电动机循环正反转控制

合集下载

电动机正反转控制

电动机正反转控制
知识点七 电动机正反转控制
XXXXX XXXXX
知识点七 电动机正反转控制
制作步骤:
背景知识
1、交流电动机——继电器正反转控制电路——电路原理图
2. 老式辅主电路
(二)控制线路的功能的讲读(项目描述)按下启动按钮SB2,电机正向 投入运行状态,运行过程,按下停止直按钮SB1电机停止运行;按 下启动按钮SB3,电机反向投入状态,运行过程中,按下停止按 钮SB1,电机停止运行。
4、运行并调试程序
将梯形图程序输 入到计算机。
调试运行并记录 调试结果。
下载程序到PCL,并对程序进行调
试运行。观察能否。实现正转,在正转
的情况下能否直接转换成反转;同时按 下正、反转钮会出现什么情况等。
表2 输入点和输出点分配表
2.PCL 按线图 按照图2完成PCL惦的接线。图中输入端的24V电源可以利用PCL提 供的直流电源,也可以根据功率单独提供电源。 若实验PCL的输入端 为继电器输入,也可以用220V交流电源。注意停止按钮采用动断按钮。
3.程序设计
图4为电机正反转控制程序,采用自锁和互锁控制程序。也可以采用SET 和RST指令来实现。 在图2的接线圈中,将两个交流接触器的动端触点分别连接在KM2、KM1 的线圈回路中,形成硬件,互锁从而保证即使在控制程序错误或固PCL受到 噪声的影响而导致Y0、Y1两个输出继电器同时有输出的情况下避免正、反接 触同时带电而造成的主电路短路。

任务三 三相异步电动机正反转循环运行的PLC控制

任务三  三相异步电动机正反转循环运行的PLC控制

(二)设备与器材
表1-22 设备与器材
序号
名称
符号
型号规格
数量 备注
1
常用电工工具
十字起、一字起、尖嘴钳、剥线钳 等
1
2
计算机(安装GX Works3编程 软件)
3
三菱FX5U可编程控制器
PLC
FX5U-32MR/ES
4
三相异步电动机正反转循环运 行控制面板
5
三相异步电动机
6
以太网通信电缆
M
WDJ26,PN=40W,UN=380V, IN=0.2A,nN=1430r/min,f=50Hz
2)学会用三菱FX5U PLC的顺控程序指令编辑三相异步电动机正反转循 环运行控制的程序。
3)会绘制三相异步电动机正反转循环运行控制的I/O接线图。 4)掌握FX5U PLC I/O接线方法。 5)熟练掌握使用三菱GX Works3编程软件编辑梯形图程序,并写入 PLC进行调试运行。
11
项目一 任务三 三相异步电动机正反转运行运行的PLC控制
MPS
栈存储器的第一层, 之前存储的数据依次
下移一层
读取堆栈第一层的 MRD 数据且保存,堆栈内
的数据不移动
读取堆栈存储器第
MPP
一层的数据,同时该 数据消失,栈内的数
据依次上移一层
梯形图表示
FBD/LD表示
ST表示
目标元件
ENO:=MPS(EN);
ENO:=MRD(EN);

ENO:=MPP(EN);
对于FX5U PLC默认情况下,16位计数器的个数为256个,对应编号为C0 ~C255;32位超长计数器个数为64个,对应编号为LC0~LC63。

[电动机正反转控制线路]电动机正反转控制电路

[电动机正反转控制线路]电动机正反转控制电路

[电动机正反转控制线路]电动机正反转控制电路篇一: 电动机正反转控制电路电动机正反转控制电路在生产机械中,往往需要工作机械能够实现可逆运行。

机床工作台的前进和后退,主轴的正转和反转,起重机的提升与下降等。

这就要求拖动电动机可以正转和()反转。

改变电动机的转向只需改变接到异步电动机定子绕组上的电源的引入相序,即将接电源的任意两根线对调一下,即可使电动机反转。

篇二: 电动机正反转控制电路原理分析为了使电动机能够正转和反转,可采用两只接触器KM1、KM2换接电动机三相电源的相序,但两个接触器不能吸合,如果同时吸合将造成电源的短路事故,为了防止这种事故,在电路中应采取可靠的互锁,上图为采用按钮和接触器双重互锁的电动机正、反两方向运行的控制路。

