线元法简介
交点法、线元法坐标计算
3、交点法、线元法坐标计算坐标计算是根据图纸中“直线及曲线转角一览表”提供的数据计算道路中桩坐标,然后和图纸提供的“逐桩坐标表”比对,如果一样则说明输入平曲线参数输入正确,可以计算边桩坐标和其他结构物坐标了;如果中桩坐标不一样,一般是平曲线参数输入有误,需要重新检查输入,另一种结果是图纸有错,这种情况少见,但不代表没有。
“直线及曲线转角一览表”和“逐桩坐标表”见附件1、附件2。
线元法是以路线的起点坐标、方位角、起终点桩号等节点元素来计算出要求的坐标;交点法是以路线的交点要素和路线的主要要素来求得坐标。
①交点法交点:路线的转折点,路线改变方向是相邻两直线的延长线相交的点。
用JD表示,有些图纸上用IP 表示。
看下图:交点是针对曲线的(包含圆曲线和缓和曲线),一段曲线就有一个交点。
交点参数有:坐标(X,Y)、交点桩号、转角值、圆曲线半径R、缓和曲线长度。
教学提供软件(轻松测量、双心软件、测量工具)交点法曲线要素输入说明:1、QD起点坐标:起点坐标必须在直线段上,或填写前一交点的坐标。
2、JD交点曲线要素:(1)交点桩号(2)交点坐标(X,Y)(3)曲线半径R(4)第一缓和曲线长度LS1,若为0,输入0,不能为空。
(5)第二缓和曲线长度LS2,若为0,输入0,不能为空。
3、ZD终点坐标:终点坐标也必须在直线段上,或填写后一交点的坐标。
检核数据是否输入正确的方法:软件生成的圆曲线要素中切线长、外距、交点里程:注意校正起点里程、等与设计图纸是否一致。
如果上述数据和图纸不一样,请认真检查有错误的交点处的数据输入是否正确,如果输入没有错误,请考虑是否包含不完整缓和曲线,使用公式A2=R*Ls检查是否包含不完整缓和曲线。
如果包含不完整缓和曲线,那就需要用线元法也叫积木法计算了。
有的设计院给出的直曲表是整条设计线路的直曲表的一部分,以其中某个交点作为起始点的话,起始里程有时候需要校正,当然,并不是每个图纸给出的起点里程都需要校正,大多数图纸的起点里程已经被设计院校正过,我们输入平曲线的时候需要验证一下。
线元法线路坐标正反算程序
经苦心钻研,奋战多日,终于编写出了代码短,速度快,精度高, 功能全的线路坐标正反算程序,欢迎试用并提出宝贵意见。
功能简介及特点:1、选用高斯-勒让德公式作计算内核,保证精度,模块化设计,便于扩充功能。
2、线元数据可自动从数据库调用,也可手工输入。
3、可管理多条线路,如里程不在线路或线元范围,将警告里程偏大、偏小。
4、边桩计算设计为导线式递推方式,可用于由一个中桩推出结构物所有角点坐标。
5、反算实现了智能化操作,只需输入线路号(或手工输线元资料)坐标,不需近似里程,即可自动从起点向后开始试算出里程、位置,如对算出里程、位置表示怀疑,还可以让计算器从终点起再向前试算下一个可能的位置(匝道、回头曲线同一坐标可能会有一个以上结果)。
第三次及以后试算才要求输入近似里程。
6、程序代码规范简洁,便于阅读、理解。
完整程序清单:ZFS %正反算主程序B=.1739274226:C=.5-B:Lbl 1:U"0 ZS 1 FS"=0=>Prog "ZS":工>U=1=>Prog"FS":工>Goto 1ZS %正算子程序{K}:Prog"ZZ":l=0:{l}:l"L" 丰 0=>"Prog"WY":丰 >Prog"ZB"FS %反算子程序{KVW}:V"XC"W" YC":Lbl 2:Prog "ZZ":I=V-S:J=W-T:Pol(I,J: J=J~F:K二K+Rec(l,J:Absl<1m=>Prog"WZ": 半 >Gota\2M=O:{M}:M"O NEXT"=O二>U=U+1:Goto 2: 半 >U=1ZZ %高斯法中桩子程序(4节点)Prog"XL":M=K-L: O=(P-R) 2PQR:D=.0694318442:E=.3300094782:F=1:G=1-E:H=1-D:l=5:Lbl 1:C[l]=A+MrC[l](1 P+OMC[l]:Dsz l:Goto 1:S=X+M(BcosD+CcosE+CcosG+BcosH:T=Y+M(Bsi nD+Csi nE+Csi nG+Bsi nHWY %外移点计算子程序Lbl 1:J=90:{J}:J=F+J"<":F=J:S=S+Rec(l,J:T=T+J: Prog"ZB":l=0:{l}:l"L" 工0=>Goto 1WZ %位置显示子程序"KJ":K:Pause 1:J丄ZB %坐标显示子程序"XY ":S:Pause 1:T AYC %异常处理子程序U=1=>K=L:U=2 △U=3=>K=M:U=4AU=5=>{K}:U=4 △K<L=>"V<!":Z=1△K>M=>">>!":Z=1DL %断链处理子程序"DL":K=L:I>0=>K=L+Q------------------ 以上为程序运算部分,以下为数据库部分XL %线路数据库选择子程序Lbl 1:Z=0:N"0 SD"=0=>Prog"0" △N=1=>Prog"1" △N=2=>Prog"2" △有几条线路仿上行格式输几行Z=1=>{NLX YOPQRK}:Goto 10 %手工输入子程序L"K0"X YAQ"LS"P"R0"R"RN":M二L+Q:Prog" YC"1 %线路一数据库子程序①Lbl B:L=线路起点里程:M=线路终点里程:Prog"YC":Z=1=>Goto E △②Q=线元长:P=起点半径:R=终点半径:K< L+Q二>X=起点X坐标:Y二起点Y坐标:A=起点方位角:Goto E △ L=L+Q:③…… @Q=短链长:K<L+Q=>Prog "DL":Goto B △ L=L+Q:⑤Q=线元长:P=起点半径:R=终点半径:K<L+Q二>X=起点X坐标:Y二起点Y坐标:A=起点方位角:Goto E △ L=L+Q:⑥……炉0=线元长:P=起点半径:R=终点半径:X=起点X坐标:丫二起点Y坐标:A=起点方位角丄bl E2 %线路二数据库子程序输入要求和线路一相同。
有限单元法分析的基本步骤
上一页 下一页 返回
1.1 有限单元法简介
