初中数学知识点精讲精析 二次根式知识讲解

合集下载

九年级数学二次根式的概念、二次根式的乘除法知识精讲

九年级数学二次根式的概念、二次根式的乘除法知识精讲

初三数学二次根式的概念、二次根式的乘除法【本讲主要内容】二次根式的概念、二次根式的乘除法 1. 二次根式的概念 2. 二次根式的性质 3. 二次根式的乘法 4. 二次根式的除法【知识掌握】【知识点精析】一. 二次根式的概念:1. 定义:式子a a ()≥0叫做二次根式.注意:(1)根式定义中的a ≥0是定义的一个重要组成部分,不可省略;因为负数没有平方根,所以当a <0时,a 没有意义.如-2不是二次根式,()-22是二次根式,当a ≤0时,-a 是二次根式.(2)被开方数a 可以是数,也可以是代数式. 2. 最简二次根式(1)最简二次根式的定义:①被开方数是整数,因式是整式;②被开方数中不含能开得尽方的数或因式. (2)化二次根式为最简二次根式的方法:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简. ②如果被开方数是整数或整式,先将它分解因数或因式,然后把它开得尽方的因数或因式开出来.“一分”即利用分解因数或分解因式的方法把被开方数(或式)的分子、分母都化成质因数(或质因式)的幂的积的形式.“二移”即把能开得尽方的因数(或因式)用它的算术平方根代替移到根号外,其中把根号内的分母中的因式移到根号外时,要注意写在分母的位置上. “三化”即化去被开方数的分母.二. 二次根式的性质:1. 非负性:a a ()≥0是一个非负数.注意:此性质可作公式记住,后面根式运算中经常用到. 2. ()()a a a 20=≥.注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全平方的形式:a a a =≥()()203. a a a a a a 200==≥-<⎧⎨⎩||()()注意:(1)字母不一定是正数.(2)能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3)可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.4. 公式a a a a a a 200==≥-<⎧⎨⎩||()()与()()a a a 20=≥的区别与联系(1)a 2表示求一个数的平方的算术根,a 的X 围是一切实数. (2)()a 2表示一个数的算术平方根的平方,a 的X 围是非负数. (3)a 2和()a 2的运算结果都是非负的.三. 二次根式的乘法ab a b a b =⋅≥≥()00,积的算术平方根,等于积中各因式的算术平方根的积.注意:(1)a b ≥≥00,是公式成立的必要重要条件.如()()-⨯-≠-⋅-4949 (2)公式中的a b ,可以是数,也可以是代数式,但必须是非负的.四. 二次根式的除法1.a baba b =≥>(,)00 商的算术平方根等于被除式的算术平方根除以除式的算术平方根. 2. 分母有理化(1)把分母中的根号化去,叫做分母有理化.(2)分母有理化的依据是分式的基本性质,关键是分子、分母同乘以一个式子,使它与分母相乘得整式. (3)有理化因式两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式.常用的互为有理化因式有如下几种类型: ①a a 与;②a b a b +-与; ③a b a b +-与; ④a b c d a b c d +-与. (4)分母有理化时分母要先化简.【解题方法指导】例1. x 为何值时下列式子有意义? (1)21x + (2)-+15x (3)x x+-13 分析:要使二次根式有意义,被开方数必须是非负数. 解:(1)根据二次根式定义,得21012x x +≥∴≥-(2)根据二次根式定义,得-+≥∴+<∴<-1505005x x x ()分母不能为 (3)根据二次根式定义,得x x+-≥130 ∴+≥->⎧⎨⎩x x 1030或x x +≤-<⎧⎨⎩1030∴≥-<⎧⎨⎩x x 13或x x ≤->⎧⎨⎩13(空集)∴-≤<13x例2. 计算: (1)()62;(2)()352;(3)()82-a 解:(1)()662=(2)()()35359545222=⨯=⨯= (3)()882-=-a a点评:此例体现了公式()a a 2=的应用.对于(3)题()82-a ,其运算是先开平方、再乘二次方,所以题目本身已隐含了80-≥a .例3. 计算: (1)44176⨯;(2)-⨯⨯-4259169() (3)23483415⨯;(4)162436a a ⨯;(1)解法一:原式=⨯⨯=⨯=⋅=⨯=44444442442442882222 解法二:原式=⨯⨯⨯=⨯⨯=⨯⨯=11411161142114288222(2)解:原式=⨯⨯=⨯⨯425916925313222() =⋅⋅=253131303222()点评:运算时,(1)被开方数的积不要计算成一个结果,应是化简成幂的积的形式,以便于开方、化简;(2)被开方数的负因子要计算成正因子,才能用公式.(3)23483415⨯=⨯⨯=⨯⨯⨯=⨯⨯=2334481512163351243565 (4)162436163246a a a a ⨯=⨯⋅=⨯⨯=⨯⨯=12646126262a a a .例4. 化简. (1)19681;(2)27424c a b ;(3)385a ;(4)12a b a b ->()解法一:(1)原式==19681149(2)原式==⨯=27493232324222c a bc ab ab c ()解法二:(1)原式==()1491492 (2)原式=⋅=()323323222ab c ab c(3)原式=⋅⋅=a a a a 42321646注意:化去分母时,被开方数的分子、分母只要同乘2即可,若同乘8就太繁了. (4)原式=⨯--=--43232()()()a b a b a b a b 点评:化去被开方数的分母时,不能忘掉分子中开得尽方的因数的化简.例5. 把x yx y --分母有理化.解法一:原式=---=---=-()()()x y x y x y x y x yx yx y 2解法二:原式=--=-()x y x yx y 2(x y -中隐含条件x y ->0,故x y x y -=-()2) 同样,55555101010101022====()(),例6. 化简:1235133552735773+++++++++()()()()分析:联想分式中逆用分式加、减法,得到分子为1而分母也很简单的式子. 解:原式=+++++++++++()()()()()()()()1335133557735773=+++++++=-+-+-+-=11313515717312315375371() 点评:如果要直接化为同分母或先有理化分母,都太繁琐,但是,注意到数学中的公式总是双向的,如果根据题目的结构特点,灵活地逆用公式,在解题时便能左右逢源,得心应手.建议只能从左到右地运用公式而不习惯逆用(即由右到左)或变用公式的同学,对这几个题目多加分析,以求从熟悉、模仿到主动在解题中运用逆向思维的方法.例7. (2001年某某省中考题)填空题: 化简a a b a a ab-+的结果是________.分析:因为分母是含字母的根式,可能使a ab -=0,所以不可将分子、分母同乘以分母的有理化因子.但是,如果注意到分子、分母可以分解为乘积的形式,也许可以解决问题. 解:由所给算式知a b >≥00, ∴原式=-+=+-+=-a a b a a b a a b a b a a b a b ()()()()()【考点突破】【考点指要】二次根式的概念及其运算在中考说明中是C 级知识点,它们常与整式、分式、综合在一起,以选择题、填空题、计算题等题型出现在中考题中,大约占有4—8分左右.解决这类问题需熟练掌握二次根式的概念和运算法则.【典型例题分析】 例1. 选择题: (1)(2006年某某省中考题)函数y x =-1中,自变量的取值X 围是() A. x ≥1 B. x >1 C. x >0 D. x ≠1 (2)(2003年某某市中考题)选择题:如果()x x -=-222,那么x 的取值X 围是()A. x ≤2B. x <0C. x ≥2D. x >2(3)选择题:若a a a a 2211-=-,则a 的取值X 围是() A. a a >≠01且 B. a ≤0 C. a a ≠≠01且D. a <0(4)(1996年某某省中考题)选择题:若ab ≠0,则等式--=-a b b ab 531成立的条件是()A. a b >>00,B. a b ><00,C. a b <>00,D. a b <<00,分析:正确运用二次根式性质的前提是被开方数的非负性(在分母上则不能为零). 解:(1)要使x -1有意义,x -≥10,∴≥x 1 答案:选A .(2)等式()x x -=-222成立的条件是x -≥20,即x ≥2 故选C .(3)由a a aa 2211-=-,得 ||()a a a a 111-=- 即-⋅-=-||a a a a 1111于是,-=||a a1∴<a 0.故选D .(4)等式--=-a b bab 531变形为--=-1133||b ab b ab , 这个等式成立的条件是 ->=-⎧⎨⎩ab b b 0||即ab b <<⎧⎨⎩0 ∴><a b 00且故选B .点评:正确运用二次根式性质的前提是掌握公式中被开方式中字母的取值X 围,而且这个X 围必须使每个二次根式都有意义,因本例的问题是找使公式能成立的条件,所以是逆向求字母的取值X 围,这种方法常归结为求不等式组的解的问题.★最简根式 例2. 选择题: (1)(2004年某某市中考题)下列二次根式中,最简二次根式是()A.12B. 8C. y 3D. a 21+ (2)(2002年某某市中考题)下列二次根式中,属于最简二次根式的是()A. 4aB. a 4C. a4D. a 4(3)下列根式中,最简二次根式是()A. 23aB. aa3 C. a b b a D. a a b 423+(4)(2001年某某省中考题)下列二次根式:2xy ,8,ab2,35xy ,x y +,12,其中最简二次根式共有()A. 2个B. 3个C. 4个D. 5个分析:紧扣最简二次根式的条件:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式.解:(1)因为12中含有分母,822232=⋅=⋅和y y y 的被开方数中含开得尽方的因数或因式,它们都不是最简二次根式,只有a 21+满足最简二次根式的条件,故选D . (2)选C . (3)选B .(4)只有2xy x y 和+是最简二次根式,故选A .点评:判断一个二次根式是不是最简二次根式,必须抓住由“两条”刻画的“最简”含义,先看被开方数的因数是不是整数,因式是不是整式,再看被开方数是不是含有能开得尽方的因数或因式,如果“两条”都满足的就是最简二次根式,否则就不是最简二次根式.★对错难辨例3. (2001年某某市中考题)阅读下面的文字后,回答问题.小明和小芳解答题目“先化简下式,再求值:a a a +-+122,其中a =9”时,得到了不同的答案.小明的解答是:原式=+-=+-=a a a a ()()1112;小芳的解答是:原式=+-=+-=-=⨯-=a a a a a ()()1121291172; (1)__________的解答是错误的.(2)错误的解答错在未能正确运用二次根式的性质:________. 答案:(1)小明(2)a a 2=||点评:本例中,小明的错误是同学最容易出现的错误,如a a a a 22=-=-,(),42=±,等等.纠正办法是:①明确“a ”表示算术平方根;②明确算术平方根的非负性,即a a ≥≥00(),也就是说a 只能是正数或0,而不可能是负数;③在化简a 2时,应利用公式a a 2=||过渡,稍作停留,冷静下来,看清算术根的实质,再去掉绝对值符号(需分类讨论时再分类写出答案),即可确保万无一失.★隐含条件例4. (1)(2002年市顺义区中考题)把二次根式a a-1化简,正确的结果是() A. -aB. --aC. -aD. a(2)(2001年某某省中考题)化简二次根式a a a -+12的结果是() A. --a 1B. ---a 1C. a -1D. --a 1分析:紧紧抓住:对于a ,只有当a ≥0时,a 才表示a 的算术平方根. 解:(1)显然a ≠0,由->10a,得a <0 ∴-=-=⋅-=⋅-=--=--a a a a a a a aa a a a a a a 122||故选B .点评:①因为二次根式a 隐含条件“a ≥0”,所以本题隐含了一个条件->10a②a a a a ||()()=>-<⎧⎨⎩1010(2)显然a ≠0.由a a aa 2201010>-+≥-+≥,,得() ∴≤-∴=-+=⋅-+=⋅-+a aa a a a a a a a 111122原式()()()|| =---=---aa a a 11 故选B . 点评:在化简二次根式a 2的问题中,要把根式的性质a a 2=||与绝对值||a 的概念结合起来,形成一条“等式链”:a a a a a a 200==≥-<⎧⎨⎩||(),()在具体解题时,强调在这个“等式链”的中间一环——||a 处“暂停”,以便由||a 再考虑a 的符号,以保证最后结果为非负数. ★对错难辨例5. (1)(2002年某某省中考题)选择题:化简132+.甲、乙两位同学的解法如下:甲:13232323232+=-+-=-()()乙:132323232323232+=-+=+-+=-()()对于甲、乙两位同学的解法,正确的判断是()A. 甲、乙的解法都正确B. 甲正确、乙不正确C. 甲、乙的解法都不正确D. 甲不正确、乙正确(2)选择题:有理化分母:x yx y-+小聪和小明的解法如下:小聪的解法:原式=--+-()()()()x y x y x y x y=---=-()()x y x y x yx y小明的解法:原式=-+()()x y x y22=+-+=-()()x y x y x yx y对于小聪、小明的解法,正确的判断是()A. 小聪、小明的解法都正确B. 小聪正确、小明不正确C. 小聪、小明的解法都不正确D. 小聪不正确、小明正确分析:在作二次根式的除法时,通常把除法写成分数的形式,所得的商应是分母中不含根号的式子.如果分母中含有根号,就要把分母中的根号化去.至于怎么“化去”分母中的根号,既可以采用根式的除法运算,也可以在分子、分母上同乘以分母的有理化因式,只要能使分母变成有理式(但分母的值不能为零!) 解:(1)甲的解法是在分子、分母上同乘以分母()32+的有理化因式()32-,使分母变成了有理式1,所得的商是分母中不含根式的式子.所以,甲的解法正确.乙的解法是把分子1变成()32-后分解变形,变成()()3232+-,利用二次根式的除法运算(实际上是“约分”),也把分母变成了有理式1,所得的商也是分母中不含根式的式子,所以,乙的解法也正确. 故选A .(2)首先注意题目的隐含条件:由已知的算式可知,应该有x >0且y >0.但是,x y 、之间的大小关系,在已知算式中没有特别地表明,所以,x y 、之间的关系应该有:x y x y ≠=或.由此可见,小聪的解法不正确.错误的原因是:如果x y =,那么x y -=0,分子、分母就不能同乘以分母()x y +的有理化因式()x y -.小明的解法是正确的.因为他把分子x y -分解变形:由x y x y x y x y x y >>-=-=+-0022,,得()()()(),然后应用根式的除法运算使分母中的根号化去,符合分母有理化的标准,而且在这个过程中,保持分母不为零.所以,小明的解法正确. 故选D . 点评:本题表现的是分母有理化的两种基本方法以及应该注意的地方.在作二次根式的除法时,特别是除式的两个根式的和的情形,如本例两个小题那样,为了化简或计算上避免作除数是近似小数的除法运算,要使所得的商是分母中不含根式的式子,就要化去分母中的根号(这个过程就是分母有理化),基本方法一是分子、分母同乘以分母的有理化因式,使分母变为有理式;二是通过分子的分解变形约去分母中的根号.这是代数中的基本功,一定要熟练掌握.当然,由于所给式子结构形式的其他特点,也可以采用其他的办法进行分母有理化.★化简求值例6. (1)(2002年某某省某某市中考题)当x =-21时,求x x x x x x x +-++⋅-++13114322的值. 分析:先化简,再代入求值.解:x x x x x x x +-++⋅-++13114322 =+-++⋅+-++=+--+=+x x x x x x x x x x x x x 131111311111()()()()∴当x =-21时原式=-+==12111222(2)(2002年某某市中考题)填空题:已知x =+21,则代数式:x x x x x x x x -+--÷--++121221222的值等于______. 解:原式=-+--⋅++--x x x x x x x x 121212222 =-+-+-⋅++-=-+-=+-x x x x x x x x x x x x x 1211112111112()()()()()∴当x =+21时原式=+++-=+=+211211212212()(3)(2001年某某省某某市中考题)已知a =+123,求a a a a a a a2226221--+--+-的值. 分析:“目标”中有a a 221-+,化简时应由已知推知a -1的正负.解:由a =+=-<123231,得a -<10∴原式=+-+---()()()()a a a a a a 232112=----=-+--=+-a a a a a a a a a a31131113||()()a =-∴=-++-=23232331,原式点评:本题因化简()a -12需要将123+进行分母有理化,得到a =-<231,一方面解决了a -<10,从而()()a a -=--112,使原式顺利化简,另一方面又在最后求值计算a a +1时正好用上了,再注意到由已知即得123a=+,使计算合理、正确、迅速.这个题目设计巧妙,考查了有理式变形(因式分解、约分)和根式变形(化简()a -12、分母有理化),以及计算的灵活性、合理性,是一个多功能的好题.【综合测试】一. 选择题:1. (某某市)下列二次根式中,最简二次根式是() A. 22xB. b 21+C. 4aD.1x2. (某某省)在下列式子中,正确的是() A. -=-5533 B. -=-3606.. C. ()-=-13132D. 366=± 3. (市某某区)化简1231-的结果为()A. 231+B. 231-C.23111- D. 23111+ 4. (某某市)下列二次根式中,属于最简二次根式的是()A. 4aB. a 4C. a4 D. a 45. (某某市)化简132-的结果是()A. 32-B. 32+C. --32D. -+326. (某某市)下列二次根式中,属于最简二次根式的是()A. x2B. 8C. x 2D. x 21+7. (某某回族自治区)已知a =+132,b =-32,那么a 与b 的关系为()A. a b =B. a b +=0C. ab =1D. ab =-18. (某某市)-a 3化简的结果为()A. -a aB. a a -C. --a aD. a a 9. 在根式2823512xy ab xy x y ,,,,,+中,最简二次根式的个数是() A. 2B. 3C. 4D. 510. (2001某某)能使等式xx xx -=-22成立的x 取值X 围是()A. x ≠2B. x ≥0C. x >2D. x ≥2二. 填空题:1. (某某省)若x <5,则()x -=52_______.2. (某某市)若14<<x ,则化简()()x x -+-4122的结果是________.3. (某某市)计算⋅---+)3223(1313()3223+=_________.4. (某某市)已知x =-152,则x x -1的值等于_______. 5. (某某省)已知,实数a b ,在数轴上对应点的位置如图所示,化简:b b a --=()2_______.a 0 b6. (某某市)已知x ≤1,化简124422-+--+=x x x x _______.三. 当x 是何实数时,下列各式分别为二次根式? (1)21x +;(2)-52x ; (3)1-||x ;(4)x x 244-+四. 化简:1. ()()()x x x ---<<810810222. ()()x y x yx y ---<13. a ab ab b ab a b 2240+⋅+⋅<<()4. ()()m n mnm mn n n m 222220--+>>5. |()|||()x x x x --+-<22112五. 求代数式的值:1. (某某市)先化简,再求值:()1112+÷-x x x,其中x =22. (市东城区)已知a b =-=+152152,,求b a ab ++2的值. 3. (某某省)先化简,再求值:()()()2121212a a a +-+-,其中a =-512六. (某某市)化简352+,甲、乙两同学的解法如下:甲:3523525252+=-+-()()()=-52;乙:352525252+=+-+()()=-52对于他们的解法,正确的判断是() A. 甲、乙的解法都正确B. 甲的解法正确,乙的解法不正确C. 乙的解法正确,甲的解法不正确D. 甲、乙的解法都不正确七. 把代数式()x y x y---1根号外的因式移到根号内,并化简.某同学这样解:原式=---=--=-()()x y x yx y y x 2问:他做得对吗?如果不对,就指出错误的原因,并写出正确的解法.八. 已知a b =51,是a 的小数部分,求a b21-的值.【综合测式答案】一. 1. B 2. A 3. D 4. C5. B6. D7. B8. C9. A10. C二. 1. 5-x 2. 33. 34-4. 45. a6. -1三.解:(1)要使21x +为二次根式,必须210x +≥,即x ≥-12∴当x ≥-12时,21x +为二次根式. (2)要使-52x 为二次根式,必须-≥502x ,即x 20≤,而x 2是非负的,得x =0.∴当x =0时,-52x 为二次根式.(3)要使1-||x 为二次根式,必须10-≥||x ,得||x ≤1,即-≤≤11x .∴当-≤≤11x 时,1-||x 为二次根式.(4)要使x x 244-+为二次根式,必须04x 4x 2≥+-,而x x x 22442-+=-(),不论x 取何实数,()x -22是非负的,即()x -≥202.∴x 取任意实数时,x x 244-+都为二次根式.说明:通过本例我们应进一步明确a a ()≥0的意义.不是对任意的实数a a ,都有意义,只有当a 有意义时,它才叫做二次根式.四. 1. 原式=---=---=--+=-||||()x x x x x x x 810810810218 2. 原式=-----=--()()()x y x y x y y x3. 原式=++⋅=+=+()()()|()|a ab ab b ab a b a b ab a b 22222442=-+=--22222ab a b a b ab ()4. 原式=+--=-+()()(()m n m n n m)mn m n mn5. 原式=--+-=-++-=|()()|||x x x x x x 2212220五. 1. 原式=+⋅+-=-x x x x x x 11111()() 当x =2时,原式=-=+121212. a =-=+15252,b =+=-15252原式=+=++-+-==()()()()()a b ab 2225252525225120 3. 原式=++--4414122a a a ())1a 2(22a 41a 41a 4a 422+=+=+-++= 当a =-512时,原式52)115(2=+-=六. A七. 解:他做得不对.错误的原因是他没有考虑到原式成立的隐含条件是-->10x y,即x y -<0.因为把根号外的代数式移到根号内时,实际上是在逆用“等式链”a a a a a a 200==≥-<⎧⎨⎩||()()也就是说,应先考虑移到根号内的代数式的正、负,注意只能把正因式平方后移到根号内.正确的解法:由所给代数式知-->10x y,故x y -<0.∴原式=---()y x y x1=---=--()y x y x y x 2说明:如果你不能看出某同学解法的问题,就可以把具体的数代入算算看,例如取x y ==37,(思考:为什么不取x y ==73,呢?)那么,一方面,由题目的原式=---=-=-()371374142;另一方面,由这位同学解得的结果得原式=-=734=2.由此可见,这位同学做错了.八. 解:由495164<<,得7518<< ∴a 的小数部分b =-517 ∴-=--=-+-a b 2151215175125175149 272751251-=+-=。

