中职数学试卷高一《数学》
职业高中高一下学期期末数学试题卷5(含答案)
职业高中下学期期末考试 高一《 数学_》试题5一. 选择题:(每小题3分,共30分)1.函数()x a y 1-=在R 上是增函数,则a 的取值范围是( )A.a >1B.1<a <2C.a >2D.2<a <3 2.若n m ==5ln ,2ln ,则n m e +2的值为 ( )A .2B .5C .20D .103.函数2()log (1)f x x π=+的定义域是( ) A .(1,1)-B .(0,)+∞C .(1,)+∞D .R4.下列说法中,正确的是( )A. 第一象限角一定是锐角B.锐角一定是第一象限角 B. 小于90度的角一定是锐角 D.第一象限角一定是正角5.已知α为第二象限角,则=-•αα2cos 1sin 1. A. 1 B.-1 C.1或-1 D.以上都不是6.下列函数中,在区间⎪⎭⎫⎝⎛2,0π上是减函数的是( )A .x y sin =B .x y cos =C .x y tan =D .2x y =7.等差数列{n a }的通项公式是n a = -3n + 2 ,则公差d = ( )A. -4B. -3C. 3D. 48.在等差数列{n a }中,若=+173a a 10 ,则19S = ( )A. 65B. 75C. 85D. 959.已知等比数列{}n a 中,,32,832==a a 则=1a ( )A. 2B. 4C. 6D. 810.三个正数c b a ,,成等比数列, 是c b a lg ,lg ,lg 成等差数列的 A .充要条件 B .必要条件 C .充分条件 D .无法确定 二.填空题(每小题3分,共24分) 11.已知()[]0lg log log 37=x ;则=x .12.函数()lg(lg 2)f x x =-的定义域是 .13. =+2log 15514.与52π-终边相同的角中最小正角是 15.在三角形ABC 中,如果B A cos sin ⋅<0,则△ABC 是 三角形 16.已知2cos sin =+αα,则=⋅ααcos sin . 17.等比数列{}n a 中,若,2563=a a 则=72a a _______ 18.等比数列{}n a 中,若12632==a a ,,则S 6 =_______ 三.计算题:(每小题8分,共24分)19.已知:()()521322231,31-++-⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=x x x x x g x f ,()x f >()x g ,求x 的取值范围.专业 班级 姓名 学籍号 考场 座号20.求值sin()tan()cos()cos(2)tan()sin()πααπαπαπαπα+-+++-.21.在等比数列{}n a 中,若,2,12413=-=-a a a a 求首项1a 和公比q .四.证明题:(每小题6分,共12分)22.已知(1,10)x ∈, 22lg ,lg ,lg(lg ),A x B x C x === 证明:C A B <<.23.1=-.五:综合题:(10分) 24.等比数列}{n a 中,公比q=2,25log log log 1022212=+•••++a a a ,求n a a a +•••++21.高一 《 数学__》试题5参考答案一.选择题:1---5 CCDBA 6----10 BBDAA 二.填空题11. 1000 12.[100,+∞ ) 13. 10 14.58π 15.钝角 16.2117.25 18.189 三.计算题:(每小题8分,共24分) 19.已知:()()521322231,31-++-⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛=x x x x x g x f ,()x f >()x g ,求x 的取值范围.20.求值sin()tan()cos()cos(2)tan()sin()πααπαπαπαπα+-+++-.解 原式=()()1sin tan cos cos tan sin -=---αααααα.21.在等比数列{}n a 中,若,2,12413=-=-a a a a 求首项1a 和公比q . 解 由等比数列的通项公式得()()⎩⎨⎧=-=-=-=-21112113121121q q a q a q a q a a q a 解得 ⎪⎩⎪⎨⎧==2311q a 所以2,311==q a 四.证明题:(每小题6分,共12分)22.已知(1,10)x ∈, 22lg ,lg ,lg(lg ),A x B x C x === 证明:C A B <<.(答案略)23.1=-.证明 左边=()()120cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 20cos 20sin 2-=---=--=--οοοοοοοοοοοο=右边所以1︒=-五:综合题:(10分) 24.等比数列}{n a 中,公比q=2,25log log log 1022212=+•••++a a a ,求na a a +•••++21.(答案略)。
职高高一期末数学试卷中职
一、选择题(每题5分,共20分)1. 下列各数中,有理数是()A. √2B. πC. 3/5D. 无理数2. 如果a < b,那么下列不等式中正确的是()A. a - 1 < b - 1B. a + 1 > b + 1C. a/2 < b/2D. a^2 > b^23. 下列各函数中,是反比例函数的是()A. y = 2x + 3B. y = x^2C. y = 1/xD. y = 3x - 44. 在直角坐标系中,点P(2,3)关于y轴的对称点是()A.(-2,3)B.(2,-3)C.(-2,-3)D.(2,3)5. 一个长方形的长是5cm,宽是3cm,那么它的对角线长是()A. 8cmB. 10cmC. 12cmD. 15cm二、填空题(每题5分,共20分)6. 有理数a和b满足a + b = 0,则a和b互为()。
7. 若函数y = kx + b(k≠0)的图象经过点(1,2),则k = ,b = 。
8. 在等腰三角形ABC中,AB = AC,若∠BAC = 50°,则∠ABC = °。
9. 两个数的乘积是-18,且其中一个数是3,那么另一个数是()。
10. 圆的半径扩大到原来的2倍,那么圆的面积扩大到原来的()倍。
三、解答题(每题10分,共40分)11. (10分)解下列方程:(1)3x - 2 = 11(2)5(x + 2) - 3 = 2x + 912. (10分)已知函数y = -2x + 3,求:(1)当x = 2时,y的值;(2)函数的增减性。