• ANSYS 程序的静力分析功能不仅可以进行线性分析,还可以进行非 线性分析,如塑性、蠕变、膨胀、大变形、大应变及接触分析。结构 动力学分析用来求解随时间变化的载荷对结构的影响。ANSYS 程序 可进行的结构动力学分析的类型包括瞬态动力学分析、模态分析、谐 波响应分析及随机振动响应分析,还有结构非线性分析,即对结构非 线性导致结构的响应随外载荷发生不成比例的变化的分析。ANSYS 程序可求解静态和瞬态非线性问题,包括材料非线性、几何非线性和 单元非线性。动力学分析方面,ANSYS 程序可以分析大型三维柔体 运动。热分析方面,ANSYS 程序可以处理热传递的三种基本类型, 即传导、对流和辐射,对热传递的三种类型均可进行稳态和瞬态、线 性和非线性分析。
上一页 下一页 返回
1.1 有限单元法简介
• ANSYS 软件致力于耦合场的分析计算,能够对结构、流体、热和电 磁4 种场进行计算,因此,它博得了世界上数千家用户的钟爱。 ANSYS 公司由John Swanson 博士创立于1970 年,ANSYS 有限 元程序是该公司的主要产品。ANSYS 软件是集结构、热、流体、电 磁和声学于一体的大型通用有限元分析软件,可广泛地应用于核工业、 铁道、石油化工、航空航天、生物医学、轻工、地矿、水利和日用家 电等一般工业及科学研究。
• ADINA 在计算理论和求解问题的广泛性方面处于全球领先的地位线 性、流体、流固耦合等复杂的工程问题而开发的。
线元法路线计算程序
线元法路线计算程序线元法(LE法)是一种用于计算电力系统潮流分布的方法,它将电力系统抽象成节点和支路的网络,通过对节点和支路进行编号,可以建立节点电压和潮流分布之间的方程,进而求解电力系统中各节点的电压和潮流分布。
下面是一个用于计算线元法路线的程序。
1.定义节点和支路:首先,我们需要对电力系统的节点和支路进行定义。
节点可以是发电站、变电站或负荷节点;支路可以是输电线路或变压器。
每个节点和支路都需要有一个唯一的编号,以便在后续的计算中进行引用。
2.建立节点电压方程:根据电力系统的KCL(电流平衡方程),我们可以得到节点电压方程。
每个节点的电压方程可以表示为:V(i) = Σ{(V(j) - V(i)) / Z(ij)},其中V(i)表示第i个节点的电压,V(j)表示第j个节点的电压,Z(ij)表示第i个节点到第j个节点的支路阻抗。
3.建立支路潮流方程:根据每个支路的电流平衡方程,我们可以得到支路潮流方程。
每个支路的潮流方程可以表示为:I(ij) = (V(i) - V(j)) / Z(ij),其中I(ij)表示从第i个节点到第j个节点的支路电流,V(i)表示第i个节点的电压,V(j)表示第j个节点的电压,Z(ij)表示第i个节点到第j个节点的支路阻抗。
4.解线性方程组:将节点电压方程和支路潮流方程组合成一个线性方程组,我们可以通过求解线性方程组,得到电力系统中各节点的电压和潮流分布。
5.输出结果:根据求解的节点电压和支路潮流,我们可以将结果输出,以便进行分析和评估。
下面是一个基本的线元法路线计算程序的伪代码示例:```Input: 节点和支路的定义,节点电压和支路阻抗的初始值Output: 节点电压和支路潮流的计算结果1.建立节点电压方程和支路潮流方程-初始化节点电压和支路潮流的初始值-根据节点电压方程和支路潮流方程2.解线性方程组-使用数值计算方法求解线性方程组,得到节点电压和支路潮流的计算结果3.输出结果-将节点电压和支路潮流的计算结果输出,以便进行分析和评估```这是一个简化的线元法路线计算程序的框架,具体实现时需要根据具体的电力系统结构和算法细节进行调整和优化。
交点法线元法坐标计算
交点法线元法坐标计算交点法和线元法是计算坐标的两种方法,可以用于计算几何图形中的交点和线段的起始点和终止点的坐标。
下面将详细介绍交点法和线元法的计算过程。
交点法是通过已知条件计算出切线的方程,然后求解出两条切线的交点的坐标。
具体步骤如下:1.根据已知条件,建立两条直线的方程。
假设两条直线的方程分别为L1和L22.将L1和L2相减,得到方程L1-L2=0。
这个方程表示两条直线的交点。
3.解方程L1-L2=0,求出交点的坐标。
这可以通过代入法、消元法或者数值计算方法等得到。
交点法计算坐标的优点是可以得到精确的坐标值。
但是对于复杂的几何图形,方程求解过程可能较为繁琐,需要一定的数学知识和计算能力。
线元法是通过将线段拆分为多个小线元,然后根据已知条件和几何关系逐个计算得到各个小线元的坐标。
具体步骤如下:1. 先计算出线段的长度。
假设线段的起始点和终止点的坐标分别为(x1, y1)和(x2, y2),则线段的长度为L = sqrt((x2 - x1)^2 + (y2 - y1)^2)。
2.根据已知条件和几何关系,将线段等分为若干小线元。
每个小线元的长度为L/n,其中n表示需要等分的线元数目。
3.通过线段的起始点和终止点的坐标,以及小线元的长度计算出每个小线元的起始点和终止点的坐标。
计算公式为:起始点坐标为(x1+i*Δx,y1+i*Δy),终止点坐标为(x1+(i+1)*Δx,y1+(i+1)*Δy),其中i表示第i个小线元,Δx=(x2-x1)/n,Δy=(y2-y1)/n。
线元法计算坐标的优点是计算过程相对简单直观,并且可以得到较为精确的近似值。
但是对于曲线等复杂几何图形,需要将线段等分为较多的小线元才能得到较为准确的坐标值。
无论使用交点法还是线元法计算坐标,都需要根据几何图形的特点和已知条件选择适应的方法,并进行准确的推导和计算。
实际应用过程中,根据具体情况选择合适的计算方法会更加便捷和精确。
线元法简介
线元法万能曲线正反算简介我的线元法是把线形分为直线和曲线,直线就不用说了,起止点桩号,坐标和方位角就可以算了;曲线最基本的组合:是由一段缓和曲线+一段圆曲线组成,任意复杂的曲线都可以分解成缓和曲线+圆曲线或者其中之一就可以。
分析最复杂的曲线可以看到:一般复杂线形由Ls1 ,R1,Ls2, R2组成,相邻的Ls1+R1,一般满足A*A=Ls1*R1,这就是一个线元法单元,即使不满足也可以作为一个线元:当Ls1= Ls2,且R1= R2时,为单曲线当Ls1≠ Ls2,或者R1≠R2时,为复合曲线当Ls1= Ls2=0时,线性为圆曲线,当圆曲线长度为0时,线性为缓和曲线+缓和曲线,当A*A≠Ls1*R1时,为卵形曲线,需要计算虚拟起点坐标综合以上线形,本程序正反算计算全部可以处理。
结合目前流行的线元法,本程序也可以,分为缓和曲线和圆曲线录入,方法是一样的,所不同的是起点要注意,复杂曲线,是两边向中间定义数据库,缓和曲线永远是ZH点或HZ点为起点。
