Matlab概率统计工具箱(3)

合集下载

Matlab各工具箱功能简介(部分)

Matlab各工具箱功能简介(部分)
对于分析多维数据,Statistics and Machine Learning Toolbox 可让您通过序列特征选择、逐步回归、主成份分析、规则化和其他降维方法确定影响您的模型的主要变量或特征。该工具箱提供了受监督和不受监督机器学习算法,包括支持向量机(SVM)、促进式 (boosted) 和袋装 (bagged) 决策树、k-最近邻、k-均值、k-中心点、分层聚类、高斯混合模型和隐马尔可夫模型。4 Curve Fitting Toolbox 曲线拟合工具箱Curve Fitting Toolbox™ 提供了用于拟合曲线和曲面数据的应用程序和函数。使用该工具箱可以执行探索性数据分析,预处理和后处理数据,比较候选模型,删除偏值。您可以使用随带的线性和非线性模型库进行回归分析,也可以指定您自行定义的方程式。该库提供了优化的解算参数和起始条件,以提高拟合质量。该工具箱还提供非参数建模方法,比如样条、插值和平滑。 在创建一个拟合之后,您可以运用多种后处理方法进行绘图、插值和外推,估计置信区间,计算积分和导数。5 Optimization Toolbox 优化工具箱Optimization Toolbox™ 提供了寻找最小化或最大化目标并同时满足限制条件的函数。工具箱中包括了线性规划、混合整型线性规划、二次规划、非线性优化、非线性最小二乘的求解器。您可以使用这些求解器寻找连续与离散优化问题的解决方案、执行折衷分析、
Toolbox工具箱序号工具箱备注一、数学、统计与优化1 Symbolic Math Toolbox符号数学工具箱Symbolic Math Toolbox™提供用于求解和推演符号运算表达式以及执行可变精度算术的函数。您可以通过分析执行微分、积分、化简、转换以及方程求解。另外,还可以利用符号运算表达式为MATLAB、Simulink和Simscape™生成代码。®®Symbolic Math Toolbox包含MuPAD语言,并已针对符号运算表达式的处理和执®行进行优化。该工具箱备有MuPAD函数库,其中包括普通数学领域的微积分和线性代数,以及专业领域的数论和组合论。此外,还可以使用MuPAD语言编写自定义的符号函数和符号库。MuPAD记事本支持使用嵌入式文本、图形和数学排版格式来记录符号运算推导。您可以采用HTML或PDF的格式分享带注释的推导。2 Partial Differential Euqation Toolbox偏微分方程工具箱偏微分方程工具箱™提供了用于在2D,3D求解偏微分方程(PDE)以及一次使用有限元分析。它可以让你指定和网格二维和三维几何形状和制定边界条件和公式。你能解决静态,时域,频域和特征值问题在几何领域。功能进行后处理和绘图效果使您能够直观地探索解决方案。你可以用偏微分方程工具箱,以解决从标准问题,如扩散,传热学,结构力学,静电,静磁学,和AC电源电磁学,以及自定义,偏微分方程的耦合系统偏微分方程。3 Statistics Toolbox统计学工具箱Statistics and Machine Learning Toolbox提供运用统计与机器学习来描述、分析数据和对数据建模的函数和应用程序。您可以使用用于探查数据分析的描述性统计和绘图,使用概率分布拟合数据,生成用于Monte Carlo仿真的随机数,以及执行假设检验。回归和分类算法用于依据数据执行推理并构建预测模型。

优秀的 MATLAB 免费工具箱

优秀的 MATLAB 免费工具箱

由于 MATLAB 语言的强大功能,在控制界的国际知名学者纷纷将自己专长的领域写成 MATLAB 工具箱,这也进一步提升了 MATLAB语言本身的声誉。

著名的有 John Little 与 Alan Laub 等的控制系统工具箱和 Lennart Ljung 的系统辨识工具箱。

这些工具箱大多数都成为 MATLAB 下的商品软件,可以从 The MathWorks 公司购买。

在 The MathWorks 网站下还链接了大量的免费工具箱和程序,这里我们将给出一些实用的免费工具箱的下载链接。

一、基于神经网络的辨识与控制程序 <网址>陈阳泉博士说过,当他试用了这两个工具箱,感觉到目前国际上做的一大批关于神经网络辨识与控制的博士论文全是 Rubbish 。

这虽然有些夸张,但不能不说这两个工具箱的意义。

从自动控制的角度看,它们比 The MathWorks 的 NNET 更合适。

好在两个工具箱都自带手册,所以用户可以自己去读。

∙基于神经网络的辨识工具箱 (527KB) ∙基于神经网络的控制工具箱 (419KB) ∙MATLAB 4.2 下支持的神经网络辨识工具箱 (419K) 和神经网络控制工具箱 (268K) ∙NNSYSID 2.0 版 (1.40MB) 与 NNCTRL 2.0 版 (680K) ∙ 有关著作已由 Springer Verlag 出版社正式出版二、控制系统教学工具 <网址>CTM 实际上不是用 MATLAB 编写的,而是由静态的 HTML 编写的。

因为它是用来介绍 MATLAB 编程及其在控制上的应用,由密西根大学和卡耐基梅龙大学联合开发。

用交互的方法介绍 MATLAB 语言在控制系统中的应用。

遗憾的是,这只是个演示的页面,里面的算例和图形是事先编好的,不可能改变参数,再求解。

不过这个软件还是很有特色的。

可以从这里下载 (2.12MB)。

三、其他工具箱分类介绍(1) 模型与控制MATLAB 实际上可以说是控制界的学者给捧红的,所以在控制领域有许多工具箱,很多工具箱的作者都是该领域的知名学者,这就更进一步加强了 MATLAB 在控制界的声誉。

如何在Matlab中进行概率统计分析

如何在Matlab中进行概率统计分析

如何在Matlab中进行概率统计分析在科学研究和数据分析领域,概率统计分析是一项重要的工具。

Matlab作为一种功能强大的数值计算和数据分析的软件平台,在概率统计分析方面有着广泛的应用。

本文将探讨如何在Matlab中进行概率统计分析,并介绍一些常用的技巧和方法。

一、数据导入和预处理在进行概率统计分析之前,首先需要将数据导入Matlab中,并对数据进行预处理。

Matlab提供了各种函数和工具箱,可以简化数据导入和预处理的过程。

例如,使用`xlsread`函数可以将Excel中的数据导入Matlab,使用`csvread`函数可以导入CSV格式的数据。

在数据预处理阶段,常见的操作包括数据清洗、去除异常值、填充缺失值等。

Matlab中的统计工具箱提供了一系列函数,如`fillmissing`、`rmoutliers`等,可以方便地进行数据预处理。

二、描述性统计分析描述性统计分析是对数据的基本特征进行总结和描述,如均值、方差、百分位数等。

Matlab提供了一系列函数,如`mean`、`std`、`prctile`等,可以方便地进行描述性统计分析。

下面以一个示例来说明如何使用Matlab进行描述性统计分析。

假设我们有一组身高数据,可以使用`mean`和`std`函数计算平均身高和身高的标准差:```matlabheight = [165, 170, 175, 180, 185];mean_height = mean(height);std_height = std(height);```三、概率分布拟合概率分布拟合是将观察到的数据拟合到一个概率分布模型中,以了解数据的分布特征。