13. (10分)在直角坐标系中,点A(-3,2),点B(3,-2),求:(1)点A关于x轴的对称点A';(2)线段AB的长度。
14. (10分)已知等腰三角形ABC中,AB = AC,AD是高,且AD = 4cm,AB = 6cm,求:(1)底边BC的长度;(2)∠BAC的度数。
中职数学高一数学试卷
中职数学高一数学试卷一、选择题(每题3分,共30分)1. 设集合A = {1, 2, 3},B={2, 3, 4},则A∩ B = ( )A. {1, 2, 3, 4}B. {2, 3}C. {1}D. {4}2. 不等式x + 3>0的解集是( )A. {xx > - 3}B. {xx < - 3}C. {xx≥ - 3}D. {xx≤ - 3}3. 函数y = 2x + 1在x = 1处的函数值为( )A. 3B. 2C. 1D. 04. 下列函数中,是奇函数的是( )A. y = x^2B. y = 2x+1C. y=(1)/(x)D. y = √(x)5. 若log_a2 = m,log_a3=n,则log_a6 = ( )A. m + nB. m - nC. mnD. (m)/(n)6. 已知向量→a=(1,2),→b=(3, - 1),则→a+→b=( )A. (4,1)B. ( - 2,3)C. (2, - 3)D. ( - 4, - 1)7. 在等差数列{a_n}中,a_1=1,d = 2,则a_3=( )A. 1B. 3C. 5D. 78. 直线y = 2x - 1的斜率是( )A. 2B. -1C. 1D. -29. 二次函数y=x^2-2x - 3的顶点坐标是( )A. (1,-4)B. ( - 1, - 4)C. (1,4)D. ( - 1,4)10. 若sinα=(1)/(2),且α∈(0,(π)/(2)),则cosα = ( )A. (√(3))/(2)B. -(√(3))/(2)C. (1)/(2)D. -(1)/(2)二、填空题(每题3分,共15分)1. 集合{x - 2用区间表示为______。
2. 函数y=√(x - 1)的定义域是______。
3. 等比数列{a_n}中,a_1 = 2,q = 3,则a_3=______。
4. 直线3x - 2y+1 = 0的截距式方程为______。
职高高一数学试卷
职高高一数学试卷数学试卷 (本卷满分100分,考试时间100分钟)一、选择题。
(共15小题,每题3分)1、设集合A={xQ|x>-1},则( )A、 B、 C、 D、 A,,A,,22,A2,A,,2、设A={a,b},集合B={a+1,5},若A?B={2},则A?B=( )A、{1,2}B、{1,5}C、{2,5}D、{1,2,5}x,1f(x),3、函数的定义域为( ) x,2A、[1,2)?(2,+?)B、(1,+?)C、[1,2)D、[1,+?)4、函数中,自变量的取值范围应是( ) 、、、、5、下列函数中,是的一次函数的是( )、、、、6、下面哪个点在函数的图象上( )、、、、7、若把一次函数向上平移3个单位长度,得到图象解析式是( )、、、、8、设集合M={x|-2?x?2},N={y|0?y?2},给出下列四个图形,其中能表示以集合M为定义域,N为值域的函数关系的是( )9、下列函数中,反比例函数是( ) A、y=x+1 B、y= C、=1 D、3xy=2高一数学试卷第1页 (共6页)10、反比例函数y=(k?0)的图象的两个分支分别位于( )象限。
A、一、二B、一、三C、二、四D、一、四x,2,0x,,11、函数的图像为( ) y,,,x2,0x,,,12、函数y=kx和y=的图象如图,自变量x的取值范围相同的是( ) 1213、函数与在同一平面直角坐标系中的图像可能是( )。
14、设(a>0,a?1),对于任意的正实数x,y,都有( ) fxx()log,aA、f(xy)=f(x)f(y)B、f(xy)=f(x)+f(y)C、f(x+y)=f(x)f(y)D、f(x+y)=f(x)+f(y)215、函数y=ax+bx+3在(-?,-1]上是增函数,在[-1,+?)上是减函数,则( ) A、b>0且a<0 B、b=2a<0 C、b=2a>0 D、a,b的符号不定高一数学试卷第2页 (共6页)二、填空题(共3题,每题4分)16、f(x)的图像如下图,则f(x)的值域为 ;17、计算机成本不断降低,若每隔3年计算机价格降低1/3,现在价格为8100元的计算机,则9年后价格可降为 ;18、若f(x)为偶函数,当x>0时,f(x)=x,则当x<0时,f(x)= ;三、解答题(解答题写出必要的文字说明、推演步骤。
中职数学 2023-2024学年河南省中等职业学校职教高教联合体高一(上)期末数学试卷
2023-2024学年河南省中等职业学校职教高教联合体高一(上)期末数学试卷一、单项选择题(本大题共20小题,1~10小题每小题2分,11~20小题每题3分,共50分)(在每小题列出的四个备选答案中,只有一个是符合题目要求的.错涂、多涂或未涂均无分)A .{-2,-1,0,1,2}B .{0,1,2}C .{-1,0,1,2}D .{0,1}1.(2分)已知集合A ={-1,0,1},B ={x |-3<x <3,x ∈N },则A ∪B =( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2分)“a 2=a ”是“a >0”的( )√A .[0,2]B .(0,2)C .(-∞,0)∪(2,+∞)D .(-∞,0]∪[2,+∞)3.(2分)不等式x 2-2x ≥0的解集为( )A .(-∞,-1)B .(-1,+∞)C .(-∞,0)D .(0,+∞)4.(2分)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x ),则实数x 的取值范围为( )A .(0,1)B .(-1,1)C .(-1,0)D .(-1,1]5.(2分)函数f (x )=1−x 21+x+(x -1)0的定义域为( )√A .第一象限B .第二象限C .第三象限D .第四象限6.(2分)2022°角的终边在( )A .15B .16C .20D .247.(3分)若数列1,a ,b ,10为等差数列,则2a +b 的值为( )8.(2分)直线3x -y +1=0的倾斜角为( )√A .30°B .150°C .60°D .120°A .10B .24C .60D .1209.(2分)本届冬奥会短道速滑2000米混合接力由武大靖、任子威等五名运动员参赛,若武大靖滑最后一棒(第四棒),则不同出赛方案总数为( )A .2B .2C .1D .3210.(2分)如图所示,O 为边长为1的正六边形ABCDEF 的中心,则|OA +OC |=( )→→√√A .223B .-223C .