曲线要素说明(有9个):1、起点桩号:(一般为ZH点或HZ点,或ZY点或YZ点,或者卵形公切点GQ)2~3、起点坐标:(X,Y)4、起点方位角:FWJ 114°15′24.33″写成:114.1524335、线性特征:直线,左偏,右偏;三个选一个6、终点桩号:如果起点为ZH点,终点一边为YH点,QZ点,HY点,都可以,一般为YH点,缓和曲线+圆曲线。
如果缓和曲线Ls=0,就是YZ点;大小不一定按路线顺序,如果起点为HZ点,终点根据缓和曲线+圆曲线的特点,和上个线元对接上就可以了。
7、缓和曲线长度Ls:8、圆曲线半径R:9、回旋参数A: 一般满足A*A=Ls1*R1,不满足条件的是卵形曲线。
可以处理任意数量断链。
操作流程:1、先编辑线元数据,保存后推出。
2、如果有线元断链的输以下线元断链数据3、打开线元万能曲线计算单点计算就可以了。
目前,已有一个例子文件在里面,在安装文件目录下“ \dmfx4.0\demo\左线”,有个CAD文件,里面有校核数据,可以看到本软件处理的逐桩表和要素表,可以验证软件的数据,任意数据坐标反算可以得到桩号和距中,任意输入桩号和距中可以正算得坐标。
交点法和线元法的误差分析方法
交点法和线元法的误差分析方法交点法和线元法是两种常用的误差分析方法,用于测量和计算物体的几何特性。
本文将介绍这两种方法的基本原理和应用。
一、交点法交点法是一种通过测量物体表面上的交点来确定其几何特性的方法。
该方法基于以下原理:在三维空间中,任意两个平面的交线称为交点。
通过测量交点的坐标,可以计算出物体在空间中的位置、距离和角度等信息。
使用交点法进行误差分析时,需要先确定测量的目标和指标。
然后,通过使用合适的测量设备,测量出物体表面上的交点坐标。
接下来,通过计算交点坐标的误差,可以得出测量结果的准确性和精度。
最后,根据测量结果的误差值,进行误差分析和评估。
交点法适用于需要测量物体位置、形状和相对位置关系的情况,例如建筑物的测量、零件的装配和机器人的定位等。
通过使用交点法,可以提高测量的精确度和可靠性。
二、线元法线元法是一种基于物理模型的误差分析方法,通过计算物体表面上每个线元的误差来评估整体的误差。
该方法基于以下原理:将物体表面划分成许多小线元,通过对每个线元的测量和分析,得出整体的几何特性。
使用线元法进行误差分析时,需要先确定物体表面的小线元数量和位置。
然后,通过测量每个线元的尺寸和形状,计算出其误差值。
接下来,将每个线元的误差值累加,得出整体的误差。
最后,根据整体的误差值,进行误差分析和评估。
线元法适用于需要分析复杂物体或特定区域的几何特性的情况,例如汽车外壳的造型、航空发动机的叶片设计和电子设备的尺寸控制等。
通过使用线元法,可以更加精确地评估物体的几何特性和误差情况。
综上所述,交点法和线元法是两种常用的误差分析方法,可以用于测量和计算物体的几何特性。
根据具体的测量需求和物体特点,选择合适的方法进行误差分析,可以提高测量结果的准确性和可靠性。
交点法与线元法
本人一直以来想找一个交点法与线元法相结合的坐标正反算程序,在网上找了很久很久,没能找到一个较为满意的,有幸在测量空间看到大歪哥的《Casio5800交点法程序》与《线元法(积木法)匝道坐标正反算放样程序》,根据歪哥意见“需要的自行修改结合XY框架自己修改为数据库反算程序等”,本人不才,采用最笨的办法将两个程序综合了一下,使之能既能进行交点法正反算,又能进行线元法正反算。
在此特别感谢大歪哥!将程序发上来,愿与大家一同交流学习欢迎大家吐口水,只要能进步就行!程序由一个主程序ZBZFS和8个子程序(JS、XY-A、XY-B、JDYS、1、2、3、4)构成,运行时只需运行主程序即可!本程序适用于单交点对称型、不对称型、无缓和曲线单圆曲线型一个交点范围内(含交点前后有直线段时)的曲线要素核对和坐标正反算,手工输入要素,对设计图纸的“直线、曲线转角表”中交点数据进行复核验证,并能对单一线元进行坐标正反算。
1主程序名:ZBZFS(功能:进入计算主程序)65→Dimz↙Deg:Fix 3↙"1.JD ZFS 2. ZHADAO ZFS"? I: I→Z[61]: "1.ZHONG SHU JS 2. JS"? I↙If I=1: Then Goto1: Else Goto2:IfEnd↙LbI 1 :If Z[61]=1: Then Prog"JDYS":Else Cls:"K0"?A:"KN"?L :"X0"?U :"Y0"?V :"F0"?W :"R0"?P :"RN"?Q:"ZX:-1,+1,0"?G:IfEnd↙LbI 2 :Prog"JS"2子程序名:JS(功能:选择正算或反算模式)Cls:"XC"?H:"YC"?Z↙Cls:"1.ZS 2.FS"? I: I=2=>Goto 3↙LbI 1 : Cls: If Z[61]=1: Then"JD ZS KX+XXX"?K :Prog"4": Else "ZHADAO ZS KX+XXX"?K :IfEnd↙LbI 2: Cls:90→B: Cls:"RJ Or 0 To K"?B:B=0 =>Goto 1:"Z"?T↙Prog "XY-A"↙X+Tcos(M+B)→X↙Y+Tsin(M+B)→Y↙360Frac((M+360)÷360→M↙Pol(X-H,Y-Z : 360Frac((J+360)÷360→J↙2→O: Prog "XY-B":Goto 2↙LbI 3 : Cls: If Z[61]=1: Then"JD FS KN+"?K:"X"?C:"Y"?D:Prog"4":Else Cls: "ZHADAO FS":"X"?C:"Y"?D:IfEnd↙LbI 4 :Prog "XY-A"↙(D-Y)sin(M)+(C-X)cos(M)→H↙If Abs(H)>X10-3 :Then K+H→K:Goto 4:IfEnd↙(D-Y)÷cos(M)→T↙3→O: Prog "XY-B":Goto 3↙3子程序名:XY-A(功能:坐标计算程序)5→N: G(Q-1-P-1)÷Abs(L-A)→F: Abs(K-A)÷N→R: 90R÷π→S:W+(FNR+2GP-1)NS→M:1→E↙U+R÷6×(Cos (W)+Cos (M) +4∑(Cos (W+((E+0.5)FR+2GP-1)×(E+0.5)S),E,0,(N-1))+2∑(Cos (W+((EFR+2GP-1)ES,E,1,(N-1)))→X ↙V+R÷6×(sin (W)+sin (M) +4∑(sin (W+((E+0.5)FR+2GP-1)×(E+0.5)S),E,0,(N-1))+2∑(sin (W+((EFR+2GP-1)ES,E,1,(N-1)))→Y↙4子程序名:XY-B(功能:显示正算或反算结果)If O=2:Then↙Cls :"K×××=":"Z=":"X=":"Y=": Locate 6,1, K : Locate 4, 2, T : Locate 4,3, X : Locate 4,4, Y◢If T=0 :Then Cls :"QF(Z)=": Locate 8,1, M:M▼DMS◢IfEnd↙Cls :"K×××=":"S=": Locate 6,1, K : Locate 4, 2, I :"F=":J:J▼DMS◢IfEnd↙If O=3:Then "X=":"Y=":"K×××=":"Z=": Locate 4,1,C: Locate 4, 2, D : Locate 6,3,K :Locate 4,4,T◢IfEnd:Cls↙5子程序名:4(功能:将交点参数转为线元计算参数)LbI 1: IF Z[48]<0 :Then -1→Z[62] : Else:1→Z[62]:IfEndLbI 2: If K≥Z[57]:Then Z[57]→A:Z[1]→L:Z[23]→U:Z[24]→V : Z[31]→W : 10^45→P:10^45→Q : 0→G:IfEnd↙LbI 3:If K≥Z[1]:Then Z[1]→A : Z[2]→L : Z[19]→U : Z[20]→V:Z[29]→W : 10^45→P:Z[46]→Q : Z[62]→G: IfEnd↙LbI 4:If K≥Z[2]:Then Z[2]→A : Z[4]→L:Z[25]→U : Z[26]→V:Z[32]→W : Z[46]→P : Z[46]→Q : Z[62]→G: IfEnd↙LbI 5:f K≥Z[4]:Then Z[4]→A : Z[5]→L : Z[27]→U:Z[28]→V : Z[33]→W :Z[46]→P : 10^45→Q : Z[62]→G: IfEnd↙LbI 6:If K≥Z[5]:Then Z[5]→A : Z[5]+1000→L:Z[21]→U : Z[22]→V : Z[30]→W:10^45→P :10^45→Q : 0→G : IfEnd↙6子程序名:JDYS(功能:输入交点要素、显示交点要素及主点坐标)Cls : "BP"?H:H→Z[57]:"K(JD)"?K:K→Z[41] :"X(JD)"?X :X→Z[42]:"Y (JD)"?Y:Y →Z[43]:"LS1"?B:B→Z[44] :"LS2"?C:C →Z[45]: ?R:R →Z[46]:"(ZH)FWJ°"?M:M→Z[47] : "α(Z-,Y+)°"?O:O→Z[48] : Z[47]+Z[48]→Z[49]: Prog "1":Prog "2"↙Cls :"T1=":"T2=":"L=":"LY=": Locate 4,1, Z[50] : Locate 4,2, Z[51]: Locate 4,3, Z[52] : Locate 4,4, Z[53]◢Cls :"E=": Locate 7,1, Z[54]Cls :"K(QD)=": "X=": "Y=": "FWJ="Locate 7,1,Z[57] :Locate 7,2, Z[23] :Locate 7,3, Z[24] :Locate 7,4, Z[31] ◢Cls :"K(ZH)=": "X=": "Y=": "FWJ=":Locate 7,1,Z[1] : Locate 7,2, Z[19] :Locate 7,3, Z[20] :Locate 7,4, Z[29]◢Cls : "K(HY)=": "X=": "Y=": "FWJ=": Locate 7,1,Z[2] : Locate 7,2, Z[25] :Locate 7,3, Z[26] :Locate 7,4, Z[32]◢Cls :"K(QZ)=": Locate 7,1,Z[3]◢Cls :"K(YH)=": "X=": "Y=": "FWJ=": Locate 7,1,Z[4] : Locate 7,2, Z[27] :Locate 7,3, Z[28] :Locate 7,4, Z[33]◢Cls :"K(HZ)=": "X=": "Y=": "FWJ=": Locate 7,1,Z[5] : Locate 7,2, Z[21] :Locate 7,3, Z[22] :Locate 7,4, Z[30]◢7子程序名:1(功能:计算交点要素)If Z[48]<0 :Then -1→Z[55] : Else 1→Z[55] : IfEnd : Z[55]* Z[48]→Z[56] ↙Z[44] 2 ÷24÷Z[46]- Z[44]^(4)÷2688÷Z[46] ^(3) →Z[6] ↙Z[45] 2 ÷24÷Z[46]- Z[45]^(4)÷2688÷Z[46] ^(3) →Z[7] ↙Z[44]÷2-Z[44]^(3)÷240÷Z[46]2 →Z[8] ↙Z[45]÷2-Z[45]^(3)÷240÷Z[46]2 →Z[9] ↙Z[8]+(( Z[46]+Z[7]-( Z[46]+Z[6])cos(Z[56]))÷sin(Z[56]))→Z[50]↙Z[9]+(( Z[46]+Z[6]-( Z[46]+Z[7])cos(Z[56]))÷sin(Z[56]))→Z[51]↙Z[46]* Z[56]π÷180+( Z[44]+ Z[45]) ÷2→Z[52]↙Z[46]* Z[56]π÷180-( Z[44]+ Z[45]) ÷2→Z[53]↙(Z[46]+(Z[6]+Z[7])÷2)÷cos(Z[56]÷2)- Z[46]→Z[54]↙Z[41]-Z[50]→Z[1] ↙↙Z[1]+Z[44]→Z[2] ↙↙Z[2]+Z[53]÷2→Z[3]↙Z[1]+Z[52]-Z[45]→Z[4]↙Z[4]+Z[45]→Z[5]↙8子程序名:2(功能:计算主点坐标及切线方位角)Z[42]-Z[50]cos(Z[47])→Z[19]: (直缓坐标)Z[43]-Z[50]sin(Z[47])→Z[20]↙Z[47]→Z : 360Frac((Z+360)÷360→Z[29] (方位角)Z[42]+Z[51]cos(Z[49])→Z[21]: (缓直坐标)Z[43]+Z[51]sin(Z[49])→Z[22]↙Z[49]→Z: 360Frac((Z+360)÷360→Z[30] (方位角)Z[1]-Z[57]→L↙(H→Z[57]为前直线起点桩号)Z[42]-( Z[50]+L)cos(Z[47])→Z[23]↙(前直线起点坐标)Z[43]-( Z[50]+L)sin(Z[47])→Z[24]↙Z[47]→Z : 360Frac((Z+360)÷360→Z[31]↙(方位角)Z[44]→Z[12]:Z[44]→Z[13]:Prog"3"↙Z[4]-Z[1]→L:90(2L-Z[44])÷Z[46]÷π→Z[11]↙Z[46]sin(Z[11])+Z[8]→Z[14]:Z[46](1-cos(Z[11]))+Z[6]→Z[15]↙Z[19]+Z[14]cos(Z[47])-Z[55]Z[15]sin(Z[47])]→Z[27]↙(圆缓点坐标)Z[20]+Z[14]sin(Z[47])+Z[55]Z[15]cos(Z[47])]→Z[28]↙Z[47]+Z[55]Z[11]→Z: 360Frac((Z+360)÷360→Z[33]↙(方位角)Z[2]-Z[1]→L:90(2L-Z[44])÷Z[46]÷π→Z[58]↙Z[46]sin(Z[58])+Z[8]→Z[14]:Z[46](1-cos(Z[58]))+Z[6]→Z[15]↙Z[19]+Z[14]cos(Z[47])-Z[55]Z[15]sin(Z[47])]→Z[25]↙(缓圆点坐标)Z[20]+Z[14]sin(Z[47])+Z[55]Z[15]cos(Z[47])]→Z[26]↙Z[47]+Z[55]Z[58]→Z: 360Frac((Z+360)÷360→Z[32]↙(方位角)9子程序名:3(主点坐标计算辅助程序)If Z[12]=0 :Then 0→Z[14]: 0→Z[15]:Else↙Z[12]- Z[12]^(5)÷40÷(Z[46]*Z[13])2+ Z[12]^(9)÷3456÷(Z[46]*Z[13])^(4) →Z[14]↙Z[12]^(3)÷6÷(Z[46]*Z[13])-Z[12]^(7)÷336÷(Z[46]*Z[13])^(3)+ Z[12]^(11) ÷42240÷(Z[46]*Z[13])^(5)→Z[15] ↙IfEnd↙程序说明:1、进入程序:1.JD ZFS 2. ZHADAO ZFS? 选1为交点法正反算(以后操作均为交点法计算),选2为线元法正反算(以后操作均为线元法计算)2、ZHONG SHU JS 2. JS?选1重输参数,选2直接进入交点法或线元法正反算(参数为已输过的参数)3、参数输入:一、交点法已知数据输入:BP?上一交点ZH桩号K(JD)?交点桩号X(JD)?交点X坐标Y(JD)?交点Y坐标LS1 ?第一缓和曲线长度LS2 ?第二缓和曲线长度R ? 圆曲线半径(ZH)FWJ°?交点前(即前交点至本交点也即ZH点)的正切线方位角α(Z-,Y+)?本交点处线路转角(左转为负,右转为正,度分秒输入)交点法计算要素显示:T1=第一切线长T2=第二切线长L=曲线总长LY=圆曲线长E=曲线外距K(ZH)=直缓点桩号K(HY)=缓圆点桩号K(QZ)=曲中点桩号K(YH)=圆缓点桩号K(HZ)=缓直点桩号二、线元法已知数据输入:K0?KN? R0? RN?F0?X0? Y0?ZX? 分别为线元起点桩号、终点桩号、起点半径、终点半径、起点切线方位角、起点X坐标、起点Y坐标、线元转向。
道路设计 线元法
道路设计线元法
道路设计中,线元法是一种常用的设计方法。
它是基于道路中心线的连续直线和曲线段组成的,其中曲线段由圆弧和无限接近于直线的曲线组成。
通过线元法,可以确定道路的横断面形态和纵断面曲线形态。
在线元法中,道路中心线被分割成一段一段的线元,每个线元的长度可以根据实际需要灵活地设定。
然后,根据每个线元的设计速度和曲率半径,确定每个线元的横断面形态和纵断面曲线形态。
最终,通过将每个线元的横断面和纵断面组合起来,得到整个道路的设计方案。
线元法在道路设计中应用广泛,它可以提高设计效率,同时也可以充分考虑道路的安全性和舒适性。
- 1 -。
线元法
5800 计算程序主程序 QXJSFix 3:Deg:Lbl 4:“1.SZ=>XY”:“2.XY=>SZ”:? QLbl 4: “LICHENG= ” ?S:Prog“SUB0” ↙Lbl 0:If Q=1:Then Goto1:IfEndIfQ=2:ThenGoto2:IfEnd ↙Lbl 1:”-B,0,B=”? Z: “J J右交角=”?G:Prog“SUB1”: Fix 4:Cls“X=”:N →N ◢“X=”: Locate3,1,N◢“Y=”:E →E ◢“Y=”: Locate3,1,E◢Prog“JI”:Goto4“QXFWJ=”:F →F:F ▲ DMS ◢Goto4 ↙Lbl 2: “X=”? B: “Y=”? C:B→N: C→E:Prog“SUB2”: “LICHENG=”:S◢ “OUT JL=”:Z◢Goto4 ↙说明:Q: 代表正反算,其中 1 为正算, 2 为反算; S: 代表里程; Z :代表偏移距离; G :代表偏移角度(以线路前进方向为 X 方向,顺时针转为正; N : X 坐标; E : Y 坐标; F :切线方位角;JIClstatPol(N-G,-E-H):ClsIf S<0:Then J+360→Y:Ease J→Y:Ifend“F W J=”:Y▲ DMS ◢黄色为计算机程序SUB0 ( 数据库 )Goto1 ↙Lbl 1IF S<157687.528:THEN2884169.2517→U:471475.6573→V:157547.528→O:98 ° 32 ′ 43.08 ″→A:140→L:10^45→P:10000→R: Return:IfEnd ↙IF S<163781.879:THEN2883008.7030→U:477458.2815→V:163641.879→O:101 ° 6 ′ 4.08 ″→A:140→L:10^45→P:10000→R: Return:IfEnd ↙IF S<164195.661:THEN2882981.4268→U:477595.5984→V:163781.879→O:101 ° 30 ′ 7.93 ″→A:413.7833→L:10000→P:10000→R: Return:IfEnd ↙IF S<164335.661:THEN2882890.5519→U:477999.2492→V:164195.6623→O:103 ° 52 ′ 22.82 ″ →A:140→L:10000→P:10^45→R: Return:IfEnd ↙IF S<171831.142:THEN2882856.3502→U:478135.0069→V:164335.6623→O:104 ° 16 ′ 26.67 ″ 说明: S :里程;157547.528→O 为线元终点里程; 2884169.2517→U 为线元起点 X 坐标;471475.6573→V 为线元起点 Y 坐标;98 ° 32 ′ 43.08 ″ →A 线元起点切线方位角;0^45→P 线元起点半径(左转为负右转为正);10000→R 线元终点半径(左转为负右转为正)SUB1 正算子程序0.5 (1÷R-1÷P)÷L→D:S-O→X ↙U+∫(cos(A+(X÷P+DX2)×180÷π,0,X)→N ↙V+∫( sin(A+(X÷P+DX2)×180÷π,0,X)→E ↙A+(X÷P+DX2)×180÷π→F ↙N+Zcos(F+G) →N:E+Zsin(F+G) →EReturnSUB2 反算子程序Lbl 1:0→Z :1→Q :Prog“SUB0”: 0.5 (1÷R-1÷P )÷L→D:S-O→X ↙ U+∫(cos(A+(X÷P+DX2)×180÷π,0,X)→N ↙V+∫( sin(A+(X÷P+DX2)×180÷π,0,X)→E ↙A+(X÷P+DX2)×180÷π→F ↙N+Zcos(F+90) →N:E+Zsin(F+90) →E :Pol(N-B+10^(-46), E-C+10^(-46)):Isin(F-90-J) →W:S+W→S ↙IfAbs(W)>0.0001 :Then Goto1:IfEnd ↙Lbl 2: 0→Z :Prog“QXJSSUB1”:(C-E) ÷sin(F+90) →ZReturnH (高程主程序)Fix 3 :Lb1 3: ” LICHENG= ” ?Z: Prog“SQXZL”:(P-Q) ÷ Abs(P-Q) →W ↙If Z<(H-T):Then(H-Z) × P →X:Goto 2:IfEnd ↙If Z ≥ (H-T) And Z<H:Then (H-Z) × P+(Z-H+T)2÷ (2WR) →X:Else (H+T-Z)2÷ (2WR)-(Z-H) × Q→X: Goto 2:IfEnd ↙Lb1 2: ” GAO CHENG= ” D-X →X ◢Goto 3SQXZL (竖曲线数据库)Goto 1Lb1 1If Z ≤ 157893.75:Then25000→R:93.75→T:157800→H:421.977→D:-0.0045→P:0.003→Q:Return:IfE nd ↙If Z ≤ 159000:Then25000→R:150→T:158850→H:425.127→D:0.003→P:0.015→Q:Return:IfEnd ↙If Z ≤ 165017.5:Then25000→R:117.5→T:164900→H:515.877→D:0.015→P:0.0056→Q:Return:IfEn d ↙If Z ≤ 168207.5:Then25000→R:107.5→T:168100→H:533.797→D:0.0056→P:-0.003→Q:Return:IfE nd ↙If Z ≤ 172175:Then 25000→R:75→T:172100→H:521.797→D:-0.003→P: 0.003→Q:Return:IfEnd ↙说明: 157893.75 代表竖曲线终点里程,25000→R 代表竖曲线半径;93.75→T 代表竖曲线切长;421.977→D 代表边坡点标高(未改正之前); -0.0045→P 代表前段坡度,上坡为正,下坡为负;0.003→Q 代表后段坡度,上坡为正,下坡为负;。
交点法和线元法曲线要素输入简介
测量坐标计算程序V5输入简介本程序运用Office Excel 软件VBE标准模块编写,其功能基本全面集成了以往所更新的Excel程序,程序适用于公路、铁路等线路坐标计算,程序主要包括(交点法、线元法、直线坐标正反算,竖曲线计算,平面控制网“导线、高程”平差,隧道超欠挖,超高加宽,测量工具箱等,还可以全自动生成卡西欧5800、9750程序数据库,其中包括:隧道超欠挖、交点法、线元法、竖曲线一系列数据库),已知数据输入明确,操作简单易懂,是工程测量人员的好帮手!交点法曲线要素输入简介一、适用平曲线类型交点法计算坐标适用的平曲线为对称或不对称缓和曲线、圆曲线。
注意:对于非普通的三单元曲线,本程序交点法不适用。
非普通的三单元曲线体现在本程序中的《直线、曲线及转角表》内,点击“生成要素”之后,计算值与设计图纸《直线、曲线及转角表》上的切线长和曲线主点位置等不一致,此时只能采用线元法进行坐标计算。
例如:下表的JD18及JD19处的平曲线,经本程序交点法计算之后发现,为非普通的三单元曲线,交点法不适用该类曲线的坐标计算,故只能采用线元法进行坐标计算。
二、交点法曲线要素输入说明本程序交点法输入的要素有7个(程序不限制输入行数):1、QD起点坐标:起点坐标必须在直线段上,或填写前一交点的坐标。
2、JD交点曲线要素:(1)交点桩号K,注意:当起始平曲线上的ZH点(缓和曲线)或ZY点(圆曲线)的桩号为负数时,交点桩号K统一加上100000(即增加100Km),以避免坐标正算时出现桩号计算范围错误(但是,线元法计算坐标时可以输入负坐标,坐标正算与反算都不会出现错误)。
(2)交点桩号(X,Y)(3)曲线半径R(4)第一缓和曲线长度LS1,若为0,输入0,不能为空。
(5)第二缓和曲线长度LS2,若为0,输入0,不能为空。
3、ZD终点坐标:终点坐标也必须在直线段上,或填写后一交点的坐标。
三、操作流程:1、根据设计图纸《直线、曲线及转角表》输入第一个交点坐标,作为QD起点坐标。
交点法和线元法曲线要素输入简介
