得629023x y x y ≤-≤⎧⎨≤-≤⎩,如图.可得()13,0A ,()14,2B ,()16,3C,11A B =,两直线距离d ==∴11·3S A B d ==. 三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程. (15)【2013年北京,文15,13分】已知函数21()(2cos 1)sin 2cos42f x x x x =-+.(1)求()f x 的最小正周期及最大值; (2)若(,)2παπ∈,且()f α=α的值. 解:(1)21()(2cos 1)sin 2cos42f x x x x =-+1cos2sin 2cos42x x x =+11sin 4cos422x x =+)4x π=+ 所以,最小正周期242T ππ==,当()4242x k k Z πππ+=+∈,即()216k x k Z ππ=+∈时,max ()f x =(2)因为22()sin(4)4f παα=+=,所以sin(4)14πα+=,因为2παπ<<,所以9174444πππα<+<,所以5442ππα+=,即916πα=.(16)【2013年北京,文16,13分】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天. (1)求此人到达当日空气质量优良的概率;(2)求此在在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613. (2)解法一:根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413. 解法二:此人停留的两天共有13种选择,分别是:()1,2,()2,3,()3,4,()4,5,()5,6,()6,7,()7,8,()8,9, ()9,10,()10,11,()11,12,()12,13,()13,14,其中只有一天重度污染的为()4,5,()5,6,()7,8,()8,9,共4种,所以概率为2413P =. (3)从3月5日开始连续三天的空气质量指数方差最大. (17)【2013年北京,文17,14分】如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证:(1)PA ⊥底面ABCD ; (2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD . 解:(1)因为平面PAD ⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,PA ∴⊥底面ABCD .(2)因为//AB CD ,2CD AB =,E 为CD 的中点,所以//AB DE ,且AB DE =.所以ABED 为平行四边形.所以//BE AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD ,所以//BE 平面PAD .(3)因为AB AD ⊥,而且ABED 为平行四边形,所以BE CD ⊥,AD CD ⊥.由(1)知PA ⊥底面ABCD , 所以PA CD ⊥.所以CD ⊥平面PAD .所以CD PD ⊥.因为E 和F 分别是CD 和PC 的中点, 所以//PD EF .所以CD EF ⊥.所以CD ⊥平面BEF .所以平面BEF ⊥平面PCD .(18)【2013年北京,文18,13分】已知函数2()sin cos f x x x x x =++.(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值;(2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围. 解:(1)因为曲线()y f x =在点()()a f a ,处与直线y b =相切,所以()()2cos 0f a a a '=+=,()b f a =.解得0a =,()01b f ==.空气质量指数日期14日13日12日11日10日9日8日7日6日1日037798615812116021740160220143572586100150200250(2)解法一:令()0f x '=,得0x =.()f x 与()f x '的情况如下:所以函数()f x ()0-∞,(0)+∞,,()01f =是()f x 的最小值.当1b ≤时,曲线()y f x =与直线y b =最多只有一个交点;当1b >时,()()222421421f b f b b b b b b -=≥-->-->,()01f b =<,所以存在()12,0x b ∈-,()20,2x b ∈,使得()()12f x f x b ==.由于函数()f x 在区间()0-∞,和(0)+∞,上均单调,所以当1b >时曲线()y f x =与直线y b =有且仅有两个不同交点. 综上可知,如果曲线()y f x =与直线y b =有两个不同交点,那么b 的取值范围是(1)+∞,. 解法二:因为2cos 0x +>,所以当0x >时'()0f x >,()f x 单调递增;当0x <时'()0f x <,()f x 单调递减.所以当0x =时,()f x 取得最小值(0)1f =,所以b 的取值范围是(1,)+∞.(19)【2013年北京,文19,14分】直线()0y kx m m =+≠,W :2214x y +=相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设1,2A t ⎛⎫⎪⎝⎭,代入椭圆方程得21144t +=,即t =AC =(2)解法一:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC OB ⊥,所以0k ≠.由2244x y y kx m ⎧+=⎨=+⎩,消y 并整理得()222148440k x kmx m +++-=.设11()A x y ,,22()C x y ,,则1224214x x km k +=-+,121222214y y x x m k m k ++=⋅+=+.所以AC 的中点为224,1414kmm M k k ⎛⎫- ⎪++⎝⎭. 因为M 为AC 和OB 的交点,且0m ≠,0k ≠,所以直线OB 的斜率为14k-.因为114k k ⎛⎫⋅-≠- ⎪⎝⎭,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾. 所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.解法二:因为四边形OABC 为菱形,所以OA OC =,设()1OA OC r r ==>,则A ,C 两点为圆222x y r +=与椭圆2214x y +=的交点,联立方程2222214x y r x y ⎧+=⎪⎨+=⎪⎩,得224(1)3r x -=,所以A ,C 两点的横坐标相等或互为相反数.因为点B 在W 上,若A ,C 两点的横坐标相等,点B 应为椭圆的左顶点或右顶点.不合题意.若A ,C 两点的横坐标互为相反数,点B 应为椭圆的上顶点或下顶点.不合题意.所以四边形OABC 不可能为菱形(20)【2013年北京,文20,13分】给定数列1a ,2a ,,n a .对1,2,3,,1i n =-,该数列前i 项的最大值记为i A ,后n i -项1i a +,2i a +,,n a 的最小值记为i B ,i i i d A B =-. (1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值; (2)设1a ,2a ,,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d ,,1n d -是等比数列; (3)设1d ,2d ,,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a ,,1n a -是等差数列.解:(1)111312d A B =-=-=,222413d A B =-=-=,333716d A B =-=-=.(2)因为1a ,2a ,,n a (4n ≥)是公比大于1的等比数列,且10a >,所以11n n a a q -=.所以当1,2,3,,1k n =-时,1k k k k k d A B a a +=-=-,所以当2,3,,1k n =-时,11111(1)(1)k k k k k k k k d a a a q q q d a a a q +------===--,所以1d ,2d ,,1n d -是等比数列.(3)解法一: 若1d ,2d ,,1n d -是公差大于0的等差数列,则1210n d d d -<<<<,1a ,2a ,,1n a -应是递增数列,证明如下:设k a 是第一个使得1k k a a -≤的项,则1k k A A -=,1k k B B -≤,所以111k k k k k k d A B A B d ---=-≥-=,与已知矛盾.所以,1a ,2a ,,1n a -是递增数列.再证明n a 数列{}n a 中最小项,否则k n a a <(2,3,,1k n =-),则 显然1k ≠,否则11111110d A B a B a a =-=-≤-=,与10d >矛盾;因而2k ≥,此时考虑11110k k k k k d A B a a ----=-=-<,矛盾,因此n a 是数列{}n a 中最小项. 综上,()2,3,,1k k k k n d A B a a k n =-=-=-,k k n a d a ∴=+,也即1a ,2a ,,1n a -是等差数列.解法二:设d 为121n d d d -⋯,,,公差.对12i n ≤≤-,1i i B B +≤,0d >,111i i i i i i i i A B d B d d B d A +++=+≥++>+=.又因为11{}i i i A max A a ++=,,所以11i i i i a A A a ++=>≥.从而121n a a a -⋯,,,是递增数列. 因此1,2()1i i A a i n ==⋯-,,.又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<⋯<.因此1n a B =.所以121n n B B B a -==⋯==.所以i i i i n i a A B d a d ==+=+.因此对1,22i n =⋯-,,都有11i i i i a a d d d ++-=-=,即121n a a a -⋯,,,是等差数列.。
2013年北京市高考数学试卷(文科)(附答案解析)
2013年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1. 已知集合A={−1, 0, 1},B={x|−1≤x<1},则A∩B=()A.{0}B.{−1, 0}C.{0, 1}D.{−1, 0, 1}2. 设a,b,c∈R,且a>b,则( )A.ac>bcB.1a <1bC.a2>b2D.a3>b33. 下列函数中,既是偶函数又在区间(0, +∞)上是单调递减的是()A.y=1xB.y=e−xC.y=−x2+1D.y=lg|x|4. 在复平面内,复数i(2−i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5. 在△ABC中,a=3,b=5,sin A=13,则sin B=()A.1 5B.59C.√53D.16. 执行如图所示的程序框图,输出的S值为( )A.1B.23C.1321D.6109877. 双曲线x2−y2m=1的离心率大于√2的充分必要条件是()A.m>12B.m≥1C.m>1D.m>28. 如图,在正方体ABCD−A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个二、填空题共6小题,每小题5分,共30分.若抛物线y2=2px的焦点坐标为(1, 0),则p=________;准线方程为________.某四棱锥的三视图如图所示,该四棱锥的体积为________.若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=________;前n项和S n=________.设D为不等式组{x≥02x−y≤0x+y−3≤0表示的平面区域,区域D上的点与点(1, 0)之间的距离的最小值为________.函数f(x)={log12x,x≥12x,x<1的值域为________.已知点A(1, −1),B(3, 0),C(2, 1).若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2, 0≤μ≤1)的点P 组成,则D 的面积为________.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.已知函数f(x)=(2cos 2x −1)sin 2x +12cos 4x . (1)求f(x)的最小正周期及最大值;(2)若α∈(π2,π),且f(α)=√22,求α的值.如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)求此人在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)如图,在四棱锥P −ABCD 中,AB // CD ,AB ⊥AD ,CD =2AB ,平面PAD ⊥底面ABCD ,PA ⊥AD .E 和F 分别是CD 和PC 的中点,求证:(1)PA ⊥底面ABCD ;(2)BE // 平面PAD ;(3)平面BEF ⊥平面PCD .已知函数f(x)=x 2+x sin x +cos x .(1)若曲线y =f(x)在点(a, f(a))处与直线y =b 相切,求a ,b 的值;(2)若曲线y =f(x)与直线y =b 有两个不同交点,求b 的取值范围.直线y =kx +m(m ≠0)与椭圆W:x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0, 1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.给定数列a 1,a 2,…,a n .对i =1,2,…,n −1,该数列前i 项的最大值记为A i ,后n −i 项a i+1,a i+2,…,a n 的最小值记为B i ,d i =A i −B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n−1(n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n−1是等比数列; (3)设d 1,d 2,…,d n−1是公差大于0的等差数列,且d 1>0.证明:a 1,a 2,…,a n−1是等差数列.参考答案与试题解析2013年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.【答案】B【考点】交集及其运算【解析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={−1, 0, 1},B={x|−1≤x<1},∴A∩B={−1, 0}.故选B.2.【答案】D【考点】不等式的基本性质【解析】对于A、B、C可举出反例,对于D利用不等式的基本性质即可判断出.【解答】解:A,令a=3,b=2,c=−1,则3×(−1)<2×(−1),即ac<bc,故A不正确;B,令a=1,b=−2,而1>−12,故B不正确;C,令a=−1,b=−2,而(−1)2<(−2)2,故C不正确;D,∵a>b,∴a3>b3,成立,故D正确.故选D.3.【答案】C【考点】函数奇偶性的判断函数的单调性及单调区间【解析】根据函数y=1x是奇函数,得A项不符合题意;根据函数y=e−x是非奇非偶函数,得B项不符合题意;根据二次函数y=−x2+1的图象是开口向下的抛物线且关于y轴对称,得到C项符合题意;根据对数函数的单调性,得函数y=lg|x|在(0, +∞)上是增函数,可得D项不符合题意.【解答】解:对于A,函数y=1x 满足f(−x)=−1x≠f(x),可得函数不是偶函数,故A项不符合题意;对于B,函数y=e−x满足f(−x)=e x≠f(x),得函数不是偶函数,故B项不符合题意;对于C,函数y=−x2+1满足f(−x)=−(−x)2+1=−x2+1=f(x),∴函数y=−x2+1是R上的偶函数.又∵函数y=−x2+1的图象是开口向下的抛物线,关于y轴对称,∴当x∈(0, +∞)时,函数为减函数.故C项符合题意;对于D,当x∈(0, +∞)时,函数y=lg|x|=lg x,底数10>1,∴函数y=lg|x|在区间(0, +∞)上是单调递增的函数,故D项不符合题意.故选C.4.【答案】A【考点】复数的代数表示法及其几何意义【解析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数z=i(2−i)=−i2+2i=1+2i,∴复数对应的点的坐标是(1, 2),这个点在第一象限.故选A.5.【答案】B【考点】正弦定理【解析】由正弦定理列出关系式,将a,b及sin A的值代入即可求出sin B的值.【解答】解:∵a=3,b=5,sin A=13,∴由正弦定理得:sin B=b sin Aa=5×133=59.故选B.6.【答案】C【考点】程序框图【解析】从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止. 【解答】解:框图首先给变量i 和S 赋值0和1. 执行S =12+12×1+1=23,i =0+1=1;判断1≥2不成立,执行S =(23)2+12×23+1=1321,i =1+1=2;判断2≥2成立,算法结束,跳出循环,输出S 的值为1321. 故选C . 7.【答案】 C【考点】根据充分必要条件求参数取值问题 双曲线的离心率 【解析】根据双曲线的标准形式,可以求出a =1,b =√m ,c =√1+m .利用离心率e 大于√2建立不等式,解之可得 m >1,最后利用充要条件的定义即可得出正确答案. 【解答】 解:双曲线x 2−y 2m=1,说明m >0,∴ a =1,b =√m ,可得c =√1+m , ∵ 离心率e >√2等价于 ca =√1+m 1>√2⇔m >1,∴ 双曲线x 2−y 2m=1的离心率大于√2的充分必要条件是m >1.故选C . 8.【答案】 B【考点】点、线、面间的距离计算 【解析】建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,即可得到各顶点的坐标,利用两点间的距离公式即可得出. 【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3, 0, 0),B(3, 3, 0),C(0, 3, 0),D(0, 0, 0),A 1(3, 0, 3),B 1(3, 3, 3),C 1(0, 3, 3),D 1(0, 0, 3), ∴ BD 1→=(−3, −3, 3), 设P(x, y, z),∵ BP →=13BD 1→=(−1, −1, 1), ∴ DP →=DB →+(−1,−1,1)=(2, 2, 1).∴ |PA|=|PC|=|PB 1|=√12+22+12=√6, |PD|=|PA 1|=|PC 1|=√22+22+12=3, |PB|=√3,|PD 1|=√22+22+22=2√3.故P 到各顶点的距离的不同取值有√6,3,√3,2√3共4个. 故选B .二、填空题共6小题,每小题5分,共30分. 【答案】 2,x =−1 【考点】 抛物线的性质 【解析】由抛物线的性质可知,知p2=1,可知抛物线的标准方程和准线方程. 【解答】解:∵ 抛物线y 2=2px 的焦点坐标为(1, 0), ∴ p2=1,p =2, 抛物线的方程为y 2=4x , ∴ 其标准方程为:x =−1.故答案为:2;−1. 【答案】 3【考点】由三视图求体积 【解析】利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积V=13×32×1=3.故答案为:3.