福建师大附中高二数学(理)

合集下载

第04练 计数原理、排列组合、二项式定理-2023年新高考数学一轮复习小题必刷(原卷版)

第04练 计数原理、排列组合、二项式定理-2023年新高考数学一轮复习小题必刷(原卷版)

第04练 计数原理、排列组合、二项式定理1.(2020·呼和浩特开来中学高二期末(理))六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有( )A .192种B .216种C .240种D .288种 2.(2020·广东省高二期末)在()62x +展开式中,二项式系数的最大值为m ,含4x 的系数为n ,则n m=( ) A .3 B .4 C .13 D .143.(2020·青铜峡市高级中学高二期末(理))设2220122(1)...n n n x x a a x a x a x ++=++++,则0a 等于( )A .1B .0C .3D .3n4.(2020·宁夏回族自治区宁夏大学附属中学高二月考(理))3个班分别从5个风景点中选择一处游览,不同的选法有( )A .243B .125C .128D .2645.(2020·洮南市第一中学高二月考(理))求346774C C -的值为( )A .0B .1C .360D .120 6.(2020·洮南市第一中学高二月考(理))522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为 A .10 B .20C .40D .80 7.(2020·山东省高三其他)若62a x x ⎛⎫+ ⎪⎝⎭的展开式中6x 的系数为150,则2a =( ) A .20 B .15 C .10 D .258.(2020·北京高二期末)5(1)a +展开式中的第2项是( )A .35aB .310aC .45aD .410a 9.(2020·北京高二期末)已知有1B ,2B ,⋯,6B 支篮球队举行单循环赛(单循环赛:所有参赛队均能相遇一次),那么比赛的场次数是( )A.15B.18C.24D.3010.(2020·北京高二期末)哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如1257=+,在不超过18的素数2,3,5,7,11,13,17中,随机选取两个不同的数,其和等于18的概率是()A.142B.121C.221D.1711.(2020·江苏省马坝高中高二期中)9件产品中,有4件一等品,3件二等品,2件三等品,现在要从中抽出4件产品,抽出产品中至少有2件一等品的抽法种数为()A.81B.60C.6D.1112.(2020·江西省南昌十中高三其他(理))在6212xx⎛⎫-⎪⎝⎭的展开式中,常数项为__________(用数字作答).13.(2020·北京高二期末)()621x-的展开式中2x的系数为__________(用具体数据作答). 14.(2020·福建省厦门一中高三其他(理))2020年初,湖北面临医务人员不足和医疗物资紧缺等诸多困难,厦门人民心系湖北,志愿者纷纷驰援,若将甲、乙、丙、丁4名医生志愿者分配到A,B 两家医院(每人去一家,每家医院至少安排1人),且甲医生不安排在A医院,则共有__________种分配方案.15.(2020·苏州市第四中学校高二期中)中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢.如果让三位同学选取的礼物都满意,则选法有________种.(用数字作答)16.(2020·上海高二期末)请列举出用0,1,2,3,4这5个数字所组成的无重复数字且比3000大的,且相邻的数字的奇偶性不同的所有四位数奇数,它们分别是______.1.(2020·广东省高三二模(文))在此次抗击新冠肺炎疫情过程中,中医治疗起到了重要作用.中医理论讲究食物相生相克,合理搭配饮食可以增强体质,提高免疫力,但不恰当的搭配也可能引起身体的不适.食物相克是指事物之间存在着相互拮抗、制约的关系,若搭配不当,会引起中毒反应.已知猪肉与菊花,猪肉与百合,螃蟹与茄子相克.现从猪肉、螃蟹、茄子、菊花、百合这五种食物中任意选取两种,则它们相克的概率为()A .13B .23C .310D .7102.