第三章 釜式反应器
化学反应工程_连续流动釜式反应器讲解
表3-5列出了平推流反应器和全混流反应器的反应
结果比较,其中 VR ,这是对等容过程而言。
V0
平推流反应器与全混流反应器的比较
补充知识点:空时与空速的概念:
空时:
Vr V0
反应体积 进料体积流量
(因次:时间)
表明 Vo , 处理能力
空速:
1 V0 FA0
Vr cA0Vr
因次 :时间-1
两釜串联操作时,第一釜在CA1下进行,仅第二釜 维持在CAf下进行,整个反应速度提高了一个水平;
在三釜串联操作时,前两釜都是在高于CAf的浓度 下进行,仅第三釜在CAf进行,反应速度比两釜串 联时又有所提高。可见,串联的釜数越多,反应 物浓度提高越多,反应速度越快,需要的反应时 间或反应器体积就越小。
物料出口处的物料参数; 2. 物料参数不随时间而变化; 3. 反应速率均匀,且等于出口处的速率,不随时间变化; 4. 返混=∞
二、全混流反应器计算的基本公式
1. 反应器体积VR 衡算对象:关键组分A
V0, N A0,CA0
X A0 0
N A,CAf X Af
衡算基准:整个反应器(VR) 稳定状态:
空速的意义:单位时间单位反应体积所处理的物料量。 空速越大,反应器的原料处理能力越大。
多级全混釜的串联及优化
设有一反应,A的初始浓度为CA0,反应结束后最 终浓度为CAf,反应的平衡浓度为CA*,考察平推流 反应器和全混流反应器的浓度推动力。 由图示,显然有,ΔCA平>ΔCA全 平推流反应器中的浓度推动力大于全混流反应器 中的浓度推动力。结果,平推流反应器体积小于 全混流反应器体积。
浓度分布 ------ 推动力
反应推动力随 反应时间逐渐 降低
第三章间歇釜式反应器知识讲解
数
需要设备的总容积为:
Q0t '
V
mVm
如果反应器容积V的计算值很大,可选用几个小的反应器
若以m表示反应釜的个数,
则每个釜的容积:Vm=V/m=Q0t’/( m)
为便于反应器的制造和选用,釜的规格由标准(GB 9845-88) 而定。在选择标准釜时,应注意使选择的容积与计算值相当或 略大。如果大,则实际生产能力较要求为大,富裕的生产能力 称为反应器的后备能力,可用后备系数δ来衡量后备能力的大
解: 每台锅每天操作批数: β=24/17=1.41 每天生产西维因农药数量:
1000×1000÷300=3330Kg(GD)
需要设备总容积: mVm=(3330/1.41)×200×10-3/12.5=37.8m3
取Va为10 m3的最大搪瓷锅4台。
δ=(4-3.78)/3.78×100%=5.82%
10
(3)反应体积VR
• 反应体积是指设备中物料所占体积,又称有效体积。
确定反应器的容积V的前提是确定反应器的有效容 积(反应容积)VR。
如果由生产任务确定的单位时间的物料处理量为Q0,
操作时间为t’(包括反应时间t和辅助操作时间t0 ),则
反应器的有效容积:
VR=Q0 t'
其中 t’ = t + t0
11
(4)*设备装料系数
实际生产中,反应器的容积要比有效容积大,以保 证液面上留有空间。
• 反应器有效体积与设备
实际容积之比称为设备
装料系数,以符号
表示,即:
=VR/V。其值视具体
情况而定
条
件
无搅拌或缓慢搅 拌的反应釜
带搅拌的反应釜
易起泡或沸腾状 况下的反应
第三章 釜式及均相管式反应器综述
x Af 0 CA dxA dCA C A0 rA rA
等容过程,液相反应
图解积分示意图
t C A0
x Af
0
CA dxA dCA C A0 rA rA
[rA]-1
[rA]-1
t/cA0 xA0 xAf x CA0
t CAf CA
二、间歇反应器的数学描述
Standardised stirred tank reactor sizes
标准尺寸( according to DIN)
反应釜规格 总容积 夹套容积 换热面积 400 L L m2 d1 h1 主要尺寸 (mm) d2 h2 533 120 2.5 800 1000 900 1250 630 847 152 3.1 1000 1000 1100 1300 1000 1447 216 4.6 1200 1200 1300 1550 2500 3460 368 8.3 1600 1600 1700 2060 4000 5374 499 11.7 1800 2000 1900 2500 6300 8230 677 15.6 2000 2500 2100 3050
4.155m / h
通过乙酸的起始浓度和原料中各组分的质量比,可求出乙 醇和水的起始浓度为
CB 0 3.908 60 2 10.2(mol / L) 46
3.908 60 1.35 CS 0 17.59(mol / L) 18
然后,将题给的速率方程变换成转化率的函数。
第三章 釜式及均相管式反应器
第一节 第二节 间歇釜式反应器 连续流动均相管式反应器
第一节 间歇反应器