Matlab中的统计工具箱提供了丰富的函数,可以进行概率分布的拟合和参数估计。

常见的概率分布包括正态分布、指数分布、泊松分布等。

下面以正态分布为例,演示如何在Matlab中进行概率分布拟合:```matlabdata = randn(1000, 1); % 生成1000个服从正态分布的随机数pd = fitdist(data, 'Normal'); % 拟合正态分布mu = pd.mu; % 估计的均值sigma = pd.sigma; % 估计的标准差```四、假设检验假设检验是概率统计分析的重要内容,用于验证关于总体参数的假设。

概率论和数理统计的Matlab 实现

概率论和数理统计的Matlab 实现
0.6827 更一般地,若观测量取自参数为 和 µ 的正态分布,则它落在该区间中的概率 为 68%。
expcdf 函数 功能:计算累加指数分布函数。 语法:P = expcdf(X,MU) 描述:expcdf(X,MU) 计算参数为 MU 的数据 X 的累加指数分布函数。指数 MU 必须为
正。 累加指数分布函数的计算公式为:
概率论和数理统计的 Matlab 实现
1概 述
自然界和社会上会发生各种各样的现象,其中有的现象在一定条件下是一定要发生的, 有的则表现出一定的随机性,但总体上又有一定的规律可循。一般称前者为确定性事件, 后者为不确定性事件(或称随机事件)。概率论和数理统计就是研究和揭示不确定事件统计 规律性的一门数学学科。
f (x |l) =
lx x!
e-l
I (0,1,K )
(x)
y=
f (x | b) =
x b2
çæ - x 2 ÷ö
eçè 2b2 ÷ø
y
=
f
(x
| v)
=
Gçæ è
v
+ 2
1
÷ö ø
Gçæ è
v 2
÷ö ø
1
1
vp
ççèæ1 +
v +1
x2 v
÷÷øö
2
y=
f (x | N) =
1 N
I (1,..., N ) ( x)
y
=f(x|r,p)
=
ççèæ
r
+
x x
+
1÷÷øö
p
x
q
x
I
(
0,1,...)
(
x)
其中, q = 1 - p

Matlab中常用的概率分布函数操作

Matlab中常用的概率分布函数操作

Matlab中常用的概率分布函数操作引言:在数据分析和统计建模中,概率分布函数(Probability Distribution Function,简称PDF)是一种描述随机变量的分布情况的数学函数。

在Matlab的统计工具箱中,提供了大量常用的概率分布函数的函数接口,便于用户进行数据分析和建模。

一、正态分布(Normal Distribution)的操作正态分布是一种常见的连续概率分布,常用于描述自然界和社会现象中的许多现象。

Matlab提供了针对正态分布的函数,可以进行随机数生成、概率密度函数的计算、累积概率分布函数的计算等操作。

1. 随机数生成使用randn函数可以生成符合正态分布的随机数。

例如,生成一个均值为0、标准差为1的随机数向量,可以使用以下代码:```matlabx = randn(100, 1);```2. 概率密度函数(Probability Density Function,简称PDF)的计算通过normpdf函数可以计算正态分布的概率密度函数。

例如,计算均值为0、标准差为1的正态分布在x=1处的概率密度,可以使用以下代码:```matlabp = normpdf(1, 0, 1);```3. 累积概率分布函数(Cumulative Distribution Function,简称CDF)的计算使用normcdf函数可以计算正态分布的累积概率分布函数。

例如,计算均值为0、标准差为1的正态分布在x=1处的累积概率,可以使用以下代码:```matlabp = normcdf(1, 0, 1);```二、指数分布(Exponential Distribution)的操作指数分布是一种描述事件发生时间间隔的概率分布,常用于可靠性分析、排队论等领域。

Matlab提供了针对指数分布的函数,可以进行随机数生成、概率密度函数的计算、累积概率分布函数的计算等操作。

1. 随机数生成使用exprnd函数可以生成符合指数分布的随机数。

(整理)MATLAB在概率统计中的若干命令和使用格式.

(整理)MATLAB在概率统计中的若干命令和使用格式.

第4章概率统计本章介绍MATLAB在概率统计中的若干命令和使用格式,这些命令存放于MatlabR12\Toolbox\Stats中。

4.1 随机数的产生4.1.1 二项分布的随机数据的产生命令参数为N,P的二项随机数据函数binornd格式R = binornd(N,P) %N、P为二项分布的两个参数,返回服从参数为N、P的二项分布的随机数,N、P大小相同。

R = binornd(N,P,m) %m指定随机数的个数,与R同维数。

R = binornd(N,P,m,n) %m,n分别表示R的行数和列数例4-1>> R=binornd(10,0.5)R =3>> R=binornd(10,0.5,1,6)R =8 1 3 7 6 4>> R=binornd(10,0.5,[1,10])R =6 8 4 67 5 3 5 6 2>> R=binornd(10,0.5,[2,3])R =7 5 86 5 6>>n = 10:10:60;>>r1 = binornd(n,1./n)r1 =2 1 0 1 1 2>>r2 = binornd(n,1./n,[1 6])r2 =0 1 2 1 3 14.1.2 正态分布的随机数据的产生命令参数为μ、σ的正态分布的随机数据函数normrnd格式R = normrnd(MU,SIGMA) %返回均值为MU,标准差为SIGMA的正态分布的随机数据,R可以是向量或矩阵。

R = normrnd(MU,SIGMA,m) %m指定随机数的个数,与R同维数。

R = normrnd(MU,SIGMA,m,n) %m,n分别表示R的行数和列数例4-2>>n1 = normrnd(1:6,1./(1:6))n1 =2.1650 2.31343.02504.0879 4.8607 6.2827>>n2 = normrnd(0,1,[1 5])n2 =0.0591 1.7971 0.2641 0.8717 -1.4462>>n3 = normrnd([1 2 3;4 5 6],0.1,2,3) %mu为均值矩阵n3 =0.9299 1.9361 2.96404.12465.0577 5.9864>> R=normrnd(10,0.5,[2,3]) %mu为10,sigma为0.5的2行3列个正态随机数R =9.7837 10.0627 9.42689.1672 10.1438 10.59554.1.3 常见分布的随机数产生常见分布的随机数的使用格式与上面相同表4-1 随机数产生函数表4.1.4 通用函数求各分布的随机数据命令求指定分布的随机数函数random格式y = random('name',A1,A2,A3,m,n) %name的取值见表4-2;A1,A2,A3为分布的参数;m,n指定随机数的行和列例4-3 产生12(3行4列)个均值为2,标准差为0.3的正态分布随机数>> y=random('norm',2,0.3,3,4)y =2.3567 2.0524 1.8235 2.03421.9887 1.94402.6550 2.32002.0982 2.2177 1.9591 2.01784.2 随机变量的概率密度计算4.2.1 通用函数计算概率密度函数值命令通用函数计算概率密度函数值函数pdf格式Y=pdf(name,K,A)Y=pdf(name,K,A,B)Y=pdf(name,K,A,B,C)说明返回在X=K处、参数为A、B、C的概率密度值,对于不同的分布,参数个数是不同;name为分布函数名,其取值如表4-2。

matlab 正态分布概率计算

matlab 正态分布概率计算

正态分布是概率论和统计学中非常重要的分布之一。

在实际的科学研究和工程应用中,经常需要对正态分布进行概率计算。

Matlab作为一种功能强大的科学计算软件,提供了丰富的工具和函数用于正态分布的概率计算。

本文将介绍在Matlab中进行正态分布概率计算的方法和步骤。

一、正态分布概率密度函数正态分布的概率密度函数是$$f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^{2}}{2\sigma^2}}$$其中,$\mu$是均值,$\sigma$是标准差。

