新北师大版九年级数学二次函数知识点归纳总结

合集下载

北师大版九年级数学下册 第12讲 二次函数的图象与性质 知识点梳理

北师大版九年级数学下册 第12讲 二次函数的图象与性质 知识点梳理
b2-4ac
决定抛物线与x轴的交点个数
b2-4ac>0时,抛物线与x轴有2个交点;
b2-4ac=0时,抛物线与x轴有1个交点;
b2-4ac<0时,抛物线与x轴没有交点
知识点三:二次函数的平移
4.平移与解析式的关系
注意:二次函数的平移实质是顶点坐标的平移,因此只要找出原函数顶点的平移方式即可确定平移后的函数解析式
失分点警示:
抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.
知识点四:二次函数与一元二次方程以及不等式
5.二次函数与一元二次方程
二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.
(2)待定系数法:巧设二次函数的解析式;根据已知条件,得到关于待定系数的方程(组);解方程(组),求出待定系数的值,从而求出函数的解析式.
若已知条件是图象上的三个点或三对对应函数值,可设一般式;若已知顶点坐标或对称轴方程与最值,可设顶点式;若已知抛物线与x轴的两个交点坐标,可设交点式.
知识点二:二次函数的图象与性质
例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7.
开口
向上
向下
对称轴
x=
顶点坐标
增减性
当x> 时,y随x的增大而增大;当x< 时,y随x的增大而减小.
当x> 时,y随x的增大而减小;当x< 时,y随x的增大而增大.
最值
x= ,y最小= .
x= ,y最大= .
3.系数a、b、c
a
决定抛物线的开口方向及开口大小

北师大版九年级数学下册 第12讲 二次函数的图象与性质 知识点梳理

北师大版九年级数学下册 第12讲 二次函数的图象与性质 知识点梳理
当a>0时,抛物线开口向上;
当a<0时,抛物线开口向下.
某些特殊形式代数式的符号:
1a±b+c即为x=±1时,y
的值;②4a±2b+c即为x=±2时,y的值.
32a+b的符号,需判断对称
轴-b/2a与1的大小.若对称轴在直线x=1的左边,则-b/2a>1,再根据a的符号即可得出结果.④2a-b的符号,需判断对称轴与-1的大小.
失分点警示:
抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.
知识点四:二次函数与一元二次方程以及不等式
5.二次函数与一元二次方程
二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.
例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7.
开口
向上
向下
对称轴
x=
顶点坐标
增减性
当x> 时,y随x的增大而增大;当x< 时,y随x的增大而减小.
当x> 时,y随x的增大而减小;当x< 时,y随x的增大而增大.
最值
x= ,y最小= .
x= ,y最大= .
3.系数a、b、c
a
决定抛物线的开口方向及开口大小
a、b
决定对称轴(x=-b/2a)的位置
当a,b同号,-b/2a<0,对称轴在y轴左边;
当b=0时,-b/2a=0,对称轴为y轴;
当a,b异号,-b/2a>0,对称轴在y轴右边.
c
决定抛物线与y轴的交点的位置
当c>0时,抛物线与y轴的交点在正半轴上;