一、釜式反应器的特征
(1)反应器内物料浓度达到分子尺度上的均匀,且反应 器内浓度处处相等,因而排除了物质传递对反应的影响;
第三章 釜式反应器
半间歇釜式反应器的物料衡算式:
设有反应:
A B R , r k ' c AcB
Q0c A0
QcA
( R A )V
d (V c A ) dt
Q 0 c A 0 Q c A R AV
d (V c A ) dt
式中V为反应器中混合物的体积,其值随时间而变。假定操作开始时先向反应器中注入 体积为V0的B,然后连续输入A,流量为Q,浓度为CA0,且不连续导出物料,即Q=0,即有
V V0 Q 0t
若将VCA看做变量,则该式为一阶线性微分方程,初始条件是t=0, VCA=0, Q0为常数时,一阶微分方程的解为:
VcA
Q0c A0 k
1 e x p ( k t )
将
V V0 Q 0t
cA cA0
代入
VcA
Q0c A0 k
1 e x p ( k t )
Q 0 c A 0 R AV
d (V c A ) dt
又设B大量过剩,则该反应可按一级反应处理,即 rA kc A
,代入上式有:
Q 0 c A 0 k c A 0V
任意时间下反应混合物的体积:
d (V c A ) dt
V V0
t 0
Q0dt
若为恒速加料,则Q0为常数,所以
FA 0 v0 c A 0
= T (v c p + K A )-(v c p T 0 + K A T m )
(v c p + K A )
-(v c p T 0 + K A T m )
= T (v c p + K A )-(v c p T 0 + K A T m )
第三章 釜式反应器
t0 pt
ln( k1 / k 2 ) 代入式( 6 ) k1 k 2 k
cP max
k1 c A0 k2
k k 2 1
2
cP max YP max = cA0
3.4 连续釜式反应器反应体积的计算
物料衡算式:Q0Ci0=QCi-RiV r 因为釜式反应器大多数进行液相反应 所以视作为恒容过程 Q=Q0
dcA 对A : ( RA ) k1cA (1) dt dcP 对P : RP k1cA k2cP (2) dt
cA cA0 exp(k1t )(4)
dcP 带入式(2)得: k1cA0 exp(k1t ) k2cP dt
dcP k2cP k1c A0 exp(k1t )(5) dt
Vr=
Q 0( c i,0 - c 0 )
-R
i
i = 1,2,...,k
Q0( c A,0 - c A ) Q0( c A,0 - c A ) Q0c A,0( x A, f - c A,0 ) = = 2 - R Ac A, f -R A x A, f
Vr=
-R
A
空时 V r
Q0
单位时间处理单位体积无聊所需的空间体积 空时越大,反应器的生产能力越小
∵ cA0 cA cP cQ
k2 c A0 ∴ cQ cA0 cA cP 1 exp (k1 k2 )t k1 k2
cP k1 常数 cQ k2
可推广到M个一级平行反应: 对反应物A:
cA cA0 exp ( - k1 +k2 +... +km)t
化学反应工程第三章包括答案.docx
3釜式反应器在等温间歇反应器中进行乙酸乙酯皂化反应:该反应对乙酸乙酯及氢氧化钠均为一级。
反应开始时乙酸乙酯及氢氧化钠的浓度均为 l ,反应速率常数等于。
要求最终转化率达到 95%。
试问:3( 1)( 1)当反应器的反应体积为1m 时,需要多长的反应时间?3,( 2)( 2)若反应器的反应体积为2m ,所需的反应时间又是多少?解:( 1)(2)因为间歇反应器的反应时间与反应器的大小无关,所以反应时间仍为。
拟在等温间歇反应器中进行氯乙醇的皂化反应:以生产乙二醇,产量为20 ㎏/h ,使用 15%(重量)的 NaHCO3水溶液及 30%(重量)的氯乙醇水溶液作原料,反应器装料中氯乙醇和碳酸氢钠的摩尔比为 1:1,混合液的比重为。
该反应对氯乙醇和碳酸氢钠均为一级,在反应温度下反应速率常数等于,要求转化率达到 95%。
(1)( 1)若辅助时间为,试计算反应器的有效体积;(2)( 2)若装填系数取,试计算反应器的实际体积。
62kg/kmol,每小时产解:氯乙醇,碳酸氢钠,和乙二醇的分子量分别为,84和乙二醇: 20/62= kmol/h每小时需氯乙醇:每小时需碳酸氢钠:原料体积流量:氯乙醇初始浓度:反应时间:反应体积:(2)( 2)反应器的实际体积:丙酸钠与盐酸的反应:为二级可逆反应(对丙酸钠和盐酸均为一级),在实验室中用间歇反应器于 50℃等温下进行该反应的实验。
反应开始时两反应物的摩尔比为 1,为了确定反应进行的程度,在不同的反应时间下取出10ml 反应液用的NaOH溶液滴定,以确定未反应盐酸浓度。
不同反应时间下,NaOH溶液用量如下表所示:时间, min0 10 20 30 50∝NaOH用量, ml现拟用与实验室反应条件相同的间歇反应器生产丙酸,产量为500kg/h ,且丙酸钠的转化率要达到平衡转化率的 90%。