[]线路分析如下:一、正向启动:1、合上空气开关QF接通三相电源2、按下正向启动按钮SB3,KM1通电吸合并自锁,主触头闭合接通电动机,电动机这时的相序是L1、L2、L3,即正向运行。

二、反向启动:1、合上空气开关QF接通三相电源2、按下反向启动按钮SB2,KM2通电吸合并通过辅助触点自锁,常开主触头闭合换接了电动机三相的电源相序,这时电动机的相序是L3、L2、L1,即反向运行。

三、互锁环节:具有禁止功能在线路中起安全保护作用1、接触器互锁:KM1线圈回路串入KM2的常闭辅助触点,KM2线圈回路串入KM1的常闭触点。

当正转接触器KM1线圈通电动作后,KM1的辅助常闭触点断开了KM2线圈回路,若使KM1得电吸合,必须先使KM2断电释放,其辅助常闭触头复位,这就防止了KM1、KM2同时吸合造成相间短路,这一线路环节称为互锁环节。

2、按钮互锁:在电路中采用了控制按钮操作的正反传控制电路,按钮SB2、SB3都具有一对常开触点,一对常闭触点,这两个触点分别与KM1、KM2线圈回路连接。

例如按钮SB2的常开触点与接触器KM2线圈串联,而常闭触点与接触器KM1线圈回路串联。

按钮SB3的常开触点与接触器KM1线圈串联,而常闭触点压KM2线圈回路串联。

三相异步电动机按钮联锁正反转控制工作原理

三相异步电动机按钮联锁正反转控制工作原理

三相异步电动机按钮联锁正反转控制工作原理三相异步电动机按钮联锁正反转控制是一种常见的电机控制方式,通常用于需要频繁正反转的场合,如输送机、提升机等设备。

按钮联锁控制是指通过按钮控制电机的正反转,并且在正向或反向运行时,另一方向的按钮不能起作用,以确保安全可靠的运行。

本文将从工作原理、控制电路、联锁逻辑和应用场景等方面对三相异步电动机按钮联锁控制进行详细介绍。

一、工作原理三相异步电动机是工业领域中常见的一种电动机类型,它通过三相交流电源产生旋转磁场,从而驱动负载旋转。

按钮联锁控制是通过按钮控制电机的正反转,同时通过联锁控制电路来防止误操作和保证运行的安全性。

其工作原理主要包括按钮控制、继电器控制和联锁控制三个部分。

1.按钮控制按钮控制是通过控制按钮来实现电机的正反转。

通常有正向按钮(或称前进按钮)和反向按钮(或称后退按钮)。

按下正向按钮,电机正向运行;按下反向按钮,电机反向运行。

在按钮未按下时,电机处于停止状态。

按钮控制是电机运行的基础。

2.继电器控制继电器是控制电机正反转的关键组件。

通过正向按钮和反向按钮控制对应的继电器的触点,从而实现电机的正反转。

继电器具有可靠的电气隔离和可控性,是控制电机正反转的重要部件。

3.联锁控制联锁控制是在按钮控制的基础上增加的安全控制功能。

其原理是通过联锁逻辑电路,使得在电机正向或反向运行的过程中,另一方向的按钮不能起作用,从而避免误操作和保证运行的安全性。

联锁控制是按钮控制的增强和完善。

二、控制电路三相异步电动机按钮联锁正反转控制的控制电路通常由按钮、继电器和联锁逻辑电路组成。

下面将对每个部分的功能和连接进行详细介绍。

1.按钮正向按钮和反向按钮是控制电机正反转的主要控制元件。

一般情况下,按钮通过脉冲信号触发继电器的动作,从而控制电机的正反转。

在按钮未按下时,电机处于停止状态。

2.继电器继电器是实现正反转控制的关键元件。

通过控制按钮的脉冲信号,继电器使得对应的触点在正向或反向按钮按下时闭合,从而实现电机的正反转。

电动机的正反转和行程控制 ppt课件

电动机的正反转和行程控制 ppt课件

KM2
互锁
存在问题:要想改变电机转向,
必须先按停止按钮。
采用复合按钮的电动机正反转控制线航路空报国 追求卓越
QS
FU2 FR
FU
FU3 SBSTP SB1
KM2 KM1
KM1
FR
M 3~
KM2
KM1 SB2
KM1 KM2
KM2 双重互锁
要想改变电机转向,不必先按停止按钮,直接 按相应的起动即可。
思考:能否去掉KM常闭触点的互锁?
KM1主触 点闭合
KM1常开 触点闭合
电动机正转, 工作台前进
实现自锁
KM1常闭 触点断开
实现互锁
KM2主触 点闭合
撞击 SQ1
撞击 SQ2
KM1线 圈失电 KM2线 圈失电
KM1所有触 点恢复常态
KM2线 圈得电
KM2所有触 点恢复常态
KM1线 圈得电
KM2常开 触点闭合 KM2常闭 触点断开
以此循环
接触器联锁正反转控制电路
航空报国 追求卓越
航空报国 追求卓越 三相异步电动机的行程控制
机床加工零件时是如何实现到了边缘就能停止呢?
航空报国 追求卓越
一、行程开关(位置开关或限位开关)
未撞击
将机械信号转变为电信号,用以控制运动部件 的运动方向、行程大小或位置保护。
撞击
图形符号
SQ 动断触点 动合触点
SQ2
SQ4 KM1 KM2
KM2
3. 自动往返 行程控制
工作台 a
航空报国 追求卓越 M
SQ3 SQ1 FR SQ2 SQ4
SBSTP
SB1
SQ1
SQ3 KM2 KM1
KM1 SQ2 SB2