(2020·江苏省丰县中学高二期中)将4个不同的文件发往3个不同的邮箱地址,则不同的方法种数为( )A .43B .34C .34AD .34C 3.(2020·黑龙江省哈师大附中高二期末(理))为做好社区新冠疫情防控工作,需将四名志愿者分配到甲、乙、丙三个小区开展工作,每个小区至少分配一名志愿者,则不同的分配方案共有( )种A .36B .48C .60D .164.(2020·浙江省衢州二中高三其他)将含有甲、乙、丙、丁等共8人的浙江援鄂医疗队平均分成两组安排到武汉的A 、B 两所医院,其中要求甲、乙、丙3人中至少有1人在A 医院,且甲、丁不在同一所医院,则满足要求的不同安排方法共有( )A .36种B .32种C .24种D .20种5.(2020·吉林省松原市实验高级中学高三其他(理))某校将5名插班生甲、乙、丙、丁、戊编入3个班级,每班至少1人,则不同的安排方案共有( )A .150种B .120种C .240种D .540种6.(2020·广东省高二期末)广东省实施“3+1+2”的新高考改革模式,“3”指全国统一高考的语文、数学、外语,“1”指物理、历史2门中选择1门,“2”指思想政治、地理、化学、生物4门中选择2门. 已知甲选择物理,乙选择地理,则甲乙两人有( )不同的选择组合方案.A .12种B .18种C .36种D .48种7.(2020·广东省高二期末)东莞近三年连续被评为“新一线城市”,“东莞制造”也在加速转型升级步伐,现有4个项目由东莞市政府安排到2个地区进行建设,每个地区至少有一个项目,其中项目A 和B 不能安排在同一个地区,则不同的安排方式有( )A .4种B .8种C .12 种D .16种8.(2020·河北省衡水中学高三其他(理))在2020年初抗击新冠肺炎疫情期间,某医院派出了3名医生和包括甲、乙、丙在内的6名护士前往武汉参加救治工作.现从这9人中任意抽取1名医生、3名护士组成一个应急小组,则甲、乙、丙这3名护士至少选中2人的概率为( )A .13B .12C .49D .34 9.(2020·四川省绵阳南山中学高三其他(理))()()()2111n x x x ++++++的展开式的各项系数和是( )A .12n +B .121n ++C .121n +-D .122n +-10.(2020·山西省高三其他(理))5(2)(1)x x -+的展开式中,3x 的系数是( )A .32B .40C .32-D .40-11.(2020·黑龙江省大庆一中高三三模(理))已知()512345601234567121x x a x a a x a x a x a x a x a x x -⎛⎫+--=++-++++ ⎪⎝⎭,则4a =( ) A .21 B .42 C .35- D .210-12.(2020·汪清县汪清第六中学高二月考(理))已知(1+ax )·(1+x )5的展开式中x 2的系数为5,则a + A .+4B .+3C .+2D .+113.(2020·汪清县汪清第六中学高二月考(文))不透明的袋中装有8个大小质地相同的小球,其中红色的小球6个,白色的小球2个,从袋中任取2个小球,则取出的2个小球中有1个是白色小球另1个是红色小球的概率为( )A .314B .37C .67D .132814.(2020·江苏省高二期末)为弘扬我国古代的“六艺文化”,某夏令营主办单位计划利用暑期开设“礼”“乐”“射”“御”“书”“数”六门体验课程,每周一门,连续开设六周.则( )A .某学生从中选3门,共有30种选法B .课程“射”“御”排在不相邻两周,共有240种排法C .课程“礼”“书”“数”排在相邻三周,共有144种排法D .课程“乐”不排在第一周,课程“御”不排在最后一周,共有504种排法15.(2020·江苏省扬中高级中学高二期中)某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,下列说法错误的是( )A .若任意选择三门课程,选法总数为37AB .若物理和化学至少选一门,选法总数为1225C CC .若物理和历史不能同时选,选法总数为3175C C -D .若物理和化学至少选一门,且物理和历史不能同时选,选法总数为121255C C C -16.