【答案】2,2n+1−2【考点】等比数列的前n项和等比数列的通项公式【解析】利用等比数列的通项公式和已知即可得出{a1q+a1q3=20a1q2+a1q4=40,解出即可得到a1及q,再利用等比数列的前n项和公式即可得出S n=a1(q n−1)q−1.【解答】解:设等比数列{a n}的公比为q,∵a2+a4=a2(1+q2)=20①a3+a5=a3(1+q2)=40②∴ ①②两个式子相除,可得到a3a2=4020=2,即等比数列的公比q=2,将q=2带入①中可求出a2=4,则a1=a2q =42=2,∴数列{a n}时首项为2,公比为2的等比数列.∴数列{a n}的前n项和为:S n=a1(q n−1)q−1=2×(2n−1)2−1=2n+1−2.故答案为:2;2n+1−2.【答案】2√5【考点】求线性目标函数的最值【解析】首先根据题意作出可行域,欲求区域D上的点与点(1, 0)之间的距离的最小值,由其几何意义为点A(1, 0)到直线2x−y=0距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为点A(1, 0)到直线2x−y=0距离,即为所求,由点到直线的距离公式得:d=√4+1=2√55,则区域D上的点与点(1, 0)之间的距离的最小值等于2√55.故答案为:2√55.【答案】(−∞, 2)【考点】函数的值域及其求法【解析】通过求解对数不等式和指数不等式分别求出分段函数的值域,然后取并集得到原函数的值域.【解答】解;当x≥1时,f(x)=log12x≤log121=0;当x<1时,0<f(x)=2x<21=2.所以函数f(x)={log12x,x≥12x,x<1的值域为(−∞, 2).故答案为:(−∞, 2).【答案】3【考点】简单线性规划向量的加法及其几何意义点到直线的距离公式【解析】设P的坐标为(x, y),根据AP→=λAB→+μAC→,结合向量的坐标运算解出{λ=23x−13y−1μ=−13x+23y+1,再由1≤λ≤2、0≤μ≤1得到关于x、y的不等式组,从而得到如图的平行四边形CDEF及其内部,最后根据坐标系内两点间的距离公式即可算出平面区域D的面积.【解答】解:设P 的坐标为(x, y),则AB →=(2, 1),AC →=(1, 2),AP →=(x −1, y +1),∵ AP →=λAB →+μAC →,∴ {x −1=2λ+μ,y +1=λ+2μ, 解之得{λ=23x −13y −1,μ=−13x +23y +1,∵ 1≤λ≤2,0≤μ≤1,∴ 点P 坐标满足不等式组{1≤23x −13y −1≤2,0≤−13x +23y +1≤1, 作出不等式组对应的平面区域,得到如图的平行四边形CDEF 及其内部,其中C(4, 2),D(6, 3),E(5, 1),F(3, 0) ∵ |CF|=√(4−3)2+(2−0)2=√5, 点E(5, 1)到直线CF:2x −y −6=0的距离为d =√5=3√55∴ 平行四边形CDEF 的面积为S =|CF|×d =√5×3√55=3,即动点P 构成的平面区域D 的面积为3.故答案为:3.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 【答案】解:(1)因为f(x)=(2cos 2x −1)sin 2x +12cos 4x=12sin 4x +12cos 4x =√22sin (4x +π4) ∴ T =2π4=π2,函数的最大值为:√22.(2)∵ f(x)=√22sin (4x +π4),f(α)=√22, ∴ sin (4α+π4)=1,∴ 4α+π4=π2+2kπ,k ∈Z , ∴ α=π16+kπ2,又∵ α∈(π2,π), ∴ α=916π. 【考点】二倍角的正弦公式 两角和与差的正弦公式 正弦函数的周期性 三角函数的最值 正弦函数的定义域和值域【解析】(1)利用二倍角的正弦函数以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,通过周期公式求f(x)的最小正周期,利用三角函数的最值求出函数的最大值;(2)通过α∈(π2,π),且f(α)=√22,求出α的正弦值,然后求出角即可. 【解答】解:(1)因为f(x)=(2cos 2x −1)sin 2x +12cos 4x=12sin 4x +12cos 4x =√2sin (4x +π) ∴ T =2π4=π2,函数的最大值为:√22. (2)∵ f(x)=√22sin (4x +π4),f(α)=√22, ∴ sin (4α+π4)=1,∴ 4α+π4=π2+2kπ,k ∈Z , ∴ α=π16+kπ2,又∵ α∈(π2,π), ∴ α=916π.【答案】解:(1)由图看出,1日至13日13天的时间内,空气重度污染的是5日、8日共2天.由古典概型概率计算公式得,此人到达当日空气质量重度污染的概率P=213.(2)此人在该市停留期间两天的空气质量指数为(86, 25),(25, 57),(57, 143),(143, 220),(220, 160),(160, 40),(40, 217),(217, 160),(160, 121),(121, 158),(158, 86),(86, 79),(79, 37)共13种情况, 其中只有1天空气重度污染的是(143, 220),(220, 160),(40, 217),(217, 160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P=413.(3)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5,6,7三天的空气质量指数方差最大.【考点】列举法计算基本事件数及事件发生的概率极差、方差与标准差古典概型及其概率计算公式【解析】(Ⅰ)由图查出13天内空气质量指数大于200的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)用列举法写出此人在该市停留两天的空气质量指数的所有情况,查出仅有一天是重度污染的情况,然后直接利用古典概型概率计算公式得到答案;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【解答】解:(1)由图看出,1日至13日13天的时间内,空气重度污染的是5日、8日共2天.由古典概型概率计算公式得,此人到达当日空气质量重度污染的概率P=213.(2)此人在该市停留期间两天的空气质量指数为(86, 25),(25, 57),(57, 143),(143, 220),(220, 160),(160, 40),(40, 217),(217, 160),(160, 121),(121, 158),(158, 86),(86, 79),(79, 37)共13种情况, 其中只有1天空气重度污染的是(143, 220),(220, 160),(40, 217),(217, 160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P=413.(3)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5,6,7三天的空气质量指数方差最大.【答案】证明:(1)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴由平面和平面垂直的性质定理可得,PA⊥平面ABCD.(2)∵AB // CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,∴AB=//12CD=DE,∴四边形ABED为平行四边形,故有BE // AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE // 平面PAD.(3)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF // PD,∴CD⊥EF②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.【考点】平面与平面垂直的判定直线与平面垂直的判定直线与平面平行的判定【解析】(1)根据条件,利用平面和平面垂直的性质定理可得PA⊥平面ABCD.(2)根据已知条件判断ABED为平行四边形,故有BE // AD,再利用直线和平面平行的判定定理证得BE // 平面PAD.(3)先证明ABED为矩形,可得BE⊥CD①.现证CD⊥平面PAD,可得CD⊥PD,再由三角形中位线的性质可得EF // PD,从而证得CD⊥EF②.结合①②利用直线和平面垂直的判定定理证得CD⊥平面BEF,再由平面和平面垂直的判定定理证得平面BEF⊥平面PCD.【解答】证明:(1)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,∴由平面和平面垂直的性质定理可得,PA⊥平面ABCD.(2)∵AB // CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,∴AB=//12CD=DE,∴四边形ABED为平行四边形,故有BE // AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE // 平面PAD.(3)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF // PD,∴CD⊥EF②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.【答案】解:(1)f′(x)=2x+x cos x=x(2+cos x),∵曲线y=f(x)在点(a, f(a))处与直线y=b相切,∴f′(a)=a(2+cos a)=0,f(a)=b,联立{2a+a cos a=0,a2+a sin a+cos a=b,解得{a=0,b=1,故a=0,b=1.(2)∵f′(x)=x(2+cos x).令f′(x)=0,得x=0,x,f(x),f′(x)的变化情况如表:-+(0, +∞)上单调递增,f(0)=1是f(x)的最小值.故当b>1时曲线y=f(x)与直线y=b有且只有两个不同的交点.【考点】由函数零点求参数取值范围问题利用导数研究曲线上某点切线方程利用导数研究函数的单调性【解析】(I)由题意可得f′(a)=0,f(a)=b,联立解出即可;(II)利用导数得出其单调性与极值即最值,得到值域即可.【解答】解:(1)f′(x)=2x+x cos x=x(2+cos x),∵曲线y=f(x)在点(a, f(a))处与直线y=b相切,∴f′(a)=a(2+cos a)=0,f(a)=b,联立{2a+a cos a=0,a2+a sin a+cos a=b,解得{a=0,b=1,故a=0,b=1.(2)∵f′(x)=x(2+cos x).令f′(x)=0,得x=0,x,f(x),f′(x)的变化情况如表:- +(0, +∞)上单调递增,f(0)=1是f(x)的最小值.故当b>1时曲线y=f(x)与直线y=b有且只有两个不同的交点.【答案】解:(1)∵点B的坐标为(0, 1),当四边形OABC为菱形时,AC⊥OB,而B(0, 1),O(0, 0),∴线段OB的垂直平分线为y=12,将y=12代入椭圆方程得x=±√3,因此A、C的坐标为(±√3, 12),如图,于是AC=2√3.(2)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC,设OA=OC=r,则A、C为圆x2+y2=r2与椭圆W:x24+y2=1的交点,故3x24=r2−1,x2=43(r2−1),则A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.【考点】椭圆中的平面几何问题反证法椭圆的标准方程【解析】(I)先根据条件得出线段OB的垂直平分线方程为y=12,从而A、C的坐标为(±√3, 12),根据两点间的距离公式即可得出AC的长;(II)欲证明四边形OABC不可能为菱形,只须证明若OA=OC,则A、C两点的横坐标相等或互为相反数.设OA=OC=r,则A、C为圆x2+y2=r2与椭圆W:x24+y2=1的交点,从而解得3x24=r2−1,则A、C两点的横坐标相等或互为相反数.于是结论得证.【解答】解:(1)∵点B的坐标为(0, 1),当四边形OABC为菱形时,AC⊥OB,而B(0, 1),O(0, 0),∴线段OB的垂直平分线为y=12,将y=12代入椭圆方程得x=±√3,因此A、C的坐标为(±√3, 12),如图,于是AC=2√3.(2)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC,设OA=OC=r,则A、C为圆x2+y2=r2与椭圆W:x24+y2=1的交点,故3x 24=r2−1,x2=43(r2−1),则A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.【答案】解:(1)当i=1时,A1=3,B1=1,故d1=A1−B1=2,同理可求d2=3,d3=6;(2)由a1,a2,…,a n−1(n≥4)是公比q大于1的等比数列,且a1>0,则{a n}的通项为:a n=a1q n−1,且为单调递增的数列.于是当k=1,2,…n−1时,d k=A k−B k=a k−a k+1,进而当k=2,3,…n−1时,d kd k−1=a k−a k+1a k−1−a k=a k(1−q)a k−1(1−q)=q为定值.∴d1,d2,…,d n−1是等比数列;(3)设d为d1,d2,…,d n−1的公差,对1≤i≤n−2,因为B i≤B i+1,d>0,所以A i+1=B i+1+d i+1≥B i+d i+d>B i+d i=A i,又因为A i+1=max{A i, a i+1},所以a i+1=A i+1>A i≥a i.从而a1,a2,…,a n−1为递增数列.因为A i=a i(i=1, 2,…n−1),又因为B1=A1−d1=a1−d1<a1,所以B1<a1<a2<...<a n−1,因此a n=B1.所以B1=B2=…=B n−1=a n.所以a i=A i=B i+d i=a n+d i,因此对i=1,2,…,n−2都有a i+1−a i=d i+1−d i=d,即a1,a2,…,a n−1是等差数列.【考点】等差数列与等比数列的综合【解析】(Ⅰ)当i=1时,A1=3,B1=1,从而可求得d1,同理可求得d2,d3的值;(Ⅱ)依题意,可知a n=a1q n−1(a1>0, q>1),由d k=a k−a k+1⇒d k−1=a k−1−a k(k≥2),从而可证d kd k−1(k≥2)为定值.(Ⅲ)依题意,0<d1<d2<...<d n−1,可用反证法证明a1,a2,…,a n−1是单调递增数列;再证明a m为数列{a n}中的最小项,从而可求得是a k=d k+a m,问题得证.【解答】解:(1)当i=1时,A1=3,B1=1,故d1=A1−B1=2,同理可求d2=3,d3=6;(2)由a1,a2,…,a n−1(n≥4)是公比q大于1的等比数列,且a1>0,则{a n}的通项为:a n=a1q n−1,且为单调递增的数列.于是当k=1,2,…n−1时,d k=A k−B k=a k−a k+1,进而当k=2,3,…n−1时,d kd k−1=a k−a k+1a k−1−a k=a k(1−q)a k−1(1−q)=q为定值.∴d1,d2,…,d n−1是等比数列;(3)设d为d1,d2,…,d n−1的公差,对1≤i≤n−2,因为B i≤B i+1,d>0,所以A i+1=B i+1+d i+1≥B i+d i+d>B i+d i=A i,又因为A i+1=max{A i, a i+1},所以a i+1=A i+1>A i≥a i.从而a1,a2,…,a n−1为递增数列.因为A i=a i(i=1, 2,…n−1),又因为B1=A1−d1=a1−d1<a1,所以B1<a1<a2<...<a n−1,因此a n=B1.所以B1=B2=…=B n−1=a n.所以a i=A i=B i+d i=a n+d i,因此对i=1,2,…,n−2都有a i+1−a i=d i+1−d i=d,即a1,a2,…,a n−1是等差数列.。
【高考试题】2013年北京市高考数学试卷(文科)
【高考试题】2013年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}2.(5分)设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b33.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=e﹣x C.y=lg|x|D.y=﹣x2+14.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.16.(5分)执行如图所示的程序框图,输出的S值为()A.1 B.C.D.7.(5分)双曲线的离心率大于的充分必要条件是()A.B.m≥1 C.m>1 D.m>28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P 到各顶点的距离的不同取值有()A.3个 B.4个 C.5个 D.6个二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p=;准线方程为.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为.11.(5分)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=;前n 项和S n=.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.13.(5分)函数f(x)=的值域为.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=(2cos2x﹣1)sin 2x+cos 4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.20.(14分)给定数列a1,a2,…,a n.对i=1,2,…,n﹣1,该数列前i项的最大值记为A i,后n﹣i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i﹣B i.(Ⅰ)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,a n﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n﹣1是等比数列;(Ⅲ)设d1,d2,…,d n﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n﹣1是等差数列.2013年北京市高考数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b3【分析】对于A、B、C可举出反例,对于D利用不等式的基本性质即可判断出.【解答】解:A、3>2,但是3×(﹣1)<2×(﹣1),故A不正确;B、1>﹣2,但是,故B不正确;C、﹣1>﹣2,但是(﹣1)2<(﹣2)2,故C不正确;D、∵a>b,∴a3>b3,成立,故D正确.故选:D.【点评】熟练掌握不等式的基本性质以及反例的应用是解题的关键.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=e﹣x C.y=lg|x|D.y=﹣x2+1【分析】利用基本函数的奇偶性、单调性逐项判断即可.【解答】解:A中,y=为奇函数,故排除A;。
2013年普通高等学校招生全国统一考试(北京卷)数学试题 (文科) word解析版
