不定积分习题与答案 (2)
不定积分习题答案
不定积分习题答案不定积分习题答案在学习数学的过程中,不定积分是一个重要的概念。
它是求函数的原函数的逆运算,也被称为反导数。
不定积分习题是我们在学习不定积分的过程中经常遇到的问题,解答这些习题可以帮助我们更好地理解不定积分的概念和运算规则。
一、基本不定积分基本不定积分是指可以通过运用基本积分公式直接求解的不定积分。
这些公式是我们在学习不定积分时需要掌握的基础知识。
以下是一些常见的基本不定积分公式:1. 常数函数的不定积分公式:∫kdx = kx + C,其中k为常数,C为常数。
2. 幂函数的不定积分公式:∫x^ndx = (1/(n+1)) * x^(n+1) + C,其中n不等于-1,C为常数。
3. 指数函数的不定积分公式:∫e^xdx = e^x + C,其中e为自然对数的底,C为常数。
4. 三角函数的不定积分公式:∫sinxdx = -cosx + C,∫cosxdx = sinx + C,其中C为常数。
二、常见的不定积分习题1. 求解∫(2x^3 - 5x^2 + 3x - 1)dx。
解答:根据基本不定积分公式,我们可以将这个不定积分分解为每一项的不定积分求解,即:∫(2x^3 - 5x^2 + 3x - 1)dx = ∫2x^3dx - ∫5x^2dx + ∫3xdx - ∫1dx根据幂函数的不定积分公式,我们可以得到:= (1/4)x^4 - (5/3)x^3 + (3/2)x - x + C其中C为常数。
2. 求解∫(3e^x + 2sinx)dx。
解答:根据基本不定积分公式,我们可以得到:∫(3e^x + 2sinx)dx = 3∫e^xdx + 2∫sinxdx根据指数函数和三角函数的不定积分公式,我们可以得到:= 3e^x - 2cosx + C其中C为常数。
三、不定积分的性质不定积分具有一些特定的性质,这些性质在解答不定积分习题时可以发挥重要的作用。
1. 线性性质:对于任意的实数a和b,以及任意的可积函数f(x)和g(x),有∫(af(x) + bg(x))dx = a∫f(x)dx + b∫g(x)dx。
不定积分专题试题
不定积分专题试题(含答案)一、填空题1、若⎰==__)(sin cos )()('dx x xf u f u F ,则 C x F +)(sin2、设)(x f 的一个原函数为x x tan ,则⎰=___)('dx x xf C x xx +-tan 2sec 2 3、若)1()(ln '2>=x x x f ,则___)(=x f C e x +2214、_____1)2(=--⎰xx dxC x +--1arctan 25、设x x f ln )(=,则____)('=⎰--dx ee f x x C x +6、___sin cos 2222=+⎰xb x a dx C x a bab +)tan arctan(1 7、已知边际收益为x 230-,则收益函数为___ 230x x -8、=-+=⎰⎰dx x xf C x dx x f )1()(22,则若______ C x +--22)121(9、____)2ln 1(12=+⎰dx x x C x +2ln arctan10、若____1)1()()(2=⋅+=⎰⎰dx xxf C u F du u f ,则 C xF +-)1(二、选择题1、函数x x e 3的一个原函数为( B )A 、)3ln 1()3(+xe B 、3ln 1)3(+xeC 、3ln 3xe D 、3ln 3xe2、求dx x ⎰-42时,为使被积函数有理化,可作变换(C )A、t x sin 2= B 、t x tan 2= C 、t x sec = D 、42-=t x3、若x ln 是函数)(x f 的原函数,那么)(x f 的另一个原函数是BA 、ax lnB 、ax a ln 1C 、x a +lnD 、2)ln 21x (4、函数__)(_)()()(2D x F x x x f =+=的一个原函数A 、334xB 、334x xC 、)(3222x x x + D 、)(322x x x +5、__)(_)(cos )1cos 1(2D x d x =-⎰A 、C x x +-tanB 、C x anx +-cos tC 、C x x+--cos 1 D 、C x x +--cos cos 1三、计算题 1、⎰+)1(x x dxC x +arctan 2 2、dx x x ⎰-234 C x x +-+--3)4(443223、dx xx⎰-31 C x x x x x x +-++----666656711ln 3625676 4、dx e x x 23-⎰ C e e x x x +----22212125、dx x x ⎰+241 C x x x ++-arctan 336、dx xx ⎰22cos sin 1C x x +-cot tan 7、dx ex ⎰-12 C x ex +---)112(128、dx x )arcsin (2⎰ C x x x x ar x +--+2arcsin 12)sin c (229、xdx ⎰3tan C x x++cos ln 2tan 210、⎰-dx x x 123 C x x +-+-13)1(232 11、dx x x 23)(ln ⎰ C x x x x x ++-32ln 8)(ln 4442412、⎰dx x )sin(ln C x x x +-)]cos(ln )[sin(ln 213、dx x f x f ⎰)()(' )(2x f +C 14、dx ex ⎰+211C e e x x +++-+1111ln 2122 15、dx x x ⎰sin C x x x x x +-+-sin )2(6cos )6(2 四、证明题:设)(x f 的原函数)(x F 非负,且1)0(=F ,当x x F x f x 2sin )()(02=≥时,有,试证14sin 412sin )(2+-=x x xx f不定积分练习题1基础题 一.