最新人教A版高中数学必修五第2章2.5.1同步训练习题(含解析)
最新人教A版高中数学必修5第二章测评试卷及答案
第二章测评(时间:120分钟满分:150分)一、选择题(每小题5分,共60分)1.已知数列{a n}是等差数列,a1=2,其公差d≠0.若a5是a3和a8的等比中项,则S18=()A.398B.388C.189D.199a52=a3·a8,公差d≠0,a1=2,∴(a1+4d)2=(a1+2d)·(a1+7d),代入数据可得d=189.故选C.(2+4d)2=(2+2d)·(2+7d),解得d=1,∴S18=18a1+18×1722.已知数列{b n}是等比数列,b9是1和3的等差中项,则b2b16=()A.16B.8C.4D.2b9是1和3的等差中项,所以2b9=1+3,即b9=2.由等比数列{b n}的性质可得b2b16=b92=4.3.已知在递减的等差数列{a n}中,a3=-1,a1,a4,-a6成等比数列,若S n为数列{a n}的前n项和,则S7的值为() A.-14 B.-9C.-5D.-1{a n}的公差为d,由已知得a3=a1+2d=-1,a42=a1·(-a6),即(a1+3d)2=a1·(-a1-5d),且{a n}为递减d=7-21=-14.数列,则d=-1,a1=1.故S7=7a1+7×624.等差数列{a n}中,S16>0,S17<0,当其前n项和取得最大值时,n=()A.8B.9C.16D.17,S16>0,即a1+a16=a8+a9>0,S17<0,即a1+a17=2a9<0,所以a9<0,a8>0,所以等差数列{a n}为递减数列,且前8项为正数,从第9项以后为负数,所以当其前n项和取得最大值时,n=8.故选A.5.(2020·全国Ⅱ高考,文6)记S n为等比数列{a n}的前n项和.若a5-a3=12,a6-a4=24,则S n=()a nA.2n-1B.2-21-nC.2-2n-1D.21-n-1{a n}的公比为q.∵a5-a3=12,a6-a4=24,∴a6-a4=q=2.a5-a3又a 5-a 3=a 1q 4-a 1q 2=12a 1=12,∴a 1=1.∴a n =a 1·q n-1=2n-1,S n =a 1(1-q n )1-q =1×(1-2n )1-2=2n-1. ∴S na n=2n -12n -1=2-12n -1=2-21-n.故选B .6.已知数列{a n }满足a n +a n+1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( ) A.5 B.72C.92D.132a n +a n+1=12,a 2=2,∴a n ={-32,n 为奇数,2,n 为偶数.∴S 21=11×(-32)+10×2=72.故选B .7.我国古代数学巨著《九章算术》中,有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?”这个问题用今天的白话叙述为:“有一位善于织布的女子,每天织的布都是前一天的2倍,已知她5天共织布5尺,问这位女子每天分别织布多少?”根据上面的已知条件,可求得该女子第4天所织布的尺数为( ) A .815B .1615C .2031D .4031n 天织的布为a n 尺,且数列{a n }为公比q=2的等比数列,由题意可得a 1(1-25)1-2=5,解得a 1=531.所以该女子第4天所织布的尺数为a 4=a 1q 3=4031. 故选D .8.在各项都为正数且不相等的等比数列{a n }中,S n 为其前n 项和,若a m ·a 2m+2=a 72=642(m ∈N *),且a m =8,则S 2m =( ) A.127 B.255 C.511D.1 023{a n }的公比为q ,则a 1q m-1·a 1q 2m+1=(a 1q 6)2.因为等比数列{a n }的各项都为正数且不相等,所以m-1+2m+1=12,解得m=4,故a 4=8.又因为a 72=642,所以a 7=64,q 3=a7a 4=8,解得q=2,所以a 1=a 423=1.故S 2m =S 8=1-281-2=255.9.已知在各项均为正数的数列{a n }中,a 1=1,a 2=2,2a n 2=a n -12+a n+12(n ≥2),b n =1a n +an+1,记数列{b n }的前n 项和为S n ,若S n =3,则n 的值是( ) A.99B.33C.48D.92a n 2=a n -12+a n+12(n ≥2),∴数列{a n 2}是首项为1,公差为22-1=3的等差数列,∴a n 2=1+3(n-1)=3n-2.又a n >0,∴a n =√3n -2,∴b n =1an +a n+1=√3n -2+√3n+1=13·(√3n +1−√3n -2), 故数列{b n }的前n 项和S n =13[(√4−√1)+(√7−√4)+…+(√3n +1−√3n -2)]=13·(√3n +1-1).由S n =13(√3n +1-1)=3,解得n=33.故选B 10.已知数列{a n }满足a 1+3a 2+32a 3+…+3n-1a n =n3(n ∈N *),则a n =( ) A.13n B.13n -1C.13nD.13n+1a 1+3a 2+32a 3+…+3n-1a n =n 3,①a 1+3a 2+32a 3+…+3n-2a n-1=n -13(n ≥2),② ①-②,得3n-1a n =n3−n -13=13(n ≥2),∴a n =13n (n ≥2).由①得a 1=13,经验证也满足上式,∴a n =13n (n ∈N *).故选C .11.对于正项数列{a n },定义:G n =a 1+2a 2+3a 3+…+na nn为数列{a n }的“匀称值”.已知数列{a n }的“匀称值”为G n =n+2,则该数列中的a 10等于( ) A .83B .125C .94D .2110G n=a1+2a2+3a3+…+na n,G n=n+2,∴n·G n=n·(n+2)=a1+2a2+3a3+…+na n,∴n.故10×(10+2)=a1+2a2+3a3+…+10a10;9×(9+2)=a1+2a2+3a3+…+9a9,两式相减得10·a10=21,∴a10=2110选D.12.在数列{a n}中,a1=1,a2=2,且a n+2-a n=1+(-1)n(n∈N*),则S100=()A.0B.1 300C.2 600D.2 602a n+2-a n=1+(-1)n(n∈N*),当n=1时,得a3-a1=0,即a3=a1;当n=2时,得a4-a2=2.由此可得,当n为+a2=n.奇数时,a n=a1;当n为偶数时,a n=2×n-22所以S100=a1+a2+…+a100=(a1+a3+…+a99)+(a2+a4+…+a100)=50a1+(2+4+ (100)=2 600.=50+50×(100+2)2二、填空题(每小题5分,共20分)13.若数列{a n}的前n项和S n=n2-8n,n=1,2,3,…,则满足a n>0的n的最小值为.,当n=1时,a1=S1=-7,当n≥2时,a n=S n-S n-1=2n-9.而a1=2×1-9=-7.综上,a n=2n-9.,又因为n∈N*.由2n-9>0,得n>92故满足a n>0的n的最小值为5.14.已知在公差不为零的正项等差数列{a n}中,S n为其前n项和,lg a1,lg a2,lg a4也成等差数列.若a5=10,则S5=.{a n}的公差为d,则d>0.由lg a1,lg a2,lg a4成等差数列,得2lg a2=lg a1+lg a4,则a22=a1a4,即(a1+d)2=a1(a1+3d),d2=a1d.因为d>0,所以d=a1,a5=5a1=10,解得d=a1=2.故S5=5a1+5×4×d=30.215.若等差数列{a n}的前n项和为S n,且a2=0,S5=10,数列{b n}满足b1=0,且b n+1=a n+1+b n,则数列{b n}的通项公式为.{a n }的公差为d ,则{a 1+d =0,5a 1+10d =10,解得{a 1=-2,d =2.于是a n =-2+2(n-1)=2n-4.因此a n+1=2n-2.于是b n+1-b n =2n-2,b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n-1)=0+0+2+…+(2n-4)=n 2-3n+2,故数列{b n }的通项公式为b n =n 2-3n+2.n =n 2-3n+216.(2020·全国Ⅰ高考,文16)数列{a n }满足a n+2+(-1)n a n =3n-1,前16项和为540,则a 1= .n 为偶数时,有a n+2+a n =3n-1,则(a 2+a 4)+(a 6+a 8)+(a 10+a 12)+(a 14+a 16)=5+17+29+41=92, 因为前16项和为540,所以a 1+a 3+a 5+a 7+a 9+a 11+a 13+a 15=448.当n 为奇数时,有a n+2-a n =3n-1,由累加法得a n+2-a 1=3(1+3+5+…+n )-1+n2=34n 2+n+14,所以a n+2=34n 2+n+14+a 1,所以a 1+34×12+1+14+a 1+34×32+3+14+a 1+34×52+5+14+a 1+34×72+7+14+a 1+34×92+9+14+a 1+34×112+11+14+a 1+34×132+13+14+a 1=448,解得a 1=7.三、解答题(共6小题,共70分)17.(本小题满分10分)已知数列{a n }是等差数列,前n 项和为S n ,且满足a 2+a 7=23,S 7=10a 3. (1)求数列{a n }的通项公式;(2)若a 2,a k ,a k+5(k ∈N *)构成等比数列,求k 的值.设等差数列{a n }的公差是d.根据题意有{a 1+d +a 1+6d =23,7a 1+7×62d =10(a 1+2d ), 解得{a 1=1,d =3.所以数列{a n }的通项公式为a n =3n-2. (2)由(1)得a 2=4,a k =3k-2,a k+5=3(k+5)-2, 由于a 2,a k ,a k+5(k ∈N *)构成等比数列, 所以(3k-2)2=4[3(k+5)-2],整理得3k 2-8k-16=0,解得k=4(舍去k =-43). 故k=4.18.(本小题满分12分)已知各项均为正数的等比数列{a n }的前n 项和为S n ,且2a 2=S 2+12,a 3=2. (1)求数列{a n }的通项公式;(2)若b n =log 2a n +3,数列1b n b n+1的前n 项和为T n ,求满足T n >13的正整数n 的最小值.由题意知,2a 2=S 2+12,∴2a 2=a 1+a 2+12,得a 2=a 1+12.设等比数列{a n }的公比为q ,∵a 3=2,∴2q =2q 2+12,化简得q 2-4q+4=0,解得q=2, ∴a n =a 3·q n-3=2·2n-3=2n-2.(2)由(1)知,b n =log 2a n +3=log 22n-2+3=n-2+3=n+1,∴1b n b n+1=1(n+1)(n+2)=1n+1−1n+2, ∴T n =1b1b 2+1b 2b 3+…+1b n b n+1=12−13+13−14+…+1n+1−1n+2=12−1n+2=n2(n+2). 令T n >13,得n2(n+2)>13,解得n>4,∴满足T n >13的正整数n 的最小值是5.19.(本小题满分12分)已知数列{a n }满足2a n+1=1a n+1a n+2(n ∈N *),且a 3=15,a 2=3a 5.(1)求{a n }的通项公式;(2)若b n =3a n a n+1(n ∈N *),求数列{b n }的前n 项和S n .由2a n+1=1a n+1a n+2(n ∈N *)可知数列{1a n}为等差数列.由已知得1a 3=5,1a 2=13·1a 5, 设其公差为d ,则1a 1+2d=5,1a 1+d=13(1a 1+4d),解得1a 1=1,d=2,于是1a n=1+2(n-1)=2n-1,整理得a n =12n -1.(2)由(1)得b n =3a n a n+1=3(2n -1)(2n+1)=32(12n -1-12n+1), 所以S n =32(1-13+13−15+…+12n -1−12n+1)=3n2n+1. 20.(本小题满分12分)已知数列{a n }的前n 项和S n =2a n -2n . (1)求a 1,a 2.(2)设c n =a n+1-2a n ,证明数列{c n }是等比数列.(3)求数列{n+12c n}的前n 项和T n .a 1=S 1,2a 1=S 1+2,∴a 1=S 1=2.由2a n =S n +2n ,知2a n+1=S n+1+2n+1=a n+1+S n +2n+1,∴a n+1=S n +2n+1,①∴a 2=S 1+22=2+22=6.①式知a n+1-2a n =(S n +2n+1)-(S n +2n )=2n+1-2n =2n ,即c n =2n ,∴cn+1c n=2(常数). ∵c 1=21=2,∴{c n }是首项为2,公比为2的等比数列.c n =2n ,∴n+12c n=n+12n+1.∴数列{n+12c n}的前n 项和T n =222+323+424+…+n+12n+1,12T n =223+324+…+n 2n+1+n+12n+2,两式相减,得12T n =222+123+124+125+…+12n+1−n+12n+2=12+123×(1-12n -1)1-12−n+12n+2=34−12n+1−n+12n+2=34−n+32n+2.∴T n =32−n+32n+1. 21.(本小题满分12分)已知数列{a n }的前n 项和S n =a n +12n 2+32n-2(n ∈N *). (1)求数列{a n }的通项公式; (2)若b n ={1(a n -1)(a n +1),n 为奇数,4·(12)a n,n 为偶数,且数列{b n }的前n 项和为T n ,求T 2n .由于S n =a n +12n 2+32n-2,所以当n ≥2时,S n-1=a n-1+12(n-1)2+32(n-1)-2,两式相减得a n =a n -a n-1+n+1,于是a n-1=n+1,所以a n =n+2. (2)由(1)得b n ={1(n+1)(n+3),n 为奇数,(12)n ,n 为偶数,所以T 2n =b 1+b 2+b 3+…+b 2n =(b 1+b 3+…+b 2n-1)+(b 2+b 4+…+b 2n ).因为b 1+b 3+…+b 2n-1=12×4+14×6+16×8+…+12n×(2n+2)=14[11×2+12×3+…+1n×(n+1)]=14(1-12+12-13+…+1n -1n+1)=n 4(n+1),b 2+b 4+…+b 2n =(12)2+(14)4+…+(12)2n =14[1-(14)n ]1-14=13[1-(14)n],于是T 2n =n4(n+1)+13[1-(14)n].22.(本小题满分12分)已知数列{a n }满足3(n+1)a n =na n+1(n ∈N *),且a 1=3. (1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和; (3)若a nb n=2n+3n+1,求证:56≤1b 1+1b 2+…+1b n<1.3(n+1)a n =na n+1,所以an+1a n=3(n+1)n(n ∈N *), 则a2a 1=3×21,a 3a 2=3×32,a 4a 3=3×43,……a n a n -1=3×n n -1,累乘可得an a 1=3n-1×n. 又因为a 1=3,所以a n =n×3n (n ∈N *).{a n }的前n 项和为S n ,则S n =1×3+2×32+3×33+…+(n-1)×3n-1+n×3n ,①3S n =1×32+2×33+3×34+…+(n-1)×3n +n×3n+1,② ①-②,可得-2S n =3+32+33+…+3n -n×3n+1=3(1-3n )1-3-n×3n+1=32(3n -1)-n×3n+1 =(12-n)×3n+1-32. 所以S n =(n 2-14)×3n+1+34.因为an b n=2n+3n+1, 所以1b n=2n+3n+1×1n×3n =2n+3n (n+1)×13n=3(n+1)-nn (n+1)×13n =(3n -1n+1)×13n =1n ×13n -1−1n+1×13n , 则1b 1+1b 2+…+1b n=(1×13-12×131)+(12×131-13×132)+…+(1n×13n -1-1n+1×13n )=1-1n+1×13n .因为n ∈N *,所以0<1n+1×13n≤16,即56≤1-1n+1×13n <1, 于是56≤1b 1+1b 2+…+1b n <1.。
人教A版高中数学选择性必修第一册2.5.2 圆与圆的位置关系 课时分层练习题含答案解析
2.5.2 圆与圆的位置关系基础练习一、单选题1.已知圆C :x 2+y 2=4,则圆C 关于直线l :x ﹣y ﹣3=0对称的圆的方程为( ) A .x 2+y 2﹣6x +6y +14=0 B .x 2+y 2+6x ﹣6y +14=0 C .x 2+y 2﹣4x +4y +4=0 D .x 2+y 2+4x ﹣4y +4=02.过圆4x y +=上一点P 作圆:()0O x yr r +=>的两条切线,切点分别为,若2APB π∠=,则r =( )A .1BC D3.圆224x y +=与圆:219C x y -+-=的位置关系是( ) A .内切B .相交C .外切D .相离A .210x y --=B .20x y -+=C .20x y --=D .210x y -+=【答案】B【分析】两圆的方程消掉二次项后的二元一次方程即为公共弦所在直线方程.【详解】由x 2+y 2-4=0与x 2+y 2-4x +4y -12=0两式相减得:4480x y -+=,即20x y -+=.5.已知圆1C :2220x y x ++=,圆2C :2260x y y +-=相交于P ,Q 两点,则||PQ =( )A B .5C D6.设圆1:244C x y x y +-+=,圆2:680C x y x y ++-=,则圆1,2的公切线有( )A .1条B .2条C .3条D .4条7.如图,点()2,0A ,()1,1B ,()1,1C -,()2,0D -,CD 是以OD 为直径的圆上一段圆弧,CB 是以BC 为直径的圆上一段圆弧,BA 是以OA 为直径的圆上一段圆弧,三段弧构成曲线Ω,则( )A .曲线Ω与x 轴围成的图形的面积等于32π B .CB 与BA 的公切线的方程为10x y +-C .BA 所在圆与 CB 所在圆的公共弦所在直线的方程为0x y -=D .CD 所在的圆截直线y x =所得弦的长为8.已知圆:211M x y -+-=,圆:211N x y +++=,则下列是M ,N 两圆公切线的直线方程为( )A .y =0B .3x -4y =0C .20x y -=D .20x y -=【答案】ACD9.已知圆O :224x y +=和圆C :231x y -+-=.现给出如下结论,其中正确的是 A .圆O 与圆C 有四条公切线B .过C 且在两坐标轴上截距相等的直线方程为5x y +=或10x y -+= C .过C 且与圆O 相切的直线方程为916300x y -+=D .P 、Q 分别为圆O 和圆C 上的动点,则PQ 3+3 10.两圆22230x y y +--=与2220x y x ++=的公共弦所在直线的方程为______. 【答案】2230x y ++=【分析】两圆相减,消去22,x y 即为答案.【详解】22230x y y +--=与2220x y x ++=相减得:2230x y ++=,即为公共弦所在直线的方程.故答案为:2230x y ++=11.已知圆C 1:2264120x y x y +-++=与圆C 2:22620x y x y a +--+=,若圆C 1与圆C 2有且仅有一个公共点,则实数a 的值为___________.12.圆230x y x +--=与224230x y x y +-++=的交点坐标为______. 【答案】()12-,和()30, 【分析】联立两圆的方程即可求解.【详解】联立22222304230x y x x y x y ⎧+--=⎨+-++=⎩,两式相减得=3x y +,将其代入22230x y x +--=中得0y =或2y =-,进而得30x y =⎧⎨=⎩或12x y =⎧⎨=-⎩, 所以交点坐标为()()1230,,,- 13.已知圆221:2440C x y x y +-+-=,圆222:2220C x y x y ++--=,则两圆的公切线条数是___________.14.若圆221x y +=与圆416x a y -+-=有3条公切线,则正数a =___________.15.设两圆1与圆2的公共弦所在的直线方程为_______ 【答案】2410x y --=【分析】利用两圆的方程相减即可求解.【详解】因为圆22110C x y +-=:①,圆222240C x y x y +-+=:②,由-①②得,2410x y --=,所以两圆的公共弦所在的直线方程为2410x y --=.16.已知以()4,3C -为圆心的圆与圆221x y +=相切,则圆C 的方程是______.A B B A B 且45A ∠=,则C 的坐标为______.(坐标分量精确到0.1)45,且A 在直线AC 上,所以18.若平面上的点P 及半径为R 的圆C ,我们称2CP R -为点P 对圆C 的幂,则平面上对圆1C :221x y +=及圆2C :()()22234x y -++=幂相等的点P 的坐标所满足的等式是______.【答案】2x -3y -5=0【分析】设出点P 坐标,依题意列出等式即可. 【详解】由题知:圆心1(0,0)C ,2(2,3)C -, 圆1C 的半径11R =,圆2C 的半径22R =,设点(,)Px y ,则点P 对圆1C 的幂为:()221x y +-,点P 对圆2C 的幂为:()()22234x y -++-,所以有:()()()22221234x y x y +-=-++-,化简得:2x -3y -5=0, 故答案为:2x -3y -5=0. 四、解答题19.若圆224x y +=与圆22260x y ay ++-= (0a >)的公共弦的长为a 的值.。
2014-2015学年 高中数学 人教A版必修五 第二章 2.5(二)等比数列的前n项和(二)
研一研·问题探究、课堂更高效
问续 m 项的和不等于 0, 则它们仍组
成等比数列. 即 Sm,S2m-Sm,S3m-S2m,„仍组成等比数列. 请你证明上述结论.
本 讲 栏 目 开 关
证明
∵在等比数列{an}中有 am+n=amqn,
∴Sm=a1+a2+„+am,
§2.5(二)
本 讲 栏 目 开 关
[问题情境] 一件家用电器,现价 20 000 元,实行分期付款,每期付款数相 同,每月为一期,一个月付款一次,共付 12 次,购买后一年还 清,月利率为 0.8%,按复利计算,那么每期付款多少元?要解 决上述问题,需要了解复利的计算方法,这正是这一节的主要内 容之一.
本 讲 栏 目 开 关
§2.5(二)
【学习目标】 1.熟练应用等比数列前 n 项和公式的有关性质解题. 2.能用等比数列的前 n 项和公式解决实际问题.
本 讲 栏 目 开 关
【学法指导】 1.解决与等比数列前 n 项和有关问题的关键在于“基本量” 以及方程思想方法的灵活运用. 2.运用等比数列前 n 项和解题时要注意“整体思想”方法的 灵活运用. 3. 利用等比数列的知识解决实际问题, 需要从实际问题中抽象 出等比数列模型,明确首项 a1,公比 q,以及项数 n 的实际 含义,切忌含糊不清.