电动机正反转控制

电动机正反转控制

实验六电动机正/反转控制
一、实验目的
正转与反转启动按钮间的互锁与自锁,对故障信号(过流、过压等)的保护,点动按钮的使用。

二、实验编程
电机上电后正转10秒,停5秒,反转10秒,停5秒,连续重复上述状态运行。

三、实验调试中遇到的问题
各输出端无法按顺序进行。

无法停止
四、解决问题
更改编程方案,增加互锁的常闭开关。

增加总控制停止的开关P01。

使程序达到预期功能。

五、实验结论
P00启动开关,P01停止开关;P10正传输出,P11暂停输出,P12反转输出,P13暂停输出;T00、T10、T15、T25开启延时定时器。

设置T00为十秒,T10为五秒,T15为十秒,T25为五秒。

当接通P00时,P10输出,T00计时,自保持P10接通,十秒后,T00开启。

常开接点T00接通,P11给电,互锁常闭P11断开,输出P10断开,自保持P11接通,T10给电,五秒后,T10开启。

常开接点T10接通,P12给电,互锁常闭接点P11断开,输出P11停止,自保持常开接点P12接通,T15给电,十秒后,T15开启。

常开接点T15接通,P13给电,互锁常闭P13断开,输出P12停止。

自保持P13接通,T25给电,五秒后,T25开启。

常开接点T25接通,P10给电,互锁常闭接点P10断开,输出P13停止,自保持常开接点P10接通。

P01接通时,电动机停止工作。

电机的正反转控制原理

电机的正反转控制原理

电机的正反转控制原理
电机的正反转控制原理是通过改变电流方向来实现的。

电机主要由定子和转子组成,在定子上绕着线圈通以电流,根据安培力定律,会在定子和转子之间产生磁场,这个磁场会对转子施加力,使其转动。

当电流方向与磁场方向一致时,转子会顺时针转动,这时电机处于正转状态。

当电流方向与磁场方向相反时,转子会逆时针转动,这时电机处于反转状态。

要控制电机的正反转,可以通过改变电流方向实现。

常见的控制方法有使用DPDT(双极双刀)开关或者使用H桥驱动器。

使用DPDT开关,将两个线圈连接到其中两端,根据开关位
置的不同,可以选择正转或者反转。

当开关打到一个位置时,其中一个线圈会与正向电源连接,另一个线圈与负向电源连接,这样电流就会改变方向,从而改变磁场方向,实现电机的正反转。

另一种控制方法是使用H桥驱动器。

H桥驱动器由四个开关
组成,可以独立控制电流的方向。

通过打开或关闭相应的开关,可以改变电流方向,从而实现电机的正反转。

需要注意的是,为了保护电机和驱动器,控制电机正反转时应注意控制信号的先后顺序,确保至少有一个开关开启或关闭后再操作另一个开关,否则可能会导致电机和驱动器损坏。