填空题 1.不定积分:⎰=_____x x dx22.不定积分:dx x ⎰-2)2(=______3.不定积分: dx x x x)11(2⎰-=_______ 4.不定积分:dx x ⎰-2)2(=__________5.不定积分:dx xe x)32(⎰+=_______ 6.一曲线通过点)3,e (2,且在任一点处的切线斜率等于该点的横坐标的倒数,则该曲线的方程为____________________7.已知一个函数)x (F 的导函数为2x 11-,且当1x =时函数值为π23,则此函数为_______________ 8.=+⎰x d )x 1x ( ________ 9. 设1()f x x=,则()f x dx '=⎰ 10.如果xe -是函数()f x 的一个原函数,则()f x dx =⎰11. 设21()ln(31)6f x dx x c =-+⎰,则()f x = . 12. 经过点(1,2),且其切线的斜率为2x 的曲线方程为 .13. 已知()21f x x '=+,且1x =时2y =,则()f x = .14. (103sin )xx x dx +-=⎰ .15.222()a x dx +=⎰. 16.3321(1)x x dx x-+-=⎰ . 二.选择题 1、,则设x d x1I 4⎰=I =( ) c x 3 1)D ( c x 3 1)C ( cx 3 1)B ( c x 4)A (3335++-+-+--- 2、的一个原函数为则,设 )x (fx 1 1)x (f 2-=( )()arcsin ()arctan A x B x x 1 x 1 ln 2 1)C (+- x1x 1 ln 2 1)D (-+ 3、函数x 2 cos π的一个原函数为 ( ) (A) x 2 sin 2 ππ (B) x 2 sin 2 ππ- (C )x 2 sin 2ππ (D) x2 sin 2ππ- 4、设f(x) 的一个原函数为F(x), 则⎰=dx )x 2(f ( )(A) F(2x)+ C (B) F( 2 x )+ C (C)C )x 2(F2 1+ (D) 2F( 2 x )+ C 5.设3()lnsin 44f x dx x C =+⎰,则()f x =( )。
(完整版)不定积分习题与答案
不定积分(A)1、求下列不定积分1)⎰2xdx2)⎰xxdx23)dxx⎰-2)2(4)dxxx⎰+2215)⎰⋅-⋅dxxxx325326)dxxxx⎰22sincos2cos7)dxxe x)32(⎰+8)dxxxx)11(2⎰-2、求下列不定积分(第一换元法)1)dxx⎰-3)23(2)⎰-332xdx3)dttt⎰sin4)⎰)ln(lnln xxxdx5)⎰xxdxsincos6)⎰-+xx eedx7)dxxx)cos(2⎰8)dxxx⎰-43139)dxxx⎰3cossin10)dxxx⎰--249111)⎰-122xdx12)dxx⎰3cos13)⎰xdxx3cos2sin14)⎰xdxx sectan315)dxxx⎰+23916)dxxx⎰+22sin4cos3117)dxxx⎰-2arccos211018)dxxxx⎰+)1(arctan3、求下列不定积分(第二换元法)1)dxxx⎰+2112)dxx⎰sin3)dxxx⎰-424)⎰>-)0(,222adxxax5)⎰+32)1(xdx6)⎰+xdx217)⎰-+21xxdx8)⎰-+211xdx4、求下列不定积分(分部积分法)1)inxdxxs⎰2)⎰xdxarcsin3)⎰xdxx ln24)dxxe x⎰-2sin25)⎰xdxx arctan26)⎰xdxx cos27)⎰xdx2ln8)dxxx2cos22⎰5、求下列不定积分(有理函数积分)1)dx xx⎰+332)⎰-++dxxxx1033223)⎰+)1(2xxdx(B)1、一曲线通过点)3,(2e,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数)(xF的导函数为211x-,且当1=x时函数值为π23,试求此函数。
3、证明:若⎰+=c x F dx x f )()(,则)0(,)(1)(≠++=+⎰a cb ax F a dx b ax f 。
高等数学第四章不定积分测试题(附答案)
x
2
f ( x) 13. 1 f 2 ( x) dx
15
df ( x) 1 f 2 (x)
arctan f ( x) C .
14. 8 x 8 15
C . 15. x
1 C.
x
二 . 计算题
16.(5 分)计算
dx x2 (1 x2 ) .
【解析】原式
=
1 ( x2
1 1 x2 )dx
17.(5 分)计算
B. xf ( x) f ( x) C
C. xf ( x) f (x) C
D. f (x) xf ( x) C
8.下列式子中正确的是(
)
A . dF x F x
B . d dF x F x C
d
C.
f x dx f x dx
dx
D . d f x dx
9.若 F x G x , k 为任意常数,则(
dx ,则 f ( x) _______ .
x
D. 2 f 2x C
12. d[ f 2 (x)] 2 f ( x)cos xdx ,且 f (0) 1,则 f (x) ______ ____.
13.
1
f
( x) f 2(x
dx )
____________ .
14. x x x dx ___________________.
dx 1 ex .
1 arctan x C .
x
【解析】原式
=
(1
1
ex ex
)
dx
x ln(1 ex ) C .