试计算反应器的反应体积。
假定( 1)原料装入以及加热至反应温度( 50℃)所需的时间为 20min,且在加热过程中不进行反应;(2)卸料及清洗时间为 10min;(3)反应过程中反应物密度恒定。
第三章 釜式反应器
等温间歇反应器反应时间的解析计算
由于反应在等温条件下进行,则反应速率常数在反应 过程中保持不变。
对于n级不可逆反应 将反应速率方程变换为转化率的函数并积分得到:
对于一级不可逆反应积分结果为:
14
影响间歇反应器反应时间的因素分析
从间歇反应器反应时间的计算公式可以看出: 反应时间随反应组分的初始浓度(一级反应除外)的提
rAVr
nA0
dxA dt
分离变量积分:
t
t
0 dt nA0
dx x A f
A
0 rAVr
11
间歇反应器的反应时间计算 (单一反应)
恒容条件下(多数情况)
t
cA0
xAf 0
dxA rA
or
t cA dcA
r cA0 A
如果动力学方程形式为: rA kCAn
i
反应生成
物质量 物质量 i物质量
通式为
7
间歇釜式反应器的物料衡算式
由于间歇反应器在反应过程中无物料的进出,因此
Q0=Q=0,即:
单位时间 单位时间内积
反应掉的
=累在反应器内
i物质量 的i物质量
由间歇反应器的设计方程可得一个极为重要的结论:反应物达 到一定的转化率所需的反应时间,只取决于过程的反应速率, 也就是说取决于动力学因素,而与反应器的大小无关。
第三章 釜式反应器
釜式反应器是工业上应 用广泛的反应器之一。
可以用来进行均相反应 (主要是液相均相反应), 又可用于多相反应,如 气液、液固、液液及气 液固等反应。
在操作方式上,既可以 是进行连续操作,也可 以进行间歇或半间歇操 作。
化学反应工程第三章答案
3 釜式反应器在等温间歇反应器中进行乙酸乙酯皂化反应:该反应对乙酸乙酯及氢氧化钠均为一级。
反应开始时乙酸乙酯及氢氧化钠的浓度均为l,反应速率常数等于。
要求最终转化率达到95%。
试问:(1)(1)当反应器的反应体积为1m3时,需要多长的反应时间?(2)(2)若反应器的反应体积为2m3,,所需的反应时间又是多少?解:(1)(2) 因为间歇反应器的反应时间与反应器的大小无关,所以反应时间仍为。
拟在等温间歇反应器中进行氯乙醇的皂化反应:以生产乙二醇,产量为20㎏/h,使用15%(重量)的NaHCO水溶液及30%(重3量)的氯乙醇水溶液作原料,反应器装料中氯乙醇和碳酸氢钠的摩尔比为1:1,混合液的比重为。
该反应对氯乙醇和碳酸氢钠均为一级,在反应温度下反应速率常数等于,要求转化率达到95%。
(1)(1)若辅助时间为,试计算反应器的有效体积;(2)(2)若装填系数取,试计算反应器的实际体积。
解:氯乙醇,碳酸氢钠,和乙二醇的分子量分别为,84 和 62kg/kmol,每小时产乙二醇:20/62= kmol/h每小时需氯乙醇:每小时需碳酸氢钠:原料体积流量:氯乙醇初始浓度:反应时间:反应体积:(2)(2)反应器的实际体积:丙酸钠与盐酸的反应:为二级可逆反应(对丙酸钠和盐酸均为一级),在实验室中用间歇反应器于50℃等温下进行该反应的实验。
反应开始时两反应物的摩尔比为1,为了确定反应进行的程度,在不同的反应时间下取出10ml反应液用的NaOH溶液滴定,以确定500kg/h,且丙酸钠的转化率要达到平衡转化率的90%。
试计算反应器的反应体积。
假定(1)原料装入以及加热至反应温度(50℃)所需的时间为20min,且在加热过程中不进行反应;(2)卸料及清洗时间为10min;(3)反应过程中反应物密度恒定。
解:用A,B,R,S分别表示反应方程式中的四种物质,利用当量关系可求出任一时刻盐酸的浓度(也就是丙酸钠的浓度,因为其计量比和投量比均为1:1)为:于是可求出A的平衡转化率:现以丙酸浓度对时间作图:由上图,当CA=×l时,所对应的反应时间为48min。
第三章间歇釜式反应器
使反应物混合均匀,强化传质传热
3.传热装置,主要是夹套和蛇管,用来
输入或移出热量,以保持适宜的反应 温度
4.传动装置,是使搅拌器获得动能以强
化液体流动。ຫໍສະໝຸດ 5.轴密封装置,用来防止釜体与搅拌 轴之间的泄漏
6.工艺接管,为适应工艺需要
2
3
3.1.2间歇釜式反应器的特点及其应用
• 操作周期又称工时定
额或操作时间,是指 • 例如萘磺化制取2-萘磺酸
生产每一批料的全部 的操作周期:
操作时间,即从准备 • 检查设备
投料到操作过程全部 完成所需的总时间t’ , 操 作 时 间 t’ 包 括 反 应
• •
加萘 加硫酸及升温
时 间 t 和 辅 助 操 作 时 • 反应
15分 15分
25分 160分
小,若标准釜的容积为Va,那么,
Va V 100 % Vma Vm 100 %
V
Vm
14
• 思考 • 选用个数少而容积大的设备有利还是选用
个数多而容积小的设备有利 ?