总结来说,电机的正反转控制原理是通过改变电流方向来改变磁场方向,从而控制电机的转动方向。

可以通过使用DPDT
开关或者H桥驱动器来实现。

电机正反转控制线路ppt课件

电机正反转控制线路ppt课件

QS FU1
FU2
L1
L2
L3
KM2动合辅助触头 闭合,对KM2自锁
KM2动合主触头闭 合,电机反转
KM2动断触头断开 对KM1联锁
KM1
KH UVW
M 3~
KH
SB1
KM2
KM1
KM2
SB2
SB3
KM2 KM1
KM1 KM2
松开SB3
QS FU1
FU2
L1
L2
L3
KM1
KH
UVW
M 3~
KH
SB1
KM2
KM1
KM2
SB2
SB3
KM2 KM1
KM1 KM2
QS FU1
FU2
L1
L2
L3
按下SB2,
SB2动断触头断开, 对KM2联锁;
SB2动合触头闭合, KM1线圈得电;
KM1
KH UVW
M 3~
KH
SB1
KM2
KM1
KM2
SB2
SB3
KM2 KM1
KM1 KM2
QS FU1
FU2
L1
L2
L3
KM1
SB1
KM2
KM1
KM2
SB2
SB3
U VW
M 3~
KH
U ---L3 V ---L2 W---L1
KM1
KM2
缺点
该电路没有进行接触器互锁,一旦运行 时接触器主触头熔焊,而这种故障又无法在 电动机运行时判断出来,此时若再进行直接 正反向换接操作,将引起主电路的电源短路。
为克服接触器联锁正反转控制电路和按 钮联锁正反转控制电路的不足,在按钮联锁 的基础上,又增加了接触器联锁,就构成按 钮、接触器双重联锁正反转控制电路。

电动机正反转自循环运动控制电路图原理

电动机正反转自循环运动控制电路图原理

电动机正反转自循环运动控制电路图原理平面磨床工作台运动示意图中行程开关SQ1、SQ2安装在工作台运动部件的。

左右两个极限位置,工作台上还安装左右两个挡铁。

平面磨床工作台的来回自循环运动
起动后,工作台运动向右运动至右极限位置时,右挡铁压下SQ2行程开关按钮,电动机转变转向驱动工作台向左运动。

工作台运动至左极限位置时,左挡铁压下SQ1行程开关按钮,电动机又一次转变转向驱使工作台向右运动,形成左右往复循环运动。

安装在行程开关外侧还有两个行程开关SQ3、SQ4。

如因某种故障,工作台到达SQ1或SQ2位置时,未能触动SQ1或SQ2所掌握的触头,工作台将连续运动到行程开关SQ3或SQ4处压下SQ3或SQ4,从而切断主电路电源迫使电动机停机,避开工作台超出允许极限位置而造成事故,因此SQ3、SQ4是超程爱护开关。

实现工作台往复运动的电动机正-反自循环掌握线路中按下SB2,KM1线圈通电,并通过KM1动合帮助触头自锁,主电路中KM1主触头闭合、KM2主触头断开,电动机正转驱动工作台右移。

