一次函数上下左右平移规律38571ppt
一次函数图象的平移规律
一次函数图象平移的探究我们知道,一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移∣b∣个单位长度得到(当b>0时,向上平移;当b<0时,向上平移).例如,将直线y=-x向上平移3个单位长度就得到直线y=-x+3,将直线y=-x向下平移1个单位长度就可以得到直线y=-x-1.需要注意的是,函数图象的平移,既可以上下平移,也可以左右平移.这里所说的平移,是指函数图象的上下平移,而非左右平移.以上平移比较简单,因为它是对最简单的一次函数即正比例函数进行平移.对于一个一般形式的一次函数图象又该怎样进行平移呢?【探究一】函数图像的上下平移我们先从一些具体的函数关系开始.问题1已知直线l:y=2x-3,将直线l向上平移2个单位长度得到直线l1,求直线l1的解析式.分析:根据“两直线平行,对应函数的一次项系数相等”,可设直线l1的解析式为y=2x+ b,由于直线l1的解析式中只有一个未知数,因此再需一个条件即可.怎样得到这个条件呢?注意到直线l1与两条坐标轴分别交于两点,而直线l与y轴的交点易求,这样就得到一个条件,于是直线l1的解析式可求.1解:设直线l1的解析式为y=2x+b,直线l1交y轴于点(0,-3),向上平移2个单位长度后变为(0,-1).把(0,-1)坐标代入y=2x+b,得b=-1,从而直线l1的解析式为y=2x-1.问题2已知直线l:y=2x-3,将直线l向下平移3个单位长度得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=2x-6.(解答过程请同学们自己完成)对比直线l和直线l1、直线l2的解析式可以发现:将直线l:y=2x-3向上平移2个单位长度得到直线l1的解析式为:y=2x-3+2;将直线l:y=2x-3向下平移3个单位长度得到直线l2的解析式为:y=2x-3-3.(此时你有什么新发现?)我们再来探究一般情况.问题3 已知直线l:y=kx+b,将直线l向上平移m个单位长度得到直线l1,求直线l1的解析式.简解:设直线l1的解析式为y=kx+p,直线l交y轴于点(0,b),向上平移m 个单位长度后变为(0,b+m),把(0,b+m)坐标代入l1的解析式可得,p=b+m.从而直线l1的解析式为y=kx+b+m.问题4 已知直线l:y=kx+b,将直线l向下平移m个单位长度得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=kx+b-m.(解答过程请同学们自己完成)由此我们得到:直线y=kx+b向上平移m(m为正)个单位长度得到直线y=kx+b+m,直线y=kx+b向下平移m(m为正)个单位长度得到直线y=kx+b-m,这是直线直线y=kx+b上下(或沿y轴)平移的规律.这个规律可以简记为:函数值:上加下减以上我们探究了直线y=kx+b的上下 (或沿y轴)的平移,如果直线y=kx+b 不是上下(或沿y轴)平移,而是左右(或沿x轴)平移,又该怎样进行平移呢?【探究二】函数图像的左右平移问题5 已知直线l :y=3x -12,将直线l 向左平移5个单位长度得到直线l 1,求直线l 1的解析式.简解:根据“两直线平行,对应函数的一次项系数k 相等”,可设直线l 1的解析式为y=3x+b ,直线l 交x 轴于点(4,0),向左平移5个单位长度后变为(-1,0).把(-1,0)坐标代入y=3x+b ,得b =3,从而直线l 1的解析式为y=3x +3.问题6 已知直线l :y=3x -12,将直线l 向右平移3个单位长度得到直线l 2,求直线l 2的解析式.答案:直线l 2的解析式为y=3x -21.(解答过程请同学们自己完成)直接观察结果,很难发现其中的一般规律,那么我们尝试着探究一般情况. 问题7 已知直线l :y=kx+b ,将直线l 向左平移n 个单位长度得到直线l 1,求直线l 1的解析式.简解:设直线l 1的解析式为y=kx+p ,直线l 交x 轴于点(,0)b k- ,向左平移n 个单位长度后变为(,0)b n k --,把(,0)b n k--坐标代入l 1的解析式可得0()b k n p k=--+,p=kn+b .从而直线l 1的解析式为y=kx+km+b ,即y=k (x+m )+b . 问题8 已知直线l :y=kx+b ,将直线l 向右平移n 个单位长度得到直线l 2,求直线l 2的解析式.答案:直线l 2的解析式为y=k (x -m )+b .(解答过程请同学们自己完成)通过对于一般情况的研究,我可以发现一些变化的规律,现在我们用刚才的具体的函数关系来验证一下我们得到的规律.将直线l:y=3x-12向左平移5个单位长度得到直线l1的解析式为:y=3x+3,这个函数关系可以改写为:y=3(x+5)-12;将直线l:y=3x-12向右平移3个单位长度得到直线l2的解析式为:y=3x-21,这个函数关系可以改写为:y=3(x-3)-12.由此我们得到:直线y=kx+b向左平移n(n为正)个单位长度得到直线y=k(x+n)+b,直线y=kx+b向右平移n(n为正)个单位长度得到直线y=k(x-n)+b,这是直线y=kx+b左右(或沿x轴)平移的规律.这个规律可以简记为:自变量:左加右减总结:一次函数图像平移的规律函数值:上加下减;自变量:左加右减.※特别注意:注意区别点坐标的平移规律与函数图像的平移规律.下面,我们对直线(0)y kx b k =+≠在平移规律中”左加右减”作一点解释.我们知道,对于直线(0)y kx b k =+≠上的任意一点的坐标可以表示为(,)x kx b +,反过来我们可以先将y kx b =+变一下形,得到:y b x k k =- ,则此时直线上任意一点的坐标就可以表示为(,)y b y k k-,由左右平移横坐标会发生变化,不改变纵坐标大小(即令y 恒定).由此可知:如果一次函数图象向右移平移了n 个单位,那么平移后点的坐标就会变成(,)y b n y k k -+ ,即 y b x n k k=-+,化成一般可得kx y b kn =-+,变形可得y k b x n -=+()式 所以“右减”.同理,如果一次函数的图象向左平移n 个单位,那么平移后点的坐标就会变成(,)y b n y k k -- ,即 y b x n k k=--,化成一般可得kx y b kn =--,变形可得y k b x n +=+()式 所以“左加”.如果我们从平移过程中函数图象与坐标轴的截距的变化情况也可以看出,当函数图象向左或向右平移n 个单位时,函数图象在x 轴上的截距减小或增大n 个单位,而在y 轴上的截距并不是简单的作相同的减小或增加n 个单位。