二、Matlab中生成正态分布随机数在Matlab中,可以使用`randn`函数生成符合标准正态分布(均值为0,标准差为1)的随机数,也可以使用`normrnd`函数生成符合指定均值和标准差的正态分布随机数。

生成均值为2,标准差为3的100个正态分布随机数的代码如下:```matlabdata = normrnd(2, 3, 100, 1);```三、Matlab中计算正态分布的累积概率在Matlab中,可以使用`normcdf`函数计算正态分布的累积概率。

计算正态分布随机变量小于2的概率的代码如下:```matlabp = normcdf(2, 0, 1);```这将得到随机变量小于2的概率,即标准正态分布的累积概率。

四、Matlab中计算正态分布的百分位点在Matlab中,可以使用`norminv`函数计算正态分布的百分位点。

计算标准正态分布上侧5分位点的代码如下:```matlabx = norminv(0.95, 0, 1);```这将得到标准正态分布上侧5分位点的值。

五、Matlab中绘制正态分布概率密度函数图和累积概率图在Matlab中,可以使用`normpdf`函数绘制正态分布的概率密度函数图,使用`normcdf`函数绘制正态分布的累积概率图。

绘制均值为1,标准差为2的正态分布的概率密度函数图和累积概率图的代码如下:```matlabx = -5:0.1:7;y_pdf = normpdf(x, 1, 2);y_cdf = normcdf(x, 1, 2);figure;subplot(2,1,1);plot(x, y_pdf);title('Normal Distribution Probability Density Function'); xlabel('x');ylabel('Probability Density');subplot(2,1,2);plot(x, y_cdf);title('Normal Distribution Cumulative Probability Function'); xlabel('x');ylabel('Cumulative Probability');```六、总结本文介绍了在Matlab中进行正态分布概率计算的方法和步骤,包括生成正态分布随机数、计算正态分布的累积概率、计算正态分布的百分位点、绘制正态分布概率密度函数图和累积概率图等内容。

matlab 概率论

matlab 概率论

matlab 概率论
概率论是数学中的一个分支,研究随机现象的规律和概率的计算方法。

在MATLAB中,有许多用于概率论研究的函数和工具。

1. 随机数生成:MATLAB提供了一系列用于生成随机数的函数,如rand、randn、randi等。

这些函数可以生成服从特定概
率分布的随机数,如均匀分布、正态分布、泊松分布等。

2. 概率分布函数:MATLAB包含了各种概率分布函数的实现,如正态分布的normpdf和normcdf函数、泊松分布的poisspdf
和poisscdf函数等。

这些函数可以计算给定概率分布下的概率
密度函数、累积分布函数和分位点等。

3. 统计工具:MATLAB中的统计工具箱(Statistics and Machine Learning Toolbox)提供了丰富的概率统计分析函数,如最大似然估计、假设检验、置信区间估计等。

这些函数可以对样本数据进行统计分析,得到参数估计和假设检验结果。

4. 数据拟合:MATLAB中可以使用probtool函数进行数据拟合,该函数可以根据给定的样本数据,自动选择合适的概率分布,并进行参数估计和模型拟合。

这对于分析实际数据并构建概率模型非常有用。

综上所述,MATLAB提供了丰富的概率论工具和函数,可以
用于生成随机数、计算概率分布、进行统计分析和数据拟合等。

这些功能可以帮助研究者在概率论研究和应用中进行数据处理和分析。

MATLAB入门及其在概率统计中的应用

MATLAB入门及其在概率统计中的应用

《随机信号分析》小组合作报告一、小组基本情况(一)小组课题:MATLAB入门及其在概率统计中的应用(二)小组成员:(三)小组合作形式:组内分工,相互协作(四)小组分工:(详见附表)二、课题释义MATLAB(矩阵实验室)是MATrix LABoratory的缩写,是一款由美国The MathWorks公司出品的商业数学软件。

MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。

除了矩阵运算、绘制函数/数据图像等常用功能外,MATLAB还可以用来创建用户界面及与调用其它语言(包括C,C++和FORTRAN)编写的程序。

概率论与数理统计是研究随机现象统计规律性的学科,随着现代科学技术的迅猛发展,它的理论与方法已广泛地应用于许多科学技术领域。

借于MATLAB软件强大的计算功能,可以将其用于求解一些随机性问题,特别是解决数理统计中的大量问题,能够达到方便、快捷、准确的功效,为我们解决现实问题带来很大帮助。

因此,在随机信号的分析中,我们有必要掌握MATLAB以及它在概率统计中的应用,从而提升我们学习的效率。

三、课题研究总汇(一)MATLAB入门基本知识1.基本介绍MATLAB有着强大的功能,主要用于数值运算,但利用为数众多的附加工具箱(Toolbox)它也适合不同领域的应用,例如控制系统设计与分析、图像处理、信号处理与通讯、金融建模和分析等。

另外还有一个配套软件包Simulink,提供了一个可视化开发环境,常用于系统模拟、动态/嵌入式系统开发等方面。

MATLAB和Mathematica、Maple并称为三大数学软件。

它在数学类科技应用软件中在数值计算方面首屈一指。

MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。

MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。

MATLAB常用工具箱与函数库介绍

MATLAB常用工具箱与函数库介绍

MATLAB常用工具箱与函数库介绍1. 统计与机器学习工具箱(Statistics and Machine Learning Toolbox):该工具箱提供了各种统计分析和机器学习算法的函数,包括描述统计、概率分布、假设检验、回归分析、分类与聚类等。

可以用于进行数据探索和建模分析。

2. 信号处理工具箱(Signal Processing Toolbox):该工具箱提供了一系列信号处理的函数和算法,包括滤波、谱分析、信号生成与重构、时频分析等。

可以用于音频处理、图像处理、通信系统设计等领域。

3. 控制系统工具箱(Control System Toolbox):该工具箱提供了控制系统设计与分析的函数和算法,包括系统建模、根轨迹设计、频域分析、状态空间分析等。

可以用于控制系统的设计和仿真。

4. 优化工具箱(Optimization Toolbox):该工具箱提供了各种数学优化算法,包括线性规划、非线性规划、整数规划、最优化等。

可以用于寻找最优解或最优化问题。

5. 图像处理工具箱(Image Processing Toolbox):该工具箱提供了图像处理和分析的函数和算法,包括图像滤波、边缘检测、图像分割、图像拼接等。

可以用于计算机视觉、医学影像处理等领域。

6. 神经网络工具箱(Neural Network Toolbox):该工具箱提供了神经网络的建模和训练工具,包括感知机、多层前馈神经网络、循环神经网络等。

可以用于模式识别、数据挖掘等领域。

7. 控制系统设计工具箱(Robust Control Toolbox):该工具箱提供了鲁棒控制系统设计与分析的函数和算法,可以处理不确定性和干扰的控制系统设计问题。