初二数学经典讲义 二次根式(基础)知识讲解

初二数学经典讲义 二次根式(基础)知识讲解

《二次根式》全章复习与巩固--知识讲解(基础)【学习目标】1、理解并掌握二次根式、最简二次根式、同类二次根式的定义和性质.2、熟练掌握二次根式的加、减、乘、除运算,会用它们进行有关实数的四则运算.3、了解代数式的概念,进一步体会代数式在表示数量关系方面的作用. 【知识网络】【要点梳理】要点一、二次根式的相关概念和性质 1. 二次根式形如(0)a a ≥的式子叫做二次根式,如13,,0.02,02等式子,都叫做二次根式. 要点诠释:二次根式a 有意义的条件是0a ≥,即只有被开方数0a ≥时,式子a 才是二次根式,a 才有意义. 2.二次根式的性质 (1); (2);(3).要点诠释:(1) 一个非负数a 可以写成它的算术平方根的平方的形式,即a 2a =(0a ≥),如2221122););)33x x ===(0x ≥). (2)2a a 的取值范围可以是任意实数,即不论a 2a .(3a ,再根据绝对值的意义来进行化简.(42的异同a可以取任何实数,而2中的a 必须取非负数;a,2=a (0a ≥).相同点:被开方数都是非负数,当a2.3. 最简二次根式(1)被开方数是整数或整式;(2)被开方数中不含能开方的因数或因式.满足上述两个条件的二次根式,叫做最简二次根式.次根式.要点诠释:最简二次根式有两个要求:(1)被开方数不含分母;(2)被开方数中每个因式的指数都小于根指数2. 4.同类二次根式几个二次根式化成最简二次根式后,被开方数相同,这几个二次根式就叫同类二次根式. 要点诠释:判断是否是同类二次根式,一定要化简到最简二次根式后,看被开方数是否相同,再判断.显然是同类二次根式. 要点二、二次根式的运算 1. 乘除法(1)乘除法法则: 类型 法则逆用法则二次根式的乘法0,0)a b =≥≥积的算术平方根化简公式:0,0)a b =≥≥二次根式的除法0,0)a b ≥>商的算术平方根化简公式:0,0)a b =≥>要点诠释:(1)当二次根式的前面有系数时,可类比单项式与单项式相乘(或相除)的法则,如= (2)被开方数a 、b 一定是非负数(在分母上时只能为正数).≠. 2.加减法将二次根式化为最简二次根式后,将同类二次根式的系数相加减,被开方数和根指数不变,即合并同类二次根式. 要点诠释:二次根式相加减时,要先将各个二次根式化成最简二次根式,再找出同类二次根式,最后合并同类二次根式.如23252(135)22+-=+-=-. 【典型例题】类型一、二次根式的概念与性质1. 当________时,二次根式3x -在实数范围内有意义. 【答案】x ≥3.【解析】根据二次根式的性质,必须3x -≥0才有意义.【总结升华】本例考查了二次根式成立的条件,要牢记,只有0a ≥时a 才是二次根式. 举一反三【高清课堂:二次根式 高清ID 号:388065 关联的位置名称:填空题5】 【变式】①242x x =-成立的条件是 . ②2233x x x x--=--成立的条件是 . 【答案】① x ≤0;(2422x x x x ==-∴≤0.)② 2≤3x <.(20,30,x x -->∴≥2≤3x <)2.当0≤x <1时,化简21x x +-的结果是__________.【答案】 1.【解析】因为x ≥0,所以2x =x ;又因为x <1,即x -1<0,所以1(1)1x x x -=--=-,所以21x x +-=x +1-x =1.【总结升华】利用二次根式的性质化简二次根式,即2a =a ,同时联系绝对值的意义正确解答. 举一反三【变式】已知0a <,化简二次根式3a b -的正确结果是( ).A.a ab --B. a ab -C. a abD.a ab -【答案】A.3.下列二次根式中属于最简二次根式的是( ).1448ab44a +【答案】A.【解析】选项B :48=43;选项C :有分母;选项D :44a +=21a +,所以选A. 【总结升华】本题考查了最简二次根式的定义.最简二次根式要满足:(1)被开方数是整数或是整式;(2)被开方数中不含能开方的因式或因数. 类型二、二次根式的运算4.下列计算错误的是( ).A. 14772⨯=B. 60523÷=C. 9258a a a +=D. 3223-= 【答案】 D.【解析】选项A : 14714727772⨯=⨯=⨯⨯= 故正确;选项B :605605123423÷=÷==⨯=,故正确;选项C925358a a a a a +=+=故正确;选项D :32222-= 故错误.【总结升华】本题主要考查了二次根式的加减乘除运算,属于基础性考题. 举一反三 【变式】计算:48(54453)833-+⨯ 【答案】243610-.5.化简20102011(32)(32)⋅. 【答案与解析】201020102010=(32)32)(32)(32)32)32)132)3 2.⋅⋅⎡⎤=⋅⋅⎣⎦=⋅=原式【总结升华】本题的求解用到了积的乘方的性质,乘法运算律,平方差公式及根式的性质,是一道综合运算题型.6 已知2231,12x x x x=-+求.【答案与解析】2231,1=30,(1)1313331=3x x x xx x x =+∴->∴=--++==原式当时,原式【总结升华】 化简求值时要注意x 的取值范围,如果未确定要注意分类讨论. 举一反三【高清课堂:二次根式 高清ID 号:388065关联的位置名称:计算技巧6-7】 【变式】已知a b +=-3, ab =1,求ab b a +的值. 【答案】∵a b +=-3,ab =1,∴<0a ,<0b11+==-(+)=-=3--ab ab a bb a b a ab∴+原式.。

初中数学二次根式知识点

初中数学二次根式知识点

初中数学二次根式知识点一、二次根式的定义和性质1.二次根式的定义:如果a是一个非负实数且x≥0,那么关于a的二次根式定义为√x=a,记作√x=a。

-a称为二次根式的系数,x称为二次根式的被开方数。

-当x=0时,√0=0。

-当a=0时,√x=0。

2.二次根式的运算规则:-加减法:当二次根式的被开方数相同时,只需对二次根式的系数进行加减运算,然后再带上相同的被开方数,例如√3+√3=2√3 -乘法:二次根式的乘法运算可以将系数相乘,被开方数相乘,即(√a)*(√b)=√(a*b)。

-除法:二次根式的除法运算可以将系数相除,被开方数相除,即(√a)/(√b)=√(a/b),其中b≠0。

-简化:可以将二次根式进行简化,即将被开方数中的平方数提取出来,并在二次根式的系数前面加上被提取的平方数的根号。

3.二次根式的混合运算规则:-当二次根式与整数进行加减乘除运算时,可以将整数看作是系数为1的二次根式。

-当二次根式与整数进行乘法运算时,可以将整数乘到二次根式的系数上。

-当二次根式与整数进行除法运算时,可以将整数看作是系数为1的二次根式,并将被除数除以整数。

二、二次根式的化简和合并1.化简二次根式的方法:-提取平方因子:将被开方数中的平方因子提取出来,并与系数相乘,然后将其平方根与提取的平方因子的平方根相乘。

-有理化分母:对于分母中含有二次根式的分数,可以通过乘以分子分母的共轭形式,将分母化成有理数的形式。

2.合并含有相同根号的二次根式:-必须满足被开方数相同。

-合并时只需对二次根式的系数进行加减运算,然后再带上被开方数。

-例如:√3+2√3=3√3三、二次根式的应用1.二次根式在几何中的应用:-二次根式可以表示长度、面积、体积等物理量。

-例如:对于正方形,如果一边的长度为a,那么它的面积S=a^2,对应的二次根式为√(a^2)=a。

2.二次根式在方程求根中的应用:-当方程的解为二次根式时,可以通过对方程进行变形和整理,从而得到方程的根。

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

二次根式知识点精华(完整版 汤涛)

二次根式知识点精华(完整版 汤涛)

a n b p c mnp abc 2ab +b 2 =(a b) 2
(3)两个平方公式依然适用 A 平方差公式 a 2 -b 2 =(a b )(a b ) B 完全平方公式 a 2
2、除法法则:
a b
a ( a 0, b 0) ; b
正用:两个算术平方根的商,等于它们被开方数的算术平方根 逆用:商的算术平方根,等于各因数算术平方根的商 注意: (1)若被开方数是带分数或小数,应先化成假分数;若积中含有完全平方数,一定要移到根号外。
一、二次根式的定义和性质 1.二次根式的定义:式子
a ( a ≥0)叫做二次根式。判定式子是否是二次根式根指数是 2 被开方数(式)非负数
单个二次根式 a 有意义: a 0 多个二次根式 a + b + + n有意义: a 0, b 0 n 0 b 2.二次根式有意义的条件: 二次根式作分式的分母 有意义: a 0 a 二次根式与分式之和 a + 1 有意义: a 0, b 0 b
( a - b)的有理化因式是( a + b),( a + b)的有理化因式是( a - b)
1 1 a a 类 型 1: = = a a a a
三种类型: 类 型 2:
1 1 ( a + b) = a - b ( a - b) ( a + b) 1 1 ( a -b) a -b = = 2 a + b ( a + b) ( a -b) a-b
a +n a +p a (m +n +p) a
二、二次根式的乘除
1、乘法法则:
ab = a · b (a≥0,b≥0);

有关初三数学知识点大全之二次根式讲解

有关初三数学知识点大全之二次根式讲解

有关初三数学知识点大全之二次根式讲解第1篇:有关初三数学知识点大全之二次根式讲解1.二次根式:一般地,式子叫做二次根式.注意:(1)若这个条件不成立,则不是二次根式;(2)是一个重要的非负数,即;0.2.重要公式:(1),(2)3.积的算术平方根:积的算术平方根等于积中各因式的算术平方根的积;4.二次根式的乘法法则:.5.二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6.商的算术平方根:,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7.二次根式的除法法则:(1);(2);(3)分母有理化的方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8.最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式,①被开方数的因数是整数,因式是整式,②被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数未完,继续阅读 >第2篇:初三数学二次根式的乘除法知识点二次根式的乘除法运算:1.乘法规定:(a≥0,b≥0)二次根式相乘,把被开方数相乘,根指数不变。

推广:(1)(a≥0,b≥0,c≥0)(2)(b≥0,d≥0)2.乘法逆用:(a≥0,b≥0)积的算术平方根等于积中各因式的算术平方根的积。

注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;3.除法规定:(a≥0,b>0)二次根式相处,把被开方数相除,根指数不变。