18.(5 分)计算
x3
x2
dx . 1
【解析】原式 = ( x
不定积分例题与答案
求下列不定积分:知识点:直接积分法的练习——求不定积分的荃本方法。
思路分析:利用不定积分的运算性质和荃本积分公式,査接求出不定积分!★(1),旅思路:被积函敌|:,由积分表中的公式(2)可解。
K 77T 八★⑶思路:根裾不定积分的线性性质,将被积函数分为两项,分别积分。
解:j<2x +.K 2Wt = j2,rfA + f.rdv = -L.+lx i +C ★⑷J 仮(.丫-3皿 思酪:根拐不定积分的线性性质,将被积函薮分为两项,分别积分。
J7xU-3)rfv = |x-dv-3jA"dv = ^.v* -2.V-+C★★⑸『竺上竺旦厶息」廉:观察到3xJ3.E=w+ 1后,根拐不定积分的线性性质,将被积函数分项,分别积分。
丿 ~-V+ 1 ~~.C+ 1~"*A x 2+11 ,根据不定积分的线性性质,将被积函数分项,分别积分。
解:JI ' 心=j rfv-j ]:心=A -arctan .v+C.注.容島看出(5)(6)两題的解SI 思绝是一致的• 一般地,如果被积函数为一个有理的假分丈.谨常先将其分解为一个荃或加上或 减去一个真分丈的形丈.再分项积分.★(7) |(三二+W 心思路:分项积分。
4-~-r^ = J 'z£v -|-^<tv + 3|x 'rfv-4j.t u rfv★(8)上3 2 思路:分项积分。
■ J< ] 3 - F k£v = 3j J , dx-2jdr = 3arctan .v-2arcsinx + C.★★⑺j 后眾小思路:皿着看到皿頁=严—“直接积分。
解:J 厶斥曲Y = =加+ U息话:根据不定积分的线性性质,将被积函数分为两项,分别积分。
X ,.思路:注意到r_ JI + x* x l+x 2 l+.r 1+x 2 解: ★⑵ =x + arctan .v + C解:严小+认=★★(10) I忌路:裂项分项积分。
不定积分的典型例题50题答案
例1. 解法1).12)(12(1224+-++=+x x x x x而 +++)12(2x x )1(2)12(22+=+-x x x 所以)121121(21112242dx x x dx x x dx x x ⎰⎰⎰++++-=++ .)]12arctan()12[arctan(211)12()12211)12()12(21)21)22(121)22(1[212222c x x x x d x x d dx x dx x +++-=+++++--=++++-=⎰⎰⎰⎰解法2dxx x x x xx x dx x x ⎰⎰+++-++-=++)12)(12(2)12(1122242.arctan 21)12arctan(211212242c x x dx x xx x dx +++=++++=⎰⎰ 解法3⎰⎰⎰+-=++=++≠22222421)1(11111,0xx x x d dx x x x dx x x x 当 c x x xx x x d +-=+--=⎰21arctan 212)1()1(22,2221arctan 21lim 20π-=-+→x x x ,2221arctan 21lim 20π=--→x x x 由拼接法可有.02221arctan 2100,2221arctan 21112242⎪⎪⎩⎪⎪⎨⎧<+--=>++-=++⎰x cx x x x c x x dx x x ππ 例2.解 将被积函数化为简单的部分分式(*)1)1(1)1()1(222223⋅⋅⋅⋅⋅++++++=+++x DCx x B x A x x x 两边同乘以2)1(+x ,约去1+x 的因子后令1-→x 得 .211)1(2)1(23=+-+-=B 两边同乘以2)1(+x ,对x 求导,再令1-→x ,施以上运算后,右端得A,而左端为.2.2426)1()2(2)1(3lim]12[lim )1()1()1(2[lim 22322123122231=∴=+=++-+=++=++++-→-→-→A x x x x x x x dx d x x x x dx d x x x 在分解式(*)中令,0=x 得,2D B A ++=所以.21-=D 分解式(*)两边同乘以x ,再令,+∞→x 得.1,1-=⇒+=C C A 故有.arctan 21)1ln(21)1(211ln 2]1)1(1[)1()1(2222223c x x x x dxx DCx x B x A dx x x x +-+-+-+=++++++=+++⎰⎰例3.解 令 ,2x u =再用部分分式,則⎰⎰++=++))(1(21)()1(22244u u u dudx x x x x,11)()1(1222+++++=++u D Cu u B u A u u u 两边乘以,u 再令,0→u 得.1=A 两边乘以,1+u 再令,1-→u 得.21-=B 两边乘以,u 再令,+∞→u 得.21,0-=⇒++=C C B A 令.21,1-=⇒=D u.arctan 41)1()1(ln 81arctan 41)1ln(81)1ln(41ln 21arctan 41)1ln(811ln 41ln 21]12121)1(211[21))(1(21)()1(2422824222222244c x x x x c x x x x c u u u u du u u u u u u u dudx x x x x +-++=+-+-+-=+-+-+-=+--++-=++=++∴⎰⎰⎰ 例4828872882815)1(1181)1()1(dx x x dx x x x dx x x ⎰⎰⎰+-+=⋅+=+)1(])1(111[818288++-+=⎰x d x x .)1(81)1ln(8188c x x ++++= 例5. 解 令 ,2tant x =则=-++⎰dx xx xsin cos 1cos 1 .2)sin 1ln(21arctan )1ln(211ln )1111()1)(1(21212111111222222222c x x ct t t dtt t t dtt t dx t t t t t t t ++--=++++--=+++--=-+=+⋅+-+-++-+⎰⎰⎰ 例6dx x x122+⎰⎰+=22421dx x x.1ln 811)12(81))21(ln(161)21(41)21(21)21()21()21(212222222222222c x x x x x c u u u u du u x d x +++-++=+-+--=-=+-+=⎰⎰分部积分例7.25342)2()1(25232121232c x x x dxx x x dx x x ++-=+-=-⎰⎰-分项例8dx x x dx x ]1111[2111224++-=-⎰⎰ .arctan 2111ln 41c x x x ++-+= 例9.dx x x dx x x ⎰⎰+-+=+1111.134132111c x x x dx xdx x ++-+=+-+=⎰⎰例10.