测量坐标计算程序V5输入简介本程序运用Office Excel 软件VBE标准模块编写,其功能基本全面集成了以往所更新的Excel程序,程序适用于公路、铁路等线路坐标计算,程序主要包括(交点法、线元法、直线坐标正反算,竖曲线计算,平面控制网“导线、高程”平差,隧道超欠挖,超高加宽,测量工具箱等,还可以全自动生成卡西欧5800、9750程序数据库,其中包括:隧道超欠挖、交点法、线元法、竖曲线一系列数据库),已知数据输入明确,操作简单易懂,是工程测量人员的好帮手!交点法曲线要素输入简介一、适用平曲线类型交点法计算坐标适用的平曲线为对称或不对称缓和曲线、圆曲线。
注意:对于非普通的三单元曲线,本程序交点法不适用。
非普通的三单元曲线体现在本程序中的《直线、曲线及转角表》内,点击“生成要素”之后,计算值与设计图纸《直线、曲线及转角表》上的切线长和曲线主点位置等不一致,此时只能采用线元法进行坐标计算。
例如:下表的JD18及JD19处的平曲线,经本程序交点法计算之后发现,为非普通的三单元曲线,交点法不适用该类曲线的坐标计算,故只能采用线元法进行坐标计算。
二、交点法曲线要素输入说明本程序交点法输入的要素有7个(程序不限制输入行数):1、QD起点坐标:起点坐标必须在直线段上,或填写前一交点的坐标。
2、JD交点曲线要素:(1)交点桩号K,注意:当起始平曲线上的ZH点(缓和曲线)或ZY点(圆曲线)的桩号为负数时,交点桩号K统一加上100000(即增加100Km),以避免坐标正算时出现桩号计算范围错误(但是,线元法计算坐标时可以输入负坐标,坐标正算与反算都不会出现错误)。
(2)交点桩号(X,Y)(3)曲线半径R(4)第一缓和曲线长度LS1,若为0,输入0,不能为空。
(5)第二缓和曲线长度LS2,若为0,输入0,不能为空。
3、ZD终点坐标:终点坐标也必须在直线段上,或填写后一交点的坐标。
三、操作流程:1、根据设计图纸《直线、曲线及转角表》输入第一个交点坐标,作为QD起点坐标。
交点法、线元法坐标计算精编版
3、交点法、线元法坐标计算坐标计算是根据图纸中“直线及曲线转角一览表”提供的数据计算道路中桩坐标,然后和图纸提供的“逐桩坐标表”比对,如果一样则说明输入平曲线参数输入正确,可以计算边桩坐标和其他结构物坐标了;如果中桩坐标不一样,一般是平曲线参数输入有误,需要重新检查输入,另一种结果是图纸有错,这种情况少见,但不代表没有。
“直线及曲线转角一览表”和“逐桩坐标表”见附件1、附件2。
线元法是以路线的起点坐标、方位角、起终点桩号等节点元素来计算出要求的坐标;交点法是以路线的交点要素和路线的主要要素来求得坐标。
①交点法交点:路线的转折点,路线改变方向是相邻两直线的延长线相交的点。
用JD表示,有些图纸上用IP表示。
看下图:交点是针对曲线的(包含圆曲线和缓和曲线),一段曲线就有一个交点。
交点参数有:坐标(X,Y)、交点桩号、转角值、圆曲线半径R、缓和曲线长度。
教学提供软件(轻松测量、双心软件、测量工具)交点法曲线要素输入说明:1、QD起点坐标:起点坐标必须在直线段上,或填写前一交点的坐标。
2、JD交点曲线要素:(1)交点桩号(2)交点坐标(X,Y)(3)曲线半径R(4)第一缓和曲线长度LS1,若为0,输入0,不能为空。
(5)第二缓和曲线长度LS2,若为0,输入0,不能为空。
3、ZD终点坐标:终点坐标也必须在直线段上,或填写后一交点的坐标。
检核数据是否输入正确的方法:软件生成的圆曲线要素中切线长、外距、交点里程:注意校正起点里程、等与设计图纸是否一致。
如果上述数据和图纸不一样,请认真检查有错误的交点处的数据输入是否正确,如果输入没有错误,请考虑是否包含不完整缓和曲线,使用公式A²=R*Ls检查是否包含不完整缓和曲线。
如果包含不完整缓和曲线,那就需要用线元法也叫积木法计算了。
有的设计院给出的直曲表是整条设计线路的直曲表的一部分,以其中某个交点作为起始点的话,起始里程有时候需要校正,当然,并不是每个图纸给出的起点里程都需要校正,大多数图纸的起点里程已经被设计院校正过,我们输入平曲线的时候需要验证一下。
详解用线元法计算公路中线坐标
%
i
=
Risin[!A+("AVi
1
l+
"ABVi2 2Ls
l2 ) 180 ] !
式中:
X 、Y— ——线元上所求任意点坐标;
l—— —任意点到线元起点的弧长,即Zi- ZA ; XA 、YA— ——线元起点的坐标; !A—— —线元起点的切线方位角; Ls— ——线元的长度,即 ZB- ZA; "A、"B— ——起终点曲率(左偏时取“- ”号, 右偏取“+”号);
3 曲线上点位切线方位角的计算
如图 2,设回旋曲线起点 A 的曲率为 !A ,其 里程为 ZA;回旋曲线终点 B 的曲率为 !B,其里程 为 ZB,Ax'y' 为以 A 为坐标原点、以 A 点切线为 x' 轴的局部坐标系;AXY 为线路统一坐标系。
线元编号 ① ② ③ ④ ⑤
表1 某卵形曲线参数值
曲线类型
点里程 =240
l=240-223.71=16.285(m) Ls=271.881-223.715=48.166(m) "AB=1/75- 1/50= - 0.006 666 666 667 Ri、Vi 数值直接代入公式,计算过程如表 2 所示。
&R1= R5= 0.118 463 4425 $$R2 = R4 = 0 .239 314 335 2 其中:#$R3 = 0 .284 444 444 4 $V1 = 1 - V5 = 0. 046 910 077 0 $$V2 = 1 - V4 = 0.230 765 344 9 %V3= 0. 5
线元法(亦称积木法),它是将组合复杂的公 路平面线形“化整为零”,分解成若干个线形单 元。若已知路线平面曲线的起点信息如坐标、切 线方向和曲率半径,则从起点处开始设置任何一 单元,沿任何方向延伸,此单元终点的信息如坐 标、切线方位角、曲线半径都可以计算出来,同 时,将其作为下一单元起点的相同信息加以利 用。如此逐个单元往下计算,似同搭积木一样,
交点法线元法
交点法线元法
交点法线元法又称为交线法,是解决几何问题的一种常用方法。
它的核心思想是通过找到几何图形的交点和法线,来推导出相关的几
何性质。
在使用交点法线元法时,我们首先需要找到几何图形的交点。
交
点可以是线段、射线、直线等。
通过计算交点的坐标、斜率或其他相
关信息,我们可以推导出图形的某些性质。
交点法线元法常用于求解
直线和圆、直线和直线、圆和圆等问题。
接下来,我们需要找到几何图形的法线。
法线是与给定图形相切
且垂直于该图形的线段、射线或直线。
可以通过计算法线的斜率、方
程等信息,来得到相关的几何性质。
例如,通过求解两条直线的法线
的交点,可以确定两条直线的交点、夹角等。