左右来回自循环运动掌握线路
a)主电路b)掌握线路
工作台移至右极限位置时,右挡铁压下SQ1行程开关,KM1线圈因所在支路中的SQ1动断帮助触头断开而断电,并使KM1动合帮助触头解除自锁;KM2线圈则通过支路中的SQ1动合帮助触头闭合形
成自锁并通电,主电路中KM1主触头断开、KM2主触头闭合,电动机反转驱动工作台左移。

当工作台运动到左极限位置时,左挡铁压下SQ2行程开关时,又使主电路中KM1主触头闭合、KM2主触头断开,电动机再次正转驱动工作台右移,如此循环。

按下SB1,KM1线圈和KM2线圈均断电,自循环停止。

电动机正反转控制原理

电动机正反转控制原理

⑵电动机正反转控制原理①控制线路三相异步电动机接触器联锁的正反转控制的电气原理图如图3-4所示。

线路中采用了两个接触器,即正转用的接触器KM1和反转用的接触器KM2,它们分别由正转按钮SB2和反转按钮SB3控制。

这两个接触器的主触头所接通的电源相序不同,KM1按L1—L2—L3相序接线,KM2则对调了两相的相序。

控制电路有两条,一条由按钮SB2和KM1线圈等组成的正转控制电路;另一条由按钮SB3和KM2线圈等组成的反转控制电路。

②控制原理当按下正转启动按钮SB2后,电源相通过热继电器FR的动断接点、停止按钮SB1的动断接点、正转启动按钮SB2的动合接点、反转交流接触器KM2的常闭辅助触头、正转交流接触器线圈KM1,使正转接触器KM1带电而动作,其主触头闭合使电动机正向转动运行,并通过接触器KM1的常开辅助触头自保持运行。

反转启动过程与上面相似,只是接触器KM2动作后,调换了两根电源线U、W相(即改变电源相序),从而达到反转目的。

③互锁原理接触器KM1和KM2的主触头决不允许同时闭合,否则造成两相电源短路事故。

为了保证一个接触器得电动作时,另一个接触器不能得电动作,以避免电源的相间短路,就在正转控制电路中串接了反转接触器KM2的常闭辅助触头,而在反转控制电路中串接了正转接触器KM1的常闭辅助触头。

当接触器KM1得电动作时,串在反转控制电路中的KM1的常闭触头分断,切断了反转控制电路,保证了KM1主触头闭合时,KM2的主触头不能闭合。

同样,当接触器KM2得电动作时, KM2的常闭触头分断,切断了正转控制电路,可靠地避免了两相电源短路事故的发生。

这种在一个接触器得电动作时,通过其常闭辅助触头使另一个接触器不能得电动作的作用叫联锁(或互锁)。

实现联锁作用的常闭触头称为联锁触头(或互锁触头)。

企业安全生产费用提取和使用管理办法(全文)关于印发《企业安全生产费用提取和使用管理办法》的通知财企〔2012〕16号各省、自治区、直辖市、计划单列市财政厅(局)、安全生产监督管理局,新疆生产建设兵团财务局、安全生产监督管理局,有关中央管理企业:为了建立企业安全生产投入长效机制,加强安全生产费用管理,保障企业安全生产资金投入,维护企业、职工以及社会公共利益,根据《中华人民共和国安全生产法》等有关法律法规和国务院有关决定,财政部、国家安全生产监督管理总局联合制定了《企业安全生产费用提取和使用管理办法》。

电动机正反转控制电路工作原理

电动机正反转控制电路工作原理

电动机正反转控制电路工作原理一、引言电动机是现代工业中使用最广泛的一种电力驱动设备,其正反转控制是电机运行的基础,因此,掌握电动机正反转控制电路的工作原理对于工程师来说至关重要。