北师大版中考复习二次函数总结及典型题

北师大版中考复习二次函数总结及典型题

二次函数一、二次函数的定义例1、已知函数y=m -1x m2 +1+5x -3是二次函数,求m 的值.若函数y=m 2+2m -7x 2+4x+5是x 的二次函数,则m 的取值范围为 . 二、五点作图法的应用 例2. 已知抛物线y x x =-+123522, 1用配方法求它的顶点坐标和对称轴并用五点法作图2若该抛物线与x 轴的两个交点为A 、B,求线段AB 的长. 1、抛物线1822-+-=x x y 的顶点坐标为 A-2,7 B-2,-25 C2,7 D2,-92、抛物线(1)(3)(0)y a x x a =+-≠的对称轴是直线 A .1x =B .1x =-C .3x =-D .3x =3、把二次函数3412+--=x x y 用配方法化成()k h x a y +-=2的形式 三、a b c ,,及b ac 24-的符号确定例3. 已知抛物线y ax bx c =++2如图,试确定:1a b c ,,及b ac 24-的符号;2a b c ++与a b c -+的符号.1、已知二次函数2y ax bx c =++0a ≠的图象如图所示,有下列四个结论:20040b c b ac <>->①②③④0a b c -+<,其中正确的个数有A .1个B .2个C .3个D .4个2、已知二次函数2y ax bx c =++的图象如图所示,有以下结论:①0a b c ++<;②1a b c -+>;③0abc >;④420a b c -+<;⑤1c a ->其中所有正确结论的序号是11 1-Ox yA .①②B . ①③④C .①②③⑤D .①②③④⑤3、二次函数c bx ax y ++=2的图象如图所示,则下列关系式中错误..的是 A .a <0 B .c >0C .ac b 42->0D .c b a ++>04、图12为二次函数2y ax bx c =++的图象,给出下列说法:①0ab <;②方程20ax bx c ++=的根为1213x x =-=,;③0a b c ++>;④当1x >时,y 随x 值的增大而增大;⑤当0y >时,13x -<<.其中,正确的说法有 .请写出所有正确说法的序号5、已知=次函数y =ax 2+bx+c 的图象如图.则下列5个代数式:ac,a+b+c,4a -2b+c,2a+b,2a -b 中,其值大于0的个数为 A .2B 3C 、4D 、5四、二次函数解析式的确定 例4. 求二次函数解析式: 1抛物线过0,2,1,1,3,5; 2顶点M-1,2,且过N2,1;3已知抛物线过A1,0和B4,0两点,交y 轴于C 点且BC =5,求该二次函数的解析式.练习:根据下列条件求x 的二次函数的解析式(1)当x=3时,y 最小值=-1,且图象过0,7(2)图象过点0,-21,2且对称轴为直线x=错误! (3)图象经过0,11,03,0五、二次函数与x 轴、y 轴的交点二次函数与一元二次方程的关系例5、 已知抛物线y =x 2-2x-8,1求证:该抛物线与x 轴一定有两个交点;2若该抛物线与x 轴的两个交点为A 、B,且它的顶点为P,求△ABP 的面积xO1 -1、二次函数y=x2-2x-3图象与x轴交点之间的距离为2、如图所示,二次函数y=x2-4x+3的图象交x轴于A、B两点, 交y 轴于点C, 则△ABC的面积为B.43、若二次函数y=m+5x2+2m+1x+m的图象全部在x轴的上方,则m 的取值范围是六、直线与二次函数的问题例6已知:二次函数为y=x2-x+m,1写出它的图像的开口方向,对称轴及顶点坐标;2m为何值时,顶点在x轴上方,3若抛物线与y轴交于A,过A作AB∥x轴交抛物线于另一点B,当S△AOB=4时,求此二次函数的解析式.1、抛物线y=x2+7x+3与直线y=2x+9的交点坐标为 .2、直线y=7x+1与抛物线y=x2+3x+5的图象有个交点.例7 已知x的二次函数y=x2-mx+212m+与y=x2-mx-222m+,这两个二次函数的图像中的一条与x轴交于A,B两个不同的点.1试判断哪个二次函数的图像经过A,B两点;2若A点坐标为-1,0,试求B点坐标;3在2的条件下,对于经过A,B两点的二次函数,当x取何值时,y的值随x•值的增大而减小练习如图,在平面直角坐标系中,OB⊥OA,且OB=2OA,点A的坐标是-1,2.1求点B的坐标;2求过点A、O、B的抛物线的表达式;3连接AB,在2中的抛物线上求出点P,使得S△ABP =S△ABO.例8 已知:m,n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c的图像经过点Am,0,B0,n,如图所示.1求这个抛物线的解析式;2设1中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积;3P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC•把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.七、用二次函数解决最值问题例9 某产品每件成本10元,试销阶段每件产品的销售价x元•与产品的日销售量y件之间的关系如下表:x 元152030…y件252010…若日销售量y是销售价x的一次函数.1求出日销售量y件与销售价x元的函数关系式;2要使每日的销售利润最大,每件产品的销售价应定为多少元•此时每日销售利润是多少元例3.你知道吗平时我们在跳大绳时,绳甩到最高处的形状可近似地看为抛物线.如图所示,正在甩绳的甲、乙两名学生拿绳的手间距为 4 m,距地面均为1m,学生丙、丁分别站在距甲拿绳的手水平距离1m、2.5 m处.绳子在甩到最高处时刚好通过他们的头顶.已知学生丙的身高是1.5 m,则学生丁的身高为建立的平面直角坐标系如右图所示A.1.5 m B.1.625 mC.1.66 m D.1.67 m八、二次函数应用一经济策略性1.某商店购进一批单价为16元的日用品,销售一段时间后,为了获得更多的利润,商店决定提高销售价格.经检验发现,若按每件20元的价格销售时,每月能卖360件若按每件25元的价格销售时,每月能卖210件.假定每月销售件数y件是价格X的一次函数.1试求y与x的之间的关系式.2在商品不积压,且不考虑其他因素的条件下,问销售价格定为多少时,才能使每月获得最大利润,每月的最大利润是多少总利润=总收入-总成本2.有一种螃蟹,从海上捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元. 1设X 天后每千克活蟹的市场价为P 元,写出PX 的函数关系式.2如果放养X 天后将活蟹一次性出售,并记1000千克蟹的销售额为Q 元,写出QX 的函数关系式.2该经销商将这批蟹放养多少天后出售,可获最大利润利润=销售总额—收购成本—费用,最大利润是多少自我检测一. 选择题.1. 用配方法将12322x x ++化成()a x b c ++2的形式A. ()123522x +-B. 1232542x +⎛⎝ ⎫⎭⎪- C. ()12322x ++ D.()12372x +- 2. 对于函数y ax a =<20(),下面说法正确的是A. 在定义域内,y 随x 增大而增大B. 在定义域内,y 随x 增大而减小C. 在()-∞,0内,y 随x 增大而增大D. 在()0,+∞内,y 随x 增大而增大 3. 已知a b c <<>000,,,那么y ax bx c =++2的图象4. 已知点-1,33,3在抛物线y ax bx c =++2上,则抛物线的对称轴是A. x a b=-B. x =2C. x =3D. x =15. 一次函数y ax b =+和二次函数y ax bx c =++2在同一坐标系内的图象6. 函数y x x =-++33322的最大值为 A. 94B. -32C. 32D. 不存在二. 填空题.7. ()()y m x m x m =++-++11321是二次函数,则m =____________.8. 抛物线y x x =--52222的开口向_____,对称轴是________,顶点坐标是_______. 9. 抛物线y ax bx c =++2的顶点是2,3,且过点3,1,则a =___,b =___,c =______. 10. 函数y x x =---123522图象沿y 轴向下平移2个单位,再沿x 轴向右平移3个单位,得到函数________的图象. 三. 解答题.抛物线()()y x m x m m =-++-+-222243,m 为非负整数,它的图象与x 轴交于A 和B,A 在原点左边,B 在原点右边. 1求这个抛物线解析式.2一次函数y kx b =+的图象过A 点与这个抛物线交于C,且S ABC ∆=10,求一次函数解析式.◆强化训练 一、填空题1.右图是二次函数y 1=ax 2+bx+c 和一次函数y 2=mx+n 的图像,•观察图像写出y 2≥y 1时,x 的取值范围_______.2.已知抛物线y=a 2+bx+c 经过点A -2,7,B6,7,C3,-8,•则该抛物线上纵坐标为-8的另一点的坐标是_______.3.已知二次函数y=-x 2+2x+c 2的对称轴和x 轴相交于点m,0,则m 的值为______. 4.若二次函数y=x 2-4x+c 的图像与x 轴没有交点,其中c 为整数,•则c=_______只要求写出一个.5.已知抛物线y=ax 2+bx+c 经过点1,2与-1,4,则a+c•的值是______.6.甲,乙两人进行羽毛球比赛,甲发出一十分关键的球,出手点为P,羽毛球飞行的水平距离sm 与其距地面高度hm 之间的关系式为h=-112s 2+23s+32.如下左图所示,•已知球网AB 距原点5m,乙用线段CD 表示扣球的最大高度为94m,设乙的起跳点C 的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则m•的取值范围是______.7.二次函数y=x 2-2x -3与x 轴两交点之间的距离为______.8.兰州市“安居工程”新建成的一批楼房都是8层高,•房子的价格y 元/m 2随楼层数x 楼的变化而变化x=1,2,3,4,5,6,7,8,已知点x,y•都在一个二次函数的图像上如上右图,则6楼房子的价格为_____元/m 2. 二、选择题9.二次函数y=ax 2+bx+c 的图像如图所示,•则下列关系式不正确的是A .a<0B .abc>0C .a+b+c<0D .b 2-4ac>0第9题 第12题 第15题10.已知二次函数y=ax 2+bx+c 的图像过点A1,2,B3,2,C5,7.若点M -2,y 1,N -1,y 2,K8,y 3也在二次函数y=ax 2+bx+c 的图像上,则下列结论中正确的是 A .y 1<y 2<y 3 B .y 2<y 1<y 3 C .y 3<y 1<y 2 D .y 1<y 3<y 211.抛物线y=ax2+bx+ca≠0的对称轴是x=2,且经过点P3,0,则a+b+c的值为A.-1 B.0 C.1 D.212.如图所示,抛物线的函数表达式是A.y=x2-x+2 B.y=-x2-x+2 C.y=x2+x+2 D.y=-x2+x+213.抛物线y=-2x2-4x-5经过平移得到y=-2x2,平移方法是A.向左平移1个单位,再向下平移3个单位 B.向左平移1个单位,再向上平移3个单位C.向右平移1个单位,再向下平移3个单位 D.向右平移1个单位,再向上平移3个单位14.已知二次函数y=x2+bx+3,当x=-1时,y取得最小值,则这个二次函数图像的顶点在A.第一象限 B.第二象限 C.第三象限 D.第四象限15.抛物线y=ax2+2ax+a2+2的一部分图像如图所示,那么该抛物线在y轴右侧与x轴交点的坐标是,0 B.1,0 C.2,0 D.3,0A.1216.在同一直角坐标系中,函数y=mx+m和y=-mx2+2x+2m是常数,•且m≠0的图像可能是三、解答题17.如图所示,已知抛物线y=ax2+4ax+ta>0交x轴A,B两点,交y轴于点C,抛物线的对称轴交x轴于点E,点B的坐标为-1,0.1求抛物线的对称轴及点A的坐标;2过点C作x轴的平行线交抛物线的对称轴于点P,你能判断四边形ABCP•是什么四边形并证明你的结论;3连接CA与抛物线的对称轴交于点D,当∠APD=∠ACP时,求抛物线的解析式.18.如图所示,m,n是方程x2-6x+5=0的两个实数根,且m<n,•抛物线y=-x2+bx+c的图像经过点Am,0,B0,n.1求这个抛物线的解析式;2设1中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD 的面积;3P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于点H,若直线BC•把△PCH分成面积之比为2:3的两部分,请求出点P的坐标.19.某地计划开凿一条单向行驶从正中通过的隧道,•其截面是抛物线拱形ACB,而且能通过最宽3m,最高3.5m的厢式货车.按规定,•机动车通过隧道时车身距隧道壁的水平距离和铅直距离最小都是0.5m.•为设计这条能使上述厢式货车恰好完全通过的隧道,在图纸上以直线AB为x轴,线段AB的垂直平分线为y轴,•建立如图所示的直角坐标系,求抛物线拱形的表达式,隧道的跨度AB和拱高OC.20.已知一个二次函数的图像过如图所示三点.1求抛物线的对称轴;2平行于x轴的直线L的解析式为y=254,抛物线与x轴交于A,B两点.•在抛物线的对称轴上找点P,使BP的长等于直线L与x轴间的距离.求点P的坐标.21.如图5-76所示,二次函数y=ax2+bx+ca≠0的图像与x•轴交于A,B两点,其中A点坐标为-1,0,点C0,5,D1,8在抛物线上,M为抛物线的顶点.1求抛物线的解析式;2求△MCB的面积.22.如图所示,过y轴上一点A0,1作AC平行于x轴,交抛物线y=x2x≥0于点B,交抛物线y=12x2x≥0于点C;过点C作CD平行于y轴,交抛物线y=x2于点D;过点D作DE平行于x轴,交抛物线y=14x2于点E.1求AB:BC;2判断O,B,E三点是否在同一直线上如果在,写出直线解析式;如果不在,请说明理由.。

