人教版七年级数学上册第一章 有理数教案

合集下载

初一数学上册第一章有理数复习教案最新3篇

初一数学上册第一章有理数复习教案最新3篇

初一数学上册第一章有理数复习教案最新3篇篇一:数学《有理数》教案篇一一、教材分析:(一)教材的地位和作用:本节课的内容是《新人教版七年级数学》教材中的第一章第四节,“有理数的乘除法”是把“有理数乘法”和“有理数除法”的内容进行整合,在“有理数的加减混合运算”之后的一个学习内容。

在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。

“有理数的乘法”从具体情境入手,把乘法看做连加,通过类比,让学生进行充分讨论、自主探索与合作交流的形式,自己归纳出有理数乘法法则。

通过这个探索的过程,发展了学生观察、归纳、猜测、验证的能力,使学生在学习的过程中获得成功的体验,增强了自信心。

所以本节课的学习具有一定的现实地位。

(二)学情分析:因为学生在小学的学习里已经接触过正数和0的乘除法,对于两个正数相乘、正数与0相乘、两个正数相除、0与正数相除的情况学生已经掌握。

同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。

另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。

(三)教学目标分析:基于以上的学情分析,我确定本节课的教学目标如下1、知识目标:让学生经历学习过程,探索归纳得出有理数的乘除法法则,并能熟练运用。

2、能力目标:在课堂学习过程中,使学生经历探索有理数乘除法法则的过程,发展观察、猜想、归纳、验证、运算的能力,同时在探索法则的过程中培养学生分类和归纳的数学思想。

3、情感态度和价值观:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。

4、教学重点:会进行有理数的乘除法运算。

5、教学难点:有理数乘除法法则的探索与运用。

确定教学目标的理由依据是:新课标中指出课堂教学中应体现知识与技能、过程与方法、情感态度与价值观的三维目标,同时也基于本节内容的地位与作用。

人教版七年级数学上册第一章 有理数教案

人教版七年级数学上册第一章 有理数教案

人教版七年级数学第一章 有理数1.1 正数和负数基础题知识点1 认识正数、负数和0大于0的数叫做正数,在正数前面加上符号“-”的数叫做负数.0既不是正数,也不是负数. 1.(连云港中考)下列各数中是正数的为AA .3 B.-12 C.-2 D.02.(遵义中考)在0,-2,5,14,-0.3中,负数的个数是BA .1 B.2 C.3 D.4 3.下列各数:0,-1,-0.02,-3,53.2,8,-125,16,30%.属于正数的有:53.2,8,16,30%;属于负数的有:-1,-0.02,-3,-125;既不是正数也不是负数的有:0.知识点2 用正、负数表示相反意义的量用正数和负数分别表示同一问题中出现的相反意义的量.如:如果收入18元记作+18元,那么支出12元记作-12元. 4.下列各组量中,互为相反意义的量是A A .篮球比赛胜5场与负3场 B .上升与减小C .增产10 t 粮食与减产-10 t 粮食D .向东走3 km ,再向南走2 km5.(崇左中考)一个物体做左右方向的运动,规定向右运动4 m 记作+4 m ,那么向左运动4 m 记作A A .-4 m B.4 m C.8 m D.-8 m6.(成都中考)《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若气温为零上10 ℃记作+10 ℃ ,则-3 ℃表示气温为BA .零上3 ℃ B.零下3 ℃ C .零上7 ℃ D.零下7 ℃ 7.在下列横线上填上适当的词,使前后构成意义相反的量.(1)收入1 300元,支出500元; (2)增加300 kg ,减少100 kg ; (3)向东走50 m ,向西走60 m ;(4)顺时针旋转100°,逆时针旋转90°.8.(黔南月考)如果用+4 m 表示高出海平面4 m ,那么低于海平面5 m 可记作-5 m. 知识点3 正、负数的应用9.某班同学的标准身高为170 cm ,如果用正数表示身高高于标准身高的高度,那么: (1)5 cm 和-13 cm 各表示什么?(2)身高低于标准身高10 cm和高于标准身高8 cm各怎么表示?(3)既不高于标准身高,也不低于标准身高怎么表示?解:(1)5 cm表示比标准身高高5 cm;-13 cm表示比标准身高矮13 cm.(2)身高低于标准身高10 cm表示为-10 cm;身高高于标准身高8 cm表示为+8 cm.(3)既不高于标准身高,也不低于标准身高表示为0 cm.中档题10.若萧萧比萌萌重3千克记为+3,反过来萌萌比萧萧轻3千克记为CA.+3B.0C.-3D.-611.(黔南月考)下面对“0”的说法正确的个数是A①0是正数和负数的分界点;②0只表示“什么也没有”;③0可以表示特定意义;④0是正数;⑤0是自然数.A.3B.4C.5D.012.产值增加-10万元的意义是产值减少10万元.13.(遵义期中)在一次数学测试中,李老师采用了一种记分法:小丽得93分,记作+8分,小明得80分,记作-5分.若小文的得分记作+2分,则小文的实际得分为87分.14.下面是几个家庭五月用电支出比上月用电支出的变化情况:赵力减少25%,肖刚增加10%,王辉减少17%,李玉增加5%,田红增加8%,陈佳减少12%.分别用正、负数写出这几家五月用电支出比上月支出的增长率.解:这六家五月用电支出比上月支出的增长率分别为:赵力-25%,肖刚+10%,王辉-17%,李玉+5%,田红+8%,陈佳-12%.15.如图,在生产图纸上通常用Φ300+0.2-0.5来表示轴的加工要求,这里Φ300表示直径是300 mm,+0.2和-0.5是指直径在(300-0.5)mm到(300+0.2)mm之间的产品都属于合格产品.现加工一批轴,尺寸要求是Φ45+0.03-0.04,请检验直径为44.97 mm和45.04 mm的两根轴是否为合格产品.解:这批轴的尺寸要求是在(45-0.04)mm到(45+0.03)mm之间,即尺寸在44.96 mm到45.03 mm之间都为合格,所以直径为44.97 mm的轴合格,直径为45.04 mm的轴不合格.综合题16.体育课上,对初三(1)班的学生进行了仰卧起坐的测试,以能做28个为标准,超过的次数用正数来表示,不足的次数用负数来表示,其中10名女学生成绩如下:1,4,0,8,6,8,0,6,-5,-1.(1)这10名女生的达标率为多少?(2)没达标的同学做了几个仰卧起坐?解:(1)这10名女生的达标率为8÷10×100%=80%.(2)没达标的同学做仰卧起坐的个数分别是23个和27个.1.2 有理数 1.2.1 有理数基础题知识点 有理数的概念及分类(1)正整数、0、负整数统称为整数;正分数、负分数统称为分数;整数和分数统称为有理数. (2)有理数可按正、负性质分类,也可按整数、分数分类: ①按正、负性质分类: ②按整数、分数分类:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数0负有理数⎩⎪⎨⎪⎧负整数负分数有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数1.(沈阳中考)0这个数CA .是正数 B.是负数 C .是整数 D.不是有理数2.(丽水中考)在数0,2,-3,-1.2中,属于负整数的是CA .0 B.2 C .-3 D.-1.2 3.既是分数又是正数的是DA .+2 B.-413 C .0 D.2.34.在+1,27,0,-5,-313这几个数中,整数有CA .1个 B.2个 C .3个 D.4个5.关于-3.14,下面说法正确的是B A .是负数,不是分数 B .是负数,也是分数 C .是分数,不是有理数 D .不是分数,是有理数6.下列说法错误的是BA .-2是负有理数 B.0不是有理数 C.25是正有理数 D.-0.01是负分数 7.下列说法中,正确的个数是B①一个有理数不是整数,就是分数; ②一个有理数不是正的,就是负的; ③一个整数不是正的,就是负的; ④一个分数不是正的,就是负的.A .1 B.2 C .3 D.4 8.有理数包含正有理数、负有理数和0.9.请你写出两个既是负数,又是整数的数-1,-6(答案不唯一).10.下列各数:3,-5,-12,0,2,0.97,-0.21,-6,9,23,85,1.其中正数有7个,负数有4个,正分数有2个,负分数有2个.11.把下列各数填在相应的集合里:16,1,-1,-2 018,0.5,110,-13,-0.75,0,20%.(1)整数集合:{16,1,-1,-2 018,0,…}; (2)正分数集合:{0.5,110,20%,…};(3)负分数集合:{-13,-0.75,…};(4)正数集合:{16,1,0.5,110,20%,…};(5)负数集合:{-1,-2 018,-13,-0.75,…}.易错点 对有理数的相关意义理解不透彻 12.下列说法中,正确的是A A .正分数和负分数统称为分数 B .0既是整数也是负整数C .正整数、负整数统称为整数D .正数和负数统称为有理数中档题13.在数4.19,-56,-1,120%,29,0,-313,-0.97中,非负数有BA .3个 B.4个 C .5个 D.6个14.(遵义道真县期中)下列说法正确的有D①负分数一定是负有理数;②自然数一定是正数;③3.2不是整数;④0是整数;⑤一个有理数,它不是整数就是分数.A .1个 B.2个 C .3个 D.4个 15.请按要求填出相应的2个有理数:(1)既是正数也是分数:212,34(答案不唯一);(2)既不是负数也不是分数:2,0(答案不唯一);(3)既不是分数也不是非负数:-3,-4(答案不唯一);(4)①是负数;②是整数;③能被2,3,5整除:-30,-60(答案不唯一). 16.在下表适当的空格里打上“√”号.17.如图,两个椭圆分别表示正数集合和整数集合.请在每个椭圆内填入6个数,其中有3个数既是正数又是整数,这3个数应填在A 处(填“A”“B”或“C”),你能说出两个椭圆重叠部分表示什么数的集合吗?解:答案不唯一,如图.两个椭圆重叠部分表示正整数集合.综合题18.将一串有理数按下列规律排列,回答下列问题.(1)在A 处的数是正数还是负数?(2)负数排在A ,B ,C ,D 中的什么位置?(3)第2 018个数是正数还是负数?排在对应于A ,B ,C ,D 中的什么位置? 解:(1)在A 处的数是正数. (2)负数排在B 和D 的位置.(3)第2 018个数是正数,排在对应于C 的位置.1.2.2 数轴基础题知识点1 数轴的概念及画法在数学中,用一条直线上的点表示数,这条直线叫做数轴.数轴的三要素为:原点、正方向、单位长度. 1.关于数轴,下列说法最准确的是D A .一条直线B .有原点、正方向的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线 2.下列是数轴的是D知识点2 数轴上的点与有理数的关系一般地,设a 是一个正数,则数轴上表示数a 的点在原点的右边,与原点的距离是a 个单位长度;表示数-a 的点在原点的左边,与原点的距离是a 个单位长度.如:若a ,b ,c 在数轴上的位置如图所示,则a 是负数,b 是正数,c 是正数.(填“正”或“负”)3.如图,数轴上点A 表示的数是AA.-2B.2 C .±2 D.0 4.如图,数轴上表示-2.75的点可能是DA.E 点B.F 点 C .G 点 D.H 点 5.在数轴上表示-5,0,3,12的点中,在原点右边的点有BA .1个 B.2个 C .3个 D.4个 6.数轴上表示-152的点在BA .-6与-7之间 B.-7与-8之间 C .7与8之间 D.6与7之间 7.数轴上表示-5的点与原点的距离是5. 8.如图,写出数轴上点A ,B ,C ,D 表示的数.解:点A 表示0,点B 表示1.5,点C 表示-2,点D 表示3.9.画数轴,并在数轴上表示下列各数: 2,-2.5,0,13,-4.解:易错点 忽视到原点距离相等的点有两个10.(黔东南锦屏县期中)在数轴上距离原点2个单位长度的点所表示的数是C A .2 B.-2 C .2或-2 D.1或-1中档题11.下列各数在数轴上的位置是在-2的左边的是AA .-3 B.-2 C .-1 D.0 12.在数轴上,表示-1与-4两点之间有理数的点有DA .3个 B.2个 C .1个 D.无数个13.点A 为数轴上表示-2的点,当点A 沿数轴移动4个单位长度到点B 时,点B 所表示的数为C A .2 B.-6 C .2或-6 D.不同于以上答案 14.如图,点A 表示的数是-4.(1)在数轴上表示出原点O ; (2)指出点B 表示的数;(3)在数轴上找一点C ,使它与点B 的距离为2个单位长度,那么点C 表示什么数? 解:(1)如图,原点O 在点A 的右侧距A 点4个单位长度. (2)点B 表示3. (3)点C 表示1或5.15.在数轴上,一只蚂蚁从原点出发,它先向右爬了4个单位长度到达点A ,再向右爬了2个单位长度到达点B ,然后又向左爬了10个单位长度到达点C.(1)画出数轴并标出A ,B ,C 三点在数轴上的位置; (2)写出A ,B ,C 三点表示的数;(3)根据点C 在数轴上的位置,C 点可以看作是蚂蚁从原点出发,向哪个方向爬了几个单位长度得到的? 解:(1)如图:(2)A ,B ,C 三点表示的数分别为4,6,-4.(3)C 点可以看作是蚂蚁从原点出发,向左爬了4个单位长度得到的.综合题16.(黔东南锦屏县期中)操作探究:已知在纸面上有一数轴(如图所示).操作一:(1)折叠纸面,使表示1的点与表示-1的点重合,则表示-3的点与表示3的点重合;操作二:(2)折叠纸面,使表示-1的点与表示3的点重合,回答以下问题:①表示5的点与表示-3的点重合;②若数轴上A,B两点之间的距离为11,且点A在点B的左侧,A,B两点经折叠后重合,求A,B两点表示的数各是多少.解:因为表示-1的点与表示3的点重合,所以可确定表示1的点在折叠线上.因为A,B两点与折叠线的距离为11÷2=5.5,所以A,B两点表示的数分别是-4.5,6.5.1.2.3 相反数基础题知识点1 相反数的概念只有符号不同的两个数叫做互为相反数.如:1的相反数是-1. 1.(遵义中考)-3的相反数是BA .-3 B.3 C.13 D.-132.(黔南中考改编)2 018的相反数是BA .2 018 B.-2 018 C .-12 018 D.12 0183.(贵阳中考)在1,-1,3,-2这四个数中,互为相反数的是AA .1和-1 B.1和-2 C .3和-2 D.-1和-24.(广州中考)如图,数轴上两点A ,B 表示的数互为相反数,则点B 表示的数是BA.-6B.6 C .0 D.无法确定5.下列说法:①-7是相反数;②7是相反数;③-7是7的相反数;④-7和7互为相反数.其中正确的有B A .1个 B.2个 C .3个 D.4个6.(遵义道真县期中)若a 的相反数是-12,则a 的值是CA .2 B.-2 C.12 D.-127.若一个数的相反数等于它本身,则这个数是CA .正数 B.负数 C .0 D.非负数 8.(漳州中考)如图,数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的点是AA.点A 与点B.点A 与点C C .点B 与点D D.点B 与点C 9.下列说法中正确的是C A .一个数的相反数是负数 B .0没有相反数C .互为相反数的两个点到原点的距离相等D .表示相反数的两个点,可以在原点的同一侧 10.写出下列各数的相反数:10,-12,-4.8,53,-313,12 017,0.解:各数的相反数分别是:-10,12,4.8,-53,313,-12 017,0.知识点2 化简符号在任意一个数的前面添上“-”号,新的数就表示原数的相反数,即a 的相反数是-a.一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.如:化简-(-13)的结果是13.11.(黔南中考改编)化简-(-5)等于AA .5 B.-5 C.15 D.-1512.+(-3)的相反数是CA .-(+3) B.-3 C .3 D.+(-13)13.下面两个数互为相反数的是D A .-(+9)与+(-9) B .-0.5与-(+0.5) C .-1.25与45D .+(-0.01)与-(-1100)14.化简下列各数:(1)-(+4); (2)-(-6); 解:-4. 解:6.(3)-(+3.9); (4)-(-34).解:-3.9. 解:34.易错点 对相反数的概念理解不清15.-a 的相反数是a ;若-a 的相反数是-5,则a =-5.中档题16.下列说法中正确的是C A .正数和负数互为相反数B .任何一个数的相反数都与它本身不相同C .任何一个数都有它的相反数D .数轴上原点两旁的两个点表示的数互为相反数17.下列各对数:-1与+(-1),+(+1)与-1,-(-2)与+(-2),-(-12)与+(+12),-(+3)与-(-3),其中互为相反数的有DA .0对 B.1对 C .2对 D.3对18.在数轴上,若点A 和点B 分别表示互为相反数的两个数,并且这两点间的距离是8,则这两点所表示的数分别是4,-4.19.(1)化简下列各数:①-[-(+1)]; 解:-[-(+1)] =-(-1) =1.②-[+(-8)];解:-[+(-8)]=8.③-(-a );解:-(-a )=a.④-[-(-a )];解:-[-(-a )]=-a.(2)化简过程中,你有何发现?化简结果的符号与原式中的“-”的个数有什么关系?解:最后结果的符号与“-”的个数有着密切联系,当“-”的个数是奇数时,最后结果为负数,当“-”的个数是偶数时,最后结果为正数.20.写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出来: -1.5,-534,+225,-2.8,7,+5.5.解:各数的相反数分别为: 1.5,534,-225,2.8,-7,-5.5.在数轴上表示略.综合题21.如图所示,已知A ,B ,C ,D 四个点在一条没有标明原点的数轴上.(1)若点A 和点C 表示的数互为相反数,则原点为点B ; (2)若点B 和点D 表示的数互为相反数,则原点为点C ;(3)若点A 和点D 表示的数互为相反数,在数轴上表示出原点O 的位置. 解:原点在B 和C 中间的点上,图略.1.2.4 绝对值 第1课时 绝对值基础题知识点1 绝对值的几何意义一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|,读作a 的绝对值. 如:数轴上一个点到原点的距离为5,则这个点所表示的数的绝对值为5. 1.(1)-3到原点的距离是3,所以|-3|=3;(2)0到原点的距离是0,所以|0|=0;(3)2.4到原点的距离是2.4,所以|2.4|=2.4.2.|2 018|的意义是数轴上表示2 018的点与原点的距离.3.在数轴上,绝对值为14,且在原点左边的点表示的数为-14. 知识点2 绝对值的计算4.(荆门中考)-2的绝对值是AA .2 B.-2 C.12 D.-125.(梧州中考)计算:|-15|=BA .-15 B.15 C .5 D.-56.(株洲中考)如图,数轴上点A 所表示的数的绝对值为AA.2B.-2C .±2 D.以上均不对 7.(鄂州中考)-12的绝对值的相反数是BA.12B.-12C .2 D.-2 8.在有理数中,绝对值等于它本身的数有DA .一个 B.两个 C .三个 D.无数个9.计算:|-3.7|=3.7,-(-3.7)=3.7,-|-3.7|=-3.7,-|+3.7|=-3.7. 10.求下列各数的绝对值: (1)+2;解:|+2|=2.(2)-7.2;解:|-7.2|=-(-7.2)=7.2. (3)-17;解:|-17|=-(-17)=17.(4)-813.解:|-813|=-(-813)=813.知识点3 绝对值的性质一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.11.(1)①正数:|+5|=5,|12|=12;②负数:|-7|=7,|-15|=15; ③零:|0|=0;(2)根据(1)中的规律发现:不论正数、负数和零,它们的绝对值一定是非负数. 12.(黔西南望谟县期末)若|x +1|+|y -12|=0,则x =-1,y =12.13.(1)绝对值是4的数有几个,各是什么?(2)绝对值是0的数有几个,各是什么?(3)是否存在绝对值是-5的数,为什么?解:(1)绝对值是4的数有两个,它们分别是4和-4. (2)绝对值是0的数只有一个,是0. (3)绝对值是-5的数不存在.理由:任意数的绝对值大于或等于0.易错点 忽视绝对值等于一个正数的数有两个 14.若|a|=6,则a =DA .6 B.-6 C .8 D.±6中档题15.(教材P14习题T8变式)(咸宁中考)如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是C16.(天水中考)若x 与3互为相反数,则|x +3|等于AA .0 B.1 C.2 D.317.(丽水中考)如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是BA.-4B.-2 C .0 D.4 18.(1)若|x|=|-2|,则x =±2; (2)若|m|=13,且m <0,则m =-13.19.化简: (1)-|-3|;解:原式=-3.(2)-|-(-7.5)|;解:原式=-|7.5|=-7.5.(3)+|-(+7)|.解:原式=+|-7|=7.20.计算:(1)|-18|+|-6|; 解:原式=18+6=24.(2)|-36|-|-24|; 解:原式=36-24=12.(3)|-313|×|-34|;解:原式=103×34=52.(4)|-0.75|÷|-74|.解:原式=34×47=37.综合题21.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正,向北为负,他这天下午行车里程如下(单位:km):+15,-3,+14,-11,+10,+4,-26.(1)小李在送第几位乘客时行车里程最远?(2)若汽车耗油量为0.1 L/km ,这天下午汽车共耗油多少升? 解:(1)小李在送最后一位乘客时行车里程最远,是26 km.(2)0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L). 答:这天下午汽车共耗油8.3 L.第2课时 比较大小基础题知识点1 利用数轴比较大小在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数. 如:如图,比较大小:a <b ,0>a ,0<b.1.如图,下列说法中正确的是BA.a >bB.b >a C .a >0 D.b>02.如图所示,根据有理数a ,b ,c 在数轴上的位置,可知a ,b ,c 的大小关系是AA.a>b>cB.a>c>b C .b>c>a D.c>b>a3.有理数a 在数轴上的位置如图所示,则a ,-a ,-1的大小关系是CA.-a<a<-1B.-a<-1<a C .a<-1<-a D.a<-a<-1 4.大于-2且小于3的整数有-1,0,1,2.5.请画一条数轴,在数轴上表示下列各数,并用“<”号将这些数连接起来: -5,313,-2.5,0,-34,+1.解:如图:-5<-2.5<-34<0<+1<313.知识点2 利用法则比较大小有理数比较大小的规定:一般地,(1)正数大于0,0大于负数,正数大于负数; (2)两个负数,绝对值大的反而小. 6.(南宁中考)下列数中,最大的是DA .-2 B.0 C.-3 D.1 7.(贵阳中考)下列整数中,小于-3的整数是AA .-4 B.-2 C.2 D.3 8.(崇左中考)比较大小:0>-2(填“>”“<”或“=”).9.若a =-78,b =-58,则a ,b 的大小关系是a <b(填“>”“<”或“=”).10.写出一个小于-3的分数:答案不唯一,如:-323等.11.比较下列各对数的大小: (1)-(-3)和|-2|; 解:-(-3)>|-2|.(2)-(-4)和|-4|; 解:-(-4)=|-4|.(3)-45和-23;解:-45<-23.(4)-(-7)和-1. 解:-(-7)>-1.12.在一次游戏结束时,5个队的得分如下(答对得正分,答错得负分),A 队:-50;B 队:150;C 队:-300;D 队:0;E 队:100.请把这些队的得分按低分到高分排序.这次游戏的冠军是哪个队?解:-300<-50<0<100<150,这次游戏的冠军是B 队.易错点 误以为绝对值小于某正数的所有整数只有非负数,从而漏解13.绝对值小于6的整数有11个,它们分别是±5,±4,±3,±2,±1,0;绝对值大于3且小于6的整数是±5,±4.中档题14.下列说法不正确的是DA .两个有理数,绝对值大的数离原点远B .两个有理数,其中较大的在右边C .两个负有理数,其中较大的离原点近D .两个有理数,其中较大的离原点远 15.(黔南月考)下列式子中成立的是BA .-|-5|>4 B.-3<|-3| C .-|-4|=4 D.|-5.5|<516.(遵义桐梓县期中)若a ,b 为有理数,a >0,b <0,且|a|<|b|,则a ,b ,-a ,-b 的大小关系是C A.b <-a <-b <a B .b <-b <-a <a C .b <-a <a <-b D .-a <-b <b <a17.(黔东南锦屏县期中)若|x|=2,|y|=5,且x >y ,则x =±2,y =-5. 18.比较下列每组数的大小: (1)-(+3)与0;解:化简:-(+3)=-3,因为负数小于零,所以-(+3)<0.(2)-45与-|-34|;解:化简:-|-34|=-34,因为|-45|=45=1620,|-34|=34=1520,且1620>1520,所以-45<-|-34|.(3)-π与-|-3.14|.解:化简:-|-3.14|=-3.14,因为|-π|=π,|-3.14|=3.14,且π>3.14, 所以-π<-|-3.14|.19.画一条数轴,在数轴上表示下列各数,并把这些数由大到小用“>”号连接起来. 3.5,3.5的相反数,-12,绝对值等于3的数,最大的负整数.解:各数分别为:3.5,-3.5,-12,±3,-1.在数轴上表示如图:这些数由大到小用“>”号连接为: 3.5>3>-12>-1>-3>-3.5.20.下表记录了我国几个城市某年一月份的平均气温:(1)(2)这几个城市从北向南的顺序依次是哈尔滨、北京、南京、武汉、广州,请根据表中数据分析地理位置与气温变化的关系.解:(1)-18.5 ℃<-4.6 ℃<2.6 ℃<3.8 ℃<13.2 ℃. (2)越往南平均气温越高.小专题1 绝对值的应用类型1 利用绝对值比较大小 1.比较下列各对数的大小:(1)-0.1与-0.2;解:因为|-0.1|=0.1,|-0.2|=0.2,且0.1<0.2, 所以-0.1>-0.2.(2)-45与-56;解:因为|-45|=45=2430,|-56|=56=2530,且2430<2530,所以-45>-56.(3)-821与-|-17|.解:-|-17|=-17.因为|-821|=821,|-17|=17=321,且821>17,所以-821<-|-17|.类型2 利用绝对值的性质求字母的值2.已知|a|=3,|b|=13,且a <0<b ,则a ,b 的值分别为BA .3,13 B.-3,13 C .-3,-13 D.3,-133.(镇江中考)若有理数a 满足|a -12|=32,则a 对应于图中数轴上的点可以是A ,B ,C 三点中的点B.4.如果|a|=8,|b|=5,且a<b ,试求a ,b 的值. 解:因为|a|=8,所以a =±8. 因为|b|=5,所以b =±5.因为a<b ,所以a =-8,b =5或a =-8,b =-5.5.根据|x|是非负数,且非负数中最小的数是0,解答下列问题: (1)当x 取何值时,|x -2 018|有最小值?这个最小值是多少? (2)当x 取何值时,2 019-|x -1|有最大值,这个最大值是多少? 解:(1)当x =2 018时,|x -2 018|有最小值,这个最小值是0. (2)当x =1时,2 019-|x -1|有最大值,这个最大值是2 019.类型3绝对值在生活中的应用6.一只可爱的小虫从点O出发,在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1 cm就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?解:小虫爬行的总路程为|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm).小虫得到的芝麻数为54×2=108(粒).答:小虫一共可以得到108粒芝麻.周周练(1.1~1.2)(时间:45分钟 满分:100分)一、选择题(每小题3分,共30分)1.(遵义中考)如果+30 m 表示向东走30 m ,那么向西走40 m 表示为BA .+40 m B.-40 m C .+30 m D.-30 m 2.(玉林中考)12的相反数是AA .-12 B.12 C .-2 D.23.如图,在数轴上点A 表示的数可能是CA.1.5B.-1.5 C .-2.6 D.2.6 4.在0,1,-2,-3.5这四个数中,是负整数的是CA .0 B.1 C .-2 D.-3.5 5.(六盘水中考)大米包装袋上(10±0.1)kg 的标识表示此袋大米重A A .(9.9~10.1)kg B.10.1 kg C .9.9 kg D.10 kg6.(咸宁中考)下表是某市四个景区今年2月份某天6时的气温,其中气温最低的景区是CA.潜山公园7.(遵义桐梓县期中)若|2a|=-2a ,则a 一定是DA .正数 B.负数 C .正数或零 D.负数或零 8.下列说法,不正确的是B A .绝对值最小的有理数是0B .在数轴上,右边的数的绝对值比左边的数的绝对值大C .数轴上的数,右边的数总比左边的数大D .离原点越远的点,表示的数的绝对值越大 9.下列各对数中,相等的是B A .-(-34)和-0.75B .+(-0.2)和-(+15)C .-(+1100)和-(-0.01)D .-(-315)和-(+165)10.绝对值小于11.1的整数有DA .11个 B.12个 C .22个 D.23个二、填空题(每小题3分,共24分) 11.(遵义月考)比较大小:0>-0.01.12.一个数既不是正数,也不是负数,这个数是0.13.点A ,B 在数轴上的位置如图所示,则线段AB 的长度为7.14.若|a -1|+|b -3|=0,则a +b =4.15.有理数中,最小的正整数是1,最大的负整数是-1.16.从数轴上表示-1的点出发,向左移动2个单位长度到点B ,则点B 表示的数是-3,再向右移动5个单位长度到达点C ,则点C 表示的数是+2.17.如图,将一刻度尺放在数轴上(数轴的单位长度是1 cm),刻度尺上“1 cm ”和“9 cm ”分别对应数轴上的-3和x ,那么x 的值为5.18.观察下列各数:-12,23,-34,45,-56,…,根据它们的排列规律写出第2 018个数为2 0182 019.三、解答题(共46分)19.(16分)计算: (1)|-21|+|+6|; 解:原式=21+6=27.(2)|-2 019|-|+2 018|; 解:原式=2 019-2 018=1.(3)|+223|×|-9|;解:原式=223×9=24.(4)|-34|÷|-178|.解:原式=34÷178=25.20.(9分)已知一组数:|-2|,-2,+(-0.5),-1.5,1.5,0. (1)画一条数轴,并把这些数用数轴上的点表示出来; (2)把这些数分别填在下面对应的集合中: 负数集合:{-2,+(-0.5),-1.5,…}; 分数集合:{+(-0.5),-1.5,1.5,…}; 非负数集合:{|-2|,1.5,0,…};(3)请将这些数按从小到大的顺序排列.(用“<”号连接) 解:(1)如图:(3)-2<-1.5<+(-0.5)<0<1.5<|-2|.21.(10分)北京航天研究院所属工厂,制造“神舟十号”飞船上的一种螺母,要求螺母内径可以有±0.02 mm的误差,抽查5个螺母,超过规定内径的毫米数记作正数,没有超过规定内径的毫米数记作负数,检查结果如下:+0.01,-0.018,+0.026,-0.025,+0.015.(1)指出哪些产品是合乎要求的?(即在误差范围内的)(2)指出合乎要求的产品中哪个质量好一些?(即最接近规定尺寸)解:(1)+0.026>0.02,-0.025<-0.02,不在要求范围内,故不合乎要求,其他均合乎要求,故答案为+0.01,-0.018,+0.015.(2)绝对值越接近0,质量越好,+0.01到0的距离小于-0.018和+0.015到0的距离,最接近0,所以质量更好,故答案为+0.01.22.(11分)(黔东南凯里市期中)一辆货车从超市出发,向东走了2 km到达小彬家,继续向东走了2.5 km到达小舒家,又向西走了8.5 km到达小明家,最后回到超市.(1)以超市为原点,向东为正方向,用1 cm表示1 km画出数轴,并在数轴上表示出小彬、小明、小舒家的位置;(2)小明家距小彬家多远?(3)货车一共行驶了多少千米?解:(1)如图所示.(2)在数轴上,表示小明家的点与表示小彬家的点距离6个单位长度,所以小明家距小彬家6 km.(3)|2|+|2.5|+|8.5|+|8.5-2-2.5|=17(km).答:货车一共行驶了17 km.1.3 有理数的加减法 1.3.1 有理数的加法 第1课时 有理数的加法法则基础题知识点1 有理数的加法法则有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0;(3)一个数同0相加,仍得这个数.如:在每题后面的横线上填写和的符号和结果: (1)(-3)+(-5)=-(3+5)=-8; (2)(-16)+6=-(16-6)=-10.1.下列各式的结果,符号为正的是CA .(-3)+(-2) B.(-2)+0 C .(-5)+6 D.(-5)+5 2.(北海中考)计算(-2)+(-3)的结果是AA .-5 B.-1 C .1 D.5 3.(遵义期末)计算:(-12)+5=BA .7 B.-7 C .17 D.-17 4.(玉林中考)下面的数与-2的和为0的是AA .2 B.-2 C.12 D.-125.如果两个数的和是正数,那么DA .这两个数都是正数B .一个为正,一个为零C .这两个数一正一负,且正数的绝对值较大D .必属上面三种情况之一 6.计算:(1)-9+(-11); (2)15+(-7); 解:原式=-20. 解:原式=8.(3)-7+5; (4)120+(-120); 解:原式=-2. 解:原式=0.(5)0+(-12); (6)-2.5+(-3.5).解:原式=-12. 解:原式=-6.知识点2 有理数加法的应用7.(十堰中考)气温由-2 ℃上升3 ℃后是AA .1 ℃ B.3 ℃ C .5 ℃ D.-5 ℃8.一个物体在数轴上做左右运动,规定向右为正,按下列方式运动,列出算式表示其运动后的结果: (1)先向左运动2个单位长度,再向右运动7个单位长度.列式:-2+7; (2)先向左运动5个单位长度,再向左运动7个单位长度.列式:-5+(-7).9.一艘潜艇所在高度为-80 m ,一条鲨鱼在潜艇上方30 m 处,则鲨鱼所在高度为-50 m.10.已知飞机的飞行高度为10 000 m ,上升3 000 m 后,又上升了-5 000 m ,此时飞机的高度是8 000m. 易错点 对异号两数相加的法则理解不透彻 11.计算:(-3.16)+2.08. 解:原式=-(3.16-2.08)=-1.08.中档题12.(安顺中考)计算-|-3|+1结果正确的是CA .2 B.3 C.-2 D.4 13.有理数a ,b 在数轴上对应的位置如图所示,则a +b 的值AA.大于0B.小于0 C .小于a D.大于b 14.下列结论不正确的是D A .若a>0,b>0,则a +b>0 B .若a<0,b<0,则a +b<0C .若a>0,b<0,且|a|>|b|,则a +b>0D .若a<0,b>0,且|a|>|b|,则a +b>015.(遵义桐梓县期中)若x 是-3的相反数,|y|=5,则x +y 的值为D A .2 B.8 C .-8或2 D.8或-216.已知A 地的海拔为-53 m ,而B 地比A 地高30 m ,则B 地的海拔为-23m. 17.已知两个数556和-823,这两个数的相反数的和是256.18.计算:(1)(-112)+(+23);解:原式=-56.(2)3.51+(-7.02); 解:原式=-3.51.(3)315+(-225);解:原式=45.(4)-3.75+(-214).解:原式=-6.综合题19.已知|m|=2,|n|=3,求m+n的值.解:因为|m|=2,所以m=±2.因为|n|=3,所以n=±3.当m=2,n=3时,m+n=2+3=5;当m=2,n=-3时,m+n=2+(-3)=-1;当m=-2,n=3时,m+n=(-2)+3=1;当m=-2,n=-3时,m+n=(-2)+(-3)=-5.故m+n的值为±1或±5.第2课时有理数的加法运算律基础题知识点1有理数的加法运算律加法交换律:两个数相加,交换加数的位置,和不变.即a+b=b+a;加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即(a+b)+c=a+(b+c).1.(遵义月考)计算5-3+7-9+12=(5+7+12)+(-3-9)是应用了DA.加法交换律B.加法结合律C.分配律D.加法交换律与结合律2.在下面的计算过程后面填上运用的运算律.计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)(加法交换律)=[(-2)+(-5)]+[(+3)+(+4)](加法结合律)=(-7)+(+7)=0.3.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.4.运用加法的运算律计算下列各题:(1)24+(-15)+7+(-20);解:原式=(24+7)+[(-15)+(-20)]=31+(-35)=-4.(2)18+(-12)+(-18)+12;解:原式=[18+(-18)]+[(-12)+12]=0+0=0.(3)0.36+(-7.4)+0.5+(-0.6)+0.14;解:原式=(0.36+0.14)+[(-7.4)+(-0.6)]+0.5=0.5+(-8)+0.5=-7.(4)(-51)+(+12)+(-7)+(-11)+(+36).解:原式=[(-51)+(-7)+(-11)]+[(+12)+(+36)]=-69+48。

