生物化学-22章糖酵解作用

合集下载

生物化学第22章糖酵解作用

生物化学第22章糖酵解作用

磷酸果糖激酶
果糖果糖-6-磷酸
果糖果糖-1,6-二磷酸
二磷酸转变为甘油醛(四)果糖-1,6-二磷酸转变为甘油醛 果糖 二磷酸转变为甘油醛 3-磷酸和二羟丙酮磷酸 磷酸和二羟丙酮磷酸
醛缩酶
果糖-1,6果糖-1,6-二磷酸
二羟丙酮磷酸
甘油醛甘油醛-3-磷酸
(五)二羟丙酮磷酸转变为甘油醛-3-磷酸 二羟丙酮磷酸转变为甘油醛 磷酸
葡萄糖 → 2乳酸 乳酸 2ADP + 2Pi → 2ATP + 2H2O 总能量变化为 ∆G10’=-196.7kJ/mol - ∆G20’= +61.1kJ/mol ∆G0’=∆G10’+ ∆G20’=-135.6kJ/mol -
其中由ATP捕获的能量的比例为 捕获的能量的比例为 其中由 61.1/196.7 ×100% = 31%
丙糖磷酸异构酶
二羟丙酮磷酸
甘油醛甘油醛-3-磷酸
五、酵解第二阶段的反应
磷酸氧化成1,3-二磷酸甘油酸 (一)甘油醛-3-磷酸氧化成 甘油醛 磷酸氧化成 二磷酸甘油酸
甘油醛甘油醛-3-磷酸 脱氢酶
甘油醛甘油醛-3-磷酸
1,3-二磷酸甘油酸
砷酸盐是磷酸的类似物, 砷酸盐是磷酸的类似物,可以代替磷酸结合 到甘油酸的1位 并很快水解, 到甘油酸的 位 , 并很快水解 , 使得不能形成 1,3-二磷酸甘油酸, 不能产生 二磷酸甘油酸, 二磷酸甘油酸 不能产生ATP, 导致解偶联 。 , 导致解偶联。
第22章 糖酵解作用
(Glycolysis)
一、糖酵解作用的研究历史 二、糖酵解过程概述 三、糖酵解和酒精发酵的全过程图解 四、糖酵解第一阶段的反应机制 五、糖酵解第二阶段——放能阶段的反应机制 糖酵解第二阶段 放能阶段的反应机制 六、由葡萄糖转变为两分子丙酮酸能量转变的估算 七、丙酮酸的去路 八、糖酵解作用的调节 九、其他六碳糖进入糖酵解途径

王镜岩(第三版)生物化学下册课后习题答案

王镜岩(第三版)生物化学下册课后习题答案

第19章代谢总论⒈怎样理解新陈代谢?答:新陈代谢是生物体内一切化学变化的总称,是生物体表现其生命活动的重要特征之一。

它是由多酶体系协同作用的化学反应网络。

新陈代谢包括分解代谢和合成代谢两个方面。

新陈代谢的功能可概括为五个方而:①从周围环境中获得营养物质。

②将外界引入的营养物质转变为自身需要的结构元件。

③将结构元件装配成自身的大分子。

④形成或分解生物体特殊功能所需的生物分子。

⑤提供机体生命活动所需的一切能量。

⒉能量代谢在新陈代谢中占何等地位?答:生物体的一切生命活动都需要能量。

生物体的生长、发育,包括核酸、蛋白质的生物合成,机体运动,包括肌肉的收缩以及生物膜的传递、运输功能等等,都需要消耗能量。

如果没有能量来源生命活动也就无法进行.生命也就停止。

⒊在能量储存和传递中,哪些物质起着重要作用?答:在能量储存和传递中,ATP(腺苷三磷酸)、GTP(鸟苷三磷酸)、UTP(尿苷三磷酸)以及CTP(胞苷三磷酸)等起着重要作用。