推广:,其中a≥0,b>0,。

二次根式知识点

二次根式知识点

二次根式知识点二次根式在数学中是一个十分重要的概念,涉及到数学中的代数、方程、函数等多个知识领域。

本文将介绍二次根式的定义、性质、运算法则以及实际问题中的应用,并且通过实例帮助读者更好地理解和应用二次根式。

一、二次根式的定义在数学中,二次根式是指形如$\\sqrt{a}$的表达式,其中a是一个实数且$a\\geq0$。

该表达式表示的是一个非负实数,使得它的平方等于a,即$(\\sqrt{a})^2 = a$。

二、二次根式的性质1.二次根式的值一定是非负实数,即$\\sqrt{a} \\geq 0$。

2.如果$a \\geq 0$且$b \\geq 0$,则$\\sqrt{a} \\cdot \\sqrt{b} =\\sqrt{ab}$。

3.如果$a \\geq 0$且$b \\geq 0$,则$\\sqrt{a} + \\sqrt{b}$不一定等于$\\sqrt{a+b}$。

三、二次根式的运算法则1.加减法:二次根式只有在被加减数相同时才能相加或相减,即$\\sqrt{a} \\pm \\sqrt{a} = 2\\sqrt{a}$。

2.乘法:二次根式的乘法可按照分配律进行展开,即$(\\sqrt{a} \\pm\\sqrt{b})(\\sqrt{a} \\pm \\sqrt{b}) = a + 2\\sqrt{ab} + b$。

3.除法:二次根式的除法需要进行有理化处理,即将分母中的二次根式消去。

四、二次根式的应用二次根式常常在实际问题中得到应用,比如在几何中计算斜边长、梯形面积等问题中经常会出现。

下面通过一个实际问题来展示二次根式的应用:例题:一个正方形的对角线长为$\\sqrt{2}$米,求正方形的边长。

解答:设正方形的边长为x米,则根据勾股定理可得:x2+x2=2。

化简得到2x2=2,解方程得x=1。

因此,正方形的边长为1米。

结语通过本文的介绍,相信读者对二次根式有了更深入的了解。

二次根式作为数学中的一个基础知识点,在代数、几何、概率等各个领域都有着重要的应用价值。

八年级数学二次根式基础知识点详解

八年级数学二次根式基础知识点详解

二次根式是数学中的一种特殊形式的根式表达方式,通常是指在根号下的表达式中含有一个变量的平方。

二次根式在数学中非常重要,涉及到数学中许多的基本概念和应用。

下面将详细介绍八年级数学中与二次根式有关的基础知识点。

一、二次根式的定义二次根式是形如√a的表达式,其中a可以是一个正实数,也可以是一个变量的平方。

当a是正实数时,√a表示使x²=a的非负实数x。

例如,√4=2,√9=3当a是变量的平方时,√a表示使x²=a的非负实数x的情况。

例如,√x²=x,√(x+1)²=x+1二、二次根式的化简与提取1.化简二次根式当二次根式内没有可以约分的因子时,可以使用下列公式进行化简:√(a×b)=√a×√b√(a/b)=√a/√b例如,√12可以化简为√4×√3,其中√4=2,因此√12=2√32.提取二次根式当二次根式内有可以提取的因子时,可以使用下列公式进行提取:√(a×a×b)=a√b√(a×a×a×b)=a²√b例如,√(16×5)可以提取为4√5三、二次根式的运算1.二次根式的加减运算当两个二次根式的根号内的表达式一样时,可以进行加减运算。