新人教版七年级上册数学第1章有理数全章教案

新人教版七年级上册数学第1章有理数全章教案

第一章有理数§1.1正数和负数(一)教学目标:知识与技能:掌握正数和负数的概念,能区分两种不同意义的量,会用符号表示正数和负数;培养学生观察、比较和概括的思维能力。

过程与方法:教法主要采用启发式教学学法引导学生自主探索去观察、交流、归纳.情感、态度、价值观:在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。

教学重点:实际需要产生正数与负数.教学难点:正确了解负数,能准确地举出具有相反意义的量的典型例.教学过程:(一)、提出问题在生产和生活中经常会遇见用数来表示问题,例如①天气预报2003年11月某天北京的温度为-3—30C,它的确切含义是什么?②有三个队参加足球比赛,红队胜黄队(4∶1),蓝队胜红队(1∶0),黄队胜蓝队(1∶0),如何按净胜球排名?③某机器零件的长度设计为100mm,加工图纸标注的尺寸为100±0.5(mm),这里的±0.5代表什么意思?(二)、试一试章前图中表示温度、净胜球、加工允许误差时,用到了-3,3,2,-2,0,+0.5,-0.5等等.请同学们那些数是以前没有学过的数,有–3,-2,-0.5.实际意义是零下3度,净输2球,小于尺寸0.5mm.(三)、探索新数–3,-2,-0.5有什么特征?(学生回答)正数:以前学过的大于0的数(像1、2.5、133、48等的数叫正数)七年级(上)数学教案负数:在正数前面加上负号“-”的数.(像-1、-2.5,-13,-48的数叫负数,读作负1、负2.5、负13、负48.)有时正数前面也可以加上正号“+”,正号“+”可以省略,但负号“-”一定不可以省略.一个数前面的“+”“-”叫它的符号(性质符号).强调0既不是正数,也不是负数,它是中性数.师:(以温度计为例)温度计中的0不是表示没有温度,它通常表示水结成冰时的温度,是零上温度与零下温度的分界点,因此得出:零既不是正数也不是负数。

有理数人教版数学七年级上第一章第一课时教案

有理数人教版数学七年级上第一章第一课时教案

1.2 有理数-第一课时(参考课时:2课时)1 教学目标1.1 知识与技能:①使学生理解整数、分数、有理数的概念。

并会判断一个给定的数是整数或分数或有理数。

②会初步对有理数进行分类,培养学生观察、比较和概括的思维能力。

③使学生知道数轴上有原点、正方向和单位长度,会画数轴,并用数轴上的点表示整数或分数。

④能将已知数在数轴上表示出来,能说出数轴上的已知点所表示的数,知道有理数都可以用数轴上的点表示。

1.2 过程与方法:①采用启发式教学,设法引导学生去归纳、整理。

②引导同学动笔画,学生自主探索去观察、比较、交流1.3 情感态度与价值观:①在传授知识、培养能力的同时,注意培养学生勇于探索的精神,通过本节课的教学,渗透对立统一的辩证思想。

②向学生渗透对立统一的辩证唯物主义观点及数形结合的数学思想。

2 教学重点/难点/易考点2.1 教学重点①整数、分数、有理数的概念。

②数轴的三要素和有理数在数轴上的表示方法教学。

2.2 教学难点①给一个数能正确说出它属于的集合。

②有理数与数轴上点的对应关系。

3 专家建议“数学教学是数学活动的教学”。

我们进行数学教学,不能只给学生讲结论,因为任何数学理论总是伴随着一定的数学活动,应该暴露数学活动过程。

也只有在数学活动的教学中,学生学习的主动性,才能得以发挥。

这一节课,从数的分类,到数轴的介绍,不是简单地告诉学生结论和方法,然后进行大量的重复性练习,而是在教师的指导下,让学生自己去思索、判断,自己得出结论,从而达到培养学生观察、归纳、概括能力的目的。

4 教学方法情境引入——引导同学进行数的分类——有理数概念介绍——有理数的分类——集合概念初步——数轴介绍及画法——数轴与有理数对应关系——课程小结——巩固练习5 教学用具6 教学过程6.1 情境引入2004年雅典奥运会中国队战绩辉煌。