8. 信号系统工具箱(Signal Systems Toolbox):该工具箱提供了分析、设计和模拟线性时不变系统的函数和算法。

可以用于信号处理、通信系统设计等领域。

9. 符号计算工具箱(Symbolic Math Toolbox):该工具箱提供了符号计算的功能,可以进行符号表达式的运算、求解方程、求解微分方程等。

MATLAB随机过程与概率分布计算技巧

MATLAB随机过程与概率分布计算技巧

MATLAB随机过程与概率分布计算技巧随机过程和概率分布是数学中重要的概念,它们在许多领域中有广泛的应用,例如金融、通信、工程等。

而MATLAB作为一款功能强大的数学软件,提供了丰富的工具和函数来计算、模拟和分析随机过程以及各种概率分布。

本文将介绍一些MATLAB中常用的随机过程和概率分布计算技巧,以帮助读者更好地理解和应用这些概念。

一、随机过程的生成和仿真在MATLAB中,我们可以使用rand函数来生成服从均匀分布的随机数。

例如,rand(1,100)将生成一个包含100个0到1之间均匀分布的随机数的向量。

而randn函数可用于生成服从标准正态分布(均值为0,方差为1)的随机数。

我们可以通过设置均值和方差参数来生成服从任意正态分布的随机数。

例如,randn(1,100, mu, sigma)将生成一个含有100个服从均值为mu,方差为sigma^2的正态分布的随机数的向量。

在生成随机过程时,我们可以使用MATLAB中的cumsum函数来计算累积和。

通过对生成的随机数序列进行累积和操作,我们可以获得具有随机波动的变量。

二、概率分布的拟合与估计MATLAB提供了丰富的工具和函数来进行概率分布的拟合和参数估计。

我们可以使用histfit函数来实现对数据的直方图拟合,并得到与数据最匹配的概率分布曲线。

例如,histfit(data, bins, 'kernel')将对数据data进行直方图拟合,并以核密度估计曲线呈现。

此外,我们可以使用probplot函数来进行概率图绘制。

通过绘制数据的概率图,我们可以判断数据是否符合某种特定的概率分布。

例如,probplot(data, distribution)将绘制数据data的概率图,并与给定的概率分布进行比较。

对于参数估计,MATLAB提供了很多函数来估计概率分布的参数。

常见的估计方法包括最大似然估计和矩估计。

我们可以使用mle函数来进行最大似然估计,例如,parameters = mle(data, 'distribution', distribution)将对数据data进行最大似然估计,并返回估计得到的分布参数。

matlab工具箱介绍

matlab工具箱介绍

matlab工具箱介绍MATLAB有三十多个工具箱大致可分为两类:功能型工具箱和领域型工具箱.功能型工具箱主要用来扩充MATLAB的符号计算功能、图形建模仿真功能、文字处理功能以及与硬件实时交互功能,能用于多种学科。

而领域型工具箱是专业性很强的。

如控制系统工具箱(Control System Toolbox)、信号处理工具箱(Signal Processing Toolbox)、财政金融工具箱(Financial Toolbox)等。

下面,将MATLAB工具箱内所包含的主要内容做简要介绍:1)通讯工具箱(Communication Toolbox)。

令提供100多个函数和150多个SIMULINK模块用于通讯系统的仿真和分析——信号编码——调制解调——滤波器和均衡器设计——通道模型——同步可由结构图直接生成可应用的C语言源代码。

2)控制系统工具箱(Control System Toolbox)。

鲁连续系统设计和离散系统设计* 状态空间和传递函数* 模型转换* 频域响应:Bode图、Nyquist图、Nichols图* 时域响应:冲击响应、阶跃响应、斜波响应等* 根轨迹、极点配置、LQG3)财政金融工具箱(FinancialTooLbox)。

* 成本、利润分析,市场灵敏度分析* 业务量分析及优化* 偏差分析* 资金流量估算* 财务报表4)频率域系统辨识工具箱(Frequency Domain System ldentification Toolbox* 辨识具有未知延迟的连续和离散系统* 计算幅值/相位、零点/极点的置信区间* 设计周期激励信号、最小峰值、最优能量诺等5)模糊逻辑工具箱(Fuzzy Logic Toolbox)。

* 友好的交互设计界面* 自适应神经—模糊学习、聚类以及Sugeno推理* 支持SIMULINK动态仿真* 可生成C语言源代码用于实时应用(6)高阶谱分析工具箱(Higher—Order SpectralAnalysis Toolbox* 高阶谱估计* 信号中非线性特征的检测和刻画* 延时估计* 幅值和相位重构* 阵列信号处理* 谐波重构(7)图像处理工具箱(Image Processing Toolbox)。

Matlab统计工具箱

Matlab统计工具箱
8
2.2
功能:可选分布的概率密度函数。
格式:Y=pdf(‘name’,X,A1,A2,A3) 说明:‘name’为特定分布的名称,如 ‘Normal’,’Gamma’等。X为分布函数的自变量X的取 值矩阵,而A1,A2,A3分别为相应的分布参数值。Y给 A1,A2,A3 Y 出结果,为概率密度值矩阵。 举例:p=pdf(‘Normal’,-2:2,0,1) 给出标准正态分布在-2到2的分布函数值。 而p=pdf(‘Poisson’,0:4,1:5)给出Poisson分布函数。
11
均值和方差
和以上其他函数不同的是均值和方差的运算没有通 用的函数,只能用各个分布的函数计算。对应于正 态分布的计算函数为normstat();
它返回两个参数的向量,分别为均值和方差。 举例:[m,n]=normstat(mu,sigma)
12
三.参数估计 参数估计
参数估计: 参数估计 某分布的数学形式已知,应用子样信息来 某分布的数学形式已知 应用子样信息来 估计其有限个参数的值
27
4.5处理缺失数据的函数
在对大量的数据样本进行处理分析时,常会遇到一些 数据无法找到或不能确定的情况。这时可用NaN标注 这个数据。而工具箱中有一些函数自动处理它们。 如 :忽视NaN, 求其他数据的最大值的nanmax. 格式:m=nanmax(X) 举例:m=magic(3); m([1 6 8])=[NaN NaN NaN] [nmax,maxidx]=nanmax(m)
26
4.4 Matlab里有关散布度量计算的函数
在Matlab里,有关散布度量计算的函数为: 1:计算样本的内四分位数间距的 iqr(X). 2:求样本数据的平均绝对偏差的 mad(X). 3:计算样本极差的 range(X). 4: 计算样本方差的 var(X,w). 5: 求样本的标准差的 std(X). 6: 求协方差矩阵的cov(X). 这些函数的详细说明可以参见Matlab的帮助文档。