(2020·三亚华侨学校高二开学考试)已知()n a b +的展开式中第5项的二项式系数最大,则n 的值可以为( )A .7B .8C .9D .10 17.(2020·山东省高二期中)若()2345501234512a a x a x a x a x a x x =+++-++,则下列结论中正确的是( )A .01a =B .123452a a a a a ++++=C .50123453a a a a a a -+-+-=D .0123451a a a a a a三、填空题18.(2020·呼和浩特开来中学高二期末(理))4()(1)a x x ++的展开式中,若x 的奇数次幂的项的系数之和为32,则a =________.19.(2020·全国高三其他(理))“赵爽弦图”是中国古代数学的文化瑰宝,由四个全等的直角三角形和一个小正方形组成(如图所示),简洁对称、和谐优美.某数学文化研究会以弦图为蓝本设计会徽,其图案是用红、黄2种颜色为弦图的5个区域着色(至少使用一种颜色),则一共可以绘制备选的会徽图案数为__________.20.(2020·山东省高三其他)2019年世界园艺博览会在北京延庆区举办,这届世界园艺博览会的核心建筑景观是“四馆一心”:中国馆、国际馆、植物馆、生活体验馆以及演艺中心.现将含甲在内的5名大学生志愿者安排到北京世界园艺博览会的4个场馆担任服务工作,要求每个场馆至少安排一人,且每人仅参加一个场馆的服务工作,其中甲不安排到国际馆去,则不同的安排方法种数为_________.21.(2020·江西省南昌二中高二期末(理))62341()x x x x x ⎛⎫++- ⎪⎝⎭的展开式中x 2项的系数为__________.22.(2020·南京市临江高级中学高二期中)将四个不同的小球放入三个分别标有1、2、3号的盒子中,不允许有空盒子的放法有______种(结果用数字表示).1.(2020•海南)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种B.3种C.6种D.8种2.(2020•北京)在(√x−2)5的展开式中,x2的系数为()A.﹣5B.5C.﹣10D.103.(2020•山东)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有()A.120种B.90种C.60种D.30种4.(2020•新课标Ⅰ)(x+y2x)(x+y)5的展开式中x3y3的系数为()A.5B.10C.15D.205.(2019•全国)(2√x+1)6的展开式中x的系数是()A.120B.60C.30D.156.(2019•新课标Ⅲ)(1+2x2)(1+x)4的展开式中x3的系数为()A.12B.16C.20D.24二.填空题(共7小题)7.(2020•上海)从6个人挑选4个人去值班,每人值班一天,第一天安排1个人,第二天安排1个人,第三天安排2个人,则共有种安排情况.8.(2020•浙江)二项展开式(1+2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a4=,a1+a3+a5=.9.(2020•新课标Ⅱ)4名同学到3个小区参加垃圾分类宣传活动,每名同学只去1个小区,每个小区至少安排1名同学,则不同的安排方法共有种.10.(2020•新课标Ⅲ)(x2+2x)6的展开式中常数项是(用数字作答).11.(2020•天津)在(x+2x2)5的展开式中,x2的系数是.12.(2019•天津)(2x−18x3)8的展开式中的常数项为.13.(2019•浙江)在二项式(√2+x)9展开式中,常数项是,系数为有理数的项的个数是..。

数学(理)卷·2014届福建省师大附中高二下学期期末考试

数学(理)卷·2014届福建省师大附中高二下学期期末考试