在男子110米栏决赛中,中国选手刘翔以12.91秒的成绩夺得金牌,这个成绩打破了12.96的奥运会纪录,平了世界纪录,实现了中国男子田径金牌0的突破。

人教版初中七年级上册数学教案(完整版)word版本

人教版初中七年级上册数学教案(完整版)word版本

七上数学教案有理数第一章教学目标.知识与技能 1①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算..过程与方法 2通过本章的学习,培养学生应用数学知识解决实际问题的能力..情感、态度与价值观 3激励学通过师生共同参与的教学活动,结合生活实例引入新课,生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.难点、教学重点这一章的主要学习目标都可以归结到有理.重点:有理数的运算运算,数轴、相反数、绝对值---数的运算上,比如有理数的有关概念法则直接目标都是落实到有理数的运近似数等内容的学习,,运算律,算上.. 有理数法则的理解,难点:负数概念的建立,绝对值意义课时分配课时内容1 正数和负数1 . 14 有理数2 . 15 有理数的加减法3 . 14 . 1 4 有理数的乘除法4 有理数的乘方5 . 12 单元复习与验收教学建议(即联系实际生活的典型例子)教师在教学过程中注意从实际问题在教师的引导和学生大胆尝试的过程中,让学生参与数学活动,引入,从而使学生自得知识,分析问题和解决问题,使学生自觉地发现问题,自觅规律..在进行有理数的有关概念的教学时: 1•)注意从实际问题引入,使学生知道数学知识来源于生活.1(如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.()注意借助数轴的直观性讲述相反数、绝对值,体会用字母2使学生对概念的认识能更深一步,,•体现代数的特点表示数的优越性,并为今后学习整式、方程打下基础..讲解有理数运算时,有理数加法及乘法法则的导出借助数轴 2在此,会更直观更形象更易于学生理解,法则要着重强调符号的确定基础上注意绝对值的运算,提高学生计算准确率.正数和负数1 .1教学目标.知识与技能 1①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量..过程与方法 2训练学生运,通过正负数的学习,培养学生应用数学知识的意识用新知识解决实际问题的能力..情感、态度与价值观 3让学生体激发学生学习数学的兴趣,通过师生共同的教学活动,验到数学知识来源于生活并为生活服务.教学重点难点会运用正负数表示具有相会判断一个数是正数还是负数,重点:的含义.0•反意义的量,理解难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课由同学感受高于水平面和珠穆朗玛峰和吐鲁番盆地,课件展示低于水平面的不同情况.(二)合作交流,解读探究.举出一些生活中常遇到的具有相反意义的量,如温度是零上 1米和50张课桌,汽车向东80张课桌与卖出90‣,买进5‣和零下7米等.120向西你能用小学算术中的以上都是一些具有相反意义的量,想一想数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?. 2我们把其中一种意义的量,为了用数表示具有相反意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量(读作负)“-”负的量用学过的数前面加上用算述里学过的数表示,.号来表示(零除外)一位同学任意说出具有相反每组同学之间相互合作交流,活动意义的两个量,由其他同学用正负数表示.是正数还是负0什么样的数是负数?什么样的数是正数?讨论• 数?号的数,“-”负数是在正数前面加的数,0正数是大于【总结】既不是正数,也不是负数,是正数与负数的分界.0(三)应用迁移,巩固提高举出几对具有相反意义的量,并分别用正、负数表示.1 例【提示】、“后”与“前”,“下降”与“上升”具有相反意义的量有“收入”与“支出”等.、“得到”与“失去”、“高于”与“低于”旨在考查学生用正负数表示具这是一道开放性试题,【点评】有相反意义量的能力.克0.02在某次乒乓球检测中,一只乒乓球超过标准质量2 例克表示什么?0.03那么-•克,0.02记作+0.03表示比标准质量低【答案】克.可记为6.4%年美国的商品进出口总额比上年减少3 2001例.7.5% +可记为7.5%,中国增长-6.4% 备选例题•个时间单位,1分钟为45²山东淄博)某项科学研究以2004(10,0时为10并记为每天上午时以后记为正.例10时以前记为负,(应记为7:45上升依此类推,等等.1记为10:45,-1记为9:15如,)A.3B.-3C.-2.5D.-7.45分135相差10与7:45读懂题意是解决本题的关键.【点拨】钟.B 【答案】(四)总结反思,拓展升华正数就是我为了表示现实生活中具有相反意义的量引进了负数.们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能既不是正数0.另外,说“有正号的数是正数,有负号的数是负数”也不是负数.,2,-1填空. 1,81 个数是–81…第 -8 , -7 , 6 ,-5,4,-3.2005 个数是–2005第数字绝对值的排列是按由小到大的顺序,通过观察可见,【提示】符号是负正相间,第奇数个数为负,第偶数个数为正.从绝对值和符号两方面考虑.,本题属于找规律问题【点评】(存是小张同学一周中简记储蓄罐中钱的进出情况表1-1-1表. 2:)入记为“+”表 1-1-1 六五四三二一日星期(元)-2.6 +10 -0.9 -2.1 -1.2 +5.0 16 +)本周小张一共用掉了多少钱?存进了多少钱?1(元.31元, 6.8【答案】)储蓄罐中的钱与原来多了还是少了?2(多了.【答案】)如果不用正、负数的方法记账,你还可以怎样记账?比较3(各种记账的优劣.【答案】用文字说明,但前者更简洁.,1个同学站成一排,从左到右每个人编上号:4.数学游戏: 3.(负号)表示“蹲”“-”,.用“+”表示“站”4,3,2个同4、第1,则第+4,-3,-2,+1)由一个同学大声喊:1(2学站,第,-1个同学蹲,并保持这个姿势,然后再大声喊:3、第个同学中有改变姿势的,则表示输了,4、第2,如果第+4,+3,-2;作小小的“惩罚”个同学顺序调整一下,但每个人记作4)增加游戏难度,把2(.的游戏;1自己原来的编号,再重复所有“命令”或“数据”•)这不仅仅是游戏哟!在电脑中,3(“翻译”没有特别的例如,表示的.(特别是二进制数)都是用有理数程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础.填空题 1(-吨记为20吨,那么浪费+30吨记为30)如果节约用水1吨.204)如果2(. -8 年前记作8,那么4年后记作+吨表示100吨,那么+7吨记作-7)如果运出货物3(运进货.吨100物,小阳体重减少了3,记作+3kg)一年内,小亮体重增加了4(. 2kg ,则小阳增长了2 kg米,下午0.5米,记作-0.5时,水位低于标准水位12.中午 20.5时,水位又上涨了5米,下午1水位上涨了•时,1 米.时的水位;5时和下午1)用正数或负数记录下午1(时水位高多少?12时的水位比中午5)下午2(1时,水位-5米;下午0.5时,水位1)下午1(【答案】(米)0.5+1=1.5)2(米提升能力公斤,现测得甲、乙、丙三袋粮食重50.粮食每袋标准重量是 3公斤.如果超重部分用正数表示,49.8公斤,49公斤,52量如下:请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数..-0.2,-1, +2【答案】.有没有这样的有理数,它既不是正数,也不是负数? 4有,是【答案】.0.下列各数中哪些是正数?哪些是负数? 5116,3.14,0,-1.3,-2,4,,,-0.02,15- 37716,0.02,15;负数:-,3.14,1.3,4,正数:【答案】711-2,-371开放探究12.同学聚会,约定在中午 6点到会,早到的记为正,迟到的记•点,-1.5点,最迟到的同学记为3为负,结果最早到的同学记为+你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?点半到,最1点到,最迟的是下午9最早的同学上午【答案】个小时.4.5早的比最迟的早到.新中考题 7‣,15‣,冷库B的温度是-5²玉林)冷库A的温度是-2004(则温度高的是冷库• .A教学反思:也是非常重要的一节课,本节课是学生进入初中的第一节数学课为学生课堂上我主要采用了体验探究的教学方式,.负数的引入-----学生在动手使学生直接参与教学活动,提供了大量亲自操作的机会,进而通过教师的引导加工操作中对抽象的数学知识获取感性的认识,使学生的学习过程变为一个再从而获得新知,总结上升为理性认识,感受在解决问题的同时让学生体会到获取知识的方法,创造的过程,为学生今后获取新知以及探索和发现新过程中与他人合作的重要性,. 知打下基础有理数2 .11 有理数1 .2.教学目标.知识与技能 1①理解有理数的意义.②能把有理数按要求分类.在有理数分类的作用.0③了解.过程与方法 2培养学生分类讨论的意识和能正确地进行分类经历本节的学习,的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课我们认识的数除,通过上节课的学习同学们已经知道讨论交流了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究512…5.2, -7.4,-3,,,0,-10,-9,-7,5.7,3学生列举:365你能说说这些数的特点吗?议一议、分数,也有负0学生回答,并相互补充:有小学学过的整数、整数、负分数.说明:我们把所有的这些数统称为有理数.你能对以上各种类型的数作出一张分类表吗?试一试整正数零整数负整数有理数正分数分数负分数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数那么整数又包所以有理数可分为整数和分数两大类,统称为有理数,含那些数?分数呢?(正数、那可不可以按数的性质以上按整数和分数来分,做一做负数)来分呢,试一试.正整数正有理数正分数有理数零负整数负有理数负分数)数的集合3(把所有正数组成的集合,叫做正数集合.分数集合、整数集合、什么是负数集合、试着归纳总结,试一试有理数集合.(三)应用迁移,巩固提高把下列各数填入相应的集合内:1 例812-89 ,0.67,10.l,10%,-0.23456,-,2004,0,3.1416,57… … … …分数集合整数集合负数集合正数集合【答案】228,2004,10%,,-3.1416,-7510.1,0.67,...-0.23456,-89,...负数集合正数集合812,,-3.1416,-570,2004,-89,...-0.23456,10%,10.1,0.67,...分数集合整数集合以下是两位同学的分类方法,你认为他们分类的结果正确2 例吗?为什么?正整数正有理数正分数有理数负整数负有理数负分数正数整数有理数分数负数零两者都错,前者丢掉了零,后者把正负数、整数、分【答案】. 分类标准不清楚,数混为一谈以上是对各类有理数的特点及有理数的分类进行的训【点评】练,基础性强,需要重视以下结论中正确的有(B)3例是最小的正整数0①是最小的有理数0②既是非正数,也是非负数0④不是负数0③个 D.4个C.3个 B.2个 A.1可能是什么样的数,一定为a如果用字母表示一个数,那4 例正数吗?与你的伙伴交流一下你的看法..0可能是正数,可能是负数,也可能是a不一定,【答案】全面a要求学生能用分类的思想对此题开放性较强.【点评】. 体会用字母表示数的意义,认识备选例题²浙江温州)观察下列数,按某种规律在横线上填入适当2004(6243,…你的理解是,________,,,的数,并说明你的理由.7354._________2,找出各项数的特点是本题关键所在,第一个数为【点拨】3所得的数.1后一个数是前一个数的分子,分母都加5【答案】6(四)总结反思,拓展升华提问:今天你获得了哪些知识?今天我们学习了有理数的定义然后教师总结:由学生自己小结,和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,”的含义.0要特别注意“的圈中填上适合的数,使得圈内的数依次1-2-1请你在图.1有理数集、正数集、分数集、负数集.•为整数集、所示.1-2-2答案不唯一,如图【答案】381120.4-5正有理数.有理数按正、负可分为 2零负有理数整数按整数分,可分为分数)你能自己再制定一个标准,对有理数进行另一种分类吗?1()生活中,我们也常常对事物进行分类,请你举例说明.2(的数,等于1的数,小于1)如将有理数分成大于1(【答案】的数.1例如对人按年龄可分为:)2(青年、少年、儿童、幼儿、婴儿、中年、老年..下面两个圈分别表示负数集和分数集,你能说出两个图的重 3叠部分表示什么数的集合呢?分数集合负数集合负分数答案(五)课堂跟踪反馈夯实基础.把下列各数填入相应的大括号内: 1 11-0.3 ,50%,0,3,-3,,0.125, -7220} ,3,{-7)整数集合1(11-0.3} ,50%,-3,,{0.125)分数集合2( 221-0.3} ,{-3)负分数集合3(2150%} ,0,3,,{0.125)非负数集合4(211-0.3} ,50%,0,3,-3,,0.125,{-7)有理数集合5(22.下列说法正确的是(D) 2不是自然数0B.A.整数就是自然数是整数而不是正数0D.C.正数和负数统称为有理数325(千克,)0.1±25(某商店出售的三种规格的面粉袋上写着.)千克的字样,从中任意两袋,它们质量相0.3±25(,千克)0.2•±千克. 0.6 差最大的是提升能力可以表示数,在我们现在所学的范围内,你能否试着a.字母 4可以表示什么样的数?a说明a【答案】,负整数或负分数.0可以表示正整数,正分数,个5.某校对初一新生的男生进行了引体向上的测试,以能做 5名男10超过的次数记为正数,不足的次数记为负数,其中•为标准,生的测试成绩如下: 2 -1 2 -1 3 0 -1 -2 1 0 -名男生有百分之几达标(即达标率)?10)这1(名男生共做了多少个引体向上?10)这2()1(【答案】(个)10-1=49³5)2(;50%开放探究.应用创新题 68若向东再米,12如果一个人从A地出发先走+米,8米记作+米,你能判断这个人此时在何20米,最后走-18米,又走+15走-处吗?米处.5在A地西边【答案】.新中考题 7年元月某一天的天气预报中,2004²内蒙古赤峰)我市2004(克旗的最低温度是-‣,22宁城县的最低温度是-这一天宁城‣,26(A)县的最低气温比克旗的最低气温高-8. D‣8. C‣-4. B‣4. A ‣(六)资料采撷原始的计算工具最早人类初期的计算主要是计数.计算是人类的一种思维活动,用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的,说明人们常小石头、贝壳、绳子等.中国有句古话叫“屈指可数”用手指来计算简单的数.名珍藏着一件从秘鲁出土的古代文物,在美国纽约的博物馆里,“基普”叫传基普是古人用来计数和记事的.意即打了绳结的绳子.,波斯国王在一次征战中曾命令一支部队守桥,他•世纪,6说公元前一要他们每守一天解开一个结,把一条打了结的皮带交给留守将士,直守到皮带上的结全部解完了才准撤退.人们用在绳子上打结的方法来计数和记在没有文字的我国古代,事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例这样,晚上必须圈到栅栏里.早晨放牧到草地里,他们饲养的羊,如,傍出来一只就往罐子里扔一块小石子;早晨从栅栏里放出来的时候,如果石子全部进去一只就从罐子里拿出一块小石子.晚羊进栅栏时,拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:为学生提供合我主要采用了探究式的教学方式,这节课的教学,作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问,课堂气氛活跃,学习积极性高学生直接参与教学活动,.探寻结果,题另外教师也可以从学生的回答.抽象的问题简单化,通过学生的讨论,有方法型的,中受到启发教师参与学生的讨论可以增加.有技巧型的取长补,学生在讨论的过程中可以相互学习,学生的学习兴趣和动力. 深刻体会到与他人合作的重要性,短2 .2.1 数轴教学目标.知识与技能1①掌握数轴三要素,能正确画出数轴.能说出数轴上已知点所表示的②能将已知数在数轴上表示出来,数..过程与方法 2逐步形成应用①使学生受到把实际问题抽象成数学问题的训练,数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法..情感、态度与价值观 3反过来又服务于实践的辩证使学生进一步形成数学来源于实践,唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课50m在一条东西方向的马路上,有一个学校,学校东课件展示100m处分别有一个书店和一个超市,学校西150m•和西处分160m和表示书店、超市、邮局、D、C、B、A别有一个邮局和医院,分别用医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究0•师:对照大家画的图,为了使表达更清楚,我们把左右两边0的数分别用正数和负数来表示,即用一直线上的点把正数、负数、也就是本节内容──数轴.•都表示出来.)引导学生学会画数轴.1(点拨第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)由学生观察温度计的结构和数轴的结拿出教学温度计,第四步:构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?)有了以上基础,我们可以来试着定义数轴:2(规定了原点、正方向和单位长度的直线叫数轴.学生自己练习画出数轴.做一做4你能利用你自己画的数轴上的点来表示数试一试:,-3,1.5,7吗?0,-2的点在原点的什么位a则数轴上表示数是一个正数,a若讨论的点在原点的什么位置a置上?与原点相距多少个单位长度;表示-与原点又相距了多少个长度单位?•上?小结整数能在数轴上都找到点吗?分数呢?___________•都可以用数轴上的点表示__________所有的可见,都在原点的右边.______________都在原点的左边,(三)应用迁移,巩固提高下列所画数轴对不对?如果不对,指出错在哪里.1 例43-25321210-1210-1②①③1-1-321-1-2④⑤⑥21-1-2⑦④③正确②错.没有正方向①错.没有原点【答案】⑦错.正方向⑥正确⑤错.单位长度不统一错.没有单位长度标错70 ,-,-3,1.5,2 4试一试:用你画的数轴上的点表示例 3【答案】ABCED5-1-41-2-5420-337,,D点表示--3,C点表示1.5,B点表示4图中A点表示3.0E点表示的点在原点的什么a是一个正数,则数轴上表示数a如果3 例的点在原点的什么位置上呢?a表示-•位置上?由数轴上数的特点不准得到,正数都在原点的右边,【提示】负数都在原点左边.原点所有的有理数都可以在数轴上找个点与它对应,【答案】右边的点表示正数,原点左边的点表示负数.数与数轴上的点结合,这是一种重要的数学思想,数【点评】形结合.下列语句:①数轴上的点又能表示整数;②数轴是一条直4 例③数轴上的一个点只能表示一个数;④数轴上找不到既不表示•线;正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)。

人教版初中七年级上册数学教案(完整版)

人教版初中七年级上册数学教案(完整版)