-223或223D .-23或2311.(3分)已知sinα=13,α∈(π2,π),则cos (π-α)的值为( )√√√√A .若a >b ,则ac 2>bc 2B .若a >b >0,则1a >1b C .若a <b <0,则ba>a bD .若a >b ,1a>1b,则a >0,b <012.(3分)对于实数a ,b ,c ,下列各选项正确的是( )A .π2B .πC .2πD .4π13.(3分)函数y =sinxcosx +1的最小正周期是( )A .B .C .D .14.(3分)一列货运火车从某站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一站停车,装完货以后,火车又匀加速行驶,一段时间后再次匀速行驶,下列图象可以近似地刻画出这列火车的速度变化情况的是( )15.(3分)从甲、乙、丙、丁四人中任选两人参加问卷调查,则甲被选中的概率是( )二、填空题(本大题共7小题,每小题4分,共28分)A .13B .12C .23D .34A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面16.(3分)设α,β为两个平面,则下列各选项可以推出α∥β的是( )A .1B .3C .83D .3217.(3分)椭圆x 22+y 2m=1的焦点在y 轴上,离心率为12,则m 的取值为( )√A .y 2=8x B .y 2=4x C .y 2=±8x D .y 2=±4x18.(3分)已知抛物线的顶点在原点,对称轴为x 轴,焦点在双曲线x 24−y 22=1上,则抛物线的方程为( )A .[3,+∞)B .(-∞,-3]C .[-3,3]D .(-∞,-3]∪[3,+∞)19.(3分)点M (x ,y )在圆x 2+(y -2)2=1 上运动,则yx的取值范围是( )√√√√√√A .12B .81C .27D .12020.(3分)已知衡量病毒传播能力的最重要指标叫做传播指数RO ,它指的是在自然情况下(没有外力介入,同时所有人都没有免疫力),一个感染到某种传染病的人,会把疾病传染给多少人的平均数。
中职数学 2023-2024学年河南省中等职业学校高一(下)期末数学试卷
2023-2024学年河南省中等职业学校高一(下)期末数学试卷一、选择题(每小题3分,共30分。
每小题只有一个选项是正确的,请将正确选项涂在答题卡上)A .(-33)2=36B .(-33)2=-36C .3-3×33=0D .32×33=361.(3分)下列式子计算正确的是( )A .y =2xB .y =x 2C .y =log 2xD .y =lo x2.(3分)下列函数在区间(0,+∞)上单调递减的是( )g12A .y =30×0.2x (x ∈N *)B .y =30×(1-0.2)x (x ∈N *)C .y =30×(1+0.2)x (x ∈N *)D .y =20×0.3x (x ∈N *)3.(3分)一辆30万元的轿车,每年按照20%的折旧率折旧,设x 年后该汽车的价值为y 万元,则y 与x 之间的关系式可以表示为( )A .-1B .5C .-1或5D .1或-54.(3分)已知点A (-3,2),B (1,a ),且|AB |=5,则a =( )A .4B .-4C .D .-5.(3分)已知直线y =4x +3与直线ax -y +1=0垂直,则a =( )1414A .1B .C .2D .6.(3分)点P (1,2)到直线4x -3y -8=0的距离为( )9525A .45B .45+C .D .7.(3分)一个正三棱柱的底面边长为3,高等于5,则其表面积等于( )9M 3245M 329M 34二、填空题(每小题3分,共24分)A .正四面体B .长方体C .球D .正三棱锥8.(3分)下列各项中,三视图都相同的几何体是( )A .“买一张体育彩票中奖”是不可能事件B .“常温常压下,水加热到90℃会沸腾”是必然事件C .天气预报说明天上午10点钟下雨的概率是70%,则明天上午10点钟必定下雨D .随机事件A 发生的概率为P (A ),则0≤P (A )≤19.(3分)下列说法正确的是( )A .60人,90人,30人B .60人,60人,60人C .40人,60人,20人D .60人,100人,20人10.(3分)某地三所职业学校对2023级学生进行联合质量检测,甲校有1200名学生,乙校有1800名学生,丙校有600名学生,计划采用分层抽样法,抽取一个样本容量为180的样木,则应在这三校分别抽取学生( )11.(3分)计算:×2××= .9-2712M 811M 35612.(3分)指数函数y =a x (a >0且a ≠1)的图像过点(3,8),则当函数的自变量为时,对应的函数值是.1213.(3分)过点(,-3)且倾斜角为的直线方程为 .M 3π614.(3分)与x 2+y 2-8x -12y =0是同心圆,且半径为2的圆的标准方程为.M 315.(3分)已知圆锥的母线长为5,高为4,过圆锥的两条母线作一个截面,则截面的面积的最大值为 .16.(3分)若一个球体的表面积为36πcm 2,则其体积为.3三、解答题(每题8分,共24分)四、证明题(每题6分,共12分)五、综合题(本题10分)17.(3分)从0,1,2,3,4,5这6个数字中随机抽取2个不同的数字,则这两个数字都是奇数的概率 .18.(3分)样本数据74,81,68,69,73的样本均值为 .19.(8分)若lo (2x -1)>lo (x +3),求x 的取值范围.g12g1220.(8分)如图所示,正四棱锥P -ABCD 的底面边长是6,斜高PE =5,求该正四棱锥的侧面积和体积.21.(8分)一个罐子里有20个玻璃球,其中红色球有6个,黑色球有4个,白色球有10个,如果从罐子里随机抽取一个球,求:(1)取到红色玻璃球的概率;(2)取不到红色玻璃球的概率.22.(6分)求证:lo 3<log 32<log 23.g1223.(6分)求证:无论m 取何值,直线l :mx -y +1=0与圆C :x 2+y 2=4一定有两个交点.24.(10分)已知直线l 1过点P (1,3),直线l 2:x -y =0,l 1⊥l 2.(1)求直线l 1的方程;(2)已知圆C 的圆心在x 轴上,且圆C 与直线l 1,l 2均相切,求圆C 的标准方程.。
中职高一数学期末试卷
