2013北京市高考文科数学试卷及答案解析
2013年高考真题—文科数学(北京卷)精校精析
2013年高考真题精校精析2013·北京卷(文科数学)1. 已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B =( ) A .{0} B .{-1,0} C .{0,1} D .{-1,0,1}1.B [解析] ∵-1∈B ,0∈B ,1∉B ,∴A ∩B ={-1,0},故选B. 2. 设a ,b ,c ∈,且a >b ,则( ) A .ac >bc B.1a <1bC .a 2>b 2D .a 3>b 32.D [解析] ∵函数y =x 3在上是增函数,a >b , ∴a 3>b 3. 3., 下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A .y =1x B .y =e -xC .y =-x 2+1D .y =lg |x |3.C [解析] 对于A ,y =1x 是奇函数,排除.对于B ,y =e -x 既不是奇函数,也不是偶函数,排除.对于D ,y =lg |x |是偶函数,但在(0,+∞)上有y =lg x ,此时单调递增,排除.只有C 符合题意.4. 在复平面内,复数i(2-i)对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限4.A [解析] ∵i(2-i)=2i +1,∴i(2-i)对应的点为(1,2),因此在第一象限.5. 在△ABC 中,a =3,b =5,sin A =13,则sin B =( )A.15B.59C.53D .1 5.B [解析] 由正弦定理得a sin A =b sin B ,即313=5sin B ,解得sin B =59. 6. 执行如图1-1所示的程序框图,输出的S 值为( )图1-1A .1 B.23C.1321D.6109876.C [解析] 执行第一次循环时S =12+12×1+1=23,i =1;执行第二次循环时S =⎝⎛⎭⎫232+12×23+1=1321,i=2,此时退出循环,故选C.7., 双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( )A .m >12 B .m ≥1C .m >1D .m >27.C [解析] 双曲线的离心率e =ca=1+m >2,解得m >1.故选C.8., 如图1-2,在正方体ABCD -A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个8.B [解析] 设棱长为1,∵BD 1=3,∴BP =33,D 1P =2 33.联结AD 1,B 1D 1,CD 1,得△ABD 1≌△CBD 1≌△B 1BD 1,∴∠ABD 1=∠CBD 1=∠B 1BD 1,且cos ∠ABD 1=33, 联结AP ,PC ,PB 1,则有△ABP ≌△CBP ≌△B 1BP ,∴AP =CP =B 1P =63,同理DP =A 1P =C 1P =1, ∴P 到各顶点的距离的不同取值有4个.9. 若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为________.9.2 x =-1 [解析] ∵抛物线y 2=2px 的焦点坐标为(1,0),∴p2=1,解得p =2,∴准线方程为x =-1.10., 某四棱锥的三视图如图1-________.10.3 [解析] 正视图的长为3,侧视图的长为3,因此,该四棱锥底面是边长为3的正方形,且高为1,因此V =13×(3×3)×1=3.11. 若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.11.2 2n +1-2 [解析] ∵a 3+a 5=q (a 2+a 4),∴40=20q ,∴q =2,∴a 1(q +q 3)=20,∴a 1=2,∴S n =2(1-2n )1-2=2n +1-2.12. 设D 为不等式组⎩⎪⎨⎪⎧x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为________.12.2 55[解析] 在平面直角坐标系中画出可行域,如图所示.根据可行域可知,区域D 内的点到点(1,0)的距离最小值为点(1,0)到直线2x -y =0的距离,即d =|2-0|5=2 55.13. 函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________.13.(-∞,2) [解析] 函数y =log 12x 在(0,+∞)上为减函数,当x ≥1时,函数y =log 12x 的值域为(-∞,0];函数y =2x 在上是增函数,当x <1时,函数y =2x 的值域为(0,2),所以原函数的值域为(-∞,2).14. 已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________.14.3 [解析] 设P (x ,y ),∴AP →=(x -1,y +1),AB →=(2,1),AC →=(1,2).∵AP →=λAB →+μAC →,∴⎩⎪⎨⎪⎧x -1=2λ+μ,y +1=λ+2μ,解得⎩⎪⎨⎪⎧3λ=2x -y -3,-3μ=x -2y -3.又1≤λ≤2,0≤μ≤1,∴⎩⎪⎨⎪⎧6≤2x -y ≤9,0≤x -2y ≤3,此不等式组表示的可行域为平行四边形,如图所示,由于A (3,0),B (5,1),所以|AB |=(5-3)2+(1-0)2=5,点B (5,1)到直线x -2y =0的距离d =35,∴其面积S =5×35=3.15.,,, 已知函数f (x )=(2cos 2x -1)sin 2x +12cos 4x .(1)求f (x )的最小正周期及最大值; (2)若α∈⎝⎛⎭⎫π2,π,且f (α)=22,求α的值. 15.解:(1)因为f (x )=(2cos 2 x -1)sin 2x +12cos 4x=cos 2x ·sin 2x +12cos 4x=12(sin 4x +cos 4x ) =22sin ⎝⎛⎭⎫4x +π4, 所以f (x )的最小正周期为π2,最大值为22.(2)因为f (α)=22,所以sin ⎝⎛⎭⎫4α+π4=1. 因为α∈⎝⎛⎭⎫π2,π,所以4α+π4∈⎝⎛⎭⎫9π4,17π4. 所以4α+π4=5π2.故α=9π16.16.,,图1-4是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.图1-4(1)求此人到达当日空气质量优良的概率;(2)求此人在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)16.解:(1)在3 月1日至3 月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为4 13.(3)从3月5日开始连续三天的空气质量指数方差最大.17.,,如图1-5,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面P AD⊥底面ABCD,P A⊥AD,E和F分别是CD和PC的中点.求证:(1)P A⊥底面ABCD;(2)BE∥平面P AD;(3)平面BEF⊥平面PCD.图1-517.证明:(1)因为平面P AD⊥底面ABCD,且P A垂直于这两个平面的交线AD,所以P A⊥底面ABCD.(2)因为AB∥CD,CD=2AB,E为CD的中点,所以AB∥DE,且AB=DE,所以ABED为平行四边形,所以BE∥AD.又因为BE⊄平面P AD,AD⊂平面P AD,所以BE∥平面P AD.(3)因为AB⊥AD,而且ABED为平行四边形,所以BE ⊥CD ,AD ⊥CD . 由(1)知P A ⊥底面ABCD , 所以P A ⊥CD .又因为AD ∩P A =A ,所以CD ⊥平面P AD , 所以CD ⊥PD .因为E 和F 分别是CD 和PC 的中点, 所以PD ∥EF , 所以CD ⊥EF ,所以CD ⊥平面BEF , 所以平面BEF ⊥平面PCD . 18.,,, 已知函数f (x )=x 2+x sin x +cos x .(1)若曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,求a 与b 的值; (2)若曲线y =f (x )与直线y =b 有两个不同交点,求b 的取值范围. 18.解:由f (x )=x 2+x sin x +cos x ,得 f ′(x )=x (2+cos x ).(1)因为曲线y =f (x )在点(a ,f (a ))处与直线y =b 相切,所以f ′(a )=a (2+cos a )=0,b =f (a ). 解得a =0,b =f (0)=1. (2)令f ′(x )=0,得x =0. f (x )与f ′(x )的情况如下:所以函数f (x )在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,f (0)=1是f (x )的最小值.当b ≤1时,曲线y =f (x )与直线y =b 最多只有一个交点;当b >1时,f (-2b )=f (2b )≥4b 2-2b -1>4b -2b -1>b ,f (0)=1<b , 所以存在x 1∈(-2b ,0),x 2∈(0,2b ),使得f (x 1)=f (x 2)=b .由于函数f (x )在区间(-∞,0)和(0,+∞)上均单调,所以当b >1时,曲线y =f (x )与直线y =b 有且仅有两个不同交点.综上可知,如果曲线y =f (x )与直线y =b 有两个不同交点,那么b 的取值范围是(1,+∞).19.,, 直线y =kx +m (m ≠0)与椭圆W :x 24+y 2=1相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.19.解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分. 所以可设A ⎝⎛⎭⎫t ,12,代入椭圆方程得t 24+14=1,即t =±3. 所以|AC |=2 3.(2)证明:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC ⊥OB ,所以k ≠0.由⎩⎪⎨⎪⎧x 2+4y 2=4,y =kx +m 消y 并整理得(1+4k 2)x 2+8kmx +4m 2-4=0. 设A (x 1,y 1),C (x 2,y 2),则x 1+x 22=-4km 1+4k 2,y 1+y 22=k ·x 1+x 22+m =m1+4k 2. 所以AC 的中点为M ⎝⎛⎭⎫-4km 1+4k 2,m 1+4k 2.因为M 为AC 和OB 的交点,且m ≠0,k ≠0,所以直线OB 的斜率为-14k.因为k ·⎝⎛⎭⎫-14k ≠-1,所以AC 与OB 不垂直. 所以OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 20.,,, 给定数列a 1,a 2,…,a n ,对i =1,2,…,n -1,该数列前i 项的最大值记为A i ,后n -i 项a i +1,a i +2,…,a n 的最小值记为B i ,d i =A i -B i .(1)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(2)设a 1,a 2,…,a n (n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n -1是等比数列;(3)设d 1,d 2,…,d n -1是公差大于0的等差数列,且d 1>0,证明:a 1,a 2,…,a n -1是等差数列.20.解:(1)d 1=2,d 2=3,d 3=6. (2)证明:因为a 1>0,公比q >1, 所以a 1,a 2,…,a n 是递增数列.因此,对i =1,2,…,n -1,A i =a i ,B i =a i +1. 于是对i =1,2,…,n -1,d i =A i -B i =a i -a i +1=a 1(1-q )q i -1.因此d i ≠0且d i +1d i=q (i =1,2,…,n -2),即d 1,d 2,…,d n -1是等比数列.(3)证明:设d 为d 1,d 2,…,d n -1的公差.对1≤i ≤n -2,因为B i ≤B i +1,d >0,所以A i +1=B i +1+d i +1≥B i +d i +d >B i +d i =A i . 又因为A i +1=max{A i ,a i +1},所以a i +1=A i +1>A i ≥a i .从而a 1,a 2,…,a n -1是递增数列,因此A i =a i (i =1,2,…,n -1). 又因为B 1=A 1-d 1=a 1-d 1<a 1,所以B 1<a 1<a 2<…<a n -1. 因此a n =B 1.所以B 1=B 2=…=B n -1=a n . 所以a i =A i =B i +d i =a n +d i .因此对i =1,2,…,n -2都有a i +1-a i =d i +1-d i =d , 即a 1,a 2,…,a n -1是等差数列.。
2013年北京市高考数学试卷(文科)答案与解析
2013年北京市高考数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.,但是B根据函数,函数满足=5.(5分)(2013•北京)在△ABC中,a=3,b=5,sinA=,则sinB=()BsinA=,=.6.(5分)(2013•北京)执行如图所示的程序框图,输出的S值为()的值为7.(5分)(2013•北京)双曲线的离心率大于的充分必要条件是()Bb=.利用离心率建立解:双曲线,说明b=,等价于∴双曲线的离心率大于的充分必要条件是8.(5分)(2013•北京)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()=,=到各顶点的距离的不同取值有,,二、填空题共6小题,每小题5分,共30分.9.(5分)(2013•北京)若抛物线y2=2px的焦点坐标为(1,0),则p=2;准线方程为x=﹣1.=1=110.(5分)(2013•北京)某四棱锥的三视图如图所示,该四棱锥的体积为3.所以体积11.(5分)(2013•北京)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=2;前n 项和S n=2n+1﹣2.项和公式即可得出,∴12.(5分)(2013•北京)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.=故答案为:13.(5分)(2013•北京)函数的值域为(﹣∞,2).所以函数14.(5分)(2013•北京)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.,根据,,,,解之得坐标满足不等式组|CF|=,d==×三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)(2013•北京)已知函数f(x)=.(Ⅰ)求f(x)的最小正周期及最大值;(Ⅱ)若α∈(,π),且f(α)=,求α的值.(Ⅱ)通过,且T=,函数的最大值为:,,,又∵16.(13分)(2013•北京)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)P=17.(13分)(2013•北京)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.18.(13分)(2013•北京)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.,19.(14分)(2013•北京)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.,(与椭圆的交点,从而解得y=代入椭圆方程得±,)AC=2与椭圆(20.(14分)(2013•北京)给定数列a1,a2,…,a n.对i=1,2,…,n﹣1,该数列前i项的最大值记为A i,后n﹣i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i﹣B i.(Ⅰ)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,a n﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n﹣1是等比数列;(Ⅲ)设d1,d2,…,d n﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n﹣1是等差数列.从而可证时,。