§2.5(二)
在分期付款问题中,贷款 a 元,分 m 个月付清,月利率为 r,
每月还 x 元,想一想,每月付款金额 x 元应如何计算? 下面给出了两种推导方法,请你补充完整:
本 讲 栏 目 开 关
方法一:每个月还款 x 元后的剩余欠款按月份构成一个数列,记 作{an},则有: 经过 1 个月,还款 x 元后,剩余欠款为 a1= a(1+r)-x ; 经过 2 个月,还款 x 元后,剩余欠款为 a2=a1(1+r)-x= a(1+r)2-(1+r)x-x ; ____________________ 经过 3 个月,还款 x 元后,剩余欠款为 a3=a2(1+r)-x=
新教材 人教A版高中数学选择性必修第一册全册各章节课后练习题 含解析
选择性必修第一册全册课后练习题本文档还有大量公式,在网页中显示可能会出现位置错误的情况,下载后均可正常显示,请放心下载练习!第一章空间向量与立体几何................................................................................................ - 2 -1.1.1空间向量及其线性运算......................................................................................... - 2 -1.1.2空间向量的数量积运算......................................................................................... - 8 -1.2空间向量基本定理.................................................................................................. - 15 -1.3.1空间直角坐标系 .................................................................................................. - 22 -1.3.2空间运算的坐标表示........................................................................................... - 28 -1.4.1.1空间向量与平行关系 ....................................................................................... - 34 -1.4.1.2空间向量与垂直关系 ....................................................................................... - 42 -1.4.2用空量研究距离、夹角问题............................................................................... - 51 -章末测验 ....................................................................................................................... - 64 - 第二章直线和圆的方程...................................................................................................... - 78 -2.1.1倾斜角与斜率 ...................................................................................................... - 78 -2.1.2两条直线平行和垂直的判定............................................................................... - 83 -2.2.1直线的点斜式方程............................................................................................... - 87 -2.2.2直线的两点式方程............................................................................................... - 92 -2.2.3直线的一般式方程............................................................................................... - 97 -2.3.1两条直线的交点坐标......................................................................................... - 102 -2.3.2两点间的距离公式............................................................................................. - 102 -2.3.3点到直线的距离公式......................................................................................... - 107 -2.3.4两条平行直线间的距离..................................................................................... - 107 -2.4.1圆的标准方程 .................................................................................................... - 113 -2.4.2圆的一般方程 .................................................................................................... - 118 -2.5.1直线与圆的位置关系......................................................................................... - 122 -2.5.2圆与圆的位置关系............................................................................................. - 128 -章末测验 ..................................................................................................................... - 135 - 第三章圆锥曲线的方程.................................................................................................... - 144 -3.1.1椭圆及其标准方程............................................................................................. - 144 -3.1.2.1椭圆的简单几何性质 ..................................................................................... - 150 -3.1.2.2椭圆的标准方程及性质的应用...................................................................... - 156 -3.2.1双曲线及其标准方程......................................................................................... - 164 -3.2.2双曲线的简单几何性质..................................................................................... - 171 -3.3.1抛物线及其标准方程......................................................................................... - 178 -3.3.2抛物线的简单几何性质..................................................................................... - 184 -章末测验 ..................................................................................................................... - 191 - 模块综合测验 ..................................................................................................................... - 202 -第一章 空间向量与立体几何1.1.1空间向量及其线性运算一、选择题1.空间任意四个点A ,B ,C ,D ,则DA →+CD →-CB →等于( ) A .DB → B .AC → C .AB → D .BA → D [DA →+CD →-CB →=DA →+BD →=BA →.]2.设有四边形ABCD ,O 为空间任意一点,且AO →+OB →=DO →+OC →,则四边形ABCD 是( )A .平行四边形B .空间四边形C .等腰梯形D .矩形A [∵AO →+OB →=DO →+OC →,∴AB →=DC →. ∴AB →∥DC →且|AB →|=|DC →|. ∴四边形ABCD 为平行四边形.]3.已知A ,B ,C 三点不共线,对平面ABC 外的任一点O ,下列条件中能确定点M 与点A ,B ,C 一定共面的是( )A .OM →=OA →+OB →+OC → B .OM →=2OA →-OB →-OC → C .OM →=OA →+12OB →+13OC →D .OM →=13OA →+13OB →+13OC → D [由OM →=13OA →+13OB →+13OC →,可得3OM →=OA →+OB →+OC →⇒OM →-OA →+OM →-OB →+OM →-OC →=0, 即AM →=-BM →-CM →.所以AM →与BM →,CM →在一个平面上,即点M 与点A ,B ,C 一定共面.] 4.若空间中任意四点O ,A ,B ,P 满足OP →=mOA →+nOB →,其中m +n =1,则( )A .P ∈AB B .P ∉ABC .点P 可能在直线AB 上D .以上都不对A [因为m +n =1,所以m =1-n , 所以OP →=(1-n )OA →+nOB →, 即OP →-OA →=n (OB →-OA →), 即AP →=nAB →,所以AP →与AB →共线. 又AP →,AB →有公共起点A ,所以P ,A ,B 三点在同一直线上, 即P ∈AB .]5.已知在长方体ABCD -A 1B 1C 1D 1中,点E 是A 1C 1的中点, 点F 是AE 的三等分点,且AF =12EF ,则AF →=( )A .AA 1→+12AB →+12AD → B .12AA 1→+12AB →+12AD →C .12AA 1→+16AB →+16AD → D .13AA 1→+16AB →+16AD →D [如图所示,AF →=13AE →,AE →=AA 1→+A 1E →,A 1E →=12A 1C 1→,A 1C 1→=A 1B 1→+A 1D 1→,A 1B 1→=AB →,A 1D 1→=AD →,所以AF →=13⎝ ⎛⎭⎪⎫AA 1→+12A 1C 1→=13AA 1→+16AB →+16AD →,故选D.]二、填空题6.已知A ,B ,C 三点不共线,O 为平面ABC 外一点,若由OM →=-2OA →+OB →+λOC →确定的点M 与A ,B ,C 共面,则λ=________.2 [由M 、A 、B 、C 四点共面知:-2+1+λ=1,即λ=2.]7.在平行六面体ABCD -A 1B 1C 1D 1中,M 为AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,用a ,b ,c 表示D 1M →,则D 1M →=________.12a -12b +c [D 1M →=D 1D →+DM → =A 1A →+12(DA →+DC →) =c +12(-A 1D 1→+A 1B 1→) =12a -12b +c .]8.在空间四边形ABCD 中,E ,F 分别是AB ,CD 的中点,则EF →和AD →+BC →的关系是________.(填“平行”,“相等”或“相反”)平行 [设G 是AC 的中点,则EF →=EG →+GF →=12BC →+12AD →=12(AD →+BC →) 所以2EF →=AD →+BC →, 从而EF →∥(AD →+BC →).] 三、解答题9.如图,在空间四边形ABCD 中,G 为△BCD 的重心,E ,F 分别为边CD 和AD 的中点,试化简AG →+13BE →-12AC →,并在图中标出化简结果的向量.[解] ∵G 是△BCD 的重心,BE 是CD 边上的中线,∴GE →=13BE →.又12AC →=12(DC →-DA →)=12DC →-12DA →=DE →-DF →=FE →, ∴AG →+13BE →-12AC →=AG →+GE →-FE →=AF →(如图所示).10.在长方体ABCD -A 1B 1C 1D 1中,M 为DD 1的中点,点N 在AC 上,且AN ∶NC =2∶1,求证:A 1N →与A 1B →,A 1M →共面.[证明] ∵A 1B →=AB →-AA 1→, A 1M →=A 1D 1→+D 1M →=AD →-12AA 1→, AN →=23AC →=23(AB →+AD →), ∴A 1N →=AN →-AA 1→ =23(AB →+AD →)-AA 1→=23(AB →-AA 1→)+23(AD →-12AA 1→) =23A 1B →+23A 1M →, ∴A 1N →与A 1B →,A 1M →共面.11.(多选题)若A ,B ,C ,D 为空间不同的四点,则下列各式为零向量的是( ) A .AB →+2BC →+2CD →+DC → B .2AB →+2BC →+3CD →+3DA →+AC →C.AB →+CA →+BD →D.AB →-CB →+CD →-AD →BD [A 中,AB →+2BC →+2CD →+DC →=AB →+2BD →+DC →=AB →+BD →+BD →+DC →=AD →+BC →;B 中,2AB →+2BC →+3CD →+3DA →+AC →=2AC →+3CA →+AC →=0;C 中,AB →+CA →+BD →=AD →+CA →;D 中,AB →-CB →+CD →-AD →=AB →+BC →+CD →+DA →表示A →B →C →D →A 恰好形成一个回路,结果必为0.]12.(多选题)有下列命题,其中真命题的有( ) A .若AB →∥CD →,则A ,B ,C ,D 四点共线 B .若AB →∥AC →,则A ,B ,C 三点共线C .若e 1,e 2为不共线的非零向量,a =4e 1-25e 2,b =-e 1+110e 2,则a ∥b D .若向量e 1,e 2,e 3是三个不共面的向量,且满足等式k 1e 1+k 2e 2+k 3e 3=0,则k 1=k 2=k 3=0BCD [根据共线向量的定义,若AB →∥CD →,则AB ∥CD 或A ,B ,C ,D 四点共线,故A 错;因为AB →∥AC →且AB →,AC →有公共点A ,所以B 正确;由于a =4e 1-25e 2=-4-e 1+110e 2=-4b ,所以a ∥b ,故C 正确;易知D 也正确.]13.(一题两空)已知A ,B ,C 三点共线,则对空间任一点O ,若OA →=2OB →+μOC →,则μ=________;存在三个不为0的实数λ,m ,n ,使λOA →+mOB →+nOC →=0,那么λ+m +n 的值为________.-1 0 [由A 、B 、C 三点共线,∴2+μ=1,∴μ=-1,又由λOA →+mOB →+nOC →=0得OA →=-m λOB →-n λOC →由A ,B ,C 三点共线知-m λ-nλ=1,则λ+m +n =0.]14.设e 1,e 2是平面上不共线的向量,已知AB →=2e 1+k e 2,CB →=e 1+3e 2,CD →=2e 1-e 2,若A ,B ,D 三点共线,则实数k 为________.-8 [因为BD →=CD →-CB →=e 1-4e 2,AB →=2e 1+k e 2,又A ,B ,D 三点共线,由共线向量定理得12=-4k ,所以k =-8.]15.如图所示,已知四边形ABCD 是平行四边形,点P 是ABCD 所在平面外的一点,连接P A ,PB ,PC ,PD .设点E ,F ,G ,H 分别为△P AB ,△PBC ,△PCD ,△PDA 的重心.(1)试用向量方法证明E ,F ,G ,H 四点共面;(2)试判断平面EFGH 与平面ABCD 的位置关系,并用向量方法证明你的判断. [证明] (1)分别连接PE ,PF ,PG ,PH 并延长,交对边于点M ,N ,Q ,R ,连接MN ,NQ ,QR ,RM ,∵E ,F ,G ,H 分别是所在三角形的重心,∴M ,N ,Q ,R 是所在边的中点,且PE →=23PM →,PF →=23PN →,PG →=23PQ →,PH →=23PR →.由题意知四边形MNQR 是平行四边形,∴MQ →=MN →+MR →=(PN →-PM →)+(PR →-PM →)=32(PF →-PE →)+32(PH →-PE →)=32(EF →+EH →).又MQ →=PQ →-PM →=32PG →-32PE →=32EG →.∴EG →=EF →+EH →,由共面向量定理知,E ,F ,G ,H 四点共面.(2)平行.证明如下:由(1)得MQ →=32EG →,∴MQ →∥EG →, ∴EG →∥平面ABCD .又MN →=PN →-PM →=32PF →-32PE → =32EF →,∴MN →∥EF →. 即EF ∥平面ABCD . 又∵EG ∩EF =E ,∴平面EFGH 与平面ABCD 平行1.1.2空间向量的数量积运算一、选择题1.已知a ⊥b ,|a |=2,|b |=3,且(3a +2b )⊥(λa -b ),则λ等于( ) A .32 B .-32 C .±32 D .1A [∵a ⊥b ,∴a ·b =0,∵3a +2b ⊥λa -b ,∴(3a +2b )·(λa -b )=0, 即3λa 2+(2λ-3)a ·b -2b 2=0,∴12λ-18=0,解得λ=32.]2.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( )A .a 2B .12a 2C .14a 2D .34a 2C [AE →·AF →=12(AB →+AC →)·12AD →=14(AB →·AD →+AC →·AD →)=14⎝ ⎛⎭⎪⎫a ×a ×12+a ×a ×12=14a 2.]3.已知长方体ABCD -A 1B 1C 1D 1,则下列向量的数量积一定不为0的是( ) A .AD 1→·B 1C →B .BD 1→·AC →C .AB →·AD 1→ D .BD 1→·BC →D [对于选项A ,当四边形ADD 1A 1为正方形时,可得AD 1⊥A 1D ,而A 1D ∥B 1C ,可得AD 1⊥B 1C ,此时有AD 1→·B 1C →=0;对于选项B ,当四边形ABCD 为正方形时,AC ⊥BD ,易得AC ⊥平面BB 1D 1D ,故有AC ⊥BD 1,此时有BD 1→·AC →=0;对于选项C ,由长方体的性质,可得AB ⊥平面ADD 1A 1,可得AB ⊥AD 1,此时必有AB →·AD 1→=0;对于选项D ,由长方体的性质,可得BC ⊥平面CDD 1C 1,可得BC ⊥CD 1,△BCD 1为直角三角形,∠BCD 1为直角,故BC 与BD 1不可能垂直,即BD 1→·BC →≠0.故选D.]4.在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,向量BA 1→与向量AC →所成的角为( )A .60°B .150°C .90°D .120°D [BA 1→=BA →+AA 1→,|BA 1→|=2a ,AC →=A B →+AD →,|AC →|=2a .∴BA 1→·AC →=BA →·AB →+BA →·AD →+AA 1→·AB →+AA 1→·AD →=-a 2. ∴cos 〈BA 1→,AC →〉=-a 22a ·2a =-12.∴〈BA 1→,AC →〉=120°.]5.如图所示,在平行六面体ABCD -A ′B ′C ′D ′中,AB =1,AD =2,AA ′=3,∠BAD =90°,∠BAA ′=∠DAA ′=60°,则AC ′的长为( )A .13B .23C .33D .43B [∵AC ′→=AB →+BC →+CC ′→,∴AC ′→2=(AB →+BC →+CC ′→)2=AB →2+BC →2+CC ′→2+2(AB →·BC →+AB →·CC ′→+BC →·CC ′→) =12+22+32+2(0+1×3cos 60°+2×3cos 60°) =14+2×92=23,∴|AC ′→|=23,即AC ′的长为23.] 二、填空题6.已知a ,b 是空间两个向量,若|a |=2,|b |=2,|a -b |=7,则cos 〈a ,b 〉=________.18[将|a -b |=7两边平方,得(a -b )2=7. 因为|a |=2,|b |=2,所以a ·b =12.又a ·b =|a ||b |cos 〈a ,b 〉,故cos 〈a ,b 〉=18.]7.已知a ,b 是异面直线,A ,B ∈a ,C ,D ∈b ,AC ⊥b ,BD ⊥b ,且AB =2,CD =1,则a ,b 所成的角是________.60° [AB →=AC →+CD →+DB →,∴CD →·AB →=CD →·(AC →+CD →+DB →)=|CD →|2=1, ∴cos 〈CD →,AB →〉=CD →·AB →|CD →||AB →|=12,∴异面直线a ,b 所成角是60°.]8.已知|a |=2,|b |=1,〈a ,b 〉=60°,则使向量a +λb 与λa -2b 的夹角为钝角的实数λ的取值范围是________.(-1-3,-1+3) [由题意知 ⎩⎨⎧(a +λb )·(λa -2b )<0,cos 〈a +λb ,λa -2b 〉≠-1. 即⎩⎨⎧(a +λb )·(λa -2b )<0,(a +λb )·(λa -2b )≠-|a +λb ||λa -2b |,得λ2+2λ-2<0.∴-1-3<λ<-1+ 3.] 三、解答题9.如图,在四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB →=a ,AD →=b ,AP →=c .(1)试用a ,b ,c 表示出向量BM →; (2)求BM 的长.[解] (1)∵M 是PC 的中点,∴BM →=12(BC →+BP →)=12[AD →+(AP →-AB →)] =12[b +(c -a )]=-12a +12b +12c .(2)由于AB =AD =1,P A =2,∴|a |=|b |=1,|c |=2,由于AB ⊥AD ,∠P AB =∠P AD =60°,∴a·b =0,a·c =b·c =2·1·cos 60°=1, 由于BM →=12(-a +b +c ),|BM →|2=14(-a +b +c )2=14[a 2+b 2+c 2+2(-a·b -a·c +b·c )]=14[12+12+22+2(0-1+1)]=32.∴|BM →|=62,∴BM 的长为62.10.如图,已知直三棱柱ABC -A ′B ′C ′中,AC =BC =AA ′,∠ACB =90°,D ,E 分别为AB ,BB ′的中点.(1)求证:CE ⊥A ′D ;(2)求异面直线CE 与AC ′所成角的余弦值. [解] (1)证明:设CA →=a ,CB →=b ,CC ′→=c , 根据题意得|a |=|b |=|c |,且a·b =b·c =c·a =0. ∴CE →=b +12c ,A ′D →=-c +12b -12a .∴CE →·A ′D →=⎝ ⎛⎭⎪⎫b +12c ·⎝ ⎛⎭⎪⎫-c +12b -12a =-12c 2+12b 2=0, ∴CE →⊥A ′D →,即CE ⊥A ′D .(2)∵AC ′→=-a +c ,∴|AC ′→|=2|a |,|CE →|=52|a |, ∵AC ′→·CE →=(-a +c )·⎝ ⎛⎭⎪⎫b +12c =12c 2=12|a |2, ∴cos 〈AC ′→,CE →〉=12|a |22×52|a |2=1010.∴异面直线CE 与AC ′所成角的余弦值为1010.11.(多选题)在正方体ABCD -A 1B 1C 1D 1中,下列命题正确的有( ) A .(AA 1→+AD →+AB →)2=3AB →2 B .A 1C →·(A 1B 1→-A 1A →)=0 C .AD 1→与A 1B →的夹角为60° D .正方体的体积为|AB →·AA 1→·AD →|AB [如图,(AA 1→+AD →+AB →)2=(AA 1→+A 1D 1→+D 1C 1→)2=AC 1→2=3AB →2;A 1C →·(A 1B 1→-A 1A →)=A 1C →·AB 1→=0;AD 1→与A 1B →的夹角是D 1C →与D 1A →夹角的补角,而D 1C →与D 1A →的夹角为60°,故AD 1→与A 1B →的夹角为120°;正方体的体积为|AB →||AA 1→||AD →|.故选AB.]12.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,若E 是底面正方形A 1B 1C 1D 1的中心, 则AC 1→与CE →( )A .重合B .平行但不重合C .垂直D .