一次函数上下平移和左右平移的变化
一次函数上下平移和左右平移的变化
一次函数上下平移和左右平移的变化
1、上下平移:一次函数上下平移的变化能够用函数的关系式f(x)
= mx +n来表示,即可以通过给出m,n 值来改变函数y = f ( x )的双轴
坐标,使得它的外观做上下平移变化,其中n的值的变化能够改变函
数的纵坐标(y 轴中的点),从而改变图形的上下位置;m的变化能够改变函数的长度,从而改变图形的外观。
2、左右平移:即一次函数左右平移的变化能够用函数 f ( x )- b 的形式来表示,这里的b代表平移量,即给出b的值,函数y = f ( x )的外观
才发生左右平移的变化,b的变化能够改变函数的横坐标(x 轴中的点),从而实现图形的左右移动,同时 m的变化也能够实现图形的长
度变化,从而改变函数f ( x )- b 的外观。
总结:
一次函数上下平移和左右平移的变化可以用相应的函数关系式来表示:一次函数上下平移: y = f ( x ) = mx +n;
一次函数左右平移:y = f ( x )- b;
它们的变化改变能够改变函数的形状,同时改变函数的横纵坐标,有
利于我们更深入的了解函数的变化,学习数学的变化法则。
一次函数图象的平移规律
一次函数图象平移的探究我们知道,一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移∣b∣个单位长度得到(当b>0时,向上平移;当b<0时,向上平移).例如,将直线y=-x向上平移3个单位长度就得到直线y=-x+3,将直线y=-x向下平移1个单位长度就可以得到直线y=-x-1.需要注意的是,函数图象的平移,既可以上下平移,也可以左右平移.这里所说的平移,是指函数图象的上下平移,而非左右平移.以上平移比较简单,因为它是对最简单的一次函数即正比例函数进行平移.对于一个一般形式的一次函数图象又该怎样进行平移呢?【探究一】函数图像的上下平移我们先从一些具体的函数关系开始.问题1已知直线l:y=2x-3,将直线l向上平移2个单位长度得到直线l1,求直线l1的解析式.分析:根据“两直线平行,对应函数的一次项系数相等”,可设直线l1的解析式为y=2x+ b,由于直线l1的解析式中只有一个未知数,因此再需一个条件即可.怎样得到这个条件呢?注意到直线l1与两条坐标轴分别交于两点,而直线l与y轴的交点易求,这样就得到一个条件,于是直线l1的解析式可求.1解:设直线l1的解析式为y=2x+b,直线l1交y轴于点(0,-3),向上平移2个单位长度后变为(0,-1).把(0,-1)坐标代入y=2x+b,得b=-1,从而直线l1的解析式为y=2x-1.问题2已知直线l:y=2x-3,将直线l向下平移3个单位长度得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=2x-6.(解答过程请同学们自己完成)对比直线l和直线l1、直线l2的解析式可以发现:将直线l:y=2x-3向上平移2个单位长度得到直线l1的解析式为:y=2x-3+2;将直线l:y=2x-3向下平移3个单位长度得到直线l2的解析式为:y=2x-3-3.(此时你有什么新发现?)我们再来探究一般情况.问题3 已知直线l:y=kx+b,将直线l向上平移m个单位长度得到直线l1,求直线l1的解析式.简解:设直线l1的解析式为y=kx+p,直线l交y轴于点(0,b),向上平移m 个单位长度后变为(0,b+m),把(0,b+m)坐标代入l1的解析式可得,p=b+m.从而直线l1的解析式为y=kx+b+m.问题4 已知直线l:y=kx+b,将直线l向下平移m个单位长度得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=kx+b-m.(解答过程请同学们自己完成)由此我们得到:直线y=kx+b向上平移m(m为正)个单位长度得到直线y=kx+b+m,直线y=kx+b向下平移m(m为正)个单位长度得到直线y=kx+b-m,这是直线直线y=kx+b上下(或沿y轴)平移的规律.这个规律可以简记为:函数值:上加下减以上我们探究了直线y=kx+b的上下 (或沿y轴)的平移,如果直线y=kx+b 不是上下(或沿y轴)平移,而是左右(或沿x轴)平移,又该怎样进行平移呢?【探究二】函数图像的左右平移问题5 已知直线l :y=3x -12,将直线l 向左平移5个单位长度得到直线l 1,求直线l 1的解析式.简解:根据“两直线平行,对应函数的一次项系数k 相等”,可设直线l 1的解析式为y=3x+b ,直线l 交x 轴于点(4,0),向左平移5个单位长度后变为(-1,0).把(-1,0)坐标代入y=3x+b ,得b =3,从而直线l 1的解析式为y=3x +3.问题6 已知直线l :y=3x -12,将直线l 向右平移3个单位长度得到直线l 2,求直线l 2的解析式.答案:直线l 2的解析式为y=3x -21.(解答过程请同学们自己完成)直接观察结果,很难发现其中的一般规律,那么我们尝试着探究一般情况. 问题7 已知直线l :y=kx+b ,将直线l 向左平移n 个单位长度得到直线l 1,求直线l 1的解析式.简解:设直线l 1的解析式为y=kx+p ,直线l 交x 轴于点(,0)b k- ,向左平移n 个单位长度后变为(,0)b n k --,把(,0)b n k--坐标代入l 1的解析式可得0()b k n p k=--+,p=kn+b .从而直线l 1的解析式为y=kx+km+b ,即y=k (x+m )+b . 问题8 已知直线l :y=kx+b ,将直线l 向右平移n 个单位长度得到直线l 2,求直线l 2的解析式.答案:直线l 2的解析式为y=k (x -m )+b .(解答过程请同学们自己完成)通过对于一般情况的研究,我可以发现一些变化的规律,现在我们用刚才的具体的函数关系来验证一下我们得到的规律.将直线l:y=3x-12向左平移5个单位长度得到直线l1的解析式为:y=3x+3,这个函数关系可以改写为:y=3(x+5)-12;将直线l:y=3x-12向右平移3个单位长度得到直线l2的解析式为:y=3x-21,这个函数关系可以改写为:y=3(x-3)-12.由此我们得到:直线y=kx+b向左平移n(n为正)个单位长度得到直线y=k(x+n)+b,直线y=kx+b向右平移n(n为正)个单位长度得到直线y=k(x-n)+b,这是直线y=kx+b左右(或沿x轴)平移的规律.这个规律可以简记为:自变量:左加右减总结:一次函数图像平移的规律函数值:上加下减;自变量:左加右减.※特别注意:注意区别点坐标的平移规律与函数图像的平移规律.下面,我们对直线(0)y kx b k =+≠在平移规律中”左加右减”作一点解释.