【高考试题】2013年北京市高考数学试卷(文科)
【高考试题】2013年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}2.(5分)设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b33.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=e﹣x C.y=lg|x|D.y=﹣x2+14.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.16.(5分)执行如图所示的程序框图,输出的S值为()A.1 B.C.D.7.(5分)双曲线的离心率大于的充分必要条件是()A.B.m≥1 C.m>1 D.m>28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P 到各顶点的距离的不同取值有()A.3个 B.4个 C.5个 D.6个二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p=;准线方程为.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为.11.(5分)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=;前n 项和S n=.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.13.(5分)函数f(x)=的值域为.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=(2cos2x﹣1)sin 2x+cos 4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.20.(14分)给定数列a1,a2,…,a n.对i=1,2,…,n﹣1,该数列前i项的最大值记为A i,后n﹣i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i﹣B i.(Ⅰ)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,a n﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n﹣1是等比数列;(Ⅲ)设d1,d2,…,d n﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n﹣1是等差数列.2013年北京市高考数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b3【分析】对于A、B、C可举出反例,对于D利用不等式的基本性质即可判断出.【解答】解:A、3>2,但是3×(﹣1)<2×(﹣1),故A不正确;B、1>﹣2,但是,故B不正确;C、﹣1>﹣2,但是(﹣1)2<(﹣2)2,故C不正确;D、∵a>b,∴a3>b3,成立,故D正确.故选:D.【点评】熟练掌握不等式的基本性质以及反例的应用是解题的关键.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=e﹣x C.y=lg|x|D.y=﹣x2+1【分析】利用基本函数的奇偶性、单调性逐项判断即可.【解答】解:A中,y=为奇函数,故排除A;。
2013年普通高等学校招生全国统一考试(北京卷)数学试题 (文科) word解析版
2013年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷满分150分,考试时120分钟,考生务必将答案答在答题卡上,在试卷上作答无效, 第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合A ={-1,0,1},B ={x |-1≤x <1},则A ∩B 等于( ).A .{0}B .{-1,0}C .{0,1}D .{-1,0,1}答案 B解析 ∵-1,0∈B,1∉B ,∴A ∩B ={-1,0}.2.设a ,b ,c ∈R ,且a >b ,则( ).A .ac >bc B.1a <1bC .a 2>b 2D .a 3>b 3 答案 D解析 当a >b 时,a 3>b 3成立.A 中对c =0不成立.B 项取a =1,b =-1,则1a <1b不成立;C 项取a =1,b =-2,则a 2>b 2不成立.3.下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ).A .y =1xB .y =e -xC .y =-x 2+1D .y =lg |x | 答案 C解析 A 中为奇函数,B 中y =e -x 非奇非偶函数.y =-x 2+1是偶函数,且在(0,+∞)上递减.4.在复平面内,复数i(2-i)对应的点位于( ).A .第一象限B .第二象限C .第三象限D .第四象限答案 A解析 i(2-i)=2i +1对应点(1,2)在第一象限.5.在△ABC 中,a =3,b =5,sin A =13,则sin B 等于( ). A.15 B.59 C.53 D .1 答案 B解析 由正弦定理,a sin A =b sin B ,∴sin B =b a sin A =53×13=59. 6.执行如图所示的程序框图,输出的S 值为( ).A .1 B.23 C.1321 D.610987 答案 C解析 执行一次循环后S =23,i =1,执行第二次循环后,S =1321,i =2≥2, 退出循环体,输出S 的值为1321. 7.双曲线x 2-y 2m=1的离心率大于2的充分必要条件是( ).结束开始A .m >12B .m ≥1C .m >1D .m >2 答案 C解析 由x 2-y 2m =1知,a =1,b =m ,∴c 2=a 2+b 2=1+m ,e 2=c 2a2=1+m ,由e >2,得1+m >2,∴m >1.8. 如图,在正方体ABCDA 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( ).A .3个B .4个C .5个D .6个 答案 B解析 设正方体边长为1,不同取值为P A =PC =PB 1=63, P A 1=PD =PC 1=1,PB =33,PD 1=233共有4个.第二部分 二、填空题9.若抛物线y 2=2px 的焦点坐标为(1,0),则p =________;准线方程为________.答案 2 x =-1解析 y 2=2px 的焦点F ⎝⎛⎭⎫p 2,0.∴p =2,准线l :x =-p 2=-1.10.某四棱锥的三视图如图所示,该四棱锥的体积为_____________.答案 3解析 由三视图知,四棱锥的高h =1,底面是边长为3的正方形,∴四棱锥的体积V =13S ·h =13×32×1=3.11.若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q =________;前n 项和S n =________.答案 2 2n +1-2解析 设等比数列的公比为q ,由a 2+a 4=20,a 3+a 5=40.∴20q =40,且a 1q +a 1q 3=20,解之得q =2,且a 1=2.因此S n =a 1(1-q n )1-2=2n +1-2.12.设D 为不等式组⎩⎪⎨⎪⎧ x ≥0,2x -y ≤0,x +y -3≤0表示的平面区域.区域D 上的点与点(1,0)之间的距离的最小值为________.答案 255 解析 P A C B D C 1B 1D 1A 1作不等式组表示的平面区域,如图所示(△OAB 及其内部),易观察知,所求最小值为点P (1,0)到2x -y =0的距离d =|2×1-0|22+(-1)2=255. 13.函数f (x )=⎩⎪⎨⎪⎧log 12x ,x ≥1,2x ,x <1的值域为________. 答案 (-∞,2)解析 当x ≥1时,log 12x ≤0;当x <1时,0<2x <2,∴f (x )的值域为(-∞,0]∪(0,2)=(-∞,2).14.已知点A (1,-1),B (3,0),C (2,1).若平面区域D 由所有满足 AP →=λAB →+μAC →(1≤λ≤2,0≤μ≤1)的点P 组成,则D 的面积为________.答案 3解析 设P (x ,y ),且AB →=(2,1),AC →=(1,2)∴OP →=OA →+AP →=(1,-1)+λ(2,1)+μ(1,2)∴⎩⎪⎨⎪⎧ x =1+2λ+μy =-1+λ+2μ∴⎩⎪⎨⎪⎧ 3μ=2y -x +33λ=2x -y -3 又1≤λ≤2,0≤μ≤1∴⎩⎪⎨⎪⎧0≤x -2y ≤36≤2x -y ≤9表示的可行域是平行四边形及内部. 可求其面积S =3.三、解答题(共6小题,共80分。
2013年高考北京文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(北京卷)数学(文科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2013年北京,文1,5分】已知集合{}101A =-,,,{}|11B x x =-≤<,则A B =I ( ) (A ){0} (B ){}10-,(C ){}01, (D ){}101-,, 【答案】B【解析】1,0,11{11,}{|}{}0x x --≤<-I =,故选B . (2)【2013年北京,文2,5分】设a ,b ,c R ∈,且a b >,则( )(A )ac bc > (B )11a b< (C )22a b > (D )33a b >【答案】D 【解析】:A 选项中若c 小于等于0则不成立,B 选项中若a 为正数b 为负数则不成立,C 选项中若a ,b 均为负数则不成立,故选D .(3)【2013年北京,文3,5分】下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )(A )1y x = (B )x y e -= (C )21y x =-+(D )lg y x =【答案】C【解析】A 选项为奇函数,B 选项为非奇非偶函数,D 选项虽为偶函数但在(0)+∞,上是增函数,故选C . (4)【2013年北京,文4,5分】在复平面内,复数i(2i)-对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】A【解析】()i 2i 12i -=+,其在复平面上的对应点为()1,2,该点位于第一象限,故选A .(5)【2013年北京,文5,5分】在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )(A )15 (B )59(C )5 (D )1【答案】B【解析】根据正弦定理,sin sin a b A B =,则515sin sin 339b B A a ==⋅=,故选B . (6)【2013年北京,文6,5分】执行如图所示的程序框图,输出的S 值为( )(A )1 (B )23 (C )1321(D )610987【答案】C【解析】依次执行的循环为1S =,i 0=;23S =,i 1=;1321S =,i 2=,故选C .(7)【2013年北京,文7,5分】双曲线221yx m-=的离心率大于2的充分必要条件是( )(A )12m > (B )1m ≥ (C )1m > (D )2m >【答案】C【解析】该双曲线离心率1me +=,由已知1>2m +,故1m >,故选C .(8)【2013年北京,文8,5分】如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )(A )3个 (B )4个 (C )5个 (D )6个【答案】B【解析】设正方体的棱长为a .建立空间直角坐标系,如图所示.则()0,0,0D ,10,()0D a ,,1()0C a a ,,,,(0)0C a ,,0(,)B a a ,,1()B a a a ,,,(),0,0A a ,1,()0A a a ,,221,,333P a a a ⎛⎫⎪⎝⎭,则PB =u u u r,PD a =u u u r ,1PD ==u u u u r,11PC PA a ==,PC PA ==,1PB u u u r ,故共有4个不同取值,故选B . 第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分.(9)【2013年北京,文9,5分】若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 . 【答案】2;1-【解析】根据抛物线定义12p =,∴2p =,又准线方程为12px =-=-.(10)【2013年北京,文10,5分】某四棱锥的三视图如图所示,则该四棱锥的体积为 . 【答案】3【解析】由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式133133V =⨯⨯⨯=,故该棱锥的体积为3.(11)【2013年北京,文11,5分】若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = . 【答案】2;122n +-【解析】由题意知352440220a a q a a +===+.由222421())10(12a a a q a q q +=+=+=,∴12a =.