无法确定C [AC 1→=AB →+AD →+AA 1→,CE →=CC 1→+C 1E →=AA 1→-12(AB →+AD →),于是AC 1→·CE →=(AB →+AD →+AA 1→)·⎣⎢⎡⎦⎥⎤AA 1-12(AB →+AD →)=AB →·AA 1→-12AB →2-12AB →·AD →+AD →·AA 1→-12AD →·AB →-12AD →2+AA 1→2-12AA 1→·AB →-12AA 1→·AD →=0-12-0+0-0-12+1-0-0=0,故AC 1→⊥CE →.]13.(一题两空)如图,在长方体ABCD -A 1B 1C 1D 1中,设AD =AA 1=1,AB =2,P 是C 1D 1的中点,则B 1C →·A 1P →=________,B 1C →与A 1P →所成角的大小为________.1 60° [法一:连接A 1D ,则∠P A 1D 就是B 1C →与A 1P →所成角.连接PD ,在△P A 1D 中,易得P A 1=DA 1=PD =2,即△P A 1D 为等边三角形,从而∠P A 1D =60°,即B 1C →与A 1P →所成角的大小为60°.因此B 1C →·A 1P →=2×2×cos 60°=1.法二:根据向量的线性运算可得B 1C →·A 1P →=(A 1A →+AD →)·⎝⎛⎭⎪⎫AD →+12AB →=AD →2=1. 由题意可得P A 1=B 1C =2,则2×2×cos 〈B 1C →,A 1P →〉=1,从而〈B 1C →,A 1P →〉=60°.]14.已知在正四面体D -ABC 中,所有棱长都为1,△ABC 的重心为G ,则DG 的长为________.63 [如图,连接AG 并延长交BC 于点M ,连接DM ,∵G 是△ABC 的重心,∴AG =23AM ,∴AG →=23AM →,DG →=DA →+AG →=DA →+23AM →=DA →+23(DM →-DA →)=DA →+23⎣⎢⎡⎦⎥⎤12(DB →+DC →)-DA →=13(DA →+DB →+DC →),而(DA →+DB →+DC →)2=DA →2+DB →2+DC →2+2DA →·DB →+2DB →·DC →+2DC →·DA →=1+1+1+2(cos 60°+cos 60°+cos 60°)=6,∴|DG →|=63.]15.如图,正四面体V -ABC 的高VD 的中点为O ,VC 的中点为M .(1)求证:AO ,BO ,CO 两两垂直;(2)求〈DM →,AO →〉.[解] (1)证明:设VA →=a ,VB →=b ,VC →=c ,正四面体的棱长为1, 则VD →=13(a +b +c ),AO →=16(b +c -5a ), BO →=16(a +c -5b ),CO →=16(a +b -5c ),所以AO →·BO →=136(b +c -5a )·(a +c -5b )=136(18a ·b -9|a |2)=136(18×1×1×cos 60°-9)=0,所以AO →⊥BO →,即AO ⊥BO .同理,AO ⊥CO ,BO ⊥CO . 所以AO ,BO ,CO 两两垂直.(2)DM →=DV →+VM →=-13(a +b +c )+12c =16(-2a -2b +c ),所以|DM →|=⎣⎢⎡⎦⎥⎤16(-2a -2b +c )2=12. 又|AO →|=⎣⎢⎡⎦⎥⎤16(b +c -5a )2=22,DM →·AO →=16(-2a -2b +c )·16(b +c -5a )=14, 所以cos 〈DM →,AO →〉=1412×22=22. 又〈DM →,AO →〉∈[0,π], 所以〈DM →,AO →〉=π4.1.2空间向量基本定理一、选择题1.若向量{a ,b ,c }是空间的一个基底,则一定可以与向量p =2a +b ,q =2a-b 构成空间的另一个基底的向量是( )A .aB .bC .cD .a +bC [由p =2a +b ,q =2a -b 得a =14p +14q ,所以a 、p 、q 共面,故a 、p 、q 不能构成空间的一个基底,排除A ;因为b =12p -12q ,所以b 、p 、q 共面,故b 、p 、q 不能构成空间的一个基底,排除B ;因为a +b =34p -14q ,所以a +b 、p 、q 共面,故a +b 、p 、q 不能构成空间的一个基底,排除D.]2.在平行六面体ABCD -A 1B 1C 1D 1中,M 是上底面对角线AC 与BD 的交点,若A 1B 1→=a ,A 1D 1→=b ,A 1A →=c ,则B 1M →可表示为( )A .12a +12b +cB .12a -12b +cC .-12a -12b +cD .-12a +12b +cD [由于B 1M →=B 1B →+BM →=B 1B →+12(BA →+BC →) =-12a +12b +c ,故选D.]3.若向量MA →,MB →,MC →的起点M 与终点A ,B ,C 互不重合,且点M ,A ,B ,C 中无三点共线,满足下列关系(O 是空间任一点),则能使向量MA →,MB →,MC →成为空间一个基底的关系是( )A .OM →=13OA →+13OB →+13OC → B .MA →≠MB →+MC → C .OM →=OA →+OB →+OC →D .MA →=2MB →-MC →C [若MA →,MB →,MC →为空间一组基向量,则M ,A ,B ,C 四点不共面.选项A 中,因为13+13+13=1,所以点M ,A ,B ,C 共面;选项B 中,MA →≠MB →+MC →,但可能存在实数λ,μ使得MA →=λMB →+μMC →,所以点M ,A ,B ,C 可能共面;选项D 中,四点M ,A ,B ,C 显然共面.故选C.]4.空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM →=2MA →,N 为BC 中点,则MN →为( )A .12a -23b +12cB .-23a +12b +12cC .12a +12b -23cD .23a +23b -12cB [MN →=MA →+AB →+BN →=13OA →+OB →-OA →+12(OC →-OB →)=-23OA →+12OB →+12OC →=-23a +12b +12c .]5.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( )A .5B .6C .4D .8A [在平行六面体ABCD -A 1B 1C 1D 1中有,AC 1→=AB →+AD →+CC 1→=AB →+AD →+AA 1→所以有|AC 1→|=|AB →+AD →+AA 1→|,于是有|AC 1→|2=|AB →+AD →+AA 1→|2=|AB →|2+|AD →|2+|AA 1→|2+2|AB →|·|AD →|·cos 60°+2|AB →|·|AA 1→|·cos 60°+2|AD →||AA 1→|·cos 60°=25,所以|AC 1→|=5.]二、填空题6.在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,则OE →=________.(用a ,b ,c 表示)12a +14b +14c [因为在四面体OABC 中,OA →=a ,OB →=b ,OC →=c ,D 为BC 的中点,E 为AD 的中点,所以OE →=12(OA →+OD →)=12OA →+12OD →=12a +12×12(OB →+OC →)=12a +14(b +c )=12a +14b +14c .]7.已知{a ,b ,c }是空间的一个单位正交基底,{a +b ,a -b ,c }是空间的另一个基底,若向量m 在基底{a ,b ,c }下表示为m =3a +5b +9c ,则m 在基底{a +b ,a -b,3c }下可表示为________.4(a +b )-(a -b )+3(3c ) [由题意知,m =3a +5b +9c ,设m =x (a +b )+y (a -b )+z (3c )则有⎩⎨⎧ x +y =3x -y =53z =9,解得⎩⎨⎧x =4y =-1z =3.则m 在基底{a +b ,a -b,3c }可表示为m =4(a +b )-(a -b )+3(3c ).] 8.在四棱锥P -ABCD 中,ABCD 为平行四边形,AC 与BD 交于O ,G 为BD 上一点,BG =2GD ,P A →=a ,PB →=b ,PC →=c ,试用基底{a ,b ,c }表示向量PG →=________.23a -13b +23c [因为BG =2GD ,所以BG →=23BD →. 又BD →=BA →+BC →=P A →-PB →+PC →-PB →=a +c -2b , 所以PG →=PB →+BG →=b +23(a +c -2b ) =23a -13b +23c .] 三、解答题9.如图所示,正方体OABC -O ′A ′B ′C ′,且OA →=a ,OC →=b ,OO ′→=c .(1)用a ,b ,c 表示向量OB ′→,AC ′→;(2)设G ,H 分别是侧面BB ′C ′C 和O ′A ′B ′C ′的中心,用a ,b ,c 表示GH →.[解] (1)OB ′→=OB →+BB ′→=OA →+OC →+OO ′→=a +b +c . AC ′→=AC →+CC ′→=AB →+AO →+AA ′→=OC →+OO ′→-OA →=b +c -a . (2)法一:连接OG ,OH (图略), 则GH →=GO →+OH →=-OG →+OH → =-12(OB ′→+OC →)+12(OB ′→+OO ′→) =-12(a +b +c +b )+12(a +b +c +c ) =12(c -b ).法二:连接O ′C (图略),则GH →=12CO ′→=12(OO ′→-OC →) =12(c -b ).10.如图,在平行六面体ABCD -A 1B 1C 1D 1中,MA →=-13AC →,ND →=13A 1D →,设AB →=a ,AD →=b ,AA 1→=c ,试用a ,b ,c 表示MN →.[解] 连接AN ,则MN →=MA →+AN →.由已知可得四边形ABCD 是平行四边形,从而可得 AC →=AB →+AD →=a +b , MA →=-13AC →=-13(a +b ), 又A 1D →=AD →-AA 1→=b -c ,故AN →=AD →+DN →=AD →-ND →=AD →-13A 1D →=b -13(b -c ), 所以MN →=MA →+AN → =-13(a +b )+b -13(b -c ) =13(-a +b +c ).11.(多选题)已知a ,b ,c 是不共面的三个向量,则下列向量组中,不能构成一个基底的一组向量是( )A .2a ,a -b ,a +2bB .2b ,b -a ,b +2aC .a,2b ,b -cD .c ,a +c ,a -cABD [对于A ,因为2a =43(a -b )+23(a +2b ),得2a 、a -b 、a +2b 三个向量共面,故它们不能构成一个基底;对于B ,因为2b =43(b -a )+23(b +2a ),得2b 、b -a 、b +2a 三个向量共面,故它们不能构成一个基底;对于C ,因为找不到实数λ、μ,使a =λ·2b +μ(b -c )成立,故a 、2b 、b -c 三个向量不共面,它们能构成一个基底;对于D ,因为c =12(a +c )-12(a -c ),得c 、a +c 、a -c 三个向量共面,故它们不能构成一个基底,故选ABD.]12.(多选题)给出下列命题,正确命题的有( )A .若{a ,b ,c }可以作为空间的一个基底,d 与c 共线,d ≠0,则{a ,b ,d }也可以作为空间的一个基底B .已知向量a ∥b ,则a ,b 与任何向量都不能构成空间的一个基底C .A ,B ,M ,N 是空间四点,若BA →,BM →,BN →不能构成空间的一个基底,则A ,B ,M ,N 四点共面D .已知{a ,b ,c }是空间的一个基底,若m =a +c ,则{a ,b ,m }也是空间的一个基底ABCD [根据基底的概念,知空间中任何三个不共面的向量都可作为空间的一个基底.显然B 正确.C 中由BA →,BM →,BN →不能构成空间的一个基底,知BA →,BM →,BN →共面.又BA →,BM →,BN →过相同点B ,知A ,B ,M ,N 四点共面.所以C 正确.下面证明AD 正确:A 假设d 与a ,b 共面,则存在实数λ,μ,使得d =λa +μb ,∵d 与c 共线,c ≠0,∴存在实数k ,使得d =k c .∵d ≠0,∴k ≠0,从而c =λk a +μk b ,∴c 与a ,b 共面,与条件矛盾,∴d 与a ,b 不共面.同理可证D 也是正确的.于是ABCD 四个命题都正确,故选ABCD.]13.(一题两空)已知空间的一个基底{a ,b ,c },m =a -b +c ,n =x a +y b +c ,若m 与n 共线,则x =________,y =________.1 -1 [因为m 与n 共线, 所以存在实数λ,使m =λn ,即a -b +c =λx a +λy b +λc ,于是有⎩⎨⎧1=λx ,-1=λy ,1=λ,解得⎩⎨⎧x =1,y =-1.]14.(一题多空)已知e 1,e 2是空间单位向量,e 1·e 2=12.若空间向量b 满足b ·e 1=2,b ·e 2=52,且对于任意x ,y ∈R ,|b -(x e 1+y e 2)|≥|b -(x 0e 1+y 0e 2)|=1(x 0,y 0∈R ),则x 0=________,y 0=________,|b |=________.1 2 22 [由题意可令b =x 0e 1+y 0e 2+e 3,其中|e 3|=1,e 3⊥e i ,i =1,2.由b ·e 1=2得x 0+y 02=2,由b ·e 2=52得x 02+y 0=52,解得x 0=1,y 0=2,∴|b |=(e 1+2e 2+e 3)2=2 2.]15.在平行六面体ABCD -A 1B 1C 1D 1中,设AB →=a ,AD →=b ,AA 1→=c ,E ,F 分别是AD 1,BD 的中点.(1)用向量a ,b ,c 表示D 1B →,EF →;(2)若D 1F →=x a +y b +z c ,求实数x ,y ,z 的值. [解] (1)如图,D 1B →=D 1D →+DB →=-AA 1→+AB →-AD →=a -b -c ,EF →=EA →+AF →=12D 1A →+12AC →=-12(AA 1→+AD →)+12(AB →+AD →)=12(a -c ). (2)D 1F →=12(D 1D →+D 1B →)=12(-AA 1→+AB →-AD 1→) =12(-AA 1→+AB →-AD →-DD 1→) =12(a -c -b -c )=12a -12b -c , ∴x =12,y =-12,z =-1.1.3.1空间直角坐标系一、选择题1.空间两点A ,B 的坐标分别为(x ,-y ,z ),(-x ,-y ,-z ),则A ,B 两点的位置关系是( )A .关于x 轴对称B .关于y 轴对称C .关于z 轴对称D .关于原点对称B [纵坐标相同,横坐标和竖坐标互为相反数,故两点关于y 轴对称.] 2.已知A (1,2,-1),B (5,6,7),则直线AB 与平面xOz 交点的坐标是( ) A .(0,1,1) B .(0,1,-3)C .(-1,0,3)D .(-1,0,-5)D [设直线AB 与平面xoz 交点坐标是M (x ,y ,z ),则AM →=(x -1,-2,z +1),AB →=(4,4,8),又AM →与AB →共线,∴AM →=λAB →,即⎩⎨⎧x -1=4λ,-2=4λ,z +1=8λ,解得x =-1,z =-5,∴点M (-1,0,-5).故选D.]3.设A (3,3,1),B (1,0,5),C (0,1,0),则AB 的中点M 到点C 的距离|CM |=( ) A .534 B .532 C .532D .132 C [M ⎝ ⎛⎭⎪⎫2,32,3 ,|CM |=4+⎝ ⎛⎭⎪⎫32-12+9=532.] 4.如图,在空间直角坐标系中,正方体ABCD -A 1B 1C 1D 1的棱长为1,B 1E =14A 1B 1,则BE →等于( )A .⎝ ⎛⎭⎪⎫0,14,-1B .⎝ ⎛⎭⎪⎫-14,0,1C .⎝ ⎛⎭⎪⎫0,-14,1D .⎝ ⎛⎭⎪⎫14,0,-1C [{DA →,DC →,DD 1→}为单位正交向量,BE →=BB 1→+B 1E →=-14DC →+DD 1→,∴BE →=⎝ ⎛⎭⎪⎫0,-14,1.] 5.设{i ,j ,k }是单位正交基底,已知向量p 在基底{a ,b ,c }下的坐标为(8,6,4),其中a =i +j ,b =j +k ,c =k +i ,则向量p 在基底{i ,j ,k }下的坐标是( )A .(12,14,10)B .(10,12,14)C .(14,12,10)D .(4,3,2)A [依题意,知p =8a +6b +4c =8(i +j )+6(j +k )+4(k +i )=12i +14j +10k ,故向量p 在基底{i ,j ,k }下的坐标是(12,14,10).]二、填空题6.在空间直角坐标系中,已知点P (1,2,3),过点P 作平面yOz 的垂线PQ ,则垂足Q 的坐标为________.(0,2,3) [过P 的垂线PQ ⊥面yOz ,则Q 点横坐标为0,其余不变,故Q (0,2,3).]7.设{e 1,e 2,e 3}是空间向量的一个单位正交基底,a =4e 1-8e 2+3e 3,b =-2e 1-3e 2+7e 3,则a ,b 的坐标分别为________.(4,-8,3),(-2,-3,7) [由题意可知a =(4,-8,3),b =(-2,-3,7).] 8.如图所示,以长方体ABCD -A 1B 1C 1D 1的顶点D 为坐标原点,过D 的三条棱所在的直线为坐标轴,建立空间直角坐标系,若DB 1→的坐标为(4,3,2),则AC 1→的坐标为________.(-4,3,2) [由DB 1→=DA →+DC →+DD 1→,且DB 1→=(4,3,2),∴|DA →|=4,|DC →|=3,|DD 1→|=2,又AC 1→=-DA →+DC →+DD 1→,∴AC 1→=(-4,3,2).]三、解答题9.已知三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,所有的棱长都是1,建立适当的坐标系,并写出各点的坐标.[解] 如图所示,取AC 的中点O 和A 1C 1的中点O 1,可得BO ⊥AC ,OO 1⊥AC ,分别以OB ,OC ,OO 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系.∵三棱柱各棱长均为1,∴OA =OC =O 1C 1=O 1A 1=12,OB =32. ∵A ,B ,C 均在坐标轴上,∴A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0.∵点A 1与C 1在yOz 平面内, ∴A 1⎝ ⎛⎭⎪⎫0,-12,1,C 1⎝ ⎛⎭⎪⎫0,12,1.∵点B 1在xOy 平面内的射影为B ,且BB 1=1,∴B 1⎝ ⎛⎭⎪⎫32,0,1,即各点的坐标为A ⎝ ⎛⎭⎪⎫0,-12,0,B ⎝ ⎛⎭⎪⎫32,0,0,C ⎝ ⎛⎭⎪⎫0,12,0,A 1⎝ ⎛⎭⎪⎫0,-12,1,B 1⎝ ⎛⎭⎪⎫32,0,1,C 1⎝ ⎛⎭⎪⎫0,12,1. 10.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E ,F ,G 分别为棱DD 1,D 1C 1,BC 的中点,以{AB →,AD →,AA 1→}为正交基底,求下列向量的坐标:(1)AE →,AF →,AG →; (2)EF →,EG →,DG →.[解] 在正交基底{AB →,AD →,AA 1→}下,(1)AF →=12AB →+AD →+AA 1→, AE →=AD →+12AA 1→,AG →=AB →+12AD →,∴AE →=⎝ ⎛⎭⎪⎫0,1,12,AF →=⎝ ⎛⎭⎪⎫12,1,1,AG →=⎝ ⎛⎭⎪⎫1,12,0.(2)EF →=AF →-AE →=12AB →+12AA 1→,∴EF →=⎝ ⎛⎭⎪⎫12,0,12;EG →=AG →-AE →=AB →-12AD →-12AA 1→,∴EG →=⎝ ⎛⎭⎪⎫1,-12,-12;DG →=AG →-AD →=AB→-12AD →,∴DG →=⎝ ⎛⎭⎪⎫1,-12,0.11.(多选题)下列各命题正确的是( ) A .点(1,-2,3)关于平面xOz 的对称点为(1,2,3) B .点⎝ ⎛⎭⎪⎫12,1,-3关于y 轴的对称点为⎝ ⎛⎭⎪⎫-12,1,3C .点(2,-1,3)到平面yOz 的距离为1D .设{i ,j ,k }是空间向量的单位正交基底,若m =3i -2j +4k ,则m =(3,-2,4).ABD [“关于谁对称谁不变”,∴A 正确,B 正确,C 中(2,-1,3)到面yOz 的距离为2,∴C 错误.根据空间向量的坐标定义,D 正确.]12.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,P 为正方体内一动点(包括表面),若AP →=xAB →+yAD →+zAA 1→,且0≤x ≤y ≤z ≤1.则点P 所有可能的位置所构成的几何体的体积是( )A .1B .12C .13D .16D [根据向量加法的几何意义和空间向量基本定理,满足0≤x ≤y ≤1的点P 在三棱柱ACD -A 1C 1D 1内;满足0≤y ≤z ≤1的点P 在三棱柱AA 1D 1-BB 1C 1内,故同时满足0≤x ≤y ≤1,0≤y ≤z ≤1的点P 在这两个三棱柱的公共部分(如图),即三棱锥A -A 1C 1D 1,其体积是13×12×1×1×1=16.]13.三棱锥P -ABC 中,∠ABC 为直角,PB ⊥平面ABC ,AB =BC =PB =1,M为PC 的中点,N 为AC 的中点,以{BA →,BC →,BP →}为基底,则MN →的坐标为________.⎝ ⎛⎭⎪⎫12,0,-12 [MN →=BN →-BM → =12(BA →+BC →)-12(BP →+BC →) =12BA →-12BP →, 故MN →=⎝ ⎛⎭⎪⎫12,0,-12.] 14.已知O 是坐标原点,点A (2,0,-2),B (3,1,2),C (2,-1,7). (1)若点P 满足OP →=OA →+OB →+OC →,则点P 的坐标为________; (2)若点P 满足AP →=2AB →-AC →,则点P 的坐标为________.(1)(7,0,7) (2)(4,3,-3) [(1)中OP →=OA →+OB →+OC →=(2i -2k )+(3i +j +2k )+(2i -j +7k )=7i +0j +7k ,∴P (7,0,7).(2)中,AP →=2AB →-AC →得OP →-OA →=2OB →-2OA →-OC →+OA →,∴OP →=2OB →-OC →=2(3i +j +2k )-(2i -j +7k ) =4i +3j -3k ,∴P (4,3,-3).]15.如图,在正四棱锥P -ABCD 中,底面ABCD 是边长为1的正方形,O 是AC 与BD 的交点,PO =1,M 是PC 的中点.设AB →=a ,AD →=b ,AP →=c .(1)用向量a ,b ,c 表示BM →.(2)在如图的空间直角坐标系中,求BM →的坐标.[解] (1)∵BM →=BC →+CM →,BC →=AD →,CM →=12CP →,CP →=AP →-AC →,AC →=AB →+AD →,∴BM →=AD →+12(AP →-AC →)=AD →+12AP →-12(AB →+AD →)=-12AB →+12AD →+12AP →=-12a +12b +12c .(2)a =AB →=(1,0,0),b =AD →=(0,1,0).∵A (0,0,0),O ⎝ ⎛⎭⎪⎫12,12,0,P ⎝ ⎛⎭⎪⎫12,12,1,∴c =AP →=OP →-OA →=⎝ ⎛⎭⎪⎫12,12,1,∴BM →=-12a +12b +12c =-12(1,0,0)+12(0,1,0)+12⎝ ⎛⎭⎪⎫12,12,1=⎝ ⎛⎭⎪⎫-14,34,12.1.3.2空间运算的坐标表示一、选择题1.已知三点A (1,5,-2),B (2,4,1),C (a,3,b +2)在同一条直线上,那么( ) A .a =3,b =-3 B .a =6,b =-1 C .a =3,b =2D .a =-2,b =1C [根据题意AB →=(1,-1,3),AC →=(a -1,-2,b +4), ∵AB →与AC →共线,∴AC →=λAB →, ∴(a -1,-2,b +4)=(λ,-λ,3λ),∴⎩⎨⎧a -1=λ,-2=-λ,b +4=3λ,解得⎩⎨⎧a =3,b =2,λ=2.故选C.]2.已知a =(2,3,-4),b =(-4,-3,-2),b =12x -2a ,则x 等于( ) A .(0,3,-6) B .(0,6,-20) C .(0,6,-6)D .(6,6,-6)B [由题a =(2,3,-4),b =(-4,-3,-2),设x =(w ,y ,z )则由b =12x -2a ,可得(-4,-3,-2)=12(w ,y ,z )-2(2,3,-4)=⎝ ⎛⎭⎪⎫12w ,12y ,12z-(4,6,-8)=⎝ ⎛⎭⎪⎫12w -4,12y -6,12z +8,解得w =0,y =6,z =-20,即x =(0,6,-20).]3.已知向量a =(1,0,-1),则下列向量中与a 成60°夹角的是( ) A .(-1,1,0) B .(1,-1,0) C .(0,-1,1)D .(-1,0,1)B [不妨设向量为b =(x ,y ,z ),A .若b =(-1,1,0),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. B .若b =(1,-1,0),则cos θ=a ·b |a |·|b |=12×2=12,满足条件. C .若b =(0,-1,1),则cos θ=a ·b |a |·|b |=-12×2=-12≠12,不满足条件. D .若b =(-1,0,1),则cos θ=a ·b |a |·|b |=-22×2=-1≠12,不满足条件.故选B.]4.已知向量a =(-2,x,2),b =(2,1,2),c =(4,-2,1),若a ⊥(b -c ),则x 的值为( )A .-2B .2C .3D .-3A [∵b -c =(-2,3,1),a ·(b -c )=4+3x +2=0,∴x =-2.]5.已知A 、B 、C 三点的坐标分别为A (4,1,3),B (2,-5,1),C (3,7,λ),若AB →⊥AC →,则λ等于( )A .28B .-28C .14D .-14D [AB →=(-2,-6,-2),AC →=(-1,6,λ-3),∵AB →⊥AC →,∴AB →·AC →=-2×(-1)-6×6-2(λ-3)=0,解得λ=-14.] 二、填空题6.已知a =(1,1,0),b =(0,1,1),c =(1,0,1),p =a -b ,q =a +2b -c ,则p ·q =________.-1 [∵p =a -b =(1,0,-1),q =a +2b -c =(0,3,1), ∴p ·q =1×0+0×3+(-1)×1=-1.]7.已知空间三点A (1,1,1),B (-1,0,4),C (2,-2,3),则AB →与CA →的夹角θ的大小是________.120° [AB →=(-2,-1,3),CA →=(-1,3,-2),cos 〈AB →,CA →〉=(-2)×(-1)+(-1)×3+3×(-2)14·14=-12,∴θ=〈AB →,CA →〉=120°.]8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,E 、F 分别是棱BC 、DD 1上的点,如果B 1E ⊥平面ABF ,则CE 与DF 的和的值为________.1 [以D 1A 1、D 1C 1、D 1D 分别为x ,y ,z 轴建立空间直角坐标系(图略),设CE =x ,DF =y ,则易知E (x,1,1),B 1(1,1,0),∴B 1E →=(x -1,0,1),又F (0,0,1-y ),B (1,1,1),∴FB →=(1,1,y ),由于AB ⊥B 1E ,若B 1E ⊥平面ABF ,只需FB →·B 1E →=(1,1,y )·(x -1,0,1)=0⇒x +y =1.] 三、解答题9.已知空间中三点A (-2,0,2),B (-1,1,2),C (-3,0,4),设a =AB →,b =AC →. (1)求向量a 与向量b 的夹角的余弦值;(2)若k a +b 与k a -2b 互相垂直,求实数k 的值.[解] (1)∵a =(1,1,0),b =(-1,0,2),∴a·b =(1,1,0)·(-1,0,2)=-1, 又|a |=12+12+02=2,|b |=(-1)2+02+22=5,∴cos 〈a ,b 〉=a ·b |a ||b |=-110=-1010,即向量a 与向量b 的夹角的余弦值为-1010.(2)法一:∵k a +b =(k -1,k,2),k a -2b =(k +2,k ,-4),且k a +b 与k a -2b 互相垂直,∴(k -1,k,2)·(k +2,k ,-4)=(k -1)(k +2)+k 2-8=0,∴k =2或k =-52, ∴当k a +b 与k a -2b 互相垂直时,实数k 的值为2或-52. 法二:由(1)知|a |=2,|b |=5,a·b =-1,∴(k a +b )·(k a -2b )=k 2a 2-k a ·b -2b 2=2k 2+k -10=0,得k =2或k =-52. 10.已知正三棱柱ABC -A 1B 1C 1,底面边长AB =2,AB 1⊥BC 1,点O ,O 1分别是边AC ,A 1C 1的中点,建立如图所示的空间直角坐标系.(1)求正三棱柱的侧棱长;(2)求异面直线AB 1与BC 所成角的余弦值. [解] (1)设正三棱柱的侧棱长为h ,由题意得A (0,-1,0),B (3,0,0),C (0,1,0),B 1(3,0,h ),C 1(0,1,h ), 则AB 1→=(3,1,h ),BC 1→=(-3,1,h ), 因为AB 1⊥BC 1,所以AB 1→·BC 1→=-3+1+h 2=0, 所以h = 2.(2)由(1)可知AB 1→=(3,1,2),BC →=(-3,1,0), 所以AB 1→·BC →=-3+1=-2.因为|AB 1→|=6,|BC →|=2,所以cos 〈AB 1→,BC →〉=-226=-66.所以异面直线AB 1与BC 所成角的余弦值为66.11.(多选题)若向量a =(1,2,0),b =(-2,0,1),则下列结论正确的是( )。