福建师大附中2012—2013学年度下学期期末考试高二数学理试题本试卷共4页. 满分150分,考试时间120分钟.注意事项:试卷分第I 卷和第II 卷两部分,将答案填写在答卷纸上,考试结束后只交答案卷.第I 卷 共60分一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1.袋中有2个白球,3个黑球,从中依次取出2个,则取出2个都是白球的概率是A .35B .21C .52D .1012.右表是降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨标准煤)的几组对应数据,根据表中提供的数据,可求出y关于x 的线性回归方程ˆy0.70.35x =+,则表中m 的值为 A .3 B .3.15 C .4 D .4.53.直线12+=x y 的参数方程可以是A .⎩⎨⎧+==1222t y t x B .⎩⎨⎧+=-=1412t y t x C .121x t y t =-⎧⎨=-⎩ D .⎩⎨⎧+==1sin 2sin θθy x 4.已知随机变量~(3,1)X N ,且(24)0.6826P X ≤≤=,则(4)P X > 等于A .0.1585B .0.1586C .0.1587D .0.15885.从1,2,3,45,中任取2个不同的数,事件A 为“取到的2个数之和为偶数”,事件B 为“取到的2个数均为偶数”,则(|)P B A 等于 A .18B .14C .25 D .126.2013年第12届全国运动会将在沈阳举行,某校4名大学生申请当,,A B C 三个比赛项目的志愿者,组委会接受了他们的申请,每个比赛项目至少分配一人,每人只能服务一个比赛项目,若甲要求不去服务A 比赛项目,则不同的安排方案共有 A .20种 B .24种 C .30种 D .36种x3 4 5 6 y2.5m44.57.设1141A ⎛⎫= ⎪⎝⎭,则矩阵A 的一个特征值λ和对应的一个特征向量α 为A .3=λ,12α⎛⎫= ⎪⎝⎭ B .1-=λ,21α⎛⎫= ⎪-⎝⎭C .3=λ,12α-⎛⎫= ⎪⎝⎭D .1-=λ,12α⎛⎫= ⎪⎝⎭8.若()()()()()()923112012311132222x x a a x a x a x a x +-=+-+-+-+⋅⋅⋅+-,则1211a a a ++⋅⋅⋅+的值为A .0B .5-C .5D .2559.二项式1(n x-的展开式中含有4x 的项,则正整数n 的最小值是A .4B .6C .8D . 1210.已知等式443212(1)(1)(1)x x b x b x =++++++43)1(b x b ++,则1234,,,b b b b 的值分别为A .0,0,0,0B .4,6,3,0--C .4,6,4,1--D .4,6,4,1--11.如图,在由二项式系数所构成的杨辉三角形中,若第n 行中从左至右第14与第15个数的比为3:2, 则n 的值为A . 32B . 33C . 34D . 3512.在右图所示的电路中,5只箱子表示保险匣,箱中所示数值表示通电时保险丝被切断的概率,当开关合上时,电路畅通的概率是 A .3629 B .720551C .7229D .14429第Ⅱ卷 共90分二、填空题:本大题有4小题,共5个空格,每个空格4分,共20分,把答案填在答卷的相应位置.13.随机变量1~(3,)2B ξ,则(31)E ξ+的值为 ***** .14.函数216()4(0)f x x x x=+>的最小值为***** .第0行 1第1行 1 1 第2行 1 2 1 第3行 1 3 3 1 第4行 1 4 6 4 1第5行 1 5 10 10 5 1…… …… ……15.设,,a b c 均为正数,且12a b c ++=,则1925a b c++的最小值为***** .16.给n 个自上而下相连的正方形着黑色或白色. 当4n ≤时,在所有不同的着色方案中,黑色正方形互不相邻的所有着 色方案如图所示. 由此推断,当6n =时,黑色正方形互 不相邻的着色方案共有***** 种,至少有两个黑色正方 形相邻的着色方案共有***** 种. (直接用数字作答)三、解答题:本大题有6题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知函数()|3|2f x x =--,()|1|4g x x =-++. (Ⅰ)若不等式()()3f x g x +>,求x 的取值范围;(Ⅱ)若不等式()()1f x g x m -≥+的解集为R ,求m 的取值范围.18.(本小题满分10分)若圆22:1C x y +=在矩阵0,(0,0)0a A a b b ⎛⎫=>> ⎪⎝⎭对应的变换下变成椭圆22:1,43x y E +=求矩阵A 的逆矩阵1A -. 