⎰⎰⎰---=-+=+)24(cos )24()2cos(1sin 12x x d x dxx dx πππ.)24tan(c x +--=π 例 11c t t dt x xdx tx +=-=-⎰⎰=arcsin 11212⎪⎩⎪⎨⎧-<+>+-=.1,1arcsin 1,1arcsin x c x x c x 例12.解 .2cos 41)2sin 211(c x x dx x J I ++=-=+⎰dx x x x x x dxxx x x x J I ⎰⎰++-=++-=-222)sin (cos )2sin 211)(sin (cos sin cos )2sin 211)(sin (cos.)12ln(sin 412sin 412sin 12cos )2sin 211(c x x dx x xx +++=++=⎰解上面的联立方程可得出.,J I例13. ).(,)1ln(31)1ln(1111111,)21(332arctan 332.1,1111111332322333233略从而可解出可求出令I c x x dx x x dx x dx x x x x dx x x J I c x J I dx x x J dx x x dx x x dx x x x dx x I ++-+=+-+=+-+-=+-=-+-=++=+-+-=+-+=+=⎰⎰⎰⎰⎰⎰⎰⎰⎰例14.)1(12arcsin 12arcsin++=+⎰⎰x d xxdx x x .212arcsin )1(112arcsin1c x xxx dx x x x x ++++=+++=⎰)(分部积分例15.解 令,)21(12,211,12222dt t t t dx t t x t x x x +++=+-=⇒+-=++ .)1212(231212ln 231ln 2])12(23)12(231[2)21(12222222c x x x x x x x x x dt t t t dt t t t t I ++++++++++-+++=+-+-=+++=⎰⎰例16.解 .sin 2cos 5]cos 2sin 5[x x x x +='- 被积函数的分子是x x sin ,cos 的线性组合,故有.1,2,cos )25(sin )25()cos 2sin 5()cos 2sin 5(cos sin 12==⇒-++='-+-=+B A x A B x B A x x B x x A x x 于是.cos 2sin 5ln 2cos 2sin 5)cos 2sin 5()cos 2sin 5(2cos 2sin 5cos sin 12c x x x dx xx x x x x dx x x x x +-+=-'-+-=-+⎰⎰ 例17.解 ⎰⎰⎰-=-+-=+=4cos 13)(cos sin 3sin 2cos 22t dtx x d x xdx t x .cos 2cos 2ln 41]2121[41c xx dt t t ++-=+--=⎰ 例18.⎰⎰+=+x xdxx dx 222cos )2cos 1(cos 21 .3tan arctan 313arctan 313tan 3)(tan 2cos 1)(tan 222c x c t t dtx x d xx d +=+=+=+=+⎰⎰⎰ 例19..)1ln(18189623266332366c x x x x x dx xx x t x +++-+-=⋅⋅⋅=+-=⎰例20..15arctan 21515ln153215c x xx x x x dx x xx t x x+-------+-=⋅⋅⋅=---=--⎰例21..]1ln [arctan 2112sin 22c x x x x x dx tx t +-++=⋅⋅⋅=-+=≤⎰π 例22.,11ln 21211222tan 232c x x x x x dxx tx t +++-+-=⋅⋅⋅=+=<⎰π例23.⋅⋅⋅=+-=⎰t e x x xe e dx232换元后有理函数积分例24..1arcsin arcsin 2c x x x xdx +-+=⎰分部积分例25..)(c e dx e e dx exxx e xe xe +==⎰⎰+例26.”)妙用“1(cos sin 1ln cos sin 1)cos sin 1(cos sin 12cos c x x x x x x d x x xdx ++=++=+⎰⎰例27..)13()(2dx e x x e x x x x +++⎰.])[(32])[()()13(])[(23222322c e x x e x x d e x x e x x e x x x x x e ++=++=∴++='+⎰原式例28..11)1(arctan .)1(arctan 2111arctan22x x c x dx x x +-='+-=+⎰例29.=++-=+⎰⎰xb x a x b x a d a b dxx b x a x22222222222222sin cos )sin cos (1sin cos 2sin .2sin )()sin cos (.sin cos 2222222222222x a b x b x a c x b x a ab -='+++-例30.)ln ()ln (1)ln (ln 1)ln (ln 12222x xx d xx x dxxx x x xdx x x x ---=--=--⎰⎰⎰ .ln ln 1c x x xc xx x +-=+-=例31..1212ln2211)1(22sin 22c xx xx xdxt x +---+-=-+⎰=例32..111)1(22tan 2323c x x dx x x tx ++++=+=⎰例33..313222sec 0422c x a x a dx x a x t a x a +⎪⎪⎭⎫⎝⎛-⋅=-=>⎰例34dt tt t dt t t x dxtx ⎰⎰⎰--=+=-+=22sin 2cos 1cos cos cos 1cos 11.arcsin 112c x x x x ++-+-=例35..ln 212ln 141)1(2)1()2(72717c x x dt t ttx x dxtx +++-=-⋅+=+⎰⎰=例36..13)12(2)431(]43)21[()1(2232121232232c xx x t tdt x dxx x dx tx ++++=+-=++=++⎰⎰⎰=+例37..22)(212)2(2222c e x x dx e x x x e x dx x e x x xx x ++-='+++-=+⎰⎰ 例38..)2ln(201ln 21)2()2(101010910c x x x x dx x x x dx ++-=+=+⎰⎰ 例39..1ln 72ln )2()1()1()1(71076777c x x x x dx x x x x dx x ++-=+-=+-⎰⎰ 例40..)1ln (1)()111(111112c x x nx d x n dx x x x x dx x n n n n n n n n n ++-=+-=+⋅=+⎰⎰⎰-- 例41..)1(121003dx x x ⎰-+9899111003)1(493)1(1331)1(12----=-+=-⎰x x dx x x u x例51. 