15
3、计算示例
物料处理量FV一般由生产任务确定,辅助时间t0视实 际操作情况而定,反应时间t可由动力学方程确定, 也可由实验得到。由以上数据可求VR、V、m、Vm以 及δ等
5
3.2.1间歇釜式反应器的容积与数量
确定反应器的容积与数量是车间设计的基础, 是实现化学反应工业放大的关键 1、求算反应器的容积与数量需要的基础数据
6
(1)每天处理物料总体积VD和单位时间的物
料处理量为FV
VD
=
GD
GD每天所需处理的物料总重量 ρ物料的密度
FV=VD/24
第三章 釜式反应器
������������
1
= − ln 1 − ������
1 − ������
������
化学反应工程——釜式反应器
7
t与CA0有关 t与CA0无关
2. 间歇反应器的反应体积:
������ = ������ ������ + ������
式中: Q0— 单位时间内处理的反应物料的体积(由生产任务决定) t— 反应时间 t0— 辅助时间
1 − ������
������������
������������
1 反应时间:������ =
������������
������������ 1 − ������
若 ������ ≠ 1
t = 1 − ������
−1
������ − 1 ������������
若 ������ = 1
1 ������ = ������
������ = = ������ ������
(5)
������������
初 始 条 件 : t=0时,CA=CA0 ; CP=0; CQ=0
对 ( 4 ) 积 分 得 : ∴ ������ =
ln =
ln
(6)
由此式可求得为达到一定的XA所需要的反应时间,式(6)也可写成:
������ = ������ exp − ������ + ������ ������
1 − exp − ������ + ������ ������
������ + ������
两种产物的浓度之比,在任何反应时间下均等于两个反应的速率常数之比。
化学反应工程——釜式反应器
16
3_釜式反应器.
c
0
AP AQ
P
Q
t
cP k1
cQ
k2
即:任意时刻两 个反应产物浓度 之比,等于两个 反应速率常数之 比
平行反应物系组成与反应时间关系示意图
等温 BR 的计算
复合反应
将上述结果推广到含有M个一级反应的平行反应系统 :
M
反应物A的浓度为:
(t ki )
cA cA0e 1
反应产物的浓度为:
M
ci
Q0
ci0
Q
ci
Q0ci0dt Qcidt RiVr dt dni
Vr
Q0ci0
Qci
RiVr
dni dt
i 1,2, K
假设 反应器内物料温度均一 反应器内物料浓度均一
M
R
其中:
i
ij r j
j 1
KM
对反应物为负 对产物为正
等温 BR 的计算
1.反应体积
Vr Q0 (t t0 )
釜式反应器的物料衡算通式
Q0
Q
ci0
ci
Vr
假设 反应器内物料温度均一 反应器内物料浓度均一
Q0 :反应器进料的体积流量
Q :反应器出料的体积流量
ci0 :反应器进料中关键组分浓度 ci :反应器出料中关键组分浓度
Vr :反应体积
取整个反应体积作控制体积
釜式反应器的物料衡算通式
在 dt 时间间歇内对整个反应 器做关键组分 i 的物料衡算:
A P rP k1cA A Q rQ k2cA
对A:(k1 k2 )cA
dcA dt
0
对P:
k1cA
dcP dt
0
03 第三章 釜式反应器1
(3-6)
nA0 dX A Vr R A
(3-7)
(3-7)适用于多相,均相及等温,非等温的间歇 反应过程
义:
nA0 c A0 Vr
X Af 0
∴
t c A0
1 dX A R A
(3-8)
若进行a级单一不可逆反应
R A rA k c A
LOGO
化学反应工程
第三章 釜式反应器
1
LOGO
第三章—釜式反应器
连续搅拌釜式反应器
重点掌握: 等温间歇釜式反应器的计算(单一反应、平行与连串反应)。 连续釜式反应器的计算 。 空时和空速的概念及其在反应器设计计算中的应用。 连续釜式反应器的串联和并联。 釜式反应器中平行与连串反应选择性的分析,连接和加料方式 的选择。 连续釜式反应器的质量、热量衡算式的建立与应用。 深入理解: 变温间歇釜式反应器的计算。 广泛了解: 串联釜式反应器最佳体积的求取方法。 连续釜式反应器的多定态分析与计算。 产生多定态点的原因,着火点与熄火点的概念。
j 1
M
(3-2)
ij
关键组分i 在第j个独立均 相反应中的化学计量数
反应物: 产物:
Ri 0
Ri 0
I. 定态操作,累积速率dni/dt,则式(3-1)化为
连续釜式反应器的物料衡算式
Q0 ci 0 Qci Vr i j rj
j 1
M
i 1, 2,, K
(3.4)
dFR 令: dt 0
(3-15)
根据函数求极值方法,目标函数对t求导, (3-16)
dcR cR 得: dt t t0
(3-17)
(3-17)即为FR最大时必须满足的条件,此 时的t即为最优反应时间tm。
釜式反应器--化工ppt课件
VR V0
,量纲: 时间
09.06.2020
.
13
3.3 等温条件下,分批式操作的完全混 合反应器(BR)理想反应器的设计分析
3.3.1 概述
★分批式(又称间歇)操作:
是指反应物料一次投入反应器内,而在反 应过程中不再向反应器投料,也不向外排出 反应物,待反应达到要求的转化率后再全部 放出反应产物。
例题3.2—P62~63,自学。
09.06.2020
.