∴12122212n n n S +(-)==--.(12)【2013年北京,文12,5分】设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 .【解析】区域D 表示的平面部分如图阴影所示:根据数形结合知()1,0到D 的距离最小值为()1,0到直线2x -y =0(13)【2013年北京,文13,5分】函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为_______.【答案】()2-∞,【解析】当1x ≥时,1122log log 1x ≤,即12log 0x ≤,当1x <时,1022x <<,即022x <<;故()f x 的值域为()2-∞,. (14)【2013年北京,文14,5分】向量(1,1)A -,(3,0)B ,(2,1)C ,若平面区域D 由所有满足AP AB ACλμ=+u u u r u u u r u u u r (12λ≤≤,01μ≤≤)的点P 组成,则D 的面积为 . 【答案】3【解析】AP AB AC λμ=+u u u r u u u r u u u r ,()2,1AB =u u u r ,()1,2AC =u u u r .设()P x y ,,则()1,1AP x y =-+u u u r.∴1212x y λμλμ-=+⎧⎨-=+⎩得233233x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩,∵12λ≤≤,01μ≤≤,可得629023x y x y ≤-≤⎧⎨≤-≤⎩,如图.可得()13,0A ,()14,2B ,()16,3C ,21214325A B (-)+==,两直线距离2521d ==+,∴11·3S A B d ==. 三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)【2013年北京,文15,13分】已知函数21()(2cos 1)sin 2cos42f x x x x =-+.(1)求()f x 的最小正周期及最大值;(2)若(,)2παπ∈,且2()f α=,求α的值.解:(1)21()(2cos 1)sin 2cos42f x x x x =-+1cos2sin 2cos42x x x =+11sin 4cos422x x =+2sin(4)4x π=+所以,最小正周期242T ππ==,当()4242x k k Z πππ+=+∈,即()216k x k Z ππ=+∈时,max 2()2f x =. (2)因为22()sin(4)4f παα=+=,所以sin(4)14πα+=,因为2παπ<<,所以9174444πππα<+<, 所以5442ππα+=,即916πα=.(16)【2013年北京,文16,13分】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天. (1)求此人到达当日空气质量优良的概率;(2)求此在在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)解法一:根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.解法二:此人停留的两天共有13种选择,分别是:()1,2,()2,3,()3,4,()4,5,()5,6,()6,7,()7,8,()8,9,()9,10,()10,11,()11,12,()12,13,()13,14,其中只有一天重度污染的为()4,5,()5,6,()7,8,()8,9,共4种,所以概率为2413P =. (3)从3月5日开始连续三天的空气质量指数方差最大. (17)【2013年北京,文17,14分】如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ; (2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD . 解:(1)因为平面PAD ⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,PA ∴⊥底面ABCD .(2)因为//AB CD ,2CD AB =,E 为CD 的中点,所以//AB DE ,且AB DE =.所以ABED 为平行四边形.所以//BE AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD ,所以//BE 平面PAD .(3)因为AB AD ⊥,而且ABED 为平行四边形,所以BE CD ⊥,AD CD ⊥.由(1)知PA ⊥底面ABCD ,空气质量指数日期14日13日12日11日10日9日8日7日6日1日037798615812116021740160220143572586100150200250所以PA CD ⊥.所以CD ⊥平面PAD .所以CD PD ⊥.因为E 和F 分别是CD 和PC 的中点, 所以//PD EF .所以CD EF ⊥.所以CD ⊥平面BEF .所以平面BEF ⊥平面PCD .(18)【2013年北京,文18,13分】已知函数2()sin cos f x x x x x =++.(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值; (2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围. 解:(1)因为曲线()y f x =在点()()a f a ,处与直线y b =相切,所以()()2cos 0f a a a '=+=,()b f a =.解得0a =,()01b f ==.(2)解法一:令()0f x '=,得0x =.()f x 与()f x '的情况如下:所以函数()f x ()01=是()f x 的最小值. 当1b ≤时,曲线()y f x =与直线y b =最多只有一个交点;当1b >时,()()222421421f b f b b b b b b -=≥-->-->,()01f b =<,所以存在()12,0x b ∈-,()20,2x b ∈,使得()()12f x f x b ==.由于函数()f x 在区间()0-∞,和(0)+∞,上 均单调,所以当1b >时曲线()y f x =与直线y b =有且仅有两个不同交点.综上可知,如果曲线()y f x =与直线y b =有两个不同交点,那么b 的取值范围是(1)+∞,.解法二:因为2cos 0x +>,所以当0x >时'()0f x >,()f x 单调递增;当0x <时'()0f x <,()f x 单调递减. 所以当0x =时,()f x 取得最小值(0)1f =,所以b 的取值范围是(1,)+∞.(19)【2013年北京,文19,14分】直线()0y kx m m =+≠,W :2214x y +=相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设1,2A t ⎛⎫⎪⎝⎭,代入椭圆方程得21144t +=,即t =AC =(2)解法一:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC OB ⊥,所以0k ≠.由2244x y y kx m ⎧+=⎨=+⎩,消y 并整理得()222148440k x kmx m +++-=.设11()A x y ,,22()C x y ,,则1224214x x km k +=-+,121222214y y x x m k m k ++=⋅+=+.所以AC 的中点为224,1414kmm M k k ⎛⎫- ⎪++⎝⎭. 因为M 为AC 和OB 的交点,且0m ≠,0k ≠,所以直线OB 的斜率为14k-.因为114k k ⎛⎫⋅-≠- ⎪⎝⎭,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 解法二:因为四边形OABC 为菱形,所以OA OC =,设()1OA OC r r ==>,则A ,C 两点为圆222x y r +=与椭圆2214x y +=的交点,联立方程2222214x y r x y ⎧+=⎪⎨+=⎪⎩,得224(1)3r x -=,所以A ,C 两点的横坐标相等或 互为相反数.因为点B 在W 上,若A ,C 两点的横坐标相等,点B 应为椭圆的左顶点或右顶点.不合题意.若A ,C 两点的横坐标互为相反数,点B 应为椭圆的上顶点或下顶点.不合题意. 所以四边形OABC 不可能为菱形(20)【2013年北京,文20,13分】给定数列1a ,2a ,L L ,n a .对1,2,3,,1i n =-L ,该数列前i 项的最大值记为i A ,后n i -项1i a +,2i a +,L L ,n a 的最小值记为i B ,i i i d A B =-. (1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值;(2)设1a ,2a ,L L ,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d ,L L ,1n d -是等比数列;(3)设1d ,2d ,L L ,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a ,L L ,1n a -是等差数列.解:(1)111312d A B =-=-=,222413d A B =-=-=,333716d A B =-=-=. (2)因为1a ,2a ,L L ,n a (4n ≥)是公比大于1的等比数列,且10a >,所以11n n a a q -=.所以当1,2,3,,1k n =-L 时,1k k k k k d A B a a +=-=-,所以当2,3,,1k n =-L 时,11111(1)(1)k k k k k k k k d a a a q q q d a a a q +------===--,所以1d ,2d ,L L ,1n d -是等比数列. (3)解法一:若1d ,2d ,L L ,1n d -是公差大于0的等差数列,则1210n d d d -<<<<L , 1a ,2a ,L L ,1n a -应是递增数列,证明如下:设k a 是第一个使得1k k a a -≤的项,则1k k A A -=,1k k B B -≤,所以111k k k k k k d A B A B d ---=-≥-=,与已知矛盾.所以,1a ,2a ,L L ,1n a -是递增数列.再证明n a 数列{}n a 中最小项,否则k n a a <(2,3,,1k n =-L ),则 显然1k ≠,否则11111110d A B a B a a =-=-≤-=,与10d >矛盾;因而2k ≥,此时考虑11110k k k k k d A B a a ----=-=-<,矛盾,因此n a 是数列{}n a 中最小项.综上,()2,3,,1k k k k n d A B a a k n =-=-=-L ,k k n a d a ∴=+,也即1a ,2a ,L L ,1n a -是等差数列. 解法二:设d 为121n d d d -⋯,,,公差.对12i n ≤≤-,1i i B B +≤Q ,0d >,111i i i i i i i i A B d B d d B d A +++=+≥++>+=.又因为11{}i i i A max A a ++=,,所以11i i i i a A A a ++=>≥.从而121n a a a -⋯,,,是递增数列. 因此1,2()1i i A a i n ==⋯-,,.又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<⋯<.因此1n a B =.所以121n n B B B a -==⋯==.所以i i i i n i a A B d a d ==+=+.因此对1,22i n =⋯-,,都有11i i i i a a d d d ++-=-=,即121n a a a -⋯,,,是等差数列.。
2013年北京市高考数学试卷(文科)教师版
2013 年北京市高考数学试卷(文科)一、选择题共 8 小题,每题 5 分,共 40 分.在每题列出的四个选项中,选出切合题目要求的一项.1.(5 分)(2013?北京)已知会合A={ ﹣1,0,1} ,B={ x| ﹣1≤x<1} ,则 A∩B=()A.{ 0}B.{ ﹣1,0}C.{ 0,1}D.{ ﹣1,0,1}【剖析】找出 A 与 B 的公共元素,即可确立出两会合的交集.【解答】解:∵ A={ ﹣1,0, 1} ,B={ x| ﹣1≤x<1} ,∴A∩B={ ﹣1,0} .应选: B.2.(5 分)(2013?北京)设 a,b,c∈R,且 a>b,则()A.ac> bc.<2>b2.3>b3 B C.a D a【剖析】对于 A、B、C 可举出反例,对于 D 利用不等式的基天性质即可判断出.【解答】解: A、3>2,可是 3×(﹣ 1)< 2×(﹣ 1),故 A 不正确;B、1>﹣ 2,可是>,故B不正确;C、﹣ 1>﹣ 2,可是(﹣ 1)2<(﹣ 2)2,故 C 不正确;D、∵ a> b,∴ a3>b3,成立,故 D 正确.应选: D.3.(5 分)(2013?北京)以下函数中,既是偶函数又在区间(0,+∞)上单一递减的是()A..﹣xC.y=lg| x|.﹣x2+1 B y=e D y=【剖析】利用基本函数的奇偶性、单一性逐项判断即可.【解答】解: A 中, y= 为奇函数,故清除 A;﹣B;B 中, y=e x为非奇非偶函数,故清除C 中, y=lg| x| 为偶函数,在 x∈( 0, 1)时,单一递减,在x∈( 1, +∞)时,单一递加,所以 y=lg| x| 在( 0,+∞)上不但一,故清除 C;D 中,y=﹣x2+1 的图象对于 y 轴对称,故为偶函数,且在(0,+∞)上单一递减,应选: D.4.(5 分)(2013?北京)在复平面内,复数 i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【剖析】第一进行复数的乘法运算,获得复数的代数形式的标准形式,依据复数的实部和虚部写出对应的点的坐标,看出所在的象限.2【解答】解:∵复数 z=i(2﹣i )=﹣ i +2i=1+2i这个点在第一象限,应选: A..(分)(2013?北京)在△ABC中, a=3,b=5,sinA=,则 sinB=()5 5A.B.C.D.1【剖析】由正弦定理列出关系式,将a, b 及 sinA 的值代入即可求出 sinB 的值.【解答】解:∵ a=3, b=5,sinA= ,∴由正弦定理得: sinB=== .应选: B.6.(5 分)(2013?北京)履行如下图的程序框图,输出的S 值为()A.1B.C.D.【剖析】从框图赋值下手,先履行一次运算,而后判断运算后的i 的值与 2 的大小,知足判断框中的条件,则跳出循环,不然持续履行循环,直到条件知足为止.【解答】解:框图第一给变量i 和 S 赋值 0 和 1.履行,i=0+1=1;判断 1≥2 不行立,履行,i=1+1=2;判断 2≥2 成立,算法结束,跳出循环,输出S 的值为.应选: C.7.( 5 分)( 2013?北京)双曲线的离心率大于的充足必需条件是()A.