九年级数学下册 2.1《二次函数》知识点解读素材 (新版)北师大版

九年级数学下册 2.1《二次函数》知识点解读素材 (新版)北师大版

《二次函数》知识点解读知识点1 二次函数的概念二次函数的概念:形如y=ax 2+bx+c (a ≠0,a,b,c 为常数)的函数是二次函数。

若b=0,则y=ax 2+c ;若c=0,则y=ax 2+bx ;若b=c=0,则y=ax 2。

以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c 是二次函数的一般式。

在二次函数y=ax 2+bx+c (a ≠0,a,b,c 为常数)中,其中ax 2叫做二次项,a 叫做二次项的系数;bx 叫做一次项,b 叫做一次项的系数;c 叫做常数项。

为什么要规定二次项的系数a ≠0?当a=0时,函数为y=bx+c 是一次函数,由此可见,一次函数是二次函数的特例。

1)a ≠0是保证y 是x 的二次函数的重要条件,不能缺少。

b 、c 可以为0.(2)因为解析式是整式,所以自变量x 的取值范围是全体实数。

(3)确定二次函数的解析式就是确定待定系数a ,b ,c ,一般需要三个条件。

(4)识别二次函数的条件:必须是整式,自变量的最高次数为2,即必须有二次项。

例1 下列函数中,哪些是二次函数?(1)y=2+5x 2 (2)322+=x y (3)y=3x (x+5) (4)225x y = (5)y=x 2-4(4-x )2分析:二次函数y=ax 2+bx+c (a ≠0,a,b,c 为常数)是整式函数,二次函数不一定是一般式,通过化简变形可以化成一般式,注意隐含条件a ≠0。

解:(1)(3)(4)(5)是二次函数;(2)不是。

例2 已知,函数22)2(-+=k x k y 是关于x 的二次函数,你能确定k 的值吗?请说明理由。

分析:要想确定k 的值,可由二次函数的定义来求解。

解:由题意,得{22022=-≠+k k2 解得k=2。

所以,当k=2时,函数22)2(-+=k x k y 是关于x 的二次函数。

知识点2 二次函数在实际问题中的应用例3 某商场第一个月销售额为50万元,第三个月的销售额y (万元)与月平均增长率x 之间的函数关系如何表示?解析:函数关系式是y=50(1+x )2,即y=50x 2+100x+50。

九年级数学下册 2.1《二次函数》知识点解读素材 (新版

九年级数学下册 2.1《二次函数》知识点解读素材 (新版

《二次函数》知识点解读知识点1 二次函数的概念二次函数的概念:形如y=ax 2+bx+c (a ≠0,a,b,c 为常数)的函数是二次函数。

若b=0,则y=ax 2+c ;若c=0,则y=ax 2+bx ;若b=c=0,则y=ax 2。

以上三种形式都是二次函数的特殊形式,而y=ax 2+bx+c 是二次函数的一般式。

在二次函数y=ax 2+bx+c (a ≠0,a,b,c 为常数)中,其中ax 2叫做二次项,a 叫做二次项的系数;bx 叫做一次项,b 叫做一次项的系数;c 叫做常数项。

为什么要规定二次项的系数a ≠0?当a=0时,函数为y=bx+c 是一次函数,由此可见,一次函数是二次函数的特例。

1)a ≠0是保证y 是x 的二次函数的重要条件,不能缺少。

b 、c 可以为0.(2)因为解析式是整式,所以自变量x 的取值范围是全体实数。

(3)确定二次函数的解析式就是确定待定系数a ,b ,c ,一般需要三个条件。

(4)识别二次函数的条件:必须是整式,自变量的最高次数为2,即必须有二次项。

例1 下列函数中,哪些是二次函数?(1)y=2+5x 2 (2)322+=x y (3)y=3x (x+5) (4)225x y = (5)y=x 2-4(4-x )2分析:二次函数y=ax 2+bx+c (a ≠0,a,b,c 为常数)是整式函数,二次函数不一定是一般式,通过化简变形可以化成一般式,注意隐含条件a ≠0。

解:(1)(3)(4)(5)是二次函数;(2)不是。

例2 已知,函数22)2(-+=k x k y 是关于x 的二次函数,你能确定k 的值吗?请说明理由。

分析:要想确定k 的值,可由二次函数的定义来求解。

解:由题意,得{22022=-≠+k k解得k=2。

所以,当k=2时,函数22)2(-+=k x k y 是关于x 的二次函数。

知识点2 二次函数在实际问题中的应用例3 某商场第一个月销售额为50万元,第三个月的销售额y (万元)与月平均增长率x 之间的函数关系如何表示?解析:函数关系式是y=50(1+x )2,即y=50x 2+100x+50。