人教A版高中数学选修第一册同步练习2.5.2 圆与圆的位置关系 A基础练(详细解析版)
人教A 版高中数学选修第一册同步练习2.5.2 圆与圆的位置关系(A 基础练)一、选择题1.(2020全国高课二时练)圆O 1: 2220x y x +-=和圆O 2: 2240x y y +-=的位置关系是( ) A .相离 B .相交 C .外切 D .内切【正确答案】B【详细解析】试题分析:由题意可知圆1O 的圆心()11,0O ,半径11r =,圆2O 的圆心()20,2O ,半径12r =,又211212r r OO r r -<<+,所以圆1O 和圆2O 的位置关系是相交,故选B .2.(2020山东菏泽三中高二期中)两圆224210x y x y +-++=与224410x y x y ++--=的公切线有( ) A .1条 B .2条 C .3条 D .4条【正确答案】C【详细解析】由题意,得两圆的标准方程分别为22(2)(1)4x y -++=和22(2)(2)9x y ++-=,则两圆的圆心距523d ===+,即两圆外切,所以两圆有3条公切线;故选C .3.(2020山西师大附中高二期中)圆22250x y x +--=与圆222440x y x y ++--=的交点为A,B,则线段AB 的垂直平分线的方程是( )A .10x y +-=B .210x y -+=C .210x y -+=D .10x y -+= 【正确答案】A【详细解析】圆22250x y x +--=的圆心为(1,0)M ,圆22240x y x y ++-=的圆心为(1,2)N -,两圆的相交弦AB 的垂直平分线即为直线MN ,其方程为020111y x --=---,即10x y +-=;故选A. 4.(2020山东泰安一中高二期中)已知半径为1的动圆与圆(x -5)2+(y +7)2=16相外切,则动圆圆心的轨迹方程是 ( )A .(x -5)2+(y +7)2=25B .(x -5)2+(y +7)2=9C .(x -5)2+(y +7)2=15D .(x +5)2+(y -7)2=25【正确答案】A【详细解析】设动圆圆心为M ,且半径为1,又圆22(5)(7)16x y -++=的圆心为(5,7)N -,半径为4,由两圆相外切,得145MN =+=,即动圆圆心M 的轨迹是以(5,7)N -为圆心、半径为5的圆,其轨迹方程为22(5)(7)25x y -++=;故选A.5.(多选题)(2020河北正定中学高二期中)下列圆中与圆C :x 2+y 2+2x -4y+1=0相切的是( )A.(x+2)2+(y+2)2=9B.(x -2)2+(y+2)2=9C.(x -2)2+(y -2)2=25D.(x -2)2+(y+2)2=49 【正确答案】BCD【详细解析】由圆C :x 2+y 2+2x -4y+1=0,可知圆心C 的坐标为(-1,2),半径r=2.A 项,圆心C 1(-2,-2),半径r 1=3.∵|C 1C|=√17∈(r 1-r ,r 1+r ),∴两圆相交;B 项,圆心C 2(2,-2),半径r 2=3, ∵|C 2C|=5=r+r 2,∴两圆外切,满足条件;C 项,圆心C 3(2,2),半径r 3=5,∵|C 3C|=3=r 3-r ,∴两圆内切;D 项,圆心C 4(2,-2),半径r 4=7,∵|C 4C|=5=r 4-r ,∴两圆内切.6.(多选题)若圆C 1:x 2+y 2=1和圆C 2:x 2+y 2-6x -8y -k=0没有公共点,则实数k 的取值可能是( )A.-16B.-9C.11D.12 【正确答案】AD【详细解析】化圆C 2:x 2+y 2-6x -8y -k=0为(x -3)2+(y -4)2=25+k ,则k>-25,圆心坐标为(3,4),半径为√25+k ; 圆C 1:x 2+y 2=1的圆心坐标为(0,0),半径为1.要使圆C 1和圆C 2没有公共点,则|C 1C 2|>√25+k +1或|C 1C 2|<√25+k -1,即5>√25+k +1或5<√25+k -1,解得-25<k<-9或k>11.∴实数k 的取值范围是(-25,-9)∪(11,+∞).满足这一范围的有A 和D.二、填空题7.(2020·辽河油田二中高二期中)已知两圆相交于两点(),3A a ,()1,1B -,若两圆圆心都在直线0x y b ++=上,则+a b 的值是 ________________ .【正确答案】1-【详细解析】由(),3A a ,()1,1B -,设AB 的中点为1,22a M -⎛⎫ ⎪⎝⎭,根据题意,可得1202a b -++=,且3111AB k a -==+,解得,1a =,2b =-,故1a b +=-.故正确答案为:1-. 8.半径长为6的圆与y 轴相切,且与圆(x -3)2+y 2=1内切,则此圆的方程为______________ .【正确答案】(x -6)2+(y ±4)2=36【详细解析】设该圆的标准方程为22()()36x a y b -+-=,因为该圆与y 轴相切,且与圆22(3)1x y -+=内切,所以65a ⎧=⎪=,解得64a b =⎧⎨=±⎩,即该圆的标准方程为22(6)(4)36x y -+±=. 9.(2020全国高二课时练)若点P 在圆221x y +=上,点Q 在圆()()22344x y ++-=,则PQ 的最小值为_____________ .【正确答案】2【详细解析】由题意可知,圆221x y +=的圆心坐标为()0,0A ,半径1r =,圆()()22344x y ++-=的圆心坐标为()3,4B -,半径2R =.由512d AB R r ===>+=+,∴两圆的位置关系是外离.又点P 在圆A 上,点Q 在圆B 上,则PQ 的最小值为()()5122d R r -+=-+=10.(2020浙江嘉兴四中高二期中)已知相交两圆221:4C x y +=,圆222,(2)4C x y -+=,公共弦所在直线方程为___________,公共弦的长度为___________.【正确答案】1x =;【详细解析】联立2222(24)4x y x y ⎧+=⎨⎩-+=作差可得1x =,将1x =代入224x y +=可解得y =12l y y =-=故正确答案为:1x =;三、解答题11.(2020全国高二课时练)已知两圆C 1:x 2+y 2+4x -6y+12=0,C 2:x 2+y 2-2x -14y+k=0(k<50).当两圆有如下位置关系时:(1)外切; (2)内切; (3)相交; (4)内含; (5)外离.试确定上述条件下k 的取值范围.【详细解析】将两圆的方程化为标准方程:C 1:(x+2)2+(y -3)2=1;C 2:(x -1)2+(y -7)2=50-k.则圆C 1的圆心坐标C 1(-2,3),半径r 1=1, 圆C 2的圆心坐标C 2(1,7),半径r 2=√50-k . 从而圆心距d=√(-2-1)2+(3-7)2=5.(1)当两圆外切时,d=r 1+r 2,即1+√50-k =5,解得k=34.(2)当两圆内切时,d=|r 1-r 2|,即|1-√50-k |=5,解得k=14.(3)当两圆相交时,|r 1-r 2|<d<r 1+r 2,即|1-√50-k |<d<1+√50-k , 解得14<k<34.(4)当两圆内含时,d<|r 1-r 2|,即|1-√50-k |>5,解得k<14.(5)当两圆外离时,d>r 1+r 2,即1+√50-k <5,解得k>34. 12.(2020·太原市第六十六中高二期中)已知圆C 1:x 2+y 2=1与圆C 2:x 2+y 2﹣6x +m =0. (1)若圆C 1与圆C 2外切,求实数m 的值;(2)在(1)的条件下,若直线x +2y +n =0与圆C 2的相交弦长为求实数n 的值.【详细解析】(1)由题意,圆221:1C x y +=的圆心坐标为1(0,0)C ,半径为1r =,圆222:60C x y x m +-+=的圆心坐标为2(3,0)C ,半径为R =,因为圆1C 与2C 相外切,所以12C C r R =+,即31=解得5m =. (2)由(1)得5m =,圆2C 的方程为22(3)4x y -+=,可得圆心2(3,0)C ,半径为2R =,由题意可得圆心2C 到直线20x y n ++=的距离d =,又由圆的弦长公式,1==,即3n +=解得3n =-或3n =-。
人教版高中数学(理)必修5(实验班)全册同步练习及答案.doc
人教版高中数学(理)必修5(实验班)全册同步练习及答案人教版高中数学(理)必修5(实验班)全册同步练习及答案1.1.1 正弦定理一、选择题,,,ABCa,101(在中,,,,则 ( ) B,60C,45c,A( B( 103,10(31),C( D(103 10(31),,ABC2.在中,下列关系式中一定成立的是 ( )abA,sinabA,sinA( B(abA,sinabA,sinC( D(abc,,,,ABC,a,133. 在中,已知,,则 ( ) A,60sinsinsinABC,,8323926323A( B( C( D( 33322,ABC中,已知aBbAtantan,,则此三角形是 ( ) 4. 在A(锐角三角形 B(直角三角形C(钝角三角形 D(直角或等腰三角形,,,,,,,,,,,,,,,,,,AC,1AB,4,ABCABAC 5. 在锐角中,已知,,,则的值为( ) S,3,ABC,2,4,22A( B( C( D(,ABCbCa,4bc,,5AB6. 在中,,,分别为角,,的对边,且,, ac,ABCtantan33tantanBCBC,,, ,则的面积为 ( )333333A( B( C( D( 444二、填空题2π,ABCb,1c,37(在中,若,,C,,则a,________( 38(已知a,b,c分别是?ABC的三个内角A,B,C所对的边(若a,1,b,3,A,C,2B,则sinC,________(三、解答题,ABC9(根据下列条件,解.,b,4c,8 (1)已知,,,解此三角形; B,30,,b,2 (2)已知,,,解此三角形. B,45C,75,B25,ABCbCa,210. 在中,,,分别为内角A,B,的对边,若,,,,Caccos,425,ABCS求的面积.1.1.1正弦定理一、选择题D 3.B 4.D 5.B 6.C 1.B 2.二、填空题7(8. 11三、解答题,cBsin8sin309. 解:(1)由正弦定理得 sin1C,,,b4,,,cb,由知,得 30150,,CC,9022,从而, A,60acb,,,43,,(2)由ABC,+=180 得 A,60,abbAsin2sin60, ??a,,,6 ,sinsinABsinsin45B,bCsin2sin75 c,,,,31同理,sinsin45BB432cos2cos1B,,10. 解:由知 cos21B,,,,255420,,B,sin1cosBB,,, 又,得 5,,,,,sinsin[()]sin()ABCBC,72 ,,,sincoscossinBCBC10acaCsin10,ABC,c,,在中,由知 sinsinACsin7A111048?,,,,,,SacBsin2. 227571.1.2 余弦定理一、选择题,ABC,ABC1(在中,已知,则的最小角为 ( ) a,8,b,43,c,13,,,,A( B( C( D(12344,ABC2(在中,如果,则角等于 ( ) A(a,b,c)(b,c,a),3bc0000A( B( C( D(3060120150,ABC3(在中,若,则其面积等于 ( ) a,7,b,3,c,82128A(12 B( C( D(63 2,ABCsin2sincosABC,,ABC4(在中,若,并有,那么(a,b,c)(b,c,a),3bc 是 ( )A(直角三角形 B(等边三角形C(等腰三角形 D(等腰直角三角形abc,,,,ABCb,1,5.在中,A,60,,,则 ( ) S,3,ABCsinsinsinABC,,8323926339A( B( C( D( 326336(某班设计了一个八边形的班徽(如右图),它由腰长为1,顶角为的四个等腰,三角形及其底边构成的正方形所组成,该八边形的面积为 ( )2sin2cos2,,,,sin3cos3,,,,A( B(2sincos1,,,,3sin3cos1,,,,C( D(二、填空题,ABC7(在中,三边的边长为连续自然数,且最大角是钝角,这个三角形三边的长分别为_______ .,ABCbCAB8. 在中,a,,c分别为角,,的对边,若,(3)coscosbcAaC,,cosA,则 .三、解答题0a、B、CS9(在?ABC中,已知,求及面积. b,5,c,53,A,30310(在?ABC中,a,b,c分别为角A,B,C的对边(已知:b,2,c,4,cosA,. 4(1)求边a的值;(2)求cos(A,B)的值(1.1.2余弦定理一、选择题1.B2.B3.D4.B5.B6.A二、填空题37( 238.3三、解答题9. 解由余弦定理,知220222,5,(53),2,5,53sin30,25a,b,c,2bccosA0a,5a,bB,A,30? 又??00C,180,A,B,120?112530sin5(53)sin30S,bcA,,,,22422210. 解:(1)a,b,c,2bccosA322,2,4,2×2×4×,8~?a,22. 437ab(2)?cosA,~?sinA,~,~ 44sinAsinB22214即,.?sinB,. sinB87452又?b<c~?B为锐角(?cosB,. 8?cos(A,B),cosAcosB,sinAsinB 352714112,×,×,. 4848161.1.3 正、余弦定理的综合应用一、选择题,ABCsin:sin:sin5:7:8ABC,1(在中,若,则的大小是 ( ) ,B,5,,2,A( B( C( D(6363 ,,ABCbCC2(在中,,,分别为角,,的对边,如果,,那么角ca,3ABB,30ac等于 ( ),,,,A( B( C( D(12010590751,ABC3(的两边长分别为2,3,其夹角的余弦值为,则其外接圆的半径为( ) 3 929292A( B( C( D( 9224813,ABCa,7,b,8,cosC,4(在中,若,则最大角的余弦是 ( ) 141111A(, B(, C(, D(, 5867,ABC,ABC,A5( 在中,满足条件,3sinA,cosA,1,AB,2cm,BC,23cm的面积等于( )33323A( B( C( D( 2Acb,2,ABCbC,ABCsin,AB6(在中, (,,分别为角,,的对边),则的形状ac22c 为 ( ) A(正三角形 B(直角三角形C(等腰直角三角形 D(等腰三角形二、填空题02,ABC3x,27x,32,0A,607(已知在中,,最大边和最小边的长是方程的BC两实根,那么边长等于________.222,ABCbCAB8(已知锐角的三边a,,c分别为角,,的对边,且()tanbcaA,,,3bc,则角A的大小_________.三、解答题,ABCbCABac9((2)coscosacBbC,,在中,,,分别为角,,的对边,且满足.B(1)求角的大小;ac,,4,ABC(2)若,,求的面积( b,71,ABCbC10(在中,,,分别为角A,B,的对边,已知. cos2C,,ac4sinC(1)求的值;a,22sinsinAC,b(2)当,时,求及的长( c1.1.3正、余弦定理的综合应用一、选择题A 3.C 4.C 5.C 6.B 1.C 2.二、填空题,7( 78.60三、解答题9. 解:(1)由正弦定理得a,2RsinA~b,2RsinB~c,2RsinC~代入(2a,c)cosB,bcosC~整理,得2sinAcosB,sinBcosC,sinCcosB~即2sinAcosB,sin(B,C),sinA. 又sinA>0~?2cosB,1~π由B?(0~π)~得B,. 3(2)由余弦定理得222b,a,c,2ac?cosB2,(a,c),2ac,2accosB.π将b,7~a,c,4~B,代入整理~得ac,3. 31333??ABC的面积为S,acsinB,sin60?,. 2241210. 解:(1)因为cos2C,1,2sinC,,~ 410所以sinC,?~ 410又0<C<π~所以sinC,. 4ac(2)当a,2,2sinA,sinC时,由正弦定理,~得c,4. sinAsinC162由cos2C,2cosC,1,,~且0<C<π得cosC,?. 442222由余弦定理c,a,b,2abcosC~得b?6b,12,0~解得b,6或26~,,b,6~b,26~所以,或, ,c,4~,c,4.1.2应用举例(二)一、选择题,,1. 在某测量中,设在的南偏东,则在的 ( ) ABBA3427,,,,,,A.北偏西 B. 北偏东 C. 北偏西 D. 南偏西342755335533,, 55332(台风中心从地以20 km/h的速度向东北方向移动,离台风中心30 km内的A 地区为危险区,城市在的正东40 km处,城市处于危险区内的时间为( ) BABA.0.5 hB.1 hC.1.5 hD.2 hCDCa,C3(已知、、三点在地面同一直线上,,从、两点测得的点DBDA仰角分别为、,则A点离地面的高AB等于 ,,,,(),( ),,,,,,,,acoscosacoscosasinsinasinsinA( B( C( D( sin(,,,)cos(,,,)sin( ,,,)cos(,,,)4.有一长为1公里的斜坡,它的倾斜角为20?,现要将倾斜角改为10?,则坡底要伸长( )A(1公里 B(sin10?公里 C(cos10?公里 D(cos20?公里,BAEABE5. 如右图,在某点处测得建筑物的顶端的仰角为,沿方向前进30 CAD米至处测得顶端的仰角为2θ,再继续前进103米至处,测得顶端A的仰角为4θ,则θ的值为 ( )A(15? B(10?C(5? D(20?6(一船向正北航行,看见正西方向有相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60?,另一灯塔在船的南偏西75?西,则这只船的速度是每小时( )33A.5海里 B.5海里 C.10海里 D.10海里? 二、填空题,,12nmile AB5010(我舰在敌岛7南偏西相距的处,发现敌舰正由岛沿北偏西的10nmile h2方向以/的速度航行,我舰要用小时追上敌舰,则需要速度的大小为 .北 20m8(在一座高的观测台顶测得地面一水塔塔顶仰角为,,6045,塔底俯角为,那么这座塔的高为___ ____. A45? 三、解答题B15?C,9nmile 9(如图,甲船在处,乙船在处的南偏东方向,距A有并以AA45,20nmile h28nmile h/的速度沿南偏西方向航行,若甲船以/的速度航行用多15少小时能尽快追上乙船,10.在海岸AA处发现北偏东45?方向,距处(3,BA1)海里的处有一艘走私船,在处北偏西75?方向,CA距处2海里的处的我方缉私船,奉命以103海里/小时的速度追截走私船,此时走私船正以10海B里/小时的速度,从处向北偏东30?方向逃窜(问:缉私船应沿什么方向行驶才能最快截获走私船,并求出所需时间(1.2应用举例(二) 一、选择题1.A2.B3.A4.A5.A6.C二、填空题7(14nmile/h8. 20(1+3)m三、解答题9. 解:设用t h,甲船能追上乙船,且在C处相遇。
高中数学必修5第2章2.2.2同步训练及解析
人教A 高中数学必修5同步训练1.已知{a n }为等差数列,a 2+a 8=12,则a 5等于( )A .4B .5C .6D .7 解析:选C.由等差数列性质得a 2+a 8=2a 5=12,所以a 5=6.2.等差数列{a n }的公差为d ,则数列{ca n }(c 为常数且c ≠0)( )A .是公差为d 的等差数列B .是公差为cd 的等差数列C .不是等差数列D .以上都不对答案:B3.在等差数列{a n }中,a 10=10,a 20=20,则a 30=________.解析:法一:d =a 20-a 1020-10=20-1020-10=1,a 30=a 20+10d =20+10=30. 法二:由题意可知,a 10、a 20、a 30成等差数列,所以a 30=2a 20-a 10=2×20-10=30. 答案:304.已知三个数成等差数列,其和为15,首、末两项的积为9,求这三个数. 解:由题意,可设这三个数分别为a -d ,a ,a +d ,则⎩⎪⎨⎪⎧ (a -d )+a +(a +d )=15,(a -d )(a +d )=9, 解得⎩⎪⎨⎪⎧ a =5d =4或⎩⎪⎨⎪⎧ a =5,d =-4.所以,当d =4时,这三个数为1,5,9;当d =-4时,这三个数为9,5,1.一、选择题1.下列命题中,为真命题的是( )A .若{a n }是等差数列,则{|a n |}也是等差数列B .若{|a n |}是等差数列,则{a n }也是等差数列C .若存在自然数n 使2a n +1=a n +a n +2,则{a n }是等差数列D .若{a n }是等差数列,则对任意n ∈N *都有2a n +1=a n +a n +2答案:D2.等差数列{a n }中,前三项依次为1x +1,56x ,1x,则a 101=( ) A .5013 B .1323C .24D .823解析:选D.∵53x =1x +1x +1,∴x =2. ∴首项a 1=1x +1=13,d =12(12-13)=112. ∴a 101=823,故选D.3.若数列{a n }是等差数列,且a 1+a 4=45,a 2+a 5=39,则a 3+a 6=( )A .24B .27C .30D .33解析:选D.经观察发现(a 2+a 5)-(a 1+a 4)=(a 3+a 6)-(a 2+a 5)=2d =39-45=-6,所以a 3+a 6=a 2+a 5-6=39-6=33.4.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( ) A .14 B .15C .16D .17解析:选C.设等差数列{a n }的公差为d ,则由等差数列的性质得5a 8=120,∴a 8=24,a 9-13a 11=3a 9-a 113=2a 9+(a 9-a 11)3=2(a 9-d )3=2a 83=2×243=16. 5.设{a n },{b n }都是等差数列,且a 1=25,b 1=75,a 2+b 2=100,则a 37+b 37等于( )A .0B .37C .100D .-37解析:选C.设{a n },{b n }的公差分别是d 1,d 2,∴(a n +1+b n +1)-(a n +b n )=(a n +1-a n )+(b n +1-b n )=d 1+d 2.∴{a n +b n }为等差数列.又∵a 1+b 1=a 2+b 2=100,∴a 37+b 37=100.6.首项为-24的等差数列从第10项起开始为正数,则公差d 的取值范围是( )A .d >83B .d <3 C.83≤d <3 D.83<d ≤3 解析:选D.设等差数列为{a n },首项a 1=-24,则a 9≤0⇒a 1+8d ≤0⇒-24+8d ≤0⇒d ≤3,a 10>0⇒a 1+9d >0⇒-24+9d >0⇒d >83. ∴83<d ≤3. 二、填空题7.已知{a n }为等差数列,a 3+a 8=22,a 6=7,则a 5=________.解析:由于{a n }为等差数列,故a 3+a 8=a 5+a 6,故a 5=a 3+a 8-a 6=22-7=15.答案:158.在等差数列{a n }中,若a 7=m ,a 14=n ,则a 21=________.解析:∵a 7、a 14、a 21成等差数列,∴a 7+a 21=2a 14,a 21=2a 14-a 7=2n -m .答案:2n -m9.已知{a n }为等差数列,a 15=8,a 60=20,则a 75=________.解析:法一:因为{a n }为等差数列,所以a 15,a 30,a 45,a 60,a 75也成等差数列,设其公差为d ,a 15为首项,则a 60为其第四项,所以a 60=a 15+3d ,得d =4.所以a 75=a 60+d ⇒a 75=24.法二:因为a 15=a 1+14d ,a 60=a 1+59d ,所以⎩⎪⎨⎪⎧ a 1+14d =8a 1+59d =20,解得⎩⎨⎧ a 1=6415d =415.故a 75=a 1+74d =6415+74×415=24. 答案:24三、解答题10.已知正数a ,b ,c 组成等差数列,且公差不为零,那么由它们的倒数所组成的数列1a ,1b ,1c能否成为等差数列? 解:由已知,得a ≠b 且b ≠c 且c ≠a ,且2b =a +c ,a >0,b >0,c >0.因为2b -(1a +1c )=2b-a +c ac =2ac -2b 2abc =2ac -(a +c )22abc =-(a -c )22abc <0,所以2b ≠1a +1c. 所以1a ,1b ,1c不能成为等差数列. 11.已知{a n }是等差数列,且a 1+a 2+a 3=12,a 8=16.(1)求数列{a n }的通项公式;(2)若从数列{a n }中,依次取出第2项,第4项,第6项,…,第2n 项,按原来顺序组成一个新数列{b n },试求出{b n }的通项公式.解:(1)∵a 1+a 2+a 3=12,∴a 2=4,∵a 8=a 2+(8-2)d ,∴16=4+6d ,∴d =2,∴a n =a 2+(n -2)d =4+(n -2)×2=2n .(2)a 2=4,a 4=8,a 8=16,…,a 2n =2×2n =4n .当n >1时,a 2n -a 2(n -1)=4n -4(n -1)=4.∴{b n }是以4为首项,4为公差的等差数列.∴b n =b 1+(n -1)d =4+4(n -1)=4n .12.某单位用分期付款方式为职工购买40套住房,共需1150万元,购买当天先付150万元,以后每月这一天都交付50万元,并加付欠款利息,月利率为1%.若交付150万元后的第一个月算分期付款的第一个月,求分期付款的第10个月应付多少钱?最后一次应付多少钱?解:购买时先付150万元,还欠款1000万元.依题意知20次可付清.设每次交付的欠款依次为a 1,a 2,a 3,…,a 20,构成数列{a n },则a 1=50+1000×0.01=60;a 2=50+(1000-50)×0.01=59.5;a 3=50+(1000-50×2)×0.01=59;…a n =50+[1000-50(n -1)]×0.01=60-12(n -1)(1≤n ≤20).所以{a n }是以60为首项,-12为公差的等差数列. 则a 10=60-9×12=55.5, a 20=60-19×12=50.5, 故第10个月应付55.5万元,最后一次应付50.5万元.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。