⒋新陈代谢有哪些调节机制?代谢调节有何生物意义?答:新陈代谢的调节可慨括地划分为三个不同水平:分子水平、细胞水平和整体水平。

分子水平的调节包括反应物和产物的调节(主要是浓度的调节和酶的调节)。

酶的调节是最基本的代谢调节,包括酶的数量调节以及酶活性的调节等。

酶的数量不只受到合成速率的调节,也受到降解速率的调节。

合成速率和降解速率都备有一系列的调节机制。

在酶的活性调节机制中,比较普遍的调节机制是可逆的变构调节和共价修饰两种形式。

细胞的特殊结构与酶结合在一起,使酶的作用具有严格的定位条理性,从而使代谢途径得到分隔控制。

多细胞生物还受到在整体水平上的调节。

这主要包括激素的调节和神经的调节。

高等真核生物由于分化出执行不同功能的各种器官,而使新陈代谢受到合理的分工安排。

人类还受到高级神经活动的调节。

除上述各方面的调节作用外,还有来自基因表达的调节作用。

代谢调节的生物学意义在于代谢调节使生物机体能够适应其内、外复杂的变化环境,从而得以生存。

碳循环中糖酵解环节

碳循环中糖酵解环节

碳循环中糖酵解环节
糖酵解是碳循环中的一个重要环节,它将葡萄糖分子分解成两个分子的丙酮酸,同时产生ATP和NADH。

糖酵解通常发生在细胞质中,它分为糖的准备阶段和糖的分解阶段两个过程。

糖的准备阶段:
在这个阶段,葡萄糖被磷酸化并转化为两个分子的果糖-1,6-二磷酸。

这个过程涉及到两个关键酶,即磷酸糖异构酶和磷酸果糖激酶。

糖的分解阶段:
在这个阶段,果糖-1,6-二磷酸被分解成两个分子的丙酮酸。

这个过程涉及到一系列的酶反应,包括酵母糖解酶、丙酮酸激酶和丙酮酸羧化酶。

整个糖酵解过程产生的ATP和NADH可以进一步用于细胞的能量代谢和其他生化过程。

糖酵解是细胞呼吸的起始阶段,后续的细胞呼吸阶段将丙酮酸进一步氧化为二氧化碳和水,从而产生更多的能量。

生物化学下-第22章 糖酵解作用

生物化学下-第22章 糖酵解作用

第22章 糖酵解作用(Glycolysis)
糖酵解?
Ø 长期不跑步的人,快速跑步之后肌肉感到疼痛, 为什么?
Ø 酒、醋、酱油、酸奶都是如何生产的?
第22章 糖酵解作用(Glycolysis)
一、糖酵解作用的研究历史
Ø 1875年,法国科学家巴斯德(L. Pasteur)发现葡萄糖在无氧条件 下被酵母菌(微生物)分解生成乙醇的现象。
Ø 血糖主要在神经、激素的调节下维持恒定: 降低血糖的激素—— 胰岛素 升高血糖的激素—— 胰高血糖素、肾上腺素、糖皮质激素、生长激素
第22章 糖酵解作用(Glycolysis)
一、糖酵解作用的研究历史 二、糖酵解过程概述 三、糖酵解和酒精发酵的全过程图解 四、糖酵解第一阶段的反应机制 五、糖酵解第二阶段——放能阶段 六、由葡萄糖转变为两分子丙酮酸能量转变的估算 七、丙酮酸的去路 八、糖酵解作用的调节 九、其他六碳糖进入糖酵解途径
几丁质代谢酶:
p 几丁质合酶 p 几丁质内切酶 p 几丁质外切酶 p 几丁质去乙酰化酶
糖代谢—— 多糖(Polysaccharide)
多糖—— (4)几丁质 (chitin)
壳聚糖(chitosan):别名: 壳多糖、脱乙酰甲壳素、几丁聚糖等 化学名称:聚葡萄糖胺、β(1→4)-2-氨基-β-D-葡萄糖 是由几丁质脱乙酰基的产物。
肝糖原
分解
脂肪等非糖物质 转化
合成
血糖
转化
肝糖原,肌糖原 其他单糖,糖衍生物
其他单糖
转化
转化
转化
空腹血糖:3.9 ~ 6.2 mmol/L (0.8~1.2 g/L) 8.96 ~ 10.08 mmol/L(1.6 ~ 1.8 g/L)时可由尿排出

22 糖酵解-王镜岩生物化学(全)

22 糖酵解-王镜岩生物化学(全)