二、电动机正反转控制原理1. 三相异步电动机原理三相异步电动机是常用的一种电动机类型,其由定子和转子两部分组成。

定子上绕有三组互相位移120度的绕组,分别称为A、B、C相绕组。

当三相交流电通过A、B、C相绕组时,将在定子内产生旋转磁场。

转子上也有若干个绕组,在旋转磁场作用下,产生感应电动势,并在磁场作用下形成旋转力矩运行。

2. 交流接触器原理交流接触器是一种常用于交流回路中的开关装置。

其由线圈和触点两部分构成。

当线圈通电时,在铁芯内产生磁场,使得触点闭合;断开线圈通电后,铁芯失去磁性,触点自动断开。

3. 正反转控制原理为了实现电动机正反转控制,需要采用交流接触器和切换器。

当切换器处于正转位置时,交流接触器K1、K2、K3闭合,三相电源通过K1、K2、K3进入电动机A、B、C相绕组,形成旋转磁场,使电动机正转;当切换器处于反转位置时,交流接触器K4、K5、K6闭合,三相电源通过K4、K5、K6进入电动机C、B、A相绕组,形成反向旋转磁场,使电动机反转。

三、电动机正反转控制电路1. 正向控制电路正向控制电路由主开关S1和交流接触器组成。

当主开关S1打开时,交流接触器KM1的线圈得到通电,在铁芯内产生磁场使得KM1上的触点闭合。

此时L1和L2之间的回路得以贯通。

同时,在KM1上的另一组触点也闭合,在L3和L4之间形成回路。

这样就实现了正向控制。

2. 反向控制电路反向控制电路由主开关S2和交流接触器组成。

当主开关S2打开时,交流接触器KM2的线圈得到通电,在铁芯内产生磁场使得KM2上的触点闭合。

此时L1和L3之间的回路得以贯通。

同时,在KM2上的另一组触点也闭合,在L2和L4之间形成回路。

这样就实现了反向控制。

3. 正反转切换电路正反转切换电路由切换器S3和交流接触器组成。

电动机正反转控制原理

电动机正反转控制原理

电动机正反转控制原理电动机正反转控制是指通过控制电动机的工作方式,使其实现正转和反转两种运动状态。

电动机正反转的控制原理是通过改变电动机的电源极性或者改变相序来实现的。

下面将详细介绍电动机正反转控制的原理。

首先,我们需要明确电动机的结构。

电动机通常由定子和转子两部分组成。

定子上绕有电线圈,电线圈中通以电流产生磁场。

而转子则是在磁场作用下产生转动力。

电动机正反转控制就是通过改变定子电流方向或者改变定子磁场方向来实现的。

一种常用的电动机正反转控制方法是通过改变电源极性来实现。

对于直流电机,可以通过改变接入电源的正负极来实现电动机的正反转。

当电源的正负极接入电机的两端时,电动机会正转;当电源的正负极反接时,电动机会反转。

这是一种简单有效的电动机正反转控制方法,适用于一些简单的应用场合。

另一种常用的电动机正反转控制方法是采用三相交流电机的顺序反转。

三相交流电机的正反转控制,一般是通过改变其输入端的三相电源的相序来实现。

在三相交流电机中,改变任意两相的接线位置,就可以改变电机的转向。

这种控制方法适用于大功率的交流电机,常见于工业生产中。

除了以上介绍的两种方法,还有一些其他电动机正反转控制的方法。

比如,通过改变电动机的转子绕组的连接方式、通过增加一种特殊的正反转控制装置等等。

这些方法各有优劣,应根据具体的应用场合和要求来选择适合的电动机正反转控制方法。

总的来说,电动机正反转控制的原理是通过改变电动机的磁场方向或者电源极性来实现的。

在实际应用中,我们需要根据不同类型的电动机、不同的应用场合和不同的控制要求来选择合适的控制方法。

同时,为了确保电动机的正常工作和延长电动机的使用寿命,我们还需在控制电动机正反转的过程中注意保护电动机,避免因控制不当而造成损坏。

因此,在设计和应用电动机正反转控制系统时,需要充分考虑各种因素,合理选择控制方法和控制参数。

总之,电动机正反转控制是电机控制领域的基础知识之一,了解电动机正反转控制的原理对于电机控制工程师和相关行业的从业人员来说是非常重要的。