七上数学教案第一章有理数教学目标1.知识与技能①通过生活实例,了解学习有理数的必要性.②理解并掌握数轴、相反数、绝对值、有理数等有关概念.③通过本章的学习,掌握有理数的加、减、乘、除、乘方及简单的混合运算.2.过程与方法通过本章的学习,培养学生应用数学知识解决实际问题的能力. 3.情感、态度与价值观结合生活实例引入新课,通过师生共同参与的教学活动,激励学生学习数学的兴趣,让学生真正体验到数学知识来源于生活并服务于生活.教学重点、难点重点:有理数的运算.这一章的主要学习目标都可以归结到有理数的运算上,比如有理数的有关概念---数轴、相反数、绝对值,运算法则,运算律,近似数等内容的学习,直接目标都是落实到有理数的运算上.难点:负数概念的建立,绝对值意义,有理数法则的理解.课时分配内容课时1.1 正数和负数 11.2 有理数 41.3 有理数的加减法 51.4 有理数的乘除法 41.5 有理数的乘方 4单元复习与验收 2教学建议教师在教学过程中注意从实际问题(即联系实际生活的典型例子)引入,让学生参与数学活动,在教师的引导和学生大胆尝试的过程中,使学生自觉地发现问题,分析问题和解决问题,从而使学生自得知识,自觅规律.1.在进行有理数的有关概念的教学时:(1)注意从实际问题引入,使学生知道数学知识来源于生活.•如:从温度与海拔高度引入负数,从而得出有理数的概念;借助温度引出数轴,建立数(有理数)与形(数轴上的点)之间的联系.(2)注意借助数轴的直观性讲述相反数、绝对值,体会用字母表示数的优越性,体现代数的特点,•使学生对概念的认识能更深一步,并为今后学习整式、方程打下基础.2.讲解有理数运算时,有理数加法及乘法法则的导出借助数轴会更直观更形象更易于学生理解,法则要着重强调符号的确定,在此基础上注意绝对值的运算,提高学生计算准确率.1.1 正数和负数教学目标1.知识与技能①了解正数与负数的引入是实际生活的需要.②会判断一个数是正数还是负数.③会用正负数表示互为相反意义的量.2.过程与方法通过正负数的学习,培养学生应用数学知识的意识,训练学生运用新知识解决实际问题的能力.3.情感、态度与价值观通过师生共同的教学活动,激发学生学习数学的兴趣,让学生体验到数学知识来源于生活并为生活服务.教学重点难点重点:会判断一个数是正数还是负数,会运用正负数表示具有相反意义的量,理解0•的含义.难点:负数的引入和理解.教与学互动设计(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,由同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究1.举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东50米和向西120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?2.为了用数表示具有相反意义的量,我们把其中一种意义的量,如零上温度,前进、收入、上升、高出等规定为正的,而把与它相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算述里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一位同学任意说出具有相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?•【总结】正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界.(三)应用迁移,巩固提高例1 举出几对具有相反意义的量,并分别用正、负数表示.【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.【点评】这是一道开放性试题,旨在考查学生用正负数表示具有相反意义量的能力.例2 在某次乒乓球检测中,一只乒乓球超过标准质量0.02克记作+0.02克,•那么-0.03克表示什么?【答案】表示比标准质量低0.03克.例 3 2001年美国的商品进出口总额比上年减少 6.4%可记为-6.4% ,中国增长7.5%可记为+7.5% .备选例题(2004·山东淄博)某项科学研究以45分钟为1个时间单位,•并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上升7:45应记为() A.3 B.-3 C.-2.5 D.-7.45【点拨】读懂题意是解决本题的关键.7:45与10相差135分钟.【答案】 B(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数也不是负数.1.填空-1,2,-3,4,-5, 6 , -7 , -8 …第81个数是–81 ,第2005个数是–2005 .【提示】通过观察可见,数字绝对值的排列是按由小到大的顺序,符号是负正相间,第奇数个数为负,第偶数个数为正.【点评】本题属于找规律问题,从绝对值和符号两方面考虑. 2.表1-1-1是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):表1-1-1星期日一二三四五六(元)+16 +5.0 -1.2 -2.1 -0.9 +10 -2.6(1)本周小张一共用掉了多少钱?存进了多少钱?【答案】 6.8元,31元.(2)储蓄罐中的钱与原来多了还是少了?【答案】多了.(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.【答案】用文字说明,但前者更简洁.3.数学游戏:4个同学站成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复1.的游戏;(3)这不仅仅是游戏哟!在电脑中,•所有“命令”或“数据”都是用有理数(特别是二进制数)表示的.例如,没有特别的“翻译”程序,电脑就不明白你给屏幕上的卡通人下的是“站”还是“蹲”的命令,这时,就可输入正负数以区别不同的姿势.(五)课堂跟踪反馈夯实基础1.填空题(1)如果节约用水30吨记为+30吨,那么浪费20吨记为-20 吨.(2)如果4年后记作+4,那么8年前记作 -8 .(3)如果运出货物7吨记作-7吨,那么+100吨表示运进货物100吨.(4)一年内,小亮体重增加了3kg,记作+3,小阳体重减少了2 kg,则小阳增长了 2kg .2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,•水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?【答案】(1)下午1时,水位0.5米;下午5时,水位-1米(2)0.5+1=1.5(米)提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.【答案】 +2,-1,-0.2.4.有没有这样的有理数,它既不是正数,也不是负数?【答案】有,是0.5.下列各数中哪些是正数?哪些是负数?-15,-0.02,67,-171,4,-213,1.3,0,3.14,π【答案】正数:67,4,1.3,3.14,π;负数:-15,0.02,-1 71,-213开放探究6.同学聚会,约定在中午12点到会,早到的记为正,迟到的记为负,结果最早到的同学记为+3点,最迟到的同学记为-1.5点,•你知道他们分别是什么时候到的吗?最早到的同学比最迟到的同学早多少小时?【答案】最早的同学上午9点到,最迟的是下午1点半到,最早的比最迟的早到4.5个小时.7.新中考题(2004·玉林)冷库A的温度是-5℃,冷库B的温度是-15℃,•则温度高的是冷库A.教学反思:本节课是学生进入初中的第一节数学课,也是非常重要的一节课-----负数的引入.课堂上我主要采用了体验探究的教学方式,为学生提供了大量亲自操作的机会,使学生直接参与教学活动,学生在动手操作中对抽象的数学知识获取感性的认识,进而通过教师的引导加工总结上升为理性认识,从而获得新知,使学生的学习过程变为一个再创造的过程,同时让学生体会到获取知识的方法,感受在解决问题的过程中与他人合作的重要性,为学生今后获取新知以及探索和发现新知打下基础.1.2 有理数1.2.1 有理数教学目标1.知识与技能①理解有理数的意义.②能把有理数按要求分类.③了解0在有理数分类的作用.2.过程与方法经历本节的学习,培养学生分类讨论的意识和能正确地进行分类的能力.教学重点难点重点:会把已知各数填入相应的数集图里.难点:掌握有理数的两种分类.教与学互动设计(一)创设情境,导入新课讨论交流通过上节课的学习同学们已经知道,我们认识的数除了小学里所学的之外,还有另一类数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究学生列举:3,5.7,-7,-9,-10,0,13,25,-356, -7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数.说明:我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数说明:以上分类,若学生思考有困难,可加以引导:因为整数和分数统称为有理数,所以有理数可分为整数和分数两大类,那么整数又包含那些数?分数呢?做一做以上按整数和分数来分,那可不可以按数的性质(正数、负数)来分呢,试一试.有理数⎧⎧⎪⎨⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数零负整数负有理数负分数(3)数的集合把所有正数组成的集合,叫做正数集合.试一试 试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1 把下列各数填入相应的集合内: 127,3.1416,0,2004,-85,-0.23456,10%,10.l ,0.67,-89正数集合 负数集合 整数集合 分数集合 【答案】例2 以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?正数集合227,2004,10%,10.1,0.67,...负数集合-3.1416,-85,-0.23456,-89,...整数集合0,2004,-89,...分数集合127,-3.1416,-85,-0.23456,10%,10.1,0.67,...…………有理数⎧⎧⎪⎨⎪⎩⎨⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负分数有理数⎧⎪⎪⎪⎨⎪⎪⎪⎩正数整数分数负数零【答案】两者都错,前者丢掉了零,后者把正负数、整数、分数混为一谈,分类标准不清楚.【点评】以上是对各类有理数的特点及有理数的分类进行的训练,基础性强,需要重视例3以下结论中正确的有(B)①0是最小的正整数②0是最小的有理数③0不是负数④0既是非正数,也是非负数A.1个B.2个C.3个D.4个例4 如果用字母表示一个数,那a可能是什么样的数,一定为正数吗?与你的伙伴交流一下你的看法.【答案】不一定,a可能是正数,可能是负数,也可能是0.【点评】此题开放性较强.要求学生能用分类的思想对a全面认识,体会用字母表示数的意义.备选例题(2004·浙江温州)观察下列数,按某种规律在横线上填入适当的数,并说明你的理由.23,34,45,________,67,…你的理解是_________.【点拨】找出各项数的特点是本题关键所在,第一个数为23,后一个数是前一个数的分子,分母都加1所得的数.【答案】56(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和有理数的两种分类方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的含义.1.请你在图1-2-1的圈中填上适合的数,使得圈内的数依次为整数集、•有理数集、正数集、分数集、负数集.【答案】答案不唯一,如图1-2-2所示.2.有理数按正、负可分为⎧⎪⎨⎪⎩正有理数零负有理数-1250.4813按整数分,可分为⎧⎨⎩整数分数(1)你能自己再制定一个标准,对有理数进行另一种分类吗? (2)生活中,我们也常常对事物进行分类,请你举例说明. 【答案】 (1)如将有理数分成大于1的数,小于1的数,等于1的数.(2)例如对人按年龄可分为:婴儿、幼儿、儿童、少年、青年、中年、老年.3.下面两个圈分别表示负数集和分数集,你能说出两个图的重叠部分表示什么数的集合呢?答案 负分数 (五)课堂跟踪反馈 夯实基础1.把下列各数填入相应的大括号内: -7,0.125,12,-312,3,0,50%,-0.3 (1)整数集合{-7,3,0}(2)分数集合{0.125,12,-312,50%,-0.3} (3)负分数集合{-312,-0.3}(4)非负数集合{0.125,12,3,0,50%}分数集合负数集合(5)有理数集合{-7,0.125,12,-312,3,0,50%,-0.3}2.下列说法正确的是(D)A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数而不是正数3.某商店出售的三种规格的面粉袋上写着(25±0.1)千克,(25±0.2•千克),(25±0.3)千克的字样,从中任意两袋,它们质量相差最大的是 0.6 千克.提升能力4.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?【答案】a可以表示正整数,正分数,0,负整数或负分数.5.某校对初一新生的男生进行了引体向上的测试,以能做5个为标准,•超过的次数记为正数,不足的次数记为负数,其中10名男生的测试成绩如下:-2 -1 2 -1 3 0 -1 -2 1 0(1)这10名男生有百分之几达标(即达标率)?(2)这10名男生共做了多少个引体向上?【答案】(1)50%;(2)5×10-1=49(个)开放探究6.应用创新题若向东8米记作+8米,如果一个人从A地出发先走+12米,再走-15米,又走+18米,最后走-20米,你能判断这个人此时在何处吗?【答案】在A地西边5米处.7.新中考题(2004·内蒙古赤峰)我市2004年元月某一天的天气预报中,宁城县的最低温度是-22℃,克旗的最低温度是-26℃,这一天宁城县的最低气温比克旗的最低气温高(A)A.4℃ B.-4℃ C.8℃ D.-8℃(六)资料采撷原始的计算工具计算是人类的一种思维活动,人类初期的计算主要是计数.最早用来帮助计数的工具是人类的四肢(手、脚、手指、脚趾)或身边的小石头、贝壳、绳子等.中国有句古话叫“屈指可数”,说明人们常用手指来计算简单的数.在美国纽约的博物馆里,珍藏着一件从秘鲁出土的古代文物,名叫“基普”,意即打了绳结的绳子.基普是古人用来计数和记事的.传说公元前6世纪,•波斯国王在一次征战中曾命令一支部队守桥,他把一条打了结的皮带交给留守将士,要他们每守一天解开一个结,一直守到皮带上的结全部解完了才准撤退.在没有文字的我国古代,人们用在绳子上打结的方法来计数和记事.一件事打一个结,大事打个大结,小事打个小结,办完了一件事就解掉一个结.古人不仅用绳结计数,而且还使用小石子等其他工具来计数.例如,他们饲养的羊,早晨放牧到草地里,晚上必须圈到栅栏里.这样,早晨从栅栏里放出来的时候,出来一只就往罐子里扔一块小石子;傍晚羊进栅栏时,进去一只就从罐子里拿出一块小石子.如果石子全部拿光了,就说明羊全部进圈了;如果罐子里还剩下石子,说明有羊丢失了,必须立刻寻找.教学反思:这节课的教学,我主要采用了探究式的教学方式,为学生提供合作交流的机会,引导学生在已有知识、经验、方法的基础上去思考问题,探寻结果.学生直接参与教学活动,学习积极性高,课堂气氛活跃,通过学生的讨论,抽象的问题简单化.另外教师也可以从学生的回答中受到启发,有方法型的,有技巧型的.教师参与学生的讨论可以增加学生的学习兴趣和动力,学生在讨论的过程中可以相互学习,取长补短,深刻体会到与他人合作的重要性.1.2.2 数轴教学目标1.知识与技能①掌握数轴三要素,能正确画出数轴.②能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.2.过程与方法①使学生受到把实际问题抽象成数学问题的训练,逐步形成应用数学的意识.②结合本节内容,对学生渗透数形结合的重要思想方法.3.情感、态度与价值观使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点.教学重点难点重点:数轴的概念.难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计(一)创设情境,导入新课课件展示在一条东西方向的马路上,有一个学校,学校东50m 和西150m•处分别有一个书店和一个超市,学校西100m和160m处分别有一个邮局和医院,分别用A、B、C、D表示书店、超市、邮局、医院,你会画图表示这一情境吗?(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0•左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来.•也就是本节内容──数轴.点拨(1)引导学生学会画数轴.第一步:画直线定原点第二步:规定从原点向右的方向为正(左边为负方向)第三步:选择适当的长度为单位长度(据情况而定)第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考:原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴: 规定了原点、正方向和单位长度的直线叫数轴. 做一做 学生自己练习画出数轴.试一试:你能利用你自己画的数轴上的点来表示数4,1.5,-3,-72,0吗?讨论 若a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?与原点相距多少个单位长度;表示-a 的点在原点的什么位置上?•与原点又相距了多少个长度单位?小结 整数能在数轴上都找到点吗?分数呢?可见,所有的__________都可以用数轴上的点表示___________•都在原点的左边,______________都在原点的右边. (三)应用迁移,巩固提高例1 下列所画数轴对不对?如果不对,指出错在哪里.①4②-1021③④0⑤-101⑥0-3【答案】 ①错.没有原点 ②错.没有正方向 ③正确 ④错.没有单位长度 ⑤错.单位长度不统一 ⑥正确 ⑦错.正方向标错例2 试一试:用你画的数轴上的点表示4,1.5,-3,-73,0 【答案】图中A点表示4,B点表示1.5,C点表示-3,D点表示-73,E点表示0.例3 如果a 是一个正数,则数轴上表示数a 的点在原点的什么位置上?•表示-a 的点在原点的什么位置上呢?【提示】 由数轴上数的特点不准得到,正数都在原点的右边,负数都在原点左边.【答案】 所有的有理数都可以在数轴上找个点与它对应,原点右边的点表示正数,原点左边的点表示负数.【点评】 数与数轴上的点结合,这是一种重要的数学思想,数形结合.例4 下列语句:①数轴上的点又能表示整数;②数轴是一条直线;•③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有(B)⑦-1-2021-1-45EDC BAA.1个B.2个C.3个D.4个【提示】题中,结合数轴上的点与有理数的特点,可见①中错误的;②、③是正确的;④中可以含有0,•⑤中应该是所有的有理数都可以在数轴上找出对应的点,但并不是数轴上的点都表示有理数.例5 (1)与原点的距离为2.5个单位的点有两个,它们分别表示有理数 2.5 •和-2.5 .(2)一个蜗牛从原点开始,先向左爬了4个单位,再向右爬了7•个单位到达终点,那么终点表示的数是+3 .例6 在数轴上表示-212和123,并根据数轴指出所有大于-212而小于123的整数.【答案】 -2,-1,0,1【点评】本题反映了数形结合的思想方法.例7 数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若这个数轴上随意画出一条长2000cm的线段AB,则线段AB盖住的整点是(C)A.1998或1999 B.1999或2000C.2000或2001 D.2001或2002【提示】分两种情况分析:(1)当线段AB的起点是整点时,•终点也落在整点上,那就盖住2001个整点;(2)是当线段AB的起点不是整点时,•终点也不落在整点上,那么线段AB盖住了2000个整点.【点评】本题体现了新课程标准的探索和实践能力.备选例题(2004·新疆生产建设兵团)在数轴上,离原点距离等于3的数是________.【点拨】 不要忽视在原点的左右两边.【答案】 ±3(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了对立关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.一条直线的流水线上,依次有5个卡通人,•它们站立的位置在数轴上依次用点M 1、M 2、M 3、M 4、M 5表示,如图:(1)点M 4和M 2所表示的有理数是什么?(2)点M 3和M 5两点间的距离为多少?(3)怎样将点M 3移动,使它先达到M 2,再达到M 5,请用文字说明;(4)若原点是一休息游乐所,那5个卡通人到游乐所休息的总路程为多少?【答案】 (1)M 4表示2,M 2表示3;(2)相距7个单位长度;(3)先向左移动1个单位,再向右移动8个单位长度;(4)17个单5M 4M 3M 2M 1位长度.(五)课堂跟踪反馈夯实基础1.规定了原点、正方向、单位长度的直线叫数轴,所有的有理数都可从用数轴上的点来表示.2.P从数轴上原点开始,向右移动2个单位,再向左移5个单位长度,此时P点所表示的数是 -3 .3.把数轴上表示2的点移动5个单位后,所得的对应点表示的数是(C)A.7 B.-3 C.7或-3 D.不能确定4.在数轴上,原点及原点左边的点所表示的数是(D)A.正数 B.负数 C.不是负数 D.不是正数 5.数轴上表示5和-5的点离开原点的距离是 5 ,但它们分别在原点的两边.提升能力6. 1 是最小的正整数,0 是最小的非负数,0 是最大的非正数.7.与原点距离为 3.5个单位长度的点有 2 个,它们分别是3.5 和-3.5 .8.画一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,313【答案】略开放探究9.在数轴上与-1相距3个单位长度的点有 2 个,为-4或2 ;长为3个单位长度的木条放在数轴上,最多能覆盖 4 个整数点.10.新中考题(2004·南京)下列四个数中,在-2到0之间的数是(A)A.-1 B.1 C.-3 D.3教学反思:这节课的学习,我主要采用了体验探究的教学方式,为学生提供了亲自操作的机会,引导学生运用已有经验、知识、方法去探索与发现等式的性质,使学生直接参与教学活动,学生在动手操作中对抽象的数学定理获取感性的认识,进而通过教师的引导加工上升为理性认识,从而获得新知,使学生的学习变为一个再创造的过程,同时让学生学到获取知识的思想和方法,体会在解决问题的过程中与他人合作的重要性,为学生今后获取知识以及探索和发现打下基础。

人教版七年级上册第1章有理数【教案】绝对值的定义和性质

人教版七年级上册第1章有理数【教案】绝对值的定义和性质

1.2.4 绝对值一、教学目标知识与技能:从几何、代数两个角度正确体会绝对值的意义;会求已知数的绝对值;会利用绝对值比较两个负数的大小。

过程与方法:体验绝对值解决实际问题的过程,感受数学在生活中的应用价值。

学会与人合作交流,初步形成评价意识。

情感、态度与价值观:积极参与数学学习活动,激发学习数学的欲望。

二、教学方法采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律。

三、重难点1.重点:给出一个数会求出它的绝对值。

2.难点:掌握应用绝对值的概念。

四、课时安排2课时五、教具准备投影仪(电脑)、三角板、自制胶片。

六、教学设计思路1、借助数轴这一工具引出绝对值的概念以及互为相反数的两个数绝对值之间的关系,具有直观性,一方面便于学生接受,另一方面为今后学习打下基础2、创设情境,联系生活实际,展开讨论交流,体会绝对值的意义,重点应该是让学生直观理解绝对值的意义,不要在绝对值号内出现多重符号的化简和字母。

3、根据本节内容如果一课时,则时间紧内容多。

因此在这里分为两课时。

教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义。

七、教学过程设计(一)创设情境,复习导入师:两辆汽车从同一处0出发,分别向东、西方向行驶10km,到达A、B两处。

它们的行驶路线相同嘛?它们行驶路程的远近相同吗?学生思考以上问题,-10与10互为相反数。

师:我们学习了数轴、相反数。

在练习本上画一个数轴,并标出表示-10,212-,0及它们的相反数的点。

学生活动:一个学生板演,其他学生在练习本上画。

【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习。

(二)探索新知,导入新课师:同学们做得非常好!-10与10是相反数,它们只有符号不同,它们什么相同呢?学生活动:思考讨论,很难得出答案。

2023-2024人教部编版初中数学七年级上册第一章有理数教案有理数全章复习课(2)+(面向平行班)

2023-2024人教部编版初中数学七年级上册第一章有理数教案有理数全章复习课(2)+(面向平行班)

“有理数”的复习课(2)的教学设计:【课题】“有理数”的复习课(2)【设计与执教者】:【教学时间】:【学情分析】:本设计面向平行班学生,在学生学习有理数全章书后,对有理数的运算法则已有初步的了解,能进行有理数的加减、乘除、乘方的运算,但如何才能做到准确进行运算,并能正确运用运算律简化运算等方面还需加强,因此,希望通过本节课的复习,使学生进一步掌握基本技能和基本方法,提高有理数加减、乘除、乘方的运算熟练程度和准确率。

【学情目标】:系统复习有理数加、减、乘、除、乘方的运算法则及运算律,熟练进行有理数的加、减、乘、除、乘方及混合运算;会运用运算律进行有理数的简便运算,提高解题的速度和准确性。

【教学重点】:熟练进行有理数加减、乘除、乘方的混合运算【教学难点】:准确进行有理数加减、乘除、乘方的混合运算【教学突破点】:通过实例帮助学生掌握有理数加、减、乘、除、乘方的运算法则,会运用运算律进行有理数的简便运算,提高解题的速度和准确性,设计分层练习,让各层次的学生能在课堂上得到有效的训练。

【教法、学法设计】:分层教学,讲授、练习相结合。

【教学过程】:练习与测评: 一、基础题(1))6514()537()6155()5213(-+--+-- (2) )21()43()32(6)3(42+÷-+-⨯--⨯- (3)11136(2)4912⎛⎫-⨯--÷-⎪⎝⎭(4)2)6(1)]43(361)2411[(-÷-+++ 二、中等题:1、某摩托车厂本周计划每日生产250辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的辆数为正数)①本周六生产了多少辆?②产量最多的一天比产量最少的一天多生产了多少辆? ③本周平均每天实际生产多少辆? 解:①周六生产了241辆②34辆周五生产了259辆,周日生产了225辆产量最多的一天比产量最少的一天多生产了34辆 ③247辆 2473250725894375250=-=--++-+-+2、将-15、-12、-9、-6、-3、0、3、6、9,填入下列 小方格里,使大方格的横、竖、斜对角的三个数字之和都相等。

2022年人教版七年级数学上册第一章有理数教案 绝对值(第1课时)

2022年人教版七年级数学上册第一章有理数教案  绝对值(第1课时)

第一章有理数1.2 有理数1.2.4 绝对值第1课时一、教学目标【知识与技能】1.借助数轴初步理解绝对值的概念,能求一个数的绝对值.2.通过应用绝对值解决实际问题,体会绝对值的意义和作用.【过程与方法】1.在绝对值概念形成的过程中,渗透数形结合等思想方法,并注意培养学生的概括能力。