matlab 概率分布拟合

matlab 概率分布拟合

matlab 概率分布拟合
概率分布拟合是指通过对一组观测数据进行统计分析,将其拟合到一个特定的概率分布模型中。

在MATLAB软件中,可以使用统计工具箱(Statistics and Machine Learning Toolbox)来实现概率分布拟合。

首先,我们需要导入观测数据,并选择合适的概率分布模型。

常见的概率分布模型包括正态分布、指数分布、泊松分布等等。

在选择概率分布模型时,可以根据数据的特征、分布形态以及领域知识进行判断。

然后,我们可以使用fitdist函数来对观测数据进行概率分布拟合。

fitdist函数需要输入两个参数,第一个参数为观测数据,第二个参数为所选择的概率分布模型。

该函数会返回一个概率分布对象,其中包含了模型的参数估计值。

最后,我们可以使用概率分布对象的方法来进行各种统计分析。

例如,可以计算概率分布的均值、方差、中位数等等。

也可以生成随机变量,或者计算概率密度、累积分布函数等等。

综上所述,MATLAB软件提供了强大的工具来进行概率分布拟合和相关分析,只需要导入观测数据并选择合适的概率分布模型,即可进行相应的统计分析。

Matlab概率统计

Matlab概率统计
(1)MATLAB作图
k=1:100;
e=1+1./k-0.996.^k;
plot(k,e)
从图上可知,最小值在10到20之间取得
21/75
列出10到20之间E(X)的值
k=10:20;
e=1+1./k-0.996.^k;
结果如下: 0.3453 0.2198 0.1393 0.1250 0.1246 0.1247 0.1270 0.2016
设某高校有n个人需要验血检查血中是否含有某种病毒若每个人单独化验需n次若把k个人的血清混合在一起化验若结果是阴性不含某种病毒只需化验一次若结果是阳性则只需对这k个人血清单独化验这k个人总共化验了k1次假设每个人含有该病毒的概率为p且这n个人是否含有该病毒是独立的设x是每个人需要化验的次数x的可能取值只有两种情况或k1k且有一个人的血清化验次数为30显然当q固定时就是要求的最理想的每组混合血清数即化验次数最少的每组的理想人数但以上式子很难求最小值点我们不妨计算出k取不同数值的化验次数就不难观察出理想的每组人数
例 3 画出正态分布 N (0,1) 和 N (0,22 ) 的概率密度函数图形.
在MATLAB中输入以下命令: x=-6:0.01:6; y=normpdf(x); z=normpdf(x,0,2); plot(x,y,x,z)
11/75
2.概率分布:P=normcdf(x,mu,sigma)
例4:某人进行射击,假设每次射击的命中率为0.02, 独立射击400次,试求至少击中两次的概率. 解:设击中的次数为X,由题意 X~b(400, 0.02) ,要求
14/75
4.均值与方差:[m,v]=normstat(mu,sigma)
例8 求正态分布N(3,52)的均值与方差. 命令为:[m,v]=normstat(3,5) 结果为:m=3,v=25

matlab中对一维数据进行计算概率分布的方法

matlab中对一维数据进行计算概率分布的方法

matlab中对一维数据进行计算概率分布的方法在MATLAB中,计算一维数据的概率分布可以通过多种方法实现。

这里将介绍一些常用的方法。

1. 直方图法:直方图是一种常用的统计图形,可以将数据按照一定的区间划分,并统计每个区间中数据出现的频次。

MATLAB提供了hist和histogram两个函数来计算一维数据的直方图。

其中,hist函数用于计算直方图的频次,而histogram函数可以直接绘制频率直方图。

使用这两个函数,可以很容易地计算数据的概率分布。

例如,给定一个一维数据向量x,可以使用hist函数计算其直方图:```[counts, edges] = hist(x, num_bins);```其中,counts是每个区间的频次,edges是每个区间的边界。