我们知道,对于直线(0)y kx b k =+≠上的任意一点的坐标可以表示为(,)x kx b +,反过来我们可以先将y kx b =+变一下形,得到:y b x k k =- ,则此时直线上任意一点的坐标就可以表示为(,)y b y k k-,由左右平移横坐标会发生变化,不改变纵坐标大小(即令y 恒定).由此可知:如果一次函数图象向右移平移了n 个单位,那么平移后点的坐标就会变成(,)y b n y k k -+ ,即 y b x n k k=-+,化成一般可得kx y b kn =-+,变形可得y k b x n -=+()式 所以“右减”.同理,如果一次函数的图象向左平移n 个单位,那么平移后点的坐标就会变成(,)y b n y k k -- ,即 y b x n k k=--,化成一般可得kx y b kn =--,变形可得y k b x n +=+()式 所以“左加”.如果我们从平移过程中函数图象与坐标轴的截距的变化情况也可以看出,当函数图象向左或向右平移n 个单位时,函数图象在x 轴上的截距减小或增大n 个单位,而在y 轴上的截距并不是简单的作相同的减小或增加n 个单位。
一次函数平移
一次函数平移一次函数平移规律为:左右平移,x左加右减;上下平移,b上加下减。
平移,是指在平面内,将一个图形上的所有点都按照某个直线方向做相同距离的移动,这样的图形运动叫做图形的平移运动,简称平移。
举例1、一次函数图像在x轴上的左右平移。
向左平移n个单位,解析式y=kx+b变化为y=k(x+n)+b;向右平移n个单位解析式y=kx+b变化为y=k(x-n)+b。
口诀:左加右减(对于y=kx+b来说,对括号内x 符号的增减)(此处n为正整数)。
2、一次函数图像在y轴上的上下平移。
向上平移m个单位解析式y=kx+b变化为y=kx+b+m;向下平移m个单位解析式y=kx+b变化为y=kx+b-m。
口诀:上加下减(对于y=kx+b来说,只改变b)(此处m 为正整数)。
扩展资料关于一次函数平移变化的规律可以通过待定系数法和相似三角形来予以证明。
在运用待定系数法证明中,因为平移前后两条直线平行,所以K相等,只要根据与x轴的交点坐标的变化,再将变化后的与x轴交点坐标代入到平移后的解析式中即可求得b和b1的关系为向左平移b1=kn+b,向右平移b1=-kn+b。
在运用相似三角形证明中,在平面直角坐标系中,一次函数图像平移后的两条直线平行,这两条直线分别与x轴和y轴形成了一组相似三角形,通过相似三角形对应边成比例,即可求出交点坐标间的关系。
这样也可以证明平移规律。
其实无论是运用待定系数法证明或者运用相似三角形证明,都是在研究一次函数的图像与x轴、y轴的交点坐标的变化。
我们研究一次函数的图像平移其实就是研究与x轴、y轴的交点坐标的变化,进而研究解析式的变化,图像性质的变化。
这也就是所说的关键点。
一次函数图像的平移
一次函数图像的平移函数y=kx+b上的每个点(x,y)一、向左移动m个单位后,y不变,而x变成了x+m,函数就变成了y=k(x+m)+b二、向右移动m个单位后,y不变,而x变成了x-m,函数就变成了y=k(x-m)+b三、向上移动n个单位后,x不变, y=kx+b在b后面加上n,函数就变成了y=kx+b+n四、向下移动n个单位后,x不变, y=kx+b在b后面减去n,函数就变成了y=kx+b-n一次函数y=kx+b平移的规律:“上加下减,左加右减”,上下平移时在整体后面进行加减,左右平移时针对的是x进行加减。
例如:y=2x+1向上平移2个单位,向左平移3个单位,可得y=2(x+3)+1+2,最后函数为y=2x+9.一次函数y=kx+b的图象是一条直线,它可以看作由直线y=kx平移∣b∣个单位长度得到(当b >0时,向上平移;当b<0时,向上平移).或者说,直线y=kx平移∣b∣个单位长度得到直线y=kx+b (当b>0时,向上平移;当b<0时,向下平移).例如,将直线y=-x向上平移3个单位长度就得到直线y=-x+3,将直线y=-x向下平移1个单位长度就可以得到直线y=-x-1.需要注意的是,函数图象的平移,既可以上下平移,也可以左右平移.这里所说的平移,是指函数图象的上下平移,而非左右平移.以上平移比较简单,因为它是对最简单的一次函数即正比例函数进行平移.对于一个一般形式的一次函数图象又该怎样进行平移呢?问题1已知直线l1:y=2x-3,将直线l1向上平移2个单位得到直线l2,求直线l2的解析式分析:根据“两直线平行,对应函数的一次项系数相等”,可设直线l2的解析式为y=2x+ b,由于直线l2的解析式中只有一个未知数,因此再需一个条件即可.怎样得到这个条件呢?注意到直线l1与两条坐标轴分别交于两点,而直线l1与y轴的交点易求,这样就得到一个条件,于是直线l2的解析式可求.解:设直线l2的解析式为y=2x+b,直线l1交y轴于点(0,-3),向上平移2个单位长度后变为(0,-1).把(0,-1)坐标代入y=2x+b,得b=-1,从而直线l2的解析式为y=2x-1.问题2 已知直线l1:y=2x-3,将直线l1向下平移2个单位得到直线l2,求直线l2的解析式答案:直线l2的解析式为y=2x-5.(解答过程请同学们自己完成)对比直线l1和直线直线l2的解析式可以发现:将直线l1:y=2x-3向上平移2个单位长度得到直线l2的解析式为:y=2x-3+2;将直线l1:y=2x-3向下平移2个单位长度得到直线l2的解析式为:y=2x-3-2.(此时你有什么新发现?)问题3 已知直线l1:y=kx+b,将直线l1向上平移m个单位得到直线l2,求直线l2的解析式解:设直线l2的解析式为y=kx+n,直线l1交y轴于点(0,b),向上平移m个单位长度后变为(0,b+m),把(0,b+m)坐标代入l2的解析式可得,n=b+m.从而直线l2的解析式为y=kx+b+m.问题4已知直线l1:y=kx+b,将直线l1向下平移m个单位得到直线l2,求直线l2的解析式答案:直线l2的解析式为y=kx+b-m由此我们得到:直线y=kx+b向上平移m(m为正)个单位长度得到直线y=kx+b+m,直线y=kx+b 向下平移m(m为正)个单位长度得到直线y=kx+b-m,这是直线直线y=kx+b上下(或沿y轴)平移的规律这个规律可以简记为:以上我们探究了直线y=kx+b的上下 (或沿y轴)的平移,如果直线y=kx+b不是上下(或沿y轴)平移,而是左右(或沿x轴)平移,又该怎样进行平移呢?问题5已知直线l1:y=3x-12,将直线l1向左平移5个单位得到直线l2,求直线l2的解析式解:根据“两直线平行,对应函数的一次项系数相等”,可设直线l2的解析式为y=3x+b,直线l1交x轴于点(4,0),向左平移5个单位长度后变为(-1,0).