2013年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷满分150分,考试时120分钟,考生务必将答案答在答题卡上,在试卷上作答无效, 第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B 等于( ).A .{0}B .{-1,0}C .{0,1}D .{-1,0,1}答案 B解析 ∵-1,0∈B,1∉B ,∴A ∩B ={-1,0}.2.设a ,b ,c ∈R ,且a >b ,则( ).A .ac >bc B.1a <1bC .a 2>b 2D .a 3>b 3 答案 D解析 当a >b 时,a 3>b 3成立.A 中对c =0不成立.B 项取a =1,b =-1,则1a <1b不成立;C 项取a =1,b =-2,则a 2>b 2不成立.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ).A .y =1xB .y =e -xC .y =-x 2+1D .y =lg |x | 答案 C解析 A 中为奇函数,B 中y =e -x 非奇非偶函数.y =-x 2+1是偶函数,且在(0,+∞)上递减.4.在复平面内,复数i(2-i)对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 i(2-i)=2i +1对应点(1,2)在第一象限.5.在△ABC 中,a =3,b =5,sin A =13,则sin B 等于( ). A.15 B.59 C.53 D .1 答案 B解析 由正弦定理,a sin A =b sin B ,∴sin B =b a sin A =53×13=59. 6.执行如图所示的程序框图,输出的S 值为( ).A .1 B.23 C.1321 D.610987 答案 C解析 执行一次循环后S =23,i =1,执行第二次循环后,S =1321,i =2≥2, 退出循环体,输出S 的值为1321. 7.双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( ).结束开始A .m >12B .m ≥1C .m >1D .m >2 答案 C解析 由x 2-y 2m =1知,a =1,b =m ,∴c 2=a 2+b 2=1+m ,e 2=c 2a2=1+m ,由e >2,得1+m >2,∴m >1.8. 如图,在正方体ABCDA 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( ).A .3个B .4个C .5个D .6个 答案 B解析 设正方体边长为1,不同取值为P A =PC =PB 1=63, P A 1=PD =PC 1=1,PB =33,PD 1=233共有4个.第二部分 二、填空题9.若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为________.答案 2 x =-1解析 y 2=2px 的焦点F ⎝⎛⎭⎫p 2,0.∴p =2,准线l :x =-p 2=-1.10.某四棱锥的三视图如图所示,该四棱锥的体积为_____________.答案 3解析 由三视图知,四棱锥的高h =1,底面是边长为3的正方形,∴四棱锥的体积V =13S ·h =13×32×1=3.11.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.答案 2 2n +1-2解析 设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2.因此S n =a 1(1-q n )1-2=2n +1-2.12.设D 为不等式组⎩⎪⎨⎪⎧ x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域.区域D 上的点与点(1,0)之间的距离的最小值为________.答案 255 解析 P A C B D C 1B 1D 1A 1作不等式组表示的平面区域,如图所示(△OAB 及其内部),易观察知,所求最小值为点P (1,0)到2x -y =0的距离d =|2×1-0|22+(-1)2=255. 13.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________. 答案 (-∞,2)解析 当x ≥1时,log 12x ≤0;当x <1时,0<2x <2,∴f (x )的值域为(-∞,0]∪(0,2)=(-∞,2).14.已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足 AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________.答案 3解析 设P (x ,y ),且AB →=(2,1),AC →=(1,2)∴OP →=OA →+AP →=(1,-1)+λ(2,1)+μ(1,2)∴⎩⎪⎨⎪⎧ x =1+2λ+μy =-1+λ+2μ∴⎩⎪⎨⎪⎧ 3μ=2y -x +33λ=2x -y -3 又1≤λ≤2,0≤μ≤1∴⎩⎪⎨⎪⎧0≤x -2y ≤36≤2x -y ≤9表示的可行域是平行四边形及内部. 可求其面积S =3.三、解答题(共6小题,共80分。
2013年高考全国Ⅱ文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(全国II )数学(文科)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. (1)【2013年全国Ⅱ,文1,5分】已知集合{|31}M x x =-<<,{3,2,1,0,1}N =---,则M N = ( )(A ){2,1,0,1}-- (B ){3,2,1,0}--- (C ){2,1,0}-- (D ){3,2,1}--- 【答案】C【解析】因为{31}M x x =-<<,{3,2,1,0,1}N =---,所以M N {2,1,0}=--,故选C . (2)【2013年全国Ⅱ,文2,5分】21i=+( ) (A) (B )2 (C(D )1 【答案】C【解析】22(1i)2(1i)1i 1i (1i)(1i)2--===-+-+,所以21i=+C . (3)【2013年全国Ⅱ,文3,5分】设,x y 满足约束条件10103x y x y x -+≥⎧⎪+-≥⎨⎪≤⎩,则23z x y =-的最小值是( )(A )7- (B )6- (C )5- (D )3- 【答案】B【解析】由23z x y =-得32y x z =-,即233z y x =-.作出可行域如图,平移直线233zy x =-,由图象可知当直线233z y x =-经过点B 时,直线233zy x =-的截距最大,此时z 取得最小值,由103x y x -+=⎧⎨=⎩得34x y =⎧⎨=⎩,即(3,4)B ,代入直线23z x y =-得32346z =⨯-⨯=-,故选B .(4)【2013年全国Ⅱ,文4,5分】ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知2b =,6B π=,4C π=,则ABC ∆的面积为( )(A)2 (B1 (C)2 (D1【答案】B【解析】因为,64B C ππ==,所以712A π=.由正弦定理得sin sin 64b c =,解得c =.所以三角形的面积为117sin 22212bc A π=⨯⨯.因为7231s i n s i n (()1232222πππ=++,所以13s i n ()312b c A =++,故选B . (5)【2013年全国Ⅱ,文5,5分】设椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为12,F F ,P 是C 上的点,212PF F F ⊥,1230PF F ∠=,则C 的离心率为( )(A(B )13(C )12 (D【答案】D【解析】因为21212,30PF F F PF F ⊥∠=,所以212tan 30,PF c PF ===.又122PF PF a +==,所以c a ==,故选D .(6)【2013年全国Ⅱ,文6,5分】已知2sin 23α=,则2cos ()4πα+=( )(A )16 (B )13(C )12 (D )23【答案】A【解析】因为21cos2()1cos(2)1sin 242cos ()4222ππααπαα++++-+===,所以2211sin 213cos ()4226παα--+===,故选A .(7)【2013年全国Ⅱ,文7,5分】执行右面的程序框图,如果输入的4N =,那么输出的S =( )(A )1111234+++ (B )1111232432+++⨯⨯⨯ (C )111112345++++ (D )111112324325432++++⨯⨯⨯⨯⨯⨯ 【答案】B【解析】第一次循环,1,1,2T S k ===;第二次循环,11,1,322T S k ==+=;第三次循环,111,1,423223T S k ==++=⨯⨯,第四次循环,1111,1,5234223234T S k ==+++=⨯⨯⨯⨯⨯,此时满足条件输出1111223234S =+++⨯⨯⨯,故选B . (8)【2013年全国Ⅱ,文8,5分】设3log 2a =,5log 2b =,2log 3c =,则( )(A )4 (B )5 (C )6 (D )7 【答案】D【解析】因为321lo g 21lo g 3=<,521log 21log 5=<,又2log 31>,所以c 最大.又221log 3log 5<<,所以2211log 3log 5>,即a b >,所以c a b >>,故选D . (9)【2013年全国Ⅱ,文9,5分】一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是()1,0,1,()1,1,0,()0,1,1,()0,0,0,画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为( )(A ) (B ) (C ) (D )【答案】A【解析】在空间直角坐标系中,先画出四面体O ABC -的直观图,以zOx 平面为投影面,则得到正视图(坐标系中红色部分),故选A .(10)【2013年全国Ⅱ,文10,5分】设抛物线2:4C y x =的焦点为F ,直线l 过F 且与C 交于A ,B 两点.若||3||AF BF =,则l 的方程为( ) (A )1y x =-或1y x =-+ (B)1)y x =-或1)y x =- (C)1)y x -或1)y x =- (D)1)y x =-或1)y x =-【答案】C【解析】抛物线24y x =的焦点坐标为10(,),准线方程为1x =-,设11A x y (,),22B x y (,),则因为3AF BF =,所以12131x x +=+(),所以1232x x =+,因为123y y =,129x x =,所以13x =,213x =,当13x =时,2112y =,所以此时1y ==±,若1y =1(,3A B ,此时AB k =线方程为1)y x -.若1y =-,则1(3,),()3A B -,此时AB k =,此时直线方程为1)y x =-.所以l 的方程是1)y x -或1)y x =-,故选C .(11)【2013年全国Ⅱ,文11,5分】已知函数32()f x x ax bx c =+++,下列结论中错误的是( )(A )0x R ∃∈,0()0f x = (B )函数()y f x =的图象是中心对称图形 (C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减(D )若0x 是()f x 的极值点,则0'()0f x = 【答案】C【解析】若0c =则有(0)0f =,所以A 正确.由32()f x x ax bx c =+++得32()f x c x ax bx -=++,因为函数32y x ax bx =++的对称中心为0,0(),所以32()f x x ax bx c =+++的对称中心为(0,)c ,所以B 正确.由三次函数的图象可知,若0x 是()f x 的极小值点,则极大值点在0x 的左侧,所以函数在区间0,x -∞()单调递减是错误的,D 正确,故选C .(12)【2013年全国Ⅱ,文12,5分】若存在正数x 使2()1x x a -<成立,则a 的取值范围是( ) (A )(,)-∞+∞ (B )(2,)-+∞ (C )(0,)+∞ (D )(1,)-+∞【答案】D【解析】解法一:因为20x >,所以由2()1x x a -<得122x x x a --<=,在坐标系中,作出函数 (),()2xf x x ag x -=-=的图象,当0x >时,()21x g x -=<,所以如果存在0x >,使2()1x x a -<,则有1a -<,即1a >-,故选D .解法二:由题意可得,()102xa x x ⎛⎫>-> ⎪⎝⎭.令()12xf x x ⎛⎫=- ⎪⎝⎭,该函数在(0)∞,+上为增函数,可知()f x 的值域为()1∞-,+,故1a >-时,存在正数x 使原不等式成立,故选D .第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上 (13)【2013年全国Ⅱ,文13,5分】从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是______.【答案】15【解析】从5个正整中任意取出两个不同的数,有2510C =种,若取出的两数之和等于5,则有(1,4),(2,3),共有2个,所以取出的两数之和等于5的概率为21105=.(14)【2013年全国Ⅱ,文14,5分】已知正方形ABCD 的边长为2,E 为CD 的中点,则AE BD ⋅=__ ____. 【答案】2【解析】在正方形中,12AE AD DC =+ ,BD BA AD AD DC =+=-,所以2222111()()222222AE BD AD DC AD DC AD DC ⋅=+⋅-=-=-⨯= .(15)【2013年全国Ⅱ,文15,5分】已知正四棱锥O ABCD -则以O 为球心,OA 为半径的球的表面积为_______.【答案】24π【解析】设正四棱锥的高为h ,则213h ⨯=,解得高h =.所以OA =2424ππ=. (16)【2013年全国Ⅱ,文16,5分】函数cos(2)()y x ϕπϕπ=+-≤≤的图象向右平移2π个单位后,与函数sin(2)3y x π=+的图象重合,则ϕ=_______.【答案】56π【解析】函数cos(2)y x ϕ=+,向右平移2π个单位,得到sin(2)3y x π=+,即sin(2)3y x π=+向左平移2π个单位得到函数cos(2)y x ϕ=+,sin(2)3y x π=+向左平移2π个单位,得sin[2()]sin(2)233y x x ππππ=++=++sin(2)cos(2)323x x πππ=-+=++5cos(2)6x π=+,即56πϕ=. 三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)【2013年全国Ⅱ,文17,12分】已知等差数列{}n a 的公差不为零,125a =,且11113,,a a a 成等比数列.(1)求{}n a 的通项公式; (2)求14732+n a a a a -++⋅⋅⋅+.解:(1)设{}n a 的公差为d .由题意,211113a a a =,即2111()1012()a d a a d +=+.于是1225(0)d a d +=.又125a =,所以0d = (舍去),2d =-.故227n a n =-+.(2)令14732n n S a a a a -=+++⋯+.由(1)知32631n a n -=-+,故32{}n a -是首项为25,公差为6-的等差数列.从而()()2132656328n n S a a n n n -=+=-+=-+.(18)【2013年全国Ⅱ,文18,12分】如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.(1)证明:1//BC 平面11A CD ;(2)设12AA AC CB ===,AB =1C A DE -的体积.解:(1)连结1AC 交1A C 于点F ,则F 为1AC 中点.又D 是AB 中点,连结DF ,则1//BC DF .因为DF ⊂平面1A CD ,1BC ⊄平面1A CD ,所以1//BC 平面1A CD .(2)因为111ABC A B C -是直三棱柱,所以1AA CD ⊥.由已知AC CB =,D 为AB 的中点,所以CD AB ⊥.又1AA AB A = ,于是CD ⊥平面11ABB A .由12AA AC CB ===,AB =得90ACB ∠=︒,CD1A D =DE =13A E =,故22211A D DE A E +=,即1D E A D ⊥.所以111132C A DE V -⨯=.(19)【2013年全国Ⅱ,文19,12分】经销商经销某种农产品,在一个销售季度内,每售出1 t 该产品获利润500元,未售出的产品,每1 t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t 该农产品.以X (单位:t ,100150X ≤≤)表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内经销该农产品的利润 (1)将T 表示为X 的函数;(2)根据直方图估计利润T 不少于57000元的概率.1解:(1)当[)100,130X ∈时,()50030013080039000T X X X =--=-,当[]130,150X ∈时,50013065000T =⨯=. 所以80039000,10013065000,130150X X T X -≤<⎧=⎨≤≤⎩.(2)由(1)知利润T 不少于57000元当且仅当120150X ≤≤.由直方图知需求量[]120,150X ∈的频率为0.7,所以下一个销售季度内的利润T 不少于57000元的概率的估计值为0.7.(20)【2013年全国Ⅱ,文20,12分】在平面直角坐标系xOy 中,已知圆P 在x轴上截得线段长为在y 轴上截得线段长为.(1)求圆心P 的轨迹方程;(2)若P 点到直线y x =P 的方程. 解:(1)设()P x y ,,圆P 的半径为r .由题设222y r +=,223x r +=.从而2223y x +=+.故P 点的轨迹方程为221y x -=. (2)设00()P x y ,=.又P 点在双曲线221y x -=上,从而得002210||11x y y x -=⎧⎨-=⎩ 由00220011x y y x -=⎧⎨-=⎩得0001x y =⎧⎨=-⎩,此时,圆P 的半径r =3.由00220011x y y x -=-⎧⎨-=⎩得001x y =⎧⎨=⎩,此时,圆P的半径r =.故圆P 的方程为()2213x y +-=或()2213x y ++=.(21)【2013年全国Ⅱ,文21,12分】已知函数2()x f x x e -=.(1)求()f x 的极小值和极大值;(2)当曲线()y f x =的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围.解:(1)()f x 的定义域为()-∞+∞,,()()2x f x e x x -'=--.① 当)0(x ∈-∞,或2()x ∈+∞,时,()0f x '<; 当)2(0x ∈,时,()0f x '>.所以()f x 在()0-∞,,(2)+∞,单调递减,在(0)2,单调递增.故当0x =时,()f x取得极小值,极小值为()00f =;当2x =时,()f x 取得极大值,极大值为()224f e -=.(2)设切点为()()t f t ,,则l 的方程为()()()y f t x t f t ='-+.所以l 在x 轴上的截距为()()223'()22f t t t t t f t t m t t -=+=-++--=.由已知和①得()02()t ∈-∞+∞ ,,.令()()20h x x x x+=≠, 则当0()x ∈+∞,时,()h x的取值范围为⎡⎤+∞⎣⎦;当2()x ∈-∞-,时,()h x 的取值范围是()3-∞-,. 所以当()02()t ∈-∞+∞ ,,时,()m t的取值范围是0()3,⎡⎤-+∞⎦∞⎣ ,. 综上,l 在x轴上的截距的取值范围是0()3,⎡⎤-+∞⎦∞⎣ ,.