>B.m≥1C.m> 1D.m> 2【剖析】依据双曲线的标准形式,能够求出a=1,b=,c=.利用离心率 e 大于成立不等式,解之可得 m>1,最后利用充要条件的定义即可得出正确答案.【解答】解:双曲线,说明 m>0,∴ a=1,b=,可得 c=,∵离心率 e>等价于> ? m>1,∴双曲线的离心率大于的充足必需条件是 m>1.应选: C.8.(5 分)(2013?北京)如图,在正方体 ABCD﹣A1B1C1D1中, P 为对角线 BD1的三均分点, P 到各极点的距离的不一样取值有()A.3 个B.4 个C.5 个D.6 个【剖析】成立如下图的空间直角坐标系,不如设正方体的棱长| AB| =3,即可获得各极点的坐标,利用两点间的距离公式即可得出.【解答】解:成立如下图的空间直角坐标系,不如设正方体的棱长| AB| =3,则 A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴=(﹣3,﹣3,3),设 P(x, y, z),∵=(﹣ 1,﹣ 1, 1),∴,,=(2,2,1).∴| PA| =| PC| =| PB1| ==,| PD| =| PA1| =| PC1| =,|PB|=,| PD1| ==., 3,,共 4个.故 P 到各极点的距离的不一样取值有应选: B.二、填空题共 6 小题,每题 5 分,共 30 分.2;准线方程为x=﹣1.【剖析】由抛物线的性质可知,知=1,可知抛物线的标准方程和准线方程.【解答】解:∵抛物线 y2=2px 的焦点坐标为( 1, 0),∴=1,p=2,抛物线的方程为y2=4x,∴其标准方程为: x=﹣1,故答案为: 2,x=﹣1.10.(5 分)(2013?北京)某四棱锥的三视图如下图,该四棱锥的体积为3.【剖析】利用三视图判断几何体的形状,而后经过三视图的数据求解几何体的体积.【解答】解:几何体为底面边长为 3 的正方形,高为 1 的四棱锥,所以体积.故答案为: 3.11.( 5 分)(2013?北京)若等比数列 { a n} 知足 a2+a4=20, a3+a5 =40,则公比q= 2;前 n 项和 S n = 2n+1﹣2 .【剖析】利用等比数列的通项公式和已知即可得出,解出即可获得 a1及 q,再利用等比数列的前n 项和公式即可得出.【解答】解:设等比数列 { a n} 的公比为 q,∵a2+a4=a2(1+q2) =20①a3+a5=a3(1+q2)=40②∴①②两个式子相除,可获得= =2即等比数列的公比q=2,将 q=2 带入①中可求出a2=4则 a1= = =2∴数列 { a n} 时首项为 2,公比为 2 的等比数列.∴数列 { a n} 的前 n 项和为: S n ===2n+1﹣ 2.故答案为: 2,2n+1﹣2.12.( 5 分)(2013?北京)设 D 为不等式组表示的平面地区,地区D 上的点与点( 1,0)之间的距离的最小值为.【剖析】第一依据题意作出可行域,欲求地区 D 上的点与点( 1,0)之间的距离的最小值,由其几何意义为点 A( 1,0)到直线 2x﹣y=0 距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为暗影部分,由其几何意义为点 A(1,0)到直线 2x﹣y=0 距离,即为所求,由点到直线的距离公式得:d==,则地区 D 上的点与点( 1, 0)之间的距离的最小值等于.故答案为:.,13.(5 分)( 2013?北京)函数 f(x)=的值域为(﹣∞,2).,<【剖析】经过求解对数不等式和指数不等式分别求出分段函数的值域,而后取并集获得原函数的值域.【解答】解:当 x≥ 1 时, f (x)=;当 x<1 时, 0<f(x)=2x<21=2.所以函数,的值域为(﹣∞, 2).,<故答案为(﹣∞, 2).14.( 5 分)(2013?北京)已知点 A(1,﹣ 1),B(3,0),C(2,1).若平面区域 D 由全部知足(1≤λ≤ 2,0≤μ≤1)的点 P 构成,则 D 的面积为 3.【剖析】设 P 的坐标为( x, y),依据,联合向量的坐标运算解出,再由 1≤λ≤ 2、 0≤μ≤ 1获得对于 x、y 的不等式组,进而获得如图的平行四边形CDEF及其内部,最后依据坐标系内两点间的距离公式即可算出平面地区 D 的面积.【解答】解:设 P 的坐标为( x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵ 1≤λ≤2,0≤μ≤1,∴点P 坐标知足不等式组作出不等式组对应的平面地区,获得如图的平行四边形此中 C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,CDEF及其内部点 E(5,1)到直线CF: 2x﹣y﹣6=0 的距离为d==∴平行四边形 CDEF的面积为 S=| CF| ×d= ×,即动点P 构成的平面地区=3 D 的面积为 3故答案为: 3三、解答题共 6 小题,共 80 分.解答应写出文字说明,演算步骤或证明过程.15.( 13 分)( 2013?北京)已知函数 f (x)=(2cos2x﹣ 1) sin2x+ cos4x.(1)求 f (x)的最小正周期及最大值;(2)若α∈(,π),且 f(α)= ,求α的值.【剖析】(Ⅰ)利用二倍角的正弦函数以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,经过周期公式求f(x)的最小正周期,利用三角函数的最值求出函数的最大值;(Ⅱ)经过,,且,求出α的正弦值,而后求出角即可.【解答】解:(Ⅰ)因为==∴T= =,函数的最大值为:.(Ⅱ)∵ f(x)=,,所以,∴,k∈Z,∴,又∵,,∴.16.(13 分)(2013?北京)如图是某市 3 月 1 日至 14 日的空气质量指数趋向图.空气质量指数小于100 表示空气质量优秀,空气质量指数大于200 表示空气重度污染.某人随机选择 3 月 1 日至 3 月 13 日中的某一天抵达该市,并逗留2天.(Ⅰ)求这人抵达当天空气质量优秀的概率;(Ⅱ)求这人在该市逗留时期只有 1 天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【剖析】(Ⅰ)由图查出 13 天内空气质量指数小于100 的天数,直接利用古典概型概率计算公式获得答案;(Ⅱ)用列举法写出这人在该市逗留两天的空气质量指数的全部状况,查出仅有一天是重度污染的状况,而后直接利用古典概型概率计算公式获得答案;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳固,由图直接看出答案.1【解答】解:(Ⅰ)由图看出, 1 日至 13 日 13 天的时间内,空气质量优秀的是日、 2 日、3 日、 7 日、12 日、 13 日共 6 天.由古典概型概率计算公式得,这人抵达当天空气质量优秀的概率P=;(Ⅱ)这人在该市逗留时期两天的空气质量指数(86,25)、(25,57)、(57,143)、(143, 220)、(220,160)(160,40)、(40, 217)、(217, 160)、(160,121)、(121,158)、(158, 86)、( 86,79)、(79, 37)共 13 种状况.此中只有 1 天空气重度污染的是(143,220)、( 220,160)、(40,217)、(217,160)共4 种状况,所以,这人在该市逗留时期只有 1 天空气重度污染的概率P=;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳固,由图看出从5日开始连续 5、6、7 三天的空气质量指数方差最大.17(.13 分)(2013?北京)如图,在四棱锥 P﹣ ABCD中,AB∥ CD,AB⊥AD,CD=2AB,平面 PAD⊥底面 ABCD, PA⊥AD.E 和 F 分别是 CD和 PC的中点,求证:(Ⅰ) PA⊥底面 ABCD;(Ⅱ) BE∥平面 PAD;(Ⅲ)平面 BEF⊥平面 PCD.【剖析】(Ⅰ)依据条件,利用平面和平面垂直的性质定理可得 PA⊥平面ABCD.(Ⅱ)依据已知条件判断 ABED 为平行四边形,故有 BE∥ AD,再利用直线和平面平行的判断定理证得BE∥平面 PAD.(Ⅲ)先证明ABED为矩形,可得BE⊥ CD ①.现证 CD⊥平面 PAD,可得 CD⊥PD,再由三角形中位线的性质可得EF∥ PD,进而证得CD⊥EF ②.联合①②利用直线和平面垂直的判断定理证得CD⊥平面BEF,再由平面和平面垂直的判断定理证得平面 BEF⊥平面 PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面 PAD⊥平面 ABCD,平面 PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得 PA⊥平面 ABCD.(Ⅱ)∵ AB∥CD,AB⊥AD, CD=2AB,E 和 F 分别是 CD和 PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又 AD? 平面 PAD,BE不在平面 PAD内,故有 BE∥平面 PAD.(Ⅲ)平行四边形ABED中,由 AB⊥AD 可得, ABED为矩形,故有BE⊥CD ①.由 PA⊥平面 ABCD,可得 PA⊥AB,再由 AB⊥AD 可得 AB⊥平面 PAD,∴ CD⊥平面 PAD,故有 CD⊥ PD.再由E、F 分别为CD和PC的中点,可得EF∥PD,∴ CD⊥EF ②.而 EF和 BE是平面 BEF内的两条订交直线,故有 CD⊥平面BEF.因为 CD? 平面 PCD,∴平面 BEF⊥平面 PCD.18.( 13 分)( 2013?北京)已知函数 f (x)=x2+xsinx+cosx.(Ⅰ)若曲线 y=f(x)在点( a,f (a))处与直线 y=b 相切,求 a 与 b 的值;(Ⅱ)若曲线 y=f(x)与直线 y=b 有两个不一样交点,求b 的取值范围.【剖析】(I)由题意可得 f (′ a) =0,f (a)=b,联立解出即可;(II)利用导数得出其单一性与极值即最值,获得值域即可.【解答】解:(I)f ′(x)=2x+xcosx=x(2+cosx),∵曲线 y=f( x)在点( a,f (a))处与直线 y=b 相切,∴ f (′ a) =a(2+cosa)=0, f( a)=b,联立,解得,故 a=0,b=1.(II)∵ f ′(x) =x(2+cosx).令 f ′(x) =0,得 x=0,x,f(x),f ′(x)的变化状况如表:x(﹣∞,0)0(,∞)0 +f( x)﹣0+f (′x)1所以函数 f(x)在区间(﹣∞, 0)上单一递减,在区间( 0,+∞)上单一递加,f ( 0) =1 是 f( x)的最小值.当 b≤1 时,曲线 y=f(x)与直线 x=b 最多只有一个交点;当 b>1 时,f(﹣ 2b)=f(2b)≥4b2﹣2b﹣1>4b﹣ 2b﹣1>b,f(0)=1<b,所以存在 x1∈(﹣ 2b,0),x2∈( 0,2b),使得 f (x1)=f( x2)=b.因为函数 f( x)在区间(﹣∞, 0)和( 0,+∞)上均单一,所以当b> 1 时曲线y=f(x)与直线y=b 有且只有两个不一样的交点.综上可知,假如曲线y=f(x)与直线y=b 有且只有两个不一样的交点,那b 的取么值范围是( 1, +∞).19.( 14 分)(2013?北京)直线y=kx+m(m≠0)与椭圆:订交于A,C 两点, O 是坐标原点.(Ⅰ)当点 B 的坐标为( 0, 1),且四边形 OABC为菱形时,求 AC 的长;(Ⅱ)当点 B 在 W 上且不是 W 的极点时,证明:四边形OABC不行能为菱形.【剖析】(I)先依据条件得出线段OB 的垂直均分线方程为y= ,进而 A、C 的坐标为(,),依据两点间的距离公式即可得出AC的长;(II)欲证明四边形 OABC不行能为菱形,只须证明若 OA=OC,则 A、C 两点的横坐标相等或互为相反数.设 OA=OC=r,则 A 、 C 为圆 x2+y2=r2与椭圆:的交点,进而解得,则A、C两点的横坐标相等或互为相反数.于是结论得证.【解答】解:(I)∵点 B 的坐标为( 0,1),当四边形 OABC为菱形时, AC⊥ OB,而 B(0,1),O(0,0),∴线段 OB的垂直均分线为 y= ,将 y= 代入椭圆方程得 x=±,所以 A、C 的坐标为(,),如图,于是 AC=2.(II)欲证明四边形OABC不行能为菱形,利用反证法,假定四边形OABC为菱形,则有 OA=OC,设 OA=OC=r,则 A、C 为圆 x2+y2=r2与椭圆:的交点,故, x2= (r2﹣ 1),则 A、C 两点的横坐标相等或互为相反数.进而获得点 B 是 W 的极点.这与题设矛盾.于是结论得证.20.( 14 分)(2013?北京)定数列 a1,a2,⋯,a n. i=1,2,⋯,n 1,数列前 i 的最大A i,后 n i a i+1,a i+2,⋯,a n的最小B i,d i=A iB i.(Ⅰ)数列 { a n}3,4,7,1,写出 d1, d2,d3的;(Ⅱ) a1,a2,⋯,a n﹣1(n≥4)是公比大于 1 的等比数列,且a1>0.明:d1,d2,⋯,d n﹣1是等比数列;(Ⅲ) d1,d2,⋯,d n﹣1是公差大于 0 的等差数列,且 d1>0.明:a1,a2,⋯,a n﹣1是等差数列.【剖析】(Ⅰ)当 i=1 ,A1=3,B1=1,进而可求得 d1,同理可求得 d2,d3的;(Ⅱ)依意,可知a n=a1q n﹣1( a1>0,q>1),由 d k=a k a k+1? d k﹣1=a k﹣1 a k(k ≥2),进而可(k≥2)定.(Ⅲ)依意, 0<d1< d2<⋯<d n﹣1,可用反法明 a1,a2,⋯,a n﹣1是增数列;再明a m数列 { a n} 中的最小,进而可求得是a k=d k+a m,得.【解答】解:(Ⅰ)当 i=1 ,A1=3,B1=1,故 d1=A1B1=2,同理可求 d2=3,d3=6;(Ⅱ)由 a1,a2,⋯,a n﹣1(n≥4)是公比 q 大于 1 的等比数列,且 a1>0,{ a n}的通: a n=a1q n﹣1,且增的数列.于是当 k=1, 2,⋯n 1 , d k=A k B k=a k a k+1,而当 k=2, 3,⋯n 1 ,===q 定.∴d1,d2,⋯, d n﹣1是等比数列;(Ⅲ) d d1,d2,⋯, d n﹣1的公差,1≤i≤n 2,因 B i≤ B i+1, d> 0,所以 A i+1=B i+1+d i+1≥B i+d i+d>B i+d i =A i,又因 A i+1=max{ A i,a i+1 } ,所以 a i+1=A i+1>A i≥a i.进而 a1, a2,⋯,a n﹣1增数列.因 A i=a i(i=1,2,⋯n 1),又因 B1=A1d1=a1d1<a1,所以 B1< a1<a2<⋯< a n﹣1,所以 a n=B1.所以 B1=B2=⋯ =B n﹣1=a n.所以 a i=A i =B i+d i=a n+d i,所以 i=1,2,⋯, n 2 都有 a i+1a i=d i+1d i=d,即 a1,a2,⋯,a n﹣1是等差数列.。
【数学】2013年高考真题北京卷(文)解析版