新北师大版九年级数学二次函数的相关概念梳理

新北师大版九年级数学二次函数的相关概念梳理

新北师大版九年级数学二次函数的相关概
念梳理
本文主要介绍新北师大版九年级数学中关于二次函数的相关概念。

二次函数的定义
二次函数是指自变量的二次多项式函数,通常表达式为
$f(x)=ax^2+bx+c$,其中 $a\ne0$。

二次函数的图像
二次函数的图像通常是一个开口朝上或朝下的抛物线。

当$a>0$ 时,抛物线开口朝上;当 $a<0$ 时,抛物线开口朝下。

二次函数的顶点
当 $a>0$ 时,二次函数的最小值(即顶点)为 $f\left(-
\dfrac{b}{2a}\right)$;当 $a<0$ 时,二次函数的最大值(即顶点)
为 $f\left(-\dfrac{b}{2a}\right)$。

轴对称
二次函数的图像关于垂直于 $x$ 轴的直线 $x=-
\dfrac{b}{2a}$ 对称。

零点
二次函数的零点是指函数值等于$0$ 时,对应的自变量的取值。

二次函数的零点可以通过求解二次方程 $ax^2+bx+c=0$ 来确定。

总结
二次函数是初中数学中非常重要的一个概念,在应用数学、高
中数学以及大学数学中都有广泛的应用。

通过本文的梳理,相信读
者可以更深入地理解和掌握二次函数的相关概念。

初三的二次函数知识点总结

初三的二次函数知识点总结

初三的二次函数知识点总结一、二次函数的定义二次函数是一个形如f(x) = ax^2 + bx + c的函数,其中a、b、c是常数且a≠0。

二次函数的图像是一个抛物线,开口方向由a的符号决定,a>0时开口向上,a<0时开口向下。

二、二次函数的顶点二次函数的顶点是抛物线的最低点或最高点,顶点的横坐标可以用公式x=-b/2a来求得,纵坐标可以代入x的值计算得到。

三、二次函数的平移对于一般的二次函数f(x)=ax^2+bx+c,如果f(x)变为f(x)+m或f(x)-m,就是把抛物线上下平移了m个单位。

如果f(x)变为f(x)+m或f(x)-m,就是把抛物线左右平移了m个单位。

四、二次函数的对称轴二次函数的对称轴是与顶点横坐标相等的直线,即x=-b/2a。

五、二次函数的判别式二次函数的判别式Δ=b^2-4ac,当Δ>0时,函数在x轴上有两个不同的实根;当Δ=0时,函数在x轴上有一个重根;当Δ<0时,函数在x轴上没有实根。

六、二次函数的图像二次函数的图像是一条抛物线,它的开口方向和顶点的位置可以通过二次函数的系数来描述。

七、二次函数的性质1. 当a>0时,抛物线开口向上,函数的最小值为y轴的对称轴。

2. 当a<0时,抛物线开口向下,函数的最大值为y轴的对称轴。

3. 当a>0时,函数在对称轴的一侧是单调递增的,另一侧是单调递减的。

4. 当a<0时,函数在对称轴的一侧是单调递减的,另一侧是单调递增的。

八、二次函数的应用二次函数在生活中有很多应用,比如抛物线的运动轨迹、抛物线的优化问题、抛物线的张力问题、抛物线的最大值与最小值等等。

以上就是初三二次函数的知识点总结。

希望同学们能够掌握这些知识,为以后的学习打下坚实的基础。

专题07 二次函数 (7大考点)九年级数学上学期期末考点(北师大版)

专题07 二次函数 (7大考点)九年级数学上学期期末考点(北师大版)

2a
2a
y最小值
4ac b2 4a
最大值,
y最大值
4ac 4a
b2
期末复习
【典例 1】(2022•绍兴)已知函数 y=﹣x2+bx+c(b,c 为常数)的图象经过点(0,﹣3),(﹣6,﹣3).
(1)求 b,c 的值.
(2)当﹣4≤x≤0 时,求 y 的最大值.
(3)当 m≤x≤0 时,若 y 的最大值与最小值之和为 2,求 m 的值.
变式 3:(2023•神木市一模)把抛物线 y=x2+bx+c 向右平移 4 个单位,再向下平移 3 个单位,得到抛物 线 y=x2﹣4x+3,则 b、c 的值分别为 ( ) A.b=﹣12,c=32B.b=4,c=﹣3 C.b=0,c=6 D.b=4,c=6
【解答】解:将抛物线 y=x2﹣4x+3 化成顶点式为 y=(x﹣2)2﹣1, 将抛物线 y=x2﹣4x+3 向左平移 4 个单位,再向上平移 3 个单位得新抛物线解析式为 y=(x﹣2+4)2 ﹣1+3,即 y=x2+4x+6,即抛物线 y=x2+bx+c 的解析式为 y=x2+4x+6,∴b=4,c=6,故选:D.
∴﹣ =1,∴b=﹣2a<0,∵抛物线与 y 轴交点在 x 轴下方,
∴c<0,∴abc>0,故①错误;∵x=﹣1 时,y>0,∴a﹣b+c>0, ∵a>0,∴2a﹣b+c>0,故②错误;∵b=﹣2a,∴a=﹣ ,
由图象可得 x=﹣1 时,y=a﹣b+c=﹣ b+c>0,∴3b﹣2c<0,故③正确;
由 x=1 时函数取最小值可得 am2+bm+c≥a+b+c,∴am2+bm≥a+b, ∵a=﹣ ,∴am2+bm≥ ,∴2am2+2bm﹣b≥0,故④正确.故选:D.

初中数学北师大九年级下册(2023年新编) 二次函数二次函数回顾与思考

初中数学北师大九年级下册(2023年新编) 二次函数二次函数回顾与思考

二次函数图象和性质一.知识回顾1二次函数的定义:一般地,形如__________(a 、 b 、 c 是常数,a___ 0)的函数叫做x 的二次函数. 2形如y = a (x-h) 2 +k (a ≠0) 的二次函数图像和性质 二次函数 开口方向 对称轴 顶点坐标 y = a (x-h) 2+ka>0a<0 二次函数y=a(x-h)²+k 与y=ax²的关系(1)、平移关系(2)、顶点变化3二次函数解析式的三种表示方式(1)、已知抛物线上的三点,通常设解析式为________________(2)、已知抛物线顶点坐标(h, k ),通常设抛物线解析式为_______________(3)、已知抛物线与x 轴的两个交点(x 1,0)、 (x 2,0),通常设解析式为_____________二.双基自测(1)抛物线y = x 2的开口向 ,对称轴是 ,顶点坐标是 ,图象过第 象限 ;(2)已知y = - nx 2 (n >0) , 则图象 ( )(填“可能”或“不可能”)过点A (-2,3)。