最新高中数学:必修5人教A第2章2.5.1同步训练及解析
人教A 高中数学必修5同步训练1.在等比数列{a n }中a 1=8,q =12,a n =12,则S n 等于( )A .31 B.312C .8D .15答案:B2.数列12,14,18,…的前10项和等于( )A.11024B.511512C.10231024 D.1512答案:C3.在等比数列{a n }中,q =12,S 5=2,则a 1等于________.答案:32314.等比数列{a n }中,a 2=9,a 5=243,求数列{a n }的前4项之和.解:⎩⎪⎨⎪⎧ a 2=9a 5=243,即⎩⎪⎨⎪⎧ a 1q =9a 1q 4=243,解得⎩⎪⎨⎪⎧ a 1=3q =3.所以S 4=a 1(1-q 4)1-q =3(1-34)1-3=120.一、选择题 1.已知S n 是等比数列{a n }的前n 项和,a 5=-2,a 8=16,则S 6等于() A.218 B .-218C.178 D .-178解析:选A.设公比为q ,由题意,得⎩⎪⎨⎪⎧ a 1q 4=-2,a 1q 7=16,解得q =-2,a 1=-18.所以S 6=a 1(1-q 6)1-q =218.2.在等比数列{a n }中,公比q =-2,S 5=44,则a 1的值为( )A .4B .-4C .2D .-2解析:选A.S 5=a 1(1-q 5)1-q ,∴44=a 1[1-(-2)5]1-(-2),∴a 1=4,故选A.3.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( ) A .11 B .5C .-8D .-11解析:选D.由8a 2+a 5=0,得8a 1q +a 1q 4=0,所以q =-2,则S 5S 2=a 1(1+25)a 1(1-22)=-11. 4.1+2+2+22+…+128的值是( )A .128+64 2B .128-64 2C .255+127 2D .255-127 2答案:C5.若等比数列{a n }的前n 项和为S n =32n +m (n ∈N *),则实数m 的取值为( ) A .-32B .-1C .-3D .一切实数解析:选C.a 1=S 1=32+m ,又a 1+a 2=34+m , 所以a 2=-34. 又a 1+a 2+a 3=38+m , 所以a 3=-38.所以a 22=a 1a 3, 即916=(32+m )(-38),解得m =-3. 6.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列{1a n}的前5项和为( )A.158或5B.3116或5 C.3116 D.158解析:选C.若q =1,则由9S 3=S 6得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.由9S 3=S 6得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q,解得q =2. 故a n =a 1q n -1=2n -1,1a n =(12)n -1. 所以数列{1a n }是以1为首项,12为公比的等比数列,其前5项和为S 5=1×[1-(12)5]1-12=3116. 二、填空题7.设等比数列{a n }的前n 项和为S n .若a 1=1,S 6=4S 3,则a 4=__________. 解析:设等比数列的公比为q ,则由S 6=4S 3知q ≠1.∴S 6=1-q 61-q =4(1-q 3)1-q.∴q 3=3.∴a 1q 3=3. 答案:38.等比数列的公比为2,前4项之和等于10,则前8项之和等于________.解析:S 8-S 4=q 4·S 4=24·10=160,S 8=170.答案:1709.等比数列{a n }的公比q >0.已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4=__________.解析:∵{a n }是等比数列,∴a n +2+a n +1=6a n 可化为a 1q n +1+a 1q n =6a 1q n -1,∴q 2+q -6=0.又∵q >0,∴q =2.∴S 4=a 1(1-q 4)1-q =12(1-24)1-2=152. 答案:152三、解答题10.在等比数列{a n }中,a 3=-12,前3项和S 3=-9,求公比q .解:法一:由已知可得方程组⎩⎪⎨⎪⎧a 3=a 1·q 2=-12, ①S 3=a 1(1+q +q 2)=-9. ② ②÷①得1+q +q 2q 2=34,即q 2+4q +4=0. 所以q =-2.法二:a 3,a 2,a 1成等比数列且公比为1q. 所以S 3=a 3+a 2+a 1=a 3[1-(1q )3]1-1q=-12(q 3-1)q 2(q -1)=-9. 所以q 2+4q +4=0,即(q +2)2=0.所以q =-2.11.等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .解:(1)依题意有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2).由于a 1≠0,故2q 2+q =0.又q ≠0,从而q =-12. (2)由已知可得a 1-a 1(-12)2=3,故a 1=4. 从而S n =4[1-(-12)n ]1-(-12)=83[1-(-12)n ]. 12.一个等比数列的首项为1,项数是偶数,其奇数项的和为85,偶数项的和为170,求此数列的公比和项数.解:设该等比数列有2n 项,则奇数项有n 项,偶数项有n 项,设公比为q ,由等比数列性质可得S 偶S 奇=17085=2=q . 又∵S 奇+S 偶=a 1(1-q 2n )1-q=255,a 1=1, ∴2n =8.∴此数列的公比为2,项数为8.。
高中数学人教A版必修五优化练习第二章2.5第1课时等比数列的前n项和公式含解析
[课时作业] [A 组 基础巩固]1.等比数列{a n }中,a n =2n ,则它的前n 项和S n =( ) A .2n -1 B .2n -2 C .2n +1-1 D .2n +1-2解析:a 1=2,q =2, ∴S n =2×(1-2n )1-2=2n +1-2.答案:D2.在等比数列{a n }中,若a 1=1,a 4=18,则该数列的前10项和S 10=( )A .2-128B .2-129C .2-1210D .2-1211解析:设等比数列{a n }的公比为q ,由a 1=1,a 4=18,得q 3=18,解得q =12,于是S 10=a 1(1-q 10)1-q =1-(12)101-12=2-129.答案:B3.等比数列{a n }中,已知前4项之和为1,前8项和为17,则此等比数列的公比q 为( ) A .2 B .-2 C .2或-2D .2或-1解析:S 4=a 1·(1-q 4)1-q =1,①S 8=a 1·(1-q 8)1-q =17,②②÷①得1+q 4=17,q 4=16. q =±2. 答案:C4.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .35 B .33 C .31D .29解析:设数列{a n }的公比为q ,∵a 2·a 3=a 21·q 3=a 1·a 4=2a 1, ∴a 4=2.又∵a 4+2a 7=a 4+2a 4q 3=2+4q 3=2×54,∴q =12.∴a 1=a 4q 3=16.S 5=a 1·(1-q 5)1-q =31.答案:C5.等比数列{a n }中,a 3=3S 2+2,a 4=3S 3+2,则公比q 等于( ) A .2 B.12 C .4D.14解析:a 3=3S 2+2,a 4=3S 3+2,等式两边分别相减得a 4-a 3=3a 3,即a 4=4a 3,∴q =4. 答案:C6.若数列{a n }满足a 1=1,a n +1=2a n ,n =1,2,3,…,则a 1+a 2+…+a n =________. 解析:由a n +1a n =2,∴{a n }是以a 1=1,q =2的等比数列,故S n =1×(1-2n )1-2=2n-1.答案:2n -17.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则{a n }的公比为________. 解析:∵S 1,2S 2,3S 3成等差数列,∴4S 2=S 1+3S 3, 即4(a 1+a 1q )=a 1+3(a 1+a 1q +a 1q 2), ∴4(1+q )=1+3(1+q +q 2),解之得q =13.答案:138.等比数列的前n 项和S n =m ·3n +2,则m =________. 解析:设等比数列为{a n },则 a 1=S 1=3m +2,S 2=a 1+a 2=9m +2⇒a 2=6m , S 3=a 1+a 2+a 3=27m +2⇒a 3=18m , 又a 22=a 1·a 3⇒(6m ) 2=(3m +2)·18m ⇒m =-2或m =0(舍去).∴m =-2. 答案:-29.在等差数列{a n }中,a 4=10,且a 3,a 6,a 10成等比数列,求数列{a n }前20项的和S 20. 解析:设数列{a n }的公差为d ,则a 3=a 4-d =10-d ,a 6=a 4+2d =10+2d ,a 10=a 4+6d =10+6d , 由a 3,a 6,a 10成等比数列,得a 3a 10=a 26, 即(10-d )(10+6d )=(10+2d )2.整理,得10d 2-10d =0.解得d =0或d =1. 当d =0时,S 20=20a 4=200;当d =1时,a 1=a 4-3d =10-3×1=7, 于是S 20=20a 1+20×192d =20×7+190=330.10.已知数列{a n }的前n 项和S n =2n -n 2,a n =log 5b n ,其中b n >0,求数列{b n }的前n 项和T n .解析:当n ≥2时,a n =S n -S n -1 =(2n -n 2)-[2(n -1)-(n -1)2] =-2n +3,当n =1时,a 1=S 1=2×1-12=1也适合上式, ∴{a n }的通项公式a n =-2n +3(n ∈N *). 又a n =log 5b n , ∴log 5b n =-2n +3, 于是b n =5-2n +3,b n +1=5-2n +1,∴b n +1b n =5-2n +15-2n +3=5-2=125. 因此{b n }是公比为125的等比数列,且b 1=5-2+3=5,于是{b n }的前n 项和T n =5⎣⎡⎦⎤1-⎝⎛⎭⎫125n 1-125=12524⎣⎡⎦⎤1-⎝⎛⎭⎫125n .[B 组 能力提升]1.已知等比数列{a n }的前n 项和S n =2n -1,则a 21+a 22+…+a 2n 等于( )A .(2n -1)2 B.13(2n -1) C .4n -1D.13(4n -1) 解析:根据前n 项和S n =2n -1,可求出a n =2n -1,由等比数列的性质可得{a 2n}仍为等比数列,且首项为a 21,公比为q 2,∴a 21+a 22+…+a 2n =1+22+24+…+22n -2=13(4n -1). 答案:D2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:设S 2=k ,则S 4=3k ,由数列{a n }为等比数列(易知数列{a n }的公比q ≠-1),得S 2,S 4-S 2,S 6-S 4为等比数列,又S 2=k ,S 4-S 2=2k ,∴S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73,故选B. 答案:B3.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.解析:由题意,⎩⎪⎨⎪⎧a 1+a 4=9a 2·a 3=a 1·a 4=8,解得a 1=1,a 4=8或者a 1=8,a 4=1,而数列{a n }是递增的等比数列,所以a 1=1,a 4=8,即q 3=a 4a 1=8,所以q =2,因而数列{a n }的前n 项和S n=a 1(1-q n )1-q =1-2n 1-2=2n -1.答案:2n -14.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n +a 1=2a n ,且a 1,a 2+1,a 3成等差数列,则a 1+a 5=________.解析:由S n +a 1=2a n ,得a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2).从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,所以a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2n ,所以a 1+a 5=2+25=34. 答案:345.(2016·高考全国Ⅲ卷)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.解析:(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n ,即a n +1(λ-1)=λa n .由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132. 解得λ=-1.6.设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列. (1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n . 解析:(1)由已知得⎩⎪⎨⎪⎧a 1+a 2+a 3=7,(a 1+3)+(a 3+4)2=3a 2,解得a 2=2.设数列{a n }的公比为q ,由a 2=2,可得a 1=2q ,a 3=2q ,又S 3=7,可知2q +2+2q =7,即2q 2-5q +2=0.解得q 1=2,q 2=12.由题意得q >1,∴q =2,∴a 1=1. 故数列{a n }的通项为a n =2n -1. (2)由于b n =ln a 3n +1,n =1,2,…, 由(1)得a 3n +1=23n ,∴b n =ln 23n =3n ln2. 又b n +1-b n =3ln 2,∴{b n }是等差数列, ∴T n =b 1+b 2+…+b n =n (b 1+b n )2=3n (n +1)2·ln 2.故T n =3n (n +1)2ln 2.。
人教版A高中必修5数学试题第2章2.2.1同步训练及解析
人教A 高中数学必修5同步训练1.已知等差数列{a n }的首项a 1=1,公差d =2,则a 4等于( )A .5B .6C .7D .9答案:C2.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项公式a n =( )A .2n +1B .2n -1C .2nD .2(n -1)答案:B3.△ABC 三个内角A 、B 、C 成等差数列,则B =__________.解析:∵A 、B 、C 成等差数列,∴2B =A +C .又A +B +C =180°,∴3B =180°,∴B =60°.答案:60°4.在等差数列{a n }中,(1)已知a 5=-1,a 8=2,求a 1与d ;(2)已知a 1+a 6=12,a 4=7,求a 9.解:(1)由题意,知⎩⎪⎨⎪⎧ a 1+(5-1)d =-1,a 1+(8-1)d =2.解得⎩⎪⎨⎪⎧ a 1=-5,d =1. (2)由题意,知⎩⎪⎨⎪⎧ a 1+a 1+(6-1)d =12,a 1+(4-1)d =7. 解得⎩⎪⎨⎪⎧ a 1=1,d =2.∴a 9=a 1+(9-1)d =1+8×2=17.一、选择题1.在等差数列{a n }中,a 1=21,a 7=18,则公差d =( )A.12B.13C .-12D .-13解析:选C.∵a 7=a 1+(7-1)d =21+6d =18,∴d =-12. 2.在等差数列{a n }中,a 2=5,a 6=17,则a 14=( )A .45B .41C .39D .37解析:选B.a 6=a 2+(6-2)d =5+4d =17,解得d =3.所以a 14=a 2+(14-2)d =5+12×3=41.3.已知数列{a n }对任意的n ∈N *,点P n (n ,a n )都在直线y =2x +1上,则{a n }为( )A .公差为2的等差数列B .公差为1的等差数列C .公差为-2的等差数列D .非等差数列解析:选A.a n =2n +1,∴a n +1-a n =2,应选A.4.已知m 和2n 的等差中项是4,2m 和n 的等差中项是5,则m 和n 的等差中项是( )A .2B .3C .6D .9解析:选B.由题意得⎩⎪⎨⎪⎧m +2n =82m +n =10,∴m +n =6, ∴m 、n 的等差中项为3.5.下面数列中,是等差数列的有( )①4,5,6,7,8,… ②3,0,-3,0,-6,… ③0,0,0,0,…④110,210,310,410,… A .1个 B .2个C .3个D .4个解析:选C.利用等差数列的定义验证可知①、③、④是等差数列.6.数列{a n }是首项为2,公差为3的等差数列,数列{b n }是首项为-2,公差为4的等差数列.若a n =b n ,则n 的值为( )A .4B .5C .6D .7解析:选B.a n =2+(n -1)×3=3n -1,b n =-2+(n -1)×4=4n -6,令a n =b n 得3n -1=4n -6,∴n =5.二、填空题7.已知等差数列{a n },a n =4n -3,则首项a 1为__________,公差d 为__________. 解析:由a n =4n -3,知a 1=4×1-3=1,d =a 2-a 1=(4×2-3)-1=4,所以等差数列{a n }的首项a 1=1,公差d =4.答案:1 48.在等差数列{a n }中,a 3=7,a 5=a 2+6,则a 6=__________.解析:设等差数列的公差为d ,首项为a 1,则a 3=a 1+2d =7;a 5-a 2=3d =6.∴d =2,a 1=3.∴a 6=a 1+5d =13.答案:139.已知数列{a n }满足a 2n +1=a 2n +4,且a 1=1,a n >0,则a n =________.解析:根据已知条件a 2n +1=a 2n +4,即a 2n +1-a 2n =4, ∴数列{a 2n }是公差为4的等差数列,∴a 2n =a 21+(n -1)·4=4n -3. ∵a n >0,∴a n =4n -3.答案:4n -3三、解答题10.在等差数列{a n }中,已知a 5=10,a 12=31,求它的通项公式.解:由a n =a 1+(n -1)d 得⎩⎪⎨⎪⎧ 10=a 1+4d 31=a 1+11d ,解得⎩⎪⎨⎪⎧a 1=-2d =3.∴等差数列的通项公式为a n =3n -5.11.已知等差数列{a n }中,a 1<a 2<a 3<…<a n 且a 3,a 6为方程x 2-10x +16=0的两个实根.(1)求此数列{a n }的通项公式;(2)268是不是此数列中的项?若是,是第多少项?若不是,说明理由. 解:(1)由已知条件得a 3=2,a 6=8.又∵{a n }为等差数列,设首项为a 1,公差为d ,∴⎩⎪⎨⎪⎧ a 1+2d =2a 1+5d =8,解得⎩⎪⎨⎪⎧a 1=-2d =2. ∴a n =-2+(n -1)×2=2n -4(n ∈N *).∴数列{a n }的通项公式为a n =2n -4.(2)令268=2n -4(n ∈N *),解得n =136.∴268是此数列的第136项.12.已知(1,1),(3,5)是等差数列{a n }图象上的两点.(1)求这个数列的通项公式;(2)画出这个数列的图象;(3)判断这个数列的单调性.解:(1)由于(1,1),(3,5)是等差数列{a n }图象上的两点,所以a 1=1,a 3=5,由于a 3=a 1+2d =1+2d =5,解得d =2,于是a n =2n -1.(2)图象是直线y =2x -1上一些等间隔的点(如图).(3)因为一次函数y =2x -1是增函数,所以数列{a n }是递增数列.。
高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修5