2013年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷满分150分,考试时120分钟,考生务必将答案答在答题卡上,在试卷上作答无效,第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则AB =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1- 2.设a ,b ,c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b > 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x=B .x y e -=C .21y x =-+ D .lg y x = 4.在复平面内,复数(2)i i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.在ABC ∆中,3a =,5b =,1sin 3A =,则sin B =( )A .15 B .59C D .16.执行如图所示的程序框图,输出的S 值为( )A .1B .23C .1321D .6109877.双曲线221y x m-=的充分必要条件是A .12m >B .1m ≥C .1m >D .2m >8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9.若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 。
10.某四棱锥的三视图如图所示,则该四棱锥的体积为 。
11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = 。
2013年北京高考文科数学试卷及解析
1 cos 4 x 2
(1)求 f ( x ) 的最小正周期及最大值。 (2)若 (
2
, ) ,且 f ( )
2 ,求 的值。 2
【考点】本题考查三角函数的诱导公式、二倍角公式、三角函数的周期、最小值等相关公式。
1 x
B. y e
x
C. y x 1
2
D. y lg x
【答案】C 【考点】本题主要考查一些常见函数的图像和性质,意在考查考生对幂函数、二次函数、指数函数、对数函数以及函数图 像之间的变换关系的掌握情况。 【解析】y = ������是奇函数,选项 A 错;y=e 指数函数,非奇非偶,选项 B 错;y = lg |������ |是偶函数,但在(0,∞)上单调 递增,选项 D 错,只有选项 C 是偶函数且在(0,∞)上单调递增。 4.在复平面内,复数 i (2 i ) 对应的点位于() A.第一象限 C.第三象限 【答案】A 【考点】本题主要考查复数的运算法则和几何意义。 【解析】因为 i(2—i)=1+2i,所以对应的点的坐标为(1.2)在第一象限,故选 A. 5.在 ABC 中, a 3 , b 5 , sin A B.第二象限 D.第四象限
6 13
(2)此人停留的两天共有 13 种选择,分别是:(1, 2) ,(2,3) ,(3, 4) ,(4,5) ,(5, 6) ,(6, 7) ,(7,8) ,(8,9) , (9,10) ,
(10,11) , (11,12) , (12,13) , (13,14)
其中只有一天重度污染的为 (4,5) , (5, 6) , (7,8) , (8,9) ,共 4 种, 所以概率为 P2
2013年北京市高考数学文科试卷(有答案)
2013年北京市高考数学文科试卷(有答案)绝密★启用并使用完毕2013年普通高等学校招生全国统一考试(北京卷)数学(文)本试卷共5页,150分.考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上答无效。
考试结束后,将本卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
(1)已知集合A={-1,0,1},B={x|-1≤x(A){0}(B){-1,,0}(C){0,1}(D){-1,,0,1}(2)设a,b,c∈R,且a(A)ac>bc(B)b2(D)a3>b3(3)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是(A)y=(B)y=e-3(C)y=x2+1(D)y=lg∣x∣(4)在复平面内,复数i(2-i)对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(5)在△ABC中,a=3,b=5,sinA=,则sinB(A)(B)(C)(D)1(6)执行如图所示的程序框图,输出的S值为(A)1(B)(C)(D)(7)双曲线x²-=1的离心率大于的充分必要条件是(A)m>(B)m≥1(C)m大于1(D)m>2(8)如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有(A)3个(B)4个(C)5个(D)6个第二部分(非选择题共110分)二、填空题共6题,每小题5分,共30分。
(9)若抛物线y2=2px的焦点坐标为(1,0)则p=____;准线方程为_____(10)某四棱锥的三视图如图所示,该四棱锥的体积为__________.(11)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=__________;前n项sn=_____.(12)设D为不等式组,表示的平面区域,区域D上的点与点(L,0)之间的距离的最小值为___________.(13)函数f(x)=的值域为_________.(14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足AP=λAB+μAC(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为__________.三、解答题共6小题,共80分。
2013北京高考数学试题(文科)完整word精校解析版
2013年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷满分150分,考试时120分钟,考生务必将答案答在答题卡上,在试卷上作答无效,第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-2.设a ,b ,c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b > 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 4.在复平面内,复数(2)i i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )A .15B .59C .3D .1 6.执行如图所示的程序框图,输出的S 值为( )A .1B .23C .1321D .6109877.双曲线221y x m -=的充分必要条件是 A .12m > B .1m ≥C .1m >D .2m >8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个 D .6个第二部分(选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9.若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 。
10.某四棱锥的三视图如图所示,则该四棱锥的体积为 。
11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = 。
2013年北京高考数学文科试卷带详解
2013年普通高等学校招生全国统一考试(北京卷) 数学(文) 第一部分 (选择题 共40分)一、 选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1.已知集合{}1,0,1A =-,{}|11B x x =-<…,则A B = ( )A.{}0B. {}1,0-C. {}0,1D. {}1,0,1-【测量目标】集合的含义与表示、集合的基本运算,数形结合思想.【考查方式】给出A ,B 的集合,求A ,B 的交集.【参考答案】B【试题解析】}{}{π1,0,1,11A B x x =-=-< …且1B ∉{}1,0A B ∴=-2.设,,a b c ∈R ,且a b >,则( ) A. ac bc > B. 11a b< C. 22a b > D. 33a b > 【测量目标】不等式比较大小.【考查方式】给出两实数的的大小,求出其他实数的大小.【参考答案】D【试题解析】A 项,c 0…时,由a b >不能得到ac bc >,故不正确;B 项0,0a b ><(如1,2a b ==-)时,由a b >不能得到11a b<,故不正确; C 项,由22()()a b a b a b -=+-及a b >可知当0a b +<时(如2,3a b =-=-或2,3a b ==-)均不能得到22a b >,故不正确;D 项,3322()()a b a b a ab b -=-++=223()24b a b a b ⎡⎤⎛⎫-++⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ ,因为223024b a b ⎛⎫++> ⎪⎝⎭,所以可由a b >知330a b ->,即 33a b >.3.下列函数中,既是偶函数又在区间(0,+)∞上单调递减的是( )A. 1y x= B. e x y -= C. 21y x =-+ D. lg y x = 【测量目标】偶函数、函数单调性的判断.【考查方式】给出各类函数,判断是否为偶函数及在(0,)∞上单调递减.【参考答案】C【试题解析】A 项,1y x=时奇函数,故不正确;B 项,e x y -=为非奇非偶函数,故不正确;C,D 两项中的两个函数都是偶函数,且21y x =-+在(0,+∞)上是减函数,lg y x =在(0,+∞)上是增函数,故选C .4.在复平面内,复数i(2i)-对应的点位于( ).A. 第一象限B. 第二象限C. 第三象限D. 第四象限【测量目标】复数的运算法则及复数的几何意义.【考查方式】给出复数,求出复数所对应的点在哪个象限.【参考答案】A【试题解析】2i(2i)2i i 12i z =-=-=+ ,∴复数z 在复平面内的对应点位(1,2),在第一象限.5.在△ABC 中,3,5a b ==,1sin 3A = ,则sinB =( ). A. 15 B. 59 C.3D. 1 【测量目标】正弦定理.【考查方式】给出三角形的两边长及其中一边所对应的角的正弦值,求出另一边的正弦值.【参考答案】B【试题解析】在ABC △中,由正弦定理sin sin a b A B =,得15sin 53sin 39b A B a ⨯===.6.执行如图所示的程序框图,输出的S 值为( ).A. 1B. 23C.1321D. 610987 【测量目标】循环结构的程序图框.【考查方式】给出程序图,由,S i 的循环关系求出最后输出S 的值.【参考答案】C【试题解析】当0,1i S ==时,执行2121S S S +=+后得23S =,11i i =+=;(步骤1) 当21,3i S ==时,执行2121S S S +=+后得13,1221S i i ==+=,(步骤2) 第6题图由于此时2i …是成立的,因此输出13.21S =(步骤3)7.双曲线221y x m -=的充分必要条件是( ). A. 12m > B. 1m … C. 1m > D. 2m > 【测量目标】双曲线离心率及充分必要条件的定义与理解..【参考答案】C【试题解析】用m m 的不等式求解.双曲线221y x m -=的离心率e = 1.e m > 8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( ).A.3个B. 4个C. 5个D. 6个【测量目标】空间几何定理及点到线段距离的计算.【考查方式】给出正方体图及点与直线的位置,求出点与各点的距离取值.【参考答案】B【试题解析】如图,取底面ABCD 的中心O ,连接,,.PA PC PO AC ⊥ 平面1D D B ,又PO ⊂平面1,.DD B AC PO ∴⊥又O 是BD 的中点,.PA PC ∴=(步骤1)同理,取1B C 与1BC 的交点H ,易证1B C ⊥平面111,.DC B B C PH ∴⊥又H 是1B C 的中点,1.PB PC ∴=11PA PB PC ∴==(步骤2) 第8题图同理可证11.PA PC PD ==又P 是1BD 的三等分点,11,PB PD PB PD ∴≠≠≠故点到正方体的顶点的不同距离有4个.(步骤3)第二部分(非选择题 共110分)二.填空题共6题,每小题5分,共30分.9.若抛物线22y px =的焦点坐标为(1,0)则p =____;准线方程为_____.【测量目标】抛物线标准方程的定义及其应用.【考查方式】给出抛物线的标准方程及焦点坐标,求p 与准线方程.【参考答案】2;1x =-.【试题解析】 抛物线的焦点坐标为(2p ,0),准线方程为.2p x =-又抛物线焦点坐标为(1,0),故2p =,准线方程为1x =-.10.某四棱锥的三视图如图所示,该四棱锥的体积为__________.【测量目标】空间几何体的三视图的理解和计算.【考查方式】给出四棱锥的三视图,求其体积.【参考答案】3.【试题解析】 将三视图还原为直观图,然后根据三视图特征数据,利用体积公式求解,由几何体的三视图可知该几何体时一个底面是正方形的四棱锥,其底面边长为3,且该四棱锥的高是1,故其体积为19133V =⨯⨯=.11.若等比数列{}n a 满足243520,40a a a a +=+=,则公比q =__________;前n 项和n S =_____. 第10题图【测量目标】等比数列的公式及前n 项和.【考查方式】给出等比数列中两组等比项关系,求等比数列的公比与前n 项和.【参考答案】2;122n +-【试题解析】设等比数列{}n a 的首项为1a ,公比为q ,则:由2420a a +=得()21(1)20.1a q q += 由3540a a +=得()221(1)40.2a q q += 由()()12解得12, 2.q a ==故11(1)2(12)2 2.112n n n a q S q +--===---12.设D 为不等式组0,2030x x y x y ⎧⎪-⎨⎪+-⎩………, 第12题图表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为___________.【测量目标】二元一次不等式的几何意义,,用基本不等式解决简单的最大(小)值问题.【考查方式】给出不等式组,求不等式组表示的区域到给定点的距离的最新小值.【试题解析】不等式组表示的区域D 如图阴影部分所示,由图知点P (1,0)与平面区域D 上的点的最短距离为点P (1,0)到直线2y x =的距离d ==13.函数()f x =12log ,12,1x x x x ⎧⎪⎨⎪<⎩…的值域为_________.【测量目标】对数与指数的概念及其运算性质,分段函数的值域.【考查方式】给出()f x 的分段函数,求值域.【参考答案】(,2)-∞【试题解析】当1x …时,1122log log 10,x =∴…1x …时,()0.f x …当1x <时,1022,x <<即0() 2.f x <<因此函数()f x 的值域为(,2)-∞.14.已知点(1,1)A -,(3,0)B ,(2,1)C .若平面区域D 由所有满足AP AB AC λμ=+ 10λμ(2,1)剟剟的点P 组成,则D 的面积为__________.【测量目标】向量的几何表示、向量线性运算的性质及其几何意义.【考查方式】给出平面区域上的三点,求满足关于点的向量关系的平面区域的面积.【参考答案】3【试题解析】设(),P x y <则(1,1).AP x y =-+由题意知(2,1),(1,2).AB AC ==由AP AB AC λμ=+ 知(1,1)(2,1),(1,2),x y λμ-+=+即 21,2 1.x y λμλμ+=-⎧⎨+=+⎩ 23,323,3x y y x λμ--⎧=⎪⎪∴⎨-+⎪=⎪⎩第14题图12,01,λυ⎧⎨⎩剟剟(步骤1) 3236,023 3.x y y x --⎧⎨-+⎩ 剟剟 作出不等式组表示的平面区域(如图阴影部分),由图可知平面区域D 为平行四边形,可求出(4,2),(6,3)M N ,故MN = 又20x y -=与230x y --=之间的距离为d =故平面区域D的面积为3.S ==(步骤2)三.解答题共6小题,共80分。