请考生在(22)、(23)、(24)三题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时请写清题号. (22)【2013年全国Ⅱ,文22,10分】(选修4-1:几何证明选讲)如图,CD 为ABC ∆外接圆的切线,AB 的延长线交直线CD 于点D ,E ,F 分别为弦AB 与弦AC 上的点,且··BC AE DC AF =,B , E ,F ,C 四点共圆.(1)证明:CA 是ABC ∆外接圆的直径;(2)若DB BE EA ==,求过B ,E ,F ,C 四点的圆的面积与ABC ∆外接圆面积的比值.解:(1)因为CD 为ABC ∆外接圆的切线,所以DCB A ∠=∠,由题设知BC DCFA EA=,故CDB AEF ∆∆∽, 所以DBC EFA ∠=∠.因为B ,E ,F ,C 四点共圆,所以CFE DBC ∠=∠,故90EFA CFE ∠=∠=︒. 所以90CBA ∠=︒,因此CA 是ABC ∆外接圆的直径.(2)连结CE ,因为90CBE ∠=︒,所以过B ,E ,F ,C 四点的圆的直径为CE ,由D B B E =,有CE DC =又22·2BC DB BA DB ==,所以222246CA DB BC DB =+=.而22·3DC DB DA DB ==,故过B ,E ,F , C 四点的圆的面积与ABC ∆外接圆面积的比值为12.(23)【2013年全国Ⅱ,文23,10分】(选修4-4:坐标系与参数方程)已知动点P Q 、都在曲线2cos :2sin x tC y t=⎧⎨=⎩(t 为参数)上,对应参数分别为=t α与=2t α(02απ<<),M 为PQ 的中点. (1)求M 的轨迹的参数方程;(2)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.解:(1)依题意有2cos (n )2si P αα,,2cos2(2)2sin Q αα,,因此cos cos ()2sin sin2M αααα++,. M 的轨迹的参数方程为cos cos 2sin sin 2x y αααα=+⎧⎨=+⎩(α为参数,02απ<<).(2)M 点到坐标原点的距离)02d απ<<.当απ=时,0d =,故M 的轨迹过坐标原点.(24)【2013年全国Ⅱ,文24,10分】(选修4-5:不等式选讲)设a ,b ,c 均为正数,且1a b c ++=,证明:(1)13ab bc ac ++≤;(2)2221a b cb c a ++≥.解:(1)由222a b ab +≥,222b c bc +≥,222c a ca +≥,得222a b c ab bc ca ++≥++.由题设得()21a b c ++=,即2222221a b c a b b c c a +++++=.()31ab bc ca ∴++≤,即13a b b c c a ++≤.(2)因为22a b a b +≥,22b c b c +≥,22c a c a +≥,故()222(2)a b ca abc c a b c b +≥++++++,即222a b c a b c b c a ≥++++.所以2221a b cb c a++≥.。
2013年高考北京文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(北京卷)数学(文科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2013年北京,文1,5分】已知集合{}101A =-,,,{}|11B x x =-≤<,则A B =I ( ) (A ){0} (B ){}10-,(C ){}01, (D ){}101-,, 【答案】B【解析】1,0,11{11,}{|}{}0x x --≤<-I =,故选B . (2)【2013年北京,文2,5分】设a ,b ,c R ∈,且a b >,则( )(A )ac bc > (B )11a b< (C )22a b > (D )33a b >【答案】D 【解析】:A 选项中若c 小于等于0则不成立,B 选项中若a 为正数b 为负数则不成立,C 选项中若a ,b 均为负数则不成立,故选D .(3)【2013年北京,文3,5分】下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )(A )1y x = (B )x y e -= (C )21y x =-+(D )lg y x =【答案】C【解析】A 选项为奇函数,B 选项为非奇非偶函数,D 选项虽为偶函数但在(0)+∞,上是增函数,故选C . (4)【2013年北京,文4,5分】在复平面内,复数i(2i)-对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】A【解析】()i 2i 12i -=+,其在复平面上的对应点为()1,2,该点位于第一象限,故选A .(5)【2013年北京,文5,5分】在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )(A )15 (B )59(C )5 (D )1【答案】B【解析】根据正弦定理,sin sin a b A B =,则515sin sin 339b B A a ==⋅=,故选B . (6)【2013年北京,文6,5分】执行如图所示的程序框图,输出的S 值为( )(A )1 (B )23 (C )1321(D )610987【答案】C【解析】依次执行的循环为1S =,i 0=;23S =,i 1=;1321S =,i 2=,故选C .(7)【2013年北京,文7,5分】双曲线221yx m-=的离心率大于2的充分必要条件是( )(A )12m > (B )1m ≥ (C )1m > (D )2m >【答案】C【解析】该双曲线离心率1me +=,由已知1>2m +,故1m >,故选C .(8)【2013年北京,文8,5分】如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )(A )3个 (B )4个 (C )5个 (D )6个【答案】B【解析】设正方体的棱长为a .建立空间直角坐标系,如图所示.则()0,0,0D ,10,()0D a ,,1()0C a a ,,,,(0)0C a ,,0(,)B a a ,,1()B a a a ,,,(),0,0A a ,1,()0A a a ,,221,,333P a a a ⎛⎫⎪⎝⎭,则PB =u u u r,PD a =u u u r ,1PD ==u u u u r,11PC PA a ==,PC PA ==,1PB u u u r ,故共有4个不同取值,故选B . 第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分.(9)【2013年北京,文9,5分】若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 . 【答案】2;1-【解析】根据抛物线定义12p =,∴2p =,又准线方程为12px =-=-.(10)【2013年北京,文10,5分】某四棱锥的三视图如图所示,则该四棱锥的体积为 . 【答案】3【解析】由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式133133V =⨯⨯⨯=,故该棱锥的体积为3.(11)【2013年北京,文11,5分】若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = . 【答案】2;122n +-【解析】由题意知352440220a a q a a +===+.由222421())10(12a a a q a q q +=+=+=,∴12a =.∴12122212n n n S +(-)==--.(12)【2013年北京,文12,5分】设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 .【解析】区域D 表示的平面部分如图阴影所示:根据数形结合知()1,0到D 的距离最小值为()1,0到直线2x -y =0(13)【2013年北京,文13,5分】函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为_______.【答案】()2-∞,【解析】当1x ≥时,1122log log 1x ≤,即12log 0x ≤,当1x <时,1022x <<,即022x <<;故()f x 的值域为()2-∞,. (14)【2013年北京,文14,5分】向量(1,1)A -,(3,0)B ,(2,1)C ,若平面区域D 由所有满足AP AB ACλμ=+u u u r u u u r u u u r (12λ≤≤,01μ≤≤)的点P 组成,则D 的面积为 . 【答案】3【解析】AP AB AC λμ=+u u u r u u u r u u u r ,()2,1AB =u u u r ,()1,2AC =u u u r .设()P x y ,,则()1,1AP x y =-+u u u r.∴1212x y λμλμ-=+⎧⎨-=+⎩得233233x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩,∵12λ≤≤,01μ≤≤,可得629023x y x y ≤-≤⎧⎨≤-≤⎩,如图.可得()13,0A ,()14,2B ,()16,3C ,21214325A B (-)+==,两直线距离2521d ==+,∴11·3S A B d ==. 三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)【2013年北京,文15,13分】已知函数21()(2cos 1)sin 2cos42f x x x x =-+.(1)求()f x 的最小正周期及最大值;(2)若(,)2παπ∈,且2()f α=,求α的值.解:(1)21()(2cos 1)sin 2cos42f x x x x =-+1cos2sin 2cos42x x x =+11sin 4cos422x x =+2sin(4)4x π=+所以,最小正周期242T ππ==,当()4242x k k Z πππ+=+∈,即()216k x k Z ππ=+∈时,max 2()2f x =. (2)因为22()sin(4)4f παα=+=,所以sin(4)14πα+=,因为2παπ<<,所以9174444πππα<+<, 所以5442ππα+=,即916πα=.(16)【2013年北京,文16,13分】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天. (1)求此人到达当日空气质量优良的概率;(2)求此在在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)解法一:根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.解法二:此人停留的两天共有13种选择,分别是:()1,2,()2,3,()3,4,()4,5,()5,6,()6,7,()7,8,()8,9,()9,10,()10,11,()11,12,()12,13,()13,14,其中只有一天重度污染的为()4,5,()5,6,()7,8,()8,9,共4种,所以概率为2413P =. (3)从3月5日开始连续三天的空气质量指数方差最大. (17)【2013年北京,文17,14分】如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ; (2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD . 解:(1)因为平面PAD ⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,PA ∴⊥底面ABCD .(2)因为//AB CD ,2CD AB =,E 为CD 的中点,所以//AB DE ,且AB DE =.所以ABED 为平行四边形.所以//BE AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD ,所以//BE 平面PAD .(3)因为AB AD ⊥,而且ABED 为平行四边形,所以BE CD ⊥,AD CD ⊥.由(1)知PA ⊥底面ABCD ,空气质量指数日期14日13日12日11日10日9日8日7日6日1日037798615812116021740160220143572586100150200250所以PA CD ⊥.所以CD ⊥平面PAD .所以CD PD ⊥.因为E 和F 分别是CD 和PC 的中点, 所以//PD EF .所以CD EF ⊥.所以CD ⊥平面BEF .所以平面BEF ⊥平面PCD .(18)【2013年北京,文18,13分】已知函数2()sin cos f x x x x x =++.(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值; (2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围. 解:(1)因为曲线()y f x =在点()()a f a ,处与直线y b =相切,所以()()2cos 0f a a a '=+=,()b f a =.解得0a =,()01b f ==.(2)解法一:令()0f x '=,得0x =.()f x 与()f x '的情况如下:所以函数()f x ()01=是()f x 的最小值. 当1b ≤时,曲线()y f x =与直线y b =最多只有一个交点;当1b >时,()()222421421f b f b b b b b b -=≥-->-->,()01f b =<,所以存在()12,0x b ∈-,()20,2x b ∈,使得()()12f x f x b ==.由于函数()f x 在区间()0-∞,和(0)+∞,上 均单调,所以当1b >时曲线()y f x =与直线y b =有且仅有两个不同交点.综上可知,如果曲线()y f x =与直线y b =有两个不同交点,那么b 的取值范围是(1)+∞,.解法二:因为2cos 0x +>,所以当0x >时'()0f x >,()f x 单调递增;当0x <时'()0f x <,()f x 单调递减. 所以当0x =时,()f x 取得最小值(0)1f =,所以b 的取值范围是(1,)+∞.(19)【2013年北京,文19,14分】直线()0y kx m m =+≠,W :2214x y +=相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设1,2A t ⎛⎫⎪⎝⎭,代入椭圆方程得21144t +=,即t =AC =(2)解法一:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC OB ⊥,所以0k ≠.由2244x y y kx m ⎧+=⎨=+⎩,消y 并整理得()222148440k x kmx m +++-=.设11()A x y ,,22()C x y ,,则1224214x x km k +=-+,121222214y y x x m k m k ++=⋅+=+.所以AC 的中点为224,1414kmm M k k ⎛⎫- ⎪++⎝⎭. 因为M 为AC 和OB 的交点,且0m ≠,0k ≠,所以直线OB 的斜率为14k-.因为114k k ⎛⎫⋅-≠- ⎪⎝⎭,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 解法二:因为四边形OABC 为菱形,所以OA OC =,设()1OA OC r r ==>,则A ,C 两点为圆222x y r +=与椭圆2214x y +=的交点,联立方程2222214x y r x y ⎧+=⎪⎨+=⎪⎩,得224(1)3r x -=,所以A ,C 两点的横坐标相等或 互为相反数.因为点B 在W 上,若A ,C 两点的横坐标相等,点B 应为椭圆的左顶点或右顶点.不合题意.若A ,C 两点的横坐标互为相反数,点B 应为椭圆的上顶点或下顶点.不合题意. 所以四边形OABC 不可能为菱形(20)【2013年北京,文20,13分】给定数列1a ,2a ,L L ,n a .对1,2,3,,1i n =-L ,该数列前i 项的最大值记为i A ,后n i -项1i a +,2i a +,L L ,n a 的最小值记为i B ,i i i d A B =-. (1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值;(2)设1a ,2a ,L L ,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d ,L L ,1n d -是等比数列;(3)设1d ,2d ,L L ,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a ,L L ,1n a -是等差数列.解:(1)111312d A B =-=-=,222413d A B =-=-=,333716d A B =-=-=. (2)因为1a ,2a ,L L ,n a (4n ≥)是公比大于1的等比数列,且10a >,所以11n n a a q -=.所以当1,2,3,,1k n =-L 时,1k k k k k d A B a a +=-=-,所以当2,3,,1k n =-L 时,11111(1)(1)k k k k k k k k d a a a q q q d a a a q +------===--,所以1d ,2d ,L L ,1n d -是等比数列. (3)解法一:若1d ,2d ,L L ,1n d -是公差大于0的等差数列,则1210n d d d -<<<<L , 1a ,2a ,L L ,1n a -应是递增数列,证明如下:设k a 是第一个使得1k k a a -≤的项,则1k k A A -=,1k k B B -≤,所以111k k k k k k d A B A B d ---=-≥-=,与已知矛盾.所以,1a ,2a ,L L ,1n a -是递增数列.再证明n a 数列{}n a 中最小项,否则k n a a <(2,3,,1k n =-L ),则 显然1k ≠,否则11111110d A B a B a a =-=-≤-=,与10d >矛盾;因而2k ≥,此时考虑11110k k k k k d A B a a ----=-=-<,矛盾,因此n a 是数列{}n a 中最小项.综上,()2,3,,1k k k k n d A B a a k n =-=-=-L ,k k n a d a ∴=+,也即1a ,2a ,L L ,1n a -是等差数列. 解法二:设d 为121n d d d -⋯,,,公差.对12i n ≤≤-,1i i B B +≤Q ,0d >,111i i i i i i i i A B d B d d B d A +++=+≥++>+=.又因为11{}i i i A max A a ++=,,所以11i i i i a A A a ++=>≥.从而121n a a a -⋯,,,是递增数列. 因此1,2()1i i A a i n ==⋯-,,.又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<⋯<.因此1n a B =.所以121n n B B B a -==⋯==.所以i i i i n i a A B d a d ==+=+.因此对1,22i n =⋯-,,都有11i i i i a a d d d ++-=-=,即121n a a a -⋯,,,是等差数列.。
北京11-13年文科数学高考真题及答案
14.(2013北京,文14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足 =λ +μ (1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为__________.