例如,√5+√5=2√5,√3-√3=0。

2.二次根式的乘法运算两个二次根式相乘时,将根号内的表达式相乘,并进行化简。

例如,√2×√3=√(2×3)=√63.二次根式的除法运算两个二次根式相除时,将根号内的表达式相除,并进行化简。

例如,√8/√2=√(8/2)=√4=2四、二次根式的应用1.二次根式的几何意义二次根式可以用来表示几何中的长度、面积等概念。

例如,一个边长为a的正方形的对角线长度可以表示为√2×a。

2.二次根式的解方程二次根式可以用来解决一些方程问题。

例如,方程x²+3x+2=0的解可以表示为√1和√23.二次根式的化简与提取在一些运算或应用问题中,需要对二次根式进行化简或提取,以便得到更简洁的表达式或结果。

初中数学二次根式经典讲解

初中数学二次根式经典讲解

初中数学二次根式经典讲解一、知识要点概述1、二次根式:式子叫做二次根式.2、最简二次根式:满足下列两个条件的二次根式叫做最简二次根式.(1)被开方数的因数是整数,因式是整式.(2)被开方数中不含能开得尽方的因数或因式.3、同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫同类二次根式.4、二次根式的主要性质5、二次根式的运算(1)因式的外移和内移如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外;如果被开方数是多项式的形式,那么先分解因式,变形为积的形式,再移因式到根号外.反之,也可以将根号外的正因式平方后移到根号里面去.(2)有理化因式与分母有理化两个含有二次根式的代数式相乘,若它们的积不含二次根式,则称这两个代数式互为有理化因式,将分母中的根号化去,叫做分母有理化.(3)二次根式的加减法:先把二次根式化成最简二次根式,再合并同类二次根式.(4)二次根式的乘除法二次根式相乘(除),将被开方数相乘(除)所得的积(商)仍作积(商)的被开方数,并将运算结果化为最简二次根式.(5)有理数的加法交换律、结合律;乘法交换律、结合律、乘法对加法的分配律,以及多项式的乘法公式,都适用于二次根式的运算.二、典例剖析分析:因一个等式中含有两个未知量,初看似乎条件不足,仔细观察两被开方数互为相反数,不妨从二次根式定义入手.例3、已知xy>0,化简二次根式的正确结果是()A.B.-C.D.-分析:解题的关键是首先确定被开方式中字母的符号,既可以化简被开方式,又可把根号外的因式移入根号内.说明:运用二次根式性质解题时,既要注意每一性质成立的条件,又要学会性质的“正用”与“逆用”特别地字母因式由根号内(外)移到根号(外)内时必须考虑字母因式隐含的符号.例6、已知,求a+b+c的值.分析:已知条件是一个含三个未知量的等式,三个未知量,一个等式怎样才能确定未知量的值呢?考虑从配方的角度试一试.点评:应用非负数概念和性质是初中代数解题的常用方法之一,|a|,a2n,是三种重要的非负数表现形式.判断一个数是否为非负数,最关键的是看它能否通过配方得到完全平方式,如:在解多变元二次根式,复合二次根式等问题时,常用到配方法,如化简二次函数的图象与性质主讲:童丽丹知识要点概述1、二次函数的定义:如果y=ax2+bx+c(a、b、c为常数,a≠0),那么y叫x的二次函数.2、二次函数的图象:二次函数y=ax2+bx+c的图象是一条抛物线.3、二次函数的解析式有下列三种形式:(1)一般式:y=ax2+bx+c(a≠0);(2)顶点式:y=a(x-h)2+k(a≠0);(3)交点式:y=a(x-x1)(x-x2) (a≠0),这里x1,x2是抛物线与x轴两个交点的横坐标.确定二次函数的解析式一般要三个独立条件,灵活地选用不同方法求出二次函数的解析式是解与二次函数相关问题的关键.4、抛物线y=ax2+bx+c中系数a、b、c的几何意义抛物线y=ax2+bx+c的对称轴是,顶点坐标是,其中a的符号决定抛物线的开口方向.a>0,抛物线开口向上,a<0,抛物线开口向下;a,b同号时,对称轴在y轴的左边;a,b异号时,对称轴在y轴的右边;c确定抛物线与y轴的交点(0,c)在x轴上方还是下方.5、抛物线顶点式y=a(x-h)2+k(a≠0)的特点(1)a>0,开口向上;a<0,开口向下;(2)x=h为抛物线对称轴;(3)顶点坐标为(h,k).依顶点式,可以很快地求出二次函数的最值.当a>0时,函数在x=h处取最小值y=k;当a<0时,函数在x=h处取最大值y=k.6、抛物线y=a(x-h)2+k与y=ax2的联系与区别抛物线y=a(x-h)2+k与y=ax2的形状相同,位置不同.前者是后者通过“平移”而得到.要想弄清抛物线的平移情况,首先将解析式化为顶点式.7、抛物线y=ax2+bx+c与x轴的两个交点为A、B,且方程ax2+bx+c=0的两根为x1,x2,则有A(x1,0),B(x2,0).典型剖析例1、已知二次函数y=ax2+bx+c的图象如图所示.下列结论:①a+b+c<0;②a-b+c>0;③abc>0;④b=2a.其中正确结论的个数是()A.4B.3C.2D.1解:选A.令x=1及由图象知a+b+c<0,①正确;令x=-1及由图象a-b+c>0,②正确;由对称轴知,④正确;由④知a、b同号且抛物线与y轴的交点在x轴上方,即c>0,故③正确.所以选A.例2、二次函数y=x2+(a-b)x+b的图象如图所示.那么化简的结果是____________.解:原式=-1.∵图象与y轴交点在x轴上方,∴b>0.又∵图象的对称轴在y轴右边且二次项系数为1,一次项系数为a-b,例3、已知抛物线y=x2-(2m+4)x+m2-10与x轴交于A、B两点,C是抛物线的顶点.(1)用配方法求顶点C的坐标(用含m的代数式表示);(2)若AB的长为,求抛物线的解析式.解:(1)∵y=x2-(2m+4)x+m2-10=[x-(m+2)] 2-4m-14,∴顶点C的坐标为(m+2,-4m-14).(2)∵A、B是抛物线y=x2-(2m+4)x+m2-10与x轴的交点且|AB|=,化简整理得:16m=-48,∴m=-3.当m=-3时,抛物线y=x2+2x-1与x轴有交点且AB=,符合题意.故所求抛物线的解析式为y=x2+2x-1.例4、如果抛物线y=-x2+2(m-1)x+m+1与x轴交于A、B两点,且A点在x轴的正半轴上,B点在x轴的负半轴上,OA的长是a,OB的长是b.(1)求m的取值范围;(2)若a︰b=3︰1,求m的值,并写出此时抛物线的解析式.解:(1)设A、B两点的坐标分别为(x1,0),(x2,0).∵A、B分处原点两侧,∴x1x2<0,即-(m+1)<0,得m>-1.又∵△=[2(m-1)]2-4×(-1)(m+1)=4m2-4m+8=4(m-)2+7>0,∴m>-1为m的取值范围.(2)∵a︰b=3︰1.设a=3k,b=k(k>0),则x1=3k,x2=-k.例5、已知某二次函数,当x=1时有最大值-6,且其图象经过点(2,-8).求此二次函数的解析式.解:∵二次函数当x=1时有最大值-6,∴抛物线的顶点为(1,-6),故设所求的二次函数解析式为y=a(x-1)2-6.由题意将点(2,-8)的坐标代入上式得:a(2-1)2-6=-8,∴a=-2,∴二次函数的解析式为y=-2(x-1)2-6,即y=-2x2+4x-8.例6、二次函数y=ax2+bx+c的图象的一部分如图所示.已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1).(1)请判断实数a的取值范围,并说明理由;(2)设此二次函数的图象与x轴的另一个交点为C.当△AMC的面积为△ABC面积的倍时,求a的值.解:(1)由图象可知:a<0,图象过点(0,1),∴c=1.图象过点(1,0),∴a+b+c=0,∴b=-(a+c)=-(a+1).由题意知,当x=-1时,应有y>0,∴a-b+c>0,∴a+(a+1)+1>0,∴a>-1,∴实数a的取值范围是-1<a<0.(2)此时函数为y=ax2-(a+1)x+1,与x轴两交点A、C之间的距离为例7、根据下列条件,求抛物线的解析式.(1)经过点(0,-1),(1,),(-2,-5);(2)经过点(-3,2),顶点是(-2,3);(3)与x轴两交点(-1,0)和(2,0)且过点(3,-6).分析:求解析式应用待定系数法,根据不同的条件,选用不同形式求二次函数的解析式,可使解题简捷.但应注意,最后的函数式均应化为一般形式y=ax2+bx+c.解:(1)设y=ax2+bx+c,把(0,-1),(1,),(-2,-5)代入得方程组∴解析式为y=+x-1.(2)设y=a(x+2)2+3,把(-3,2)代入得2=a(-3+2)2+3,解得a=-1.解析式为y=-x2-4x-1.(3)设y=a(x+1)(x-2),把(3,-6)代入得-6=a(3+1)(3-2),解得.∴解析式为y=(x+1)(x-2),即.函数的应用主讲:童丽丹一、知识要点概述命题趋势分析:函数是初中数学的重点,也是难点,更是中考命题的热点.由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力和较好的区分度,因此每年中考试卷中都要出现与函数有关的题目,而且多以压轴题出现.1、函数与方程的综合主要是二次函数与一元二次方程、一次函数与二元一次方程组的综合较多,常涉及到一元二次方程的解法、根与系数关系以及根的判别式;方程组的解法,有时也涉及到分式方程的解法,关键是把函数的问题转化为方程(组)的问题,但是,仅含方程与函数的综合题型不多,而是与面积、存在性、开放性、探索性等问题糅合在一起的命题较多.2、函数与图形的面积综合题,通常出现在压轴题中的某一小题中占3—5分,主要类型有:已知函数的解析式,求有关三角形、四边形和不规则的多边形面积,其中以求三角形、四边形的面积为主;已知图形的面积,求函数关系式或某些特殊点的坐标,还有求面积关于某个变量的函数关系式等,函数与图形面积问题是中考中热门问题,题型常考常新,体现了数形结合的思想、转化的思想、分类讨论思想等.3、函数与几何的综合题几乎每份中考试卷都有函数与几何的综合题,是因为函数题目体现了数与形的结合,体现了代数知识与几何知识的灵活运用,它能考查许多知识点,考查学生的分析问题、综合运用知识解决问题的能力,函数与几何的综合,主要包括一次函数、二次函数与三角形、四边形与圆的综合、涉及全等三角形、直角三角形、直角三角形与圆的有关知识,一般有3—4个小题,占分约12—16分,是一类很热门的题目,常有存在性、开放性与分类讨论的题目.二、典型例题剖析例1、已知抛物线与x轴交于A(x1,0),B(x2,0)(x1<x2)两点与y轴交于C点,O为坐标原点.(1)求m的取值范围;(2)若且OA+OB=3OC,求抛物线的解析式.分析:一元二次方程与二次函数的关系是:抛物线y=ax2+bx +c(a≠0)与x轴交点的横坐标x1,x2是一元二次方程ax2+bx +c=0(a≠0)的两根,从而可利用根的判别式及根与系数的关系来解二次函数与x轴相交的有关问题.另外OA=|x1|,OB=|x2|体现了数形结合.解:(1)∵抛物线与x有两个不同的交点,∴方程有两个不相等的实数根,∴(2)∵A(x1,0),B(x2,0)是抛物线与x轴的两个交点,∴x1,x2是方程的两个不等实根,∴x1+x2=-24mx1x2=8(18m2-m),∴x1+x2<0x1x2>0∴x1与x2同负∵C点的坐标为C(0,18m2-m),∴OC=|18m2-m|=18m2-m又∵OA+OB=3OC∴-x1-x2=3(18m2-m)即-(-24m)=3(18m2-m)点评:抛物线与x轴有两个交点,就可以转化为一元二次方程的△>0,要根据x1+x2与x1·x2的符号来确定x1与x2的符号,从而得|x1|与|x2|去绝对值后的值.求出m有两个值后,要及时地检验,舍去不合题意的m值,这些都是在解函数与方程有关综合题时应注意的地方,也是易错点.