(3)已知抛物线y = ax 2+k 的图象过点A (0,-2) 和B (2,0) ,则a = ,k = ;函数关系式是y = 。

三.实践探究例 二次函数y=ax 2+bx+c 的最大值是2,图象顶点在直线y=x+1上,并且图象经过点(3,-6),求a 、b 、c 。

例 已知抛物线y=ax 2+bx+c 与x 轴正、负半轴分别交于A 、B 两点,与y 轴负半轴交于点C 。

若OA=4,OB=1,∠ACB=90°,①求抛物线解析式。

②在抛物线上是否存在一点P ,使以P 、A 、B 为顶点的三角形与 ABC 面积相等,若存在,求出点P 的坐标,不存在,请说明理由。

四.能力训练1.若无论x 取何实数,二次函数y=ax 2+bx+c 的值总为负,那么a 、b 、 c 应满足的条件是( ) >0且b 2-4ac ≥0 >0且b 2-4ac>0<0且b 2-4ac<0 <0且b 2-4ac ≤02.已知二次函数y=ax 2+bx+c 的图象如图所示,请根据图象判断下列各式的符号:a 0 ,b 0, A BxyO Cc 0 ,∆0 , a-b+c 0,a+b+c 03.已知抛物线过点A(―1,0)、B(3,0)、C(0, -6)(1)求抛物线对应的函数关系式及对称轴;(2)点C′是点C关于抛物线对称轴的对称点,证明直线y=x-8必经过点C′.2a>0a<0开口方向顶点对称轴最值2二次函数解析式的三种表示方式六.课外作业1.已知二次函数图象的顶点坐标是(-1, 2),且过点(0, ) 。

北师大数学九年级下册二次函数知识点总结

北师大数学九年级下册二次函数知识点总结

二次函数学问点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c=++〔a b c,,是常数,0a≠〕的函数,叫做二次函数。

这里须要强调:和一元二次方程类似,二次项系数0a≠,而b c,可以为零.二次函数的定义域是全体实数.2. 二次函数2=++的构造特征:y ax bx c⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a b c,,是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的根本形式1. 二次函数根本形式:2y ax=的性质:a 的肯定值越大,抛物线的开口越小。

Array2.2y ax c=+的性质:上加下减。

3.()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形态不变,将其顶点平移到()h k ,处,详细平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的根底上“h 值正右移,负左移;k 值正上移,负下移〞. 概括成八个字“左加右减,上加下减〞. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上〔下〕平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2〔或m c bx ax y -++=2〕⑵c bx ax y ++=2沿轴平移:向左〔右〕平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2〔或c m x b m x a y +-+-=)()(2〕四、二次函数()2y a x h k =-+及2y ax bx c =++的比较从解析式上看,()2y a x h k =-+及2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a-=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、及y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、及x 轴的交点()10x ,,()20x ,〔假设及x 轴没有交点,那么取两组关于对称轴对称的点〕.画草图时应抓住以下几点:开口方向,对称轴,顶点,及x 轴的交点,及y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,. 当2b x a<-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a -.2. 当0a <时,抛物线开口向下,对称轴为2b x a=-,顶点坐标为2424b ac b aa ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++〔a ,b ,c 为常数,0a ≠〕;2. 顶点式:2()y a x h k =-+〔a ,h ,k 为常数,0a ≠〕;3. 两根式:12()()y a x x x x =--〔0a ≠,1x ,2x 是抛物线及x 轴两交点的横坐标〕. 留意:任何二次函数的解析式都可以化成一般式或顶点式,但并非全部的二次函数都可以写成交点式,只有抛物线及x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象及各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,明显0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 确定了抛物线开口的大小和方向,a 的正负确定开口方向,a 的大小确定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 确定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a -<,即抛物线的对称轴在y 轴左侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好及上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 确定了抛物线对称轴的位置.ab 的符号的断定:对称轴abx 2-=在y 轴左边那么0>ab ,在y 轴的右侧那么0<ab ,概括的说就是“左同右异〞 总结: 3. 常数项c⑴ 当0c >时,抛物线及y 轴的交点在x 轴上方,即抛物线及y 轴交点的纵坐标为正;⑵ 当0c =时,抛物线及y 轴的交点为坐标原点,即抛物线及y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线及y 轴的交点在x 轴下方,即抛物线及y 轴交点的纵坐标为负.总结起来,c 确定了抛物线及y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必需根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种状况:1. 抛物线上三点的坐标,一般选用一般式;2. 抛物线顶点或对称轴或最大〔小〕值,一般选用顶点式;3. 抛物线及x 轴的两个交点的横坐标,一般选用两根式;4. 抛物线上纵坐标一样的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种状况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k=-+-;4. 关于顶点对称〔即:抛物线绕顶点旋转180°〕2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,明显无论作何种对称变换,抛物线的形态肯定不会发生改变,因此a 恒久不变.求抛物线的对称抛物线的表达式时,可以根据题意或便利运算的原那么,选择相宜的形式,习惯上是先确定原抛物线〔或表达式的抛物线〕的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数及一元二次方程:1. 二次函数及一元二次方程的关系〔二次函数及x 轴交点状况〕:一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特别状况.图象及x 轴的交点个数:① 当240b ac ∆=->时,图象及x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的间隔21AB x x =-=② 当0∆=时,图象及x 轴只有一个交点; ③ 当0∆<时,图象及x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >;2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <.2. 抛物线2y ax bx c =++的图象及y 轴肯定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象及x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大〔小〕值须要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置推断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号推断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和一点对称的点坐标,或及x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 及二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,提示二次函数、二次三项式和一元二次方程之间的内在联络:二次函数图像参考:2-322y=3(x+4)22y=3x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少y=-2x2y=-2(x-3)2二次函数考察重点及常见题型1. 考察二次函数的定义、性质,有关试题常出如今选择题中, 如:以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 那么m 的值是2. 综合考察正比例、反比例、一次函数、二次函数的图像,习题的特点是在同始终角坐标系内考察两个函数的图像,试题类型为选择题,如:如图,假如函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是〔 〕A B C D3. 考察用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

北师大版九年级下册第二章二次函数课本知识点

北师大版九年级下册第二章二次函数课本知识点

北师大版九年级下册
第二章 二次函数
1、二次函数
一般地,若两个变量y x ,之间的对应关系可以表示成c bx ax y ++=2()0,,≠a c b a 是常数,的形式,则称y 是x 的二次函数。

2、二次函数的图像与性质
二次函数2x y =的图象是一条抛物线,它的开口向上,且关于y 轴对称。

对称轴与抛物线的交点是抛物线的顶点,它是图象的最低点。

一般地,平移二次函数2x y =的图象便可得到二次函数()k h x a y +-=2的图象。

因此,二次函数()k h x a y +-=2
的图象是一条抛物线。

当0>a 时,开口向上,当0<a 时,开口向下,对称轴是直线h x =,顶点坐标为()k h ,。

3、确定二次函数的表达式(略)
4、二次函数的应用(略)
5、二次函数与一元二次方程
二次函数c bx ax y ++=2的图象与x 轴的交点有三种情况:有两个交点、有一个交点、没有交点。

与此相对应,一元二次方程02=++c bx ax 的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、没有实数根。

二次函数c bx ax y ++=2的图象与x 轴交点的横坐标就是一元二次方程02=++c bx ax 的根。

北师大版数学九年级下册:二次函数知识点总结

北师大版数学九年级下册:二次函数知识点总结

北师大版数学九年级下册:二次函数知识点总结二次函数知识点总结一、二次函数概念:二次函数是指形如y=ax^2+bx+c(a、b、c为常数,a≠0)的函数。

需要注意的是,和一元二次方程类似,二次项系数a≠0,而b、c可以为零。

二次函数的定义域是全体实数。

二、二次函数的基本形式1.二次函数基本形式:y=ax^2的性质:a的绝对值越大,抛物线的开口越小,a的符号决定开口方向,顶点坐标在对称轴上方(a>0)或下方(a<0)。