高中数学第二章数列2.5等比数列的前n项和第一课时等比数列的前n项和练习(含解析)新人教A版必修51.等比数列{a n}的各项都是正数,若a1=81,a5=16,则它的前5项和是( B )(A)179 (B)211 (C)248 (D)275解析:由16=81×q4,q>0得q=,所以S5==211.故选B.2.在等比数列{a n}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是( A )(A)(B)-(C)±(D)±3解析:依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6==.故选A.3.等比数列{a n}的前n项和为S n,已知S3=a2+10a1,a5=9,则a1等于( C )(A)(B)-(C)(D)-解析:设等比数列{a n}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,所以q2=9,又a5=a1q4=9,所以a1=.故选C.4.等比数列{a n}中,a3=3S2+2,a4=3S3+2,则公比q等于( C )(A)2 (B)(C)4 (D)解析:因为a3=3S2+2,a4=3S3+2,所以a4-a3=3(S3-S2)=3a3,即a4=4a3,所以q==4,故选C.5.等比数列{a n}的前n项和S n=3n-a,则实数a的值为( B )(A)0 (B)1 (C)3 (D)不存在解析:法一当n≥2时,a n=S n-S n-1=3n-3n-1=2·3n-1,==3.又a1=S1=3-a,a2=2×3=6,则=.因为{a n}是等比数列,所以=3,得a=1.故选B.法二由等比数列前n项和公式知,3n系数1与-a互为相反数,即-a=-1,则a=1.故选B.6.在14与之间插入n个数组成等比数列,若各项和为,则数列的项数为( B )(A)4 (B)5 (C)6 (D)7解析:设公比为q,由等比数列的前n项和公式及通项公式得解之,得则数列的项数为5.故选B.7.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其大意为“有一个人走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地.”则该人最后一天走的路程为( C )(A)24里(B)12里(C)6里(D)3里解析:记每天走的路程里数为{a n},易知{a n}是公比q=的等比数列,S6=378,S6==378,所以a1=192,所以a6=192×=6,故选C.8.设S n为等比数列{a n}的前n项和,若a1=1,且3S1,2S2,S3成等差数列,则a n= .解析:由3S1,2S2,S3成等差数列知,4S2=3S1+S3,可得a3=3a2,所以公比q=3,故等比数列通项a n=a1q n-1=3n-1.答案:3n-19.在等比数列{a n}中,已知a1+a2+a3=1,a4+a5+a6=-2,则该数列的前15项和S15= .解析:记b1=a1+a2+a3,b2=a4+a5+a6,…,b5=a13+a14+a15,依题意{b n}构成等比数列,其首项b1=1,公比为q==-2,则{b n}的前5项和即为{a n}的前15项和S15==11.答案:1110.在等比数列{a n}中,公比q=,且log2a1+log2a2+…+log2a10=55,则a1+a2+…+a10= .解析:据题意知log2(·q1+2+…+9)=log2(·q45)=55,即=2100.又a n>0,所以a1=210,所以S10=211-2.答案:211-211.已知等比数列前20项和是21,前30项和是49,则前10项和是.解析:由S10,S20-S10,S30-S20成等比数列,所以(S20-S10)2=S10·(S30-S20),即(21-S10)2=S10(49-21).所以S10=7或S10=63.答案:7或6312.已知数列{a n} 的前n项和为S n,a1=1,S n=2a n+1,求S n的值.解:因为S n=2a n+1,所以n≥2时,S n-1=2a n.因为a n=S n-S n-1=2a n+1-2a n,所以3a n=2a n+1,所以=.又因为S1=2a2,所以a2=,所以=,所以{a n}从第二项起是以为公比的等比数列.所以S n=a1+a2+a3+…+a n=1+=()n-1.13.知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.解:(1)设等差数列{a n}的公差为d,由题意得d===3,所以a n=a1+(n-1)d=3n(n=1,2,…).设等比数列{b n-a n}的公比为q,由题意得q3===8,解得q=2.所以b n-a n=(b1-a1)q n-1=2n-1.从而b n=3n+2n-1(n=1,2,…).(2)由(1)知b n=3n+2n-1(n=1,2,…).数列{3n}的前n项和为n(n+1),数列{2n-1}的前n项和为=2n-1.所以数列{b n}的前n项和为n(n+1)+2n-1.14.已知数列{a n}满足a1=1,a n+1=3a n+1.(1)求证是等比数列,并求{a n}的通项公式;(2)求证++…+<.证明:(1)由a n+1=3a n+1得a n+1+=3(a n+).又a1+=,所以是首项为,公比为3的等比数列.所以a n+=,因此{a n}的通项公式为a n=.(2)由(1)知=.因为当n≥1时,3n-1≥2×3n-1,所以≤.于是++…+≤1++…+=(1-)<.所以++…+<.15.数列{a n}中,已知对任意n∈N*,a1+a2+a3+…+a n=3n-1,则+++…+等于( B )(A)(3n-1)2(B)(9n-1)(C)9n-1 (D)(3n-1)解析:因为a1+a2+…+a n=3n-1,n∈N*,n≥2时,a1+a2+…+a n-1=3n-1-1,所以当n≥2时,a n=3n-3n-1=2·3n-1,又n=1时,a1=2适合上式,所以a n=2·3n-1,故数列{}是首项为4,公比为9的等比数列.因此++…+==(9n-1).故选B.16.已知S n是等比数列{a n}的前n项和,若存在m∈N*,满足=9,=,则数列{a n}的公比为( B )(A)-2 (B)2 (C)-3 (D)3解析:设公比为q,若q=1,则=2,与题中条件矛盾,故q≠1.因为==q m+1=9,所以q m=8.所以==q m=8=,所以m=3,所以q3=8,所以q=2.故选B.17.设各项都是正数的等比数列{a n},S n为前n项和且S10=10,S30=70,那么S40= .解析:依题意,知数列{a n}的公比q≠-1,数列S10,S20-S10,S30-S20,S40-S30成等比数列,因此有(S20-S10)2=S10(S30-S20),即(S20-10)2=10(70-S20),故S20=-20或S20=30;又S20>0,因此S20=30,S20-S10=20,S30-S20=40,故S40-S30=80,S40=150.答案:15018.已知等差数列{a n}的首项a1=1,公差d>0,且第2项,第5项,第14项分别是等比数列{b n}的第2项,第3项,第4项.(1)求数列{a n}与{b n}的通项公式;(2)设数列{c n}对于任意n∈N*均有+++…+=a n+1成立,求c1+c2+c3+…+c2 015+c2 016的值. 解:(1)依题意得b2=a2=a1+d,b3=a5=a1+4d,b4=a14=a1+13d,由等比中项得(1+4d)2=(1+d)(1+13d),解得d=2或d=0(舍去),因此a n=1+2(n-1)=2n-1,b2=3,b3=9,b4=27,故数列{b n}是首项为1,公比为3的等比数列.因此b n=3n-1.(2)因为+++…+=a n+1,所以当n≥2时,+++…+=a n,两式作差得=a n+1-a n=d,又d=2,故c n=2×3n-1,又=a2,所以c1=3,因此数列c n=。
人教版高中数学必修5第二章单元测试(一)-Word版含答案
2018-2019学年必修五第二章训练卷数列(一)注意事项:1 •答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2 •选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3 •非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4 •考试结束后,请将本试题卷和答题卡一并上交。
、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1 .在数列'a n*中,a1=2 ,A• 8 B• -8C. _8 D .以上都不对7.若;.aj是等比数列,其公比是q,且- 35 , a4,成等差数列,则q等于()A• 1 或2 B • 1 或—2 C. -1 或2 D • -1 或—2&设等比数列的前n项和为S n,若00於5=1:2,则务:寻等于()A• 3: 4 B • 2:3 C. 1:2 D • 1:39.已知等差数列:的公差d = 0且a1, a3, a9成等比数列,则-31_33_39等于a? + 34 * 3丄01514B .工13C.兰16D .兰1610 .已知:a^1为等差数列,q • a3• a5 = 105 , a2a4 a^ 99,以S n表示7 a^/ 的前n项和,则使得S n达到最大值的n是(A. 21 B . 20 C. 19 D . 18号证考准名姓级班A.49 B .50 C . 51 D .52 Z ,则下列等式中恒成立的是()2.已知等差数列:a n [中,a7 *9=16 ,% =1,贝Ua12的值是() A .X Z = 2Y B.Y(Y - X) = Z(Z - X)A.15 B .30 C . 31 D.64 C .Y=XZ D.Y(Y- X) = X(Z- X)3.等比数列江?中,a2 -9 , a5 二243,则'a n f的前4项和为()12.1已知数列1,2 1 23 1 23 4 5,3, 4,…,贝y 5是数列中的2 13 2 14 3 2 1 6A.81 B .120 C . 168 D.192()4.等差数列"Gn 冲,a1 a2a3 ^-24 ,a18 a19 ' a20 -78,则此数列前20项和第50项 D .第51项A .第48项B .第49项C.等于(A.160 B .180 C . 200 D.220_、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横5 .数列Sn f中a n=3 n—7n N .),数列b*满足 1b1飞,线上)设订/是任意等比数列,它的前前2n项和与前3n项和分别为X,丫 ,n项和,11.,若a n log k b n为常数,则满足条件的b n—1=27b n(n _2且n N .)k值()13. 72-1与J2+1的等比中项是_____________ .2an +1 =2a n +1,则a101 的值为( )1A .唯一存在,且为§B.唯一存在,且为14•已知在等差数列中,首项为23,公差是整数,从第七项开始为负项,则公差为C.存在且不唯一6 .等比数列“Gn '中,a?,D .不一定存在2a6是方程x -34x '64=0的两根,则a4等于(15.嫦娥奔月,举国欢庆”,据科学计算,运载神六”的长征二号”系列火箭,在点火第一秒钟通过的路程为 2 km,以后每秒钟通过的路程都增加 2 km,在达到离地面240 km的高度时,火箭与飞船分离,则这一过程大约需要的时间是秒.116 •等比数列:a n /的公比为q,其前n项的积为T n ,并且满足条件a! 1 ,a gg aw o -1 0 , a" <0 •给出下列结论:① 0 :::q :::1 :② a99a,01—1 :::0 :③ T100a ioo —1的值是T n中最大的;④使T n 1成立的最大自然数n等于198.其中正确的结论是_______ .(填写所有正确的序号)三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤)17. (10分)已知^n /为等差数列,且a3- -6 ,氏=0 .(1 )求入1的通项公式;(2)若等比数列:b n f满足t h - -8 , b^ a1a2a3,求1b n』的前n项和公式.18. (12分)已知等差数列:a nf中,玄3玄7 = -16 , a4 = 0,求的前n项和S n •219. (12分)已知数列Jog2(a n-1p (N )为等差数列,且a^3 , a? =9 .(1)求数列(a n /的通项公式;(2)证明:1a? - a〔1a3 - a2+111+:::1 .20. (12 分)在数列临?中,印=1 , a*+1 二2a n - 2n.(〔)设bn% •证明:数列b n ?是等差数列;2(2)求数列的前n项和.321. (12分)已知数列厲?的前n项和为S.,且印=1 , a n.i r】S n( n=1,2,3,H|).2(1 )求数列江!的通项公式;(2)当b n=log33a” 时,求证:数列—的前n项和T n—.2 JbA*”1+n22 .( 12分)已知数列订話的各项均为正数,对任意n N,它的前n项和S n满足15 (a n- 1)(a n2),并且a2,,比成等比数列.6(1)求数列的通项公式;(2)设b n =(-1)n1a n a n.1,T 为数列的前n 项和,求T2n .46. 【答案】A【解析】T a 2 a 6 = 34 , a 2 a 6 = 64 , • a 42 = 64 ,T a 2>0, a 6>0, • a 4= a 2q >0, • a 4= 8 .故选 A .7. [答案】C【解析】 依题意有2印=比- a 5,即2a 4 = a 4q 2 - a 4q ,而a 4 = 0 , • q -q - 2=0 , (q -2)(q 1) = 0 . • q - -1 或 q = 2 .故选 C . & [答案】A[解析】显然等比数列:a n !的公比q = 1,则由=丄= 1 q 5=」=q 5= -」,S 5 1 —q 52 2故鱼二上笛二上g 二——23.故选A .S 5 1-q 5 1-q 5. _J 4一厂丿9. [答案】C[解析】因为 a 32 = a 1 ・a 9,所以(a< 2d)2 = a 1 (a 1 8d).所以a-^ = d .所以 a 1 a 3 % 二 3a 1 10d / .故选 C . a 2 + a 4+a 10 3^+134 1610. [答案】B【解析】•(a 2 - aj ■ @4 - a 3) ■ (a 6 - a 5)= 3d ,• 99-105 = 3d . • d = -2 .又 T a 1 a 3 a 5 =3a 1 6d =105 , • a^ = 39 . • S n = na^i +_= -n 2 + 40n = 一( n 一 20)2 + 400 .•当n=20时,S n 有最大值.故选B . 11. [答案】D[解析】由题意知S n = X , S 2n 二丫 , &n = Z .又T :an/ 是等比数列,• S n , S 2n — S n , S sn " S ?n 为等比数列, 即X , Y-X , Z-Y 为等比数列, • (Y - X)2 =X (Z - Y),2018-2019学年必修五第二章训练卷数列(一)答案一、选择题 1. 【答案】D1【解析】 由2a! d =2a n 1得a n +勺-a n =,2Sn f 是等差数列首项a 1 = 2,公差d =,2••• a n =2 -(n 一1)3 ,••• q°1=52 .故选 D .2 2 2 2. 【答案】A【解析】在等差数列:a n [中,a 7 a 9 = *4+812 , • q 2 -16 -1 =15 .故选 A . 3.【答案】B【解析】由a 5 =a 2q 3得q =3 .44• a-^ = —2 - 3 , S 4= a 11 q 3 1—3120 .故选 B .q 1_q 1 _3 4 .【答案】B【解析】••• (a 1 a 2 a 3)(弧• - a ?。
人教版新课标A版高中数学必修5:第二章数列单元同步测试(含解析).doc
学校班级姓名【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】第二章测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.S n 是数列{a n }的前n 项和,log 2S n =n (n =1,2,3,…),那么数列{a n }( )A .是公比为2的等比数列B .是公差为2的等差数列C .是公比为12的等比数列 D .既非等差数列也非等比数列解析 由log 2S n =n ,得S n =2n ,a 1=S 1=2,a 2=S 2-S 1=22-2=2,a 3=S 3-S 2=23-22=4,…由此可知,数列{a n }既不是等差数列,也不是等比数列. 答案 D2.一个数列{a n },其中a 1=3,a 2=6,a n +2=a n +1-a n ,则a 5=( ) A .6 B .-3 C .-12D .-6解析 a 3=a 2-a 1=6-3=3, a 4=a 3-a 2=3-6=-3, a 5=a 4-a 3=-3-3=-6. 答案 D3.首项为a 的数列{a n }既是等差数列,又是等比数列,则这个数列前n 项和为( )A .a n -1B .naC .a nD .(n -1)a解析 由题意,知a n =a (a ≠0),∴S n =na . 答案 B4.设{a n }是公比为正数的等比数列,若a 1=1,a 5=16,则数列{a n }的前7项和为( )A .63B .64C .127D .128解析 a 5=a 1q 4=q 4=16,∴q =2. ∴S 7=1-271-2=128-1=127.答案 C5.已知-9,a 1,a 2,-1四个实数成等差数列,-9,b 1,b 2,b 3,-1五个实数成等比数列,则b 2(a 2-a 1)的值等于( )A .-8B .8C .-98D.98解析 a 2-a 1=-1-(-9)3=83, b 22=(-1)×(-9)=9,∴b 2=-3, ∴b 2(a 2-a 1)=-3×83=-8. 答案 A6.在-12和8之间插入n 个数,使这n +2个数组成和为-10的等差数列,则n 的值为( )A .2B .3C .4D .5解析 依题意,得-10=-12+82(n +2), ∴n =3. 答案 B7.已知{a n }是等差数列,a 4=15,S 5=55,则过点P (3,a 3),Q (4,a 4)的直线的斜率为( )A .4 B.14 C .-4D .-14解析由a 4=15,S 5=55,得⎩⎪⎨⎪⎧a 1+3d =15,5a 1+5×42d =55.解得⎩⎨⎧a 1=3,d =4.∴a 3=a 4-d =11.∴P (3,11),Q (4,15).k PQ =15-114-3=4.答案 A8.等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19=( ) A .55 B .95 C .100D .190解析 S 19=a 1+a 192×19=a 3+a 172×19=102×19=95. 答案 B9.S n 是等差数列{a n }的前n 项和,若a 2+a 4+a 15是一个确定的常数,则在数列{S n }中也是确定常数的项是( )A .S 7B .S 4C .S 13D .S 16解析 a 2+a 4+a 15=a 1+d +a 1+3d +a 1+14d =3a 1+18d =3(a 1+6d )=3a 7,∴a 7为常数.∴S 13=a 1+a 132×13=13a 7为常数. 答案 C10.等比数列{a n }中,a 1+a 2+a 3+a 4+a 5=31,a 2+a 3+a 4+a 5+a 6=62,则通项是( )A .2n -1B .2nC .2n +1D .2n +2解析 ∵a 2+a 3+a 4+a 5+a 6=q (a 1+a 2+a 3+a 4+a 5), ∴62=q ×31,∴q =2.∴S 5=a 1(1-25)1-2=31.∴a 1=1,∴a n =2n -1. 答案 A11.已知等差数列{a n }中,|a 3|=|a 9|,公差d <0,则使其前n 项和S n 取得最大值的自然数n 是( )A .4或5B .5或6C .6或7D .不存在解析 由d <0知,{a n }是递减数列, ∵|a 3|=|a 9|,∴a 3=-a 9,即a 3+a 9=0. 又2a 6=a 3+a 9=0,∴a 6=0. ∴S 5=S 6且最大. 答案 B12.若a ,b ,c 成等比数列,则方程ax 2+bx +c =0( ) A .有两个不等实根 B .有两相等的实根 C .无实数根 D .无法确定解析 a ,b ,c 成等比数列,∴b 2=ac >0. 而Δ=b 2-4ac =ac -4ac =-3ac <0. ∴方程ax 2+bx +c =0无实数根. 答案 C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.2,x ,y ,z,18成等比数列,则x =________.解析 设公比为q ,则由2,x ,y ,z,18成等比数列.得18=2q 4,∴q =±3.∴x =2q =±2 3.答案 ±2 314.若数列{a n }满足a n +1=⎩⎪⎨⎪⎧2a n ,0≤a n ≤1,a n -1,a n >1,且a 1=67,则a 2013=________.解析 由题意,得a 1=67,a 2=127,a 3=57,a 4=107,a 5=37,a 6=67,a 7=127,…,∴a 2013=a 3=57.答案 5715.一个数列的前n 项和为S n =1-2+3-4+…+(-1)n +1n ,则S 17+S 33+S 50=____________.解析 S 17=-8+17=9,S 33=-16+33=17,S 50=-25,∴S 17+S 33+S 50=1.答案 116.设等比数列{a n }的公比q =12,前n 项和为S n ,则S 4a 4=________.解析 S 4a 4=a 1⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫124⎝⎛⎭⎪⎫1-12a 1⎝ ⎛⎭⎪⎫123=15. 答案 15三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)设S n 为数列{a n }的前n 项和,已知a 1≠0,2a n -a 1=S 1·S n ,n ∈N *.(1)求a 1,a 2,并求数列{a n }的通项公式; (2)求数列{na n }的前n 项和.解 (1)令n =1,得2a 1-a 1=a 21,即a 1=a 21,∵a 1≠0,∴a 1=1,令n =2,得2a 2-1=S 2=1+a 2,解得a 2=2.当n ≥2时,由2a n -1=S n,2a n -1=S n -1 两式相减得2a n -2a n -1=a n ,即a n =2a n -1, 于是数列{a n }是首项为1,公比为2的等比数列, 即a n =2n -1.∴数列{a n }的通项公式为a n =2n -1. (2)由(1)知,na n =n ·2n -1.记数列{n ·2n -1}的前n 项和为B n ,于是 B n =1+2×2+3×22+…+n ×2n -1,① 2B n =1×2+2×22+3×23+…+n ×2n .② ①-②得-B n =1+2+22+…+2n -1-n ·2n =2n -1-n ·2n . 从而B n =1+(n -1)·2n .18.(12分)已知等比数列{a n },首项为81,数列{b n }满足b n =log 3a n ,其前n 项和为S n .(1)证明{b n }为等差数列;(2)若S 11≠S 12,且S 11最大,求{b n }的公差d 的范围. 解 (1)证明:设{a n }的公比为q , 则a 1=81,a n +1a n=q ,由a n >0,可知q >0,∵b n +1-b n =log 3a n +1-log 3a n =log 3a n +1a n=log 3q (为常数),∴{b n }是公差为log 3q 的等差数列. (2)由(1)知,b 1=log 3a 1=log 381=4, ∵S 11≠S 12,且S 11最大,∴⎩⎨⎧b 11≥0,b 12<0,即⎩⎨⎧b 1+10d ≥0,b 1+11d <0.⎩⎪⎨⎪⎧d ≥-b 110=-25,d <-b111=-411.∴-25≤d <-411.19.(12分)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)证明:1S 1+1S 2+…+1S n<34.解 (1)设{a n }的公差为d ,{b n }的公比为q ,则d >0,q ≠0,a n=3+(n -1)d ,b n =q n -1,依题意有⎩⎨⎧b 2S 2=(6+d )q =64,b 3S 3=(9+3d )q 2=960.解得⎩⎨⎧d =2,q =8,或⎩⎪⎨⎪⎧d =-65,q =403,(舍去).故a n =2n +1,b n =8n -1.(2)证明:由(1)知S n =3+2n +12×n =n (n +2),1S n =1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1n -1n +2, ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n (n +2)=12⎝ ⎛⎭⎪⎪⎫1-13+12-14+13-15+…+1n -1n +2 =12⎝ ⎛⎭⎪⎪⎫1+12-1n +1-1n +2 =34-2n +32(n +1)(n +2)∵2n +32(n +1)(n +2)>0 ∴1S 1+1S 2+…+1S n<34. 20.(12分)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解 (1)设{a n }的公比为q ,由已知,得16=2q 3,解得 q =2,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎨⎧b 1+2d =8,b 1+4d =32,解得⎩⎨⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. 所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n . 21.(12分)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .解 (1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1.∴a n =4n -1(n ∈N *). 由a n =4log 2b n +3=4n -1,得b n =2n -1(n ∈N *). (2)由(1)知a n ·b n =(4n -1)·2n -1,n ∈N *, ∴T n =3+7×2+11×22+…+(4n -1)×2n -1, 2T n =3×2+7×22+…+(4n -5)×2n -1+(4n -1)×2n .∴2T n -T n =(4n -1)×2n -[3+4(2+22+…+2n -1]=(4n -5)2n +5.故T n =(4n -5)2n +5.22.(12分)已知数列{a n }满足a 1=1,a n -2a n -1-2n -1=0(n ∈N *,n ≥2).(1)求证:数列{a n2n }是等差数列; (2)若数列{a n }的前n 项和为S n ,求S n .解 (1)∵a n -2a n -1-2n -1=0,∴a n 2n -a n -12n -1=12,∴{a n 2n }是以12为首项,12为公差的等差数列. (2)由(1),得a n 2n =12+(n -1)×12, ∴a n =n ·2n -1,∴S n =1·20+2·21+3·22+…+n ·2n -1① 则2S n =1·21+2·22+3·23+…+n ·2n ② ①-②,得-S n =1+21+22+…+2n -1-n ·2n =1·(1-2n )1-2-n ·2n =2n -1-n ·2n ,∴S n =(n -1)·2n +1.高中数学知识点三角函数 1、 以角的顶点为坐标原点,始边为 x 轴正半轴建立直角坐标系,在角的终边上任取一个异于原点的点,点 P 到原点的距离记为,则 sin= , cos = , tg = , ctg = , sec = , csc = 。
人教版A高中必修5数学试题第2章2.3同步训练及解析