调控位点 己糖激酶
激活剂 ATP
抑制剂 G-6-P,ADP ATP, 柠檬酸, pH下降 ATP,Ala, 乙酰-CoA
6-磷酸葡萄糖 果糖6-磷酸
a
葡萄糖
磷酸果糖激 ADP , 酶(限速酶) AMP, 果糖-2,6二磷酸 丙酮酸激酶 果糖-1,6二磷酸, 磷酸烯醇 丙酮酸
b
1,6-二磷酸果糖 3-磷酸甘油醛磷酸二羟丙酮
细胞壁
叶绿体
中心体
吞噬 分泌物
溶酶体 细胞膜
糖的酵解途径
糖的酵解途径(glycolysis)是指葡萄糖在
糖原(或淀粉)
第 一 阶 段 第 二 阶 段
EMP的化学历程
1-磷酸葡萄糖
葡萄糖
葡萄糖的磷酸化
6-磷酸葡萄糖 6-磷酸果糖 1,6-二磷酸果糖
磷酸己糖的裂解
3-磷酸甘油醛磷酸二羟丙酮 21,3-二磷酸甘油酸
+ATP
CH20 P
1,3-二磷酸甘油酸
3-磷酸甘油酸
△G0/=-18.83kJ/mol
说明:第一次产生ATP,发生底物水平磷酸化。 (ATP的形成,直接由一个代谢中间产物上的磷酸基 团转移到ADP分子上。)
O
O
8、
C-OH HC-OH
磷酸甘油酸变位酶
C-OH HC-O P
CH20
P
CH20H
3-磷酸甘油酸
丙酮酸脱羧酶
TPP
H+ C -
4
其它单糖进入酵解的途径
D-果糖;D-半乳糖;;D-甘露糖
5
糖酵解的调控(83页)
糖酵解代谢途径的调节主要是通过各种 变构剂对三个关键酶进行变构调节。分 别为己糖激酶(葡萄糖激酶)、磷酸果 糖激酶、丙酮酸激酶。

生物化学 糖酵解作用

生物化学 糖酵解作用
通过磷酸甘油酸激酶催化 底物水平磷酸化
=底物分子的高能键转移至ADP或GDP生成ATP或GTP的过程 =ATP生成的2种方式之一,另一种为线粒体内的氧化磷酸化
磷酸甘油酸激酶
1,3-二磷酸甘油酸
3-磷酸甘油酸
步骤6和7是一个能量偶联过程
➢ 3-磷酸甘油醛氧化为3-磷酸甘油酸 ➢ NAD+还原为NADH ➢ ADP磷酸化为ATP
0.1 mmol,专一性不强,可活化六碳糖
• 葡萄糖激酶主要存在于肝细胞,Km葡萄糖 = 5~10 mmol,专一性很强 • 一般情况下细胞内葡萄糖浓度=4 mmol,因此己糖激酶是一般情况下激活葡
萄糖的酶
• 当血糖浓度很高时,葡萄糖激酶在肝脏中活化葡萄糖,随后通过生成UDPG
而合成糖原
• 己糖激酶是变构酶,6-磷酸葡萄糖和ADP是它的变构抑制剂
糖酵解第二阶段
脱氢氧化 底物磷酸化
异构 脱水 底物磷酸化
3-磷酸 甘油醛
1,3-二磷酸 甘油酸 3-磷酸 甘油酸
2-磷酸 甘油酸
磷酸烯醇 式丙酮酸
丙酮酸
糖酵解第二阶段
丙酮酸的去路
底物促进,产物抑制
① 3种产物:ATP、NADH、丙酮酸 ② ATP的去路? ③ NADPH的去路? ④ 丙酮酸的去路?
糖酵解第一阶段
细胞外液 葡萄糖
葡萄糖通过磷酸化为G6P 而保持在细胞内,因为 G6P不能穿越细胞膜
细胞质 葡萄糖
葡萄糖6-磷酸
糖酵解第一阶段
2. 葡萄糖6-磷酸异构为果糖6-磷酸
通过磷酸己糖异构酶催化 酮糖与醛糖的转化 可逆反应
葡萄糖6-磷酸
磷酸己糖异构酶
果糖6-磷酸
很小的自由能变化,因此 该反应是可逆的