求,))((dx x b a x ⎰-- 其中.b a < 解 由配方得2,)2())((22a b R b a x R x b a x -=+--=--其中,令,2b a u x ++=则有原式 .))((4)(2)(2arcsin )(41cos sin 22)2sin 412(22cos 1cos 2222222sin 22c x b a x b a x ab b a x a bc t t R t R c t t R dt t R tdt R du u R t R u +--+-+-+--=++=++=+==-=⎰⎰⎰= 例52.设)(x f 有一个原函数,sin xx 求.)(⎰'dx x f x 解 用分部积分法有 (*))()()()(⋅⋅⋅⋅⋅⋅-=='⎰⎰⎰dxx f x xf x xdf dx x f x.sin cos ]sin [])([)(sin )(211xx x x c x x dx x f x f c x x dx x f -='+='=⇒+=⎰⎰ 代入(*)有 1sin sin cos )(c x x x x x dx x f x ---='⎰, 即 .sin 2cos )(c x x x dx x f x +-='⎰。
不定积分例题及答案
求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1)思路: 被积函数52x-,由积分表中的公式(2)可解。
解:532223x dx x C--=-+⎰ ★(2)dx⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰ ★★(5)4223311x x dxx +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x Cx x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x ⎰34134(-+-)2思路:分项积分。
解:3411342x dx xdx dx x dx x dx x x x x--=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++★(8)23(1x+⎰思路:分项积分。
不定积分试题(A)及答案2
《不定积分》试题(A 卷)一、选择题(本大题共 10 小题,每小题2分,总计 20 分 )1、设12(),()F x F x 是区间I 内连续函数()f x 的两个不同的原函数,且()0f x ≠,则在区间I 内必有( )(A )12()()F x F x C -=.;(B )12()()F x F x C ⋅=; (C )12()()F x CF x =; (D )12()()F x F x C +=2、若'()(),F x f x =则()dF x ⎰=( )(A )()f x ; (B )()F x ; (C )()f x C +; (D )()F x C +3、()f x 在某区间内具备了条件( )就可保证它的原函数一定存在 (A )有极限存在; (B )连续;(C )有界; (D )有有限个间断点 4、函数2()(||)f x x x =+的一个原函数()F x = ( )(A )343x ; (B )243x x ; (C)222()3x x x +; (D )22()3x x x + 5、已知一个函数的导数为2y x '=,12x y ==且时,这个函数是()(A )2;y x C =+ (B )21;y x =+ (C )22x y C =+; (D )1y x =+. 6、下列积分能用初等函数表出的是( ) (A )2xe dx-⎰; (B );(C )1ln dx x ⎰; (D )ln x dx x ⎰.7、2ln xdx x =⎰( )(A )11ln x C x x ++; (B )11ln x C x x --+;(C )11ln x C x x -+; (D )11ln x C x x-++8、10(41)dxx =+⎰( )(A )9119(41)C x ++; (B )91136(41)C x ++;(C )91136(41)C x -++; (D )111136(41)C x -++ 9、dx x ⎰-211=( )(A) -21ln x 21-+C; (B) 2ln x 21-+C;(C) 21ln x 21-+C; (D) ln x 21-+C10、设e -x是f(x)的一个原还函数,则⎰dx x xf )(=( ) (A )e -x(1-x )+C (B )e -x(x+1)+C(C )e -x (x-1)+C (D )-e -x(x+1)+C二、填空题(将正确答案填在横线上)(本大题共5小题,每小题3分,总计 15 分 ) 1、()f x 的 称为()f x 的不定积分。
高等数学不定积分例题及答案
第4章不定积分习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路:52x-=,由积分表中的公式(2)可解。
解:532223x dx x C --==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()24dx x x dx x dx x dx x x C ---=-=-=-+⎰⎰⎰⎰★(3)22xx dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x=-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x ⎰34134(-+-)2 思路:分项积分。
解:3411342x dx xdx dx x dx x dx x xx x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 ★(8)23(1dx x -+⎰思路:分项积分。
不定积分作业参考答案
tan
4
xdx tan 2 x( sex 2 x 1)dx
tan 2 xd tan x (sec 2 x 1)dx
22
高等数学作业题集(第二册)
(17) 解
sin 2 x cos 3xdx ;
(18) 解
sin x cos x dx ;
1
sin 2 x cos 3xdx
1
1 sin x dx
1 dx 2x 5 1 dx ( x 1) 2 4
x
2
sec x x tan x C
2.求下列不定积分:
1 1 x 1 2d ( ) 4 ( x 1) 2 1 2 2 1 x 1 arctan C 2 2