由于直方图是通过对数据进行离散化处理得到的,因此需要指定区间的数量num_bins。

然后,可以通过除以总的数据点数得到每个区间的概率分布。

2. 核密度估计法:核密度估计是一种非参数估计方法,可以通过估计概率密度函数来计算一维数据的概率分布。

MATLAB提供了ksdensity函数来实现核密度估计。

该函数使用高斯核函数来估计概率密度函数,默认情况下会自动选择带宽。

```[f, xi] = ksdensity(x);```其中,f是估计得到的概率密度函数,xi是相应的自变量。

通过对概率密度函数进行积分,可以得到概率分布。

3. 参数分布拟合法:除了直方图法和核密度估计法外,还可以使用参数分布拟合法来计算一维数据的概率分布。

该方法假设数据服从某种已知的统计分布(如正态分布、指数分布等),然后通过最大似然估计或最小二乘法来拟合参数。

MATLAB提供了fitdist函数来拟合参数,并提供了一系列常见的概率分布对象。

例如,假设数据服从正态分布,可以使用fitdist函数来拟合参数:```pd = fitdist(x, 'Normal');```其中,x是一维数据,‘Normal’表示正态分布。

MATLAB计算概率

MATLAB计算概率

MATLAB计算概率在MATLAB中,计算概率可以使用MATLAB的概率和统计工具箱。

概率是一个数学领域,主要研究随机事件发生的可能性。

在计算概率时,常见的方法包括使用概率分布函数、概率密度函数和累积分布函数等。

1.概率分布函数概率分布函数(Probability Distribution Function, PDF)用于描述随机变量的取值概率分布。

MATLAB中提供了多种常见的概率分布函数,如正态分布、均匀分布、泊松分布等。

计算概率分布函数可以使用相应的函数,例如:- 正态分布:normpdf(x, mu, sigma)计算正态分布的概率密度函数值。

- 均匀分布:unifpdf(x, a, b)计算均匀分布的概率密度函数值。

- 泊松分布:poisspdf(x, lambda)计算泊松分布的概率质量函数值。

其中x为随机变量,mu、sigma、a、b和lambda是对应分布的参数。

2.概率密度函数概率密度函数(Probability Density Function, PDF)用于描述随机变量取一些特定值的概率密度。

计算概率密度函数可以使用相应的函数,例如:- 正态分布:normpdf(x, mu, sigma)计算正态分布的概率密度函数值。

- 均匀分布:unifpdf(x, a, b)计算均匀分布的概率密度函数值。

- 泊松分布:poisspdf(x, lambda)计算泊松分布的概率质量函数值。

其中x为随机变量,mu、sigma、a、b和lambda是对应分布的参数。

3.累积分布函数累积分布函数(Cumulative Distribution Function, CDF)用于描述随机变量取值小于或等于一些特定值的概率。

计算累积分布函数可以使用相应的函数,例如:- 正态分布:normcdf(x, mu, sigma)计算正态分布的累积分布函数值。

- 均匀分布:unifcdf(x, a, b)计算均匀分布的累积分布函数值。

使用Matlab进行概率密度估计的方法

使用Matlab进行概率密度估计的方法

使用Matlab进行概率密度估计的方法概率密度估计是统计学中的一个重要概念,它用于估计连续随机变量的概率分布函数。

在实际数据分析中,我们经常需要对样本数据进行概率密度估计,以便更好地理解和描述数据分布的特征。

而Matlab作为一种强大的数据分析工具,提供了多种方法来进行概率密度估计。

一、核密度估计方法核密度估计是一种常见的非参数概率密度估计方法,它通过在每个数据点上叠加一定宽度的核函数,来估计数据的概率密度分布。

在Matlab中,可以使用"ksdensity"函数来进行核密度估计。

下面是一个示例代码,展示了如何使用核密度估计方法对一组数据进行概率密度估计:```matlabx = randn(1000,1); % 生成一组随机样本数据[f, xi] = ksdensity(x); % 进行核密度估计plot(xi,f); % 绘制概率密度曲线```运行以上代码后,将得到一条概率密度曲线,它代表了数据的概率密度分布。

需要注意的是,"ksdensity"函数有许多可选参数,可以用于控制核密度估计的平滑程度和精度。

二、参数化概率密度估计方法除了核密度估计,Matlab还提供了一些参数化概率密度估计方法,这些方法假设数据遵循某种已知的概率分布,并通过对分布参数进行估计来得到概率密度函数。

常见的参数化概率密度估计方法包括正态分布、指数分布、伽马分布等。

以正态分布为例,使用"fitdist"函数可以对数据进行正态分布参数的估计,从而得到正态分布的概率密度函数。

下面是一个示例代码,展示了如何使用参数化概率密度估计方法对一组数据进行概率密度估计:```matlabx = randn(1000,1); % 生成一组随机样本数据pd = fitdist(x, 'Normal'); % 进行正态分布参数估计x_values = linspace(min(x), max(x), 100); % 构造横轴坐标y = pdf(pd, x_values); % 计算对应的概率密度值plot(x_values, y); % 绘制概率密度曲线```运行以上代码后,将得到一条正态分布的概率密度曲线。

概率和统计的MATLAB指令

概率和统计的MATLAB指令

概率和统计的MATLAB指令1、描述性统计分析描述性统计分析函数标准用法都是对列状数据进行操作。

mean(X):当X为向量,返回向量的均值;当X为矩阵,返回矩阵的每列元素均值构成的行向量。

min,max,sort,mean,median,std,var,sum,prod,cumsum,sumprod等函数用法与mean类似。

cov(X,Y):这里X,Y为向量,分别代表一个样本,求得样本的协方差。

cov(X):这里X为矩阵,将各列看成一个样本,求得样本协方差矩阵。

corrcoef用法与cov类似,求得相关系数。

[Y,I]=sort(X):当X为向量,Y返回X的升序排列,I返回Y各元素原来的编址,即Y=X(I);当X为矩阵,分别对各列排序。

Y=prctile(X,p):当X为向量,Y返回X的p%上分位数;当X为矩阵,分别求各列的上分位数。

trimmean(X,p):剔除上下各(p/2)%数据以后的均值。

例如:>> data=[11 57 291; 13 54 278;10 66 253; 9 46 307; 16 75 244;15 70 256; 8 40 310] data =11 57 29113 54 27810 66 2539 46 30716 75 24415 70 2568 40 310>> % 注意mean和median的区别>> mean(data),median(data)ans =11.7143 58.2857 277.0000 ans =11 57 278>> % 注意var是std的平方>> std(data),sqrt(var(data)) ans =3.0394 12.7895 26.7457 ans =3.0394 12.7895 26.7457 >> % 注意sum与cumsum不同>> sum(data),cumsum(data) ans =82 408 1939 ans =11 57 29124 111 56934 177 82243 223 112959 298 137374 368 162982 408 1939 >> % 将三列看成三个随机变量>> corrcoef(data)ans =1.0000 0.8299 -0.78320.8299 1.0000 -0.9633-0.7832 -0.9633 1.0000>> % 排序>> [Y,I]=sort(data)Y =8 40 2449 46 25310 54 25611 57 27813 66 29115 70 30716 75 310I =7 7 54 4 33 2 61 1 22 3 16 6 45 5 7>> % prctilr(data,50)等于median(data) >> prctile(data,[25,50,100])ans =9.2500 48.0000 253.750011.0000 57.0000 278.000016.0000 75.0000 310.0000>> % 注意与mean的区别>> trimmean(data,20)ans =11.6000 58.6000 277.00002、统计图bar(Y):作向量Y的条形图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Matlab概率统计工具箱(3)4.8 假设检验4.8.1 已知,单个正态总体的均值&#956;的假设检验(U检验法)函数ztest格式h = ztest(x,m,sigma) % x为正态总体的样本,m为均值&#956;0,sigma为标准差,显著性水平为0.05(默认值)h = ztest(x,m,sigma,alpha) %显著性水平为alpha[h,sig,ci,zval] = ztest(x,m,sigma,alpha,tail) %sig为观察值的概率,当sig为小概率时则对原假设提出质疑,ci为真正均值&#956;的1-alpha置信区间,zval为统计量的值.说明若h=0,表示在显著性水平alpha下,不能拒绝原假设; 若h=1,表示在显著性水平alpha下,可以拒绝原假设.原假设:,若tail=0,表示备择假设:(默认,双边检验);tail=1,表示备择假设:(单边检验);tail=-1,表示备择假设:(单边检验).例4-74 某车间用一台包装机包装葡萄糖,包得的袋装糖重是一个随机变量,它服从正态分布.当机器正常时,其均值为0.5公斤,标准差为0.015.