实现电动机正反转的方法

实现电动机正反转的方法

实现电动机正反转的方法电动机正反转是指电动机在工作过程中可以根据需要实现正转和反转两个方向的运动。

这种功能在许多应用中都是非常重要的,比如机械传动、汽车行驶等。

那么,如何实现电动机的正反转呢?一、电动机正反转的原理电动机正反转的实现是通过改变电动机的电流方向来实现的。

电动机是通过电流在导线中产生的磁场与永磁体或电磁体之间的相互作用来实现转动的。

当电流方向改变时,导线中的磁场方向也会改变,从而改变了与之相互作用的磁场方向,从而实现了电动机的正反转。

二、实现电动机正反转的方法1. 使用直流电机直流电机是最常见的一种电动机,它可以通过改变电源的正负极连接来实现正反转。

当电源的正极与直流电机的正极相连时,电流从正极进入直流电机,产生的磁场与永磁体或电磁体之间相互作用,实现正转。

当电源的正极与直流电机的负极相连时,电流从正极退出直流电机,产生的磁场方向相反,实现反转。

2. 使用交流电机交流电机在正反转方面的实现与直流电机有所不同。

交流电机可以通过改变电源的相位来实现正反转。

交流电机的正转方向是由电源相位与电动机的定子磁场相互作用的结果。

当电源的相位与定子磁场方向相同时,电机正转;当电源的相位与定子磁场方向相反时,电机反转。

3. 使用可逆电机控制器可逆电机控制器是一种专门用于控制电动机正反转的设备。

通过可逆电机控制器,可以实现对电动机的正反转控制。

可逆电机控制器一般包括电源开关、电流控制器、电流反转控制器等部分。

通过控制这些部分的工作状态,可以实现对电动机正反转的控制。

4. 使用电机驱动器电机驱动器是一种专门用于驱动电动机的设备,它可以通过改变电流的大小和方向来实现电动机的正反转。

电机驱动器一般包括电源、电流传感器、电流控制器等部分。

通过控制这些部分的工作状态,可以实现对电动机正反转的控制。

三、电动机正反转的应用电动机正反转在许多领域都有广泛的应用。

比如,在机械传动中,电动机的正反转可以实现机械设备的运转和停止;在汽车行驶中,电动机的正反转可以实现汽车的前进和后退。

电动机正反转控制原理

电动机正反转控制原理

电动机正反转控制原理电动机正反转控制是指通过控制电动机的电源极性,使其实现正向或反向旋转的过程。

电动机正反转控制在工业生产中被广泛应用,可以实现机械设备的正向运动和反向运动,具有重要的意义。

电动机正反转控制原理基于电动机的工作原理和电源电路的控制,在实际应用中有多种实现方式。

下面将介绍两种常见的实现原理。

一、直流电动机正反转控制原理直流电动机正反转控制是指通过改变电动机的电源极性来实现正向或反向旋转。

直流电动机由电枢和磁场绕组组成,通过改变电枢绕组的电流方向可以控制电动机的旋转方向。

在直流电动机正向旋转时,电源正极连接到电动机的正极,负极连接到电动机的负极,电流通过电枢绕组顺时针流动,产生的磁场与磁场绕组的磁场相互作用,使电动机旋转。

而在反向旋转时,只需改变电源的极性即可。

将电源正极连接到电动机的负极,负极连接到电动机的正极,电流通过电枢绕组逆时针流动,磁场方向相反,电动机反向旋转。

为了实现电动机正反转的控制,可以使用电磁继电器或电子开关来控制电源极性的切换。

通过控制继电器或电子开关的通断,可以实现电动机的正向或反向旋转。

二、交流电动机正反转控制原理交流电动机正反转控制是指通过改变电动机绕组的相序来实现正向或反向旋转。

交流电动机根据绕组的接线方式可以分为星形接法和三角形接法。

在星形接法下,电动机的三个绕组分别与电源的三相相连,通过改变绕组的相序可以控制电动机的正向或反向旋转。

例如,将A相绕组与B相相连,B相绕组与C相相连,C相绕组与A相相连,电动机正向旋转;将A相绕组与C相相连,B相绕组与A相相连,C相绕组与B相相连,电动机反向旋转。