31
3.3.5 连串反应
设在等温间歇反应器中进行如下的一级不 可逆连串反应(恒容):
各组分的动力学方程: rAk1CA rPk1CAk2CQ rQ k2CP
设初值条件为:当t=0时, C AC A 0,C P0 ,C Q0
则有:
09.06.2020
★充分(完全)混合:
指反应器内的物料在搅拌的作用下,其参数(如
温度,浓度等)各处均一。
14
.
09.06.2020
15
.
09.06.2020
★间歇反应器特点
反应物料一次加入,产物一次取出。 物料充分混合,无返混;同一瞬时,反应器内各点温度相
同、浓度相同;而且出料与反应器内物料的最终组成相同; 所有物料在反应器内的反应时间(停留时间)相同。 非稳态操作,反应器内浓度、温度随反应时间连续变化。 具有周期性 具有灵活性
令
dC P dt
0
topt
lnk2 k1 k2 k1
09.06.2020
.
33
09.06.2020
.
34
C P ma x k k 1 1 C A k 0 2ex kp 2top tex kp 1 topt
化学反应工程讲稿2009第3章1:釜式反应器BR
kt ln CA0 CA
CA CA0ekt
kt 1 1 CA CA0
CA
CA0 1 CA0kt
kt CA0 xA
xA
kt CA0
1 kt ln
1 xA
xA 1 ekt
kt 1 xA
CA0 1 xA
xA
CA0kt 1 CA0kt
kt
n
1
1
(C1An
设计计算/操作分析、优化
*Batch stirred tank reactor 间歇搅拌釜
*Continuous stirred tank reactor 连续搅拌釜
*Tubular flow reactor 平推流管式反应器
反应器设计计算的目的与任务: 设备)t(反~应V0时(间体)积~x流(量转:化生率产)任~V务R()反应容积:
rA kCA
t CA dCA
CA0 kCA
CA CA0ekt
xA 1 ekt
kt ln CA0 CA
kt ln(1 xA )
实际操作时间=反应时间(t) + 辅助时间 (t’)
反应体积VR是指反应物料在反应器中所占的体积
VR=V0(t+t’)
据此关系式,可以进行反应器体积的设计计算
等辅助操作时间为1h。反应在100℃下等温操作,其反应速率方
程为
rA k(CACB CRCS / K )
100℃时,k=4.76×10-4 L/(mol·min),平衡常数K=2.92。
试计算乙酸转化35 % 时所需的反应体积。根据反应物料的特性, 若反应器填充系数取0.75,则反应器的实际体积是多少?
化学反应工程-连续流动釜式反应器
表3-5列出了平推流反应器和全混流反应器的反应
结果比较,其中 VR ,这是对等容过程而言。
V0
平推流反应器与全混流反应器的比较
补充知识点:空时与空速的概念:
空时:
Vr V0
反应体积 进料体积流量
(因次:时间)
表明 Vo , 处理能力
空速:
1 V0 FA0
Vr cA0Vr
因次 :时间-1
V0, N A0,CA0
X A0 0
N A,CAf X Af
式中 (rA) f 指按出口浓度计算的反应速率。
全混流反应器在出口条件下操作,当 出口浓度较低时,整个反应器处于低 反应速率状态。
若 xA0 0 ,则由物料衡算方程
[A流入量]-[A流出量]-[ A反应量]=0
NA '
NA
(rA ) f VR
物料出口处的物料参数; 2. 物料参数不随时间而变化; 3. 反应速率均匀,且等于出口处的速率,不随时间变化; 4. 返混=∞
二、全混流反应器计算的基本公式
1. 反应器体积VR 衡算对象:关键组分A
V0, N A0,CA0
X A0 0
N A,CAf X Af
衡算基准:整个反应器(VR) 稳定状态:
如何确定反应器级数m和各级的体积,使总体积最小。 反应器级数越多,反应推动力增大,但设备投资、工艺流 程和操作控制变得复杂,因此需要综合考虑。 以下讨论,当物料处理量V0、进料组成及最终转化率 XAm和反应器级数m确定后,如何最佳分配各级转化率xA1、 xA2、……、xAm-1,使VR最小。
对于等温等容过程,各级反应器体积为
上述公式均为普遍式,全混流反应器一般为等 温反应器,公式可用于等容过程和非等容过程。
化学反应工程 第三章
t xAf
x cA cAf 图3-3 等温间歇液相反应 过程反应时间t的图解积分4 cA0
图3-2 等温间歇液相反应 过程t/cA0的图解积分
1. 等温等溶液相单一反应 在间歇反应器中,若进行等容液相单一不可逆 反应,则关键反应物A的反应速率式为:
dc A (rA )V k c f (c A ) dt c Af dcA 所需反应时间为:t c k f (c ) A0 c A
2. 增加组分B的回收费用,所以这也是一个需优化的参数。
17
4. 反应温度 对于间歇釜式反应器,可以在反应时间的不同 阶段,反应物系处于不同组成时,调整反应温度。 一般说来,高转化率时,反应物的浓度减少,反应 速率也随之减少,可以通过提高反应温度,促进反 应速率常数增大而增加反应速率。 如间歇釜式反应器中的硝化反应,在反应前期, 温度为40~45℃;反应中期,温度为60℃;而反应 后期,温度提高到70℃。
19
解:首先计算原料处理量V0根据题给的乙酸乙酯产量, 12000 可算出每小时乙酸需用量为 16.23kmol / h
88 24 0.35
由于原料液中乙酸:乙醇:水=1:2:1.35,当乙酸为1kg 时,加入的总原料为1+2+1.35=4.35kg 由此可求单位时间需加入反应器的原料液量为:
rA 1.045c kmol /(m h)
2 A 3