中职高一数学期末试卷一、单项选择题:(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.1. 已知集合{}{}1,1,2,4,02A B x x =-=≤≤∣,则A B =( )A. {1,2}-B. {1,4}C. {1,2}D. {1,4}-2.如果cbc a >,那么下列不等式中, 一定成立的是( ) A .ac 2>bc 2 B .a >b C .a ﹣ c >b ﹣ c D .ac >bc 3.集合 A ={N x ∈|1≤x <4}的真子集的个数是( )A .16B .8C .7D .44.已知正实数 a ,b 满足 a +2b =2,则ba 21+的最小值为( ) A .29B C .22 D .2 5.不等式()120x x ->的解集是( ) A. ()1,0,2⎛⎫-∞⋃+∞ ⎪⎝⎭B. ()(),01,-∞⋃+∞C. 10,2⎡⎤⎢⎥⎣⎦D. 10,2⎛⎫ ⎪⎝⎭6.已知f (x ) 是定义在 R 上的奇函数,且当x >0 时,f (x )=x +2,则当 x <0 时,f (x ) =( )A .﹣ x ﹣ 2B .﹣ x +2C .x ﹣ 2D .x +2 7.已知不等式 ax 2+2x +c >0 的解集为{x | 2131<<-x },则 a +c =( ) A .10 B .﹣ 5 C .﹣ 10 D .58.定义在R 上的偶函数()f x 满足:对于任意的(]1212,,0,x x x x ∞∈-≠,都有2121()()0f x f x x x ->-,则( )A. ()()()312f f f -<<-B. ()()()123f f f <-<-C. (3)(2)(1)f f f -<-<D. (2)(1)(3)f f f -<<-二、多项选择题:(本题共4小题,每小题4分,共16分。
中职教育高一数学半期试卷
中等职业学校数学试卷班级: 姓名: 得分:一、选择题(本大题共10小题,每题4分,共40分) 1.构成数轴的三要素是 ( )A、直线、原点、方向 B、直线、原点、单位长度 C、正方向、原点、单位长度 D、正方向、原点、刻度 2. 2的相反数是( )A .-2B .2C .1\r(2)D .2 3.不等式x >1在数轴上表示为( )4.下列计算正确的是( )A .a 2+a 3=a 5B .a 2·a 3=a 6C .(a 2)3=a 5D .a 5÷a 2=a 3 5.已知a <b ,下列式子不成立的是( )A .a +1<b +1B .3a <3bC .-12a >-12bD .如果c <0,那么ac <bc6.若一元二次方程x 2+2x +a =0有实数解,则a 的取值范围是( C )A .a <1B .a ≤4C .a ≤1D .a ≥17.方程x x 231=+-的解是( )A .31-B.31C. 1D. –1 8.函数y =x +1中自变量x 的取值范围为( ) A .x ≥0 B .x ≥-1 C .x >-1 D .x >19. 一元二次方程x 2+4x -3=0的两根为x 1,x 2,则x 1·x 2的值是A .4B .-4C .3D .-310.用配方法解方程x 2-4x+2=0,下列配方变形正确的是( )(A )(x+2)2=2 (B )(x-2)2=2 (C )(x+2)2=4 (D )(x-2)2=4 二、填空题(本大题共4小题,每题4分,共20分)11. -3的倒数是12.9的算术平方根是_________13.方程3x-5=1的解_________ 14.13x 2y ·9xy 2=_________15.当 a>2时,(2-a )²=_________三、解答题(本题4个小题,每小题10分,共40分) 15.计算 (23)-2·32-(32)4·416.解方程:3(8x-2)-2(5x+1)=6(2x+1)17. 解不等式组18. 解方程:x2-5x-6=0。
数学高一职高考试试卷
数学高一职高考试试卷考生须知:1. 本试卷共100分,考试时间120分钟。
2. 请在答题卡上作答,不得在试卷上做任何标记。
3. 考试结束后,请将答题卡和试卷一并上交。
一、选择题(每题3分,共30分)1. 下列函数中,不是一次函数的是:A. y = 2x + 3B. y = x^2 + 1C. y = 3x - 1D. y = 42. 已知集合A={-1, 0, 1},B={x | x > 1},则A∩B的结果是:A. {1}B. {0}C. {-1}D. ∅3. 函数f(x) = x^2 - 4x + 4的最小值是:A. 0B. 1C. 4D. 无法确定...(此处省略其他选择题,共10题)二、填空题(每题2分,共20分)1. 若a + b = 5,则a^2 + b^2的最小值为________。
2. 已知等差数列的首项为2,公差为3,其第5项为________。
3. 一个圆的半径为5,那么它的面积是________。
...(此处省略其他填空题,共10题)三、解答题(共50分)1. 解不等式:x^2 - 5x + 6 ≤ 0。
(5分)2. 已知函数f(x) = 3x^2 - 2x + 1,求f(x)的导数,并求出其在x=1时的切线斜率。
(6分)3. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。
(5分)4. 某工厂生产一种产品,每件产品的成本为20元,售价为40元。
若每月生产x件产品,则每月利润为y元。
求y关于x的函数关系式,并求出当月产量为100件时的利润。
(6分)5. 已知点A(-1, 2),B(2, 3),C(5, -1),求三角形ABC的面积。
(6分)6. 某班有50名学生,其中男生占60%,女生占40%。
若随机抽取一名学生,求抽到男生的概率。
(5分)7. 已知直线l1: y = 2x + 1与直线l2: y = -x + 5相交于点P,求点P的坐标。
(5分)8. 某公司计划投资x万元,预计收益为y万元。
职业高中高一下学期期末数学试题卷1(含答案)
职业高中下学期期末考试高一《数学》试题一、选择题.(每小题3分,共30分)1.若a 3log <1,则a 的取值范围为( )A .a >3B . a <3C . 1<a <3D . 0<a <32.函数x x a a y --=且(0>a 且R a a ∈≠,1) 是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数又是偶函数3.”y x lg lg =”是“y x =”的( )A.充分条件B. 必要条件C.充要条件D.既不是充分条件又不是必要条件4.化简式子cos()sin(2)tan(2)sin()απαππαπα-⋅-⋅--得 ( )A .sin αB .cos αC .sin α-D .cos α-5.函数sin y x =与cos y x = 都是单调递增的区间是( )A . ⎥⎦⎤⎢⎣⎡+22,2πππk kB . ⎪⎭⎫⎝⎛++ππππk k 2,22C . ⎪⎭⎫ ⎝⎛++232,2ππππk kD . ⎪⎭⎫⎝⎛++ππππ22,232k k 6.函数()()1ln 2-=x x f 的定义域是( )A .