例2、某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订一个,订购的全部零件的出厂单价就降低0.02元.但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51元?(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P与x的函数表达式.(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000元,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)解:(1)设每个零件的实际出厂价恰好降为51元时,一次订购量为x个,则因此当一次订购量为550个时,每个零件的实际出厂价恰好为51元.(2)当0≤x≤100时,P=60.当100<x<550时,当x≥550时,P=51.(3)设销售商一次订购量为x个时,工厂获利为W元.当x=550时,W=6000 ;当x=1000时,W=11000.因此,当销售商一次订购500个零件时,该厂获利6000元,若订购1000个,利润是11000元.例3、已知二次函数y=x2+bx+c与x轴交于A(x1,0),B(x2,0)两点,其顶点坐标为,AB=|x1-x2|,若S△APB=1,则b与c的关系式是()A.b2-4c+1=0B.b2-4c-1=0C.b2-4c+4=0D.b2-4c-4=0例4、如图,抛物线与x轴交于A、B两点,与y轴交于点Q(0,2),顶点P在第一象限且S△ABP=2S△ABQ.若R(-1,-4)在抛物线上,求抛物线的解析式.分析:设一般式y=ax2+bx+c由S△ABP=2S△ABQ可知P点的纵坐标为4,根据顶点坐标公式,得到一个方程,再把Q、R两点坐标代入一般式中,又得到两个方程,由这三个方程组成一个方程组,可求出a、b、c的值.例5、《中华人民共和国个人所得税》规定,公民月工资、薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表计算:全月应纳税所得额税率不超过500元的部分5%(纳税款=应纳税所得额×对应的税率) 按此规定解答下列问题:(1)设甲的月工资、薪金所得为x元(1300<x<2800)需缴交的所得税款为y元,试写出y与x的函数关系式.(2)若乙一月份应交所得税款95元,那么他一月份的工资、薪金是多少元?分析:本题是用列表法表示的分段函数型应用题,解题的关键是理解税率表,要将超800元部分分段,每段对应不同的税率,应交税款是每段税款之和.解:(1)因为甲的月工资、薪金所得x元,而1300<x<2800.∴500<x-800<2000,所交税款由两部分组成.500元按税率5%交税,另一部分(x-800-500)元,按10%交税,故y与x之间的函数关系式为y=500×5%+(x-800-500)×10%=(x-1300)×10%+25(2)根据第(1)小题中,当收入在1300元至2800元之间时,纳税在500×5%=25元至500×5%+(2800-800-500)×10%=175(元)之间,由于乙职工纳税95元,知他的工资、薪金肯定在1300元至2800元之间,适用(1)的函数关系式:∴95=(x-1300)×10%+25解得x=2000.例6、如图,一次函数的图象与x轴、y轴分别交于点A、B,以线段AB为边在第一象限内作等边△ABC.(1)求△ABC的面积;(2)如果在第二象限内有一点,试用含a的式子表示四边形ABPO的面积,并求出当△ABP的面积与△ABC的面积相等时a的值.(3)在x轴上,是否存在点M,使△MAB为等腰三角形?若存在,请直接写出点M的坐标,若不存在,请说明理由.(3)因为△ABM为等腰三角形,分类讨论:1°以AB为底边的等腰△ABM,则AB的中垂线与x轴的交点为M,可求出M1的坐标为2°,以AB为腰的等腰△ABM,以B为圆心,AB为半径画弧交x轴于点M2,可求出其坐标为;以A为圆心,AB为半径画弧交x轴于点M3,M4可求其坐标为故满足条件的点M有4个,三角形主讲:童丽丹一、知识要点概述1、定义:由不在同一直线上的三条线段顺次首尾相接而成的封闭图形叫三角形.2、三角形的分类(1)按边分(2)按角分3、三角形的一些重要性质(1)边与边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边;(2)角与角的关系:三角形内角之和等于180°,一个外角大于任何一个和它不相邻的内角且等于和它不相邻的两内角之和;4、等腰三角形的性质(1)等腰三角形的两个底角相等,反之,如果一个三角形有两个角相等,那么这两个角所对的边也相等(等边对等角、等角对等边);(2)等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称:等腰三角形三线合一).5、等边三角形的性质等边三角形的三边都相等,三个角都相等,每一个角都等于60°.6、等边三角形的判定(1)三条边都相等的三角形是等边三角形;(2)三个角都相等的三角形是等边三角形;(3)有一个角是60°的等腰三角形是等边三角形.7、直角三角形的性质(1)直角三角形的两锐角互余;(2)直角三角形中30°角所对的直角边等于斜边长的一半;(3)直角三角形中,斜边上的中线等于斜边长的一半;(4)直角三角形中,两直角边的平方和等于斜边的平方.8、直角三角形的判定(1)有一个角是直角的三角形是直角三角形;(2)有一边的中线等于这边的一半的三角形是直角三角形;(3)若一个三角形中,有两边的平方和等于第三边的平方,则第三边所对角是直角.9、全等三角形的定义能够完全重合的两个三角形叫做全等三角形.10、全等三角形的性质(1)全等三角形的对应角相等、对应线段(边、高、中线、角平分线)相等;(2)全等三角形的周长相等、面积相等.11、全等三角形的判定(1)有两边和它们的夹角对应相等的两个三角形全等(简称“SAS”);(2)有两角和它们的夹边对应相等的两个三角形全等(简称“ASA”);(3)有两角和其中一角的对边对应相等的两个三角形全等(简称“AAS”);(4)有三边对应相等的两个三角形全等(简称“SSS”);(5)有斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”).二、典例例题剖析例1、若一个三角形的三条边长均满足方程x2-6x+8=0,则此三角形的周长为__________.解:解方程x2-6x+8=0得x1=2,x2=4.由题设的条件,三角形的三边长无外乎四种组合:2,2,2;4,4,4;2,2,4;2,4,4.其中2+2=4,说明以2,2,4为边不能构成三角形,其他三组均符合三角形的形成条件.因此,所求三角形的周长为6或10或12.例2、如图,△ABC中,D、E分别是AC、AB上的点,BD 与CE交于点O.给出下列四个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.(1)上述四个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出所有情形);(2)选择第(1)小题中的一种情形,说明△ABC是等腰三角形.分析:本题主要考查等腰三角形的判定和性质定理.这道题设计新颖,第(1)题是一道条件探索题,也是一道分类讨论题.第(2)题与第(1)题衔接十分紧密,很有创意.这种题型是中考热点题型,应引起重视.解:(1)依据等腰三角形的判定方法可知:满足①③,①④,②③,②④可判定△ABC是等腰三角形.(2)选择①④.已知:∠EBO=∠DCO,OB=OC,求证:△ABC是等腰三角形.证明:∵OB=OC,∴∠OBC=∠OCB.又∵∠EBO=∠DCO,∴∠EOB+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AC=AB,∴△ABC是等腰三角形.例3、已知等腰三角形一腰上的中线将三角形的周长分成9cm和15cm两部分.求这个三角形腰长和底边长.解:如图,可设AB=AC=x,底边BC=y.又BD是中线,则AD=DC=.因为BD将△ABC的周长分成AB+AD和BC+CD两部分为9和15,由于未指明哪一部分是9,哪一部分是15,因此,有如下两种情况:(1)解得x=6,y=12,不满足三角形的三边关系,舍去.(2)解得x=10,y=4,满足三角形的三边关系.故这个三角形腰长为10cm,底边长是4cm.点评:方程思想是一种很重要的数学思想,解题时要注意重视,在解答本例时要注意两点:一是要注意分类讨论;二是求出解之后要检验(即所有解是否满足三角形三边之间的关系定理).例4、已知,如图在Rt△ABC中,AB=AC,∠A=90°,D为BC上任一点,DF⊥AB于F,DE⊥AC于E,M为BC的中点.试判断△MEF是什么形状的三角形,并证明你的结论.分析:这是一道探究型试题,首选可大胆地猜想一个△MEF是Rt△,即要证明∠FME=90°,注意到M是BC的中点,可连结AM,利用“直角三角形斜边上的中线等于斜边的一半”求证.解:△MEF是等腰直角三角形.证明:连接AM.∵AB=AC,∠BAC=90°,M点是BC的中点,∴AM==BM,且AM⊥BC于点M,∠MAB=∠MAC=∠BAC=45°.又∵DE⊥AC,DF⊥AB,AB⊥AC,∴DE//AB,DF//AC.而∠BAC=90°,∴四边形DFAE是矩形,∴DF=AE.∵DF⊥BF,∠B=45°,∴∠BDF=45°=∠B,∴BF=FD,∴AE=BF,∴△AEM≌△BFM(SAS),∴EM=FM,∠AME=∠BMF.∵∠BMF+∠AMF=90°,∴∠AME+∠AMF=90°,即∠EMF=90°,从而证明△EMF 是Rt△.又MF=EM,故△EMF是等腰直角三角形.例5、如图,在△ABC中,AC=BC,∠ACB=90°,D是AC 上一点,AE⊥BD交BD延长线于点E,且AE=.求证:BD是∠ABC的平分线.分析:AE边上的高与∠ABC的平分线重合,联想到等腰三角形.通过作辅助线构造全等三角形、等腰三角形.证明:延长BC、AE交于F点.∵AC⊥BC于点C,AE⊥BD于E,∴∠AED=90°,∠ACF=∠ACB=90°,∴∠1+∠3=90°,∠2+∠4=90°.又∠3=∠4,∴∠1=∠2.又∵AC=CB,∴△ACF≌△BCD(ASA),∴AF=BD=2AE,则AE=EF.又∵∠AEB=∠BEF=90°,BE=BE,∴△ABE≌△FBE(SAS),∴∠ABE=∠FBE,即BD是∠ABC的平分线.例6、如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.证明:在AC上截取AM=AE,连结FM.∴,∴,∴.又,∴.又.∴,又FC=FC ,.∴,∴CD=CM,∴AC=AE+CD.例7、如图,已知O是等边△ABC内的一点,∠AOB、∠BOC、∠AOC的角度之比为6︰5︰4.求在以OA、OB、OC为边的三角形中,此三边所对的角度之比.解:以点A为中心将△AOB逆时针旋转60°得到△AO′C,则△AO′C≌△AOB,∴O′C=OB.连接O′O,则△AOO′为等边三角形.∴OO′=OA,故△OO′C为以OA、OB、OC为边组成的三角形.因为∠AOB︰∠BOC︰∠AOC=6︰5︰4,∠AOB+∠BOC+∠AOC=360°,∴∠AOB=144°,∠BOC=120°,∠AOC=96°,∴∠AO′C=∠AOB=144°,∴∠OO′C=∠AO′C-∠AO′O=144°-60°=84°,∠O′OC=∠AOC-∠AOO′=96°-60°=36°,∴∠OCO′=180°-∠OO′C-∠O′OC=180°-84°-36°=60°.故以OA、OB、OC为边组成的三角形中,其三边所对的角度比为60°︰36°︰84°=5︰3︰7.。