性质:当x增大时,y随之增大,当x减小时,y随之减小,当x等于顶点时,y有最小值(a>0)。

当x增大时,y随之减小,当x减小时,y随之增大,当x等于顶点时,y有最大值(a<0)。

2.y=ax^2+c的性质:上加下减,a的符号决定开口方向,顶点坐标在对称轴上方(a>0)或下方(a<0)。

性质:当x增大时,y随之增大,当x减小时,y随之减小,当x等于顶点时,y有最小值c(a>0)。

当x增大时,y随之减小,当x减小时,y随之增大,当x等于顶点时,y有最大值c(a<0)。

3.y=a(x-h)^2的性质:左加右减,a的符号决定开口方向,顶点坐标为(h,k)。

性质:当x大于h时,y随之增大,当x小于h时,y随之减小,当x等于h时,y有最小值k。

当x大于h时,y随之减小,当x小于h时,y随之增大,当x等于h时,y有最大值k。

4.y=a(x-h)^2+k的性质:a的符号决定开口方向,顶点坐标为(h,k)。

性质:当x大于h时,y随之增大,当x小于h时,y随之减小,当x等于h时,y有最小值k。

当x大于h时,y随之减小,当x小于h时,y随之增大,当x等于h时,y有最大值k。

三、二次函数图象的平移平移步骤:方法一:将抛物线解析式转化成顶点式y=a(x-h)^2+k,确定其顶点坐标(h,k)处,具体平移方法如下:保持抛物线y=ax^2的形状不变,将其顶点平移到(h,k),向上(k>0)或向下(k<0)平移|k|个单位。

(完整版)新北师大版九年级数学二次函数知识点归纳总结

(完整版)新北师大版九年级数学二次函数知识点归纳总结

二次函数知识点归纳1.定义:一般地,如果y =ax +bx +c (a ,b ,c 是常数,a ≠0),那么y 叫做x 的二次函数.2.二次函数y =ax 的性质(1)抛物线y =ax 的顶点是坐标原点,对称轴是y 轴.(2)函数y =ax 的图像与a 的符号关系.①当a >0时⇔抛物线开口向上⇔顶点为其最低点;②当a <0时⇔抛物线开口向下⇔顶点为其最高点.(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为y =ax (a ≠0).3.二次函数y =ax +bx +c 的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数y =ax +bx +c 用配方法可化成:y =a (x -h )22222222b 4ac -b 2+k 的形式,其中h =-,k =.2a 4a22225.二次函数由特殊到一般,可分为以下几种形式:①y =ax ;②y =ax +k ;③y =a (x -h );④y =a (x -h )+k ;2⑤y =ax +bx +c .6.抛物线的三要素:开口方向、对称轴、顶点.①a 的符号决定抛物线的开口方向:当a >0时,开口向上;当a <0时,开口向下;a 相等,抛物线的开口大小、形状相同.②平行于y 轴(或重合)的直线记作x =h .特别地,y 轴记作直线x =0.7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8.求抛物线的顶点、对称轴的方法b 4ac -b 2b b ⎫4ac -b 2⎛2(-,)(1)公式法:y =ax +bx +c =a x +,∴顶点是,对称轴是直线x =-.⎪+2a 4a 2a 2a 4a ⎝⎭(2)配方法:运用配方的方法,将抛物线的解析式化为y =a (x -h )+k 的形式,得到顶点为(h ,k ),对称轴是直线22x =h .(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9.抛物线y =ax +bx +c 中,a ,b ,c 的作用(1)a 决定开口方向及开口大小,这与y =ax 中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线y =ax +bx +c 的对称轴是直线222x =-b b b ,故:①b =0时,对称轴为y 轴;②>0(即a 、b 同号)时,对称轴在y 轴左侧;③<0(即a 、2a a a b 异号)时,对称轴在y 轴右侧.(3)c 的大小决定抛物线y =ax +bx +c 与y 轴交点的位置.当x =0时,y =c ,∴抛物线y =ax +bx +c 与y 轴有且只有一个交点(0,c ):①c =0,抛物线经过原点;②c >0,与y 轴交于正半轴;③c <0,与y 轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则10.几种特殊的二次函数的图像特征如下:函数解析式开口方向当a >0时开口向上对称轴顶点坐标(0,0)(0,k )(h ,0)(h ,k )22b <0.ay =ax 2y =ax +k y =a (x -h )2x =0(y 轴)x =0(y 轴)x =h x =hx =-b 2a 22y =a (x -h )+k 当a <0时开口向下y =ax +bx +c 2b 4ac -b 2,(-)2a 4a11.用待定系数法求二次函数的解析式(1)一般式:y =ax +bx +c .已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:y =a (x -h )+k .已知图像的顶点或对称轴,通常选择顶点式.22(3)交点式:已知图像与x 轴的交点坐标x 1、x 2,通常选用交点式:y =a (x -x 1)(x -x 2).12.直线与抛物线的交点(1)y 轴与抛物线y =ax +bx +c 得交点为(0,c ).2(2)与y 轴平行的直线x =h 与抛物线y =ax +bx +c 有且只有一个交点(h ,ah +bh +c ).22(3)抛物线与x 轴的交点2二次函数y =ax +bx +c 的图像与x 轴的两个交点的横坐标x 1、x 2,是对应一元二次方程ax +bx +c =0的两2个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔∆>0⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔∆=0⇔抛物线与x 轴相切;③没有交点⇔∆<0⇔抛物线与x 轴相离.(4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是ax +bx +c =k 的两个实数根.(5)一次函数y =kx +n (k ≠0)的图像l 与二次函数y =ax +bx +c (a ≠0)的图像G 的交点,由方程组22y =kx +ny =ax +bx +c 2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点;②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.0),B (x 2,0),由于x 1、x 2是(6)抛物线与x 轴两交点之间的距离:若抛物线y =ax +bx +c 与x 轴两交点为A (x 1,2方程ax +bx +c =0的两个根,故2b c x 1+x 2=-,x 1⋅x 2=a aAB =x 1-x 2=(x 1-x 2)2=(x 1-x 2)24c b 2-4ac ∆⎛b ⎫-4x 1x 2= -⎪-==a a a ⎝a ⎭2。

北师大数学九年级下册-二次函数知识点总结

北师大数学九年级下册-二次函数知识点总结

二次函数 知识点总结一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。

2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:三、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,.五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2b x a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2bx a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a -.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧. ⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧;当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y a x b x c =++关于x 轴对称后,得到的解析式是2y ax bx c =---; ()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y a x b x c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y a x b x c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y a x b x c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-; ()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离21AB x x =-.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2' 当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ;3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:二次函数图像参考:2-3222y=3(x+4)22y=3x 2十一、函数的应用二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型y=-2x2y=-2(x-3)21. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是 2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题, 如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题, 如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。