()1,1-B .()()+∞-∞-,11,C .()+∞-,1D .R7.若4.06.0a a <,则a 的取值范围是( )A .1>aB .10<<aC .0>aD .无法确定 8.在等比数列{}n a 中,若9,473-=-=a a ,则=5a ( ) A .6±B . 6-C . 213-D .69. 函数x y 28-=的定义域是( ) A . (]3,∞-B .[]3,0C .[]3,3-D .(]0,∞-10. 若54cos ,53sin -==αα且,则角α终边在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题(每小题3分,共24分)11.已知等差数列{}n a 中,53=a ,则=+412a a .12. 已知等比数列{}n a 中,若120,304321=+=+a a a a ,则=+65a a .13. 已知()ππαα,,21cos -∈-=,则=α_________.14. ()()=---+⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-02322381π .15. 若a =2log 3,则=-6log 28log 33 .16. c b a ,,成等比数列, 是c b a lg ,lg ,lg 成等差数列的_____________. 17.已知α为第二象限角,则=-•αα2cos 1sin 1_____ . 18. 若αtan 与cos α同号,则α属于第_______象限角。
高一期末数学试卷中职
一、选择题(每题5分,共50分)1. 下列各数中,有理数是()A. √9B. -√16C. √-1D. √02. 已知函数f(x) = 2x - 3,那么f(-1)的值是()A. -5B. -1C. 1D. 53. 下列各数中,绝对值最小的是()A. -2B. 2C. -3D. 34. 已知等差数列{an}的首项为2,公差为3,那么第10项a10的值是()A. 29B. 28C. 27D. 265. 在直角坐标系中,点A(2,3),点B(5,7),则线段AB的中点坐标是()A. (3,5)B. (4,5)C. (3,6)D. (4,6)6. 下列函数中,奇函数是()A. y = x^2B. y = |x|C. y = x^3D. y = x^47. 若等比数列{an}的首项为a1,公比为q,那么第n项an的值是()A. a1 q^(n-1)B. a1 q^nC. a1 / q^(n-1)D. a1 / q^n8. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是()A. 75°B. 120°C. 45°D. 90°9. 已知一元二次方程x^2 - 5x + 6 = 0,那么方程的两个实数根是()A. 2和3B. 3和2C. 1和6D. 6和110. 下列命题中,正确的是()A. 两个等差数列一定是等比数列B. 两个等比数列一定是等差数列C. 两个等差数列的和一定是等比数列D. 两个等比数列的和一定是等差数列二、填空题(每题5分,共50分)11. 若|a| = 3,则a的值为______。
12. 已知函数f(x) = x^2 - 4x + 3,那么f(2)的值是______。
13. 等差数列{an}的首项为5,公差为2,那么第5项a5的值是______。
14. 在直角坐标系中,点A(3,4),点B(-1,-2),则线段AB的长度是______。
职业高中高一下学期期末数学试题卷2(含答案)
职业高中下学期期末考试高一《数学》试题一、选择填空(每小题3分共30分)1、如果角αZ k k k ∈-∈),2,22(πππ,那么角α的终边在( )A 、第一象限B 、第二象限C 、第三象限D 、第四象限 2、(21x +21y )(21x -21y )=( )A. x 2+y 2B. x-yC. x+yD. x 2+y 2 3、若sin 与cos 同号,则属于A 、第一象限B 、 第一、二象限C 、第三象限D 、第一、三象限4、各项均为正数的等比数列}{n a 中, 983=a a 则13log a +23log a +…+103log a 的值是 ( )A.-10B.10C.9D.-95、α,β都是锐角,且αsin >βsin ,则有 ( )A 、α+β=900B 、α+β>900C 、α>βD 、α<β 6、已知)(x f =-x a -,x x g a log )(=在同一坐标系中,图象正确的是()Aoyx 11B-11oyxC11oyx-11DOyx7、如果三个连续偶数的和为336,那么它们后面三个连续偶数的和为。
( ) A 、342 B 、348 C 、354 D 、3608、已知等差数列}{n a 中,若2021=+a a ,4065=+a a ,则6S =( ) A 、55 B 、630 C 、180 D 、909、已知12-=x y ,若y ≥1,则x 的取值范围是( ) A.(1,+∞) B.[1,+∞) C.(-∞,1) D.(-∞,1)10、如果方程03lg 2lg lg )3lg 2(lg lg 2=+++x x 的两根为lgx 1,lgx 2那么 x 1x 2的值为( )A.2lg lg3B.lg2+lg3C.61D.-6 二、填空题(每个3分共24分)11、6cos6tan2cos.4tan3tan.3sinππππππ+-的值是.12、1590sin 0的值是. 13、2log =x a 化为指数式是. 14、64log .9log 274=. 15、4131-->a a,则∈a .16、函数3)1()(--=m x m x f 是幂函数,则m=. 17、在等比数列中.若1a =1,n a =256,q=2,则项数n=. 18、在等差数列中,2443=+a a ,2465=+a a ,则87a a +的值是. 三、.计算题(每小题8分,共32分). 19、已知α是锐角,αsin +αcos =25.求 (1)αsin αcos(2)αsin -αcos专业 班级 姓名 学籍号 考场 座号20、(log 43+log 83)(log 32+log 92)的值.21、已知322=+-a a ,求a a -+88的值.22、等差数列}{n a 的公差d=2,第m 项m a =1,前m 项和m S =-8,求m 的值.四、证明题(6分) 23.证明:=1五.综合应题(10分)在2,9之间插入两个整数,使前三个成等差数列,后三个成等比数列,求插入的两个数.高一《数学》试题参考答案一、选择填空(每小题3分共30分) 1、D2、B 3、D 4、B5、C (0,1) 6、B7、C 8、D 9、B10、C 二、11、212、0.513、a 2=x14、2 15、(0.1 )16、217、9 18、8 三、.计算题(每小题8分,共32分). 19、(1)1/8 (2)±3/220、解:原式=)2log 212)(log 3log 313log 21(3322++=4521、解: 原式=2233)2(22)2)[(22()2()2(a a a a a a a a ----+-+=+=3]232)22[(2a a a a ---+ =3(9-3)=1822、由题意得:1=1a +(m-1)2 (1)m a 2181+=-….(2) 化简得:0822=--m m 解得m=4或-2(舍去)∴m=4四、证明题(6分)略 五.综合应用题(10分)有题意可设插入的两个数为2+d,a+2d由题意得:)2(9)22(2d d +=+ ∴01442=--d d∴d=2或47-解得插入的两个数为4,6或41,-23 ∴插入的两个数为4,6。