某日开工后检验包装机是否正常,随机地抽取所包装的糖9袋,称得净重为(公斤)0.497, 0.506, 0.518, 0.524, 0.498, 0.511, 0.52, 0.515,0.512问机器是否正常解:总体&#956;和&#963;已知,该问题是当为已知时,在水平下,根据样本值判断&#956;=0.5还是.为此提出假设:原假设:备择假设:&gt;&gt;X=[0.497,0.506,0.518,0.524,0.498,0.511,0.52,0.515,0.512 ];&gt;&gt; [h,sig,ci,zval]=ztest(X,0.5,0.015,0.05,0)结果显示为h =1sig =0.0248 %样本观察值的概率ci =0.5014 0.5210 %置信区间,均值0.5在此区间之外zval =2.2444 %统计量的值结果表明:h=1,说明在水平下,可拒绝原假设,即认为包装机工作不正常.4.8.2 未知,单个正态总体的均值&#956;的假设检验( t检验法)函数ttest格式h = ttest(x,m) % x为正态总体的样本,m为均值&#956;0,显著性水平为0.05h = ttest(x,m,alpha) %alpha为给定显著性水平[h,sig,ci] = ttest(x,m,alpha,tail) %sig为观察值的概率,当sig 为小概率时则对原假设提出质疑,ci为真正均值&#956;的1-alpha置信区间.说明若h=0,表示在显著性水平alpha下,不能拒绝原假设; 若h=1,表示在显著性水平alpha下,可以拒绝原假设.原假设:,若tail=0,表示备择假设:(默认,双边检验);tail=1,表示备择假设:(单边检验);tail=-1,表示备择假设:(单边检验).例4-75 某种电子元件的寿命X(以小时计)服从正态分布,,&#963;2均未知.现测得16只元件的寿命如下159 280 101 212 224 379 179 264 222 362 168 250149 260 485 170问是否有理由认为元件的平均寿命大于225(小时)解:未知,在水平下检验假设::,:&gt;&gt; X=[159 280 101 212 224 379 179 264 222 362168 250 149 260 485 170];&gt;&gt; [h,sig,ci]=ttest(X,225,0.05,1)结果显示为:h =sig =0.2570ci =198.2321 Inf %均值225在该置信区间内结果表明:H=0表示在水平下应该接受原假设,即认为元件的平均寿命不大于225小时.4.8.3 两个正态总体均值差的检验(t检验)两个正态总体方差未知但等方差时,比较两正态总体样本均值的假设检验函数ttest2格式[h,sig,ci]=ttest2(X,Y) %X,Y为两个正态总体的样本,显著性水平为0.05[h,sig,ci]=ttest2(X,Y,alpha) %alpha为显著性水平[h,sig,ci]=ttest2(X,Y,alpha,tail) %sig为当原假设为真时得到观察值的概率,当sig为小概率时则对原假设提出质疑,ci为真正均值&#956;的1-alpha置信区间.说明若h=0,表示在显著性水平alpha下,不能拒绝原假设;若h=1,表示在显著性水平alpha下,可以拒绝原假设.原假设:, (为X为期望值,为Y的期望值)若tail=0,表示备择假设:(默认,双边检验);tail=1,表示备择假设:(单边检验);tail=-1,表示备择假设:(单边检验).例4-76 在平炉上进行一项试验以确定改变操作方法的建议是否会增加钢的产率,试验是在同一只平炉上进行的.每炼一炉钢时除操作方法外,其他条件都尽可能做到相同.先用标准方法炼一炉,然后用建议的新方法炼一炉,以后交替进行,各炼10炉,其产率分别为(1)标准方法:78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3(2)新方法: 79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1设这两个样本相互独立,且分别来自正态总体和,,,均未知.问建议的新操作方法能否提高产率(取&#945;=0.05)解:两个总体方差不变时,在水平下检验假设::,:&gt;&gt; X=[78.1 72.4 76.2 74.3 77.4 78.4 76.0 75.5 76.7 77.3];&gt;&gt;Y=[79.1 81.0 77.3 79.1 80.0 79.1 79.1 77.3 80.2 82.1];&gt;&gt; [h,sig,ci]=ttest2(X,Y,0.05,-1)结果显示为:h =1sig =2.1759e-004 %说明两个总体均值相等的概率很小ci =-Inf -1.9083结果表明:H=1表示在水平下,应该拒绝原假设,即认为建议的新操作方法提高了产率,因此,比原方法好.4.8.4 两个总体一致性的检验——秩和检验函数ranksum格式p = ranksum(x,y,alpha) %x,y为两个总体的样本,可以不等长,alpha为显著性水平[p,h] = ranksum(x,y,alpha) % h为检验结果,h=0表示X与Y 的总体差别不显著h=1表示X与Y的总体差别显著[p,h,stats] = ranksum(x,y,alpha) %stats中包括:ranksum为秩和统计量的值以及zval为过去计算p的正态统计量的值说明P为两个总体样本X和Y为一致的显著性概率,若P接近于0,则不一致较明显.例4-77 某商店为了确定向公司A或公司B购买某种商品,将A和B公司以往的各次进货的次品率进行比较,数据如下所示,设两样本独立.问两公司的商品的质量有无显著差异.设两公司的商品的次品的密度最多只差一个平移,取&#945;=0.05.A:7.0 3.5 9.6 8.1 6.2 5.1 10.4 4.0 2.0 10.5B:5.7 3.2 4.1 11.0 9.7 6.9 3.6 4.8 5.6 8.4 10.1 5.5 12.3 解:设,分别为A,B两个公司的商品次品率总体的均值.则该问题为在水平&#945;=0.05下检验假设::,:&gt;&gt; A=[7.0 3.5 9.6 8.1 6.2 5.1 10.4 4.0 2.0 10.5];&gt;&gt; B=[5.7 3.2 4.1 11.0 9.7 6.9 3.6 4.8 5.6 8.4 10.1 5.5 12.3];&gt;&gt; [p,h,stats]=ranksum(A,B,0.05)结果为:p =0.8041h =stats =zval: -0.2481ranksum: 116结果表明:一方面,两样本总体均值相等的概率为0.8041,不接近于0;另一方面,H=0也说明可以接受原假设,即认为两个公司的商品的质量无明显差异.4.8.5 两个总体中位数相等的假设检验——符号秩检验格式p = signrank(X,Y,alpha) % X,Y为两个总体的样本,长度必须相同,alpha为显著性水平,P两个样本X和Y的中位数相等的概率,p接近于0则可对原假设质疑.[p,h] = signrank(X,Y,alpha) % h为检验结果:h=0表示X与Y 的中位数之差不显著,h=1表示X与Y的中位数之差显著. [p,h,stats] = signrank(x,y,alpha) % stats中包括:signrank为符号秩统计量的值以及zval为过去计算p的正态统计量的值.例4-78 两个正态随机样本的中位数相等的假设检验&gt;&gt; x=normrnd(0,1,20,1);&gt;&gt; y=normrnd(0,2,20,1);&gt;&gt; [p,h,stats]=signrank(x,y,0.05)p =0.3703h =stats =zval: -0.8960signedrank: 81结果表明:h=0表示X与Y的中位数之差不显著4.8.6 两个总体中位数相等的假设检验——符号检验格式p=signtest(X, Y, alpha) % X,Y为两个总体的样本,长度必须相同,alpha为显著性水平,P两个样本X和Y的中位数相等的概率,p接近于0则可对原假设质疑.[p, h]=signtest(X, Y, alpha) % h为检验结果:h=0表示X与Y 的中位数之差不显著,h=1表示X与Y的中位数之差显著. [p,h,stats] = signtest(X,Y,alpha) % stats中sign为符号统计量的值例4-79 两个正态随机样本的中位数相等的假设检验&gt;&gt; X=normrnd(0,1,20,1);&gt;&gt; Y=normrnd(0,2,20,1);&gt;&gt; [p,h,stats]=signtest(X,Y,0.05)p =0.2632h =stats =sign: 7结果表明:h=0表示X与Y的中位数之差不显著4.8.7 正态分布的拟合优度测试函数jbtest格式H = jbtest(X) %对输入向量X进行Jarque-Bera测试,显著性水平为0.05.H = jbtest(X,alpha) %在水平alpha而非5%下施行Jarque-Bera 测试,alpha在0和1之间.[H,P,JBSTAT,CV] = jbtest(X,alpha) %P为接受假设的概率值,P越接近于0,则可以拒绝是正态分布的原假设;JBSTAT 为测试统计量的值,CV为是否拒绝原假设的临界值.说明H为测试结果,若H=0,则可以认为X是服从正态分布的;若X=1,则可以否定X服从正态分布.X为大样本,对于小样本用lillietest函数.