把(-1,0)坐标代入y=3x+b,得b=3,从而直线l2的解析式为y=3x+3问题6 已知直线l1:y=3x-12,将直线l1向右平移5个单位得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=3x-27对比直线l1和直线直线l2的解析式可以发现:将直线l1:y=3x-12向左平移5个单位长度得到直线l2的解析式为:y=3(x+5)-12;将直线l1:y=3x-12向右平移5个单位长度得到直线l2的解析式为:y=3(x-5)-12问题7已知直线l1:y=kx+b,将直线l1向左平移m个单位长度得到直线l2,求直线l2的解析式解:设直线l2的解析式为y=kx+n,直线l1交x轴于点(-b/k,0),向左平移m个单位长度后变为(0,-b/k -m),把(0,-b/k -m)坐标代入l2的解析式可得,n=km+b.从而直线l2的解析式为y=kx+km+b,即y=k(x+m)+b.问题8已知直线l1:y=kx+b,将直线l1向右平移m个单位长度得到直线l2,求直线l2的解析式答案:直线l2的解析式为y=k(x-m)+b由此我们得到:直线y=kx+b向左平移m(m为正)个单位长度得到直线y=k(x+m)+b,直线y=kx+b 向右平移m(m为正)个单位长度得到直线y=k(x-m)+b,这是直线y=kx+b左右(或沿x轴)平移的规律这个规律可以简记为:例1:将直线l1:y=kx+b(k≠0)向上平移5个单位长度后,得到直线l2,l2经过点(1,2)和坐标原点,求直线l1的解析式解:直线y=kx+b(k≠0)的图象向上平移5个单位长度后的解析式为:y=kx+b+5,将点(1,2),(0,0)代入y=kx+b+5,得k+b+5=2,b+5=0,解得:k=2,b=-5,即平移后直线的解析式为y=2x-5 例2:一次函数y=kx+b的图象经过点(-1,1)和点(1,-5),求①函数的解析式;②将该一次函数的图象向上平移3个单位,直接写出平移后的函数解析式解:①根据题意,得1=-k+b,-5=k+b,解得k=-3,b=-2,则一次函数的解析式为y=-3x-2②将一次函数y=﹣3x﹣2的图象向上平移3个单位后的解析式为y=-3x-2+3,即y=-3x+1练习:1.直线y=-x-3向上平移2个单位长度后得到的直线解析式是___;直线y=x/3 -2向下平移3个单位长度后得到的直线解析式是___2.直线y=-5x-12向左平移2个单位长度后得到的直线解析式是___;直线y=(x+1)/6向右平移3个单位长度后得到的直线解析式是___3.直线y=8x+13既可以看作直线y=8x-3向___平移(填“上”或“下”)___单位长度得到;也可以看作直线y=8x-3向___平移(填“左”或“右”)___单位长度得到4.要由直线y=2x+12得到直线y=2x-6,可以通过平移得到:先将直线y=2x+12向___平移(填“上”或“下”)___单位长度得到直线y=2x,再将直线y=2x向___平移(填“上”或“下”)得到直线y=2x-6;当然也可以这样平移:先将直线y=2x+12向___平移(填“左”或“右”)___单位长度得到直线y=2x,再将直线y=2x向___平移(填“左”或“右”)得到直线y=2x-6;以上这两种方法是分步平移.也可以一次直接平移得到,即将直线y=2x+12向___平移(填“上”或“下”)直接得到直线y=2x-6,或者将直线y=2x+12向___平移(填“左”或“右”)直接得到直线y=2x-6。
《平移》课件教学课件初中数学1
例题解析
应用练习
应用练习
课堂小结
知识讲解
平移口诀:上加下减,左加右减 观察函数图象,你能从中发现什么规律? 平移口诀:上加下减,左加右减 平移口诀:上加下减,左加右减 一次函数图象的性质与图象平移 能够根据平移求新的函数表达式. 能够根据平移求新的函数表达式. 平移口诀:上加下减,左加右减
原题证明
原题证明
向上平移 向下平移
向右平移
例题讲解
例题解析
解题方法
平移口诀:上加下减,左加右减
应用练习
Hale Waihona Puke 应用练习能够根据平移求新的函数表达式. —图象与性质、图象平移 能够根据平移求新的函数表达式. 平移口诀:上加下减,左加右减 能够根据平移求新的函数表达式. —图象与性质、图象平移 一次函数图象的性质与图象平移 能够根据平移求新的函数表达式. 2、能够根据增减性,比较函数值的大小. 观察函数图象,你能从中发现什么规律? 观察函数图象,你能从中发现什么规律? 2、能够根据增减性,比较函数值的大小. 平移口诀:上加下减,左加右减 —图象与性质、图象平移 观察函数图象,你能从中发现什么规律? 能够根据平移求新的函数表达式. —图象与性质、图象平移 平移口诀:上加下减,左加右减
√ √
一次函数
—图象与性质、图象平移
课程目标
2、能够根据增减性,比较函数值的大小. 3.能够根据平移求新的函数表达式.
知识讲解
知识讲解
观察函数图象,你能从中发现什么规律?
知识讲解
平移口诀:上加下减,左加右减 —图象与性质、图象平移 观察函数图象,你能从中发现什么规律? 能够根据平移求新的函数表达式. 一次函数图象的性质与图象平移 —图象与性质、图象平移 观察函数图象,你能从中发现什么规律? 观察函数图象,你能从中发现什么规律? 平移口诀:上加下减,左加右减 2、能够根据增减性,比较函数值的大小. 一次函数图象的性质与图象平移 一次函数图象的性质与图象平移 —图象与性质、图象平移 观察函数图象,你能从中发现什么规律? 能够根据平移求新的函数表达式. 能够根据平移求新的函数表达式. 一次函数图象的性质与图象平移
一次函数图象的平移规律课件
3
3
1.一次函数的图象是什么图形? 一条直线
2.直线y=kx+b与x轴的交点坐标是
( b,0 ),与y轴的交点坐标( 0, b ).
k
y y=2x+3
例 在同一坐标系内作出下列函数 y=2x, y=2x+3,y=2x-2的图象。
y=2x
5
y=2x (0,0)(1,2)
4
3
y=2x+3(0,3)(-1.5,0)
得:
2 5
3k 6k b
b解得k b
1 3
3
增0时k大x,而yb增随中大x的,,增在大k而<
减小,故此题要分k >0和k<0两种情况
进行讨论。
一次函数解析式为y 1 x 3
3
综上所述, 一次函数的解析式为y 1 x 4或y 1 x 3.
必须向___平
移___个 单位.
3.如果直线y =kx+b平行于直线y=2x+4,
且与两坐标轴围成的三角形的面积为8,求
直线y =kx+b 的解析式.
60
l1
40
20
-4 -3 -2 -1 O -20
1 2 3 4 5 6 7 8 9 10 11 12 x (分)
- 40
- 60
(3)想一想:兔子要后退多少米, 兔子与乌龟才会同时到达?