【推荐】2013年北京市高考数学试卷(文科)
2013年北京市高考数学试卷(文科)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={|﹣1≤<1},则A∩B=()A.{0} B.{﹣1,0} C.{0,1} D.{﹣1,0,1}2.(5分)设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b33.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=e﹣C.y=lg|| D.y=﹣2+14.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.16.(5分)执行如图所示的程序框图,输出的S值为()A.1 B.C.D.7.(5分)双曲线的离心率大于的充分必要条件是( ) A . B .m ≥1 C .m >1 D .m >28.(5分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y 2=2p 的焦点坐标为(1,0),则p= ;准线方程为 .10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为 .11.(5分)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q= ;前n 项和S n = .12.(5分)设D 为不等式组表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 .13.(5分)函数f()=的值域为.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f()=(2cos2﹣1)sin 2+cos 4.(1)求f()的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE ∥平面PAD ;(Ⅲ)平面BEF ⊥平面PCD .18.(13分)已知函数f ()=2+sin+cos .(Ⅰ)若曲线y=f ()在点(a ,f (a ))处与直线y=b 相切,求a 与b 的值; (Ⅱ)若曲线y=f ()与直线y=b 有两个不同交点,求b 的取值范围.19.(14分)直线y=+m (m ≠0)与椭圆相交于A ,C 两点,O 是坐标原点.(Ⅰ)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长; (Ⅱ)当点B 在W 上且不是W 的顶点时,证明:四边形OABC 不可能为菱形.20.(14分)给定数列a 1,a 2,…,a n .对i=1,2,…,n ﹣1,该数列前i 项的最大值记为A i ,后n ﹣i 项a i+1,a i+2,…,a n 的最小值记为B i ,d i =A i ﹣B i . (Ⅰ)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(Ⅱ)设a 1,a 2,…,a n ﹣1(n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n ﹣1是等比数列;(Ⅲ)设d 1,d 2,…,d n ﹣1是公差大于0的等差数列,且d 1>0.证明:a 1,a 2,…,a n ﹣1是等差数列.2013年北京市高考数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={|﹣1≤<1},则A∩B=()A.{0} B.{﹣1,0} C.{0,1} D.{﹣1,0,1}【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={|﹣1≤<1},∴A∩B={﹣1,0}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b3【分析】对于A、B、C可举出反例,对于D利用不等式的基本性质即可判断出.【解答】解:A、3>2,但是3×(﹣1)<2×(﹣1),故A不正确;B、1>﹣2,但是,故B不正确;C、﹣1>﹣2,但是(﹣1)2<(﹣2)2,故C不正确;D、∵a>b,∴a3>b3,成立,故D正确.故选:D.【点评】熟练掌握不等式的基本性质以及反例的应用是解题的关键.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=e﹣C.y=lg|| D.y=﹣2+1【分析】利用基本函数的奇偶性、单调性逐项判断即可.【解答】解:A中,y=为奇函数,故排除A;B中,y=e﹣为非奇非偶函数,故排除B;C中,y=lg||为偶函数,在∈(0,1)时,单调递减,在∈(1,+∞)时,单调递增,所以y=lg||在(0,+∞)上不单调,故排除C;D中,y=﹣2+1的图象关于y轴对称,故为偶函数,且在(0,+∞)上单调递减,故选:D.【点评】本题考查函数的奇偶i性、单调性的判断证明,属基础题,定义是解决该类题目的基本方法,熟记基本函数的有关性质可简化问题的解决.4.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选:A.【点评】本题考查复数的代数表示法及其几何意义,本题解题的关键是写成标准形式,才能看出实部和虚部的值.5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.1【分析】由正弦定理列出关系式,将a,b及sinA的值代入即可求出sinB的值.【解答】解:∵a=3,b=5,sinA=,∴由正弦定理得:sinB===.故选:B.【点评】此题考查了正弦定理,熟练掌握正弦定理是解本题的关键.6.(5分)执行如图所示的程序框图,输出的S值为()A.1 B.C.D.【分析】从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止.【解答】解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S 的值为.故选:C . 【点评】本题考查了程序框图,考查了直到型结构,直到型循环是先执行后判断,不满足条件执行循环,直到条件满足结束循环,是基础题.7.(5分)双曲线的离心率大于的充分必要条件是( ) A . B .m ≥1 C .m >1 D .m >2【分析】根据双曲线的标准形式,可以求出a=1,b=,c=.利用离心率e 大于建立不等式,解之可得 m >1,最后利用充要条件的定义即可得出正确答案. 【解答】解:双曲线,说明m >0, ∴a=1,b=,可得c=,∵离心率e >等价于 ⇔m >1, ∴双曲线的离心率大于的充分必要条件是m >1.故选:C . 【点评】本题虽然小巧,用到的知识却是丰富的,具有综合性特点,涉及了双曲线的标准方程、几何性质等几个方面的知识,是这些内容的有机融合,是一个极具考查力的小题.8.(5分)如图,在正方体ABCD ﹣A 1B 1C 1D 1中,P 为对角线BD 1的三等分点,P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个【分析】建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,即可得到各顶点的坐标,利用两点间的距离公式即可得出.【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3, 则A (3,0,0),B (3,3,0),C (0,3,0),D (0,0,0),A 1(3,0,3),B 1(3,3,3),C 1(0,3,3),D 1(0,0,3), ∴=(﹣3,﹣3,3),设P (,y ,), ∵=(﹣1,﹣1,1), ∴=(2,2,1). ∴|PA|=|PC|=|PB1|==, |PD|=|PA 1|=|PC 1|=, |PB|=,|PD 1|==.故P 到各顶点的距离的不同取值有,3,,共4个. 故选:B .【点评】熟练掌握通过建立空间直角坐标系及两点间的距离公式是解题的关键.二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2p的焦点坐标为(1,0),则p= 2 ;准线方程为=﹣1 .【分析】由抛物线的性质可知,知=1,可知抛物线的标准方程和准线方程.【解答】解:∵抛物线y2=2p的焦点坐标为(1,0),∴=1,p=2,抛物线的方程为y2=4,∴其标准方程为:=﹣1,故答案为:2,=﹣1.【点评】本题考查抛物线的简单性质,属于基础题.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为 3 .【分析】利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积.故答案为:3.【点评】本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.11.(5分)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q= 2 ;前n 项和S n = 2n+1﹣2 .【分析】利用等比数列的通项公式和已知即可得出,解出即可得到a 1及q ,再利用等比数列的前n 项和公式即可得出.【解答】解:设等比数列{a n }的公比为q ,∵a 2+a 4=a 2(1+q 2)=20①a 3+a 5=a 3(1+q 2)=40② ∴①②两个式子相除,可得到==2 即等比数列的公比q=2,将q=2带入①中可求出a 2=4则a 1===2 ∴数列{a n }时首项为2,公比为2的等比数列.∴数列{a n }的前n 项和为:S n ===2n+1﹣2.故答案为:2,2n+1﹣2.【点评】熟练掌握等比数列的通项公式和等比数列的前n 项和公式是解题的关键.12.(5分)设D 为不等式组表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为.【分析】首先根据题意作出可行域,欲求区域D上的点与点(1,0)之间的距离的最小值,由其几何意义为点A(1,0)到直线2﹣y=0距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为点A(1,0)到直线2﹣y=0距离,即为所求,由点到直线的距离公式得:d==,则区域D上的点与点(1,0)之间的距离的最小值等于.故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.13.(5分)函数f()=的值域为(﹣∞,2).【分析】通过求解对数不等式和指数不等式分别求出分段函数的值域,然后取并集得到原函数的值域.【解答】解:当≥1时,f()=;当<1时,0<f()=2<21=2.所以函数的值域为(﹣∞,2).故答案为(﹣∞,2).【点评】本题考查了函数值域的求法,分段函数的值域要分段求,最后取并集.是基础题.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为 3 .【分析】设P的坐标为(,y),根据,结合向量的坐标运算解出,再由1≤λ≤2、0≤μ≤1得到关于、y的不等式组,从而得到如图的平行四边形CDEF及其内部,最后根据坐标系内两点间的距离公式即可算出平面区域D的面积.【解答】解:设P的坐标为(,y),则=(2,1),=(1,2),=(﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:3【点评】本题在平面坐标系内给出向量等式,求满足条件的点P构成的平面区域D的面积.着重考查了平面向量的坐标运算、二元一次不等式组表示的平面区域和点到直线的距离公式等知识,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f()=(2cos2﹣1)sin 2+cos 4.(1)求f()的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.【分析】(Ⅰ)利用二倍角的正弦函数以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,通过周期公式求f()的最小正周期,利用三角函数的最值求出函数的最大值;(Ⅱ)通过,且,求出α的正弦值,然后求出角即可.【解答】解:(Ⅰ)因为==∴T==,函数的最大值为:.(Ⅱ)∵f()=,,所以,∴,∈,∴,又∵,∴.【点评】本题考查二倍角的余弦函数正弦函数的应用,两角和的正弦函数,三角函数的周期与最值的求法,以及角的求法,考查计算能力.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【分析】(Ⅰ)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)用列举法写出此人在该市停留两天的空气质量指数的所有情况,查出仅有一天是重度污染的情况,然后直接利用古典概型概率计算公式得到答案;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【解答】解:(Ⅰ)由图看出,1日至13日13天的时间内,空气质量优良的是1日、2日、3日、7日、12日、13日共6天.由古典概型概率计算公式得,此人到达当日空气质量优良的概率P=;(Ⅱ)此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,37)共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P=;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大.