北师大版九年级下册数学第4讲《二次函数的概念》知识点梳理

北师大版九年级下册数学第4讲《二次函数的概念》知识点梳理

北师大版九年级下册数学第 4 讲《二次函数的概念》知识点梳理【学习目标】1.理解函数的定义、函数值、自变量、因变量等基本概念;2.了解表示函数的三种方法——解析法、列表法和图像法;3.会根据实际问题列出函数的关系式,并写出自变量的取值范围;4.理解二次函数的概念,能够表示简单变量之间的二次函数关系.【要点梳理】要点一、函数的概念一般地,在一个变化过程中,如果有两个变量x,y,对于自变量x 在某一范围内的每一个确定值,y 都有惟一确定的值与它对应,那么就说y 是x 的函数.对于自变量x 在可以取值范围内的一个确定的值a,函数y 有惟一确定的对应值,这个对应值叫做当x=a 时函数的值,简称函数值.要点诠释:对于函数的概念,应从以下几个方面去理解:(1)函数的实质,揭示了两个变量之间的对应关系;(2)判断两个变量之间是否有函数关系,要看对于x 允许取的每一个值,y 是否都有惟一确定的值与它相对应;(3)函数自变量的取值范围,应要使函数表达式有意义,在解决实际问题时,还必须考虑使实际问题有意义. 要点二、函数的三种表示方法表示函数的方法,常见的有以下三种:(1)解析法:用来表示函数关系的数学式子叫做函数的表达式,(或解析式),用数学式子表示函数的方法称为解析法.(2)列表法:用一个表格表达函数关系的方法.(3)图象法:用图象表达两个变量之间的关系的方法.要点诠释:函数的三种表示方法各有不同的长处.解析式法能揭示出变量之间的内在联系,但较抽象,不是所有的函数都能列出解析式;列表法可以清楚地列出一些自变量和函数值的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等;图象法可以直观形象地反映函数的变化趋势,而且对于一些无法用解析式表达的函数,图象可以充当重要角色.对照表如下:表示方法全面性准确性直观性形象性列表法×∨∨×解析式法∨∨××图象法××∨∨要点三、二次函数的概念一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数.若b=0,则y=ax2+c;若c=0,则y=ax2+bx;若b=c=0,则y=ax2.以上三种形式都是二次函数的特殊形式,而y=ax2+bx+c(a≠0)是二次函数的一般式.要点诠释:如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c 可分别为零,也可以同时都为零.【典型例题】类型一、函数的相关概念1、如图所示,下列各曲线中表示y 是x 的函数的有( ).A.1 个B.2 个C.3 个D.4 个【思路点拨】抓住函数定义中的关键词语“y 都有惟一确定的值”,x与y 之间的对应,可以是“一对一”,也可以是“多对一”,不能是“一对多”.【答案】C;【解析】这是一道函数识别题,从函数概念出发,领悟其内涵,此题不难得到答案,④不构成函数关系.【总结升华】在一个变化过程中,如果有两个变量x 与y ,并且对于x 的每一个确定的值,y 都有惟一确定的值与其对应,那么我们就说x 是自变量,y 是x 的函数.举一反三:【变式】下列等式中,y 是x 的函数有()个.3x - 2 y= 0, x2-y2= 1, y = x, y =| x |, x =| y |3 2x -12x -1⎩A.1B.2C.3D.4【答案】C ;要判断是否为函数,需判断两个变量是否满足函数的定义.对于 x 2- y2= 1,当 x 取 2 时, y 有两个值± 与它对应,对于 x =| y | ,当 x 取 2 时, y 有两个值±2 和它对应,所以这两个式子不满足函数定义的要求:y 都有惟一确定的值与 x 对应,所以不是函数,其余三个式子满足函数的定义.2、求出下列函数中自变量 x 的取值范围. (1). y = x 2 - x + 5 (2). y =4x2x - 3(3). y = (4). y =x(5). y = (6). y =x + 3x +2【思路点拨】自变量的范围,是使函数有意义的 x 的值,大致是开平方时,被开方数是非负数,分式的分母不为零等等.【答案与解析】解:(1). y = x 2 - x + 5 , x 为任何实数,函数都有意义;(2). y =4x 2x - 3 ,要使函数有意义,需 2 x -3≠0,即 x ≠ 3 ;2(3). y =(4). y =,要使函数有意义,需 2 x +3≥0,即 x ≥ - 3;2x ,要使函数有意义,需 2 x -1>0,即 x > 1; 2 (5). y = (6). y =x + 3 x +2 , x 为任何实数,函数都有意义;⎧x + 3 ≥ 0 ,要使函数有意义,需⎨x + 2 ≠ 0 ,即 x ≥-3 且 x ≠-2.【总结升华】关于自变量的取值范围,在实际问题中,还要考虑实际情况.3、若 y 与 x 的关系式为 y = -x 2+4x +5 ,当 x =2 时, y 的值为( )A .8B .9C .10D .11【思路点拨】把 x = 2 代入关系式即可求得函数值. 【答案】B ;【解析】 y = -22+ 4⨯ 2 + 5 = 9 .【总结升华】 y 是 x 的函数,如果当 x = a 时 y = b ,那么b 叫做当自变量为 a 时的函数值.类型二、函数的三种表示方法2x + 3 3 1- 2x2x + 3 31- 2x4、一水库的水位在最近5 小时内持续上涨,下表记录了这5 小时的水位高度.t/时012345…y/米10 10.05 10.10 10.15 10.20 10.25 …(1)由记录表推出这5 小时中水位高度y(米)随时间t(时)变化的函数解析式,并画出函数图象.(2)据估计这种上涨的情况还会持续2 小时,预测再过2 小时水位高度将达到多少米?【思路点拨】观察表格发现随着时间的均匀增加,水位高度的增加量相同,可知该函数为一次函数.【答案与解析】解:(1)由表中观察到开始水位高10 米,以后每隔1 小时,水位升高0.05 米,这样的规律可以表示为:y=0.05t+10(0≤t≤5)这个函数的图象如下图所示:(2)再过2 小时的水位高度,就是t=5+2=7 时,y=0.05t+10 的函数值,从解析式容易算出:y=0.05×7+10=10.35, 从函数图象也能得出这个值数.答:2 小时后,预计水位高10.35 米.【总结升华】本题综合考察了列表法、解析法和图像法,是一道不错的试题.类型三、二次函数的概念5、当常数m≠时,函数y=(m2﹣2m﹣8)x2+(m+2)x+2是二次函数;当常数m= 时,这个函数是一次函数.【思路点拨】根据一次函数与二次函数的定义求解.【答案与解析】解:由函数y=(m2﹣2m﹣8)x2+(m+2)x+2是二次函数,得m2﹣2m﹣8m≠0.解得m≠4,m≠﹣2,由y=(m2﹣2m﹣8)x2+(m+2)x+2 是一次函数,得,解得m=4,故答案为:4,﹣2;4.【总结升华】本题考查了二次函数的定义,利用了二次函数的二次项的系数不能为零,一次函数一次项的系数不能为零.举一反三:【变式1】下列函数中,是二次函数的是()A.y = 2 -x2【答案】AB.y =x2-1xC. y = (x - 2)2-x2D. y =x3- 2x +1【变式 2】若函数是二次函数,则m 的值是.【答案与解析】解:若函数是二次函数,则m2﹣9m+20=2,再利用m﹣6≠0,故(m﹣3)(m﹣6)=0,m≠6,解得:m=3.故答案为:3.。