通过应用交点法线元法,我们可以解决许多关于几何图形的问题,包括求解距离、求解角度、判断两个图形是否相交等。
交点法线元法
可以帮助我们更好地理解和分析几何性质,提高解决几何问题的能力。
总而言之,交点法线元法是一种解决几何问题的常用方法,通过
找到几何图形的交点和法线来推导出相关的几何性质。
它在求解直线
和曲线、直线和直线、曲线和曲线等问题中具有广泛的应用。
道路之星线元法
道路之星线元法
道路之星线元法是一种基于网络拓扑结构的运输路径优化算法,其核心思想是通过对网络拓扑结构的分析和计算,确定最优的运输路径,从而有效提高运输效率和降低成本。
该算法主要包括以下几个步骤:
1. 网络拓扑结构分析:通过对网络拓扑结构的分析,确定不同节点之间的联系和距离,建立节点之间的邻接矩阵。
2. 线元计算:根据不同节点之间的邻接矩阵,计算出每条路径的线元值,即该路径的长度、通行能力、运输成本等。
3. 最优路径计算:通过比较不同路径的线元值,确定最优的运输路径,并将其作为运输路径的推荐方案。
4. 路径优化:根据实际情况,对最优路径进行调整和优化,以满足不同的运输需求。
总之,道路之星线元法是一种基于网络拓扑结构的高效运输路径优化算法,可以有效提高运输效率和降低成本,为现代物流和运输业的发展做出了重要贡献。
- 1 -。
交点法和线元法要素转换
交点法和线元法要素转换交点法和线元法是空间几何中常用的两种计算方法,它们可以求解直线、平面、曲线等多种几何图形之间的交点和距离等问题。
在实际应用中,常常需要将其中一种方法的结果转换为另一种方法的结果,以满足实际需求。
本文将介绍交点法和线元法的基本概念,并探讨它们之间的要素转换。
一、交点法和线元法的基本概念1、交点法交点法是一种几何计算方法,它以直线为例,通过求解两直线的交点来得到它们之间的距离、夹角等信息。
对于平面和曲线等几何图形也可以使用类似的方法求解。
在交点法中,需要计算两条直线的方向向量以及它们的重心坐标,然后通过求解方程组来计算出它们的交点。
2、线元法线元法是一种微积分方法,它可以计算给定曲线上的任意一点处的切线、法线以及曲率等信息。
在线元法中,将曲线分为无限小的线元或者曲线段,利用微积分的方法求解每个线元上的切向量、法向量以及曲率等参数,从而得到整条曲线上的相关信息。
1、坐标系的转换在交点法中,需要求解两条直线的交点以及它们之间的距离等信息。
在坐标系的选择上,通常选取其中一条直线作为基准线,将整个坐标系平移到基准线上,然后再计算另一条直线在新坐标系中的方向向量和重心坐标,从而得到它们之间的关系。
而在线元法中,通常需要选取与曲线相关的坐标系,例如自然坐标系、Frenet-Serret坐标系等,以便计算每个线元上的切向量、法向量和曲率等参数。
2、参数的计算方法在交点法中,通常需要计算两条直线的方向向量、重心坐标以及它们的交点。
对于直线的方向向量可以直接从坐标点上得到,而重心坐标通常需要根据直线的端点坐标进行平均计算。
交点计算通常可以采用求解方程组的方法得到。
而在线元法中,需要计算每个线元上的切向量、法向量和曲率等参数。
对于曲线的切向量和法向量可以通过微积分的方法得到,而曲率需要根据曲线的导数和高阶导数等信息来计算,计算方法相对复杂。
3、精度和误差在交点法和线元法的应用中,精度和误差是一个重要的问题。
中海达线元法
中海达线元法
中海达线元法是一种基于编程的数学方法,可应用于解决线性和
非线性问题。
它起源于流体力学领域,最初用于求解复杂流体流动方程。
中海达线元法通过将求解区域划分为许多小单元,然后在每个小
单元内近似解方程,进而得到整个体系的近似解。
这种方法通常适用
于具有复杂几何形状的问题,并且能够提供较为准确的数值结果。
中
海达线元法因其出色的适用性和鲁棒性而被广泛应用于多个学科领域,如结构力学、电磁学、热传导等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线元法万能曲线正反算简介
我的线元法是把线形分为直线和曲线,直线就不用说了,起止点桩号,坐标和方位角就可以算了;曲线最基本的组合:是由一段缓和曲线+一段圆曲线组成,任意复杂的曲线都可以分解成缓和曲线+圆曲线或者其中之一就可以。
分析最复杂的曲线可以看到:
一般复杂线形由Ls1 ,R1,Ls2, R2组成,相邻的Ls1+R1,一般满足A*A=Ls1*R1,这就是一个线元法单元,即使不满足也可以作为一个线元:
当Ls1= Ls2,且R1= R2时,为单曲线
当Ls1≠ Ls2,或者R1≠R2时,为复合曲线
当Ls1= Ls2=0时,线性为圆曲线,
当圆曲线长度为0时,线性为缓和曲线+缓和曲线,
当A*A≠Ls1*R1时,为卵形曲线,需要计算虚拟起点坐标
综合以上线形,本程序正反算计算全部可以处理。
结合目前流行的线元法,本程序也可以,分为缓和曲线和圆曲线录入,方法是一样的,所不同的是起点要注意,复杂曲线,是两边向中间定义数据库,缓和曲线永远是ZH点或HZ点为起点。
曲线要素说明(有9个):
1、起点桩号:(一般为ZH点或HZ点,或ZY点或YZ点,或者卵形公切点GQ)
2~3、起点坐标:(X,Y)
4、起点方位角:FWJ 114°15′24.33″写成:114.152433
5、线性特征:直线,左偏,右偏;三个选一个
6、终点桩号:如果起点为ZH点,终点一边为YH点,QZ点,HY点,都可以,一般为YH点,缓和曲线+圆曲线。
如果缓和曲线Ls=0,就是YZ点;大小不一定按路线顺序,如果起点为HZ点,终点根据缓和曲线+圆曲线的特点,和上个线元对接上就可以了。
7、缓和曲线长度Ls:
8、圆曲线半径R:
9、回旋参数A: 一般满足A*A=Ls1*R1,不满足条件的是卵形曲线。
可以处理任意数量断链。
操作流程:1、先编辑线元数据,保存后推出。
2、如果有线元断链的输以下线元断链数据
3、打开线元万能曲线计算单点计算就可以了。
目前,已有一个例子文件在里面,在安装文件目录下“ \dmfx4.0\demo\左线”,有个CAD文件,里面有校核数据,可以看到本软件处理的逐桩表和要素表,可以验证软件的数据,任意数据坐标反算可以得到桩号和距中,任意输入桩号和距中可以正算得坐标。
授权版用户,可以通过运行交点文件编辑,保存后,退出;打开线元法数据编辑,浏览正在使用的主项目文件,就可以看到一个线元数据,点击这个文件确定,保存退出。
就完成交点法数据转换线元法数据过程。