对1kmol A而言,投料情况是:
醋 酸 A 1kmol 60kg 0.062m3
正丁醇 B
4.96kmol
368kg
0.496m3
可求出,投料总体积VR=0.559m3
c A0 nA0 1.79kmol / m3 VR
反应工程 答案 第三章
3 釜式反应器3.1在等温间歇反应器中进行乙酸乙酯皂化反应:325325+→+C H C O O C H N aO H C H C O O N a C H O H该反应对乙酸乙酯及氢氧化钠均为一级。
反应开始时乙酸乙酯及氢氧化钠的浓度均为0.02mol/l ,反应速率常数等于5.6l/mol.min 。
要求最终转化率达到95%。
试问:(1) (1) 当反应器的反应体积为1m 3时,需要多长的反应时间? (2) (2) 若反应器的反应体积为2m 3,,所需的反应时间又是多少?解:(1)002220001()(1)110.95169.6m in(2.83)5.60.0210.95===⨯---=⨯=⨯-⎰⎰A f A f X X A AA A A A A A A A AdX dX X t C C R k C X kC X h(2) 因为间歇反应器的反应时间与反应器的大小无关,所以反应时间仍为2.83h 。
3.2拟在等温间歇反应器中进行氯乙醇的皂化反应:223222+→++C H C lC H O H N aH C O C H O H C H O H N aC l C O以生产乙二醇,产量为20㎏/h ,使用15%(重量)的NaHCO 3水溶液及30%(重量)的氯乙醇水溶液作原料,反应器装料中氯乙醇和碳酸氢钠的摩尔比为1:1,混合液的比重为1.02。
该反应对氯乙醇和碳酸氢钠均为一级,在反应温度下反应速率常数等于5.2l/mol.h ,要求转化率达到95%。
(1) (1) 若辅助时间为0.5h ,试计算反应器的有效体积; (2) (2) 若装填系数取0.75,试计算反应器的实际体积。
解:氯乙醇,碳酸氢钠,和乙二醇的分子量分别为80.5,84 和 62kg/kmol,每小时产乙二醇:20/62=0.3226 kmol/h每小时需氯乙醇:0.326680.591.11/0.9530%⨯=⨯kg h每小时需碳酸氢钠:0.326684190.2/0.9515%⨯=⨯kg h原料体积流量:091.11190.2275.8/1.02+==Q l h氯乙醇初始浓度:00.326610001.231/0.95275.8⨯==⨯A C m ol l反应时间:02000110.952.968(1) 5.2 1.23110.95===⨯=-⨯-⎰⎰Af Af X X A A A A B A A dX dX t C h kC C kC X 反应体积:0(')275.8(2.9680.5)956.5=+=⨯+=r V Q t t l(2) (2) 反应器的实际体积:956.512750.75===r V V lf3.3丙酸钠与盐酸的反应:2525+⇔+C H C O O N a H C l C H C O O H N aC l为二级可逆反应(对丙酸钠和盐酸均为一级),在实验室中用间歇反应器于50℃等温下进行该反应的实验。
第三章釜式反应器
加入反应器的热量(1) =
带走的热量(2) +反应热(3) +累积的热量 (4)
对于(3)吸热反应取正号放热反应取负号
1)对于单一反应,只需建立一个方程
2)多相反应,需分别对每相建立方程, 多一相,多建立一个
3)反应热 放热 ΔHR “-” QP“+” 吸热 ΔHR “+” QP “-”
• 当气相流动反应器的压力降很大,以 致影响到反应组分的浓度时,就要考 虑动量衡算式。一般情况下,在反应 体积计算时可不考虑。这样反应体积 的计算是物料衡算、热量衡算联立求 解。对于一个单一反应就有二到三个 方程,如果遇到多个反应,计算就非 常麻烦,因此必须根据具体情况作必 要的简化。
• 4.化学动力学方程r=k1f1(x)-k2f2(x)
• 间歇反应器的特点是分批装料和卸料,其操 作条件较为灵活,可适用于不同品种和不同 规格的产品生产,特别是用于多品种而批量 小的化学品生产。因此,在医药、试剂、助 剂、添加剂等精细化工部门中得到广泛的应 用。其操作时间是由两部分组成:反应时间 (t)和辅助时间(t0)
二者的区别在于年龄是对仍然停留在设备 内的粒子而言。寿命则对已经离开反应 器的粒子而言。所以说寿命也可以说是 反应器出口处物料粒子的年龄。
b、逆向混合(返混) 指不同年龄的粒子之间的混合。所谓逆向,
是指时间概念上的逆向。 理想置换模型:返混最小 理想流动反应
器 理想混合模型:返混最大 非理想流动:介于最大· 和最小之间
例如:扩散模型、多级理想混合模型以 及各种组合模型等等都属于广泛采用 的非理想流动模型。
为什么要研究流动模型?流体在反应器中的 流动情况影响着反应率。反应选择性直接 影响反应结果。研究反应器的流动模型是 反应器选型、设计和优化的基础。我们知 道,实际进行的化学反应,往往都伴随着 传递过程(动量、热量、质量传递),这 些物理过程都会影响化学反应。例如:不 均匀的流速分布、温度分布、浓度分布对 化学反应的程度和速率都有一定的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3 釜式反应器3.1在等温间歇反应器中进行乙酸乙酯皂化反应:325325+→+CH COOC H NaOH CH COONa C H OH该反应对乙酸乙酯及氢氧化钠均为一级。
反应开始时乙酸乙酯及氢氧化钠的浓度均为0.02mol/l ,反应速率常数等于5.6l/mol.min 。
要求最终转化率达到95%。