中职高一数学试题及答案
中职高一数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2.5B. -πC. 0.33333D. √22. 函数y=x^2的图像是:A. 直线B. 抛物线C. 双曲线D. 圆3. 等差数列1, 4, 7, 10, ...的第10项是:A. 27B. 28C. 29D. 304. 已知集合A={1, 2, 3},集合B={2, 3, 4},则A∩B是:A. {1, 2, 3}B. {2, 3}C. {1, 2}D. {3, 4}5. 计算(2x-1)(x+3)的结果是:A. 2x^2 + 5x - 3B. 2x^2 + x - 3C. 2x^2 - 5x - 3D. 2x^2 - x - 36. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 100πD. 257. 函数f(x)=x^3-3x+2的零点是:A. 1B. -1C. 2D. 08. 已知等比数列1, 2, 4, 8, ...的公比是:A. 1B. 2C. 3D. 49. 直线y=2x+1与x轴的交点坐标是:A. (0, 1)B. (0, -1)C. (1/2, 0)D. (-1/2, 0)10. 计算sin(30°)的值是:A. 1/2B. √3/2C. √2/2D. 1二、填空题(每题4分,共20分)1. 一个等腰三角形的两边长分别为3和4,那么它的周长是______。
2. 函数y=|x-2|的图像与y轴的交点坐标是______。
3. 一个数的平方根是2或-2,那么这个数是______。
4. 圆的直径为10,那么它的半径是______。
5. 计算(3x+2)(2x-3)的结果是______。
三、解答题(每题10分,共50分)1. 解方程:2x^2 - 5x + 2 = 0。
2. 证明:如果一个角是直角,那么它的余角是45°。
3. 计算:(2x-1)^3。
4. 已知等差数列的前三项分别是2, 5, 8,求它的通项公式。
职业高中 高一第一学期数学期末试卷(含答案)
第1页 共8页 ◎ 第2页 共8页学校:___________班级:___________姓名:___________考场号:________考号:________绝密★启用前高一第一学期数学期末试卷一、 选择题(共15题,每题3分,共计45分) 1.如果M ={x x ≤1},则( ).A .0⊆MB .{0}⊆MC .{0}∈MD .φ∈ M 2.设集合U ={1,2,3,4,5},A ={1,2,3},B ={2,3,4},则C U (A ∩B )= ( ). A .{2,3} B .{1,4,5} C .{4,5} D .{1,5} 3.命题p :a =0,命题q :ab =0的( )条件. A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 4.已知a >b ,则下列不等式中一定成立的是( ).A .a -1<b -1B . 2a <2bC . -2a <-2bD . 2a ->2b - 5.若a >1在同一坐标系中,函数y =a x 和y =log a x 的图像可能是( )A B C D 6.下列函数中关于y 轴对称的是( ).A .5x y =B .22-=x yC .xy 1= D .x y 5=7.下列函数中既是奇函数又是增函数的是( ) A .x y 3= B .22x y = C .xy 1=D .x y 31-=8.函数522-+-=x x y 的最大值是( ) A .5 B .-4 C .8 D .-3 9.函数342+-=x x y ( )A .在(-∞,2)内是减函数B .在(-∞,4)内是减函数C .在(-∞,0)内是减函数D .在(-∞,+∞)内是减函数 10.下列函数中,定义域为[0,+∞)的是( ) A .3x y = B .2x y = C .21x y = D .2-=x y11.设指数函数x a y =是减函数,则( )A .a <1B .a >0C .a >1D .0<a <1 12.函数y =x 216—定义域为( )A . (_∞,_4]B . [_4, +∞)C . (_∞, 4]D . [4, +∞) 13.下列各式中正确的是( )A . 0.30.3log 5log 7<B .39log 2log 4>C .ln 2<0D .lg 31< 14.下列计算正确的是( )A .(x +y )-1=x -1+y -1B . (xy )-1= x -1y -1C .2x +y =2x +2yD .(a 3)2=a 5 15.设sin α>0且cos α>0,则角α为( )A . 第一象限角B . 第二象限角C . 第三象限角D .第3页 共8页 ◎ 第4页 共8页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………第四象限角二.填空题(每空3分,共30分)1.点P (3,5)关于原点对称点的坐标为2.计算:()5= ___; 213-⎛⎫⎪⎝⎭= ____;151362a a a ⋅÷=____ .3.幂函数在第一象限的图像都经过点 ,指数函数图像一定过的点的坐标为4.设函数221,20()1,03x x f x x x +-<⎧⎪=⎨-<<⎪⎩≤,则()f x 的定义域为 _______;(2)f =__________.5.比较大小:0.2π 0.3π6.若函数22()(1)(2)(712)f x m x m x m m =-+-+-+为偶函数,则m的值是_________.三.解答题:(共5题,每题9分,共计45分) 1.设A ={x -2,2x 2+5x ,12},已知-3A ,求x 的值.2.已知集合U ={x |-5≤x ≤3},A ={x |-3≤x ≤-1},B ={x |-1≤x <1},求U A , U B, ()U AB , ()U AB .3.已知函数是偶函数,且在上是增函数,证明它在上的单调性.4.求函数的定义域.5.我国国内平信计费标准是:投寄外埠平信,每封信的质量不超过20g ,付邮资0.80元;质量超过20g 后,每增加20g (不足20g 按照20g 计算)增加0.80元.试建立每封平信应付的邮资y (元)与信的质量x ()之间的函数关系(设0<x ≤60),并作出函数图像.第5页 共8页 ◎ 第6页 共8页学校:___________班级:___________姓名:___________考场号:________考号:________高一第一学期数学期末试卷答案一、选择题。