y(米)
120
100
l2
80
60
l1
40
20
-4 -3 -2 -1 O -20
1 2 3 4 5 6 7 8 9 10 11 12 x (分)
利用表格信息确定函数关系式 : 小明根 据某个一次函数关系式填写了下表:
(完整版)一次函数图象的平移及解析式的变化规律
一次函数图象的平移及解析式的变化规律我们在研究两个一次函数的图象平行的条件时,曾得出“其中一条直线可以由另外一条直线通过平移得到”的结论,这就涉及到一次函数图象平移的问题. 函数的图象及其解析式,是从“形”和“数”两个方面反映函数的性质,也是初中数学中数形结合思想的重要体现.在平面直角坐标系中,当一次函数的图象发生平移(平行移动)时,与之对应的函数解析式也随之发生改变,并且函数解析式的变化呈现出如下的变化规律:一次函数()0≠+=k b kx y 的图象平移后其解析式的变化遵循“上加下减,左加右减”的规律:(1)上下平移,k 值不变,b 值“上加下减”:将一次函数()0≠+=k b kx y 的图象向上平移m 个单位长度,解析式变为()0≠++=k m b kx y ;将一次函数()0≠+=k b kx y 的图象向下平移m 个单位长度,解析式变为()0≠-+=k m b kx y .(2)左右平移,k 值不变,自变量x “左加右减”:将一次函数()0≠+=k b kx y 的图象向左平移n 个单位长度,解析式变为()()0≠++=k b n x k y ,展开得()0≠++=k b kn kx y ;将一次函数()0≠+=k b kx y 的图象向右平移n 个单位长度,解析式变为()()0≠+-=k b n x k y ,展开得()0≠+-=k b kn kx y .注意:(1)无论一次函数的图象作何种平移,平移前后,k 值不变,b 值改变.设上下平移的单位长度为m ,则b 值变为m b ±;设左右平移的单位长度为n ,则b 值变为kn b ±.(2)上面的规律如下页图(51)所示.图(51)一次函数图象的平移及其解析式的变化规律1. 将直线x y 3=向下平移2个单位,得到直线________________.2. 将直线5--=x y 向上平移5个单位,得到直线________________.3. 将直线32+=x y 向下平移5个单位,得到直线________________.4. 将直线23-=x y 向左平移1个单位,得到直线________________.5. 将直线12--=x y 向上平移3个单位,得到的直线是________________.6. 将一次函数32-=x y 的图象沿y 轴向上平移8个单位长度,所得直线的函数表达式为 【 】(A )52-=x y (B )52+=x y(C )82+=x y (D )82-=x y7. 将直线x y 2=向右平移2个单位所得的直线是 【 】(A )22+=x y (B )22-=x y(C )()22-=x y (D )()22+=x y8. 将函数x y 3-=的图象沿y 轴向上平移2个单位后,所得图象对应的函数表达式为 【 】(A )23+-=x y (B )23--=x y(C )()23+-=x y (D )()23--=x y9. 直线43+=x y 向下平移4个单位,得到直线________________.10. 函数32-=x y 的图象可以看作由函数72+=x y 的图象向_________平移_________个单位得到.11. 把函数32+-=x y 的图象向下平移4个单位后的函数图象的表达式为 【 】 (A )72+-=x y (B )36+-=x y(C )12--=x y (D )52--=x y12. 将直线42-=x y 向上平移5个单位后,所得直线的表达式是_____________. 13. 直线23+=x y 沿y 轴向下平移5个单位,则平移后直线与y 轴的交点坐标为_________.14. 若直线b kx y +=平行于直线43-=x y ,且过点()2,1-,则该直线对应的函数表达式是 【 】(A )23-=x y (B )63--=x y(C )53-=x y (D )53+=x y15. 将直线x y 2=先向右平移2个单位长度,再向下平移2个单位长度,所得直线的表达式是________________.16. 直线12-=x y 向上平移3个单位长度后,所得直线与y 轴的交点坐标为_________.17. 已知直线()3252-+-=k x k y ,若该直线经过原点,则=k _________;若该直线与直线53--=x y 平行,则=k _________.18. 若把直线32-=x y 向上平移3个单位长度,得到的图象的表达式是 【 】 (A )x y 2= (B )62-=x y(C )35-=x y (D )3--=x y19. 要从直线x y 34=的图象得到直线324-=x y ,就要将直线x y 34= 【 】 (A )向上平移32个单位 (B )向下平移32个单位 (C )向上平移2个单位 (D )向下平移2个单位20. 函数4-=kx y 的图象平行于直线x y 2-=,求函数的表达式.21. 已知一次函数4-=kx y ,当2=x 时,3-=y .(1)求一次函数的关系式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x 轴的交点的坐标.22. 一次函数b kx y +=的图象与y 轴交于点)2,0(-,且与直线213-=x y 平行,求它的函数关系式.23. 在直线321+-=x y 上分别找出满足下列条件的点,并写出它的坐标: (1)横坐标是4-;(2)和x 轴的距离是2个单位.图(52)分析:若不借助于图象,只通过计算,你能确定上面问题的答案吗?。
一次函数ppt课件免费
线性关系判断方法
01
观察法
通过观察散点图或数据表,判断两个变量之间是否存在线性关系。
02 03
计算法
通过计算相关系数r的值,判断两个变量之间的线性关系强度。当|r|接 近于1时,表示两个变量之间存在较强的线性关系;当|r|接近于0时,表 示两个变量之间不存在线性关系。
残差分析法
通过绘制残差图或计算残差平方和,判断回归模型是否符合线性关系。 如果残差图呈现随机分布且残差平方和较小,则表明回归模型符合线性 关系。
实际应用问题建模与求解
01
02
03
列方程
根据实际问题中的条件, 列出反映问题中数量关系 的方程。
解方程
运用一次函数的运算技巧, 求解所列出的方程。
检验与作答
将求得的解代入原方程进 行检验,确认解的合理性, 并根据实际问题要求进行 作答。
03
一次函数图像变换规律
平移变换规律
一次函数 y = kx + b (k ≠ 0) 的图像是一条直线, 01 当 b 值发生变化时,图像会沿着 y 轴上下平移。
当 b > 0 时,图像向上平移 b 个单位;当 b < 0 02 时,图像向下平移 |b| 个单位。
平移后的直线斜率不变,仍为 k。 03
伸缩变换规律
01 当 k > 1 时,图像的斜率增大,函数值增长的速 度变快,图像相对于原直线更陡峭。
02 当 0 < k < 1 时,图像的斜率减小,函数值增长 的速度变慢,图像相对于原直线更平缓。
学习数学不仅仅是为了应付考试,更重要的是培养解决实际问题的能力。通过学习和应用一 次函数,可以强化数学与实际生活的联系,提高数学应用意识。
拓展数学思维
一次函数图象的平移规律
一次函数图象平移的探究我们知道,一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移∣b∣个单位长度得到(当b>0时,向上平移;当b<0时,向上平移).例如,将直线y=-x向上平移3个单位长度就得到直线y=-x+3,将直线y=-x向下平移1个单位长度就可以得到直线y=-x-1.需要注意的是,函数图象的平移,既可以上下平移,也可以左右平移.这里所说的平移,是指函数图象的上下平移,而非左右平移.以上平移比较简单,因为它是对最简单的一次函数即正比例函数进行平移.对于一个一般形式的一次函数图象又该怎样进行平移呢?【探究一】函数图像的上下平移我们先从一些具体的函数关系开始.问题1已知直线l:y=2x-3,将直线l向上平移2个单位长度得到直线l1,求直线l1的解析式.分析:根据“两直线平行,对应函数的一次项系数相等”,可设直线l1的解析式为y=2x+ b,由于直线l1的解析式中只有一个未知数,因此再需一个条件即可.怎样得到这个条件呢?注意到直线l1与两条坐标轴分别交于两点,而直线l1与y轴的交点易求,这样就得到一个条件,于是直线l1的解析式可求.解:设直线l1的解析式为y=2x+b,直线l1交y轴于点(0,-3),向上平移2个单位长度后变为(0,-1).