1 1 2 dx 2 2 2 (a x )(a 2 x 2 ) 1 1 1 1 2 2 2 2 dx 2 2 2a a x a x 2
(16) 解
1 1 d (1 x) 2 3 (1 x) (1 x) 1 1 C x 1 2(1 x) 2
(3)
解 当x0时 令 x sec t , 0 t
2
,则
dx sec t tan tdt ,于是
x
1 x 1
2
dx
sec t tan t dt sec t tan t
1 t C arccos C x
当 x 0 时, x 0 ,此时
x
1
2
x 1
xedxxedxlndxlndxlnlnlnlnlnlnlnlnlnln一元函数积分学213xdxln24cosxdxtanxdxcosxdxtanxdxcoscostantanxsexxdxxdxtantansecsinsintantan22高等数学作业题集第二册17sinsincosdxsincosdxcossincossin5sinsectandxsin5sinxdxxdxtantancos5cos10sincossincostansecsincossincostansecsincossincostantansecsincossincossincossecsec21sinsincossincos2sintdcoscos23sincoscossectan一元函数积分学23dxtdtsec2secdxtdtsectandxseclnsectansectansectandxdttantan于是dxtdtsectansecdxdtsinsin于是dxtdt2cos2cos2sindxtdtsinsindtdt于是dxtdtcscsindxdt24高等数学作业题集第二册coscoscossincoscotsindttdt于是dxtdtsincscsecsecdxdtcotsincossintdtlnln从而ln一元函数积分学三分部积分法1
4不定积分习题与答案
第四章 不定积分(A)1、求下列不定积分1)⎰2x dx 2)⎰x x dx 23)dx x ⎰-2)2( 4)dx x x ⎰+221 5)⎰⋅-⋅dx xxx 32532 6)dx x x x ⎰22sin cos 2cos 7)dx x e x)32(⎰+8)dx x x x)11(2⎰-2、求下列不定积分(第一换元法)1)dx x ⎰-3)23( 2)⎰-332xdx3)dt tt ⎰sin 4)⎰)ln(ln ln x x x dx5)⎰x x dx sin cos 6)⎰-+x x e e dx7)dx x x )cos(2⎰ 8)dx xx ⎰-4313 9)dx x x ⎰3cos sin 10)dx x x⎰--249111)⎰-122x dx 12)dx x ⎰3cos 13)⎰xdx x 3cos 2sin 14)⎰xdx x sec tan 315) dx x x ⎰+239 16)dx x x ⎰+22sin 4cos 31 17)dx x x ⎰-2arccos 2110 18)dx x x x ⎰+)1(arctan3、求下列不定积分(第二换元法)1)dx xx⎰+211 2)dx x ⎰sin3)dx x x ⎰-42 4)⎰>-)0(,222a dx xa x5)⎰+32)1(x dx 6)⎰+xdx 217)⎰-+21xx dx 8)⎰-+211xdx4、求下列不定积分(分部积分法)1)inxdx xs ⎰ 2)⎰xdx arcsin3)⎰xdx x ln 24)dx x e x ⎰-2sin 25)⎰xdx x arctan 2 6)⎰xdx x cos 27)⎰xdx 2ln 8)dx x x 2cos 22⎰5、求下列不定积分(有理函数积分)1)dx x x ⎰+332)⎰-++dx x x x 1033223)⎰+)1(2x x dx(B) 1、一曲线通过点)3,(2e ,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
不定积分例题及标准答案
第4章不定积分
习题4-1
1.求下列不定积分:
知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!
★(1)
思路: 被积函数5
2
x -=,由积分表中的公式(2)可解。
解:53
22
23x dx x C --==-+⎰
★(2)dx
⎰
思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1
14111
3332223()2
4dx x x dx x dx x dx x x C ---=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()
思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:22
32122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()
★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:3153
222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰
思路:观察到422223311311
x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x C x x
++=+=++++⎰⎰⎰ ★★(6)2
21x dx x +⎰
思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
(整理)§4不定积分习题与答案.
3、 (1) ln csct cot t c
( 2) 2( x cos x sin x ) c
x2 4
2
( 3) 2(tan
arccos ) c
2
x
a2
x
(4) (arcsin
2
a
x a2
a2
x2)
c
x
(5)
c
1 x2
(6) 2x ln(1 2x) c
精品文档
精品文档
1 (7) (arcsin x ln x
(3) ln x 1 ln( x 2 1) c 2
(4) ln x
1 ln x 1
1 ln( x2
1)
1 arctanx
c
2
4
2
1 x2 1
3
2x 1
(5) 2 ln x2 x 1
arctan 3
3
c
1、 设曲线 y
(B)
f ( x) ,由导数的几何意义: y
11 , dx
ln x
c ,点 (e2 ,3) 代入即可。
1) (3 2x) 3dx
dx
2)
3 2 3x
3) sin t dt t
精品文档
dx
4)
x ln xln(ln x)
精品文档
5)
dx
cos x sin x
7) x cos(x2 ) dx
dx
6)
ex e x 8) 3 x3 dx
1 x4
9)
sin x
3
dx
cos x
10)
1 x dx
9 4x2
dx
x2 )
c
3
(完整版)不定积分例题及答案理工类吴赣昌(可编辑修改word版)