【点评】本题考查了古典概型及其概率计算公式,考查了一组数据的方差和标准差,训练了学生的读图能力,是基础题.17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.【分析】(Ⅰ)根据条件,利用平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)根据已知条件判断ABED为平行四边形,故有BE∥AD,再利用直线和平面平行的判定定理证得BE∥平面PAD.(Ⅲ)先证明ABED为矩形,可得BE⊥CD ①.现证CD⊥平面PAD,可得CD⊥PD,再由三角形中位线的性质可得EF∥PD,从而证得CD⊥EF ②.结合①②利用直线和平面垂直的判定定理证得CD⊥平面BEF,再由平面和平面垂直的判定定理证得平面BEF⊥平面PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD ①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF ②.而EF 和BE 是平面BEF 内的两条相交直线,故有CD ⊥平面BEF . 由于CD ⊂平面PCD ,∴平面BEF ⊥平面PCD .【点评】本题主要考查直线和平面垂直的判定定理,直线和平面平行的判定定理,平面和平面垂直的判定定理、性质定理的应用,属于中档题.18.(13分)已知函数f ()=2+sin+cos .(Ⅰ)若曲线y=f ()在点(a ,f (a ))处与直线y=b 相切,求a 与b 的值; (Ⅱ)若曲线y=f ()与直线y=b 有两个不同交点,求b 的取值范围.【分析】(I )由题意可得f ′(a )=0,f (a )=b ,联立解出即可;(II )利用导数得出其单调性与极值即最值,得到值域即可.【解答】解:(I )f ′()=2+cos=(2+cos ),∵曲线y=f ()在点(a ,f (a ))处与直线y=b 相切,∴f ′(a )=a (2+cosa )=0,f (a )=b , 联立, 解得, 故a=0,b=1.(II )∵f ′()=(2+cos ).令f ′()=0,得=0,,f (),f ′()的变化情况如表:f (0)=1是f ()的最小值.当b ≤1时,曲线y=f ()与直线=b 最多只有一个交点;当b >1时,f (﹣2b )=f (2b )≥4b 2﹣2b ﹣1>4b ﹣2b ﹣1>b ,f (0)=1<b ,所以存在1∈(﹣2b ,0),2∈(0,2b ),使得f (1)=f (2)=b .由于函数f()在区间(﹣∞,0)和(0,+∞)上均单调,所以当b>1时曲线y=f()与直线y=b有且只有两个不同的交点.综上可知,如果曲线y=f()与直线y=b有且只有两个不同的交点,那么b的取值范围是(1,+∞).【点评】熟练掌握利用导数研究函数的单调性、极值与最值及其几何意义是解题的关键.19.(14分)直线y=+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.【分析】(I)先根据条件得出线段OB的垂直平分线方程为y=,从而A、C 的坐标为(,),根据两点间的距离公式即可得出AC的长;(II)欲证明四边形OABC不可能为菱形,只须证明若OA=OC,则A、C两点的横坐标相等或互为相反数.设OA=OC=r,则A、C为圆2+y2=r2与椭圆的交点,从而解得,则A、C两点的横坐标相等或互为相反数.于是结论得证.【解答】解:(I)∵点B的坐标为(0,1),当四边形OABC为菱形时,AC⊥OB,而B(0,1),O(0,0),∴线段OB的垂直平分线为y=,将y=代入椭圆方程得=±,因此A、C的坐标为(,),如图,于是AC=2.(II)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC ,设OA=OC=r ,则A 、C 为圆2+y 2=r 2与椭圆的交点,故,2=(r 2﹣1),则A 、C 两点的横坐标相等或互为相反数. 从而得到点B 是W 的顶点.这与题设矛盾.于是结论得证.【点评】本题主要考查了椭圆的简单性质,直线与椭圆的位置关系,考查等价转化思想,属于基础题.20.(14分)给定数列a 1,a 2,…,a n .对i=1,2,…,n ﹣1,该数列前i 项的最大值记为A i ,后n ﹣i 项a i+1,a i+2,…,a n 的最小值记为B i ,d i =A i ﹣B i . (Ⅰ)设数列{a n }为3,4,7,1,写出d 1,d 2,d 3的值;(Ⅱ)设a 1,a 2,…,a n ﹣1(n ≥4)是公比大于1的等比数列,且a 1>0.证明:d 1,d 2,…,d n ﹣1是等比数列;(Ⅲ)设d 1,d 2,…,d n ﹣1是公差大于0的等差数列,且d 1>0.证明:a 1,a 2,…,a n ﹣1是等差数列.【分析】(Ⅰ)当i=1时,A 1=3,B 1=1,从而可求得d 1,同理可求得d 2,d 3的值; (Ⅱ)依题意,可知a n =a 1q n ﹣1(a 1>0,q >1),由d=a ﹣a +1⇒d ﹣1=a ﹣1﹣a (≥2),从而可证(≥2)为定值.(Ⅲ)依题意,0<d 1<d 2<…<d n ﹣1,可用反证法证明a 1,a 2,…,a n ﹣1是单调递增数列;再证明a m 为数列{a n }中的最小项,从而可求得是a=d+a m ,问题得证.【解答】解:(Ⅰ)当i=1时,A 1=3,B 1=1,故d 1=A 1﹣B 1=2,同理可求d 2=3,d 3=6;(Ⅱ)由a 1,a 2,…,a n ﹣1(n ≥4)是公比q 大于1的等比数列,且a 1>0,则{a n }的通项为:a n =a 1q n ﹣1,且为单调递增的数列.于是当=1,2,…n ﹣1时,d=A ﹣B=a ﹣a +1,进而当=2,3,…n ﹣1时,===q 为定值. ∴d 1,d 2,…,d n ﹣1是等比数列;(Ⅲ)设d 为d 1,d 2,…,d n ﹣1的公差,对1≤i ≤n ﹣2,因为B i ≤B i+1,d >0,所以A i+1=B i+1+d i+1≥B i +d i +d >B i +d i =A i ,又因为A i+1=ma{A i ,a i+1},所以a i+1=A i+1>A i ≥a i .从而a 1,a 2,…,a n ﹣1为递增数列.因为A i =a i (i=1,2,…n ﹣1),又因为B 1=A 1﹣d 1=a 1﹣d 1<a 1,所以B 1<a 1<a 2<…<a n ﹣1,因此a n =B 1.所以B 1=B 2=…=B n ﹣1=a n .所以a i =A i =B i +d i =a n +d i ,因此对i=1,2,…,n ﹣2都有a i+1﹣a i =d i+1﹣d i =d ,即a 1,a 2,…,a n ﹣1是等差数列.【点评】本题考查等差数列与等比数列的综合,突出考查考查推理论证与抽象思维的能力,考查反证法的应用,属于难题.。
2013北京高考数学试题(文科)完整word精校解析版电子教案
2013年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷满分150分,考试时120分钟,考生务必将答案答在答题卡上,在试卷上作答无效,第一部分(选择题 共40分)一、选择题(共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项)1.已知集合{}1,0,1A =-,{}|11B x x =-≤<,则A B =( )A .{}0B .{}1,0-C .{}0,1D .{}1,0,1-2.设a ,b ,c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b > 3.下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )A .1y x= B .x y e -= C .21y x =-+ D .lg y x = 4.在复平面内,复数(2)i i -对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限5.在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )A .15B .59C D .1 6.执行如图所示的程序框图,输出的S 值为( )A .1B .23C .1321D .6109877.双曲线221y x m -=的充分必要条件是A .12m > B .1m ≥ C .1m > D .2m >8.如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )A .3个B .4个C .5个D .6个第二部分(选择题 共110分)二、填空题(共6小题,每小题5分,共30分)9.若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 。
10.某四棱锥的三视图如图所示,则该四棱锥的体积为 。
11.若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = 。
高考北京文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(北京卷)数学(文科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2013年北京,文1,5分】已知集合{}101A =-,,,{}|11B x x =-≤<,则A B =( ) (A ){0} (B ){}10-,(C ){}01, (D ){}101-,, 【答案】B【解析】1,0,11{11,}{|}{}0x x --≤<-=,故选B . (2)【2013年北京,文2,5分】设a ,b ,c R ∈,且a b >,则( )(A )ac bc > (B )11a b< (C )22a b > (D )33a b >【答案】D 【解析】:A 选项中若c 小于等于0则不成立,B 选项中若a 为正数b 为负数则不成立,C 选项中若a ,b 均为负数则不成立,故选D .(3)【2013年北京,文3,5分】下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )(A )1y x = (B )x y e -= (C )21y x =-+(D )lg y x =【答案】C【解析】A 选项为奇函数,B 选项为非奇非偶函数,D 选项虽为偶函数但在(0)+∞,上是增函数,故选C . (4)【2013年北京,文4,5分】在复平面内,复数i(2i)-对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】A【解析】()i 2i 12i -=+,其在复平面上的对应点为()1,2,该点位于第一象限,故选A .(5)【2013年北京,文5,5分】在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )(A )15 (B )59(C (D )1【答案】B【解析】根据正弦定理,sin sin a b A B =,则515sin sin 339b B A a ==⋅=,故选B . (6)【2013年北京,文6,5分】执行如图所示的程序框图,输出的S 值为( )(A )1 (B )23 (C )1321(D )610987【答案】C【解析】依次执行的循环为1S =,i 0=;23S =,i 1=;1321S =,i 2=,故选C .(7)【2013年北京,文7,5分】双曲线221yx m-=的充分必要条件是( )(A )12m > (B )1m ≥ (C )1m > (D )2m >【答案】C【解析】该双曲线离心率e =1m >,故选C .(8)【2013年北京,文8,5分】如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )(A )3个 (B )4个 (C )5个 (D )6个【答案】B【解析】设正方体的棱长为a .建立空间直角坐标系,如图所示.则()0,0,0D ,10,()0D a ,,1()0C a a ,,,,(0)0C a ,,0(,)B a a ,,1()B a a a ,,,(),0,0A a ,1,()0A a a ,,221,,333P a a a ⎛⎫⎪⎝⎭,则1PB =,4PD a =,14PD =,11PC PA a ==, PC PA ==,11PB a =,故共有4个不同取值,故选B . 第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分.(9)【2013年北京,文9,5分】若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 . 【答案】2;1-【解析】根据抛物线定义12p =,∴2p =,又准线方程为12px =-=-.(10)【2013年北京,文10,5分】某四棱锥的三视图如图所示,则该四棱锥的体积为 . 【答案】3【解析】由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式133133V =⨯⨯⨯=,故该棱锥的体积为3.(11)【2013年北京,文11,5分】若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = . 【答案】2;122n +-【解析】由题意知352440220a a q a a +===+.由222421())10(12a a a q a q q +=+=+=,∴12a =.∴12122212n n n S +(-)==--.(12)【2013年北京,文12,5分】设D为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 .【解析】区域D 表示的平面部分如图阴影所示:根据数形结合知()1,0到D 的距离最小值为()1,0到直线2x -y =0= (13)【2013年北京,文13,5分】函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为_______.【答案】()2-∞,【解析】当1x ≥时,1122log log 1x ≤,即12l og 0x ≤,当1x <时,1022x <<,即022x <<;故()f x 的值域为()2-∞,.(14)【2013年北京,文14,5分】向量(1,1)A -,(3,0)B,(2,1)C ,若平面区域D 由所有满足AP AB ACλμ=+(12λ≤≤,01μ≤≤)的点P 组成,则D 的面积为 . 【答案】3【解析】AP AB AC λμ=+,()2,1AB =,()1,2AC =.设()P x y ,,则()1,1AP x y =-+.∴1212x y λμλμ-=+⎧⎨-=+⎩得233233x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩,∵12λ≤≤,01μ≤≤,可得629023x y x y ≤-≤⎧⎨≤-≤⎩,如图.可得()13,0A ,()14,2B ,()16,3C,11A B =两直线距离d ==11·3S A B d ==. 三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)【2013年北京,文15,13分】已知函数21()(2cos 1)sin 2cos42f x x x x =-+.