2.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念3.给出一个数,能求它的绝对值。

【情感态度与价值观】1. 从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性。

2. 培养学生积极参与探索活动,体会数形结合的方法.二、课型新授课三、课时第1课时,共2课时。

四、教学重难点【教学重点】正确理解绝对值的概念,能求一个数的绝对值.【教学难点】借助数轴理解绝对值的几何意义,•根据绝对值定义和相反数的概念,理解绝对值的代数意义.五、课前准备教师:课件、三角尺、屋顶架结构图等。

学生:三角尺、铅垂纸、小刀。

六、教学过程(一)导入新课教师问1:两辆汽车从同一处O出发分别向东、西方向行驶10km,到达A、B两处.(出示课件2)它们的行驶路线的方向相同吗?学生回答:不相同.教师问2:它们行驶路程的距离(线段OA、OB的长度)相同吗?学生回答:相同在实际生活中,有时存在这样的情况,有些问题我们只需要考虑数的大小而不考虑方向.在我们的数学中,就是不需要考虑数的正负性,所走的路程只需要用正数来表示,这样就必需引进一个新的概念——绝对值.(二)探索新知1.师生互动,探究绝对值的概念教师问3:甲、乙两辆出租车在一条东西走向的街道上行驶,记向东行驶的里程数为正,两辆出租车都从O地出发,甲车向东行驶10km到达A处,记作___km,乙车向西行驶10km到达B处,记做_________km.(出示课件4)学生回答:+10,-10教师问4:以O为原点,取适当的单位长度画数轴,并在数轴上标出A、B的位置,则A、B两点与原点距离分别是多少?它们的实际意义是什么?(出示课件5)学生回答:A、B两点与原点距离都是10,线段OA表示向东行驶10千米,线段OB表示向西行驶10千米.教师问5:如果汽车每公里耗油0.15升,计算甲、乙两辆汽车各耗油多少升?学生回答:甲、乙两辆汽车各耗油1.5升.教师问6:计算汽车的耗油量时,我们考虑是+10或-10了吗?学生回答:没有.教师讲解:实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;这样我们得到了一个新的数学概念:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|总结点拨:(出示课件6)2.师生互动,探究绝对值的性质教师问7:观察这些表示绝对值的数,它们有什么共同点?(出示课件8)|5|=5 |-10|=10 |3.5|= 3.5|100|=100 |-3|=3 |50|=50|-4.5|=4.5 |-5000|=5000 |0|=0……学生讨论后回答:都是正数或0,也就是非负数.教师问8:观察下面正数的绝对值,想一想一个正数的绝对值是什么?|3.5|= 3.5 |100|=100 |50|=50学生回答:一个正数的绝对是它本身.教师问9:观察下面负数的绝对值,想一想一个负数的绝对值是什么?|-10|=10 |-3|=3 |-4.5|=4.5 |-5000|=5000学生回答:一个负数的绝对值是它本身的相反数.教师问10:0的绝对值是什么?学生回答:0的绝对值是0.总结点拨:(出示课件9)结论1:一个正数的绝对值是正数.一个负数的绝对值是正数.0的绝对值是0.|a|≥0任何一个有理数的绝对值都是非负数!结论2:一个正数的绝对值是它本身.一个负数的绝对值是它的相反数.教师问11:字母a表示一个有理数,你知道a的绝对值等于什么吗?(出示课件10)师生共同讨论后解答如下:(1)当a是正数时,|a|=__a__;(2)当a是负数时,|a|=_-a_;(3)当a=0时,|a|=__0_.绝对值的判断法则:教师问12:相反数、绝对值的联系是什么?(出示课件11)学生回答:互为相反数的两个数的绝对值相等. 绝对值相等,符号相反的两个数互为相反数.例1:求下列各数的绝对值.(出示课件12)12, , -7.5, 0.师生共同解答如下:解:|12|=12;正数的绝对值等于它本身.,|-7.5|=7.5;负数的绝对值等于它的相反数.|0|=0. 0的绝对值是0.总结点拨:(出示课件13)求一个数的绝对值的步骤例2:填一填:(出示课件16)(1)绝对值等于0的数是___,(2)绝对值等于5.25的正数是_____,(3)绝对值等于5.25的负数是______,(4)绝对值等于2的数是_______.师生共同解答如下:答案:(1)0,(2)5.25,(3)-5.25,(4)2或-2易错提醒:注意绝对值等于某个正数的数有两个,它们互为相反数,解题时不要遗漏负值.总结点拨:(出示课件17)绝对值的性质(1)任何有理数都有绝对值,且只有一个.(2)由绝对值的几何定义可知,数的绝对值是两点间的距离,因此,任何一个数的绝对值都是非负数;在数轴上,一个数离原点的越近,绝对值越小,离原点越远,绝对值越大.(3)互为相反数的两个数的绝对值相等.(4)绝对值相等的两个数相等或互为相反数.例3:已知|x–4|+|y–3|=0,求x+y的值.(出示课件19)师生共同解答如下:分析:一个数的绝对值总是大于或等于0,即为非负数,如果两个非负数的和为0,那么这两个数同时为0.解:根据题意可知x - 4=0,y - 3=0,所以x=4,y=3,故x+y=7.总结点拨:几个非负数的和为0,则这几个数都为0.(三)课堂练习(出示课件21-25)1.如图,点A所表示的数的绝对值是( )A.3 B.-3C.D.2. 判断并改错:(1)一个数的绝对值等于本身,则这个数一定是正数. ( )(2)一个数的绝对值等于它的相反数,这个数一定是负数. ( )(3)如果两个数的绝对值相等,那么这两个数一定相等. ( )(4)如果两个数不相等,那么这两个数的绝对值一定不等. ( )(5)有理数的绝对值一定是非负数. ( )3. -2018的绝对值是______.4. ____的相反数是它本身,_______的绝对值是它本身,_______的绝对值是它的相反数.5. 的相反数是_____;若,则a= _____.6. 求下列各数的绝对值:3,3.14,,-2.8.7. 化简:| 0.2 |=______;=______;| b |=______ (b<0);| a – b | =______(a >b).8.正式排球比赛对所用的排球重量是有严格规定的,现检查5个排球的重量,超过规定重量的克数记作正数,不足规定重量的克数记作负数,检查结果如下:指出哪个排球的质量好一些,并用绝对值的知识加以说明.参考答案:1.A2.(1)×;(2)×;(3)×;(4)×;(5)√.3.20184.0,非负数,非正数.5. ,±26. 解:|3|=3;|3.14|=3.14;|-2.8|=2.8.7.0.2;,-b,a-b.8. 答:第五个排球的质量好一些,因为它的绝对值最小,也就是离标准重量的克数最近.(四)课堂小结今天我们学了哪些内容:①任何有理数都有唯一的绝对值,任意一个数的绝对值总是正数或0,•不可能是负数,即对任意有理数a,总有│a│≥0.②两个互为相反数的绝对值相等,即│a│=│-a│.③因为0的绝对值是0,而0的相反数是它本身0,因此可知绝对值等于它本身的数是正数或者零,绝对值等于它的相反数的数是负数或零.(五)课前预习预习下节课(1.2.4)12页到13页的相关内容。

数学人教版(2024)版七年级初一上册 1.2.1 有理数的概念 教案03

数学人教版(2024)版七年级初一上册 1.2.1 有理数的概念 教案03

第一章有理数1.2.1 有理数的概念备课时间:上课时间:回想一下,目前为止我们学过哪些数?你所知道的数可以分成哪些种类,你是按照什么划分的?学生回答,并相互补充:有小学学过的整数、0、分数,也有负整数、负分数。

这就是全部的分数分类吗?小数呢?事实上,有限小数和无限循环小数都可以化为分数,因此它们也可以看成分数。

进一步地,我们还发现整数又可以写成分数的形式。

二、思考探究,获取新知【教学说明】我们把可以写成分数形式的数称为有理数。

知识点1 有理数的分类根据整数和分数来分类。

【教学说明】可加以引导,有理数可分为整数和分数两大类,那么整数又包含哪些数?分数呢?以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢?我们把所有正数组成的集合,叫做正数集合;所有负整数组成的集合,叫做负数集合。

三、典例精析,掌握新知例1 指出下列各数中的正有理数、负有理数,并分别指出其中的正整数、负整数:跟踪训练:所有正有理数组成正有理数集合,所有负有理数组成负有理数集合,把下面的有理数填入它们属于的集合内。

15,-1/9,-5,7,0。

5,-80,12,-4。

2,2。

3。

正有理数集合:{ ⋯}。

负有理数集合:{ ⋯}。

知识点2 小数与有理数的联系按照定义,能够写成分数形式的数是有理数,那不能写成分数的数就不是有理数。

思考“不能写成分数的数”是哪些数呢?如2/3,−1/2,⋯这些分数是可以化成有限小数或无限循环小数。

同样地,有限小数和无限循环小数都能化为分数,也是有理数。

无限不循环小数(如π)不能化成分数,因此就不是有理数。

例2 :在-1.2,10%,0,+0.33 ̇,7.01001001…(每两个1之间0的个数逐次增加1)中,有理数共有()A.2个B.3个C.4个D.5个四、运用新知,深化理解1.在数0,2,-3,-1.2 中,属于负整数的是()A.0 B.2 C.-3 D.-1.22.-0.5不属于()A.负数B.分数C.负分数D.整数3.下列说法不正确的是()A.-0.5不是分数B.0是整数C. −1/5不是整数D.-2既是负数又是整数4.下列说法错误的是()A.负整数和负分数统称为负有理数B.正整数、负整数和0统称为整数C.正有理数和负有理数统称为有理数D.0是整数,但不是分数5.把下列各数分别填入相应的集合里.-2,0,0.314,25% ,11,0.3 ̇,+12/3.整数集合:{⋯}.分数集合:{⋯}.自然数集合:{⋯}.非正数集合:{⋯}.四、课堂小结填数集的两种方法(1)由数到集合:逐一分析每一个数,看这个数属于哪个集合,然后填入它所属的集合内.(2)由集合到数:逐一分析每个集合,然后从给出的数中找出属于这个集合的数填入.注意:同一个数可能分属于不同的集合.1.2.1 有理数1.整数和分数统称为有理数;2.有理数的分类:(1)按符号分(2)按照整数和分数来分。

初一数学第一章教案

初一数学第一章教案

初一数学第一章教课方案【篇一:新人教版七年级上册数学第 1 章有理数全章教案[1]】第一章有理数1.1 正数和负数〔一〕教课目的:知识与技术:掌握正数和负数的看法,能划分两种不一样意义的量,会用符号表示正数和负数;培育学生察看、比较和归纳的思想能力。

过程与方法:教法主要采纳启迪式教课学法指引学生自主探究去察看、沟通、归纳.感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,通过本节课的教课,浸透对峙一致的辩证思想。

教课重点:实质需要产生正数与负数.教课难点:正确认识负数,能正确地举出拥有相反意义的量的典型例.教课过程:〔一〕、提出问题〔二〕、试一试章前图中表示温度、净胜球、加工赞同偏差时,用到了-3,3,2,- 2,0,+0.5 ,-0.5 等等.请同学们那些数是从前没有学过的数,有–3,-2,-0.5. 实质意义是零下 3 度,净输 2 球,小于尺寸0.5mm.〔三〕、探究新数–3,-2,-0.5 有什么特点?〔学生回复〕1 正数:从前学过的大于0 的数〔像1、、3 、48 等的数叫正数〕 3 1 负数:在正数前面加上负号“-〞的数.〔像-1、-2.5 ,-,-48 的数叫负数,31 读作负1、负、负、负48.〕3有时正数前面也能够加上正号“+〞,正号“+〞能够省略,但负号“-〞一定不可以够省略.一个数前面的“+〞-〞“叫它的符号〔性质符号〕.重申0 既不是正数,也不是负数,它是中性数.师:〔以温度计为例〕温度计中的0 不是表示没有温度,它往常表示水结成冰时的温度,是零上温度与零下温度的分界点,所以得出:零既不是正数也不是负数。

讲堂练习:读出以下各数,并指出此中那些是正数,那些是负数.-1,,+42 ,0,-3.14 ,120 ,-1.732 ,-. 37在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,比如规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155 米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为-155m.讲堂练习:课本p3 练习〔四〕、归纳小结1、什么是正数和负数2、如何用正数和负数表示拥有相反意义的量〔五〕课内外作业课本p5:1,2,4,51.1 正数和负数〔二〕教课目的:知识与技术:在认识正负数的看法的根基上,使学生灵巧运用正负数的来表示相反意义量过程与方法:经过用正负数的来表示相反意义量的教课,培育学生察看、比较和归纳的思想能力.教法主要采纳启迪式教课学法指引学生自主探究去归纳如何用正负数来表示相反意义量感情、态度、价值观:在教授知识、培育能力的同时,注意培育学生勇于探究的精神,学会沟通教课重点:灵巧掌握正负数的看法.教课难点:灵巧运用正负数的来表示相反意义量.教课过程:〔一〕、提出问题师:为了表示物体的个数和事物的次序,产生了1,2,3,4?? 这些数,我们把它叫做什么数?生:自然数师:为了表示“没有〞,又引入了一个什么数?生:自然数0师:当丈量和计算的结果不是整数时,又引进了什么数?生:分数〔小数〕师:可见数的看法是跟着生产和生活的需要而不停展开的.请同学们想想,在现实生活中,我们经常表示一些拥有相反意义的量,利用正数和负数能够表示两种拥有相反意义的量,以上节课为例:规定海平面的海拔高度为0,高于海平面的海拔高度用正数表示,低于海平面的海拔高度用负数表示,吐鲁番盆地最低处低于海平面155米,世界最巅峰珠穆朗玛超出海平面8844 米,我们能够用正负数的来表示.珠穆朗玛峰的海拔高度为8844m ,吐鲁番盆地的海拔高度为- 155m. 师:为了能灵巧运用正负数的来表示相反意义量,我们连续学习正数与负数就节课的内容.[板书:1、1 正数与负数]〔二〕试一试让学生议论如何用正数和负数表示拥有相反意义的量.1、相反意义的量师:在现实生活中,我们经常碰到一些拥有相反意义的量,比方:a:汽车向东行驶2.5 千米和向西行驶1.5 千米;b: 气温从零上6 摄氏度降落到零下6 摄氏度;c: 风筝上涨10 米或降落5 米.指引学生明确拥有相反意义的量的特点:〔1〕有两个量〔2〕有相反的意义请学生举出一些相反意义的量的实例.教师归纳:相反意义中的一些常用词有:盈余与损失,存入与支出,增添与减少,运进与运出,上涨与降落等.〔三〕、探究如何来表示拥有相反意义的量呢?由师生议论后得出:我们把一种意义的量规定为正的,用“+〞〔读作正〕号来表示,同时把另一种与它相反意义的量规定为负的,用“-〞 〔读作负〕号来表示.比如,假如零上6℃记作+6℃〔读作正 6 摄氏度〕,那么零下6℃记作-6℃〔读作负 6 摄氏度〕,请同学们用相同的方法表示〔1〕、 〔2〕两题.生:〔1〕假如向东行驶 2.5 千米记作+2.5 千米〔读作正 2.5 千米〕,那么向西行驶 1.5 千米记作-1.5 千米〔读作负 1.5 千米〕;〔2〕如果上涨10 米记作+10 米〔读作正10 米〕,那么降落 5 米记作-5 米 〔读作负 5 米〕.师:像+6,+10 ,+2.5 等前面放有“+〞号的数叫做正数,像-6,-5,-1.5 等前面放有“-〞号的数叫做负数.再次重申正号能够省略不写,如+5 能够写成5,但负数的负号能省略不写吗?生:〔议论后得出〕不可以.例教材p4〔板书并解答〕讲堂练习教材p4 的练习学生进行“阅读与思虑〞2、增补练习,-0.35 ,11 中,正数是,负数是;〔2〕〔1〕在-2,,0,假如向东为正,那么走-50 米表示什么意思?假如向南为正,那么走-50 米又表示什么意思?人以地面一层记为0,那么 1 楼、2 楼、3 楼?? 就表示为0,1,2??那么地下第二层表示为.在同一问题中,分别用正数与负数表示的量拥有相反的意义.〔四〕、归纳小结引入负数能够简洁的表示相反意义的量,关于相反意义的量,假如此中一种量用正数表示,那么另一种量能够用负数表示. 在表示拥有相反意义的量时,把哪一种意义的量规定为正,可依据实质状况决定.要特别注意零既不是正数也不是负数,成立正负数看法后,当考虑一个数时,必定要考虑它的符号,这与从前学过的数有很大的区别.1、正数和负数;2、用正数和负数表示拥有相反意义的量.〔五〕课内外作业课本p5:3,6,7,8.1.2 有理数1.2.1 有理数教课目的:知识与技术:1.使学生理解整数、分数、有理数的看法。

人教版七年级数学上册第一章《有理数》教案

人教版七年级数学上册第一章《有理数》教案

人教版七年级数学上册第一章《有理数》教案第一章有理数单元教学内容1.本单元结合学生的生活经验,列举了学生熟悉的用正、负数表示的实例,从扩充运算的角度引入负数,然后再指出可以用正、负数表示现实生活中具有相反意义的量,使学生感受到负数的引入是来自实际生活的需要,体会数学知识与现实世界的联系.引入正、负数概念之后,接着给出正整数、负整数、正分数、负分数集合及整数、分数和有理数的概念.2.通过怎样用数简明地表示一条东西走向的马路旁的树、电线杆与汽车站的相对位置关系引入数轴.数轴是非常重要的数学工具,它可以把所有的有理数用数轴上的点形象地表示出来,使数与形结合为一体,揭示了数形之间的内在联系,从而体现出以下4个方面的作用:(1)数轴能反映出数形之间的对应关系.(2)数轴能反映数的性质.(3)数轴能解释数的某些概念,如相反数、绝对值、近似数.(4)数轴可使有理数大小的比较形象化.3.对于相反数的概念,从“数轴上表示互为相反数的两点分别在原点的两旁,且离开原点的距离相等”来说明相反数的几何意义,同时补充“零的相反数是零”作为相反数意义的一部分.4.正确理解绝对值的概念是难点.根据有理数的绝对值的两种意义,可以归纳出有理数的绝对值有如下性质:(1)任何有理数都有唯一的绝对值.(2)有理数的绝对值是一个非负数,即最小的绝对值是零.(3)两个互为相反数的绝对值相等,即│a│=│-a│.(4)任何有理数都不大于它的绝对值,即│a│≥a,│a│≥-a.(5)若│a│=│b│,则a=b,或a=-b或a=b=0.三维目标1.知识与技能(1)了解正数、负数的实际意义,会判断一个数是正数还是负数.(2)掌握数轴的画法,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的解.(3)理解相反数、绝对值的几何意义和代数意义,会求一个数的相反数和绝对值.(4)会利用数轴和绝对值比较有理数的大小.2.过程与方法经过探索有理数运算法则和运算律的过程,体会“类比”、“转化”、“数形结合”等数学方法.3.情感态度与价值观使学生感受数学知识与现实世界的联系,鼓励学生探索规律,并在合作交流中完善规范语言.重、难点与关键1.重点:正确理解有理数、相反数、绝对值等概念;会用正、负数表示具有相反意义的量,会求一个数的相反数和绝对值.2.难点:准确理解负数、绝对值等概念.3.关键:正确理解负数的意义和绝对值的意义.课时划分1.1 正数和负数 2课时1.2 有理数 5课时1.3 有理数的加减法 4课时1.4 有理数的乘除法 5课时1.5 有理数的乘方 4课时第一章有理数(复习)2课时1.1正数和负数第一课时三维目标一.知识与技能能判断一个数是正数还是负数,能用正数或负数表示生活中具有相反意义的量.二.过程与方法借助生活中的实例理解有理数的意义,体会负数引入的必要性和有理数应用的广泛性.三.情感态度与价值观培养学生积极思考,合作交流的意识和能力.教学重、难点与关键1.重点:正确理解负数的意义,掌握判断一个数是正数还是负数的方法.2.难点:正确理解负数的概念.3.关键:创设情境,充分利用学生身边熟悉的事物,加深对负数意义的理解.教具准备投影仪.教学过程四、课堂引入我们知道,数是人们在实际生活和生活需要中产生,并不断扩充的.人们由记数、排序、产生数1,2,3,…;为了表示“没有物体”、“空位”引进了数“0”,测量和分配有时不能得到整数的结果,为此产生了分数和小数.在生活、生产、科研中经常遇到数的表示与数的运算的问题,例如课本第2页至第3页中提到的四个问题,这里出现的新数:-3,-2,-2.7%在前面的实际问题中它们分别表示:零下3摄氏度,净输2球,减少2.7%.五、讲授新课(1)、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+,…就是3,2,0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.(2)中国古代用算筹(表示数的工具)进行计算,红色算筹表示正数,黑色算筹表示负数.(3)数0既不是正数,也不是负数,但0是正数与负数的分界数.(4) 0可以表示没有,还可以表示一个确定的量,如今天气温是0℃,是指一个确定的温度;海拔0表示海平面的平均高度.用正负数表示具有相反意义的量(5)、把0以外的数分为正数和负数,起源于表示两种相反意义的量.正数和负数在许多方面被广泛地应用.在地形图上表示某地高度时,需要以海平面为基准,通常用正数表示高于海平面的某地的海拔高度,负数表示低于海平面的某地的海拔高度.例如:珠穆朗玛峰的海拔高度为8844m,吐鲁番盆地的海拔高度为-155m.记录账目时,通常用正数表示收入款额,负数表示支出款额.(6)请学生解释课本中图1.1-2,图1.1-3中的正数和负数的含义.(7)你能再举一些用正负数表示数量的实际例子吗?(8)例如,通常用正数表示汽车向东行驶的路程,用负数表示汽车向西行驶的路程;用正数表示水位升高的高度,用负数表示水位下降的高度;用正数表示买进东西的数量,用负数表示卖出东西的数量.六、巩固练习课本第3页,练习1、2、3、4题.七、课堂小结为了表示现实生活中的具有相反意义的量,我们引进了负数.正数就是我们过去学过的数(除0外),在正数前放上“-”号,就是负数,但不能说:“带正号的数是正数,带负号的数是负数”,在一个数前面添上负号,它表示的是原数意义相反的数.如果原数是一个负数,那么前面放上“-”号后所表示的数反而是正数了,另外应注意“0”既不是正数,也不是负数.八、作业布置1.课本第5页习题1.1复习巩固第1、2、3题.九、板书设计1.1正数和负数第一课时1、像-3,-2,-2.7%这样的数(即在以前学过的0以外的数前面加上负号“-”的数)叫做负数.而3,2,+2.7%在问题中分别表示零上3摄氏度,净胜2球,增长2.7%,它们与负数具有相反的意义,我们把这样的数(即以前学过的0以外的数)叫做正数,有时在正数前面也加上“+”(正)号,例如,+3,+2,+0.5,+,…就是3,2, 0.5,,…一个数前面的“+”、“-”号叫做它的符号,这种符号叫做性质符号.2、随堂练习。