第 4 章不定积分知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!d ⎡⎰ ⎤ ⎡⎰ ⎤ 性质 1: f (x )dx = f (x ) 或 d f (x )dx = f (x )dx ;dx ⎣⎦⎣⎦性质 2: ⎰ F '(x )dx = F (x ) + C 或⎰ dF (x ) = F (x ) + C ; 性质 3:⎰[f (x ) ± g (x )]dx =⎰ f (x )dx ± ⎰ g (x )dx ,,为非零常数。
设 f (u ) 的 原函数为 F (u ) , u =(x ) 可导,则有换元公式:⎰ f ((x ))'(x )dx = ⎰ f ((x ))d(x ) = F ((x )) + C设 x =(t ) 单调、可导且导数不为零, f [(t )]'(t ) 有原函数 F (t ) ,则⎰ f (x )dx = ⎰ f ((t ))'(t )dt = F (t ) + C = F (-1(x )) + Cx 2 xx 2x⎰ x1 ★(1)⎰思路: 被积函数1 = x- 5 2,由积分表中的公式(2)可解。
解 :⎰dx= ⎰ x 1- 52 2dx = - 3 - 3 x 2+ C★(2) ⎰( -dx x思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
11-11- 1 3 41解: ⎰ ( 3 x - )dx = ⎰ (x 3 - x 2 )dx = ⎰ x 3dx - ⎰ x 2dx = x 3 - 2x 2 + C 4★(3) ⎰(2x+ x 2)dx思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
x2x22x1 3解: ⎰(2 + x )dx = ⎰ 2 dx + x dx = + x + Cln 2 3★(4)⎰x (x - 3)dx思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
不定积分例题及答案
不定积分例题及答案求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。
思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分! ★(1)2xx思路: 被积函数522xx x-,由积分表中的公式(2)可解。
解:5322223x dx x Cxx--=-+⎰ ★(2)3(x dxx⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:1141113332223()()24dx x x dx x dx x dx x x C x--=-=-=-+⎰⎰⎰⎰3x ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)(3)x x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。
解:315322222(3)325x dx x dx x dx x x C -=-=-+⎰⎰x ★★(5)4223311x x dxx +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。
解:42232233113arctan 11x x dx x dx dx x x Cx x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。
解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。
一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。
★(7)x dx x x x ⎰34134(-+-)2思路:分项积分。
不定积分测验题及答案
不定积分测验题一、 选择题:1、 设)(,)(21x F x F 是区间I 内连续函数)(x f 的两个不同的原函数,且0)(≠x f ,则在区间I 内必有( )(A ) C x F x F =+)()(21;(B ) C x F x F =⋅)()(21;(C ) )()(21x CF x F =;(D ) C x F x F =-)()(21.2、若,)()('x f x F =则⎰)(x dF =( )(A ))(x f ; (B ) )(x F ;(C )C x f +)(; (D ) C x F +)(.3、)(x f 在某区间内具备了条件( )就可保证它的原函数一定存在(A ) 有极限存在;(B ) 连续;(C )有界;(D )有有限个间断点4、下列结论正确的是( )(A ) 初等函数必存在原函数;(B ) 每个不定积分都可以表示为初等函数;(C ) 初等函数的原函数必定是初等函数;(D ) C B A ,,都不对 .5、函数2)()(x x x f +=的一个原函数=)(x F ( ) (A)334x ; (B)234x x ; (C))(3222x x x +; (D))(322x x x + .6、已知一个函数的导数为x y 2=',21==y x 时且,这个函数是( )(A );2C x y +=(B );12+=x y (C )C x y +=22; (D ).1+=x y7、下列积分能用初等函数表出的是( )(A )⎰-dx e x 2; (B )⎰+31xdx ; (C )⎰dx x ln 1; (D )⎰dx xx ln . 8、⎰+=,)()(C x F dx x f 且,b at x +=则⎰=dt t f )(( )(A )C x F +)(; (B )C t F +)(;(C )C b at F a ++)(1;(D )C b at F ++)(.9、⎰=dx xx 2ln ( ) (A )C xx x ++1ln 1; (B )C xx x ++-1ln 1; (C )C xx x +-1ln 1; (D )C xx x +--1ln 1.10、⎰=+10)14(x dx ( ) (A )C x ++9)14(191; (B )C x ++9)14(1361; (C )C x ++-9)14(1361; (D )C x ++-11)14(1361.二、求下列不定积分:1、⎰dx xx 1cos 12; 2、⎰++522x x dx ; 3、⎰++++dx xx x 2215)1ln(; 4、⎰+)1(2x x e e dx ;测验题答案一、1、D ;2、D ;3、B ;4、D ;5、D ;6、B ;7、D ;8、B ;9、D ; 10、C.二、1、C x+-1sin ; 2、C x ++21arctan 21; 3、C x x ++++322]5)1[ln(32; 4、C e e x x +---)arctan(;。
(整理)4不定积分习题与答案.