2024年中考重点之二次根式的基本概念与性质

2024年中考重点之二次根式的基本概念与性质

2024年中考重点之二次根式的基本概念与性质二次根式,也称为平方根,是数学中一种重要的概念。

在2024年中考中,二次根式将是一个重点考点。

本文将对二次根式的基本概念和性质进行详细的阐述,帮助同学们更好地理解和掌握这个知识点。

一、基本概念1. 什么是二次根式二次根式指的是形如√a的表达式,其中a是一个非负实数。

√a表示求a的平方根。

当a≥0时,二次根式有唯一的实数解;当a<0时,二次根式没有实数解。

例如,√9=3,√16=4,√(-1)在实数范围内没有解。

2. 平方根的运算性质(1)非负实数的平方根是唯一的。

即对于非负实数a和b,当a=b²(b≥0)时,b是a的平方根。

(2)若a≥0,b≥0,则√(ab)=√a × √b。

(3)若a≥0,b≥0,则√(a/b)=√a / √b(b≠0)。

(4)若a≥0,b≥0,则√a ± √b不能再进行有理化简。

二、性质和定理1. 二次根式的大小关系对于非负实数a和b,有以下性质:(1)若a<b,则√a<√b。

(2)若a>0,则√a>0。

(3)若a<0,则√a不存在。

2. 二次根式的化简(1)约分与有理化分母当二次根式的被开方数含有平方数因子时,可以进行有理化分母的操作。

例如,√(12)=√(4×3)=√4 × √3=2√3。

(2)分解因式当二次根式的被开方数可以分解成平方数的乘积时,可以进行分解因式的操作。

例如,√(16×25)=√(4²×5²)=4×5=20。

3. 基本运算法则(1)加减法两个二次根式相加或相减时,要求被开方数和指数相同。

例如,√3 + √3 = 2√3,√5 - √2 = √5 - √2。

(2)乘法两个二次根式相乘时,可以利用二次根式的乘法法则进行计算。

例如,√3 × √5 = √(3×5) = √15。

初中数学知识归纳二次根式与二次方程

初中数学知识归纳二次根式与二次方程

初中数学知识归纳二次根式与二次方程初中数学知识归纳——二次根式与二次方程数学作为一门基础学科,对于初中生来说是一项重要而具有挑战性的学科。

在初中数学的学习过程中,二次根式与二次方程是一个重要的内容,对于学生来说需要具备扎实的基本知识和一定的数学思维能力。

本文将对初中数学中的二次根式与二次方程进行归纳总结,以帮助学生更好地理解和掌握这一部分知识。

一、二次根式二次根式是由一个含有平方根的有理数构成的表达式,其中重要的概念包括简化、合并同类项和有理化等。

1. 简化简化二次根式是指将根号内的表达式化简为最简形式。

常见的简化方法包括提取公因式和化简根号下的分数等。

例如:√8可以简化为√(4×2),进一步简化为2√2。

2. 合并同类项合并同类项是指将同类项进行合并后的结果。

在二次根式中,合并同类项就是将具有相同根号内的表达式进行合并。

例如:3√2 + 2√2可以合并为5√2。

3. 有理化有理化是指将含有根号的分母有理化为整数的操作。

在二次根式中,有理化通常需要用到分式的乘法公式。

例如:1/√2可以有理化为√2/2。

二、二次方程二次方程是一个以未知数的二次次数为最高次数的方程。

在初中数学中,二次方程的解法可以通过因式分解、配方法和公式法等不同的途径。

1. 因式分解法因式分解法是将二次方程进行因式分解,然后令每个因子等于零,再求出方程的解。

例如:x^2 - 5x + 6 = 0可以因式分解为(x - 2)(x - 3) = 0,解得x = 2或x = 3。

2. 配方法配方法是通过变形将二次方程变为平方的差或和,然后求得方程的解。

例如:x^2 + 4x + 4 = 0可以配方为(x + 2)^2 = 0,解得x = -2。

3. 公式法公式法是通过二次方程求根公式来求解方程。

二次方程的求根公式为x = (-b ± √(b^2 - 4ac))/(2a)。

例如:x^2 + 6x + 5 = 0可以直接代入公式求解。

二次根式知识点讲义

二次根式知识点讲义

第一章 二次根式知识点一: 二次根式的概念 知识点二:取值范围:二次根式()的双重非负性PS;单项式和多项式统称整式。

单项式:由数字与字母或字母与字母的相乘组成的代数式叫做单项式(单独的一个数字或字母也是单项式)形如()的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

例1下列各式13)-其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x知识点三:与的异同点1、不同点:与表示的意义是不同的,表示一个正数a 的算术平方根的平方,而表示一个实数a 的平方的算术平方根;在中,而中a 可以是正实数,0,负实数。

但与都是非负数,即,。

因而它的运算的结果是有差别的,,而2、相同:当被开方数是非负数,即时,=;时,无意义,而.例3、(1)-2)3(; (2)2)32(; (3) 2)(b a + (a+b ≥0)知识点四 .最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

例4、(1__ __;(2=___ __;(3=____;(40,0)x y≥≥=___ _;(5)_______420=-。

例5、在根式1) ,最简二次根式是()A.1) 2) B.3) 4) C.1) 3) D.1) 4)知识点五.二次根式的运算:PS把多项式中同类项合成一项,叫做合并同类项1同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式底数幂相乘,底数不变,指数相加。

即:a m﹒a n=a m+n。

幂的乘方,底数不变,指数相乘。

(a m)n =a m n积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。

二次根式的知识点总结

二次根式的知识点总结

二次根式的知识点总结二次根式的知识点总结知识点一:二次根式的概念形如a(a0)的式子叫做二次根式。

注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a0是a 为二次根式的前提条件,如5,(x2+1),(x-1) (x1)等是二次根式,而(-2),(-x2-7)等都不是二次根式。

知识点二:取值范围1. 二次根式有意义的条件:由二次根式的意义可知,当a0时a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

2. 二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,a没有意义。

知识点三:二次根式a(a0)的非负性a(a0)表示a的算术平方根,也就是说,a(a0)是一个非负数,即0(a0)。

注:因为二次根式a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a0)的算术平方根是非负数,即0(a0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。