生物化学笔记糖酵解

生物化学笔记糖酵解

一、定义1.酵解是酶将葡萄糖降解成丙酮酸并生成ATP的过程。

它是动植物及微生物细胞中葡萄糖分解产生能量的共同代谢途径。

有氧时丙酮酸进入线粒体,经三羧酸循环彻底氧化生成CO2和水,酵解生成的NADH则经呼吸链氧化产生ATP和水。

缺氧时NADH把丙酮酸还原生成乳酸。

2.发酵也是葡萄糖或有机物降解产生ATP的过程,其中有机物既是电子供体,又是电子受体。

根据产物不同,可分为乙醇发酵、乳酸发酵、乙酸、丙酸、丙酮、丁醇、丁酸、琥珀酸、丁二醇等。

二、途径共10步,前5步是准备阶段,葡萄糖分解为三碳糖,消耗2分子ATP;后5步是放能阶段,三碳糖生成丙酮酸,共产生4分子ATP。

总过程需10种酶,都在细胞质中,多数需要Mg2+。

酵解过程中所有的中间物都是磷酸化的,可防止从细胞膜漏出、保存能量,并有利于与酶结合。

1.磷酸化葡萄糖被ATP磷酸化,产生6-磷酸葡萄糖。

反应放能,在生理条件下不可逆(K大于300)。

由己糖激酶或葡萄糖激酶催化,需要Mg2+或Mn2+。

己糖激酶可作用于D-葡萄糖、果糖和甘露糖,是糖酵解过程中的第一个调节酶,受6-磷酸葡萄糖的别构抑制。

有三种同工酶。

葡萄糖激酶存在于肝脏中,只作用于葡萄糖,不受6-磷酸葡萄糖的别构抑制肌肉的己糖激酶Km=0.1mM,肝脏的葡萄糖激酶Km=10mM,平时细胞中的葡萄糖浓度时5mM,只有进后葡萄糖激酶才活跃,合成糖原,降低血糖浓度,葡萄糖激酶是诱导酶,胰岛素可诱导它的合成。

6-磷酸葡萄糖也可由糖原合成,由糖原磷酸化酶催化,生成1-磷酸葡萄糖,在磷酸葡萄糖变位酶的催化下生成6-磷酸葡萄糖。

此途径少消耗1个ATP。

6-磷酸葡萄糖由葡萄糖6-磷酸酶催化水解,此酶存在于肝脏和肾脏中,肌肉中没有。

2.异构由6-磷酸葡萄糖生成6-磷酸果糖反应中间物是酶结合的烯醇化合物,反应是可逆的,由浓度控制。

由磷酸葡萄糖异构酶催化,受磷酸戊糖支路的中间物竞争抑制,如6-磷酸葡萄糖酸。

戊糖支路通过这种方式抑制酵解和有氧氧化,pH降低使抑制加强,减少酵解,以免组织过酸。

生物化学:糖酵解

生物化学:糖酵解

•1900s, Arthur Harden and William Young :Pi is needed for yeast juice to ferment glucose, a hexose diphosphate (fructose 1,6-bisphosphate) was isolated.
机体中所需的能量70%来自糖分解供能 糖供能没副作用 在无氧情况下糖也可供能
来源
淀粉(糖原) 1、从食物中获取
纤维素(反刍动物) 2、体内糖异生 (由非糖物质转化)
糖类物质进入体内(细胞内)的途径: 肠腔(多糖、寡糖及二糖分解为单糖) --------肠粘膜细胞------肠壁毛细 血管--------肝静脉-------肝-----血液(血糖)---组织
•1900s, Arthur Harden and William Young (Great Britain) separated the yeast juice into two fractions: one heat-labile, nondialyzable zymase (enzymes) and the other heat-stable, dialyzable cozymase (metal ions, ATP, ADP, NAD+).
•1910s-1930s, Gustav Embden and Otto Meyerhof(Germany), studied muscle and its extracts:
–Reconstructed all the transformation steps from glycogen to lactic acid in vitro; revealed that many reactions of lactic acid (muscle) and alcohol (yeast) fermentations were the same! –Discovered that lactic acid is reconverted to carbohydrate in the presence of O2 (gluconeogenesis); observed that some phosphorylated compounds are energyrich.

生物化学糖酵解

生物化学糖酵解
·碘乙酸为甘油醛-3-磷酸脱氢酶的抑制剂,可与酶活性 中心的—SH基结合。
·甘油醛-3-磷酸脱氢酶的Mr为14000,由4个相同亚基组 成,每个亚基牢固地结合一分子NAD+,并能独立参加 催化作用。已证明亚基第149位的半胱氨酸残基的—SH 基是活性基团。能特异地结合甘油醛-3-磷酸。NAD+的 吡啶环与活性—SH基很近,共同组成酶的活性部位。
磷酸二羟丙酮 + 甘油醛-3-磷酸 丙糖磷酸异构酶
·在丙糖磷酸异构酶的催化作用下,两个三碳糖之间有同分异构体 的互变。
甘油醛-3-磷酸
·由于甘油醛-3-磷酸的持续被氧化,反应的平衡将生成甘油醛3-磷酸的方向移动。总的结果相当于1分子果糖-1,6-二磷酸生 成2分子甘油醛-3-磷酸。
·甘油醛-3-磷酸氧化为甘油酸-1,3-二磷酸,该过程是 糖酵解过程中唯一的氧化脱氢反应,生物体通过此反应 可以获得能量。
CO2
NADH + H+ 乙醛
NAD+ 乙醇
丙酮酸脱氢酶
乙醇脱氢酶
无氧条件下,酵母等微生物及植物细胞的丙酮酸能继续转化为乙醇并释放出CO2,该过程称为乙醇发酵。 硫胺素焦磷酸(TPP)为辅酶。
乙醇发酵总反应式: 葡萄糖(C6H12O6)+2Pi+2ADP
2乙醇(CH3CH2OH)+2ATP+2H2O+2CO2
ADP 果糖-1,6二磷酸
·在醛缩酶的催化下,果糖-1,6-二磷酸分子在第3与第4碳原子之 间断裂为两个三碳化合物,即磷酸二羟丙酮与甘油醛-3-磷酸。
果糖-1,6-二磷酸 醛缩酶
·醛缩酶催化的是可逆反应,标准状况下,平衡倾向于醇醛缩合成 果糖-1,6-二磷酸一侧,但在细胞内,由于正反应产物丙糖磷酸 被移走,平衡可向正反应迅速进行。