把(0,-1)坐标代入y=2x+b,得b=-1,从而直线l1的解析式为y=2x-1.问题2已知直线l:y=2x-3,将直线l向下平移3个单位长度得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=2x-6.(解答过程请同学们自己完成)对比直线l和直线l1、直线l2的解析式可以发现:将直线l:y=2x-3向上平移2个单位长度得到直线l1的解析式为:y=2x-3+2;将直线l:y=2x-3向下平移3个单位长度得到直线l2的解析式为:y=2x-3-3.(此时你有什么新发现?)我们再来探究一般情况.问题3已知直线l:y=kx+b,将直线l向上平移m个单位长度得到直线l1,求直线l1的解析式.简解:设直线l1的解析式为y=kx+p,直线l交y轴于点(0,b),向上平移m 个单位长度后变为(0,b+m),把(0,b+m)坐标代入l1的解析式可得,p=b+m.从而直线l1的解析式为y=kx+b+m.问题4 已知直线l:y=kx+b,将直线l向下平移m个单位长度得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=kx+b-m.(解答过程请同学们自己完成)由此我们得到:直线y=kx+b向上平移m(m为正)个单位长度得到直线y=kx+b+m,直线y=kx+b向下平移m(m为正)个单位长度得到直线y=kx+b-m,这是直线直线y=kx+b上下(或沿y轴)平移的规律.这个规律可以简记为:函数值:上加下减以上我们探究了直线y=kx+b的上下 (或沿y轴)的平移,如果直线y=kx+b 不是上下(或沿y轴)平移,而是左右(或沿x轴)平移,又该怎样进行平移呢?【探究二】函数图像的左右平移问题5 已知直线l :y=3x -12,将直线l 向左平移5个单位长度得到直线l 1,求直线l 1的解析式.简解:根据“两直线平行,对应函数的一次项系数k 相等”,可设直线l 1的解析式为y=3x+b ,直线l 交x 轴于点(4,0),向左平移5个单位长度后变为(-1,0).把(-1,0)坐标代入y=3x+b ,得b =3,从而直线l 1的解析式为y=3x +3. 问题6 已知直线l :y=3x -12,将直线l 向右平移3个单位长度得到直线l 2,求直线l 2的解析式.答案:直线l 2的解析式为y=3x -21.(解答过程请同学们自己完成)直接观察结果,很难发现其中的一般规律,那么我们尝试着探究一般情况.问题7 已知直线l :y=kx+b ,将直线l 向左平移n 个单位长度得到直线l 1,求直线l 1的解析式.简解:设直线l 1的解析式为y=kx+p ,直线l 交x 轴于点(,0)b k- ,向左平移n 个单位长度后变为(,0)b n k --,把(,0)b n k--坐标代入l 1的解析式可得0()b k n p k=--+,p=kn+b .从而直线l 1的解析式为y=kx+km+b ,即y=k (x+m )+b . 问题8 已知直线l :y=kx+b ,将直线l 向右平移n 个单位长度得到直线l 2,求直线l 2的解析式.答案:直线l 2的解析式为y=k (x -m )+b .(解答过程请同学们自己完成) 通过对于一般情况的研究,我可以发现一些变化的规律,现在我们用刚才的具体的函数关系来验证一下我们得到的规律.将直线l:y=3x-12向左平移5个单位长度得到直线l1的解析式为:y=3x+3,这个函数关系可以改写为:y=3(x+5)-12;将直线l:y=3x-12向右平移3个单位长度得到直线l2的解析式为:y=3x-21,这个函数关系可以改写为:y=3(x-3)-12.由此我们得到:直线y=kx+b向左平移n(n为正)个单位长度得到直线y=k(x+n)+b,直线y=kx+b向右平移n(n为正)个单位长度得到直线y=k(x-n)+b,这是直线y=kx+b左右(或沿x轴)平移的规律.这个规律可以简记为:自变量:左加右减总结:一次函数图像平移的规律函数值:上加下减;自变量:左加右减.※特别注意:注意区别点坐标的平移规律与函数图像的平移规律.下面,我们对直线(0)y kx b k =+≠在平移规律中”左加右减”作一点解释.我们知道,对于直线(0)y kx b k =+≠上的任意一点的坐标可以表示为(,)x kx b +,反过来我们可以先将y kx b =+变一下形,得到:y b x k k =- ,则此时直线上任意一点的坐标就可以表示为(,)y b y k k-,由左右平移横坐标会发生变化,不改变纵坐标大小(即令y 恒定).由此可知:如果一次函数图象向右移平移了n 个单位,那么平移后点的坐标就会变成(,)y b n y k k -+ ,即 y b x n k k=-+,化成一般可得kx y b kn =-+,变形可得y k b x n -=+()式 所以“右减”. 同理,如果一次函数的图象向左平移n 个单位,那么平移后点的坐标就会变成(,)y b n y k k -- ,即 y b x n k k=--,化成一般可得kx y b kn =--,变形可得y k b x n +=+()式 所以“左加”.如果我们从平移过程中函数图象与坐标轴的截距的变化情况也可以看出,当函数图象向左或向右平移n 个单位时,函数图象在x 轴上的截距减小或增大n 个单位,而在y 轴上的截距并不是简单的作相同的减小或增加n 个单位。
一次函数图象的平移规律
一次函数图象的平移规律(总6页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一次函数图象平移的探究我们知道,一次函数y=kx+b的图象是一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx平移∣b∣个单位长度得到(当b>0时,向上平移;当b<0时,向上平移).例如,将直线y=-x向上平移3个单位长度就得到直线y=-x+3,将直线y=-x向下平移1个单位长度就可以得到直线y=-x-1.需要注意的是,函数图象的平移,既可以上下平移,也可以左右平移.这里所说的平移,是指函数图象的上下平移,而非左右平移.以上平移比较简单,因为它是对最简单的一次函数即正比例函数进行平移.对于一个一般形式的一次函数图象又该怎样进行平移呢?【探究一】函数图像的上下平移我们先从一些具体的函数关系开始.问题1已知直线l:y=2x-3,将直线l向上平移2个单位长度得到直线l1,求直线l1的解析式.分析:根据“两直线平行,对应函数的一次项系数相等”,可设直线l1的解析式为y=2x+ b,由于直线l1的解析式中只有一个未知数,因此再需一个条件即可.怎样得到这个条件呢?注意到直线l1与两条坐标轴分别交于两点,而直线l1与y轴的交点易求,这样就得到一个条件,于是直线l1的解析式可求.解:设直线l1的解析式为y=2x+b,直线l1交y轴于点(0,-3),向上平移2个单位长度后变为(0,-1).把(0,-1)坐标代入y=2x+b,得b=-1,从而直线l1的解析式为y=2x-1.问题2已知直线l:y=2x-3,将直线l向下平移3个单位长度得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=2x-6.(解答过程请同学们自己完成)对比直线l和直线l1、直线l2的解析式可以发现:将直线l:y=2x-3向上平移2个单位长度得到直线l1的解析式为:y=2x-3+2;将直线l:y=2x-3向下平移3个单位长度得到直线l2的解析式为:y=2x-3-3.(此时你有什么新发现)我们再来探究一般情况.问题3已知直线l:y=kx+b,将直线l向上平移m个单位长度得到直线l1,求直线l1的解析式.简解:设直线l1的解析式为y=kx+p,直线l交y轴于点(0,b),向上平移m个单位长度后变为(0,b+m),把(0,b+m)坐标代入l1的解析式可得,p=b+m.从而直线l1的解析式为y=kx+b+m.问题4 已知直线l:y=kx+b,将直线l向下平移m个单位长度得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=kx+b-m.(解答过程请同学们自己完成)由此我们得到:直线y=kx+b向上平移m(m为正)个单位长度得到直线y=kx+b+m,直线y=kx+b向下平移m(m为正)个单位长度得到直线y=kx+b-m,这是直线直线y=kx+b上下(或沿y轴)平移的规律.这个规律可以简记为:函数值:上加下减以上我们探究了直线y=kx+b的上下 (或沿y轴)的平移,如果直线y=kx+b 不是上下(或沿y轴)平移,而是左右(或沿x轴)平移,又该怎样进行平移呢?【探究二】函数图像的左右平移问题5已知直线l:y=3x-12,将直线l向左平移5个单位长度得到直线l1,求直线l1的解析式.