这个性质在解答题目时应用较多,如若a+b=0,则a=0,b=0;若a+|b|=0,则a=0,b=0;若a+b2=0,则a=0,b=0。

知识点四:二次根式(a) 的性质(a)2=a(a0)文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

注:二次根式的.性质公式(a)2=a(a0)是逆用平方根的定义得出的结论。

上面的公式也可以反过来应用:若a0,则a=(a)2,如:2=(2)2,1/2=(1/2)2.知识点五:二次根式的性质a2=|a|文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

注:1、化简a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即a2=|a|=a (a若a是负数,则等于a 的相反数-a,即a2=|a|=-a (a﹤0);2、a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义;3、化简a2时,先将它化成|a|,再根据绝对值的意义来进行化简。

二次根式主要知识点

二次根式主要知识点

二次根式主要知识点二次根式是一个重要的数学概念,主要涉及到一些基本定义、性质和运算法则。

以下是关于二次根式的主要知识点的详细解释:1.二次根式的定义:对于非负实数a,它的二次根式表示为√a。

如果a是一个非负实数的平方,则√a是一个实数。

否则,√a是一个虚数。

2.二次根式的符号:一般情况下,√a表示正根式。

我们通常将正根式表示为√a=b,其中b≥0。

负根式表示为-√a=-b,其中b≥0,它们之间的关系是:-√a=√a*(-1)。

3.二次根式的基本性质:a)正根式的值总是非负实数。

b)负根式的值总是负实数或者是虚数。

c)对于任何非负实数a和b,如果a=b,则√a=√b。

d)对于任何非负实数a,(√a)^2=a。

4.二次根式的化简:当二次根式的被开方数有一个因子是一些完全平方数时,可以将其化简。

例如,√16=√(4*4)=45.二次根式的加减法:a)当两个二次根式的被开方数相同时,可以进行加减法。

例如,√5+√5=2√5b)当两个二次根式的被开方数不同时,无法进行加减法。

6.二次根式的乘法:对于任何非负实数a和b,有√(a*b)=√a*√b。

例如,√2*√3=√67.二次根式的除法:对于任何非负实数a和b,有√(a/b)=√a/√b。

例如,√6/√2=√38.混合根式:混合根式是指含有不同次方的根式。

例如,√(2+√3)。

对于混合根式,通常需要根据具体情况进行化简或者进行运算。

9.二次根式的大小比较:对于任何非负实数a和b,如果a>b,则√a>√b。

例如,√2>√110.二次根式的应用:二次根式在数学和物理等领域有广泛的应用。

例如,在几何学中,二次根式可以表示长度、面积和体积等量;在物理学中,二次根式可以表示速度、加速度和力等物理量。

总结起来,二次根式是数学中的一个重要概念,它涉及到一些基本定义、性质和运算法则,如根式的符号、基本性质、化简、加减法、乘除法、大小比较和应用等。

掌握这些知识点,有助于我们更好地理解和运用二次根式。

二次根式知识点归纳及题型总结-精华版

二次根式知识点归纳及题型总结-精华版
一、知识框图
二次根式知识点归纳和题型归类
二、知识要点梳理 知识点一、二次根式的主要性质:
1.
; 2.
4. 积的算术平方根的性质:
; 3.
; ;
5. 商的算术平方根的性质:
.
6.若
,则
.
知识点二、二次根式的运算 1.二次根式的乘除运算
(1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号. (2) 注意每一步运算的算理;
1.估算 31-2 的值在哪两个数之间( )A.1~2 B.2~3
C. 3~4
D.4~5
2.若 3 的整数部分是 a,小数部分是 b,则 3a b
3.已知 9+ 13与9 13 的小数部分分别是 a 和 b,求 ab-3a+4b+8 的值
4.若 a,b 为有理数,且 8 + 18 + 1 =a+b 2 ,则 b a =
.
8
六.二次根式的比较大小(1) 1 200和2 3 5
(2)-5 6和 6 5
(3) 17 15和 15 13
(4)设 a= 3 2 , b 2 3 , c 5 2 , 则( )A. a b c B. a c b C. c b a D. b c a
1.下列各式中一定是二次根式的是(
)。 A、 3 ; B、 x ; C、 x2 1 ; D、 x 1
2.x 取何值时,下列各式在实数范围内有意义。
(1)
(2) 1 (3) 5 x (6)
2x 1
x4
(7)若 x(x 1) x x 1 ,则 x 的取值范围是

. (8)若 x 3 x 3 ,则 x 的取值范围是 x 1 x 1

二次根式知识点点梳理一

二次根式知识点点梳理一

二次根式知识点点梳理一二次根式(一)一、知识点梳理1.二次根式有关概念:二次根式是指形如a√b(a≥0)的式子。

注:(1)二次根式的识别:①被开方数b≥0;②根指数是2.2)二次根式的实质是求一个非负数(式)的算术平方根;3)二次根式有意义的条件是被开方数b大于等于零。

2.二次根式的性质:a。

如果a≥0,则√a×√a=a;反之,如果a≥0,则a=√a×√a。

b。

如果a≥0,b>0,则√a÷√b=√(a÷b);反之,如果a≥0,b>0,则√(a÷b)=√a÷√b。

4.二次根式性质及运算律:1)a×b=√(ab)(a≥0,b≥0),反之√(ab)=a×b(a≥0,b≥0)2)a+b=√(a²+2ab+b²)(a≥0,b≥0),反之√(a²+2ab+b²)=a+b(a≥0,b≥0)5.最简二次根式:1)被开方数中的因数是整数,因式是整式;2)被开方数中不含有能开得尽方的因数或因式;3)分母不能含根号。

6.二次根式的化简步骤:1)一分:分解因数(因式)、平方数(式);2)二移:根据算术平方根的概念,把根号内的平方数或者平方式移到根号外面;3)三化:化去被开方数中的分母。

二、典例分析与反馈训练例1:下列各式中哪些是二次根式?哪些不是?为什么?①15 ②3a ③︱x-100︱④a²+b²⑤-a²-1 ⑥-144 ⑦a²-2a+1对应练:下列各式中一定是二次根式的是()A.-7 B.32m C.x²+1 D.3例2:如果1/(1-x)是二次根式,则x的取值范围是什么?(二次根式有意义的条件的考察)对应练:确定二次根式中被开方数所含字母的取值范围1)使式子x-4有意义的条件是x≥4.2)当时,x+2+1-2x有意义,即x≤1.3)若- m+1/(m+1)有意义,则m的取值范围是m>-1.4)当x<1/3时,-1/(1-3x)是二次根式。

二次根式的运算基础知识讲解

二次根式的运算基础知识讲解

二次根式的运算(基础)知识讲解【学习目标】1、理解并掌握二次根式的加减法法则,会合并同类二次根式,进行简单的二次根式加减运算;2、掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的乘除运算;3、会利用运算律和运算法则进行二次根式的混合运算.【要点梳理】要点一、二次根式的加减二次根式的加减实质就是合并同类二次根式,即先把各个二次根式化成最简二次根式,再把其中的同类二次根式进行合并.对于没有合并的二次根式,仍要写到结果中.要点诠释:(1)在进行二次根式的加减运算时,整式加减运算中的交换律、结合律及去括号、添括号法则仍然适用.(2)二次根式加减运算的步骤:1)将每个二次根式都化简成为最简二次根式;2)判断哪些二次根式是同类二次根式,把同类的二次根式结合为一组;要点二、二次根式的乘法及积的算术平方根1.乘法法则:(a≥0,b≥0),即两个二次根式相乘,根指数不变,只把被开方数相乘.要点诠释:(1).在运用二次根式的乘法法则进行运算时,一定要注意:公式中a、b都必须是非负数;(在本章中,如果没有特别说明,所有字母都表示非负数).(2).该法则可以推广到多个二次根式相乘的运算:≥0,≥0,…..≥0).(3).若二次根式相乘的结果能写成的形式,则应化简,如.2.积的算术平方根:(a≥0,b≥0),即积的算术平方根等于积中各因式的算术平方根的积.要点诠释:(1)在这个性质中,a、b可以是数,也可以是代数式,无论是数,还是代数式,都必须满足a≥0,b≥0,才能用此式进行计算或化简,如果不满足这个条件,等式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分解因数,把含有形式的a移到根号外面.要点三、二次根式的除法及商的算术平方根1.除法法则:(a≥0,b>0),即两个二次根式相除,根指数不变,把被开方数相除.。

要点诠释:(1)在进行二次根式的除法运算时,对于公式中被开方数a、b的取值范围应特别注意,a≥0,b>0,因为b在分母上,故b不能为0.(2)运用二次根式的除法法则,可将分母中的根号去掉,二次根式的运算结果要尽量化简,最后结果中分母不能带根号.2.商的算术平方根的性质:(a≥0,b>0),即商的算术平方根等于被除式的算术平方根除以除式的算术平方根.要点诠释:运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题.要点四、二次根式的混合运算二次根式的混合运算是对二次根式的乘除及加减运算法则的综合运用.要点诠释:(1)二次根式的混合运算顺序与实数中的运算顺序一样,先乘方,后乘除,最后算加减,有括号要先算括号里面的;(2)在实数运算和整式运算中的运算律和乘法公式在二次根式的运算中仍然适用;(3)二次根式混合运算的结果要写成最简形式.【典型例题】类型一、二次根式的加减运算1.计算: (1).+【答案与解析】(1)+=(2=+=1211(3)32==+-=【总结升华】一定要注意二次根式的加减要做到先化简,再合并. 举一反三:【变式】计算:011(1)()52π--++--【答案】011(1)()52π--++-125352=++--=+-=类型二、二次根式的乘除法2.(1)×; (2)×; (3); (4);【答案与解析】(1)×=; (2)×==; (3)===2; (4)==×2=2.【总结升华】直接利用计算即可.举一反三【变式】各式是否正确,不正确的请予以改正: (1).; (2).×=4××=4×=4=8.【答案】(1).不正确. 改正:==×=2×3=6;(2).不正确. 改正:×=×====4.3.算:(1))4323(4819-÷- (2)21521)74181(2133÷-⨯【答案与解析】(1)2=(9)()3-⨯-原式(2)原式=1328⎛⎫⨯-⨯ ⎪⎝⎭34-. 【总结升华】掌握乘除运算的法则,并能灵活运用.类型三、二次根式的混合运算4.下列各式计算正确的是( )A.+=B. 4﹣3=1C. 2×3=6D.÷=3【答案】D.【解析】解:A.,无法计算,故此选项错误,B.4﹣3=,故此选项错误,C.2×3=6×3=18,故此选项错误,D.=,此选项正确, 故选D .【总结升华】此题主要考查了二次根式的混合运算,熟练掌握二次根式基本运算是解题关键.5、计算: 已知625,625-=+=b a ,则ab =_______,a b +=________.【答案】1;10.【解析】22551a b ab ==-=-=10a b +=【总结升华】数学运算包含着很多技巧性的东西,技巧运用得好计算就很简便而且准确.举一反三:【变式】已知x=1﹣,y=1+,则x 2+y 2﹣xy ﹣2x ﹣2y 的值为 .【答案与解析】 解:∵x=1﹣,y=1+,∴x 2+y 2﹣xy ﹣2x ﹣2y=(x+y )2﹣2(x+y )+1﹣3xy ﹣1=(x+y ﹣1)2﹣3xy ﹣1=1﹣3×(1﹣)(1+)﹣1=1+3﹣1=3.。