三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.
解析:集合A中的元素仅有-1,0,1三个数,集合B中元素为大于等于-1且小于1的数,故集合A,B的公共元素为-1,0,故选B.
2.
答案:D
解析:A选项中若c小于等于0则不成立,B选项中若a为正数b为负数则不成立,C选项中若a,b均为负数则不成立,故选D.
3.
答案:C
解析:A选项为奇函数,B选项为非奇非偶函数,D选项虽为偶函数但在(0,+∞)上是增函数,故选C.
4.
答案:A
解析:i(2-i)=1+2i,其在复平面上的对应点为(1,2),该点位于第一象限,故选A.
5.
答案:B
解析:根据正弦定理, ,则sinB= sinA= ,故选B.
6.
答案:C
解析:i=0时,向下运行,将 赋值给S,i增加1变成1,经判断执行否,然后将 赋值给S,i增加1变成2,经判断执行是,然后输出 ,故选C.
A.m> B.m≥1C.m>1 D.m>2
8.(2013北京,文8)如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有().
A.3个B.4个C.5个D.6个
第二部分(非选择题 共110分)
二、填空题共6小题,每小题5分,共30分.
9.(2013北京,文9)若抛物线y2=2px的焦点坐标为(1,0),则p=__________;准线方程为__________.
2013年高考文科数学北京卷word解析版
2013年高考文科数学北京卷word解析版D则D (0,0,0),D 1(0,0,a ),C 1(0,a ,a ),C (0,a,0),B (a ,a,0),B 1(a ,a ,a ),A (a,0,0),A 1(a,0,a ),P 221,,333a a a ⎛⎫⎪⎝⎭,则|PB |=3a =,|PD |a =,|1PD |=99=,|1PC |=|1PA |a =,|PC |=|PA |3a =,|1PB |3=,故共有4个不同取值,故选B.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.(2013北京,文9)若抛物线y 2=2px 的焦点坐标为(1,0),则p =__________;准线方程为__________.答案:2 x =-1解析:根据抛物线定义12p=,∴p =2,又准线方程为x =2p-=-1,故填2,x =-1.10.(2013北京,文10)某四棱锥的三视图如图所示,该四棱锥的体积为__________.答案:3解析:由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式V=13×3×3×1=3,故该棱锥的体积为3.11.(2013北京,文11)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=__________;前n项和S n=__________.答案:22n+1-2解析:根据等比数列的性质知a3+a5=q(a2+a4),∴q=2,又a2+a4=a1q+a1q3,故求得a1=2,∴S n=21212n(-)-=2n+1-2.12.(2013北京,文12)设D为不等式组0,20,30xx yx y≥⎧⎪-≤⎨⎪+-≤⎩表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为__________.解析:区域D表示的平面部分如图阴影所示:根据数形结合知(1,0)到D 的距离最小值为(1,0)到直线2x -y =05=13.(2013北京,文13)函数f (x )=12log ,1,2,1,x x x x ≥⎧⎪⎨⎪<⎩的值域为__________.答案:(-∞,2) 解析:当x ≥1时,1122loglog 1x ≤,即12logx ≤,当x <1时,0<2x <21,即0<2x <2;故f (x )的值域为(-∞,2). 14.(2013北京,文14)已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP =λAB +μAC (1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为__________.答案:3解析:AP =λAB +μAC ,AB =(2,1),AC =(1,2). 设P (x ,y ),则AP =(x -1,y +1).∴12,12,x y λμλμ-=+⎧⎨-=+⎩得23,323,3x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩∵1≤λ≤2,0≤μ≤1,可得629,023,x y x y ≤-≤⎧⎨≤-≤⎩如图.可得A 1(3,0),B 1(4,2),C 1(6,3), |A1B 1|==, 两直线距离d ==,∴S =|A 1B 1|·d =3.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(2013北京,文15)(本小题共13分)已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x . (1)求f (x )的最小正周期及最大值;(2)若α∈π,π2⎛⎫⎪⎝⎭,且f (α)=2,求α的值. 解:(1)因为f (x )=(2cos 2x -1)sin 2x +12cos 4x =cos 2x sin 2x +12cos 4x =12(sin 4x +cos 4x )π44x ⎛⎫+ ⎪⎝⎭,所以f (x )的最小正周期为π2,最大值为2.(2)因为f (α)=2,所以πsin 414α⎛⎫+= ⎪⎝⎭.因为α∈π,π2⎛⎫ ⎪⎝⎭,所以4α+π4∈9π17π,44⎛⎫ ⎪⎝⎭. 所以π5π442α+=.故9π16α=. 16.(2013北京,文16)(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留时间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结果不要求证明)解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613. (2)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.(3)从3月5日开始连续三天的空气质量指数方差最大.17.(2013北京,文17)(本小题共14分)如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD ⊥平面ABCD,PA⊥AD.E和F分别是CD和PC的中点.求证:(1)PA⊥底面ABCD;(2)BE∥平面PAD;(3)平面BEF⊥平面PCD.证明:(1)因为平面PAD⊥底面ABCD,且PA垂直于这两个平面的交线AD,所以PA⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE.所以ABED为平行四边形.所以BE∥AD.又因为BE⊄平面PAD,AD⊂平面PAD,所以BE∥平面PAD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE⊥CD,AD⊥CD.由(1)知PA⊥底面ABCD,所以PA⊥CD.所以CD⊥平面PAD.所以CD⊥PD.因为E和F分别是CD和PC的中点,所以PD∥EF.所以CD⊥EF.所以CD⊥平面BEF.所以平面BEF⊥平面PCD.18.(2013北京,文18)(本小题共13分)已知函数f(x)=x2+x sin x+cos x.(1)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(2)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.解:由f(x)=x2+x sin x+cos x,得f′(x)=x(2+cos x).(1)因为曲线y=f(x)在点(a,f(a))处与直线y=b相切,所以f′(a)=a(2+cos a)=0,b=f(a).解得a=0,b =f(0)=1.(2)令f′(x)=0,得x=0.f(x)与f′(所以函数f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,f (0)=1是f (x )的最小值.当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点;当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b ,f (0)=1<b ,所以存在x 1∈(-2b,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b .由于函数f(x)在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时曲线y =f(x)与直线y =b 有且仅有两个不同交点.综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).19.(2013北京,文19)(本小题共14分)直线y =kx +m (m ≠0)与椭圆W :24x+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A 1,2t ⎛⎫ ⎪⎝⎭,代入椭圆方程得21144t +=,即t =. 所以|AC |=(2)假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由2244,x y y kx m ⎧+=⎨=+⎩消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2), 则1224214x x km k +=-+,121222214y y x x m k m k ++=⋅+=+. 所以AC 的中点为M 224,1414km m k k ⎛⎫- ⎪++⎝⎭.因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为14k -.因为k ·14k ⎛⎫- ⎪⎝⎭≠-1,所以AC 与OB 不垂直. 所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形.20.(2013北京,文20)(本小题共13分)给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列的前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0.证明:a 1,a 2,…,a n -1是等差数列.解:(1)d 1=2,d 2=3,d 3=6.(2)因为a 1>0,公比q >1,所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1.于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q )q i -1.因此d i ≠0且1iidq d +=(i =1,2,…,n -2), 即d 1,d 2,…,d n -1是等比数列.(3)设d 为d 1,d 2,…,d n -1的公差. 对1≤i ≤n -2,因为B i ≤B i +1,d >0, 所以A i +1=B i +1+d i +1≥B i +d i +d >B i +d i =A i . 又因为A i +1=max{A i ,a i +1}, 所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列. 因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1, 所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i . 因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d ,即a 1,a 2,…,a n -1是等差数列.。
2013年北京高考文科数学试卷及解析
1 cos 4 x 2
(1)求 f ( x ) 的最小正周期及最大值。 (2)若 (
2
, ) ,且 f ( )
2 ,求 的值。 2
【考点】本题考查三角函数的诱导公式、二倍角公式、三角函数的周期、最小值等相关公式。
1 x
B. y e
x
C. y x 1
2
D. y lg x
【答案】C 【考点】本题主要考查一些常见函数的图像和性质,意在考查考生对幂函数、二次函数、指数函数、对数函数以及函数图 像之间的变换关系的掌握情况。 【解析】y = ������是奇函数,选项 A 错;y=e 指数函数,非奇非偶,选项 B 错;y = lg |������ |是偶函数,但在(0,∞)上单调 递增,选项 D 错,只有选项 C 是偶函数且在(0,∞)上单调递增。 4.在复平面内,复数 i (2 i ) 对应的点位于() A.第一象限 C.第三象限 【答案】A 【考点】本题主要考查复数的运算法则和几何意义。 【解析】因为 i(2—i)=1+2i,所以对应的点的坐标为(1.2)在第一象限,故选 A. 5.在 ABC 中, a 3 , b 5 , sin A B.第二象限 D.第四象限
6 13
(2)此人停留的两天共有 13 种选择,分别是:(1, 2) ,(2,3) ,(3, 4) ,(4,5) ,(5, 6) ,(6, 7) ,(7,8) ,(8,9) , (9,10) ,
(10,11) , (11,12) , (12,13) , (13,14)
其中只有一天重度污染的为 (4,5) , (5, 6) , (7,8) , (8,9) ,共 4 种, 所以概率为 P2
2013年高考文科数学北京卷
2
2
16.(本小题满分 13 分) 下图是某市 3 月 1 日至 14 日的空气质量指数趋势图.空气质量指数小于 100 表示空气 质量优良,空气质量指数大于 200 表示空气重度污染,某人随机选择 3 月 1 日至 3 月 13 日中的某一天到达该市,并停留 2 天.
17.(本小题满分 14 分) 如图,在四棱锥 P ABCD 中, AB∥CD , AB AD , CD 2AB ,平面 PAD 底 面 ABCD , PA AD . E 和 F 分别是 CD 和 PC 的中点,求证: (Ⅰ) PA 底面 ABCD ; (Ⅱ) BE∥平面 PAD ; (Ⅲ)平面 BEF 平面 PCD .
x y 3≤0,
最小值为
.
13.函数
f
(x)
log 1 2
x,x≥1 的值域为
.
2x ,x<1
14. 已 知 点 A(1,1) , B(3,0) , C(2,1) . 若 平 面 区 域 D 由 所 有 满 足 AP AB AC
(1≤≤2 , 0≤≤1 )的点 P 组成,则 D 的面积为
的不同取值有
()
A.3 个 B.4 个 C.5 个 D.6 个
数学试卷 第 2 页(共 6 页)
第Ⅱ卷(非选择题 共 110 分)
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.把答案填在题中的横线上.
9.若抛物线 y2 2 px 的焦点坐标为 (1,0) ,则 p
;准线方程为
(Ⅰ)求此人到达当日空气质量优良的概率; (Ⅱ)求此人在该市停留期间只有 1 天空气重度污染的概率; (Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
最新高考试题——北京高考数学文科试题及解析
2013年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷满分150分,考试时120分钟,考生务必将答案答在答题卡上,在试卷上作答无效,第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-2.设a ,b ,c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b > 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 4.在复平面内,复数(2)i i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )A .15B .59C D .1 6.执行如图所示的程序框图,输出的S 值为( )A .1B .23C .1321D .6109877.双曲线221y x m -=的充分必要条件是A .12m > B .1m ≥ C .1m > D .2m >8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9.若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 。
10.某四棱锥的三视图如图所示,则该四棱锥的体积为 。
11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = 。
2013年高考文科数学北京卷
最小值为
.
13.函数
f
(x)
log 1 2
x,x≥1 的值域为
.