新北师大版九年级数学二次函数知识点归纳总结

新北师大版九年级数学二次函数知识点归纳总结

九年级数学中的二次函数是一个非常重要的内容,主要包括函数定义、图像和性质、解析式、根与系数之间的关系、应用等方面的知识。

下面对这些知识点进行归纳总结。

1. 二次函数的定义:二次函数是指形如f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a ≠ 0。

2.二次函数的图像和性质:-当a>0时,二次函数的图像是一个开口向上的抛物线,顶点在最低点;当a<0时,二次函数的图像是一个开口向下的抛物线,顶点在最高点。

-顶点坐标为(-b/2a,f(-b/2a)),其中-b/2a为对称轴的横坐标,f(-b/2a)为对称轴上的纵坐标。

-当函数的a值较大时,抛物线开口越大,图像越扁平;当a值较小时,抛物线开口越小,图像越瘦高。

-当函数的c值为正时,图像在y轴上方;当c值为负时,图像在y轴下方。

-二次函数的对称轴与x轴交点为顶点坐标的x坐标。

-二次函数的图像关于对称轴对称。

3. 二次函数的解析式:二次函数的一般形式是f(x) = ax^2 + bx + c,其中a、b、c为常数,可以用来表示二次函数的解析式。

4.根与系数之间的关系:- 二次函数的根是函数f(x) = ax^2 + bx + c的解,即使得f(x) = 0的x值。

二次函数的根可能有两个、一个或没有。

-当二次函数有两个根时,即存在两个解x1和x2,那么二次函数可以表示为f(x)=a(x-x1)(x-x2)。

-二次函数的根与系数之间的关系可由韦达定理得到。

设二次函数的两个根为x1和x2,则有以下关系:-x1+x2=-b/a-x1*x2=c/a5.二次函数的应用:-二次函数可以应用于描述各类抛物线问题,如求抛物线的顶点、根、对称轴等。

-二次函数可以用来表示抛物线轨迹的运动问题,如抛物线运动的高度、时间等。

总结:二次函数是九年级数学中的重要内容,掌握二次函数的定义、图像和性质、解析式、根与系数之间的关系以及应用可以帮助我们更好地理解和解决与抛物线相关的问题。

九年级数学(北师大版)·中考知识梳理 第12讲 二次函数的图象与性质

九年级数学(北师大版)·中考知识梳理 第12讲 二次函数的图象与性质
a、b
决定对称轴(x=-b/2a)的位置
当a,b同号,-b/2a<0,对称轴在y轴左边;
当b=0时,-b/2a=0,对称轴为y轴;
当a,b异号,-b/2a>0,对称轴在y轴右边.
cHale Waihona Puke 决定抛物线与y轴的交点的位置
当c>0时,抛物线与y轴的交点在正半轴上;
当c=0时,抛物线经过原点;
当c<0时,抛物线与y轴的交点在负半轴上.
失分点警示:
抛物线平移规律是“上加下减,左加右减”,左右平移易弄反.
例:将抛物线y=x2沿x轴向右平移2个单位后所得抛物线的解析式是y=(x-2)2.
知识点四:二次函数与一元二次方程以及不等式
5.二次函数与一元二次方程
二次函数y=ax2+bx+c(a≠0)的图象与x轴交点的横坐标是一元二次方程ax2+bx+c=0的根.
例:当0≤x≤5时,抛物线y=x2+2x+7的最小值为7.
开口
向上
向下
对称轴
x=
顶点坐标
增减性
当x> 时,y随x的增大而增大;当x< 时,y随x的增大而减小.
当x> 时,y随x的增大而减小;当x< 时,y随x的增大而增大.
最值
x= ,y最小= .
x= ,y最大= .
3.系数a、b、c
a
决定抛物线的开口方向及开口大小
3.二次函数的图象和性质
图象
(1)比较二次函数函数值大小的方法:①直接代入求值法;②性质法:当自变量在对称轴同侧时,根据函数的性质判断;当自变量在对称轴异侧时,可先利用函数的对称性转化到同侧,再利用性质比较;④图象法:画出草图,描点后比较函数值大小.
失分点警示
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数知识点归纳
1.定义:一般地,如果c b a c bx ax y ,,(2
++=是常数,)0≠a ,那么y 叫做x 的二次函数. 2.二次函数2
ax y =的性质
(1)抛物线2
ax y =的顶点是坐标原点,对称轴是y 轴. (2)函数2
ax y =的图像与a 的符号关系.
①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;
②当0<a 时⇔抛物线开口向下⇔顶点为其最高点.
(3)顶点是坐标原点,对称轴是y 轴的抛物线的解析式形式为2
ax y =)(0≠a . 3.二次函数 c bx ax y ++=2
的图像是对称轴平行于(包括重合)y 轴的抛物线. 4.二次函数c bx ax y ++=2
用配方法可化成:()
k h x a y +-=2
的形式,其中a
b a
c k a b h 4422
-=-=,.
5.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2
;③()2
h x a y -=;④()k h x a y +-=2

⑤c bx ax y ++=2
.
6.抛物线的三要素:开口方向、对称轴、顶点.
①a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;
a 相等,抛物线的开口大小、形状相同.
②平行于y 轴(或重合)的直线记作h x =.特别地,y 轴记作直线0=x .
7.顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.
8.求抛物线的顶点、对称轴的方法
(1)公式法:a b ac a b x a c bx ax y 44222
2
-+
⎪⎭⎫ ⎝

+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2
的形式,得到顶点为(h ,k ),对称轴是直线
h x =.
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对
称轴,对称轴与抛物线的交点是顶点.
用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.
9.抛物线c bx ax y ++=2
中,c b a ,,的作用
(1)a 决定开口方向及开口大小,这与2
ax y =中的a 完全一样.
(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2
的对称轴是直线
a b x 2-
=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<a
b
(即a 、b 异号)时,对称轴在y 轴右侧.
(3)c 的大小决定抛物线c bx ax y ++=2
与y 轴交点的位置.
当0=x 时,c y =,∴抛物线c bx ax y ++=2
与y 轴有且只有一个交点(0,c ): ①0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y 轴右侧,则 0<a
b
. 10.几种特殊的二次函数的图像特征如下:
11.用待定系数法求二次函数的解析式
(1)一般式:c bx ax y ++=2
.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2
.已知图像的顶点或对称轴,通常选择顶点式.
(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 12.直线与抛物线的交点
(1)y 轴与抛物线c bx ax y ++=2
得交点为(0, c ).
(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2
有且只有一个交点(h ,c bh ah ++2
).
(3)抛物线与x 轴的交点
二次函数c bx ax y ++=2
的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02
=++c bx ax 的两
个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点⇔0>∆⇔抛物线与x 轴相交;
②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点
同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横
坐标是k c bx ax =++2
的两个实数根.
(5)一次函数()0≠+=k n kx y 的图像l 与二次函数()02
≠++=a c bx ax y 的图像G 的交点,由方程组
c
bx ax y n kx y ++=+=2的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时
⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.
(6)抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2
与x 轴两交点为()()0021,,,
x B x A ,由于1x 、2x 是方程02
=++c bx ax 的两个根,故
a
c
x x a b x x =
⋅-=+2121,()
()
a a ac
b a
c a b x x x x x x x x AB ∆=-=-⎪⎭

⎝⎛-=--=
-=
-=44422
212
212
2121。

相关文档
最新文档