(1)求()f x 的最小正周期及最大值;(2)若(,)2παπ∈,且()f α=α的值.解:(1)21()(2cos 1)sin 2cos42f x x x x =-+1cos2sin 2cos42x x x =+11sin 4cos422x x =+)4x π=+所以,最小正周期24T ππ==,当()4242x k k Z πππ+=+∈,即()216k x k Z ππ=+∈时,max ()2f x =. (2)因为())242f παα=+=,所以sin(4)14πα+=,因为2παπ<<,所以9174444πππα<+<, 所以5442ππα+=,即916πα=.(16)【2013年北京,文16,13分】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天. (1)求此人到达当日空气质量优良的概率;(2)求此在在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)解法一:根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.解法二:此人停留的两天共有13种选择,分别是:()1,2,()2,3,()3,4,()4,5,()5,6,()6,7,()7,8,()8,9,()9,10,()10,11,()11,12,()12,13,()13,14,其中只有一天重度污染的为()4,5,()5,6,()7,8,()8,9,共4种,所以概率为2413P =. (3)从3月5日开始连续三天的空气质量指数方差最大. (17)【2013年北京,文17,14分】如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ; (2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD . 解:(1)因为平面PAD ⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,PA ∴⊥底面ABCD .(2)因为//AB CD ,2CD AB =,E 为CD 的中点,所以//AB DE ,且AB DE =.所以ABED 为平行四边形.所以//BE AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD ,所以//BE 平面PAD .(3)因为AB AD ⊥,而且ABED 为平行四边形,所以BE CD ⊥,AD CD ⊥.由(1)知PA ⊥底面ABCD ,空气质量指数日期所以PA CD ⊥.所以CD ⊥平面PAD .所以CD PD ⊥.因为E 和F 分别是CD 和PC 的中点, 所以//PD EF .所以CD EF ⊥.所以CD ⊥平面BEF .所以平面BEF ⊥平面PCD .(18)【2013年北京,文18,13分】已知函数2()sin cos f x x x x x =++.(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值; (2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围. 解:(1)因为曲线()y f x =在点()()a f a ,处与直线y b =相切,所以()()2cos 0f a a a '=+=,()b f a =.解得0a =,()01b f ==.(2)解法一:令()0f x '=,得0x =.()f x 与()f x '的情况如下:所以函数()f x ()01=是()f x 的最小值. 当1b ≤时,曲线()y f x =与直线y b =最多只有一个交点;当1b >时,()()222421421f b f b b b b b b -=≥-->-->,()01f b =<,所以存在()12,0x b ∈-,()20,2x b ∈,使得()()12f x f x b ==.由于函数()f x 在区间()0-∞,和(0)+∞,上 均单调,所以当1b >时曲线()y f x =与直线y b =有且仅有两个不同交点.综上可知,如果曲线()y f x =与直线y b =有两个不同交点,那么b 的取值范围是(1)+∞,.解法二:因为2cos 0x +>,所以当0x >时'()0f x >,()f x 单调递增;当0x <时'()0f x <,()f x 单调递减. 所以当0x =时,()f x 取得最小值(0)1f =,所以b 的取值范围是(1,)+∞.(19)【2013年北京,文19,14分】直线()0y kx m m =+≠,W :2214x y +=相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设1,2A t ⎛⎫⎪⎝⎭,代入椭圆方程得21144t +=,即t =AC =(2)解法一:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC OB ⊥,所以0k ≠.由2244x y y kx m ⎧+=⎨=+⎩,消y 并整理得()222148440k x kmx m +++-=.设11()A x y ,,22()C x y ,,则1224214x x km k +=-+,121222214y y x x m k m k ++=⋅+=+.所以AC 的中点为224,1414kmm M k k ⎛⎫- ⎪++⎝⎭. 因为M 为AC 和OB 的交点,且0m ≠,0k ≠,所以直线OB 的斜率为14k-.因为114k k ⎛⎫⋅-≠- ⎪⎝⎭,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 解法二:因为四边形OABC 为菱形,所以OA OC =,设()1OA OC r r ==>,则A ,C 两点为圆222x y r +=与椭圆2214x y +=的交点,联立方程2222214x y r x y ⎧+=⎪⎨+=⎪⎩,得224(1)3r x -=,所以A ,C 两点的横坐标相等或互为相反数.因为点B 在W 上,若A ,C 两点的横坐标相等,点B 应为椭圆的左顶点或右顶点.不合题意.若A ,C 两点的横坐标互为相反数,点B 应为椭圆的上顶点或下顶点.不合题意. 所以四边形OABC 不可能为菱形(20)【2013年北京,文20,13分】给定数列1a ,2a ,,n a .对1,2,3,,1i n =-,该数列前i 项的最大值记为i A ,后n i -项1i a +,2i a +,,n a 的最小值记为i B ,i i i d A B =-.(1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值;(2)设1a ,2a ,,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d ,,1n d -是等比数列; (3)设1d ,2d ,,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a ,,1n a -是等差数列.解:(1)111312d A B =-=-=,222413d A B =-=-=,333716d A B =-=-=. (2)因为1a ,2a ,,n a (4n ≥)是公比大于1的等比数列,且10a >,所以11n n a a q -=.所以当1,2,3,,1k n =-时,1k k k k k d A B a a +=-=-,所以当2,3,,1k n =-时, 11111(1)(1)k k k k k k k k d a a a q q q d a a a q +------===--,所以1d ,2d ,,1n d -是等比数列.(3)解法一:若1d ,2d ,,1n d -是公差大于0的等差数列,则1210n d d d -<<<<, 1a ,2a ,,1n a -应是递增数列,证明如下:设k a 是第一个使得1k k a a -≤的项,则1k k A A -=,1k k B B -≤,所以111k k k k k k d A B A B d ---=-≥-=,与已知矛盾.所以,1a ,2a ,,1n a -是递增数列.再证明n a 数列{}n a 中最小项,否则k n a a <(2,3,,1k n =-),则显然1k ≠,否则11111110d A B a B a a =-=-≤-=,与10d >矛盾;因而2k ≥,此时考虑11110k k k k k d A B a a ----=-=-<,矛盾,因此n a 是数列{}n a 中最小项. 综上,()2,3,,1k k k k n d A B a a k n =-=-=-,k k n a d a ∴=+,也即1a ,2a ,,1n a -是等差数列.解法二:设d 为121n d d d -⋯,,,公差.对12i n ≤≤-,1i i B B +≤,0d >,111i i i i i i i i A B d B d d B d A +++=+≥++>+=.又因为11{}i i i A max A a ++=,,所以11i i i i a A A a ++=>≥.从而121n a a a -⋯,,,是递增数列. 因此1,2()1i i A a i n ==⋯-,,.又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<⋯<.因此1n a B =.所以121n n B B B a -==⋯==.所以i i i i n i a A B d a d ==+=+.因此对1,22i n =⋯-,,都有11i i i i a a d d d ++-=-=,即121n a a a -⋯,,,是等差数列.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用并使用完毕
2013年普通高等学校招生全国统一考试(北京卷)
数学(文)
本试卷共5页,150分.考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上答无效。
考试结束后,将本卷和答题卡一并交回。
第一部分(选择题共40分)
一、选择题共8小题。
每小题5分,共40分。
在每个小题给出的四个选
项中,只有一项是符合题目要求的一项。
(1)已知集合A={-1,0,1},B={x|-1≤x<1},则A∩B= ( ) (A){0}(B){-1,,0}(C){0,1} (D){-1,,0,1} (2)设a,b,c∈R,且a<b,则( )(A)ac>bc(B)错误!未找到引用源。
<错误!未找到引用源。
(C)a2>b2(D)a3>b3
(3)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是
(A)y= 错误!未找到引用源。
(B)y=e-3
(C)y=x2+1 (D)y=lg∣x∣
(4)在复平面内,复数i(2-i)对应的点位于
(A)第一象限(B)第二象限
(C)第三象限(D)第四象限
(5)在△ABC中,a=3,b=5,sinA= 错误!未找到引用源。
,则sinB (A)错误!未找到引用源。
(B)错误!未找到引用源。
(C)错误!未找到引用源。
(D)1
(6)执行如图所示的程序框图,输出的S值为
(A)1
(B)
(C)
(D)
(7)双曲线x²-=1的离心率大于的充分必要条件是
(A)m>(B)m≥1
(C)m大于1 (D)m>2
(8)如图,在正方体ABCD-A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距
离的不同取值有
(A)3个(B)4个
(C)5个(D)6个
第二部分(非选择题共110分)
二、填空题共6题,每小题5分,共30分。
(9)若抛物线y2=2px的焦点坐标为(1,0)则p=____;准线方程为_____
(10)某四棱锥的三视图如图所示,该四棱锥的体积为__________.
(11)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=__________;前n项s n=_____.
(12)设D为不等式组,表示的平面区域,区域D上的点与点(L,0)之间的距离的最小值为___________.
(13)函数f(x)=的值域为_________.
(14)已知点A(1,-1),B(3,0),C(2,1).若平面区域D由所有满足AP =λAB+μAC (1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为__________.
三、解答题共6小题,共80分。
解答应写出文字说明,演算步骤或证明过程。
(15)(本小题共13分)
已知函数f(x)=(2cos2x-1)sin2x=错误!未找到引用源。
cos4x.
(1)求f(x)的最小正周期及最大值
(2)(2)若α∈(错误!未找到引用源。
,π)且f(α)=错误!
未找到引用源。
,求α的值
(16)(本小题共13分)
下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气质量重度污染,某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天。
(Ⅰ)求此人到达当日空气质量优良的概率
(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率。
(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)
17.(本小题共14分)
如图,在四棱锥P-ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F 分别是CD和PC的中点,求证:
(Ⅰ)PA⊥底面ABCD;
(Ⅱ)BE∥平面PAD
(Ⅲ)平面BEF⊥平面PCD.
(18)(本小题共13分)
已知函数f(x)=x2+xsin x+cos x.
(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值。
(Ⅱ)若曲线y=f(x)与直线y=b 有两个不同的交点,求b的取值范围。
(19)(本小题共14分)
直线y=kx+m(m≠0)与椭圆W:错误!未找到引用源。
+y2相交与A,C两点,O为坐标原电。
(Ⅰ)当点B的左边为(0,1),且四边形OABC为菱形时,求AC的长;
(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形。
(20)(本小题共13分)
给定数列a1,a2,…,a n。
对i-1,2,…n-l,该数列前i项的最大值记为A i,后n-i项a i+1,a i+2,…,a n的最小值记为B i,d i=n i-B i.
(Ⅰ)设数列{a n}为3,4,7,1,写出d1,d2,d3的值.
(Ⅱ)设a1,a2,…,a n(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…
d n-1是等比数列。
(Ⅲ)设d1,d2,…d n-1是公差大于0的等差数列,且d1>0,证明:a1,a2,…,a n-1是等差数列。
新课标第一网系列资料 新课标第一网系列资料。