2x ,x<1
14. 已 知 点 A(1,1) , B(3,0) , C(2,1) . 若 平 面 区 域 D 由 所 有 满 足 AP AB AC
(1≤≤2 , 0≤≤1 )的点 P 组成,则 D 的面积为
B. y ex
C. y x2 1
4.在复平面内,复数 i(2 i) 对应的点位于
A.第一象限
B.第二象限
C.第三象限
无
5.在 △ABC 中, a 3, b 5 , sin A 1 ,则 sin B
3
D. y lg|x| ()
D.第四象限 ()
A. 1
B. 5
C. 5
数学试卷 第 6 页(共 6 页)
的不同取值有
()
A.3 个 B.4 个 C.5 个 D.6 个
数学试卷 第 2 页(共 6 页)
第Ⅱ卷(非选择题 共 110 分)
二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.把答案填在题中的横线上.
9.若抛物线 y2 2 px 的焦点坐标为 (1,0) ,则 p
;准线方程为
.
数学试卷 第 3 页(共 6 页)
三、解答题:本大题共 6 小题,共 80 分.解答应写出必要的文字说明、证明过程或演算步骤. 15.(本小题满分 13 分)
已知函数 f (x) (2cos2 x 1)sin 2x 1 cos 4x . 2
(Ⅰ)求 f (x) 的最小正周期及最大值;
(Ⅱ)若 ( π , π) ,且 f ( ) 2 ,求 的值.
2013年高考全国1卷文科数学试题及答案(详细解析版,精校版)
2013年普通高等学校招生全国统一考试(全国I 卷)文科数学一、选择题,本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =A .{1,4}B .{2,3}C .{9,16}D .{1,2}2.212i 1i +(-)= A .1-1-i 2 B .1-1+i 2 C .11+i 2 D .11-i 23.从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是A .12B .13C .14D .164.已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为2,则C 的渐近线方程为 A .y=14x ± B .y=13x ± C .y=12x ± D .y=±x 5.已知命题p :∀x ∈R,2x <3x ;命题q :∃x ∈R ,x 3=1-x 2,则下列命题中为真命题的是A .p ∧qB .﹁p ∧qC .p ∧﹁qD .﹁ p ∧﹁q6.设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n7.执行下面的程序框图,如果输入的t ∈[-1,3],则输出的S 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]8.O 为坐标原点,F 为抛物线C :y 2=的焦点,P 为C 上一点,若|PF |=POF 的面积为A .2B .C .D .49.函数f (x )=(1-cos x )sin x 在[-π,π]的图像大致为10.已知锐角ΔABC 的内角A,B,C 的对边分别为a,b,c , 23cos 2A +cos2A =0, a =7,c =6,则b =A .10B .9C .8D .511.某几何体的三视图如图所示,则该几何体的体积为A .16+8πB .8+8πC .16+16πD .8+16π12.已知函数f (x )=22,0,ln(1),0.x x x x x ⎧-+≤⎨+>⎩若|f (x )|≥ax , 则a 的取值范围是A .(-∞,0]B .(-∞,1]C .[-2,1]D .[-2,0]二、填空题:本大题共4小题,每小题5分,共20分.把答案填在横线上.13.已知两个单位向量a ,b 的夹角为60°,c =t a +(1-t )b . 若b ·c =0,则t =____.14.设x ,y 满足约束条件13,10,x x y ≤≤⎧⎨-≤-≤⎩则z =2x -y 的最大值为______. 15.已知H 是球O 的直径AB 上一点,AH :HB =1:2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.16.设当x =θ时,函数f (x )=sin x -2cos x 取得最大值,则cos θ=______.三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.(本小题满分12分)已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式; (2)求数列21211{}n n a a -+的前n 项和.18.(本小题满分12分)为了比较两种治疗失眠症的药(分别称为A 药,B 药)的疗效,随机地选取20位患者服用A 药,20位患者服用B 药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A 药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B 药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.41.6 0.5 1.8 0.62.1 1.1 2.5 1.2 2.7 0.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)19.(本小题满分12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C,求三棱柱ABC-A1B1C1的体积.20.(本小题满分12分)已知函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.21.(本小题满分12分)已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N 内切,圆心P的轨迹为曲线C.(1)求C的方程;(2)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求|AB|.请考生在第22、23、24三题中任选一题做答.注意:只能做所选定的题目.如果多做,则按所做的第一个题目计分.22.(本小题满分10分)选修4-1:几何证明选讲如图,直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.(1)证明:DB=DC;(2)设圆的半径为1,BC,延长CE交AB于点F,求ΔBCF外接圆的半径.23 .(本小题满分10分)选修4-4:坐标系与参数方程已知曲线C1的参数方程为45cos,55sinx ty t=+⎧⎨=+⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sin θ.(1)把C1的参数方程化为极坐标方程;(2)求C1与C2交点的极坐标(ρ≥0,0≤θ<2π).24.(本小题满分10分)选修4—5:不等式选讲已知函数f(x)=|2x-1|+|2x+a|,g(x)=x+3.(1)当a=-2时,求不等式f(x)<g(x)的解集;(2)设a>-1,且当x∈1[,)22a-时,f(x)≤g(x),求a的取值范围.2013年高考全国1卷文科数学参考答案12.解:212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2- 3.解:依题所有基本事件为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种,满足条件的事件数是2种,所以所求的概率为13. 4.解:依题2254c a =. ∵c 2=a 2+b 2,∴2214b a =,∴12b a =. ∴渐近线方程为12y x =± 5.解:由20=30知,p 为假命题.令h (x )=x 3-1+x 2,∵h (0)=-1<0,h (1)=1>0, ∴h (x )=0在(0,1)内有解.∴∃x ∈R ,x 3=1-x 2,即命题q 为真命题.由此可知只有⌝p ∧q 为真命题.6.解:121(1)/133n n n a a q S a q -==--=3-2a n 7.解:当-1≤t <1时,s =3t ,则s ∈[-3,3).当1≤t ≤3时,s =4t -t 2. ∵该函数的对称轴为t =2,∴s max =4,s min =3. ∴s ∈[3,4].综上知s ∈[-3,4]8.解:利用|PF |=P x =x P =∴y P =±∴S △POF =12|OF |·|y P |=9.解:由f (x )=(1-cos x )sin x 知其为奇函数.可排除B .当x ∈π(0,)2时,f (x )>0,排除A. 当x ∈(0,π)时,f ′(x )=sin 2x +cos x (1-cos x )=-2cos 2x +cos x +1.令f ′(x )=0,可得2π3x =. 故极值点为2π3x =,可排除D ,故选C. 10.解:由23cos 2A +cos 2A =0,得cos 2A =125. ∵A ∈π(0,)2,∴cos A =15. ∵cos A =236491265b b +-=⨯,解得b =5或135b =-(舍).故选D. 11.解:该几何体为一个半圆柱的上面后方放一个长方体组成的一个组合体.V 半圆柱=12π×22×4=8π,V 长方体=4×2×2=16. 所以体积为16+8π. 故选A 12.解:可画出|f (x )|的图象如图所示.当a >0时,y =ax 与y =|f (x )|恒有公共点,所以排除B,C;当a ≤0时,若x >0,则|f (x )|≥ax 恒成立;若x ≤0,则以y =ax 与y =x 2-2x 相切为界限,联立y =ax 与y =x 2-2消去y 得x 2-(a +2)x =0. ∵Δ=(a +2)2=0,∴a =-2. ∴a ∈[-2,0].故选D.二、填空题:13.2 1 4.3 15.9π216.5- 13.解:依题a ·b =111122⨯⨯=,b ·c = t a ·b +(1-t )b 2 =0,∴12t +1-t =0. ∴t =2. 14.解:作出可行域如图所示.画出初始直线l 0:2x -y =0,l 0平移到l ,当直线l 经过点A (3,3)时z 取最大值,z =2×3-3=3.15.解:如图,π·EH 2=π,∴EH =1,设球O 的半径为R ,则AH =23R , OH =3R . 在RtΔOEH 中,R 2=22()+13R , ∴R 2=98. ∴S 球=4πR 2=9π2. 16. 解:∵f (x )=sin x -2cos x x +φ),其中tan φ=-2,φ是第四象限角.当x +φ=2k π+π2(k ∈Z )时,f (x )取最大值.即θ=2k π+π2-φ(k ∈Z ), ∴cos θ=πcos()2ϕ-=sin φ=5-. 三、解答题:解答应写出文字说明,证明过程或演算步骤.只做6题,共70分.17.解:(1)设{a n }的公差为d ,则S n =1(1)2n n na d -+. 则11330,5105,a d a d +=⎧⎨+=⎩ …2分 解得a 1=1,d =-1. …4分 故{a n }的通项公式为a n =2-n . …6分(2)由(1)知21211n n a a -+=1111()321222321n n n n =-(-)(-)--, …8分 从而新数列的前n 项和为111111[(11)(1)()][1]23232122112n n T n n n n =--+-++-=--=---- …12分 18.解: (1)设A 药数据的平均数为x B 药观测数据的平均数为y . x =(0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3 +2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9 +3.0+3.1+3.2+3.5)/20=2.3,…3分 y =+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2)/20=1.6. …6分由以上计算结果可得x >y ,因此可看出A 药的疗效更好.(2)绘制茎叶图如图: … 9分 从茎叶图可以看出,A 药疗效数据有710的叶集中在茎“2.”,“3.”上,而B 药疗效数据有710的叶集中在茎“0.”,“1.”上,由此可看出A 药的疗效更好.… 12分19. (1)证:取AB 的中点O ,连结OC ,OA 1,A 1B .由于AB =AA 1,∠BAA 1=60°,故ΔAA 1B 为等边三角形,所以OA 1⊥AB . 又CA =CB ,所以OC ⊥AB . …3分因为OC ∩OA 1=O ,所以 AB ⊥平面OA 1C .又A 1C ⊂平面OA 1C ,所以AB ⊥A 1C . …6分(2)解:依题ΔABC 与ΔAA 1B 都是边长为2的等边三角形,所以OC =OA 1又A 1C,则A 1C 2=OC 2+OA 12,故OA 1⊥OC ,又OA 1⊥AB ,OC ∩AB =O ,所以OA 1⊥平面ABC , …9分OA 1为三棱柱ABC -A 1B 1C 1的高. 又ΔABC 的面积S △ABC故三棱柱ABC -A 1B 1C 1的体积V =S △ABC ×OA 1=3. …12分20.解:(1)f ′(x )=e x (ax +a +b )-2x -4. 依题f (0)=4,f ′(0)=4. …3分故b =4,a +b =8. 从而a =4,b =4. …6分(2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=2(x +2)·(2e x -1).令f ′(x )=0得,x =-ln 2或x =-2. …8 分所以在(-∞,-2)与(-ln2,+∞)上,f ′(x )>0;f (x )单调递增.在(-2,-ln 2) 上,f ′(x )<0. f (x )单调递减. …10 分当x =-2时,函数f (x )取得极大值,极大值为f (-2)=-4e -2+4. …12 分21.解:(1)由已知得圆M 的圆心为M (-1,0),半径r 1=1;圆N 的圆心为N (1,0),半径r 2=3. 设圆P 的圆心为P (x ,y ),半径为R .依题, |PM |=R +1. |PN |=3-R . 所以|PM |+|PN |=4. …3 分由椭圆的定义可知,曲线C 是以M ,N 为左、右焦点的椭圆(左顶点除外),且a =2,c =1,∴b∴C 的方程为22=143x y +(x ≠-2). …6 分 (2)对于曲线C 上任意一点P (x ,y ),由于|PM |-|PN |=2R -2≤2,所以R ≤2,当且仅当圆P 的圆心为(2,0)时,R =2.所以当圆P 的半径最长时,其方程为(x -2)2+y 2=4. …7 分若l 的倾斜角为90°,则l 与y 轴重合,可得|AB|= …8 分若l 的倾斜角不为90°,由r 1≠R 知l 不平行于x 轴,可设l 与x 轴的交点为Q (m ,0),由1||222||1QP R m QM r m-===--即,解得m =-4. 所以Q (-4,0),故可设l :y =k (x +4).由l 与圆M=1,解得k=4±.当k=4时,将4y x =代入22=143x y +,并整理得7x 2+8x -8=0, 解得x=47-±,所以|AB|x 2-x 1|=187. …10分 当k=4-时,由图形的对称性可知|AB |=187. 综上,|AB|=|AB |=187. …12 分 22.(1)证明:连结DE ,交BC 于点G . 由弦切角定理得,∠ABE =∠BCE . 而∠ABE =∠CBE ,故∠CBE =∠BCE ,所以BE =CE . 又因为DB ⊥BE ,所以DE 为直径,所以∠DCE =90°,由勾股定理可得DB =DC . …5分(2)解:由(1)知,∠CDE =∠BDE ,DB =DC ,故DG 是BC 的中垂线,所以BG. 设DE 的中点为O ,连结BO , 则∠BOG =60°. 从而∠ABE =∠BCE =∠CBE =30°,所以CF ⊥BF ,故RtΔBCF. …10分 23.解:(1)将45cos ,55sin x t y t=+⎧⎨=+⎩消去参数t ,化为普通方程(x -4)2+(y -5)2=25, 将x=ρcos θ, y=ρsin θ代入整理得C 1的极坐标方程为ρ2-8ρcos θ-10ρsin θ+16=0. …5分(2)C 2的普通方程为x 2+y 2-2y =0. 联立C 1的方程x 2+y 2 -8x -10y +16=0,解得交点为(1,1)与(0,2),其极坐标分别为π)(2,)42π与. …10分 24.解:(1)当a =-2时,不等式f (x )>g (x )化为|2x -1|+|2x -2|-x -3<0. 设函数y =|2x -1|+|2x -2|-x -3,则y =15,,212,1,236, 1.x x x x x x ⎧-<⎪⎪⎪--≤≤⎨⎪->⎪⎪⎩其图像如图所示.从图像可知,当且仅当x ∈(0,2)时,y <0.所以原不等式的解集是{x |0<x <2}. …5分(2)当a >-1,且x ∈1[,)22a -时,f (x )=1+a . 不等式f (x )≤g (x )化为1+a ≤x +3. 所以x ≥a -2对x ∈1[,)22a -都成立.故2a -≥a -2,即a ≤43. 从而a 的取值范围是4(1,]3-. …10分。
2013年高考真题解析——北京卷(数学文)纯word版