简解:根据“两直线平行,对应函数的一次项系数k相等”,可设直线l1的解析式为y=3x+b,直线l交x轴于点(4,0),向左平移5个单位长度后变为(-1,0).把(-1,0)坐标代入y=3x+b,得b=3,从而直线l1的解析式为y=3x+3.问题6 已知直线l:y=3x-12,将直线l向右平移3个单位长度得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=3x-21.(解答过程请同学们自己完成)直接观察结果,很难发现其中的一般规律,那么我们尝试着探究一般情况.问题7 已知直线l :y=kx+b ,将直线l 向左平移n 个单位长度得到直线l 1,求直线l 1的解析式.简解:设直线l 1的解析式为y=kx+p ,直线l 交x 轴于点(,0)b k- ,向左平移n 个单位长度后变为(,0)b n k --,把(,0)b n k--坐标代入l 1的解析式可得0()b k n p k=--+,p=kn+b .从而直线l 1的解析式为y=kx+km+b ,即y=k (x+m )+b .问题8 已知直线l :y=kx+b ,将直线l 向右平移n 个单位长度得到直线l 2,求直线l 2的解析式.答案:直线l 2的解析式为y=k (x -m )+b .(解答过程请同学们自己完成) 通过对于一般情况的研究,我可以发现一些变化的规律,现在我们用刚才的具体的函数关系来验证一下我们得到的规律.将直线l :y=3x -12向左平移5个单位长度得到直线l 1的解析式为:y=3x +3,这个函数关系可以改写为:y=3(x +5)-12;将直线l :y=3x -12向右平移3个单位长度得到直线l 2的解析式为:y=3x -21,这个函数关系可以改写为:y=3(x -3)-12.由此我们得到:直线y=kx+b 向左平移n (n 为正)个单位长度得到直线y=k (x+n )+b , 直线y=kx+b 向右平移n (n 为正)个单位长度得到直线y=k (x -n )+b , 这是直线y=kx+b 左右(或沿x 轴)平移的规律.这个规律可以简记为:自变量:左加右减总结:一次函数图像平移的规律函数值:上加下减;自变量:左加右减.※特别注意:注意区别点坐标的平移规律与函数图像的平移规律.下面,我们对直线(0)y kx b k =+≠在平移规律中”左加右减”作一点解释.我们知道,对于直线(0)y kx b k =+≠上的任意一点的坐标可以表示为(,)x kx b +,反过来我们可以先将y kx b =+变一下形,得到:y b x k k=- ,则此时直线上任意一点的坐标就可以表示为(,)y b y k k-,由左右平移横坐标会发生变化,不改变纵坐标大小(即令y 恒定).由此可知:如果一次函数图象向右移平移了n 个单位,那么平移后点的坐标就会变成(,)y b n y k k -+ ,即 y b x n k k=-+,化成一般可得kx y b kn =-+,变形可得y k b x n -=+()式 所以“右减”.同理,如果一次函数的图象向左平移n 个单位,那么平移后点的坐标就会变成(,)y b n y k k -- ,即 y b x n k k=--,化成一般可得kx y b kn =--,变形可得y k b x n +=+()式 所以“左加”.如果我们从平移过程中函数图象与坐标轴的截距的变化情况也可以看出,当函数图象向左或向右平移n 个单位时,函数图象在x 轴上的截距减小或增大n个单位,而在y轴上的截距并不是简单的作相同的减小或增加n个单位。
一次函数在平面直角坐标系中的平移规律
一次函数在平面直角坐标系中的平移规律好嘞,今天咱们聊聊一次函数在平面直角坐标系中的平移规律。
这话题听上去有点干巴巴的,不过别担心,我会让它变得轻松有趣,咱们一起来捋一捋这些数学概念。
什么是一次函数呢?哎,就是那种“y = mx + b”的东西。
你看看,m代表的是斜率,b则是y轴上的截距。
简单来说,斜率就像一座山的陡峭程度,b就是山的起点。
在平面直角坐标系里,一次函数的图像是一条直线,简单明了,走到哪都是那样的气派。
说到平移,想象一下你在公园里散步,忽然看到一条小狗跑过来,你的目光就跟着它走。
这小狗的轨迹就像一次函数的图像,可以想象成你在这个坐标系中随意移动。
平移就像是把这条线从一个地方搬到另一个地方,但它的形状可没变哦,依然笔直得很。
先来聊聊横向平移。
横向平移就是像打羽毛球一样,轻轻一拨,这条线就往左或右移动了。
比如说,咱们把一次函数“y = 2x + 3”平移到右边,这可不简单,只需把x加个常数,比如加个2,就变成“y = 2(x 2) + 3”。
这意思就是原来的点全往右挪了两步,结果直线的方程变成了“y = 2x 1”。
看!这条线还是那条线,只是换了个位置,心情可愉悦了。
再说纵向平移,这就像你在大街上碰到朋友,你们一起吃冰淇淋,心情大好,整个人都飞起来了。
纵向平移就是把直线往上或往下移动。
拿刚才的例子来说,咱们把“y = 2x + 3”往上抬一抬,比如加个3,变成“y = 2x + 6”。
这时候,直线的斜率不变,依然是2,但它在y轴上起步的地方就变了,像是给它加了一个全新的起点。
这时候你可能会想,横向和纵向平移有啥区别?其实这就像是你在做瑜伽,身体可以向前弯,也可以向后仰,位置变了,但本质上你依然是你,姿势可不变。
这种平移就让我们在处理问题时更加灵活,不管是要调整图像的位置,还是要修正某个数值,都能游刃有余。
嘿,这个时候你应该有点明白了,不是吗?一次函数的平移就像在生活中随时随地都能找到自己舒适的位置。
一次函数图像的平移
一次函数图像的平移函数y=kx+b上的每个点(x,y)一、向左移动m个单位后,y不变,而x变成了x+m,函数就变成了y=k(x+m)+b二、向右移动m个单位后,y不变,而x变成了x-m,函数就变成了y=k(x-m)+b三、向上移动n个单位后,x不变,y=kx+b在b后面加上n,函数就变成了y=kx+b+n四、向下移动n个单位后,x不变,y=kx+b在b后面减去n,函数就变成了y=kx+b-n一次函数y=kx+b平移的规律:“上加下减,左加右减”,上下平移时在整体后面进行加减,左右平移时针对的是x进行加减。
例如:y=2x+1向上平移2个单位,向左平移3个单位,可得y=2(x+3)+1+2,最后函数为y=2x+9.一次函数y=kx+b的图象是一条直线,它可以看作由直线y=kx平移∣b∣个单位长度得到(当b >0个单位长y=2x+b,直线.直线(0.由此我们得到:直线y=kx+b向上平移m(m为正)个单位长度得到直线y=kx+b+m,直线y=kx+b 向下平移m(m为正)个单位长度得到直线y=kx+b-m,这是直线直线y=kx+b上下(或沿y轴)平移的规律这个规律可以简记为:以上我们探究了直线y=kx+b的上下(或沿y轴)的平移,如果直线y=kx+b不是上下(或沿y轴)平移,而是左右(或沿x轴)平移,又该怎样进行平移呢?问题5已知直线l1:y=3x-12,将直线l1向左平移5个单位得到直线l2,求直线l2的解析式解:根据“两直线平行,对应函数的一次项系数相等”,可设直线l2的解析式为y=3x+b,直线l1交x轴于点(4,0),向左平移5个单位长度后变为(-1,0).把(-1,0)坐标代入y=3x+b,得b=3,从而直线l2的解析式为y=3x+3问题6已知直线l1:y=3x-12,将直线l1向右平移5个单位得到直线l2,求直线l2的解析式.答案:直线l2的解析式为y=3x-27对比直线l1和直线直线l2的解析式可以发现:将直线l1:y=3x-12向左平移5个单位长度得到直线l2的解析式为:y=3(x+5)-12;将直线l1:y=3x-12向右平移5个单位长度得到直线l2的解析式为:y=3(x-5)-12问题7已知直线l1:y=kx+b,将直线l1向左平移m个单位长度得到直线l2,求直线l2的解析式解:设直线l2的解析式为y=kx+n,直线l1交x轴于点(-b/k,0),向左平移m个单位长度后变为(0,-b/k-m),把(0,-b/k-m)坐标代入l2的解析式可得,n=km+b.从而直线l2的解析式为y=kx+km+b,即y=k(x+m)+b.问题8已知直线l1:y=kx+b,将直线l1向右平移m个单位长度得到直线l2,求直线l2的解析式答案:直线l2的解析式为y=k(x-m)+b或“下”)直接得到直线y=2x-6,或者将直线y=2x+12向___平移(填“左”或“右”)直接得到直线y=2x-6。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线y=-x通过怎样的移动y=-x-6
向下平移6个单位 y y=-x 6
4
y=-x-6
2
-6 -4 -2 o 2 4 6 x -2 -4
y y=2x+3
1.直线y=2x过 (0,0).