中职学校高一上学期期中考《数学》试卷
10.下列各组中的函数,()f x 与()g x 是同一个函数的是()A .()f x x =,()2g x x =B .()22f x x =+,()1g x x =+C .()1f x x =-,()211x g x x -=+D .()221f x x x =--,()()21g x x =-11.二次函数2(,,y ax bx c a b c =++为常数,且0)a ≠的部分图象大致如图所示,则下列结论正确的是()A .(0)0f >B .(1)0f -=C .(1)0f >D .(0)1f =-(第11题图)12.某商品的日销售量y (单位:千克)与商品的销售单价x (单位:元/千克)之间满足关系式180,020,230,2040.x x y x ⎧-+<≤⎪=⎨⎪<≤⎩则当该商品的销售单价为10元/千克时,商品的日销售量和日销售额分别是().A .75千克,750元B .75千克,300元C .30千克,300元D .30千克,750元二、填空题:(本大题共7小题,每题3分,共21分)13.已知集合{}m A ,0=,且2A ∈,则实数m 的值为___________.14.不等式()()130x x --≤的解集为.15.函数()21+=x x f 的定义域是.16.不等式|21|4x -≤的整数解集为_____________.17.已知集合{}{}|1,|2A x x B x x =<=>-,则A B = .18.已知函数()f x 用列表法表示为:则()1f f =⎡⎤⎣⎦.19.若14a -<<,21b -<<-,则b a -的取值范围为(用区间作答).三、解答题:(6小题,共43分;要求写出必要的文字说明、演算步骤或推理过程)20.(本题满分5分)解不等式(结果用区间表示):2450x x -->21.(本题满分6分)比较222a a -与26a -的大小.22.(本题7分)已知{2}{1,2,3,4}M ⊂⊆≠,写出所有满足要求的集合M .23.(本题满分8若有意义,求x 的取值范围.x 1234()f x 432124.(本题满分8分)已知函数()()213f x m x m =++-,函数图象经过原点.(1)求m 的值;(2分)(2)当函数值为343时,求相应自变量x 的值;(2分)(3)若()214f x x x 不小于 ,求的取值范围.(4分)25.(本题满分9分)关于x 的不等式3|x a |-<的解集为{}51x |x -<<(1)求a 的值;(4分)(2){}}{2|,|8150,若集合集合求A x x a B x x x A B =>=-+≥ .(5分)。
自贡市中职校2023-2024学年度高一上末考试数学试卷 (含答案)
中职高一数学上期末试卷 第1页 共9页自贡市中等职业学校2023-2024学年高一年级上学期期末考试数 学本试题卷分第Ⅰ卷(选择题)和第Ⅰ卷(非选择题)两部分.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分150分,考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第Ⅰ卷(选择题 共60分)注意事项:1.选择题必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑.2.第I 卷共1个大题,15个小题.每个小题4分,共60分.一、选择题(每小题4分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的)1. 设集合{}1,2,3A =,集合{}3,4,5B =,则AB =( )A. φB. {}3C. {}1,2D. {}1,2,3,4,5 2.函数()f x =)A. {}|2x R x ∈≠B. {}|<2x R x ∈C. {}|2x R x ∈≥D. {}|>2x R x ∈3. 已知函数()y f x =的对应关系如下表,函数()y g x =的图象是如图的曲线ABC ,其中(1, 3)(2, 1)(3, 2)A B C ,,,则()()2f g 的值为( )A. 3B. 2C. 1D. 0中职高一数学上期末试卷 第2页 共9页4. 若>a b ,下列说法正确的是( )A. 1>2a b +-B. >ac bcC. 22>ac bcD. 2>2b a 5. (1)(2)0x x -+≤的解集为( )A. {}|12x x -≤≤B. {}|21x x -≤≤C. {}|21x x x ≤-≥或D. {}|12x x x ≤-≥或 6. 函数1()f x x=的单调递减区间是( ) A . (, 0)(0, +)-∞∞和 B . (, 0)(0, +)-∞∞C . (, 0)-∞D . (0, +)∞7. 已知()y f x =是定义在R 上的奇函数,且(1)3f =,则(1)f -=( ) A. 1- B. 3- C. 3 D. 1 8. 下列所给图象是函数图象的个数为( )A. 1B. 2C. 3D. 4 9. “>0x ”是“>1x ”的( )A. 充分条件B. 必要条件C. 充要条件D. 既不充分也不必要条件 10. 下列不等式中,解集为{}11x x -<<的是( )A. 210x -≤B. 10x -≤C.()()1011x x ≤+-D. 101x x -≤+中职高一数学上期末试卷 第3页 共9页11. 已知函数1()(>1)x f x a a -=,则该函数图象必经过定点( ) A. (0, 1) B. (0, 2) C. (1, 2) D. (1, 1)12. 若函数2()21f x x mx =+-在区间(3, )-+∞上是增函数,则实数m 的取值范围是( ) A. 3m ≥ B. 3m ≤ C. 3m ≥- D. 3m ≤-13. 《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则随机调查的100位学生阅读过《西游记》的学生人数为( )A. 50B. 60C. 70D. 8014. 