大学生物化学课件 糖酵解途径

大学生物化学课件 糖酵解途径

有氧氧化的反应过程
第一阶段:酵解途径
同糖无氧氧化的第一阶段。
第二阶段:
乳酸
NAD+
NADH+H+
丙酮酸进入线粒体氧化脱羧生成
乙酰CoA。
第三阶段:
乙酰CoA进入柠檬酸循环以及氧化
磷酸化生成ATP。
G(Gn) 胞液
丙酮酸
乙酰CoA
线粒体
TAC循环
[O]
NADH+H+
CO2
H2O
FADH2
由一分子H
1FADH2 1NADH
2.5 2.5
1 1.5 2.5
14或15
ATP
ADP
糖有氧氧化的产能途径
柠檬酸循环中4次脱氢反应产生大量的NADH+H+和FADH2 , 通过电子传递链和氧化磷酸化产生ATP。
线粒体内: 1分子NADH+H+ 的氢传递给氧时,可生成2.5个ATP。 1分子FADH2 的氢被氧化时,可生成1.5个ATP。 底物水平磷酸化,可生成1个ATP。
胞质中进入线粒体两种穿梭机制: ①α-磷酸甘油穿梭机制:α-磷酸甘油接受NADH,进入线粒体把氢
传给FAD生成FADH2 ,可生成1.5个ATP。 ②苹果酸-天冬氨酸穿梭机制:草酰乙酸接受NADH,生成苹果酸
进入线粒体脱氢给NAD+生产NADH和草酰乙酸,可生产2.5个 ATP。
问题2:一分子乳酸经过有氧氧化途径可净产 生多少分子ATP?
无氧氧化的反应过程
糖酵解分两个阶段 第一阶段
由葡萄糖分解成丙酮酸,称之为糖酵解 途径。 第二阶段
由丙酮酸转变成乳酸。
6-磷酸葡萄糖 6-磷酸果糖
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同型乳酸发酵) (1) 乳酸发酵(同型乳酸发酵)lactic fermation
动物 乳酸菌(乳杆菌、乳链球菌) G +2ADP+ 2Pi 2乳酸 +2ATP+2水
酒精发酵(酵母的第Ⅰ (2)酒精发酵(酵母的第Ⅰ型发 酵) alcoholic fermation
甘油发酵(酵母的第Ⅱ型发酵) (3)甘油发酵(酵母的第Ⅱ型发酵)
净生成ATP的计算: 消耗ATP=2个(G 6-P-G ; 6-P-F 1,6-2P-F);
生成ATP=2×1+2×1=4个(1,3-二磷酸甘油酸 3-磷酸甘油酸;磷 酸烯醇式丙酮酸 丙酮酸)即底物水平磷酸化; 净生成ATP=4-2=2个 产生NADH=2 ×1(3-磷酸甘油醛 1, 3-磷酸甘油酸)
6-磷磷二二 磷
CH 2 O
磷 磷 二二 丙 丙 ADP
ATP CH 2 OH H O H OH H OH OH H OH 磷磷二
CH 2 O OH H OH H
CH 2 OPO 3 H 2 OH
二二
1,6-二磷磷二二 二
2)1, 6-二磷酸果糖 → 3-磷酸 ) 二磷酸果糖 磷酸 甘油醛
CH 2 OPO 3 H 2 C H 2 O 3 PO CH 2 O OH H OH H OH CH 2 OPO 3 H 2 磷醛丙 O 96% % CH 2 OH 磷 磷 二 磷磷 磷 磷 磷磷 二 磷 磷丙 CHO CHOH CH 2 OPO 3 H 2 3-磷磷磷磷磷 - 4% %
二. 丙酮酸的去路