人教A 高中数学必修5同步训练1.若一个等差数列首项为0,公差为2,则这个等差数列的前20项之和为( )A .360B .370C .380D .390答案:C2.已知a 1=1,a 8=6,则S 8等于( )A .25B .26C .27D .28答案:D3.设等差数列{a n }的前n 项和为S n ,若a 6=S 3=12,则{a n }的通项a n =________.解析:由已知⎩⎪⎨⎪⎧ a 1+5d =123a 1+3d =12⇒⎩⎪⎨⎪⎧a 1=2,d =2.故a n =2n . 答案:2n4.在等差数列{a n }中,已知a 5=14,a 7=20,求S 5.解:d =a 7-a 57-5=20-142=3, a 1=a 5-4d =14-12=2,所以S 5=5(a 1+a 5)2=5(2+14)2=40. 一、选择题1.等差数列{a n }的前n 项和为S n ,若a 2=1,a 3=3,则S 4=( )A .12B .10C .8D .6解析:选C.d =a 3-a 2=2,a 1=-1,S 4=4a 1+4×32×2=8. 2.在等差数列{a n }中,a 2+a 5=19,S 5=40,则a 10=( )A .24B .27C .29D .48 解析:选C.由已知⎩⎪⎨⎪⎧ 2a 1+5d =19,5a 1+10d =40.解得⎩⎪⎨⎪⎧a 1=2,d =3.∴a 10=2+9×3=29. 3.在等差数列{a n }中,S 10=120,则a 2+a 9=( )A .12B .24C .36D .48解析:选B.S 10=10(a 1+a 10)2=5(a 2+a 9)=120.∴a 2+a 9=24. 4.已知等差数列{a n }的公差为1,且a 1+a 2+…+a 98+a 99=99,则a 3+a 6+a 9+…+a 96+a 99=( )A .99B .66C .33D .0解析:选B.由a 1+a 2+…+a 98+a 99=99,得99a 1+99×982=99. ∴a 1=-48,∴a 3=a 1+2d =-46. 又∵{a 3n }是以a 3为首项,以3为公差的等差数列.∴a 3+a 6+a 9+…+a 99=33a 3+33×322×3 =33(48-46)=66.5.若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A .13项B .12项C .11项D .10项解析:选A.∵a 1+a 2+a 3=34,①a n +a n -1+a n -2=146,②又∵a 1+a n =a 2+a n -1=a 3+a n -2,∴①+②得3(a 1+a n )=180,∴a 1+a n =60.③S n =(a 1+a n )·n 2=390.④ 将③代入④中得n =13.6.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )A .9B .10C .11D .12解析:选B.由等差数列前n 项和的性质知S 偶S 奇=n n +1,即150165=n n +1,∴n =10. 二、填空题7.设数列{a n }的首项a 1=-7,且满足a n +1=a n +2(n ∈N *),则a 1+a 2+…+a 17=________.解析:由题意得a n +1-a n =2,∴{a n }是一个首项a 1=-7,公差d =2的等差数列.∴a 1+a 2+…+a 17=S 17=17×(-7)+17×162×2=153. 答案:1538.已知{a n }是等差数列,a 4+a 6=6,其前5项和S 5=10,则其公差为d =__________. 解析:a 4+a 6=a 1+3d +a 1+5d =6.①S 5=5a 1+12×5×(5-1)d =10.② 由①②得a 1=1,d =12. 答案:129.设S n 是等差数列{a n }的前n 项和,a 12=-8,S 9=-9,则S 16=________. 解析:由等差数列的性质知S 9=9a 5=-9,∴a 5=-1.又∵a 5+a 12=a 1+a 16=-9,∴S 16=16(a 1+a 16)2=8(a 1+a 16)=-72. 答案:-72三、解答题10.已知数列{a n }的前n 项和公式为S n =n 2-23n -2(n ∈N *).(1)写出该数列的第3项;(2)判断74是否在该数列中.解:(1)a 3=S 3-S 2=-18.(2)n =1时,a 1=S 1=-24,n ≥2时,a n =S n -S n -1=2n -24,即a n =⎩⎪⎨⎪⎧-24,n =1,2n -24,n ≥2, 由题设得2n -24=74(n ≥2),解得n =49.∴74在该数列中.11.设等差数列{a n }满足a 3=5,a 10=-9.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最大的序号n 的值. 解:(1)由a n =a 1+(n -1)d 及a 3=5,a 10=-9得 ⎩⎪⎨⎪⎧ a 1+2d =5,a 1+9d =-9,可解得⎩⎪⎨⎪⎧a 1=9,d =-2,所以数列{a n }的通项公式为a n =11-2n .(2)由(1)知,S n =na 1+n (n -1)2d =10n -n 2. 因为S n =-(n -5)2+25,所以当n =5时,S n 取得最大值.12.已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且各项和为286,求项数;(2)S n =20,S 2n =38,求S 3n .解:(1)由题意知a 1+a 2+a 3+a 4=21,a n -3+a n -2+a n -1+a n =67, 所以a 1+a 2+a 3+a 4+a n -3+a n -2+a n -1+a n =88.所以a 1+a n =884=22. 因为S n =n (a 1+a n )2=286,所以n =26. (2)因为S n ,S 2n -S n ,S 3n -S 2n 成等差数列,所以S 3n =3(S 2n -S n )=54.。
最新高中数学:必修5人教A第2章2.5.2同步训练及解析
人教A 高中数学必修5同步训练1.设数列{(-1)n -1·n }的前n 项和为S n ,则S 2011等于( )A .-2011B .-1006C .2011D .1006答案:D2.已知数列{1n (n +1)}的前n 项和为S n ,则S 9等于( ) A.910 B.710C.109D.107答案:A3.数列{a n }的通项公式a n =1n +n +1,若前n 项的和为10,则项数n 为__________. 答案:1204.求数列112,314,518,…,[(2n -1)+12n ]的前n 项和. 解:S n =112+314+518+…+[(2n -1)+12n ] =(1+3+5+…+2n -1)+(12+14+18+…+12n ) =(1+2n -1)·n 2+12[1-(12)n ]1-12=n 2+1-12n .一、选择题1.在等差数列{a n }中,已知a 1=2,a 9=10,则前9项和S 9=( )A .45B .52C .108D .54答案:D2.已知数列{a n }的前n 项和S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15=( )A .-29B .29C .30D .-30解析:选B.S 15=1-5+9-13+…+57=-4×7+57=29.3.数列9,99,999,9999,…,的前n 项和等于( )A .10n -1 B.10(10n -1)9-n C.109(10n -1) D.109(10n -1)+n 解析:选B.a n =10n -1,∴S n =a 1+a 2+…+a n=(10-1)+(102-1)+…+(10n -1)=(10+102+…+10n )-n =10(10n -1)9-n . 4.已知数列{a n }为等比数列,S n 是它的前n 项和,若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .35 B .33C .31D .29解析:选C.设公比为q (q ≠0),则由a 2·a 3=2a 1知a 1q 3=2,∴a 4=2.又a 4+2a 7=52,∴a 7=14.∴a 1=16,q =12. ∴S 5=a 1(1-q 5)1-q =16[1-(12)5]1-12=31. 5.设等差数列{a n }的前n 项和为S n ,若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9解析:选A.设等差数列的公差为d ,则由a 4+a 6=-6得2a 5=-6,∴a 5=-3.又∵a 1=-11,∴-3=-11+4d ,∴d =2,∴S n =-11n +n (n -1)2×2=n 2-12n =(n -6)2-36,故当n =6时S n 取最小值,故选A. 6.已知数列{a n }:12,13+23,14+24+34,15+25+35+45,…,那么数列{b n }={1a n a n +1}前n 项的和为( )A .4(1-1n +1) B .4(12-1n +1) C .1-1n +1D.12-1n +1 解析:选A.∵a n =1+2+3+…+n n +1=n (n +1)2n +1=n 2, ∴b n =1a n a n +1=4n (n +1)=4(1n -1n +1). ∴S n =4(1-1n +1). 二、填空题7.已知a n =n +13n ,则数列{a n }的前n 项和S n =__________. 解析:S n =(1+2+…+n )+(13+132+…+13n ) =12(n 2+n +1-13n ). 答案:12(n 2+n +1-13n ) 8.若数列{a n }的通项公式a n =1n 2+3n +2,则数列的前n 项和S n =__________.解析:a n =1n 2+3n +2=1(n +1)(n +2)=1n +1-1n +2, S n =(12-13)+(13-14)+…+(1n +1-1n +2) =12-1n +2=n 2n +4. 答案:n 2n +49.已知数列{a n }中,a n =⎩⎪⎨⎪⎧2n -1 (n 为正奇数),2n -1 (n 为正偶数),则a 9=________(用数字作答),设数列{a n }的前n 项和为S n ,则S 9=________(用数字作答).解析:a 9=29-1=256.S 9=(a 1+a 3+a 5+a 7+a 9)+(a 2+a 4+a 6+a 8)=1-451-4+4×(3+15)2=377. 答案:256 377三、解答题10.已知数列{a n }的通项a n =2·3n ,求由其奇数项所组成的数列的前n 项和S n .解:由a n =2·3n 得a n +1a n =2·3n +12·3n=3,又a 1=6, ∴{a n }是等比数列,其公比为q =3,首项a 1=6,∴{a n }的奇数项也成等比数列,公比为q 2=9,首项为a 1=6,∴S n =6(1-9n )1-9=34(9n -1). 11.已知{a n }是首项为19,公差为-2的等差数列,S n 为{a n }的前n 项和.(1)求通项a n 及S n ;(2)设{b n -a n }是首项为1,公比为3的等比数列,求数列{b n }的通项公式及前n 项和T n . 解:(1)∵{a n }是首项为a 1=19,公差为d =-2的等差数列,∴a n =19-2(n -1)=21-2n ,S n =19n +12n (n -1)×(-2)=20n -n 2. (2)由题意得b n -a n =3n -1,即b n =a n +3n -1,∴b n =3n -1-2n +21,T n =S n +(1+3+…+3n -1)=-n 2+20n +3n -12. 12.在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2n -1,证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n .解:(1)证明:由a n +1=2a n +2n ,两边同除以2n ,得a n +12n =a n 2n -1+1.∴a n +12n -a n 2n -1=1,即b n +1-b n =1, ∴{b n }为等差数列.(2)由第(1)问得,a n 2n -1=120+(n -1)×1=n . ∴a n =n ·2n -1, ∴S n =20+2×21+3×22+…+n ×2n -1.① ∴2S n =21+2×22+…+(n -1)2n -1+n ·2n .② ∴①-②得-S n =20+21+22+…+2n -1-n ·2n =1-2n 1-2-n ·2n =(1-n )·2n -1. ∴S n =(n -1)·2n +1.。
人教A版高中数学必修五第2章2.1同步训练习题(含解析)
人教A 高中数学必修5同步训练 1.数列1,12,14,…,12n ,…是( )A .递增数列B .递减数列C .常数列D .摆动数列答案:B2.已知数列{a n }的通项公式a n =12[1+(-1)n +1],则该数列的前4项依次是() A .1,0,1,0 B .0,1,0,1,0,12,0 D .2,0,2,0答案:A3.数列{a n }的通项公式a n =cn +d n ,又知a 2=32,a 4=154,则a 10=__________.答案:99104.已知数列{a n }的通项公式a n =2n 2+n .(1)求a 8、a 10.(2)问:110是不是它的项若是,为第几项解:(1)a 8=282+8=136,a 10=2102+10=155.(2)令a n =2n 2+n =110,∴n 2+n =20.解得n =4.∴110是数列的第4项.一、选择题1.已知数列{a n }中,a n =n 2+n ,则a 3等于( )A .3B .9C .12D .20答案:C2.下列数列中,既是递增数列又是无穷数列的是( )A .1,12,13,14,… B .-1,-2,-3,-4,…C .-1,-12,-14,-18,… D .1,2,3,…,n解析:选C.对于A ,a n =1n,n ∈N *,它是无穷递减数列;对于B ,a n =-n ,n ∈N *,它也是无穷递减数列;D 是有穷数列;对于C ,a n =-(12)n -1,它是无穷递增数列. 3.下列说法不正确的是( )A .根据通项公式可以求出数列的任何一项B .任何数列都有通项公式C .一个数列可能有几个不同形式的通项公式D .有些数列可能不存在最大项解析:选B.不是所有的数列都有通项公式,如0,1,2,1,0,….4.数列23,45,67,89,…的第10项是( )解析:选C.由题意知数列的通项公式是a n =2n 2n +1, ∴a 10=2×102×10+1=2021.故选C. 5.已知非零数列{a n }的递推公式为a n =n n -1·a n -1(n >1),则a 4=( ) A .3a 1B .2a 1C .4a 1D .1解析:选C.依次对递推公式中的n 赋值,当n =2时,a 2=2a 1;当n =3时,a 3=32a 2=3a 1;当n =4时,a 4=43a 3=4a 1.6.已知数列{a n }满足a 1>0,且a n +1=12a n ,则数列{a n }是( ) A .递增数列B .递减数列C .常数列D .摆动数列 解析:选B.由a 1>0,且a n +1=12a n ,则a n >0.又a n +1a n =12<1,∴a n +1<a n . 因此数列{a n }为递减数列.二、填空题7.已知数列{a n }的通项公式a n =19-2n ,则使a n >0成立的最大正整数n 的值为__________.解析:由a n =19-2n >0,得n <192,∵n ∈N *,∴n ≤9. 答案:98.已知数列{a n }满足a 1=2,a 2=5,a 3=23,且a n +1=αa n +β,则α、β的值分别为________、________. 解析:由题意a n +1=αa n +β,得⎩⎪⎨⎪⎧ a 2=αa 1+βa 3=αa 2+β⇒⎩⎪⎨⎪⎧ 5=2α+β23=5α+β⇒⎩⎪⎨⎪⎧ α=6,β=-7.答案:6 -79.已知{a n }满足a n =-1na n -1+1(n ≥2),a 7=47,则a 5=________. 解析:a 7=-1a 6+1,a 6=1a 5+1,∴a 5=34. 答案:34三、解答题10.写出数列1,23,35,47,…的一个通项公式,并判断它的增减性. 解:数列的一个通项公式a n =n 2n -1. 又∵a n +1-a n =n +12n +1-n 2n -1=-12n +12n -1<0, ∴a n +1<a n .∴{a n }是递减数列.11.在数列{a n }中,a 1=3,a 17=67,通项公式是关于n 的一次函数.(1)求数列{a n }的通项公式;(2)求a 2011;(3)2011是否为数列{a n }中的项若是,为第几项解:(1)设a n =kn +b (k ≠0),则有⎩⎪⎨⎪⎧ k +b =3,17k +b =67,解得k =4,b =-1.∴a n =4n -1.(2)a 2011=4×2011-1=8043.(3)令2011=4n-1,解得n=503∈N*,∴2011是数列{a n}的第503项.12.数列{a n}的通项公式为a n=30+n-n2.(1)问-60是否是{a n}中的一项?(2)当n分别取何值时,a n=0,a n>0,a n<0?解:(1)假设-60是{a n}中的一项,则-60=30+n-n2.解得n=10或n=-9(舍去).∴-60是{a n}的第10项.(2)分别令30+n-n2=0;>0;<0,解得n=6;0<n<6;n>6,即n=6时,a n=0;0<n<6时,a n>0;n>6时,a n<0.。
2020_2021学年高中数学第二章数列2.3.1等差数列的前n项和同步作业含解析新人教A版必修52
等差数列的前n项和(30分钟60分)一、选择题(每小题5分,共30分)1.已知等差数列{a n}的前10项和为30,a6=8,则a100=( )A.100B.958C.948D.18【解析】选C.设等差数列{a n}的公差为d,由已知解得所以a100=-42+99×10=948.2.已知等差数列{a n}的公差为3,且a1+a3=8,则数列{a n}的前4项的和S4的值为( ) A.10B.16C.22D.35【解析】选C.因为等差数列{a n}的公差为3,且a1+a3=8,所以2a1+2×3=8,所以a1=1,所以S4=4×1+×3=22.3.(2019·某某高二检测)已知等差数列的前n项和S n,且S3=S5=15,则S7=() A.4B.7C.14D.【解析】选B.等差数列的前n项和为S n,且S3=S5=15,所以a4+a5=0,所以2a1+7d=0.再根据S3=3a1+3d=15,可得a1=7,d=-2,则S7=7a1+d=49+21×(-2)=7.4.(2019·某某高一检测)在等差数列{a n}中,若a3+a4+a5+a6+a7=45,则S9=() A.45B.162C.81D.【解析】选C.因为在等差数列{a n}中,a3+a4+a5+a6+a7=5a5=45,所以a5=9.所以S9==9a5=81.5.等差数列{a n}的前n项和为S n,若=,则下列结论中正确的是( )A.=2B.=C.=D.=【解析】选C.由已知S n=a n,S n-1=a n-1(n≥2),两式相减可得a n=a n-a n-1(n≥2),化简得=(n≥2),当n=3时,=.6.数列{a n}的前n项和S n=2n2+n(n∈N*),则a n=( )A.2n-1B.2n+1C.4n-1D.3n+2【解析】选C.因为数列{a n}的前n项和S n=2n2+n,所以当n≥2时,a n=S n-S n-1=2n2+n-[2(n-1)2+(n-1)]=4n-1,当n=1时,a1=S1=3,符合上式,所以综上a n=4n-1.二、填空题(每小题5分,共10分)7.设等差数列{a n}的前n项和为S n,S3=6,S4=12,则S6=________.【解析】方法一:设数列{a n}的首项为a1,公差为d,由S3=6,S4=12,得解得所以S6=6a1+15d=30.方法二:因为{a n}为等差数列,可设前n项和S n=An2+Bn,由S3=6,S4=12得解得即S n=n2-n,所以S6=36-6=30.答案:308.设等差数列{a n}的前n项和为S n,若S8=32,则a2+2a5+a6=__________.【解析】因为S8=32,所以=32.可得a4+a5=a1+a8=8,则a2+2a5+a6=2(a4+a5)=2×8=16.答案:16三、解答题(每小题10分,共20分)9.在各项为正的等差数列{a n}中,已知公差d=2,a n=11,S n=35,求a1和n.【解析】由题意得即解得或(舍去)故10.已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数.(1)证明:a n+2-a n=λ.(2)是否存在λ,使得{a n}为等差数列?并说明理由.【解析】(1)由a n a n+1=λS n-1知,a n+1a n+2=λS n+1-1,两式相减得,a n+1(a n+2-a n)=λa n+1,又因为a n+1≠0,所以a n+2-a n=λ.(2)存在.由a1=1,a1a2=λa1-1,得a2=λ-1,由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.所以a n+2-a n=4,由此可得,{a2n-1}是首项为1,公差为4的等差数列,a2n-1=1+(n-1)·4=4n-3; {a2n}是首项为3,公差为4的等差数列,a2n=3+(n-1)·4=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得{a n}为等差数列.(45分钟75分)一、选择题(每小题5分,共25分)1.已知等差数列{1-3n},则公差d等于( )A.1B.3C.-3D.n【解析】选C.因为a n=1-3n,所以a1=-2,a2=-5,所以d=a2-a1=-3.2.设等差数列{a n}的前n项和为S n,若S17=255,a10=20,则数列{a n}的公差为( ) A.3B.4C.5D.6【解析】选C.根据等差数列的求和公式,可得S17=×17=17a9=255,可得a9=15,又a10=20,所以d=a10-a9=20-15=5.3.等差数列中,S n是前n项和,若a3+a8=5,S9=45,则S11=( )A.0B.10C.20D.25【解析】选A.设等差数列的首项为a1,公差为d,因为,所以,即,解得,则S11=25×11-×5=0.故选A.4.已知等差数列{a n}中,a2=6,a5=15,若b n=a2n,则数列{b n}的前5项和等于( ) A.30B.45C.90D.186【解析】选C.因为所以故所以a n=a1+(n-1)d=3n,故b n=a2n=6n,则因此{b n}的前5项和为S5=5×6+×6=90.5.(2019·定州高一检测)记等差数列{a n}的前n项和为S n,若a5=3,S13=91,则S11=( ) A.36B.72C.55D.110【解析】选C.因为S13==13a7=91,所以a7=7,因为a5=3,所以a5+a7=10,因为a1+a11=a5+a7=10,所以S11==55.二、填空题(每小题5分,共20分)6.(2019·全国卷Ⅲ)记S n为等差数列{a n}的前n项和,a1≠0,a2=3a1,则=________.【解析】设该等差数列的公差为d,因为a2=3a1,所以a1+d=3a1,故d=2a1(a1≠0,d≠0),所以====4.答案:47.若数列{a n}的前n项和S n=n2-8n,n=1,2,3,…,则满足a n>0的n的最小值为________.【解析】(1)当n=1时,a1=S1=12-8=-7.(2)当n>1时,由S n=n2-8n得:S n-1=(n-1)2-8(n-1)=n2-10n+9,两式相减,得:a n=2n-9,n=1也符合,由a n=2n-9>0,得:n>4.5,所以,满足a n>0的n的最小值为5.答案:58.已知数列{a n}的前n项和S n=n2-2n+3,则a n=________.【解析】当n=1时,a1=S1=2,当n≥2,a n=S n-S n-1=n2-2n-(n-1)2+2(n-1)=2n-3,故a n=答案:9.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,天坛圆丘的地面由扇环形的石板铺成(如图所示),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是________.【解析】因为最高一层的中心是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则每圈的石板数构成一个以9为首项,以9为公差的等差数列,所以a n=9n,当n=9时,第9圈共有81块石板,所以前9圈的石板总数S9=(9+81)=405.答案:405三、解答题(每小题10分,共30分)10.等差数列{a n}的前n项和记为S n,已知a10=30,a20=50.(1)求通项a n.(2)令S n=242,求n.【解析】(1)由a n=a1+(n-1)d,a10=30,a20=50,得方程组解得所以a n=2n+10.(2)由S n=na1+·d,S n=242,得方程12n+×2=242,解得n=11或n=-22(舍去),即n=11.11.设a1,d为实数,首项为a1,公差为d的等差数列{a n}的前n项和为S n,满足S5S6+15=0.(1)若S5=5,求S6及a1.(2)求d的取值X围.【解析】(1)由题意知S6=-=-3,a6=S6-S5=-8,所以解得a1=7. 综上,S6=-3,a1=7.(2)因为S5S6+15=0,所以(5a1+10d)(6a1+15d)+15=0,即2+9da1+10d2+1=0,所以(4a1+9d)2=d2-8,所以d2≥8.故d的取值X围为d≤-2或d≥2.12.(2017·某某高考)对于给定的正整数k,若数列{a n}满足a n-k+a n-k+1+…+a n-1+a n+1+…+a n+k-1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(1)证明:等差数列{a n}是“P(3)数列”.(2)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【证明】(1)因为是等差数列,设其公差为d,则a n=a1+(n-1)d,从而,当n≥4时,a n-k+a n+k=a1+(n-k-1)d+a1+(n+k-1)d=2a1+2(n-1)d=2a n,k=1,2,3,所以a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n,因此等差数列是“P数列”.(2)数列既是“P数列”,又是“P数列”,因此,当n≥3时,a n-2+a n-1+a n+1+a n+2=4a n,①当n≥4时,a n-3+a n-2+a n-1+a n+1+a n+2+a n+3=6a n.②由①知,a n-3+a n-2=4a n-1-(a n+a n+1),③a n+2+a n+3=4a n+1-(a n-1+a n),④将③④代入②,得a n-1+a n+1=2a n,其中n≥4,所以a3,a4,a5,…是等差数列,设其公差为d′.在①中,取n=4,则a2+a3+a5+a6=4a4,所以a2+a3+a3+2d′+a3+3d′=4(a3+d′),即a2=a3-d′,在①中,取n=3,则a1+a2+a4+a5=4a3,因为a3=a2+d′,所以a1+a2+a2+2d′+a2+3d′=4(a2+d′), 即a1=a2-d′,所以数列{a n}是等差数列.。
2020新人教A版高中数学必修5同步课件:第二章 习题课(一) 求数列的通项公式
∴an=
2.
2������ -1
(2)∵an+1=3an+2,∴an+1+1=3(an+1).
又a1+1=2≠0,
∴数列{an+1}是首项为2,公比为3的等比数列.
∴an+1=2·3n-1.
∴an=2·3n-1-1.
=
������ (������ -1)
22 .
反思已知数列的递推公式求通项,通常有以下几种情
形:(1)an+1-an=f(n),常用累加法求通项;(2)
������������ +1 ������������
=
������(n),常用累乘法求
通项;(3)an+1=pan+q,通常构造等比数列求通项.
习题课(一) 求数列的通项公式
1.巩固等差数列与等比数列的通项公式. 2.掌握求数列通项公式的常见方法,并能用这些方法解决一些简 单的求数列通项公式的问题.
1.等差数列的通项公式
若数列{an}为等差数列,其首项为a1,公差为d,则an=a1+(n1)d=am+(n-m)d (n,m∈N*).
【做一做1】 已知数列{an}是等差数列,且a2=6,a11=24,则
给项是分数,那么先把它们统一为相同的形式,再分子、分母分别
寻找规律.
题型一 题型二 题型三
【变式训练1】 根据下面数列的前几项,写出数列的一个通项公
式.
பைடு நூலகம்
(1)1,1,
5 7
,
7 15
,
9 31
,
…
;
(2)2,22,222,2 222,…;
(3)3,0,-3,0,3,….