在三角形接法下,电动机的三个绕组形成一个闭合回路,通过改变绕组的相序同样可以控制电动机的正向或反向旋转。

例如,将A相绕组与B相相连,B相绕组与C相相连,C相绕组与A相相连,电动机正向旋转;将A相绕组与C相相连,B相绕组与A相相连,C 相绕组与B相相连,电动机反向旋转。

电动机正反转控制原理

电动机正反转控制原理

电动机正反转控制原理
电动机正反转控制是通过改变电机绕组的接线方式来实现的。

其原理是根据正逆时针旋转的要求,将电机的相序进行调整。

具体来说,如果需要使电动机顺时针转动,就需要将三相电源的相位按照逆时针顺序依次连接到电机的A、B、C三个相位上。

而如果需要使电动机逆时针转动,则需要将三相电源的相位按照顺时针的顺序依次连接到电机的A、B、C三个相位上。

为了实现正反转控制,通常采用三相反转器来实现。

三相反转器由六个晶闸管或者三个双向晶闸管构成。

通过改变晶闸管的导通顺序,可以改变电机的相序,从而实现电机的正反转控制。

在正反转控制中,需要注意以下几点:
1. 正反转切换时,必须确保电机停止转动才能进行切换,否则可能会对电机和控制器造成损坏。

2. 切换过程中需要注意控制信号的稳定性和可靠性,以确保正反转切换的准确性。

3. 在切换时,还需要考虑电流和电压的变化情况,避免对电机造成冲击和损坏。

总之,电动机正反转控制通过改变电机绕组的接线方式,以及使用三相反转器来实现。

合理且准确的正反转控制可以确保电机的正常运行和使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B SB1 FR
COM X0
X1
X2
FX2N-48MR COM1 KM1 Y1 KM2 Y2
220V KM2 KM1

通用指令编程

X1 M0
X0
X2
C1 M0 T4 T1 T2 T3 T4 RST C1 k30 k50 k80 k100

X1 M0 M0 T4 T1 T2 Y2
电动机循环正反转控制
*控制要求 1.用PLC的基本逻辑指令,控制电动机循 环正反转。 2.电动机正转3s,停2s,反转3s,停2s,如此 循环5个周期,然后自动停止。 3.运行中,可按停止按钮停止,热继电器动作 也应停止。
一、I /O分配


文字表达 停止按钮:X0 起动按钮:X1 热继电器动合点: X2 电动机正转:Y1 电动机反转:Y2
指 令 表
LD OR ANI ANI ANI OUT ANI OUT X1 M0 X0 X2 C1 M0 T4 T1 k30 OUT T2 k50 OUT T3 k80 OUT T4 k100
LD X1 RST C1 LD ANI ANI OUT M0 T1 Y2 Y1
LD M0 AND T2 ANI T3 ANI Y1 OUT Y2
LD T4 OUT C1
END


Y1 T3 Y1 Y2 C1 END k5

说明: (1)动作分析 该梯形图采用时间 继电器连续输出,并累积时间 的方法,这样可使电动机的正 反转运行时间由时间继电器来 控制,使编程的思路变得很简 单,而电动机循环的次数,则 由计数器来控制。 (2)时间继电器T1、T2、T3、T4 的用途如下: 电动机运行时间:t1=3S; 电动机停止时间:t2=2S。 T1为t1时间,所以T1=30; T2为t1+t2时间,所以T2=50; T3为t1+t2+t1 时间,所以 T3=80; T4为t1+t2+t1+t2 时间,所以 T4=100。 (3)计数器 C1 计数器C可以用X、 Y、M、T、C等元件来驱动,而 且计数器C必须先复位。
相关文档
最新文档