学习资料收集于网络,仅供参考1 1)1、求下列不定积分 1) dx 3) (x _2)2dx 5) 7)第四章不定积分xx23-52 ,dx3x (2ex 3)dx x2、求下列不定积分(第一换元法) 1)(3 _2x)3dx 3 5 7)xcos(x 2)dx9)sin x cos xdx11)2x2-113) sin 2xcos3xdx15)—X102arccosx17)—x3、求下列不定积分(第二换元法)dxx d x 2(A)2)4)6)8)dx2「 X2dx1 xcos2xJ 2 i2dx cos xsin x2)dx32 -3x4)dxx In xln(In x)6)8)dx x . x e e10) . ------------ 2dx 丁9 —4x 2 12)cos 3 xdx14) tan 3 xsecxdx16)3cos 2x 4sin218)册喻'dx *x(1+x)■2) sin - xdx-dx x学习资料收集于网络,仅供参考2x4)------------- dx, (a 0)、a - x4、求下列不定积分(分部积分法) 1) xSnxdx 2) arcs in xdx3)x 2 In xdx 4)_2x .x , e sin dx25) x 2 arcta nxdx 6) x 2cosxdx7)In 2xdx8)2 2xx cos dx25、求下列不定积分(有理函数积分)3,dx3)x(x 2 1)(B)1、一曲线通过点(e 2,3),且在任一点处的切线斜率等于该点的横坐标的倒数,线的方程。
132、 已知一个函数F (x)的导函数为 ----------- ,且当X = 1时函数值为,试求此函数。
U1—X 223、证明:若f (x)dx 二 F (x) • c ,贝U1f (ax b)dx F (ax b) c,(a = 0)。
asin x4、 设f (x)的一个原函数为 ,求xf (x)dx 。
不定积分习题及答案
不定积分习题及答案第四章 不定积分(A 层次)1.⎰x x dxcos sin ; 2.⎰--dx xx 2112; 3.()()⎰-+21x x dx ; 4.⎰xdx x 7sin 5sin ; 5.()⎰+dx x x x arctg 1; 6.⎰-+21xx dx ;7.⎰arctgxdx x 2; 8.()⎰dx x ln cos ; 9.⎰--+dx xx x x 3458; 10.()⎰+dx x x 2831; 11.⎰xdx x 2cos ; 12.⎰dx e x 3;13.⎰x x x dx ln ln ln ; 14.()⎰+21xe dx; 15.()⎰+dx exe xx21;16.dx x ⎰3sin ; 17.⎰-dx xx1arcsin ; 18.()⎰+dx x x 321ln ; 19.⎰+-dx x x xx sin 2cos 5sin 3cos 7; 20.()⎰++dx x x x 21ln ; 21.⎰xdx x 35cos sin ; 22.⎰dx x x tgx sin cos ln ; 23.dx x x⎰-2arccos 2110; 24.⎰arctgxdx x 2;25.⎰-+dx x xx 1122; 26.dx x a x ⎰+222; 27.()dx tgx e x221⎰+; 28.()()()⎰+++321x x x xdx ; 29.()⎰+x x dx sin cos 2; 30.dx xx x x e x ⎰-23sin cos sin cos 。
(B 层次)1.设()x f 的一个原函数为xxsin ,求()⎰'dx x f x 2。
2.()⎰++dx xe x x x 11; 3.()⎰++dx x x x2ln ln 1; 4.()⎰-dx x x 1ln ; 5.⎰dx x x 32ln ; 6.⎰dx x x 2sin sin ln ; 7.⎰-dx e xe x x2;8.()⎰+dx x x2321ln ; 9.⎰-xdx x arcsin 12; 10.⎰-dx xx x 231arccos ;11.⎰+-323x x dx ; 12.⎰+-+dx x xarctg x 11112; 13.⎰dx x xtg x 32cos ; 14.⎰+dx x x 1ln ; 15.⎰+dx x x 1arcsin; 16.()⎰+dx x x arctgx 221; 17.()⎰--dx x x 2111;18.⎰+2xb x a dx 222sin cos ;19.⎰xdx xtgx 4sec ; 20.⎰++dx xx xcos sin 1sin ;(C 层次)1.设()x F 为()x f 的一个原函数,()10=F ,()0>x F ,且当0≥x 时,有()()()212x xe x F x f x +=,求()x f 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3) 4)
5) 6)
7) 8)
5、求下列不定积分(有理函数积分)
1)
2)
3)
(B)
1、一曲线通过点 ,且在任一点处的切线斜率等于该点的横坐标的倒数,求该曲线的方程。
2、已知一个函数 的导函数为 ,且当 时函数值为 ,试求此函数。
3、证明:若 ,则
。
4、设 的一个原函数为 ,求 。
5、求下列不定积分
所以原式
2)解:方法一:
原式
方法二:令
方法三Байду номын сангаас变形为 ,然后令
再化成部分分式积分。
3)解:原式
(令 )
4)解:原式
5)解:原式 ,令
6)解:原式
1) 2)
3) 4)
5) 6)
7) 8)
(C)
求以下积分
1) 2)
3) 4)
5) 6)
不定积分
习题答案
(A)
1、(1) (2)
(3) (4)
(5) (6)
(7) (8)
2、(1) (2)
(3) (4)
(5) (6)
(7) (8)
(9) (10)
(11) (12)
(13) (14)
(15) (16)
(17) (18)
不定积分
(A)
1、求下列不定积分
1) 2)
3) 4)
5) 6)
7) 8)
2、求下列不定积分(第一换元法)
1) 2)
3) 4)
5) 6)
7) 8)
9) 10)
11) 12)
13) 14)
15) 16)
17) 18)
3、求下列不定积分(第二换元法)
1) 2)
3) 4)
5) 6)
7) 8)
4、求下列不定积分(分部积分法)
3、(1) (2)
(3)
(4)
(5) (6)
(7) (8)
4、(1) (2)
(3) (4)
(5)
(6)
(7)
(8)
5、(1) (2)
(3)
(4)
(5)
(B)
设曲线 ,由导数的几何意义: , ,点 代入即可。
设函数为 ,由 ,得
,代入 即可解出C。
由假设得 ,故
。
4、把 凑微分后用分部积分法。
5、(1)用倍角公式:
(2)注意 或 两种情况。
(3)利用 。
(4)先分子有理化,在分开作三角代换。
(5)化为部分分式之和后积分。
(6)可令 。
(7)可令 则 。
(8)令 。
(9)分部积分后移项,整理。
(10)凑 后分部积分,再移项,整理。
(11)令 。
(12)变形为 后,令 ,
再由 ,两端微分得 。
(C)
1) 解:令 ,则