例4-80 调用MATLAB中关于汽车重量的数据,测试该数据是否服从正态分布&gt;&gt; load carsmall&gt;&gt; [h,p,j,cv]=jbtest(Weight)h =1p =0.0267j =7.2448cv =5.9915说明p=2.67%表示应该拒绝服从正态分布的假设;h=1也可否定服从正态分布;统计量的值j = 7.2448大于接受假设的临界值cv =5.9915,因而拒绝假设(测试水平为5%).4.8.8 正态分布的拟合优度测试函数lillietest格式H = lillietest(X) %对输入向量X进行Lilliefors测试,显著性水平为0.05.H = lillietest(X,alpha) %在水平alpha而非5%下施行Lilliefors测试,alpha在0.01和0.2之间.[H,P,LSTAT,CV] = lillietest(X,alpha) %P为接受假设的概率值,P越接近于0,则可以拒绝是正态分布的原假设;LSTAT为测试统计量的值,CV为是否拒绝原假设的临界值.说明H为测试结果,若H=0,则可以认为X是服从正态分布的;若X=1,则可以否定X服从正态分布.例4-81&gt;&gt; Y=chi2rnd(10,100,1);&gt;&gt; [h,p,l,cv]=lillietest(Y)h =1p =0.0175l =0.1062cv =0.0886说明h=1表示拒绝正态分布的假设;p = 0.0175表示服从正态分布的概率很小;统计量的值l = 0.1062大于接受假设的临界值cv =0.0886,因而拒绝假设(测试水平为5%).&gt;&gt;hist(Y)从图中看出,数据Y不服从正态分布.4.8.9 单个样本分布的Kolmogorov-Smirnov 测试函数kstest格式H = kstest(X) %测试向量X是否服从标准正态分布,测试水平为5%.H = kstest(X,cdf) %指定累积分布函数为cdf的测试(cdf=[ ]时表示标准正态分布),测试水平为5%H = kstest(X,cdf,alpha) % alpha为指定测试水平[H,P,KSSTAT,CV] = kstest(X,cdf,alpha) %P为原假设成立的概率,KSSTAT为测试统计量的值,CV为是否接受假设的临界值.说明原假设为X服从标准正态分布.若H=0则不能拒绝原假设,H=1则可以拒绝原假设.例4-82 产生100个威布尔随机数,测试该随机数服从的分布&gt;&gt; x=weibrnd(1,2,100,1);&gt;&gt; [H,p,ksstat,cv]=kstest(x,[x weibcdf(x,1,2)],0.05) %测试是否服从威布尔分布H =p =0.3022ksstat =0.0959cv =0.1340说明H=0表示接受原假设,统计量ksstat小于临界值表示接受原假设.&gt;&gt; [H,p,ksstat,cv]=kstest(x,[x expcdf(x,1)],0.05) %测试是否服从指数分布H =1p =0.0073ksstat =0.1653cv =0.1340说明H=1表明拒绝服从指数分布的假设.&gt;&gt; [H,p,ksstat,cv]=kstest(x,[ ],0.05) %测试是否服从标准正态分布H =1p =3.1285e-026ksstat =0.5380cv =0.1340说明H=1表明不服从标准正态分布.4.8.10 两个样本具有相同的连续分布的假设检验函数kstest2格式H = kstest2(X1,X2) %测试向量X1与X2是具有相同的连续分布,测试水平为5%.H = kstest2(X1,X2,alpha) % alpha为测试水平[H,P,KSSTAT] = kstest(X,cdf,alpha) %与指定累积分布cdf 相同的连续分布,P为假设成立的概率,KSSTAT为测试统计量的值.说明原假设为具有相同连续分布.测试结果为H,若H=0,表示应接受原假设;若H=1,表示可以拒绝原假设.这是Kolmogorov-Smirnov测试方法.例4-83&gt;&gt; x=-1:1:5;&gt;&gt; y=randn(20,1);&gt;&gt; [h,p,k]=kstest2(x,y)h =1p =0.0444k =0.5643说明h=1表示可以认为向量x与y的分布不相同,相同的概率只有4.4%.4.9 方差分析4.9.1 单因素方差分析单因素方差分析是比较两组或多组数据的均值,它返回原假设——均值相等的概率函数anova1格式p = anova1(X) %X的各列为彼此独立的样本观察值,其元素个数相同,p为各列均值相等的概率值,若p值接近于0,则原假设受到怀疑,说明至少有一列均值与其余列均值有明显不同.p = anova1(X,group) %X和group为向量且group要与X对应p = anova1(X,group,'displayopt') % displayopt=on/off表示显示与隐藏方差分析表图和盒图[p,table] = anova1(&#8230;) % table为方差分析表[p,table,stats] = anova1(&#8230;) % stats为分析结果的构造说明anova1函数产生两个图:标准的方差分析表图和盒图. 方差分析表中有6列:第1列(source)显示:X中数据可变性的来源;第2列(SS)显示:用于每一列的平方和;第3列(df)显示:与每一种可变性来源有关的自由度;第4列(MS)显示:是SS/df的比值;第5列(F)显示:F统计量数值,它是MS的比率;第6列显示:从F累积分布中得到的概率,当F增加时,p值减少.例4-84 设有3台机器,用来生产规格相同的铝合金薄板.取样测量薄板的厚度,精确至&#8240;厘米.得结果如下:机器1:0.236 0.238 0.248 0.245 0.243机器2:0.257 0.253 0.255 0.254 0.261机器3:0.258 0.264 0.259 0.267 0.262检验各台机器所生产的薄板的厚度有无显著的差异解:&gt;&gt; X=[0.236 0.238 0.248 0.245 0.243; 0.257 0.253 0.255 0.254 0.261;&#8230;0.258 0.264 0.259 0.267 0.262];&gt;&gt; P=anova1(X')结果为:P =1.3431e-005还有两个图,即图4-22和图4-23.图4-22 图4-23例4-85 建筑横梁强度的研究:3000磅力量作用在一英寸的横梁上来测量横梁的挠度,钢筋横梁的测试强度是:82 86 79 83 84 85 86 87;其余两种更贵的合金横梁强度测试为合金1:74 82 78 75 76 77;合金2:79 79 77 78 82 79].检验这些合金强度有无明显差异解:&gt;&gt; strength = [82 86 79 83 84 85 86 87 74 82 78 75 76 77 79 79 77 78 82 79];&gt;&gt;alloy = {'st','st','st','st','st','st','st','st','al1','al1','al1','al1','al1','al1',&#8230;'al2','al2','al2','al2','al2','al2'};&gt;&gt; [p,table,stats] = anova1(strength,alloy,'on')结果为p =1.5264e-004table ='Source' 'SS' 'df' 'MS' 'F' 'Prob&gt;F''Groups' [184.8000] [ 2] [92.4000] [15.4000] [1.5264e-004] 'Error' [102.0000] [17] [ 6.0000] [ ] [ ]'Total' [286.8000] [19] [ ] [ ] [ ]stats =gnames: {3x1 cell}n: [8 6 6]source: 'anova1'means: [84 77 79]df: 17s: 2.4495图4-24 图4-25说明p值显示,3种合金是明显不同的,盒图显示钢横梁的挠度大于另两种合金横梁的挠度.4.9.2 双因素方差分析函数anova2格式p = anova2(X,reps)p = anova2(X,reps,'displayopt')[p,table] = anova2(&#8230;)[p,table,stats] = anova2(&#8230;)说明执行平衡的双因素试验的方差分析来比较X中两个或多个列(行)的均值,不同列的数据表示因素A的差异,不同行的数据表示另一因素B的差异.如果行列对有多于一个的观察点,则变量reps指出每一单元观察点的数目,每一单元包含reps行,如:reps=2其余参数与单因素方差分析参数相似.例4-86 一火箭使用了4种燃料,3种推进器作射程试验,每种燃料与每种推进器的组合各发射火箭2次,得到结果如下: 推进器(B) B1 B2 B3A1 58.2000 56.2000 65.300052.6000 41.2000 60.8000A2 49.1000 54.1000 51.6000燃料A 42.8000 50.5000 48.4000A3 60.1000 70.9000 39.200058.3000 73.2000 40.7000A4 75.8000 58.2000 48.700071.5000 51.0000 41.4000考察推进器和燃料这两个因素对射程是否有显著的影响解:建立M文件X=[58.2000 56.2000 65.300052.6000 41.2000 60.800049.1000 54.1000 51.600042.8000 50.5000 48.400060.1000 70.9000 39.200058.3000 73.2000 40.700075.8000 58.2000 48.700071.5000 51.0000 41.4000];P=anova2(X,2)结果为:P =0.0035 0.0260 0.0001显示方差分析图为图4-26.图4-26本文来自CSDN博客,转载请标明出处:/huangzj239/archive/2010/04/10/54653 96.aspx。

相关文档
最新文档