①丙酮酸脱氢酶系作用下,形成乙酰-CoA; ②丙酮酸羧化酶作用下,形成草酰乙酸; ③乳酸脱氢酶作用下,生成乳酸; ④丙酮酸脱羧酶及乙醇脱氢酶作用下,生成乙醇; 其中③和 ④是在无氧条件下糖酵解继续进行的反应, 使NADH在被氧化为解(酵解与厌氧发酵)
一. 糖酵解过程
糖酵解的步骤——经过10步反应10种酶催化。 全部在细胞溶胶中进行。 反应分2个阶段进行: 第一阶段为准备阶段; 第二阶段为产生ATP的贮能阶段。
61)葡萄糖 → 1, 6-二磷酸果糖
CH 2 OPO 3 H 2 H O H OH H OH OH H OH 6-磷磷磷磷二 - ADP Mg 磷二磷磷丙丙 H 2 O 3 PO Mg H 2 O 3 PO 磷 磷 磷二 磷 磷 丙 CH 2 O OH H OH H OH Mg 磷二丙丙 ATP HO ATP CH 2 OH OH H OH H OH CH 2 OH ADP
第22章 糖酵解作用
学习重点
糖酵解的步骤(10步反应10种酶) 净生成ATP 净生成NADH 丙酮酸去路 糖酵解的调节 (关键酶与限速酶)
糖酵解——葡萄糖在无氧条件下转变为丙酮酸所 经历的一系列反应,在此过程中净生成2个 ATP。 糖酵解过程是生物最古老、最原始的获取能量的 一种方式,是生物体共同经历的途径。 酵解过程产生的丙酮酸在无氧条件下由NADH还 原,由乳酸脱氢酶催化为乳酸,称为乳酸发酵。 将丙酮酸脱羧形成乙醇的过程称为乙醇发酵(丙 酮酸脱羧酶、乙醇脱氢酶催化)。
CHO CHOH
CH2 OPO3 H2 3-磷磷磷磷磷 -
4)2-磷酸甘油酸 → 丙酮酸
O COH C O PO 3H 2 CH2 磷 磷磷 磷 磷 磷磷 磷 M g
2+
O 磷 磷磷 丙 丙 AD P M g
2+
COH CHOH TP CH2 磷 磷磷 磷 磷 磷
A
磷 磷烯 丙
O COH C H O PO 3H 2 C H 2O H 2-磷磷磷磷磷 磷 COOH C O CH3 磷 磷磷
三. 糖酵解作用的调节
糖酵解的调节: 磷酸果糖激酶催化的反应是糖酵解的限速步骤,该酶受 ATP和柠檬酸的抑制,受AMP和2,6-二磷酸-果糖激活。如 果磷酸果糖激酶受到抑制,则使6-磷酸-果糖浓度增加,也必 然使6-磷酸-葡萄糖积累。 己糖激酶受6-磷酸-葡萄糖抑制。 丙酮酸激酶受ATP和丙氨酸抑制,受1,6-二磷酸-果糖激活。 该酶的活性受磷酸化的调节,去磷酸化为其活性形式。 在糖酵解的10步反应中,有5步反应的△G0’ > 0,即反应 是吸能的,这5步反应是可逆的(磷酸葡萄糖异构酶、醛缩 酶、磷酸丙糖异构酶、3-磷酸甘油醛脱氢酶、烯醇化酶); 葡萄糖分子的第3,4位碳原子形成了2分子3-磷酸甘油醛的 醛基碳原子,葡萄糖分子的第1,6位碳原子形成了3-磷酸甘 油醛的第3位碳原子,第2,5位碳原子形成3-磷酸甘油醛的第 2位碳原子。
1,6-二磷磷二二 二
3)3-磷酸甘油醛 → 2-磷酸甘油酸
O COPO 3 H2 CHOH CH 2OPO3 H 2 1,3-二磷磷磷磷磷 二 NADH + H+ NAD
+
O 磷 磷 磷 磷磷 丙 丙 Mg ADP A TP COH CHOH CH2 OPO 3 H2 3-磷磷磷磷磷 磷 磷 磷 磷 磷磷 磷 磷 丙 O COH CHOPO 3 H2 CH 2 OH 2-磷磷磷磷磷 磷
相关文档
最新文档