2013·北京卷(文科数学)1. 已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ) A .{0} B .{-1,0} C .{0,1} D .{-1,0,1}1.B [解析] ∵-1∈B ,0∈B ,1∉B ,∴A ∩B ={-1,0},故选B. 2. 设a ,b ,c ∈,且a >b ,则( ) A .ac >bc B.1a <1bC .a 2>b 2D .a 3>b 32.D [解析] ∵函数y =x 3在上是增函数,a >b , ∴a 3>b 3. 3., 下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -xC .y =-x 2+1D .y =lg |x |3.C [解析] 对于A ,y =1x 是奇函数,排除.对于B ,y =e -x 既不是奇函数,也不是偶函数,排除.对于D ,y =lg |x |是偶函数,但在(0,+∞)上有y =lg x ,此时单调递增,排除.只有C 符合题意.4. 在复平面内,复数i(2-i)对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.A [解析] ∵i(2-i)=2i +1,∴i(2-i)对应的点为(1,2),因此在第一象限.5. 在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1 5.B [解析] 由正弦定理得a sin A =b sin B ,即313=5sin B ,解得sin B =59. 6. 执行如图1-1所示的程序框图,输出的S 值为( )图1-1A .1 B.23C.1321D.6109876.C [解析] 执行第一次循环时S =12+12×1+1=23,i =1;执行第二次循环时S =⎝⎛⎭⎫232+12×23+1=1321,i =2,此时退出循环,故选C. 7., 双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( )A .m >12 B .m ≥1C .m >1D .m >27.C [解析] 双曲线的离心率e =ca=1+m >2,解得m >1.故选C.8., 如图1-2,在正方体ABCD -A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )图1-2A .3个B .4个C .5个D .6个8.B [解析] 设棱长为1,∵BD 1=3,∴BP =33,D 1P =2 33.联结AD 1,B 1D 1,CD 1,得△ABD 1≌△CBD 1≌△B 1BD 1,∴∠ABD 1=∠CBD 1=∠B 1BD 1,且cos ∠ABD 1=33,联结AP ,PC ,PB 1,则有△ABP ≌△CBP ≌△B 1BP , ∴AP =CP =B 1P =63,同理DP =A 1P =C 1P =1, ∴P 到各顶点的距离的不同取值有4个.9. 若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为________. 9.2 x =-1 [解析] ∵抛物线y 2=2px 的焦点坐标为(1,0),∴p2=1,解得p =2,∴准线方程为x =-1.10., 某四棱锥的三视图如图1-3所示,该四棱锥的体积为________.图1-310.3 [解析] 正视图的长为3,侧视图的长为3,因此,该四棱锥底面是边长为3的正方形,且高为1,因此V =13×(3×3)×1=3.11. 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n=________.11.2 2n +1-2 [解析] ∵a 3+a 5=q (a 2+a 4),∴40=20q ,∴q =2,∴a 1(q +q 3)=20,∴a 1=2,∴S n =2(1-2n )1-2=2n +1-2.12. 设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.12.2 55[解析] 在平面直角坐标系中画出可行域,如图所示.根据可行域可知,区域D 内的点到点(1,0)的距离最小值为点(1,0)到直线2x -y =0的距离,即d =|2-0|5=2 55.13. 函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.13.(-∞,2) [解析] 函数y =log 12x 在(0,+∞)上为减函数,当x ≥1时,函数y =log12x 的值域为(-∞,0];函数y =2x 在上是增函数,当x <1时,函数y =2x 的值域为(0,2),所以原函数的值域为(-∞,2).14. 已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________.14.3 [解析] 设P (x ,y ),∴AP →=(x -1,y +1),AB →=(2,1),AC →=(1,2).∵AP →=λAB →+μAC →,∴⎩⎪⎨⎪⎧x -1=2λ+μ,y +1=λ+2μ,解得⎩⎪⎨⎪⎧3λ=2x -y -3,-3μ=x -2y -3. 又1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧6≤2x -y ≤9,0≤x -2y ≤3,此不等式组表示的可行域为平行四边形,如图所示,由于A (3,0),B (5,1),所以|AB |=(5-3)2+(1-0)2=5,点B (5,1)到直线x-2y =0的距离d =35,∴其面积S =5×35=3.15.,,, 已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x .(1)求f (x )的最小正周期及最大值; (2)若α∈⎝⎛⎭⎫π2,π,且f (α)=22,求α的值. 15.解:(1)因为f (x )=(2cos 2 x -1)sin 2x +12cos 4x=cos 2x ·sin 2x +12cos 4x=12(sin 4x +cos 4x ) =22sin ⎝⎛⎭⎫4x +π4, 所以f (x )的最小正周期为π2,最大值为22.(2)因为f (α)=22,所以sin ⎝⎛⎭⎫4α+π4=1. 因为α∈⎝⎛⎭⎫π2,π,所以4α+π4∈⎝⎛⎭⎫9π4,17π4. 所以4α+π4=5π2.故α=9π16.16.,, 图1-4是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.图1-4(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)16.解:(1)在3 月1日至3 月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)根据题意,事件“此人在该市停留期间只有1天空气 重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.(3)从3月5日开始连续三天的空气质量指数方差最大. 17.,, 如图1-5,在四棱锥P -ABCD 中,AB ∥CD ,AB ⊥AD ,CD =2AB ,平面P AD ⊥底面ABCD ,P A ⊥AD ,E 和F 分别是CD 和PC 的中点.求证:(1)P A ⊥底面ABCD ; (2)BE ∥平面P AD ;(3)平面BEF ⊥平面PCD .图1-517.证明:(1)因为平面P AD ⊥底面ABCD ,且P A 垂直于这两个平面的交线AD ,所以P A ⊥底面ABCD .(2)因为AB ∥CD ,CD =2AB ,E 为CD 的中点,所以AB ∥DE ,且AB =DE , 所以ABED 为平行四边形, 所以BE ∥AD .又因为BE ⊄平面P AD ,AD ⊂平面P AD , 所以BE ∥平面P AD .(3)因为AB ⊥AD ,而且ABED 为平行四边形, 所以BE ⊥CD ,AD ⊥CD . 由(1)知P A ⊥底面ABCD , 所以P A ⊥CD .又因为AD ∩P A =A ,所以CD ⊥平面P AD , 所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点, 所以PD ∥EF , 所以CD ⊥EF ,所以CD ⊥平面BEF , 所以平面BEF ⊥平面PCD . 18.,,, 已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 18.解:由f (x )=x 2+x sin x +cos x ,得 f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,所以f ′(a )=a (2+cos a )=0,b =f (a ). 解得a =0,b =f (0)=1. (2)令f ′(x )=0,得x =0. f (x )与f ′(x )的情况如下:x (-∞,0)0 (0,+∞)f ′(x ) - 0 + f (x )1所以函数f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,f (0)=1是f (x )的最小值.当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点;当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b ,f (0)=1<b , 所以存在x 1∈(-2b ,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b .由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时,曲线y =f (x )与直线y =b 有且仅有两个不同交点.综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).19.,, 直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.19.解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1,即t =±3. 所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得 (1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝⎛⎭⎫-4km 1+4k 2,m 1+4k 2.因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·⎝⎛⎭⎫-14k ≠-1,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 20.,,, 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q >1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q )q i -1.因此d i ≠0且d i +1d i=q (i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i ≤n -2,因为B i ≤B i +1,d >0,所以A i +1=B i +1+d i +1≥B i +d i +d >B i +d i =A i . 又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n .所以a i=A i=B i+d i=a n+d i.因此对i=1,2,…,n-2都有a i+1-a i=d i+1-d i=d,即a1,a2,…,a n-1是等差数列.。
2013年北京高考数学文科试卷带详解
2013年普通高等学校招生全国统一考试(北京卷) 数学(文) 第一部分 (选择题 共40分)一、 选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合{}1,0,1A =-,{}|11B x x =-<…,则A B = ( )A.{}0B. {}1,0-C. {}0,1D. {}1,0,1-【测量目标】集合的含义与表示、集合的基本运算,数形结合思想.【考查方式】给出A ,B 的集合,求A ,B 的交集.【参考答案】B【试题解析】}{}{π1,0,1,11A B x x =-=-< …且1B ∉{}1,0A B ∴=-2.设,,a b c ∈R ,且a b >,则( ) A. ac bc > B. 11a b< C. 22a b > D. 33a b > 【测量目标】不等式比较大小.【考查方式】给出两实数的的大小,求出其他实数的大小.【参考答案】D【试题解析】A 项,c 0…时,由a b >不能得到ac bc >,故不正确;B 项0,0a b ><(如1,2a b ==-)时,由a b >不能得到11a b<,故不正确; C 项,由22()()a b a b a b -=+-及a b >可知当0a b +<时(如2,3a b =-=-或2,3a b ==-)均不能得到22a b >,故不正确;D 项,3322()()a b a b a ab b -=-++=223()24b a b a b ⎡⎤⎛⎫-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ,因为223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即 33a b >.3.下列函数中,既是偶函数又在区间(0,+)∞上单调递减的是( )A. 1y x= B. e x y -= C. 21y x =-+ D. lg y x = 【测量目标】偶函数、函数单调性的判断.【考查方式】给出各类函数,判断是否为偶函数及在(0,)∞上单调递减.【参考答案】C【试题解析】A 项,1y x=时奇函数,故不正确;B 项,e x y -=为非奇非偶函数,故不正确;C,D 两项中的两个函数都是偶函数,且21y x =-+在(0,+∞)上是减函数,lg y x =在(0,+∞)上是增函数,故选C .4.在复平面内,复数i(2i)-对应的点位于( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限【测量目标】复数的运算法则及复数的几何意义.【考查方式】给出复数,求出复数所对应的点在哪个象限.【参考答案】A【试题解析】2i(2i)2i i 12i z =-=-=+ ,∴复数z 在复平面内的对应点位(1,2),在第一象限.5.在△ABC 中,3,5a b ==,1sin 3A = ,则sinB =( ). A. 15 B. 59 C.3D. 1 【测量目标】正弦定理.【考查方式】给出三角形的两边长及其中一边所对应的角的正弦值,求出另一边的正弦值.【参考答案】B【试题解析】在ABC △中,由正弦定理sin sin a b A B =,得15sin 53sin 39b A B a ⨯===.6.执行如图所示的程序框图,输出的S 值为( ).A. 1B. 23C.1321D. 610987 【测量目标】循环结构的程序图框.【考查方式】给出程序图,由,S i 的循环关系求出最后输出S 的值.【参考答案】C【试题解析】当0,1i S ==时,执行2121S S S +=+后得23S =,11i i =+=;(步骤1) 当21,3i S ==时,执行2121S S S +=+后得13,1221S i i ==+=,(步骤2) 第6题图由于此时2i …是成立的,因此输出13.21S =(步骤3)7.双曲线221y x m -=的充分必要条件是( ). A. 12m > B. 1m … C. 1m > D. 2m > 【测量目标】双曲线离心率及充分必要条件的定义与理解..【参考答案】C【试题解析】用m m 的不等式求解.双曲线221y x m -=的离心率e = 1.e m > 8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( ).A.3个B. 4个C. 5个D. 6个【测量目标】空间几何定理及点到线段距离的计算.【考查方式】给出正方体图及点与直线的位置,求出点与各点的距离取值.【参考答案】B【试题解析】如图,取底面ABCD 的中心O ,连接,,.PA PC PO AC ⊥ 平面1D D B ,又PO ⊂平面1,.DD B AC PO ∴⊥又O 是BD 的中点,.PA PC ∴=(步骤1)同理,取1B C 与1BC 的交点H ,易证1B C ⊥平面111,.DC B B C PH ∴⊥又H 是1B C 的中点,1.PB PC ∴=11PA PB PC ∴==(步骤2) 第8题图同理可证11.PA PC PD ==又P 是1BD 的三等分点,11,PB PD PB PD ∴≠≠≠故点到正方体的顶点的不同距离有4个.(步骤3)第二部分(非选择题 共110分)二.填空题共6题,每小题5分,共30分.9.若抛物线22y px =的焦点坐标为(1,0)则p =____;准线方程为_____.【测量目标】抛物线标准方程的定义及其应用.【考查方式】给出抛物线的标准方程及焦点坐标,求p 与准线方程.【参考答案】2;1x =-.【试题解析】 抛物线的焦点坐标为(2p ,0),准线方程为.2p x =-又抛物线焦点坐标为(1,0),故2p =,准线方程为1x =-.10.某四棱锥的三视图如图所示,该四棱锥的体积为__________.【测量目标】空间几何体的三视图的理解和计算.【考查方式】给出四棱锥的三视图,求其体积.【参考答案】3.【试题解析】 将三视图还原为直观图,然后根据三视图特征数据,利用体积公式求解,由几何体的三视图可知该几何体时一个底面是正方形的四棱锥,其底面边长为3,且该四棱锥的高是1,故其体积为19133V =⨯⨯=.11.若等比数列{}n a 满足243520,40a a a a +=+=,则公比q =__________;前n 项和n S =_____. 第10题图【测量目标】等比数列的公式及前n 项和.【考查方式】给出等比数列中两组等比项关系,求等比数列的公比与前n 项和.【参考答案】2;122n +-【试题解析】设等比数列{}n a 的首项为1a ,公比为q ,则:由2420a a +=得()21(1)20.1a q q += 由3540a a +=得()221(1)40.2a q q += 由()()12解得12, 2.q a ==故11(1)2(12)2 2.112n n n a q S q +--===---12.设D 为不等式组0,2030x x y x y ⎧⎪-⎨⎪+-⎩………, 第12题图表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为___________.【测量目标】二元一次不等式的几何意义,,用基本不等式解决简单的最大(小)值问题.【考查方式】给出不等式组,求不等式组表示的区域到给定点的距离的最新小值.【试题解析】不等式组表示的区域D 如图阴影部分所示,由图知点P (1,0)与平面区域D 上的点的最短距离为点P (1,0)到直线2y x =的距离d ==13.函数()f x =12log ,12,1x x x x ⎧⎪⎨⎪<⎩…的值域为_________.【测量目标】对数与指数的概念及其运算性质,分段函数的值域.【考查方式】给出()f x 的分段函数,求值域.【参考答案】(,2)-∞【试题解析】当1x …时,1122log log 10,x =∴…1x …时,()0.f x …当1x <时,1022,x <<即0() 2.f x <<因此函数()f x 的值域为(,2)-∞.14.已知点(1,1)A -,(3,0)B ,(2,1)C .若平面区域D 由所有满足AP AB AC λμ=+ 10λμ(2,1)剟剟的点P 组成,则D 的面积为__________.【测量目标】向量的几何表示、向量线性运算的性质及其几何意义.【考查方式】给出平面区域上的三点,求满足关于点的向量关系的平面区域的面积.【参考答案】3【试题解析】设(),P x y <则(1,1).AP x y =-+由题意知(2,1),(1,2).AB AC ==由AP AB AC λμ=+ 知(1,1)(2,1),(1,2),x y λμ-+=+即 21,2 1.x y λμλμ+=-⎧⎨+=+⎩ 23,323,3x y y x λμ--⎧=⎪⎪∴⎨-+⎪=⎪⎩第14题图12,01,λυ⎧⎨⎩剟剟(步骤1) 3236,023 3.x y y x --⎧⎨-+⎩ 剟剟 作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出(4,2),(6,3)M N ,故MN = 又20x y -=与230x y --=之间的距离为d =故平面区域D的面积为3.S ==(步骤2)三.解答题共6小题,共80分。