新人教版七年级上册数学第一章有理数全章教案

新人教版七年级上册数学第一章有理数全章教案

新人教版七年级上册数学第一章有理数全章教案第一章“有理数”教材分析本章是第三学段教科书的第一章,既承接前两个学段的内容,又为进一步学习打下基础。

本章主要内容是有理数的有关概念及其运算。

首先,从实例出发引入负数,接着引进关于有理数的一些概念,在此基础上,介绍有理数的加减法运算。

引入负数是实际的需要,也是学习第三学段数学内容,特别是数与代数内容的需要。

引进数轴可以把有理数用数轴上的一个点直观地表示出来,从而可以直观地介绍相反数、绝对值,同时为用数轴引进有理数的加法法则与乘法法则作准备。

引入相反数的概念,一方面,可以加深对相反意义的量的认识,另一方面,可以为学习绝对值、有理数减法等作准备。

引入绝对值的的概念,可以加深对有理数的认识:一个有理数由符号与绝对值确定。

两个负数比较大小,有理数运算也要借助绝对值这个概念。

本章的重点是有理数的运算。

加法与乘法都是在介绍运算法则――着重是符号法则的基础上,进行基本运算,然后结合具体例子引入运算律,并运用运算律简化运算。

减法与除法,则是着重介绍如何向加法与乘法转化,从而利用加法与乘法的运算法则、运算律进行运算。

乘方是几个相同因数的乘积,也就可以利用乘法运算。

科学记数法与乘方有关,因而可进一步加以介绍。

近似数在实际问题中有广泛的应用,有必要在本章作进一步的认识。

近似数的内容与乘方也有一定的联系,例如,大数的近似数用科学记数法表示,可以清楚地看出保留的有效数字的个数。

为了加强与相关运算的联系,利用计算器计算分散安排在相关内容中。

例如,教科书用计算器计算一些负数的乘方,进而探求负数的乘方的符号规律。

学会了使用计算器进行有理数运算,较复杂的计算就可以用计算器完成。

简单的有理数运算仍需要学生熟练地用笔算完成。

本章的教学要求如下:1.通过实际例子,感受引入负数的必要性。

会用正负数表示实际问题中的数量。

2.理解有理数的意义,能用数轴上的点表示有理数。

借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值(绝对值符号内不含字母),会比较有理数的大小。

人教版七年级数学上册第一章有理数的概念(教案)

人教版七年级数学上册第一章有理数的概念(教案)
4.有理数的应用
-解决实际问题
-判断有理数的大小关系
-有理数的混合运算
5.练习题与例题
-各类有理数运算的练习题
-涉及实际应用的有理数问题
-提高学生对有理数概念的理解和应用能力例题解析
二、核心素养目标
1.培养学生数学抽象能力:通过有理数的概念学习,使学生能够抽象出数的本质属性,理解数的分类及其意义,形成数学的抽象思维。
-举例:应用有理数解决温度变化、方向位移等问题。
2.教学难点
(1)有理数概念的理解:学生容易混淆有理数与整数、分数的关系,难以把握有理数的本质。
-突破方法:通过具体例子,让学生感受到有理数包含整数和分数,理解有理数的无限性和可表示性。
(2)相反数和绝对值的概念:学生难以理解相反数的意义,以及绝对值表示的实际意义。
其次,在新课讲授环节,我注意到有些学生在理解有理数概念和性质时显得有些吃力。在讲解过程中,我尽量使用简洁明了的语言,并通过举例来阐述。然而,可能由于讲解速度过快,部分学生还没来得及消化吸收就进入了下一个环节。针对这个问题,我计划在今后的教学中适当放慢讲解速度,增加课堂互动,让学生有更多机会提问和思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.提升逻辑推理素养:引导学生掌握有理数的运算规律,学会运用逻辑推理解决问题,培养严谨的数学逻辑思维。
3.增强数学建模意识:通过实际问题的引入和解决,让学生学会运用有理数知识建立数学模型,提高解决实际问题的能力。

人教版七年级数学上册教案:第1章 有理数 有理数的加减法(4课时)

人教版七年级数学上册教案:第1章 有理数  有理数的加减法(4课时)

1.3有理数的加减法1.3.1有理数的加法第1课时有理数的加法法则一、基本目标【知识与技能】理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.【过程与方法】经历探究有理数加法法则的过程,学会与他人交流合作.【情感态度与价值观】在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.二、重难点目标【教学重点】有理数加法运算.【教学难点】异号两数的加法运算.环节1自学提纲,生成问题【5 min阅读】阅读教材P16~P18的内容,完成下面练习.【3 min反馈】1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)(-25)+(-35);(2)(-12)+(+3);(3)(+8)+(-7);(4)0+(-7).【互动探索】(引发学生思考)同号两数相加怎样计算?异号两数相加呢?【解答】(1)(-25)+(-35)=-(25+35)=-60.(2)(-12)+(+3)=-(12-3)=-9.(3)(+8)+(-7)=+(8-7)=1.(4)0+(-7)=-7.【互动总结】(学生总结,老师点评)有理数加法法则是进行有理数加法运算的依据.进行加法运算时,首先判断两个加数的符号,是同号、异号还是有一个加数是0,然后确定用哪一条法则.活动2 巩固练习(学生独学)1.下列各数中,与-13的和为0的是( D ) A .3B .-3C .-13D.132.计算(-6)+5的结果是( C )A .-11B .11C .-1D .1 3.李志家冰箱冷冻室的温度为-6 ℃,调高4 ℃后的温度为( C )A .4 ℃B .10 ℃C .-2 ℃D .-10 ℃4.计算:8+(-5)的结果为3.5.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a +b +c =0.6.计算:(1)45+(-20);(2)(-8)+(-1);(3)|-10|+|+8|.解:(1)45+(-20)=45-20=25.(2)(-8)+(-1)=-(8+1)=-9.(3)|-10|+|+8|=10+8=18.活动3 拓展延伸(学生对学)【例2】已知|a |=4,|b |=6,求a +b 的值.【互动探索】先依据绝对值的性质求得a 、b 的值,最后依据加法法则进行计算即可.【解答】因为|a |=4,所以a =4或a =-4.因为|b |=6,所以b =-6或b =6.当a =4,b =6时,a +b =4+6=10;当a =4,b =-6时,a +b =4+(-6)=-2;当a =-4,b =6时,a +b =-4+6=2.当a =-4,b =-6时,a +b =-4++(-6)=-10.综上所述,a +b 的值为10或-2或2或-10.【互动总结】(学生总结,老师点评)本题考查有理数的加法运算以及绝对值的性质,由于未告知a 、b 的正负,所以要分类讨论.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的加法⎩⎪⎨⎪⎧ 法则⎩⎪⎨⎪⎧ 同号异号0运算步骤请完成本课时对应练习!第2课时 有理数的加法运算律一、基本目标【知识与技能】1.掌握有理数的加法运算律,理解小学中的加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算.【过程与方法】经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力.【情感态度与价值观】体会有理数加法运算律的应用价值.二、重难点目标【教学重点】有理数加法运算律.【教学难点】灵活运用加法运算律进行简便运算.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P19~P20的内容,完成下面练习.【3 min 反馈】1.有理数加法的交换律:两个数相加,交换加数的位置,和不变,用字母表示为a +b =b +a .2.有理数加法的结合律:三个数相加,先把前两个数相加或先把后两个数相加,和不变,用字母表示为(a +b )+c =a +(b +c ).3.计算:30+(-20);(-20)+30;[8+(-5)]+(-4);8+[(-5)]+(-4)].解:10. 10. -1. -1.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】用简便方法计算下列各题:(1)12+⎝⎛⎭⎫-23+45+⎝⎛⎭⎫-12+⎝⎛⎭⎫-13; (2)(-0.5)+314+2.75+⎝⎛⎭⎫-512; (3)7+(-6.9)+(-3.1)+(-8.7).【互动探索】(引发学生思考)观察式子特点,灵活选择运算律进行计算.【解答】(1)原式=12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-23+⎝⎛⎭⎫-13+45=⎣⎡⎦⎤12+⎝⎛⎭⎫-12+⎣⎡⎦⎤⎝⎛⎭⎫-23+⎝⎛⎭⎫-13+45=0-1+45=-1+45=-15. (2)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-512+314+234=⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-512+⎝⎛⎭⎫314+234 =-6+6=0.(3)原式=(-6.9)+(-3.1)+(-8.7)+7=[(-6.9)+(-3.1)]+[(-8.7)+7]=-10+(-1.7)=-11.7.【互动总结】(学生总结,老师点评)在运用运算律时,通常有下列规律:①互为相反数的两个数先相加;②符号相同的数先相加;③分母相同的数先相加;④几个数相加得到整数的先相加;⑤整数与整数,小数与小数相加.活动2 巩固练习(学生独学)1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( D )A .[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]B .[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]C .[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]D .[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]2.计算43+(-77)+27+(-43)的结果是-50.3.用适当的方法计算:(1)23+(-17)+6+(-22);(2)1+⎝⎛⎭⎫-12+13+⎝⎛⎭⎫-16; (3)1.125+⎝⎛⎭⎫-325+⎝⎛⎭⎫-18+(-0.6); (4)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:(1)原式=(23+6)+[(-17)+(-22)]=29-39=-10.(2)原式=1+13+⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-16 =43-23=23. (3)原式=118+⎝⎛⎭⎫-18+⎝⎛⎭⎫-325+⎝⎛⎭⎫-35 =1-4=-3.(4)原式=[(-2.48)+(-7.52)]+[(+4.33)+(-4.33)]=-10+0=-10.活动3 拓展延伸(学生对学)【例2】10月6日上午,出租车司机小李在南北走向的商业大道上运营,如果规定向北为正,向南为负,出租车的行车里程如下(单位:km):-17,-4,+13,-10,-12,+3,-13,+15,+20.(1)将最后一名乘客送到目的地时,小李离出车地点的距离是多少千米?(2)若每千米耗油0.2升,这天上午汽车共耗油多少升?【互动探索】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算结果.(2)要求耗油量,只需求出出租车上午一共走的路程,即将各数的绝对值相加求出即可.【解答】(1)(-17)+(-4)+(+13)+(-10)+(-12)+(+3)+(-13)+(+15)+(+20)=[-17+(-4)+(-10)+(-12)+(-13)]+(13+3+15+20)=-56+51=-5.即将最后一名乘客送到目的地时,小王离出车地点的距离是南边5千米处.(2)总行程为|-17|+|-4|+|+13|+|-10|+|-12|+|+3|+|-13|+|+15|+|+20|=17+4+13+10+12+3+13+15+20=107(千米).由于每千米耗油0.2升,所以这天上午汽车共耗油107×0.2=21.4(升).【互动总结】(学生总结,老师点评)本题考查有理数的加法运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的加法运算律⎩⎪⎨⎪⎧交换律结合律请完成本课时对应练习!1.3.2 有理数的减法第3课时 有理数的减法法则一、基本目标【知识与技能】理解有理数减法法则,并能准确地进行有理数的减法运算.【过程与方法】通过把减法运算转化为加法运算,向学生渗透转化思想.【情感态度与价值观】通过揭示有理数的减法法则,注意培养学生的观察、比较、归纳及运算能力.二、重难点目标【教学重点】掌握有理数减法法则和运算.【教学难点】有理数减法法则的推导.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P21~P22的内容,完成下面练习.【3 min 反馈】通过教材第21页实际例子,一方面,利用加法与减法互为逆运算可知:计算3-(-3),就是要求出一个数x ,使x +(-3)=3,易知x =6,所以3-(-3)=6.①另一方面,3+(+3)=6.②由①②有3-(-3)=3+(+3).再试,把减数-3换成正数,任意列出一些算式进行计算,如:计算9-8与9+(-8);15-7与15+(-7).得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为a -b =a +(-b ).【教师点拨】减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)-7-3;(2)5.8-(-3.6);(3)(+4.09)-⎝⎛⎭⎫+614; (4)(-30)-(-6)-(+6)-(-15).【互动探索】(引发学生思考)利用有理数的减法法则进行计算。

最新人教版初一数学七年级上册 第一章《有理数》全单元教学设计

最新人教版初一数学七年级上册 第一章《有理数》全单元教学设计

人教版七年级上学期数学教案第一章课题: 1.1 正数和负数(1)1.1 正数和负数(2)1.2.1 有理数1.2.2数轴课题:1.2.3 相反数课题: 1.2.4 绝对值课题: 1.3.1 有理数的加法(一)课题: 1.3.1 有理数的加法(二)课题: 1.3.2有理数的减法(1)课题: 1.3.2 有理数的减法(2)教学目标1,理解加减法混合运算统一为加法运算的意义,学会把加减法统一成加法.2,会正确熟练地进行有理数加减混合运算,发展学生的运算能力.3,会使用计算器进行有理数的加、减混合运算,培养学生的程序意识,提高学生的学习积极性与学习数学的兴趣,以及学好数学的信心.教学难点把加、减混合运算统一成加法运算知识重点本节的重点是能把加、减法统一成加法运算,并用加法运算律合理地进行运算。

教学过程(师生活动)设计理念设置情境引入课题一架飞机作特技表演,起飞后的高度变化如下表:此时飞机比起飞点高了多少千米?(组织学生小组讨论并得出答案)学生可能出现的算式:(1)4.5+(-3.2)+1.1+(-1.4)(2)4.5-3.2+1.1-1.4提出课题:有理数加减法混合运算.创设一个有趣的真实情境来激发学生学习加减混合计算的兴趣分析问题探究新知1,回顾小学加减法混合运算的顺序.(从左到右,依次计算)2,以教科书28页例6计算(-20)+(+3)-(-5)一(+7)为例来说明。

鼓励生来进行独立计算。

(这里要给学生充裕的时间,让学生算出答案,估计学生能解决这个问题3,教师引导:这个式子中有加法,也有减法,我们可不可以利用有理数的减法法则,把这个算式改变一下?再给算一算,你发现了什么?(学生小组合作,探讨把减法转化为加法,再利用运算来简化计算)教师巡回观祭,作适当稍导,若学生不能进一步计算,也可以在他们把减法转化为加法后,提示他们使用运算律。

(-20)+(3)一(-5)一(+7)=(-20)+(+3)+(+5)+(-7)=[(-20)+(-7)]+[(+3)+(+5)]=(-27)+(+8)=-194,学生交流汇报.(发现了什么?)充分鼓励学生大胆发现,勇敢交流.(如:计算结果与前面的算法是一样的;把减法都转化为加法可以使用运算律,计算会简单些等)5,归纳明确“减法可以转化为加法”.加减混合运算可以统一为加法运算,如:a+b-c=a+b+(-C).6,省略加号.教师引导:式子(-20)+(+3)十(+5)+(一7)是-20,+3,+5,-7的和,为了书写简单,可以省略式中的括号和加号,把它写为-20+3+5-7,读作:“负20正3正5负7的和”,或读作“负20加3加5减7",鼓励学生使用第一种读法;并让学生体会两种读法的区别.再根据教科书,规范书写例6的运算过程.通过这两种算法,为加减混合运算统一成加减法运算打下伏笔.这里的设计,一方面让学生体会混合运算中运算顺序确定的重要性,另一方面,先让学生按从左到右的顺序来计算,也是为了与接下去的加减混合运算统一成加法运算再利用运算律进行简侠便计算作出比较。

最新人教版七年级数学上册 第一章 有理数 优秀教案教学设计 含教学反思

最新人教版七年级数学上册 第一章 有理数 优秀教案教学设计 含教学反思

第一章有理数1.1正数和负数 (1)第1课时正数和负数的概念 (1)第2课时正数、负数以及0的意义 (3)1.2有理数 (4)1.2.1有理数 (4)1.2.2数轴 (6)1.2.3相反数 (8)1.2.4绝对值 (10)1.3有理数的加减法 (12)1.3.1有理数的加法 (12)第1课时有理数的加法 (12)第2课时相关运算律 (14)1.3.2有理数的减法 (15)第1课时有理数的减法法则 (15)第2课时有理数的加减混合运算 (17)1.4有理数的乘除法 (18)1.4.1有理数的乘法 (18)第1课时有理数的乘法 (18)第2课时相关运算律 (21)1.4.2有理数的除法 (23)第1课时有理数的除法 (23)第2课时有理数的混合运算 (24)1.5有理数的乘方 (26)1.5.1乘方 (26)第1课时有理数的乘方 (26)第2课时有理数的综合运算 (28)1.5.2科学记数法 (29)1.5.3近似数 (31)1.1正数和负数第1课时正数和负数的概念了解正数和负数的产生;知道什么是正数和负数;理解正负数表示的量的意义;知道0既不是正数,也不是负数.重点正、负数的意义.难点1.负数的意义.2.具有相反意义的量.一、新课导入活动1:创设情境,导入新课教师投影展示教材第2页图片,让学生体验自然数的产生,分数的产生离不开生产和生活的需要,可以让学生自由发表意见和感想.二、推进新课活动2:体验负数的引入的必要性教师出示温度计:安排三名同学进行如下活动:研究手中的温度计上刻度的确切含义,一名同学手持温度计,一名同学说出其中三个刻度,一名同学在黑板上速记.教师根据活动情况,如果学生不能引入符号表示,教师也可参与活动,逐步引入负数.强调:0既不是正数,也不是负数.活动3:分组活动,感受正负数的意义各组派一名同学进行如下活动:按老师的指令表演,看哪一组获胜.1.老师说出指令:向前2步,向后3步,向前-2步,向后-3步,学生按老师的指令表演.2.各小组互相监督,派一名同学汇报完成的情况.活动4:深入理解正负数的意义,提高分析解决问题的能力师投影展示问题,讲解课本例题.例:1.一个月内,小明体重增加2千克,小华体重减少1千克,小强体重无变化,写出他们这个月的体重增长值.2.某年,下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.学生讨论后解决.活动5:练习与小结练习:教材第3页练习.小结:这堂课我们学习了哪些知识?你能说一说吗?活动6:作业习题1.1第4,5,6,8题本课是有理数的第一课时,引入负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的.为了接受这个新的数,就必须对原有的数的结构进行整理。

