初一数学知识讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的概念
撰稿:占德杰审稿:张扬责编:孙景艳
一、目标认知
学习目标:
了解正数、负数、有理数的概念,会用正数和负数表示相反意义的量。掌握一个数的相反数的求法和性质,学习使用数轴,借助数轴理解相反数的几何意义,会借助数轴比较有理数的大小。掌握一个数的绝对值的求法和性质,进一步学习使用数轴,借助数轴理解绝对值的几何意义。
重点:
有理数的概念及其分类,相反数的概念及求法,绝对值的概念及求法,数轴的概念及应用;有理数比较大小
难点:
绝对值的概念及求法,尤其是用字母表示的时候的意义。运用数轴理解绝对值的几何意义。有理数比较大小的方法的掌握。
二、知识要点梳理
知识点一:负数的引入
要点诠释:
正数和负数是根据实际需要而产生的,随着社会的发展,小学学过的自然数、分数和小数已不能满足实际的需要,比如一些有相反意义的量:收入200元和支出100元、零上6℃和零下6℃等等,它们不但意义相反,而且表示一定的数量,怎样表示它们呢?我们把一种意义的量规定为正的,把另一种和它意义相反的的量规定为负的,这样就产生了正数和负数。
用正数和负数表示具有相反意义的量时,哪种意义为正,是可以任意选择的,但习惯把“前进、上升、收入、零上温度”等规定为正,而把“后退、下降、支出、零下温度”等规定为负。
知识点二:正数和负数的概念
要点诠释:
(1)像3、1.5、、584等大于0的数,叫做正数,在小学学过的数,除0以外都是正数,正数比0大。
(2)像-3、-1.5、、-584等在正数前面加“-”(读作负)号的数,叫做负数。负数比0小。
(3)零既不是正数也不是负数,零是正数和负数的分界。
注意:
(1)为了强调,正数前面有时也可以加上“+”(读作正)号,
例如:3、1.5、也可以写作+3、+1.5、+。
(2)对于正数和负数的概念,不能简单理解为:带“+”号的数是正数,带“-”号的数是负数。
例如:-a一定是负数吗?答案是不一定。因为字母a可以表示任意的数,
若a表示的是正数,则-a是负数;若a表示的是0,则-a仍是0;
当a表示负数时,-a就不是负数了(此时-a是正数)。
知识点三:有理数的有关概念
要点诠释:
1、有理数:整数和分数统称为有理数。
注:(1)有时为了研究的需要,整数也可以看作是分母为1的数,这时的分数包括整数。
但是本节中的分数不包括分母是1的分数。
(2)因为分数与有限小数和无限循环小数可以互化,上述小数都可以用分数来表示,
所以我们把有限小数和无限循环小数都看作分数。
(3)“0”即不是正数,也不是负数,但“0”是整数。
2、整数包括正整数、零、负整数。例如:1、2、
3、0、-1、-2、-3等等。
3、分数包括正分数和负分数,例如:、、0.6、-、-、-0.6等等。
知识点四:有理数的分类
要点诠释:
1、按整数、分数的关系分类:
2、按正数、负数与0的关系分类:
注:通常把正数和0统称为非负数,负数和0统称为非正数,正整数和0称为非负整数(也叫做自然数),负整数和0统称为非正整数。如果用字母表示数,则a>0表明a是正数;a<0表明a是负数;a0表明a是非负数;a0表明a是非正数。
知识点五:数轴的概念
要点诠释:
规定了原点、正方向和单位长度的直线叫做数轴
数轴的定义包含三层含义:(1)数轴是一条直线,可以向两端无限延伸;(2)数轴有三要素——原点、正方向、单位长度,三者缺一不可;(3)原点的选定、正方向的取向、单位长度大小的确定,都是根据实际需要“规定”的(通常取向右为正方向)。
知识点六:数轴的画法
要点诠释:
1、画一条直线(一般画成水平的直线)。
2、在直线上选取一点为原点,并用这点表示零(在原点下面标上“0”)。
3、确定正方向(一般规定向右为正),用箭头表示出来。
4、选取适当的长度作为单位长度,从原点向右,每隔一个单位长度取一点,依次表示为1,2,3……;
从原点向左,每隔一个单位长度取一点,依次表示为-1,-2,-3……
注:(1)原点的位置、单位长度的大小可根据实际情况适当选取;
(2)确定单位长度时,根据实际情况,有时也可以每隔两个(或更多的)单位长度取一点,
从原点向右,依次表示为2,4,6,……;从原点向左,依次表示为-2,-4,-6,……;
知识点七:数轴上的点与有理数的关系
所有的有理数都可以用数轴上的点表示出来,反过来,不能说数轴上所有的点都表示有理数。
要点诠释:
正有理数可以用原点右边的点表示,负有理数可以用原点左边的点表示,零用原点表示。
知识点八:利用数轴比较有理数的大小
要点诠释:
在数轴上表示的两个数,右边的数总比左边的数大。正数都大于0;负数都小于0;正数大于一切负数。
知识点九:相反数的概念
1、相反数的几何定义:在数轴上原点的两旁,到原点距离相等的两个点所表示的数,叫做互为相反数。
2、相反数的代数定义:只有符号不同的两个数(除了符号不同以外完全相同),我们说其中一个是另一个的相反数,0的相反数是0。
要点诠释:
(1)“只”字是说仅仅是符号不同,其它部分完全相同;(2)相反数是数,不是量;(3)相反数是成对出现的。
知识点十:相反数的表示方法
要点诠释:
一般地,数a的相反数是-a。这里a表示任意的一个数,可以是正数、负数、或者0。
知识点十一:多重符号的化简
把多重符号化成单一符号,如果是正号,则可以省略不写,实际上,多重符号的化简是由“-”的个数来定,若“-”个数为偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若“-”个数为奇数个时,化简结果为负,如-{+[-(-4)]}=-4 。
要点诠释:
1、在一个数的前面添上一个“+”号,仍然与原数相同,如+5=5,+(-5)=-5。
2、在一个数的前面添上一个“-”号,就成为原数的相反数。如-(-3)就是-3的相反数,因此,-(-3)=3。
知识点十二:绝对值的概念
要点诠释:
1、绝对值的几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离,
数a的绝对值记作“”
2、绝对值的代数定义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;
0的绝对值是0。即
知识点十三:两个负数大小的比较
要点诠释:
因为两个负数在数轴上的位置关系是:绝对值较大的负数一定在绝对值较小的负数的左边,所以,两个负数,绝对值大的反而小。比较两个负数大小的方法是:一、先分别求出这两个负数的绝对值;二、比较这两个绝对值的大小;
三、根据“两个负数,绝对值大的反而小”做出正确的判断。
知识点十四:有理数大小的比较法则
要点诠释:
正数都大于0,负数都小于0,正数大于一切负数,两个负数,绝对值大的反而小。
三、规律方法指导
有理数与小学所学的数,主要区别在于负数。有理数可以用数轴上的点来表示,任何一个有理数都能在数轴上找