高中数学 第二章 数列 2.4 等比数列 第二课时 等比数列的性质学案(含解析)新人教A版必修5-新
第二课时 等比数列的性质等比数列性质的应用[例1] (1)在等比数列{a n }中,若a 7+a 8+a 9+a 10=8,a 8a 9=-8,则1a 7+1a 8+1a 9+1a 10=________.(2)已知数列{a n }是等比数列,a 3+a 7=20,a 1a 9=64,求a 11的值.[解] (1)因为1a 7+1a 10=a 7+a 10a 7a 10,1a 8+1a 9=a 8+a 9a 8a 9,由等比数列的性质知a 7a 10=a 8a 9,所以1a 7+1a 8+1a 9+1a 10=a 7+a 8+a 9+a 10a 8a 9=158÷⎝ ⎛⎭⎪⎫-98=-53. (2)∵{a n }为等比数列, ∴a 1·a 9=a 3·a 7=64. 又∵a 3+a 7=20,∴a 3,a 7是方程t 2-20t +64=0的两个根. ∵t 1=4,t 2=16,∴a 3=4,a 7=16或a 3=16,a 7=4. ①当a 3=4,a 7=16时,a 7a 3=q 4=4,此时a 11=a 3q 8=4×42=64. ②当a 3=16,a 7=4时,a 7a 3=q 4=14,此时a 11=a 3q 8=16×⎝ ⎛⎭⎪⎫142=1. [答案] (1) -53[类题通法] 等比数列常用性质(1)若m +n =p +q (m ,n ,p ,q ∈N *), 则a m ·a n =a p ·a q .特例:若m +n =2p (m ,n ,p ∈N *),则a m ·a n =a 2p . (2)a n a m=qn -m(m ,n ∈N *).(3)在等比数列{a n }中,每隔k 项取出一项,取出的项,按原来顺序组成新数列,该数列仍然是等比数列.(4)数列{a n }为等比数列,则数列{λa n }(λ为不等于0的常数)和⎩⎨⎧⎭⎬⎫1a n 仍然成等比数列.[活学活用]1.在等比数列{a n }中,若a 2=2,a 6=12,则a 10=________. 解析:法一:设{a n }的公比为q ,则⎩⎪⎨⎪⎧a 1q =2,a 1q 5=12,解得q 4=6,∴a 10=a 1q 9=a 1q ·(q 4)2=2×36=72. 法二:∵{a n }是等比数列, ∴a 26=a 2·a 10,于是a 10=a 26a 2=1222=1442=72.答案:722.在等比数列{a n }中,若a 7=-2,则此数列的前13项之积等于________. 解析:由于{a n }是等比数列,∴a 1a 13=a 2a 12=a 3a 11=a 4a 10=a 5a 9=a 6a 8=a 27, ∴a 1a 2a 3…a 13=()a 276·a 7=a 137,而a 7=-2,∴a 1a 2a 3…a 13=(-2)13=-213. 答案:-213灵活设元求解等比数列[例2] 已知三个数成等比数列,它们的积为27,它们的平方和为91,求这三个数. [解] 法一:设三个数依次为a ,aq ,aq 2,由题意知⎩⎪⎨⎪⎧a ·aq ·aq 2=27,a 2+a 2q 2+a 2q 4=91,∴⎩⎪⎨⎪⎧aq 3=27,a 21+q 2+q 4=91,即⎩⎪⎨⎪⎧aq =3,a 21+q 2+q 4=91,解得q 21+q 2+q 4=991, 得9q 4-82q 2+9=0,即得q 2=9或q 2=19,∴q =±3或q =±13.若q =3,则a 1=1; 若q =-3,则a 1=-1; 若q =13,则a 1=9;若q =-13,则a 1=-9.故这三个数为1,3,9,或-1,3,-9,或9,3,1,或-9,3,-1. 法二:设这三个数分别为a q,a ,aq .⎩⎪⎨⎪⎧aq·a ·aq =27,a 2q 2+a 2+a 2q 2=91⇒⎩⎪⎨⎪⎧a =3,a 2⎝ ⎛⎭⎪⎫1q2+1+q 2=91,得9q 4-82q 2+9=0,即得q 2=19或q 2=9,∴q =±13或q =±3.故这三个数为1,3,9,或-1,3,-9,或9,3,1,或-9,3,-1. [类题通法]三个数或四个数成等比数列的设元技巧(1)若三个数成等比数列,可设三个数为a ,aq ,aq 2或a q,a ,aq .(2)若四个数成等比数列,可设为a ,aq ,aq 2,aq 3;若四个数均为正(负)数,可设为a q3,a q,aq ,aq 3. [活学活用]在2和20之间插入两个数,使前三个数成等比数列,后三个数成等差数列,则插入的两个数的和为( )A .-4或1712B .4或1712C .4D .1712解析:选B 设插入的第一个数为a ,则插入的另一个数为a 22.由a ,a 22,20成等差数列得2×a 22=a +20.∴a 2-a -20=0,解得a =-4或a =5. 当a =-4时,插入的两个数的和为a +a 22=4.当a =5时,插入的两个数的和为a +a 22=1712.等比数列的实际应用[例3] 年2月起,每月生产总值比上一个月增长m %,那么到2017年8月底该厂的生产总值为多少万元?[解] 设从2015年1月开始,第n 个月该厂的生产总值是a n 万元,则a n +1=a n +a n m %, ∴a n +1a n=1+m %. ∴数列{a n }是首项a 1=a ,公比q =1+m %的等比数列. ∴a n =a (1+m %)n -1.∴2016年8月底该厂的生产总值为a 20=a (1+m %)20-1=a (1+m %)19(万元).[类题通法]数列实际应用题常与现实生活和生产实际中的具体事件相联系,建立数学模型是解决这类问题的核心,常用的方法有:①构造等差、等比数列的模型,然后用数列的通项公式或求和公式解;②通过归纳得到结论,再用数列知识求解.[活学活用](安徽高考)如图,在等腰直角三角形ABC 中,斜边BC =2 2.过点 A 作BC 的垂线,垂足为A 1 ;过点 A 1作 AC 的垂线,垂足为 A 2;过点A 2 作A 1C 的垂线,垂足为A 3 ;…,依此类推.设BA =a 1 ,AA 1=a 2 , A 1A 2=a 3 ,…, A 5A 6=a 7 ,则 a 7=________.解析:法一:直接递推归纳:等腰直角三角形ABC 中,斜边BC =22, 所以AB =AC =a 1=2,AA 1=a 2=2,A 1A 2=a 3=1,…,A 5A 6=a 7=a 1×⎝⎛⎭⎪⎫226=14. 法二:求通项:等腰直角三角形ABC 中,斜边BC =22,所以AB =AC =a 1=2,AA 1=a 2=2,…,A n -1A n =a n +1=sin π4·a n =22a n =2×⎝ ⎛⎭⎪⎫22n,故a 7=2×⎝ ⎛⎭⎪⎫226=14. 答案:143.等差数列和等比数列的性质对比等差数列和等比数列从文字看,只是一字之差,但定义和性质相差甚远,下面对两类数列的性质作一比对,若等差数列{a n }的公差为d ,等比数列{b n }的公比为q .【性质1】 等差数列{a n },当d =0时,数列为常数列,当d >0时,数列为递增数列;当d <0时,数列为递减数列.等比数列{b n },当q >1,b 1>0或0<q <1,b 1<0时,数列{b n }是递增数列;当q >1,b 1<0或0<q <1,b 1>0时,数列{b n }是递减数列;当q =1时,数列{b n }是常数列.[例1] 设{a n }是首项大于零的等比数列,且a 1<a 2<a 3,则数列{a n }是________数列.(填“递增”“递减”或“摆动”)[解析] 设数列{a n }的公比为q (q ≠0),因为a 1<a 2<a 3,所以a 1<a 1q <a 1q 2,解得q >1,且a 1>0,所以数列{a n }是递增数列.[答案] 递增【性质2】 等差数列{a n }满足a n =a m +(n -m )·d (m ,n ∈N *),等比数列{b n }满足b n =b m ·q n -m (m ,n ∈N *).(当m =1时,上述式子为通项公式)[例2] 已知{a n }为等差数列,且a 3=-6,a 6=0,则{a n }的通项公式为________. [解析] ∵a 6=a 3+3d ,则0=-6+3d ,得d =2, ∴a n =a 3+(n -3)d =-6+(n -3)×2=2n -12. [答案] a n =2n -12【性质3】 若m +n =p +q (m ,n ,p ,q ∈N *),等差数列{a n }满足a m +a n =a p +a q ,特别地,若数列{a n }是有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首末两项之和,即a 1+a n =a 2+a n -1=…=a i +1+a n -i =…(n ∈N *).等比数列{b n }满足b m b n =b p b q ,特别地,数列{b n }是有穷数列,则与首末两项等距离的两项的积相等,且等于首末两项之积,即b 1·b n =b 2·b n -1=b 3·b n -2=…=b m ·b n -m +1.[例3] (1)等差数列{a n }的前n 项和为S n ,若a 3+a 17=10,则S 19的值是( ) A .55 B .95 C .100D .105(2)在等比数列{a n }中,若a 2·a 8=36,a 3+a 7=15,则公比q 值的个数可能为( ) A .1 B .2 C .3D .4[解析] (1)S 19=19a 1+a 192=19a 3+a 172=19×102=95.(2)∵a 2·a 8=a 3·a 7,∴由⎩⎪⎨⎪⎧a 3·a 7=36,a 3+a 7=15,解得a 3=3,a 7=12,或a 3=12,a 7=3. 若a 3=3,a 7=12,则有12=3×q 4, ∴q 4=4,∴q 2=2,q =± 2.若a 3=12,a 7=3,则有3=12×q 4, ∴q 4=14,q 2=12,q =±22.∴q 的值可能有4个. 答案:(1)B (2)D【性质4】 在等差(比)数列中,每隔k 项取出一项,按原来的顺序排列,所得新数列仍为等差(比)数列,公差为(k +1)d (公比为q k +1),若两个数列分别成等差(比)数列,则两数列对应项和(积)构成等差(比)数列.[例4] 在1和16之间插入三个正数a ,b ,c 使1,a ,b ,c,16成等比数列,求a +b +c 的值.[解] ∵1,a ,b ,c,16成等比数列, ∴1,b,16为等比数列.∴b =4.∴1,a ,b 也成等比数列,b ,c,16也成等比数列. ∴a =2,c =8.∴a +b +c =2+4+8=14.[随堂即时演练]1.将公比为q 的等比数列{a n }依次取相邻两项的乘积组成新的数列a 1a 2,a 2a 3,a 3a 4,….此数列( )A .是公比为q 的等比数列B .是公比为q 2的等比数列 C .是公比为q 3的等比数列 D .不一定是等比数列解析:选B 由于a n a n +1a n -1a n =a n a n -1·a n +1a n=q ·q =q 2,n ≥2且n ∈N *, ∴{a n a n +1}是以q 2为公比的等比数列,故选B.2.若1,a 1,a 2,4成等差数列;1,b 1,b 2,b 3,4成等比数列,则a 1-a 2b 2的值为( ) A .-12B.12 C .±12D.14解析:选A ∵1,a 1,a 2,4成等差数列,∴3(a 2-a 1)=4-1, ∴a 2-a 1=1.又∵1,b 1,b 2,b 3,4成等比数列,设其公比为q , 则b 22=1×4=4,且b 2=1×q 2>0, ∴b 2=2,∴a 1-a 2b 2=-a 2-a 1b 2=-12. 3.在等比数列{a n }中,a 888=3,a 891=81,则公比q =________. 解析:∵a 891=a 888q 891-888=a 888q 3,∴q 3=a 891a 888=813=27. ∴q =3. 答案:34.在等比数列{a n }中,各项都是正数,a 6a 10+a 3a 5=41,a 4a 8=4,则a 4+a 8=________. 解析:∵a 6a 10=a 28,a 3a 5=a 24, ∴a 24+a 28=41, 又a 4a 8=4,∴(a 4+a 8)2=a 24+a 28+2a 4a 8=41+8=49. ∵数列各项都是正数, ∴a 4+a 8=7. 答案:75.已知数列{a n }为等比数列.(1)若a 1+a 2+a 3=21,a 1a 2a 3=216,求a n ; (2)若a 3a 5=18,a 4a 8=72,求公比q . 解:(1)∵a 1a 2a 3=a 32=216,∴a 2=6, ∴a 1a 3=36.又∵a 1+a 3=21-a 2=15,∴a 1,a 3是方程x 2-15x +36=0的两根3和12. 当a 1=3时,q =a 2a 1=2,a n =3·2n -1;当a 1=12时,q =12,a n =12·⎝ ⎛⎭⎪⎫12n -1.(2)∵a 4a 8=a 3q ·a 5q 3=a 3a 5q 4=18q 4=72,∴q 4=4,∴q =± 2.[课时达标检测]一、选择题1.(重庆高考)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列 D .a 3,a 6,a 9成等比数列解析:选D 由等比数列的性质得,a 3·a 9=a 26≠0, 因此a 3,a 6,a 9一定成等比数列,选D.2.已知等比数列{a n }中,a 4=7,a 6=21,则a 8的值为( ) A .35 B .63 C .21 3D .±21 3解析:选B ∵{a n }是等比数列, ∴a 4,a 6,a 8成等比数列, ∴a 26=a 4·a 8,即a 8=2127=63.3.在等比数列{a n }中,a 1=1,a 10=3,则a 2a 3a 4a 5a 6a 7a 8a 9等于( ) A .81 B .27327 C .3D .243解析:选A 因为数列{a n }是等比数列,且a 1=1,a 10=3,所以a 2a 3a 4a 5a 6a 7a 8a 9=(a 2a 9)·(a 3a 8)·(a 4a 7)·(a 5a 6)=(a 1a 10)4=34=81.故选A. 4.设数列{a n }为等比数列,则下面四个数列: ①{a 3n };②{pa n }(p 为非零常数);③{a n ·a n +1}; ④{a n +a n +1}.其中是等比数列的有( ) A .1个 B .2个 C .3个D .4个解析:选D ①∵a 3n +1a 3n =⎝ ⎛⎭⎪⎫a n +1a n 3=q 3,∴{a 3n}是等比数列;②∵pa n +1pa n =a n +1a n=q ,∴{pa n }是等比数列;③∵a n ·a n +1a n -1·a n =a n +1a n -1=q 2,∴{a n ·a n +1}是等比数列;④∵a n +a n +1a n -1+a n =q a n -1+a na n -1+a n=q ,∴{a n +a n +1}是等比数列.5.已知等比数列{a n }中,a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ) A .2 B .4 C .8D .16解析:选C 等比数列{a n }中,a 3a 11=a 27=4a 7,解得a 7=4,等差数列{b n }中,b 5+b 9=2b 7=2a 7=8.二、填空题6.公差不为零的等差数列{a n }中,2a 3-a 27+2a 11=0,数列{b n }是等比数列,且b 7=a 7,则b 6b 8=________.解析:∵2a 3-a 27+2a 11=2(a 3+a 11)-a 27=4a 7-a 27=0, ∵b 7=a 7≠0, ∴b 7=a 7=4. ∴b 6b 8=b 27=16. 答案:167.画一个边长为2厘米的正方形,再以这个正方形的对角线为边画第2个正方形,以第2个正方形的对角线为边画第3个正方形,这样一共画了10个正方形,则第10个正方形的面积等于________平方厘米.解析:这10个正方形的边长构成以2为首项,2为公比的等比数列{a n }(1≤n ≤10,n ∈N *),则第10个正方形的面积S =a 210=22·29=211=2 048(平方厘米). 答案:2 0488.在等比数列{a n }中,a 7·a 11=6,a 4+a 14=5,则a 20a 10=________. 解析:∵{a n }是等比数列, ∴a 7·a 11=a 4·a 14=6, 又a 4+a 14=5, ∴⎩⎪⎨⎪⎧a 4=2,a 14=3或⎩⎪⎨⎪⎧a 4=3,a 14=2.∵a 14a 4=q 10,∴q 10=23或q 10=32. 而a 20a 10=q 10,∴a 20a 10=23或a 20a 10=32. 答案:23或32三、解答题9.在83和272之间插入三个数,使这五个数成等比数列,求插入的这三个数的乘积. 解:法一:设这个等比数列为{a n },公比为q ,则a 1=83,a 5=272=a 1q 4=83q 4, ∴q 4=8116,q 2=94. ∴a 2·a 3·a 4=a 1q ·a 1q 2·a 1q 3=a 31·q 6=⎝ ⎛⎭⎪⎫833×⎝ ⎛⎭⎪⎫943=63=216. 法二:设这个等比数列为{a n },公比为q ,则a 1=83, a 5=272,由题意知a 1,a 3,a 5也成等比数列且a 3>0,∴a 23=83×272=36,∴a 3=6, ∴a 2·a 3·a 4=a 23·a 3=a 33=216.10.始于2007年初的美国次贷危机,至2008年中期,已经演变为全球金融危机.受此影响,国际原油价格从2008年7月每桶最高的147美元开始大幅下跌,9月跌至每桶97美元.你能求出国际原油价格7月到9月之间平均每月下降的百分比吗?若按此计算,到什么时间跌至谷底(即每桶34美元)?解:设每月平均下降的百分比为x ,则每月的价格构成了等比数列{a n },记a 1=147(7月份价格),则8月份价格a 2=a 1(1-x )=147(1-x ),9月份价格a 3=a 2(1-x )=147(1-x )2.∴147(1-x )2=97,解得x ≈18.8%.设a n =34,则34=147·(1-18.8%)n -1,解得n =8.即从2008年7月算起第8个月,也就是2009年2月国际原油价格将跌至34美元每桶.11.从盛满a (a >1)升纯酒精的容器里倒出1升,然后添满水摇匀,再倒出1升混合溶液后又用水添满摇匀,如此继续下去,问:第n 次操作后溶液的浓度是多少?当a =2时,至少应倒几次后才能使酒精的浓度低于10%?解:设开始时溶液的浓度为1,操作一次后溶液浓度a 1=1-1a .设操作n 次后溶液的浓度为a n ,则操作(n +1)次后溶液的浓度为a n +1=a n ⎝ ⎛⎭⎪⎫1-1a . ∴{a n }是以a 1=1-1a 为首项,q =1-1a为公比的等比数列, ∴a n =a 1q n -1=⎝ ⎛⎭⎪⎫1-1a n , 即第n 次操作后酒精的浓度是⎝ ⎛⎭⎪⎫1-1a n . 当a =2时,由a n =⎝ ⎛⎭⎪⎫12n <110(n ∈N *),解得n ≥4. 故至少应操作4次后才能使酒精的浓度小于10%.12.有四个数,其中前三个数成等差数列,后三个数成等比数列,并且前后两数的和是16,中间两数的和是12.求这四个数.解:法一:设这四个数依次为a -d ,a ,a +d ,a +d 2a, 由条件得⎩⎪⎨⎪⎧ a -d +a +d 2a =16,a +a +d =12.解得⎩⎪⎨⎪⎧ a =4,d =4,或⎩⎪⎨⎪⎧ a =9,d =-6.所以当a =4,d =4时,所求四个数为0,4,8,16;当a =9,d =-6时,所求四个数为15,9,3,1.故所求四个数为0,4,8,16或15,9,3,1.法二:设这四个数依次为2a q -a ,a q,a ,aq (a ≠0), 由条件得⎩⎪⎨⎪⎧ 2a q -a +aq =16,a q +a =12.解得⎩⎪⎨⎪⎧ q =2,a =8,或⎩⎪⎨⎪⎧ q =13,a =3.所以当q =2,a =8时,所求四个数为0,4,8,16;当q =13,a =3时,所求四个数为15,9,3,1. 故所求四个数为0,4,8,16或15,9,3,1.法三:设这四个数依次为x ,y,12-y,16-x ,由已知得⎩⎪⎨⎪⎧ 2y =x +12-y ,12-y 2=y 16-x . 解得⎩⎪⎨⎪⎧ x =0,y =4,或⎩⎪⎨⎪⎧ x =15,y =9.故所求四个数为0,4,8,16或15,9,3,1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教A高中数学必修5同步训练
1.在等比数列{a n}中a1=8,q=1
2
,a n=
1
2
,则
S n等于( )
A.31 B.31 2
C.8 D.15 答案:B
2.数列1
2,
1
4
,
1
8
,…地前10项和等于( )
A.
1
1024
B.
511
512
C.1023
1024
D.
1
512
答案:C
3.在等比数列{a n }中,q =1
2,S 5=2,则a 1等于
________.
答案:32
31
4.等比数列{a n }中,a 2=9,a 5=243,求数列{a n }地前4项之和.
解:⎩⎪⎨
⎪⎧
a 2=9a 5=243,即⎩⎪⎨⎪⎧
a 1q =9
a 1q 4
=243
,解得
⎩⎪⎨⎪⎧
a 1=3
q =3
.
所以S 4=a 1(1-q 4
)1-q =3(1-34
)
1-3
=120.
一、选择题
1.已知S n 是等比数列{a n }地前n 项和,a 5=-2,
a 8=16,则S 6等于( )
A.218 B .-218
C.178
D .-178
解析:选 A.设公比为q ,由题意,得
⎩⎪⎨⎪⎧
a 1q 4
=-2,a 1q 7=16,
解得q =-2,a 1=-1
8
.
所以S 6=a 1(1-q 6
)1-q =21
8
.
2.在等比数列{a n }中,公比q =-2,S 5=44,
则a1地值为( )
A.4 B.-4
C.2 D.-2
解析:选A.S5=a1(1-q5) 1-q
,
∴44=a1[1-(-2)5]
1-(-2)
,
∴a1=4,故选A.
3.设S n为等比数列{a n}地前n项和,8a2+a5=
0,则S5
S2
=( )
A.11 B.5
C.-8 D.-11
解析:选D.由8a2+a5=0,得8a1q+a1q4=0,
所以q=-2,则S5
S2=
a1(1+25)
a1(1-22)=-11.
4.1+2+2+22+…+128地值是( ) A.128+64 2 B.128-64 2
C.255+127 2 D.255-127 2
答案:C
5.若等比数列{a n}地前n项和为S n=3
2n
+m(n∈
N*),则实数m地取值为( )
A.-3
2
B.-1
C.-3 D.一切实数
解析:选C.a1=S1=3
2
+m,又a1+a2=
3
4
+m,
所以a2=-3
4 .
又a1+a2+a3=3
8
+m,
所以a3=-3
8
.所以a22=a1a3,
即
9
16
=(
3
2
+m)(-
3
8
),解得m=-3.
6.已知{a n}是首项为1地等比数列,S n是{a n}
地前n项和,且9S3=S6,则数列{1
a n
}地前5项和为( )
A.15
8
或5 B.
31
16
或5
C.31
16
D.
15
8
解析:选C.若q =1,则由9S 3=S 6得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.
由9S 3=S 6得9×a 1(1-q 3)1-q =a 1(1-q 6
)
1-q
,解得q =
2.
故a n =a 1q
n -1
=2
n -1
,1
a n =(12
)n -1. 所以数列{1
a n }是以1为首项,1
2为公比地等比数
列,其前5项和为S 5=1×[1-(12)5
]
1-
12
=31
16.
二、填空题
7.设等比数列{a n }地前n 项和为S n .若a 1=1,
S 6=4S 3,则a 4=__________.
解析:设等比数列地公比为q,则由S6=4S3知q≠1.
∴S6=1-q6
1-q
=
4(1-q3)
1-q
.∴q3=3.∴a1q3=3.
答案:3
8.等比数列地公比为2,前4项之和等于10,则前8项之和等于________.
解析:S8-S4=q4·S4=24·10=160,S8=170.
答案:170
9.等比数列{a n}地公比q>0.已知a2=1,a n+2+a n+1=6a n,则{a n}地前4项和S4=__________.
解析:∵{a n}是等比数列,
∴a n+2+a n+1=6a n可化为a1q n+1+a1q n=6a1q n-1,
∴q 2
+q -6=0.又∵q >0,∴q =2. ∴S 4=a 1(1-q 4
)1-q =12(1-24)1-2=152.
答案:15
2
三、解答题
10.在等比数列{a n }中,a 3=-12,前3项和S 3
=-9,求公比q .
解:法一:由已知可得方程组
⎩⎪⎨⎪⎧
a 3=a 1·q 2
=-12, ①S 3=a 1(1+q +q 2)=-9. ②
②÷①得
1+q +q
2
q
2
=34
,即q 2
+4q +4=0. 所以q =-2.
法二:a3,a2,a1成等比数列且公比为1
q .
所以S3=a3+a2+a1=a3[1-(
1
q
)3]
1-
1
q
=-12(q3-1)
q2(q-1)=-9.
所以q2+4q+4=0,即(q+2)2=0.
所以q=-2.
11.等比数列{a n}地前n项和为S n,已知S1,S3,S2成等差数列.
(1)求{a n}地公比q;
(2)若a1-a3=3,求S n.
解:(1)依题意有a1+(a1+a1q)=2(a1+a1q+
a1q2).
由于a1≠0,故2q2+q=0.又q≠0,从而q=-
1
2
.
(2)由已知可得a1-a1(-1
2
)2=3,故a1=4.
从而S n=4[1-(-
1
2
)n]
1-(-
1
2
)
=
8
3
[1-(-
1
2
)n].
12.一个等比数列地首项为1,项数是偶数,其奇数项地和为85,偶数项地和为170,求此数列地公比和项数.
解:设该等比数列有2n项,则奇数项有n项,
偶数项有n项,设公比为q,由等比数列性质可得S偶S奇
=170
85
=2=q.
又∵S奇+S偶=
a1(1-q2n)
1-q
=255,a1=1,∴2n=8.
∴此数列地公比为2,项数为8.。