7
6
y=2x
2.直线y=2x+3与y轴
5
交于点 (0,3)
4
它是由直线y=2x向上 平
________;
直线y=2x+1向右平移3个单位后的解析式是
________。
3. 在平面直角坐标系中,把直线y=3x向左平移
一个单位长度后,其直线解析式为________;
移动后与x轴的交点坐标为________。
• 4.把直线y=-3x+1向左平移2个单位 长度后,其解析式_____,移动后 与x轴的交点坐标为_______。
b值不相等
-4
-5
在同一直角坐标系中画
出下列函数的图像:
y=3x-2 和 y=
2 3
x
+1
y y=3x-2
6 5 4
两条直线相交 k1k2
3 2
y=
2 3
x
+1
1
-6 -5 -4 -3 -2 -1 O 1 2 3 4 5 6 x -1
-2
-3
-4
-5
-6
(3)直线y=2x+6与y=-x+6的位置关系如何?
简称:左 + 右 -
结论:
(1)一次函数y=kx+b的图像可以看做是y=kx平移|b| 个单位长度而得到(b>0时,向上平移,b<0时,向下平 移。)
(2)图像的上下平移与K无关
(3)图像的上下平移与b有关,图像向上移动b的值增加, 图像向下移动b的值减小。
简称:上 加 下 减 (1)图像的左右平移与k,b无关,只与自变量x有关系, 向左移动x的值增加,向右移动x的值减小。 简称:左 加 右 减
3
的
2
1
当b>0时,向上平移
-3 -2 -1 0 -1
y=2x-2
1 23 x
当b<0时,向下平移
-2
-3
-4
-5
y=2x向右平移4个单位变成直线 y=2x-8 y=2x向左平移4个单位变成直线 y=2x+8
y y=2(x+4)=2x+8 8
6
y=2x
4
2
y=2(x-4)=2x-8
-6 -4 -2 o
246
x
-2
-4
6
8
(2)在同一坐标系中作出下列函数的图象
y 3 2 1 -3 -2 -1 o 1 2 3 x -1 -2
思考 做了这三个图像你发现了
K,b跟图像的关系吗?复旦大学
SUCCESS
THANK YOU
2020/1/2
复旦大学
结论
(2)图像的左右平移与k,b无关,只与自 变量x有关系,向左移动x的值增加,向右移 动x的值减小。
1.将直线y=5x向 上 平移 7 个单位长度得 到直线y=5x+7.
2.将直线y=-7x向左平移2个单位,可得到 新的函数关系式为 y=-7x-14
3.将直线y=3x+3向 下 平移 5 个单位长度
得到直线y=3x-2.
4.已知直线y=(2m-1)x+m与直线y=x-2
平行,且与直线y= x+2n-3 交 y 轴于同一 点,则m= _1___, n=__2_.
直线的平移
y y=2x+3
例 在同一坐标系内作出下列函数 y=2x, y=2x+3,y=2x-2的图象。
y=2x
5
y=2x (0,0)(1,2)
4
3
y=2x+3(0,3)(-1.5,0) 2
1
y=2x -2(0,-2)(1,0) -2 -1 0
-1
y=2x-2
1 23 x
k相等ቤተ መጻሕፍቲ ባይዱ
两条直线平行
-2
-3
SUCCESS
THANK YOU
2020/1/2
复旦大学
4)k1= k2
b1=
b 2
两直线平行 两直线重合
画出直线y=-x与y=-x+6,并观察他们的 位置关系
y=-x
y y=-x+6 6 4 2
-6 -4 -2 o 2 4 6 x -2
通过观察发现:位 -4 置是平行的,倾斜 度一样
直线y=-x通过怎样的移动y=-x+6
向上平移6个单位 y y=-x+6 6 y=-x 4 2
• 5.把直线y=2x+5向右平移3个单位 长度后,其解析式_______,移动 后与x轴的交点坐标为_______。
• 6.把直线y=-x--3向右平移4个单位 长度后,其解析式______,移动后 与x轴的交点坐标为________。
付出定有回报,努力就有收获。 来到翰林我们共同建立学习目标,请相信……
3
2
y=2x-2
移3 个单位长度得到的.
1
3.直线y=2x-2与y轴 -3 -2 -1 0 1 2 3 x
交于点 (0,-2) 它是由直线y=2x向下 平
-1 -2 -3
移 2 个单位长度得到的. -4
-5
y y=2x+3
7
直线y=kx+b可以看作 直线y=kx向上(或向下)
6
5 4
y=2x
平移 |b| 个单位长度得到
小结
本节课的主要内容有:
(1)一次函数中两直线平行k相等 (2)一次函数上下平移遵循:上加下减 (3)一次函数左右平移遵循:左加右减
1. ⑴直线y=-2x向上平移3个单位后的解析式
是
;直线y=2x+1向下平移2个单位后
的解析式是 ____________
2.直线y=-2x向左平移2个单位后的解析式是
y=-x+6 y
6 4 2
y=2x+6
-6 -4 -2 o
24 6
x
-2
-4
两条直线相交于Y轴上一点 K1≠K2 b1=b2
注:两条直线的位置关系:y = k1 x+ b1
y= k2 x+ b2
1) k1k2
两直线相交
2) K1≠K2 b1=b2
两直线相交于Y轴上一点
3) k1= k2 b1 b2