七年级数学上册第一章《有理数》教案

七年级数学上册第一章《有理数》教案

第一课时正数和负数(一)教学目标1.熟练区分正数和负数。

2.能利用正负数正确表示相反意义的量。

教学重难点:熟练区分正数和负数教学方法:探究学习教学设计一、课前铺垫:我们小学已经学过哪些数,请举例说明。

二、探究新知知识点一:会判断一个数是正数还是负数1.自学课本1—2页,并回答以下问题:(1)在引言中表示温度、净胜球数和产品增长率时用到了哪些数?它们的具体含义是什么?(2)像2, 0.2, 17等数叫做数;像-4,1234-, -6.25这样在正数前面加号的数叫做,既不是正数也不是负数。

你认为:叫做非负数。

针对性练习1.已知下列各数:13-,5,0,-4,47,其中正数的个数是( )A.0个B.1个C.2个D.3个2. 有下列六个数:-5,0,132,-0.3,+13,14-,其中负数的个数是( )A.1B.2C.3D.43.下列说法正确的个数是( )①零是正数;②零是负数;③零是偶数;④零是奇数;A.0个B.1个C.2个4. 已知下列各数:-8,50.9,35-, 0.3,其中非负数的个数是( )A.0个B.1个C.2个D.3个知识点二:认识正数和负数具体表示的是相反意义的量1.自学课本第3页,并结合以上问题回答以下问题:(1)通过以上内容的学习,其实正数和负数是表示生活中具有意义的量。