试问: (1) (1) 当反应器的反应体积为1m 3时,需要多长的反应时间? (2) (2) 若反应器的反应体积为2m 3,,所需的反应时间又是多少?解:(1)00222000001()(1)110.95169.6min(2.83)5.60.0210.95===⨯---=⨯=⨯-⎰⎰AfAf X X A A AA A A A A A A AdX dX X t C C R k C X kC X h(2) 因为间歇反应器的反应时间与反应器的大小无关,所以反应时间仍为2.83h 。
3.2拟在等温间歇反应器中进行氯乙醇的皂化反应:223222+→++CH ClCH OH NaHCO CH OHCH OH NaCl CO以生产乙二醇,产量为20㎏/h ,使用15%(重量)的NaHCO 3水溶液及30%(重量)的氯乙醇水溶液作原料,反应器装料中氯乙醇和碳酸氢钠的摩尔比为1:1,混合液的比重为1.02。
该反应对氯乙醇和碳酸氢钠均为一级,在反应温度下反应速率常数等于5.2l/mol.h ,要求转化率达到95%。
(1) (1) 若辅助时间为0.5h ,试计算反应器的有效体积; (2) (2) 若装填系数取0.75,试计算反应器的实际体积。
解:氯乙醇,碳酸氢钠,和乙二醇的分子量分别为80.5,84 和 62kg/kmol,每小时产乙二醇:20/62=0.3226 kmol/h每小时需氯乙醇:0.326680.591.11/0.9530%⨯=⨯kg h每小时需碳酸氢钠:0.326684190.2/0.9515%⨯=⨯kg h原料体积流量:091.11190.2275.8/1.02+==Q l h氯乙醇初始浓度:00.32661000 1.231/0.95275.8⨯==⨯A C mol l反应时间:02000110.952.968(1) 5.2 1.23110.95===⨯=-⨯-⎰⎰AfAf X X A A A A B A A dX dX t C h kC C kC X 反应体积:0(')275.8(2.9680.5)956.5=+=⨯+=r V Q t t l(2) (2) 反应器的实际体积:956.512750.75===r V V l f3.3丙酸钠与盐酸的反应:2525+⇔+C H COONa HCl C H COOH NaCl为二级可逆反应(对丙酸钠和盐酸均为一级),在实验室中用间歇反应器于50℃等温下进行该反应的实验。
反应开始时两反应物的摩尔比为1,为了确定反应进行的程度,在不同的反应时间下取出10ml 反应液用0.515N 的NaOH 溶液滴定,以确定未反应盐酸浓度。
不同反应时间下,NaOH 溶液用量如下表所示:达到平衡转化率的90%。
试计算反应器的反应体积。
假定(1)原料装入以及加热至反应温度(50℃)所需的时间为20min ,且在加热过程中不进行反应;(2)卸料及清洗时间为10min ;(3)反应过程中反应物密度恒定。
解:用A,B,R,S 分别表示反应方程式中的四种物质,利用当量关系可求出任一时刻盐酸的浓度(也就是丙酸钠的浓度,因为其计量比和投量比均为1:1)为:0.515/10==⨯A B NaOH C C V mol l于是可求出A 的平衡转化率:00052.510.50.852.590%0.890%0.720.515(1)52.5(10.72)0.051514.7/10--====⨯=⨯==-=⨯⨯-=⨯A Ae AeA A Ae A A A C C X C X X C C X mol l现以丙酸浓度对时间作图:由上图,当C A =0.0515×14.7mol/l 时,所对应的反应时间为48min 。
由于在同样条件下,间歇反应器的反应时间与反应器的大小无关,所以该生产规模反应器的反应时间也是48min 。
丙酸的产量为:500kg/h=112.6mol/min 。
所需丙酸钠的量为:112.6/0.72=156.4mol/min 。
原料处理量为:000/156.4/(0.051552.5)57.84/min ==+=A A Q F C l 反应器体积:00()57.84(182010)4512=+=⨯++=r V Q t t l 实际反应体积:4512/0.85640=l3.4在间歇反应器中,在绝热条件下进行液相反应:+→A B R 其反应速率方程为:143110001.110exp()/.=⨯-A A B r C C kmol m hT式中组分A 及B 的浓度C A 及C B 以kmol/m 3为单位,温度T 的单位为K 。
该反应的热效应等于-4000kJ/kmol 。
反应开始时溶液不含R ,组分A 和B 的浓度均等于0.04kmol/m 3,反应混合物的平均热容按4.102kJ/m 3.K 计算。
反应开始时反应混合物的温度为50℃。
(1) (1) 试计算A 的转化率达85%时所需的反应时间及此时的反应温度。
(2) (2) 如果要求全部反应物都转化为产物R ,是否可能?为什么? 解:(1)[]00000.04(4000)()()32332339.014.102⨯---∆=+-=+=+A r A A A AF C H T T X X X X C0000014220()91.32110001.110exp()(1)32339.01==-==⨯--+⎰⎰⎰Af Af X X AA A A A AB AA A A AdX dX t C C R kC C dX C hC X X(由数值积分得出)32339.010.85356.2=+⨯=T K(2)若A 全部转化为R,即X A =1.0,则由上面的积分式知,t →∝,这显然是不可能的。