二次根式内容解析

二次根式内容解析

二次根式内容解析
二次根式是一种代数式,它必须满足两个要素:一是含有二次根号;二是被开方数必须是非负数,否则无意义。

具体来说,有以下几个关键知识点:
- 二次根式的定义:若一个非负数$a$的平方等于$b$,则$a$叫作$b$的算术平方根,记作$\sqrt{b}$,$a$必须大于等于$0$,$b$可以是具体的数,也可以是代数式。

- 二次根式的性质:$\sqrt{a}(\ge0)$表示$a$的算术平方根,$\sqrt{a}$的结果也是非负的。

在化简二次根式时,字母不一定是正数,当字母本身是负数时,去根号要尤其注意符号。

- 最简二次根式:化简后的二次根式同时满足被开方数中各个因数的指数都为$1$,并且被开方数不含分母,这样的二次根式叫做最简二次根式。

- 同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,那么这几个二次根式叫做同类二次根式。

在学习二次根式时,要注意各个概念的理解和应用,并结合典型例题进行巩固和强化。

二次根式学习要点精析

二次根式学习要点精析

二次根式学习要点精析二次根式是数学中一个重要的概念,也是中学数学中所学的重要内容之一、掌握二次根式的基本概念、性质和运算方法,对于后续的数学学习和高考备考都有着重要的意义。

以下是二次根式学习的要点精析:一、基本概念1.二次根式的定义:二次根式是指形如√a(其中a≥0)的表达式,a称为二次根式的被开方数,√a称为二次根式的根号。

被开方数a必须是非负实数或0。

2.二次根式的基本性质:-任意非负实数a均存在一个唯一的非负实数b使得b的平方等于a,即√a^2=a;-√a的定义域是一切使得a≥0成立的实数,即[0,+∞);-如果a≥0,那么√a≥0。

二、化简与性质1.二次根式的化简方法:- 化简平方根的法则:对于任意非负实数a和b,有√(ab) = √a * √b;-化简二次根式的平方:对于任意非负实数a,有(√a)^2=a;-使用分解质因数的方法化简二次根式。

2.二次根式的性质:-二次根式的值是非负实数,即√a≥0;-二次根式的值是实数,即√a是一个实数;-二次根式与它的被开方数的符号相同,即若a<0,则√a是无意义的。

三、运算方法1.二次根式的加减法:-对于同一根号下的二次根式,可以直接进行加减运算,并且根号下的数保持不变;-对于不同根号下的二次根式,不可以直接进行加减运算,需要先化为相同根号下的二次根式,再进行运算。

2.二次根式的乘法:-对于同一根号下的二次根式,可以直接进行乘法运算,只需将根号下的数相乘即可;-对于不同根号下的二次根式,可以通过化简和因式分解,将其化为同一根号下的二次根式,再进行运算。

3.二次根式的除法:-将被除数和除数都化简为最简形式;-对于同一根号下的二次根式,可以直接进行除法运算,只需将根号下的数相除即可;-对于不同根号下的二次根式,可以通过化简和因式分解,将其化为同一根号下的二次根式,再进行运算。

四、解二次根式的方程1.解二次根式的方程的基本思路:-对二次根式方程两边进行化简和整理,将方程变为形如√a=b的形式;-对方程两边进行平方运算,消去根号,得到等式a=b^2;-对等式两边进行求解,得到方程的解。

初中数学知识点归纳二次根式

初中数学知识点归纳二次根式

初中数学知识点归纳二次根式二次根式是初中数学中的一个重要知识点,它是一个数的平方根,或者可以表示成形如√a的形式,其中a是一个正整数。

在学习二次根式的过程中,我们需要掌握二次根式的化简、计算与运算等基本技巧。

下面我将详细介绍二次根式的相关知识点。

1.二次根式的定义与性质二次根式可以表示成√a的形式,其中a是一个正整数。

二次根式有以下基本性质:(1)√a=b,其中b是一个正数,那么a=b²;(2)√a=b,其中b是一个正数,那么b²=a,即b是a的一个正平方根;(3)0<√a<√b,其中a<b。

2.二次根式的化简化简二次根式是指将一个二次根式以最简形式表达出来。

(1)对于根号中的数,可以找出完全平方数因式,然后求出根号中被平方的数的平方根。

(2)对于根号外的系数,可以利用乘方运算法则进行整理。

3.二次根式的运算二次根式之间的运算包括加法、减法、乘法和除法。

(1)加减法:二次根式的加减法可以转化为同类项相加减的问题,将根号内的数进行化简和整理即可。

(2)乘法:乘法运算可以通过合并同类项、运用公式进行展开、化简来求解。

(3)除法:除法运算需要利用有理化技巧,将二次根式的被除数和除数分别乘以一个适当的有理化因子,使得分子没有根号。

4.二次根式的应用二次根式在初中数学中常常与勾股定理、平方差公式等知识点相结合,应用于解决各种几何问题。

(1)使用二次根式计算直角三角形的边长:根据勾股定理,可以利用二次根式计算直角三角形的边长。

(2)使用二次根式计算面积:利用二次根式可以计算各类面积,如矩形、正方形、圆等。

5.二次根式的估算在实际生活和解题过程中,我们常常需要对二次根式进行估算。

可以利用四舍五入和近似计算的方法对二次根式进行估算,得到一个较为接近的结果。

以上就是关于初中数学中二次根式的相关知识点的归纳。

通过学习和掌握这些知识,可以更好地理解和运用二次根式,提高数学解题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21·1 二次根式
1. 二次根式的定义
一般地,式子(a ≥0)叫做二次根式,a 叫被开方数,a 可以是数可以是单项式或
多项式,如,,判断一个式子是否为二次根式;要看它是否具备两个特征:
一是根指数是2,二是被开方数为非负数,二者缺一不可. 2.二次根式的性质1
(Ⅰ)文字语言是:非负数的算术平方根是一个非负数.
(Ⅱ)数学语言为:≥0(a ≥0),它的用途非常大,例如:若2+=0,
则a =0,b =0,若+|b|=0,则a =0,b =0,若+b 2=0,则a =0,b =0 思考:当a<0时,有意义吗?当a ≥0时,可能为负数吗?
3.二次根式的性质2
(Ⅰ)文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数. (Ⅱ)数学语言为:()2≥0(a ≥0) (Ⅲ)证明:∵( a ≥0)是a 的算术平方根 ∴()2=a
(Ⅳ)作用()2=3,()2=,()2=x (x ≥0)
反过来:若a ≥0则a =
,如:2=,=()2
4.二次根式的性质3
(Ⅰ)文字语言:一个数的平方的算术平方根等于这个数的绝对值. (Ⅱ)数学符号:
=|a|
(Ⅲ)说明:
①a 的取值范围是任意实数.
②=a 的前提是a ≥0,=-a 的前提是a ≤0 5.()2与的异同点
a 3xy
12+x a a 3
1
b a a a a a a a 33131
x ()2
a ()
2
221
212a 2
a 2
a a 2
a
(Ⅰ)区别:中a 必须取非负数即a ≥0,而
中的a 可以取任何实数.
(Ⅱ)相同点:
当被开方数都是非负数,即a ≥0时,=()2
a<0时,()2无意义而=-a
典型例题
例1. 当a 为实数时下列各式中哪些是二次根式.

,,,,
解:,,,是二次根式.
例2. x 为何实数时,式子在实数范围内有意义?
解:由x -2≥0得x ≥2,当x ≥2时在实数范围内有意义.
例3. 计算:
(1)()2;(2)(3)2;
(3)(-2)2;(4)()2 解:(1)()2=
(2)(3)2=32×()2=9×2=18
(3)(-2)2 =(-2)2×()2=4×=
(4)()2=x 2+y 2
例4. 计算: (1);
(2)

(3)(a<3); (4)(x<)
()2
a 2a 2
a a a 2a 10+a a
2a 12-a 12+a 2)1(-a a
2a 12+a 2)1(-a 2-x 2-x 52
231
22y x +52252
22313131342
2y x +252
)5.1(-2
)
3(-a 2
)32(-x 23
解:(1)==5
(2)=|-1.5|=1.5
(3)
=|a -3|=-(a -3)=3-a (a<3)
(4)=|2x -3|=-(2x -3)=3-2x (x<)
例5. 在实数范围内分解因式:x 2+2x -1
解:x 2+2x -1= x 2+2x +1-2=(x +1)2-2
=(x +1)2-()2=(x +1+)(x +1-)
例6. 在△ABC 中,a 、b 、c 是三角形的三边,化简-2|c -a -b|
解:∵a 、b 、c 是△ABC 的三边 ∴a -b +c>0 c -a -b<0 ∴-2|c -a -b|=|a -b +c|-2|c -a -b|
= a -b +c +2c -2a -2b =3c -a -3b
例7. 已知:a +b =
,a -b =.求()2006的值.
解:∵==
==+
=-
,得
∴()2006
=[
]2006=(-1)2006=+1
例8. 已知:+=10化简+2|x -6|
解:由+=10
25252
)5.1(-2
)3(-a 2
)
32(-x 23
2222
)(c b a +-2
)(c b a +-625+625-14
22--b a 625+22323+⋅+2
2
)2(232)3(+⋅+2
)23(+32625-32∴+=+-=-⎧⎨⎪⎩⎪a b a b 3232a b ==⎧⎨⎪⎩⎪3214
22--b a 1)2(4)3(22--1682++x x 36122+-x x 2)82(+x 1682++x x 36122
+-x x
可得

=10
即|x +4|+|x -6|=10
要|x +4|+|x -6|=10成立,则|x +4|= x +4,|x -6|=6-x 所以x +4≥0,6-x ≥0(或x -6≤0) ∴-4≤x ≤6,∴2x +8≥0,x -6≤0 ∴+2|x -6|=2x +8+2(6-x )=20
例9. 已知:x 为实数,化简+2
解:原式=|x -2|+2|1+x|
①当x ≥2时,x -2≥0,1+x>0 ∴原式=x -2+2+2x =3x
②当-1≤x <2时, x -2<0, 1+x ≥0 ∴原式=2-x +2(x +1)=x +4 ③当x<-1时, x -2<0, 1+x <0 ∴原式=2-x -2(x +1)=-3x
说明:解决此类问题时需确定好讨论的范围,然后按范围去掉绝对值计算出结果.
2
)4(+x 2
)6(-x 2
)82(+x 442
+-x x 2
21x x ++。

相关文档
最新文档