(2)列举自己见到的生活中用正、负数表示的量2.尝试表示在日常生活中常会遇到下面的一些量。

(1)温度是零上10℃表示为,零下5℃表示为。

(2)收入500元表示为,支出237元表示为。

(3)水位升高1.2米表示为,下降0.7米表示为。

针对性练习1.规定正常水位为0m,高于正常水位0.2m时记做+0.2m,则下列说法错误的是( )A.高于正常水位1.5m记做+1.5mB.低于正常水位0.5m记做-0.5mC.-1m表示比正常水位低1mD.+2m表示水深2m2.规定电梯上升为“+”,那么电梯上升-10m表示( )A.电梯下降10mB.电梯上升10mC.电梯上升0mD.电梯没有动3.温度计液面在0℃以上第五个刻度处,表示的温度是零上5℃,记做+5℃; 温度计液面在0℃以下第五个刻度处,表示的温度是零下5℃,记做 ,它是数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学第一章 有理数 1.1 正数和负数01 教学目标1.掌握正、负数的概念和表示方法,理解数0表示的量的意义. 2.理解具有相反意义的量的含义. 02 预习反馈阅读教材P2~4,完成下列内容.1.大于0的数叫做正数,在正数前加上符号“-”(负)的数叫做负数. 2.0既不是正数,也不是负数.3.把0以外的数分为正数和负数,它们表示具有相反意义的量. 4.下列各数中,哪些是正数?哪些是负数?7,-9.24,-301,31.25,0.解:正数:7,31.25;负数:-9.24,-301.5.在知识竞赛中,如果用+10表示加10分,那么扣20分怎样表示? 解:扣20分表示为-20.6.在某次乒乓球质量检测中,一只乒乓球超出标准质量0.02克记作+0.02克,那么-0.03克表示什么? 解:-0.03克表示低于标准质量0.03克.03 名校讲坛例1 (教材P4练习T1变式)读下列各数,并指出其中哪些是正数,哪些是负数. -2,+313,0,45,204,-0.02,+3.65,-537.解:正数:+313,45,204,+3.65;负数:-2,-0.02,-537.【点拨】 熟悉正负数的定义,零的认识.【跟踪训练1】 读出下列各数,并指出其中哪些是正数,哪些是负数? -2,0.6,+6,0,-3.141 5,200,-754 200.解:正数:0.6,+6,200;负数:-2,-3.141 5,-754 200.例2 (教材P3例题)(1)一个月内,小明体重增加2 kg ,小华体重减少1 kg ,小强体重无变化,写出他们这个月的体重增长值;(2)某年,下列国家的商品进出口总额比上年的变化情况是: 美国减少6.4%,德国增长1.3%, 法国减少2.4%,英国减少3.5%, 意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.解:(1)这个月小明体重增长2 kg ,小华体重增长-1 kg ,小强体重增长0 kg. (2)六个国家这一年商品进出口总额的增长率是: 美国 -6.4%, 德国 1.3%, 法国 -2.4%, 英国 -3.5%, 意大利 0.2%, 中国 7.5%.【跟踪训练2】 (《名校课堂》1.1习题)说明下列语句的实际意义: (1)水位上升了-20米; (2)收入-2 000元. 解:(1)水位下降了20米.(2)支出2 000元. 04 巩固训练1.下列结论中正确的是(D)A .0既是正数,又是负数B .0是最小的正数C .0是最大的负数D .0既不是正数,也不是负数 2.在-7,0,-3,78,+9 100,-0.27中,负数有(D)A .0个B .1个C .2个D .3个3.如果上升8 m 记作+8 m ,那么下降5 m 记作-5m.如果-22元表示亏损22元,那么+45元表示盈利45元.4.一种零件的直径尺寸在图纸上是30+0.03-0.02(单位: mm),表示这种零件的标准尺寸是30 mm ,加工要求最大不超过30.03mm ,最小不小于29.98mm.5.七(1)班某次数学测验的平均成绩是85分,老师以平均成绩为基准,记为0,超过85分的记为正,那么92分、78分各记作什么?若老师把某3名同学的成绩简记为:-5,0,+8,则这3名同学的实际成绩分别为多少分? 解:+7,-7;80,85,93.【点拨】 正、负数表示相反意义的量.05 课堂小结1.正数和负数的概念.2.正数和负数表示具有相反意义的量.1.2 有理数 1.2.1 有理数 01 教学目标1.理解有理数的概念.2.会判断一个数是整数还是分数,是正数还是负数. 3.了解有理数的两种分类方法. 02 预习反馈阅读教材P6,完成下列内容.1.正整数、0、负整数统称为整数;正分数、负分数统称为分数. 2.整数和分数统称为有理数.3. 在有理数-5,23,0,-0.24,7,4 076,-59,-2中,正数有23,7,4__076,负数有-5,-0.24,-59,-2,整数有-5,0,7,4__076,-2,分数有23,-0.24,-59,有理数有-5,23,0,-0.24,7,4__076,-59,-2.03 名校讲坛例1 有理数:-7,3.5,-12,112,0,π,1317中,正分数有(C)A .1个B .2个C .3个D .4个【跟踪训练1】 在14,-2,0,-3.14这四个数中,属于负分数的是(D)A.14B .-2C .0D .-3.14 例2 (教材P6练习T1变式)把下列各有理数填入相应的集合里.-5,10,-4.5,0,+235,-2.15,0.01,+66,-35,15%,227,2 018,-16.整数集合:{-5,10,0,+66,2 018,-16,…}; 正数集合:{10,+235,0.01,+66,15%,227,2 018,…};负数集合:{-5,-4.5,-2.15,-35,-16,…};正整数集合:{10,+66,2 018,…}; 负整数集合:{-5,-16,…};正分数集合:{+235,0.01,15%,227,…};负分数集合:{-4.5,-2.15,-35,…}.【跟踪训练2】 (《名校课堂》1.2.1习题)把下列各数填在相应的集合里: 2 018,1,-1,-2 017,0.5,110,-13,-0.75,0,20%.(1)整数集合:{2 018,1,-1,-2 017,0,…}; (2)正分数集合:{0.5,110,20%,…};(3)负分数集合:{-13,-0.75,…};(4)正数集合:{2 018,1,0.5,110,20%,…};(5)负数集合:{-1,-2 017,-13,-0.75,…}.04 巩固训练1.下列说法正确的是(D)A .一个有理数不是正数就是负数B .正有理数和负有理数组成有理数C .有理数是指整数、分数、正有理数、负有理数和零这五类数D .负整数和负分数统称为负有理数2.下面各数中,既是分数,又是正数的是(D)A .5B .-2.25C .0D .8.33.下列各数:-8,-113,2.03,0.5,67,-44,-0.99,其中整数有-8,-44,负分数有-113,-0.99.4.如图,两个圈分别表示负数集和整数集,请你把下列各数填入表示它所在的数集的圈里. -20%,-2 018,0,18.3,-1,-94,15,-0.52,-30.-20%,-94,-0.52 -2 018,-1,-30 0,155.把下列各数填入它所属的集合内:-0.56,+11,35,-125,+2.5,8.41,-136,0.(1)整数集合:{+11,-125,0,… };(2)正整数集合:{+11,… }; (3)负整数集合:{-125,… }; (4)正分数集合:{35,+2.5,8.41,… };(5)负分数集合:{-0.56,-136,… }.05 课堂小结归纳出我们已经学过的5类不同的数,它们分别是正整数、零、负整数、正分数、负分数.1.2.2 数轴 01 教学目标1.了解数轴的概念,会画数轴,并在数轴上表示有理数.2.能说出数轴上的点所表示的数,知道任何一个有理数在数轴上都有唯一点与之对应. 02 预习反馈阅读教材P7~9,完成下列内容.1.(1)规定了原点、正方向、单位长度的直线叫做数轴; (2)数轴是一条直线,它可以向两端无限延伸; (3)数轴上原点左侧是负数,正数在原点的右侧. 2.指出图中所画数轴的错误:,(1)),(2)),(3)),(4))解:(1)错误,数轴是直线;(2)错误,没有原点; (3)错误,单位长度不统一;(4)正确.3.如图,数轴上点A ,B 表示的数分别是-2.5,2.4.画出数轴并表示下列有理数:1.5,-2,2,-2.5,412,0.解:如图所示.03 名校讲坛例 (1)画一条数轴,并表示出如下各点:±0.5,±0.1,±0.75; (2)画一条数轴,并表示出如下各点:1 000,5 000,-2 000; (3)画一条数轴,并表示出到原点的距离小于3的整数; (4)画一条数轴,并表示出-5和+5之间的所有整数. 解:(1)如图1所示. (2)如图2所示. (3)如图3所示. (4)如图4所示.,图1),图2),图3),图4)【点拨】 数轴的三要素、画法、适当地选择单位长度和原点的位置.【跟踪训练】 如图所示:(1)数轴上点A ,B ,C ,D 分别表示什么数? (2)在数轴上表示下列各数:1.5,-72,-5,3.解:(1)点A 表示-2.5,点B 表示-1,点C 表示0,点D 表示5. (2) 如图.04 巩固训练1.在数轴上表示-1.2的点在(B)A .-1与0之间B .-2与-1之间C .1与2之间D .-1与1之间2.在数轴上点A 表示的数是-4,如果把原点向负方向移动1.5个单位长度,那么在新数轴上点A 表示的数是(C)A .-512B .-4C .-212D .2123.在数轴上,表示数-3,2.6,-35,0,413,-223,-1的点中,在原点左边的点有4个.4.数轴上表示-8的点在原点的左侧,距离原点8个单位长度;数轴上点P 距原点5个单位长度,且在原点的左侧,则点P 表示的数是-5.5.如图,写出数轴上点A ,B ,C ,D ,E 所表示的数.解:点A ,B ,C ,D ,E 所表示的数分别是0,-2,1,2.5,-3.6.一个点在数轴上表示的数是-5,这个点先向左边移动3个单位长度,然后再向右边移动6个单位长度,这时它表示的数是多少呢?如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数? 解:-2,-1.【点拨】 利用数轴,数形结合解题.05 课堂小结1.什么是数轴?如何画数轴?如何在数轴上表示有理数? 2.利用数轴,很多数学问题都可以借助图直观地表示.1.2.3 相反数 01 教学目标1.理解相反数的意义.2.掌握求一个已知数的相反数的方法. 02 预习反馈阅读教材P9~10,完成下列内容.1.(1)在数轴上,到原点的距离等于3的点有两个,这两个点表示的数是-3和3,像这样,只有符号不同的两个数叫做互为相反数.也就是说:3是-3的相反数,-3是3的相反数.(2)数a 的相反数记作-a ,5的相反数记作-5,-5的相反数记作-(-5),而-5的相反数是5,因此-(-5)=5. (3)我们规定:0的相反数是0.2.-2.3的相反数是2.3;0.01是-0.01的相反数. 3.表示下列各数的相反数,并求出相反数的值:(1)7;(2)+6.3;(3)-334;(4)+(-23);(5)-(+356);(6)-(-2.6).解:(1)-7.(2)-(+6.3)=-6.3.(3)-(-334)=334.(4)-[+(-23)]=23.(5)-[-(+356)]=356.(6)-[-(-2.6)]=-2.6.03 名校讲坛例1 化简下列各数:(1)-(-13)=13; (2)+(+10)=10;(3)+(-412)=-412; (4)-{+[-(-2)]}=-2.【跟踪训练1】 化简下列各数,你能发现什么规律?(1)-[-(-3)]=-3; (2)-[+(-3.5)]=3.5; (3)+[-(-6)]=6; (4)-[-(+7)]=7.规律:负号个数为奇数时,化简得到的结果为负数;负号个数为偶数时,化简得到的结果为正数. 例2 写出下列各数的相反数,并把所有的数(包括相反数)在数轴上表示出来. 4,-12,-(-23),+(-4.5),0,-(+3).解:它们的相反数分别是-4,12,-23,4.5,0,3.在数轴上表示如图所示.【跟踪训练2】 数轴上表示互为相反数的两个点相互之间的距离是8.4,则这两个数是±4.2. 【点拨】 相反数的特点和定义:到原点的距离相等,符号相反.04 巩固训练1.如图,点O 为数轴原点,则数轴上表示互为相反数的点是(B)A .点A 和点CB .点C 和点D C .点A 和点DD .点B 和点D2.-74的相反数是74;13的相反数是-13;0的相反数是0.3.负数的相反数比它本身大,正数的相反数比它本身小,0的相反数和它本身相等. 4.一个数的相反数是最大的负整数,那么这个数是1. 5.(《名校课堂》1.2.3习题)写出下列各数的相反数: 10,-12,-4.8,53,-313,12 018,0.解:它们的相反数分别是-10,12,4.8,-53,313,-12 018,0.05 课堂小结1.相反数的概念使有理数的各个运算法则容易表述,也揭示了两个特殊数的特征.2.这两个特殊数的和为零,在数轴上表示时,离原点的距离相等等性质均有广泛的应用.1.2.4 绝对值第1课时 绝对值01 教学目标1.理解绝对值的几何意义和代数意义. 2.会求一个有理数的绝对值.02 预习反馈阅读教材P11,完成下列内容.1.一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值.2.一个正数的绝对值是它本身,即:若a>0,则|a|=a ;一个负数的绝对值是它的相反数,即:若a<0,则|a|=-a ;0的绝对值是0.3.数轴上有一点到原点的距离为6.03,那么这个点表示的数是±6.03.所以|6.03|=6.03,|-6.03|=6.03. 4.计算:(1)|+13|=13;(2)|-8|=8;(3)|+315|=315;(4)|-8.22|=8.22.5.-213的绝对值是213,绝对值等于213的数是±213,它们是一对相反数.03 名校讲坛例1 |-2|的相反数是(B)A .2B .-2C .0.5D .-0.5【跟踪训练1】 在|-7|,|5|,-(+3),-|0|中,负数共有(A) A .1个 B .2个 C .3个 D .4个 例2 下列说法正确的是(B)A .一个数的绝对值的相反数一定不是负数B .一个数的绝对值一定不是负数C .一个数的绝对值一定是正数D .一个数的绝对值一定是非正数【跟踪训练2】 下列说法正确的是(B) A .一个数的绝对值一定比0大B .任何一个有理数的绝对值都不是负数C .绝对值等于它本身的数一定是正数D .一个数的绝对值越大,表示它的点在数轴上越靠右 例3 指出下列各式中a 的取值. (1)若|a|=-a ,则a 为非正数; (2)若|-a|=a ,则a 为非负数; (3)若|a -1|=0,则a 为1.【跟踪训练3】 已知|a|=3,|b|=5,a 与b 异号,求a ,b 两数在数轴上所表示的点之间的距离. 解:因为|a|=3,|b|=5,所以a =3或-3,b =5或-5. 又因为a 与b 异号,所以a =3,b =-5或a =-3,b =5. 所以a ,b 两数在数轴上所表示的点之间的距离是8. 04 巩固训练1.下列四组数中不相等的是(C)A .-(+3)和+(-3)B .+(-5)和-5C .+(-7)和-(-7)D .-(-1)和|-1| 2.一个数的绝对值等于这个数本身,这个数是(D)A .1B .+1,-1,0C .1或-1D .非负数【点拨】 非负数的绝对值是它本身,负数的绝对值是它的相反数. 3.绝对值小于2的整数有3个,它们分别是±1,0. 4.若|x -3|+|y -2|=0,则x =3,y =2. 【点拨】 注意绝对值的非负性.5.(《名校课堂》1.2.4第1课时习题)求下列各数的绝对值: (1)+813;(2)-7.2;(3)0;(4)-813.解:(1)|+813|=813.(2)|-7.2|=-(-7.2)=7.2. (3)|0|=0.(4)|-813|=-(-813)=813.6.计算:(1)|-18|+|-6|; (2)|-313|×|-34|.解:(1)原式=24. (2)原式=52.05 课堂小结1.绝对值的定义:有理数到原点的距离.2.化简绝对值:|a|=⎩⎪⎨⎪⎧a (a>0),0(a =0),-a (a<0).第2课时 比较大小01 教学目标1.理解比较有理数大小的规则的合理性. 2.会比较有理数的大小. 02 预习反馈阅读教材P12~13,完成下列内容.1.(1)在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数. (2)正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小. 2.以下四个选项分别表示某天四个城市的平均气温,其中平均气温最低的是(C) A .-3 ℃ B .15 ℃ C .-10 ℃ D .-1 ℃ 3.有理数a ,b 在数轴上的位置如图,那么下列关系中正确的是(A)A .b >0>aB .b>a>0C .a>b>0D .a>0>b4.比较大小(填“>”“<”或“=”): (1)-0.01<0;(2)-17>-16;(3)-π<-|-3.14|; (4)-(-0.3)<|-13|.03 名校讲坛例1 (教材P13例题)比较下列各对数的大小: (1)-(-1)和-(+2);(2)-821和-37;(3)-(-0.3)和|-13|.解:(1)先化简,-(-1)=1,-(+2)=-2.因为正数大于负数,所以1>-2,即-(-1)>-(+2). (2)这两个负数比较大小,先求它们的绝对值. |-821|=821,|-37|=37=921. 因为821<921,即|-821|<|-37|,所以-821>-37.(3)先化简,-(-0.3)=0.3,|-13|=13.因为0.3<13,所以-(-0.3)<|-13|.【点拨】 异号两数比较大小,要考虑它们的正负;同号两数比较大小,要考虑它们的绝对值. 【跟踪训练1】 比较-78和-67;-|-(+5)|和-[-(+5)]的大小,并写出比较过程.解:-78<-67,-|-(+5)|<-[-(+5)].【点拨】 先化简,再比较.例2 有理数x ,y 在数轴上的位置如图所示:(1)在数轴上表示-x ,-y ;(2)试把x ,y ,0,-x ,-y 这五个数用“>”连接起来. 解:(1)如图所示. (2)x>-y>0>y>-x.【点拨】 数轴上的点表示的数右边的总比左边的大.【跟踪训练2】 画一条数轴表示下列各数,并用“<”把这些数连接起来.13,2,-4.5,0,52,-0.5,-14. 解:在数轴上表示如图所示,用“<”把这些数连接起来为: -4.5<-0.5<-14<0< 13<2<52.04 巩固训练1.下面四个结论中,正确的是(D)A .|-2|>|-3|B .|2|>|3|C .2>|-3|D .|-2|<|-3| 2.比较大小(填“>”或“<”).(1)-23>-34;(2)-2 0172 018>-2 0182 019;(3)-(-19)>-|-110|.3.在数轴上表示下列各数:+223,-12,-(-6),-7,-(+3),1,0,-1.5.并用“<”将它们连接起来.解:在数轴上表示略,用“<”把这些数连接起来为: -7<-(+3)<-1.5<-12<0<1<+223<-(-6).4.将有理数:-(-4),0,-│-312│,-│+2│,-│-(+1.5)│,-(-3),│-(+212)│表示到数轴上,并用“<”把它们连接起来.解:在数轴上表示略,用“<”把这些数连接起来为:-│-312│<-│+2│<-│-(+1.5)│<0<│-(+212)│<-(-3)<-(-4).05课堂小结1.两个负数比较大小,绝对值大的反而小.2.正数大于零,零大于负数,正数大于负数.3.用数轴如何比较两个数的大小?1.3有理数的加减法1.3.1有理数的加法第1课时有理数的加法法则01教学目标1.了解有理数加法的意义.2.理解有理数加法法则的合理性.3.能运用有理数加法法则正确进行有理数加法运算.02情景导入)思考一:小学学过的加法是正数与正数相加、正数与0相加.引入负数后,加法有哪几种情况?结论:共三种类型,即:(1)同号两个数相加;(2)异号两个数相加;(3)一个数与0相加.一个物体作左右方向的运动,我们规定向左为负,向右为正.向右运动5 m记作5 m,向左运动5 m记作-5 m. 思考二:(1)如果物体先向右运动5 m,再向右运动3 m,那么两次运动的最后结果是什么?可以用怎样的算式表示?两次运动后物体从起点向右运动了8__m,写成算式就是(+5)+(+3)=8.(2)如果物体先向左运动5 m,再向左运动3 m,那么两次运动的最后结果是什么?可以用怎样的算式表示?两次运动后物体从起点向左运动了8__m,写成算式就是(-5)+(-3)=-8.注意关注以上两个算式中加数的符号和绝对值.根据以上两个算式能否总结同号两数相加的法则?结论:同号两数相加,取相同的符号,并把绝对值相加.探究一:(1)如果物体先向左运动3 m,再向右运动5 m,那么两次运动的最后结果怎样?如何用算式表示?两次运动后物体从起点向右运动了2__m,写成算式就是(-3)+(+5)=2.(2)如果物体先向右运动3 m,再向左运动5 m,那么两次运动的最后结果怎样?如何用算式表示?两次运动后物体从起点向左运动了2__m,写成算式就是(-5)+(+3)=-2.(3)如果物体先向右运动5 m,再向左运动5 m,那么两次运动的最后结果怎样?如何用算式表示?两次运动后物体仍在起点处,写成算式就是5+(-5)=0. 注意关注以上三个算式中加数的符号和绝对值. 根据以上三个算式能否总结异号两数相加的法则?结论:绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.探究二:(1)如果物体第1 s 向右运动5 m ,第2 s 原地不动,那么2 s 后运动的最后结果怎样?如何用算式表示?2 s 后物体从起点向右运动了5__m ,写成算式就是5+0=5.(2)如果物体第1 s 向左运动5 m ,第2 s 原地不动,那么2 s 后运动的最后结果怎样?如何用算式表示?2 s 后物体从起点向左运动了5__m ,写成算式就是(-5)+0=-5. 根据以上两个算式能得到什么结论? 结论:一个数同0相加,仍得这个数. 03 名校讲坛例 (教材P18例1)计算: (1)(―3)+(―9); (2)(―4.7)+3.9. 解:(1)(―3)+(―9)=―(3+9)=―12. (2)(―4.7)+3.9=―(4.7―3.9)=―0.8. 方法归纳:有理数加法的运算步骤: (1)先判断类型(同号、异号等); (2)再确定和的符号;(3)后进行绝对值的加减运算. 【跟踪训练】 1.计算:(1)16+(-8)=8;(2)(-8)+3=-5;__ (3)(+312)+(-72)=0;(4)(-12)+(-13)=-56;(5)0+(-9.7)=-9.7.2.某地某天的最低气温是-10 ℃,最高气温比最低气温高12 ℃,那么最高气温是多少摄氏度? 解:(-10)+12=+(12-10)=2(℃). 答:最高气温是2 ℃. 04 巩固训练1.两个数的和为负数,则下列说法中正确的是(D)A .两个均是负数B .两个数一正一负C .至少有一个正数D .至少有一个负数 2.一个正数与一个负数的和是(D)A .正数B .负数C .0D .不能确定符号 3.计算:(1)(+3)+(+8);(2)(+14)+(-12);(3)(-312)+(-3.5);(4)-3.4+4;(5)(-2.8)+2.8; (6)|(-19)+8.3|. 解:(1)(+3)+(+8)=+(3+8)=11. (2)(+14)+(-12)=-(12-14)=-14.(3)(-312)+(-3.5)=-(3.5+3.5)=-7.(4)-3.4+4=+(4-3.4)=0.6. (5)(-2.8)+2.8=0.(6)|(-19)+8.3|=|-(19-8.3)|=|-10.7|=10.7.4.一只蜗牛爬树,白天向上爬了1.5 m ,夜间向下爬了0.3 m ,白天和夜间一共向上爬了多少米? 解:规定向上为正,向下为负.1.5+(-0.3)=+(1.5-0.3)=1.2(m). 答:蜗牛一共向上爬了1.2 m. 05 课堂小结 有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.第2课时 有理数的加法运算律01 教学目标1.掌握有理数的加法运算律,理解小学中的加法运算律在有理数中仍然成立. 2.能用有理数的运算律对有理数加法进行简便运算.3.能根据有理数加法算式的特点选择适当的简便运算方法. 02 情景导入探究一:计算:(1)30+(-20); (2)(-20)+30; 解:(1)30+(-20)=+(30-20)=10. (2)(-20)+30=+(30-20)=10.两次所得的和相同吗?换几个加数再试一试. (3)(-30)+20; (4)20+(-30). 解:(3)(-30)+20=-(30-20)=-10. (4)20+(-30)=-(30-20)=-10. 从上述计算中,你能得出什么结论?结论:当数由非负数扩大到有理数范围时,加法交换律仍然适用. 有理数的加法中,两个数相加,交换加数的位置,和不变.加法交换律:a +b =b +a探究二:计算:(1)[8+(-5)]+(-4); (2)8+[(-5)+(-4)];解:(1)[8+(-5)]+(-4)=+(8-5)+(-4)=3+(-4)=-(4-3)=-1. (2)8+[(-5)+(-4)]=8+[-(5+4)]=8+(-9)=-(9-8)=-1; 两次所得的和相同吗?换几个加数再试一试. (3)[5+(-8)]+4; (4)5+[(-8)+4].解:(3)[5+(-8)]+4=[-(8-5)]+4=(-3)+4=+(4-3)=1. (4)5+[(-8)+4]=5+[-(8-4)]=5+(-4)=+(5-4)=1. 从上述计算中,你能得出什么结论?结论:当数由非负数扩大到有理数范围时,加法结合律仍然适用.有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.加法结合律:(a +b )+c =a +(b +c )03 名校讲坛知识点1 有理数加法的简便运算例1 (教材P19例2)计算:16+(-25)+24+(-35). 解:16+(-25)+24+(-35) =16+24+[(-25)+(-35)] =40+(-60)=-20.思考:例1中的计算是怎样简化的?根据是什么?例1中的计算是把正数和正数放在一起相加,负数和负数放在一起相加,这样可以简化运算; 根据是有理数加法的交换律和结合律.方法归纳:在运用加法运算律进行简便运算时有以下常用方法:1.相反数结合法:互为相反数的两数,可先加;如:2+(-5)+(-2)=2+(-2)+(-5)=0+(-5)=-5. 2.同号结合法:符号相同的数,可先加;如:例1. 3.同形结合法:分母相同的分数,可先加;如:215+(-29)+815+(-49)=215+815+(-29)+(-49)=(215+815)+[(-29)+(-49)]=23+(-23)=0. 4.凑整法:几个数相加能得到整数的,可先加;如:3.37+(-2.46)+(-5.37)+(-7.54)=[3.37+(-5.37)]+[ (-2.46)+(-7.54)]=(-2)+(-10)=-12.5.拆项结合法:带分数相加时,可先拆成整数和分数,再利用加法运算律相加;如:512+(-213)+(-116) =(5+12)+[(-2)+(-13)]+[(-1)+(-16)]=[5+(-2)+(-1)]+[12+(-13)+(-16)]=2+0=2.【跟踪训练1】 计算:(1)(-83)+(+26)+(-17)+(-26); (2)15+(-37)+(-35)+(+47); (3)4.1+(+34)+(-14)+(-10.1);(4)(-1256)+(+2713).解:(1)(-83)+(+26)+(-17)+(-26)=[(-83)+(-17)]+[ (+26)+(-26)] =-100+0=-100. (2)15+(-37)+(-35)+(+47) =[15+(-35)]+[(-37)+(+47)]=(-25)+(+17)=-935.(3)4.1+(+34)+(-14)+(-10.1)=[4.1+(-10.1)]+[(+34)+(-14)]=(-6)+(+12)=-5.5.(4)(-1256)+(+2713)=[(-12)+(-56)]+[27+(+13)]=[(-12)+27]+[(-56)+(+13)]=15+(-12)=14.5.知识点2 有理数加法的应用例2 (教材P20例3)10袋小麦称后记录如图所示(单位:kg).10袋小麦一共多少千克?如果每袋小麦以90 kg 为标准,10袋小麦总计超过多少千克或不足多少千克?解法1:先计算10袋小麦一共多少千克:91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4. 再计算总计超过多少千克: 905.4-90×10=5.4.解法2:每袋小麦超过90 kg 的千克数记作正数,不足的千克数记作负数.10袋小麦对应的数分别为+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1. 1+1+1.5+(-1)+1.2+1.3+(-1.3)+(-1.2)+1.8+1.1=[1+(-1)]+[1.2+(-1.2)]+[1.3+(-1.3)]+(1+1.5+1.8+1.1) =5.4.90×10+5.4=905.4.答:10袋小麦一共905.4 kg ,总计超过5.4 kg. 思考:比较两种解法,解法2中使用了哪些运算律?【跟踪训练2】 有一批水果,包装质量为每筐25千克,现抽取8筐样品进行检测,结果称重如下(单位:千克):27,24,23,28,21,26,22,27,为了求得8筐样品的总质量,我们可以选取的一个恰当的基准数进行简化运算.(1)你认为选取的一个恰当的基准数为25; (2)根据你选取的基准数,用正、负数填写上表; (3)这8筐水果的总质量是多少? 解:这8筐水果的总质量为25×8+[(+2)+(-1)+(-2)+(+3)+(-4)+(+1)+(-3)+(+2)] =200+(-2) =198(kg). 04 巩固训练1.计算(-35)+14+(-34)+(+35)时,下列所运用的运算律恰当的是(B)A .[(-35)+14]+[(-34)+(+35) ]B .[14+(-34)]+[(-35)+(+35)]C .(-35)+[14+(-34)]+(+35)D .以上都不对2.(《名校课堂》1.3.1第2课时习题)绝对值小于2 018的所有整数的和为0. 3.用简便方法计算:(1)23+(-17)+6+(-22); (2)1+(-12)+13+(-16);(3)1.125+(-325)+(-18)+(-0.6);(4)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:(1)23+(-17)+6+(-22) =(23+6)+[(-17)+(-22)] =29+(-39)=-10. (2)1+(-12)+13+(-16)=(1+13)+[(-12)+(-16)]=43+(-23)=23. (3)1.125+(-325)+(-18)+(-0.6)=[1.125+(-18)]+[(-325)+(-0.6)]=1+(-4)=-3.(4)(-2.48)+(+4.33)+(-7.52)+(-4.33) =[(-2.48)+(-7.52)]+[ (+4.33)+(-4.33)] =-10+0=-10.4.某出租司机某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米):+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.(1)将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米? (2)若汽车耗油量为0.1升/千米,这天下午汽车共耗油多少升?解:(1)15+14+(-3)+(-11)+10+(-12)+4+(-15)+16+(-18) =(15+14+10+4+16)+[(-3)+(-11)+(-12)+(-15)+(-18)] =59+(-59)=0.答:司机距出发点0千米.(2)|+15|+|+14|+|-3|+|-11|+|+10|+|-12|+|+4|+|-15|+|+16|+|-18|. =15+14+3+11+10+12+4+15+16+18=118(千米). 118×0.1=11.8(升). 答:这天下午共耗油11.8升. 05 课堂小结1.加法交换律:a +b =b +a.2.加法结合律:(a +b)+c =a +(b +c). 3.有理数加法的常用简便计算方法:①相反数结合法:互为相反数的两数,可先加; ②同号结合法:符号相同的数,可先加;③同形结合法:分母相同的分数,可先加;④凑整法:几个数相加能得到整数的,可先加;⑤拆项结合法:带分数相加时,可先拆成整数和分数,再利用加法运算律相加.1.3.2有理数的减法第1课时有理数的减法法则01教学目标1.掌握有理数的减法法则.2.熟练地进行有理数的减法运算.3.了解加与减两种运算的对立统一关系,掌握数学学习中转化的思想.02情景导入问题一:北京某天的气温是-3 ℃~3 ℃,这天的温差(最高气温减最低气温,单位:℃)是多少?这天的温差列式就是3-(-3),由温度计图可以看出这天的温差是6℃,所以3-(-3)=6.问题二:要如何计算3-(-3)呢?减法是加法的逆运算,计算3-(-3),就是要求出一个数x,使得x与-3相加得3.因为6与-3相加得3,所以x应该是6,即3-(-3)=6①.另一方面,我们知道3+(+3)=6②.由①②,有3-(-3)=3+(+3).③探究一:从③式能看出减-3相当于加哪个数呢?把3换成0,-1,-5,用上面的方法试试看.(1)因为0-(-3)=3,0+(+3)=3,所以0-(-3)=0+(+3).(2)因为(-1)-(-3)=2,(-1)+(+3)=2,所以(-1)-(-3)=(-1)+(+3).(3)因为(-5)-(-3)=-2,(-5)+(+3)=-2,所以(-5)-(-3)=(-5)+(+3).由此,我们得到:减去一个负数,等于加上这个负数的相反数.探究二:计算下面几对式子看看.(1)因为9-8=1,9+(-8)=1,所以9-8=9+(-8).(2)因为15-7=8,15+(-7)=8,所以15-7=15+(-7).从中有什么发现?减去一个正数,等于加上这个正数的相反数.探究三:再计算下面几对式子看看.(1)因为3-0=3,3+0=3,所以3-0=3+0.(2)因为(-5)-0=-5,(-5)+0=-5,所以(-5)-0=(-5)+0.从中又有什么发现?减去0等于加上0.由以上探究可以发现,有理数的减法可以转化为加法来进行.有理数减法法则:减去一个数,等于加上这个数的相反数. 也可以表示成a -b =a +(-b )注意:减法在运算时有2个要素要发生变化: (1)减号变为加号;(2)减数变为它的相反数.03 名校讲坛例 (教材P22例4)计算: (1)(-3)-(-5); (2)0-7; (3)7.2-(-4.8);(4)(-312)-514.解:(1)(-3)-(-5)=(-3)+5=2.(2)0-7=0+(-7)=-7.(3)7.2-(-4.8)=7.2+4.8=12. (4)(-312)-514=(-312)+(-514)=-834.思考一:在小学,只有当a 大于或等于b 时,我们才会做a -b.现在,当a 小于b 时,你会做a -b 吗? 答:会,先根据有理数的减法法则将a -b 化为a +(-b),再根据有理数的加法法则进行运算.思考二:一般地,较大的数减去较小的数,所得的差的符号是什么?较小的数减去较大的数,所得的差的符号是什么?答:较大的数减去较小的数,所得的差是正数;较小的数减去较大的数,所得的差是负数. 【跟踪训练】 1. 计算:(1)(+4)-(-7)=11; (2)0-(-5)=5; (3)(-5.9)-(-2.5)=-3.4;(4)(-212)-116=-323;(5)-10-0=-10.2.已知一个数与3的和是-10,求这个数. 解:(-10)-3=(-10)+(-3)=-13. 答:这个数是-13. 04 巩固训练1.下列说法正确的是(C)A .在有理数的减法中,被减数一定要大于减数B .两个负数的差一定是负数C .正数减去负数的差是正数D .两个正数的差一定是正数 2.比-18小-5的数是-23. 3.计算: (1)(-38)-(-36);(2)0-(-711);(3)1.7-(-3.5); (4)(-234)-(-112);(5)323-(-234);(6)(-334)-(+1.75).解:(1)(-38)-(-36)=(-38)+36=-2.(2)0-(-711)=0+711=711.(3)1.7-(-3.5)=1.7+3.5=5.2. (4)(-234)-(-112)=(-234)+112=-114.(5)323-(-234)=323+234=6512.(6)(-334)-(+1.75)=(-334)+(-1.75)=-5.5.4.全班学生分成五个组进行游戏,每个组的基本分为100分,答对一题加50分,答错一题扣50分,游戏结束时,各组的分数如下:(1)(2)第一名超出第五名多少分?解:从上表可以看出,第一名得了350分,第二名得了150分,第五名得了-400分. (1)350-150=200(分); (2)350-(-400)=750(分).答:第一名超出第二名200分,第一名超出第五名750分. 05 课堂小结1.有理数减法法则:减去一个数,等于加上这个数的相反数.即a -b =a +(-b).2.有理数的减法法则是一个转化法则,减号转化为加号,同时要注意减数变为它的相反数,这样就可以用加法来解决减法问题.3.运算中出现了小数减大数的情形,这就说明不只是大数才能减小数,在有理数范围内,任何两个数都可以相减.第2课时 有理数的加减混合运算01 教学目标1.会把有理数的加减混合运算统一为加法运算.2.熟悉有理数加减运算的运算律,提高运算的速度和准确度. 3.能把有理数加法运算省略加号和括号,理解有理数的和. 4.形成解决有理数加减混合运算问题的一些基本策略. 02 情景导入思考:我们已经学习了如何计算(-20)+(+3)和(-5)-(+7),如果把这两个式子用“-”连接,得到(-20)+(+3)-(-5)-(+7),这个式子要如何计算呢?【例】 (教材P23例5)计算:(-20)+(+3)-(-5)-(+7).分析:这个算式中有加法,也有减法,可以根据有理数减法法则,把它改写为(-20)+(+3)+(+5)+(-7),使问题转化为几个有理数的加法.解:(-20)+(+3)-(-5)-(+7) =(-20)+(+3)+(+5)+(-7) =[(-20)+(-7)]+[(+5)+(+3)] =(-27)+(+8) =-19.思考:这里使用了哪些运算律? 答:加法交换律和加法结合律.归纳:引入相反数,加减混合运算可以统一为加法运算. a +b -c =a +b +(-c).算式(-20)+(+3)+(+5)+(-7)是-20,3,5,-7这四个数的和,为书写简单,可以省略算式中的括号和加号,把它写为-20+3+5-7.思考:算式-20+3+5-7如何读呢?方法1:按性质符号读,可以读作“负20、正3、正5、负7的和”; 方法2:按运算符号读,可以读作“负20加3加5减7”. 思考:你能把例题中的运算过程简写吗? (-20)+(+3)-(-5)-(+7) =-20+3+5-7 =-20-7+3+5 =-27+8 =-19.归纳:有理数加减混合运算的步骤: (1)将减法转化为加法; (2)省略括号和加号;(3)运用加法交换律和加法结合律,将同号两数相加; (4)按有理数加法法则计算.探究:在数轴上,点A ,B 分别表示数a ,b.利用有理数减法,分别计算下列情况下点A ,B 之间的距离: (1)a =2,b =6; (2)a =0,b =6; (3)a =2,b =-6; (4)a =-2,b =-6.解:(1)当a =2,b =6,点A ,B 之间的距离是6-2=4; (2)当a =0,b =6,点A ,B 之间的距离是6-0=6;(3)当a =2,b =-6,点A ,B 之间的距离是2-(-6)=8;(4)当a =-2,b =-6,点A ,B 之间的距离是(-2)-(-6)=4. 思考:你能发现点A ,B 之间的距离与数a ,b 之间的关系吗?数轴上两点间的距离:在数轴上,设A ,B 两点表示的数分别为a ,b(a >b),则点A ,B 之间的距离等于 a -b . 03 名校讲坛例 某银行储蓄所办理了8项现款储蓄业务:取出950元,存入500元,取出800元,存入1 200元,存入2 500元,取出1 025元,取出200元,存入400元.这时,银行现款是增加了,还是减少了?增加或减少了多少元? 解:记存入为正,由题意,可得-950+500-800+1 200+2 500-1 025-200+400=(500+1 200+2 500+400)+(-950-800-1 025-200) =4 600+(-2 975) =1 625(元).答:银行现款增加了,增加了1 625元. 【跟踪训练】 1.计算:(1)7.8+(-1.2)-(-0.2);(2)-5.3-(-6.1)-(-3.4)+7; (3)-23+14-16-12.解:(1)7.8+(-1.2)-(-0.2) =7.8-1.2+0.2 =7.8-1 =6.8.(2)-5.3-(-6.1)-(-3.4)+7 =-5.3+6.1+3.4+7 =-5.3+16.5 =11.2. (3)-23+14-16-12。

相关文档
最新文档