3.5在间歇反应器中进行液相反应:12+→=+→=A A B D C B A B C r k C C C B Dr k C CA 的初始浓度为0.1kmol/m 3,C ,D 的初始浓度为零,B 过量,反应时间为t 1时,C A =0.055kmol/m 3,C C =0.038 kmol/m 3,而反应时间为t 2时,C A =0.01 kmol/m 3,C C =0.042kmol/m 3,试求: (1) (1) k 2/k 1;(2) (2) 产物C 的最大浓度;(3) (3) 对应C 的最大浓度时A 的转化率。
解:(1)因为B 过量,所以:''''1212,,===-=-A A D C C A D A C r k C r k C r r r k C k C恒容时:'1-=A AdC k C dt (A ) ''12-=-C A CdC k C k C dt (B)(B )式除以(A )式得:'2'11-=-C C A A dC k C dC k C解此微分方程得:'2'10'200'11⎡⎤⎛⎫⎢⎥=- ⎪⎢⎥⎝⎭⎢⎥-⎣⎦k k A A A C A A C C C C k C C k (C )将t 1,C A ,C C 及t 2,C A ,C C 数据代入(C )式化简得:0.420.550.380.10.420.550.380.1⨯-⨯=⨯-⨯x x解之得:'22'110.525===k k x k k(2)先求出最大转化率:21111,max21()0.7425-=-=k k A k X k(3)产物C 的最大收率:()()21,max211110.49051⎡⎤=---=⎢⎥⎣⎦-k k C A A Y X X k k产物C 的最大浓度:3,max 0,max 0.10.49050.0491/==⨯=C A C C C Y kmol m3.6 在等温间歇反应器中进行液相反应31123⇔←−→−−→k k A A A初始的反应物料中不含A 2和A 3,A 1的浓度为2mol/l ,在反应温度下k 1=4.0min -1,k 2=3.6min -1,k 3=1.5min -1。
试求:(1) (1) 反应时间为1.0min 时,反应物系的组成。
(2) (2) 反应时间无限延长时,反应物系的组成。
(3) (3) 将上述反应改为31123−−→⇔←−→k k A A A 反应时间无限延长时,反应物系的组成。
解:根据题中给的两种反应情况,可分别列出微分方程,然后进行求解。
但仔细分析这两种情况,其实质是下述反应的特例:12123←−→←−→k k A A A (A)当'20=k 时,(A )式变为123⇔→A A A (B) 当'10=k 时,(A )式变为123→⇔A A A (C) 当''120,0==k k 时,(A )式变为123→→A A A (D)其中式(D )即为书讲的一级不可逆连串反应。
可见只要得到(A )式的解,则可容易化简得到(B ),(C)及(D)式的解。
对于(A)式,可列出如下微分方程组:'11111-=-dC k C k C dt (1) ''211231222=+--dC k C k C k C k C dt (2) '32223=-dC k C k C dt (3)由题意知初始条件为:11023(0),(0)(0)0===C C C C (4)联立求解此微分方程组可得:'''''21112211011()()()()⎧⎫⎡⎤++⎪⎪=+-⎨⎬⎢⎥-++⎪⎪⎣⎦⎩⎭t t k k k k k e k e C C k k αβαβαβαβααββ (5) '''12122210()()⎧⎫⎡⎤++⎪⎪=+-⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭t t k k k k e k e C C αβαβαβαβαβ (6) 1212310⎧⎫⎡⎤⎪⎪=+-⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭t t k k k k e e C C αβαβαβαβ (7)式中,,αβ由如下式确定:'''121221=++k k k k k k αβ (8) ''1122()+=-+++k k k k αβ (9)现在可用上述结果对本题进行计算:(1)1'11'11224.0min , 3.6min , 1.5min ,0,1min ---=====k k k k t 由(5)~(9)式得1230.5592/0.5098/0.931/===A A A C mol l C mol l C mol l(2)当t →∝时,由(5)~(9)式得12302.0/==→A A A C C C mol l(3)此时为'10=k 的情况,当t →∝时,由11 4.0min ,-=k 1'1221.5min , 3.6min --==k k 得:12301.412/0.588/===A A A C C mol l C mol l3.7拟设计一反应装置等温进行下列液相反应:212222+→=+→=R A B S A B A B R r k C C A B Sr k C C目的产物为R ,B 的价格远较A 贵且不易回收,试问:(1) (1) 如何选择原料配比?(2) (2) 若采用多段全混流反应器串联,何种加料方式最好? (3) (3) 若用半间歇反应器,加料方式又如何?解:(1)212221211221===++A R A B AB A A B A B B r kC C S k C R k C C k C C k C νν 由上式知,欲使S 增加,需使C A 低,C B 高,但由于B 的价格高且不易回收,故应按主反应的计量比投料为好。