已知函数()f x 是定义在()(),00,∞-+∞上的奇函数,且()10f -=,若对于任意两个实数x 1,()20,x ∈+∞且12x x ≠,不等式()()12120f x f x x x -<-恒成立,则不等式()0xf x >的解集是( )A. ()(),10,1-∞-B. ()(),11,-∞-+∞C. ()()1,01,-+∞ D. ()()1,00,1-15. 计算0122222()x x N ++++∈,令0122222x S =++++Ⅰ,将Ⅰ两边同时乘以2:123122222x S +=+++Ⅰ,用Ⅰ−Ⅰ得到:2S S -=1231(2222)x ++++_012(2222)x ++++,得到121x S +=-;观察该式子的特点,每一项都是前一项的2倍(除第一项外);运算思路是将代数式每一项乘2后再与原式相减,数学上把这种运算的方法叫做“错位相减”,那么当 0121013333S =++++时候,则1S 的值为( )A. 1131- B. 1031- C. 11312- D. 10312-中职高一数学上期末试卷 第4页 共9页第Ⅱ卷(非选择题 共90分)注意事项:1. 非选择题必须用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.答在试题卷上无效.2. 本部分共2个大题,12个小题.共90分.二、填空题(本大题共5小题,每小题4分,共20分) 16. 不等式2<1x -的解集为 .(注意:用区间表示)17. 分段函数()22, 11, 2<1x x f x xx x ⎧+≥⎪=⎨⎪+-≤⎩,则分段函数的定义域为________. 18. 若()12f x x =-,则(2)f -= .19. 2023年第31届世界大学生运动会(成都大运会)是中国大陆第三次举办世界大学生夏季运动会,也是中国西部第一次举办的世界性综合运动会,有关吉祥物“蓉宝”的纪念徽章、盲盒等商品成为抢手货,市场供不应求。
中职高一期中考试数学试卷
考试时间:120分钟满分:100分一、选择题(每题5分,共20分)1. 下列各数中,不是有理数的是()A. 3.14B. √25C. -0.5D. π2. 若方程 2x - 5 = 3 的解为 x,则 x + 2 的值为()A. 5B. 4C. 3D. 23. 在直角坐标系中,点 A(2,-3)关于 x 轴的对称点的坐标是()A.(2,3)B.(-2,-3)C.(2,-3)D.(-2,3)4. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 平行四边形5. 已知 a + b = 7,a - b = 3,则 a^2 + b^2 的值为()A. 28B. 36C. 49D. 64二、填空题(每题5分,共25分)6. 若 a = -3,则 -a 的值为 ________。
7. 2x + 5 = 19 的解为 x = ________。
8. 在△ABC中,∠A = 45°,∠B = 60°,则∠C 的度数为 ________。
9. 下列等式中正确的是 ________。
10. 已知函数 y = 2x - 3,当 x = 4 时,y 的值为 ________。
三、解答题(每题15分,共45分)11. 解方程:3x - 2 = 2x + 5。
12. 求函数 y = x^2 - 4x + 3 的最大值。
13. 已知等腰三角形底边长为 8,腰长为 10,求该三角形的面积。
四、应用题(每题20分,共40分)14. 某商店进购一批商品,每件进价 100 元,售价 150 元。
如果按每件售价的80% 出售,那么每件商品亏损 20 元。
请问:如果按原价出售,该批商品将亏损多少元?15. 某班级有男生 25 人,女生 30 人。
如果从该班级中随机抽取 6 名学生参加比赛,求抽取到的男生人数不少于 3 人的概率。
答案:一、选择题:1. D2. B3. A4. D5. C二、填空题:6. 37. 38. 75°9. 4x - 2y = 1010. 1三、解答题:11. x = 712. 最大值为 113. 面积为 40四、应用题:14. 亏损 200 元15. 概率为 5/6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校: 班级: 姓名: 考生号: ----- --
-
--
-
--
-
-
--
-
-
---
-
---
-
-------
----
-
-
-
-
---
-
--
-
-
-------
----
-
-
-
-
---
-
---
-
-------
--
--
-----------------------
--
--
--
----------------------------
A )450
B )1350
C )k3600+450
D )450或1350
6、已知α=23
π,则P(cos α,cot α)所在象限是 A )第一象限 B )第二象限 C )第三象限 D )第四象限
7、若sin αtan α<0,则角α是
A )第二象限角
B )第三象限角
C )第二或三象限角
D )第二或四象限角
8、下列结果为正值的是
A)cos2-sin2 B)tan3·cos2 C)cos2·sin2 D) sin2·tan2
9、已知αα
αααtan ,5cos 5sin 3cos 2sin 那么-=+-的值为 A)-2 B)2 C)1623 D)-16
23 10、 y=
|sin |cos |tan |sin |cos |tan x x x x x x ++的值域是
A){1,-1} B){-1,1,3} C){-1,3} D){1,3}
二、 填空题(每小题5分,共25分)
11、与-1050°终边相同的最小正角是 ;
12、-π10
=( )°, 120°=( )弧度; 13、适合条件|sin α|=-sin α的角α是第 象限角;
14、角α的终边过点P (-4k ,3k ),(k <0),则cos α= ;
15、已知角α的终边在直线 y = 2x (x ≤0)上,则sin α= ,cos α= 。
三、解答题(共45分)
16、求值:8sin 30°+cos 180°—2cos 60°+sin 270°+3tan 60°(8分)
17、已知sinα=4
5
,且α是第二象限角,求cosα、tanα.(10分)
18、已知()2,A a -是角α终边上的一点,且sin 5α=, 求a 、cos α、tan α的值;(12分)
19、已知2 tan =α试求下列各式的值
1)α
αααcos sin cos sin +-(5分) 2)α
αααα222cos sin 3cos sin 2sin +⋅+。
(10分)。