2013年全国统一高考数学试卷(文科)(新课标ⅰ)(含答案及解析)
2013年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题共12小题.每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的一项.1.(5分)已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}2.(5分)=()A.﹣1﹣i B.﹣1+i C.1+i D.1﹣i3.(5分)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是()A.B.C.D.4.(5分)已知双曲线C:(a>0,b>0)的离心率为,则C的渐近线方程为()A.y=B.y=C.y=±x D.y=5.(5分)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧q B.¬p∧q C.p∧¬q D.¬p∧¬q 6.(5分)设首项为1,公比为的等比数列{a n}的前n项和为S n,则()A.S n=2a n﹣1B.S n=3a n﹣2C.S n=4﹣3a n D.S n=3﹣2a n 7.(5分)执行程序框图,如果输入的t∈[﹣1,3],则输出的s属于()A.[﹣3,4]B.[﹣5,2]C.[﹣4,3]D.[﹣2,5] 8.(5分)O为坐标原点,F为抛物线C:y2=4x的焦点,P为C上一点,若|PF|=4,则△POF的面积为()A.2B.2C.2D.49.(5分)函数f(x)=(1﹣cosx)sinx在[﹣π,π]的图象大致为()A.B.C.D.10.(5分)已知锐角△ABC的内角A,B,C的对边分别为a,b,c,23cos2A+cos2A=0,a=7,c=6,则b=()A.10B.9C.8D.511.(5分)某几何体的三视图如图所示,则该几何体的体积为()A.16+8πB.8+8πC.16+16πD.8+16π12.(5分)已知函数f(x)=,若|f(x)|≥ax,则a的取值范围是()A.(﹣∞,0]B.(﹣∞,1]C.[﹣2,1]D.[﹣2,0]二.填空题:本大题共四小题,每小题5分.13.(5分)已知两个单位向量,的夹角为60°,=t+(1﹣t).若•=0,则t=.14.(5分)设x,y满足约束条件,则z=2x﹣y的最大值为.15.(5分)已知H是球O的直径AB上一点,AH:HB=1:2,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的表面积为.16.(5分)设当x=θ时,函数f(x)=sinx﹣2cosx取得最大值,则cosθ=.三.解答题:解答应写出文字说明,证明过程或演算步骤.17.(12分)已知等差数列{a n}的前n项和S n满足S3=0,S5=﹣5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和.18.(12分)为了比较两种治疗失眠症的药(分别成为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者服用一段时间后,记录他们日平均增加的睡眠时间(单位:h)实验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.6 1.2 2.7 1.5 2.8 1.8 2.2 2.3 3.2 3.52.5 2.6 1.2 2.7 1.5 2.93.0 3.1 2.3 2.4服用B药的20位患者日平均增加的睡眠时间:3.2 1.7 1.9 0.8 0.9 2.4 1.2 2.6 1.3 1.4 1.6 0.5 1.8 0.6 2.1 1.1 2.5 1.2 2.7 0.5(Ⅰ)分别计算两种药的平均数,从计算结果看,哪种药的疗效更好?(Ⅱ)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?19.(12分)如图,三棱柱ABC﹣A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°(Ⅰ)证明:AB⊥A1C;(Ⅱ)若AB=CB=2,A1C=,求三棱柱ABC﹣A1B1C1的体积.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知圆M:(x+1)2+y2=1,圆N:(x﹣1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线C.(Ⅰ)求C的方程;(Ⅱ)l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P 的半径最长时,求|AB|.请考生在第22、23、24三题中任选一题作答。
2013北京高考数学试题(文科)完整word精校解析版电子教案
2013年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷满分150分,考试时120分钟,考生务必将答案答在答题卡上,在试卷上作答无效,第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-2.设a ,b ,c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b > 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 4.在复平面内,复数(2)i i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )A .15B .59C D .1 6.执行如图所示的程序框图,输出的S 值为( )A .1B .23C .1321D .6109877.双曲线221y x m -=的充分必要条件是A .12m > B .1m ≥ C .1m > D .2m >8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9.若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 。
10.某四棱锥的三视图如图所示,则该四棱锥的体积为 。
11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷满分150分,考试时120分钟,考生务必将答案答在答题卡上,在试卷上作答无效,第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-2.设a ,b ,c R ∈,且a b >,则( )A .ac bc >B .11a b <C .22a b >D .33a b > 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 4.在复平面内,复数(2)i i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( ) A .15 B .59C .53D .1 6.执行如图所示的程序框图,输出的S 值为( )A .1B .23C .1321D .610987 7.双曲线221y x m -=的离心率大于2的充分必要条件是 A .12m > B .1m ≥ C .1m > D .2m >8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9.若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 。
10.某四棱锥的三视图如图所示,则该四棱锥的体积为 。
11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = 。
12.设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 。
13.函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为 。
14.向量(1,1)A -,(3,0)B ,(2,1)C ,若平面区域D 由所有满足AP AB AC λμ=+(12λ≤≤,01μ≤≤)的点P 组成,则D 的面积为 。
三、解答题(共6小题,共80分。
解答应写出必要的文字说明,演算步骤)15.(本小题共13分)已知函数21()(2cos 1)sin 2cos 42f x x x x =-+(1)求()f x 的最小正周期及最大值。
(2)若(,)2παπ∈,且()f α=,求α的值。
下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染。
某人随机选择3月1日至14日中的某一天到达该市,并停留2天。
(1)求此人到达当日空气重度污染的概率。
(2)求此在在该市停留期间只有一天空气重度污染的概率。
(3)由图判断,从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD (2)//BE 平面PAD (3)平面BEF ⊥平面PCD已知函数2()sin cos f x x x x x =++(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值。
(2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围。
直线y kx m =+(0m ≠)W :2214x y +=相交于A ,C 两点,O 是坐标原点 (1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长。
(2)当点B 在W 上且不是W 的顶点时,证明四边形OABC 不可能为菱形。
20.(本小题共13分)给定数列1a ,2a ,,n a 。
对1,2,3,,1i n =-,该数列前i 项的最大值记为i A ,后n i -项1i a +,2i a +,,n a 的最小值记为i B ,i i i d A B =-。
(1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值。
(2)设1a ,2a ,,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d ,,1n d -是等比数列。
(3)设1d ,2d ,,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a ,,1n a -是等差数列。
2013年普通高等学校招生全国统一考试数学(文)(北京卷)参考答案一、选择题(共8小题,每小题5分,共40分)1.B 2.D 3.C 4.A 5.B 6.C 7.C 8.B二、填空题(共6小题,每小题5分,共30分)9.2,1x =- 10.3 11.2,121n +-12 13.(,2)-∞- 14.3 1.答案:B解析:集合A 中的元素仅有-1,0,1三个数,集合B 中元素为大于等于-1且小于1的数,故集合A ,B 的公共元素为-1,0,故选B.2.答案:D解析:A 选项中若c 小于等于0则不成立,B 选项中若a 为正数b 为负数则不成立,C 选项中若a ,b 均为负数则不成立,故选D.3.答案:C解析:A 选项为奇函数,B 选项为非奇非偶函数,D 选项虽为偶函数但在(0,+∞)上是增函数,故选C. 4.答案:A解析:i(2-i)=1+2i ,其在复平面上的对应点为(1,2),该点位于第一象限,故选A.5.答案:B解析:根据正弦定理,sin sin a b A B =,则sin B =b a sin A =515339⋅=,故选B. 6.答案:C 解析:i =0时,向下运行,将212213S S +=+赋值给S ,i 增加1变成1,经判断执行否,然后将21132121S S +=+赋值给S ,i 增加1变成2,经判断执行是,然后输出1321S =,故选C. 7.答案:C解析:该双曲线离心率1e =m >1,故选C.8.答案:B解析:设正方体的棱长为a .建立空间直角坐标系,如图所示.则D (0,0,0),D 1(0,0,a ),C 1(0,a ,a ),C (0,a,0),B (a ,a,0),B 1(a ,a ,a ),A (a,0,0),A 1(a,0,a ),P 221,,333a a a ⎛⎫ ⎪⎝⎭,则|PB |=, |PD |9a =,|1PD |93a =,|1PC |=|1PA |a =,|PC |=|PA |3a =,|1PB |=, 故共有4个不同取值,故选B.第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分.9.答案:2 x =-1解析:根据抛物线定义12p =,∴p =2,又准线方程为x =2p -=-1,故填2,x =-1. 10.答案:3解析:由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式V =13×3×3×1=3,故该棱锥的体积为3.11.答案:2 2n +1-2解析:根据等比数列的性质知a 3+a 5=q (a 2+a 4),∴q =2,又a 2+a 4=a 1q +a 1q 3,故求得a 1=2, ∴S n =21212n (-)-=2n +1-2.12.答案: 解析:区域D 表示的平面部分如图阴影所示:根据数形结合知(1,0)到D 的距离最小值为(1,0)到直线2x -y =0的距离=13.答案:(-∞,2)解析:当x ≥1时,1122log log 1x ≤,即12log 0x ≤,当x <1时,0<2x <21,即0<2x<2;故f (x )的值域为(-∞,2).14.(2013北京,文14)已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP =λAB +μAC (1≤λ≤2,0≤μ≤1)的点P组成,则D 的面积为__________.答案:3解析:AP =λAB +μAC ,AB =(2,1),AC =(1,2).设P (x ,y ),则AP =(x -1,y +1).∴12,12,x y λμλμ-=+⎧⎨-=+⎩得23,323,3x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩∵1≤λ≤2,0≤μ≤1,可得629,023,x y x y ≤-≤⎧⎨≤-≤⎩如图.可得A 1(3,0),B 1(4,2),C 1(6,3),|A 1B 1|=,两直线距离d ==, ∴S =|A 1B 1|·d =3.三、解答题(共6小题,共80分。
解答应写出必要的文字说明,演算步骤)15.(本小题共13分)解:(1)21()(2cos 1)sin 2cos 42f x x x x =-+1cos 2sin 2cos 42x x x =+11sin 4cos 422x x =+)24x π=+ 所以,最小正周期242T ππ== 当4242x k πππ+=+(k Z ∈),即216k x ππ=+(k Z ∈)时max ()f x =(2)因为()sin(4)242f παα=+= 所以sin(4)14πα+= 因为2παπ<<,所以9174444πππα<+< 所以5442ππα+=,即916πα= 16.(本小题共13分)解:(1)因为要停留2天,所以应该在3月1日至13日中的某天到达,共有13种选择,其间重度污染的有两天, 所以概率为1213P =(2)此人停留的两天共有13种选择,分别是:(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),(7,8),(8,9),(9,10),(10,11),(11,12),(12,13),(13,14)其中只有一天重度污染的为(4,5),(5,6),(7,8),(8,9),共4种, 所以概率为2413P = (3)因为第5,6,7三天的空气质量指数波动最大,所以方差最大。
17.(本小题共14分)证明:(1)因为PA AD ⊥,平面PAD ⊥底面ABCD 且平面PAD底面ABCD AD = 所以PA ⊥底面ABCD(2)因为E 和F 分别是CD 和PC 的中点,所以//EF PD ,而EF ⊄平面PAD ,PD ⊂平面PAD ,所以//BE 平面PAD(3)因为PA ⊥底面ABCD , CD ⊂平面ABCD所以PA CD ⊥,即CD PA ⊥因为AB AD ⊥,//CD AB ,所以//CD AD而PA ⊂平面PAD ,AD ⊂平面PAD ,且PAAD A = 所以CD ⊥平面PAD因为//AB CD ,所以2CD AB =,所以四边形ABED 是平行四边形,所以//BE AD ,而BE ⊄平面PAD ,AD ⊂平面PAD所以//BE 平面PAD ,同理//EF 平面PAD ,而EF ⊂平面BEF ,BE ⊂平面BEF 且EF BE E =所以平面//BEF 平面PAD , 所以CD ⊥平面//BEF又因为CD ⊂平面PCD所以平面BEF ⊥平面PCD18.(本小题共13分)解:(1)'()2cos (2cos )f x x x x x x =+=+因为曲线()y f x =在点(,())a f a 处的切线为y b =所以'()0()f a f a b =⎧⎨=⎩,即22cos 0sin cos a a a a a a a b+=⎧⎨++=⎩,解得01a b =⎧⎨=⎩ (2)因为2cos 0x +>所以当0x >时'()0f x >,()f x 单调递增当0x <时'()0f x <,()f x 单调递减所以当0x =时,()f x 取得最小值(0)1f =,所以b 的取值范围是(1,)+∞19.(本小题共14分)解:(1)线段OB 的垂直平分线为12y =, 因为四边形OABC 为菱形, 所以直线12y =与椭圆的交点即为A ,C 两点 对椭圆2214x y +=,令12y =得x =所以AC =(2)方法一:当点B 不是W 的顶点时,联立方程2214y kx m x y =+⎧⎪⎨+=⎪⎩得222(14)8440k x kmx m +++-= 设11(,)A x y ,12(,)C x y , 则122814km x x k+=-+,21224414m x x k -=+, 1212y y kx m kx m +=+++12()2k x x m =++228214k m m k=-++ 2214m k=+ 若四边形OABC 为菱形,则OA OC =,即22OA OC =所以22221122x y x y +=+即12122121()()()()x x x x y y y y +-=+-因为点B 不是W 的顶点,所以120x x -≠,所以12212112x x y y y y x x +-=+- 即22814214kmk k mk +-=-+,即4k k = 所以0k =此时,直线AC 与y 轴垂直,所以B 为椭圆的上顶点或下顶点,与已知矛盾, 所以四边形OABC 不可能为菱形方法二:因为四边形OABC 为菱形,所以OA OC =, 设OA OC r ==(1r >)则A ,C 两点为圆222x y r +=与椭圆2214x y +=的交点 联立方程2222214x y r x y ⎧+=⎪⎨+=⎪⎩得224(1)3r x -= 所以A ,C 两点的横坐标相等或互为相反数。