19.(本小题满分12分)“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路 ”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:已知在这30人中随机抽取1人抽到反感“中国式过马路 ”的路人的概率是158. (Ⅰ)请将上面的列联表补充完整(在答题卷上直接填写结果,不需要写求解过程),并据此资料判断是否有95%的把握认为反感“中国式过马路 ”与性别有关? (Ⅱ)若从这30人中的女性路人....中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X ,求X 的分布列.d c b a n +++=男性 女性 合计 反感 10 不反感 8 合计 3020.(本小题满分12分)已知曲线C 的极坐标方程为1ρ=,以极点为原点,极轴为轴的正半轴建立直角坐标系,直线l 的参数方程62().12x t y t ⎧=-⎪⎪⎨⎪=⎪⎩为参数 (Ⅰ)写出直线l 的普通方程与曲线C 的直角坐标方程;(Ⅱ)设曲线C 经过伸缩变换''3x xy y⎧=⎪⎨=⎪⎩得到曲线'C ,在曲线'C 上求一点M ,使点M 到直线l 的距离最小,并求出最小距离.21.(本小题满分12分)甲、乙两人玩猜数字游戏,规则如下: ①连续竞猜3次,每次相互独立;②每次竟猜时,先由甲写出一个数字,记为a ,再由乙猜测甲写的数字,记为b ,已知{},0,1,2,3,4,5a b ∈,若1a b -≤,则本次竞猜成功;③在3次竞猜中,至少有2次竞猜成功,则两人获奖. (Ⅰ) 求甲乙两人玩此游戏获奖的概率;(Ⅱ)现从6人组成的代表队中选4人参加此游戏,这6人中有且仅有2对双胞胎,记选出的4人中含有双胞胎的对数为X ,求X 的分布列和期望.22.(本小题满分14分)规定),1()1(+--=m x x x A mx 其中x R ∈,m 为正整数,且0x A =1,这是排列数mnA (,n m 是正整数,n m ≤)的一种推广. (Ⅰ) 求39A -的值;(Ⅱ)排列数的两个性质:①m n A =11m n nA --,②m n A 1m n mA -+1m n A +=(其中m ,n 是正整数).是否都能推广到mx A (x R ∈,m 是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;(Ⅲ)已知函数3()4ln x f x A x m =--,试讨论函数()f x 的零点个数.参考答案一、选择题:1-12:DACCBB ACBACD 二、填空题: 13.112 14.12 15. 27416.21;43 三、解答题:17. 解:(Ⅰ)不等式()()3f x g x +>等价于|3||1|1x x --+>∴1311x x x ≤-⎧⎨-++>⎩或13311x x x -<<⎧⎨--->⎩或3311x x x ≥⎧⎨--->⎩∴1x ≤-或112x -<<,即12x < ∴x 的取值范围是1(,)2-∞.(Ⅱ)()()|3||1|6f x g x x x -=-++-,因为对于x ∀∈R , ()()|3||1|6|3||1|6f x g x x x x x -=-++-=-++-|(3)(1)|6462x x ≥-++-=-=-. 当且仅当(3)(1)0x x -+≥即13x -≤≤时等号成立∴12m +≤-,得3m ≤-,即m 的取值范围是(3]-∞-,18.解:设点(,)P x y 为圆C :221x y +=上任意一点,经过矩阵A 变换后对应点为(,)P x y ''',则00a x ax x b y by y '⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,所以,x ax y by '=⎧⎨'=⎩. 因为点(,)P x y '''在椭圆E :22143x y =+上,所以2222143a xb y =+,又圆方程为221x y +=,故221,41,3a b ⎧=⎪⎪⎨⎪=⎪⎩,即224,3,a b ⎧=⎪⎨=⎪⎩,又0a >,0b >,所以2a =,b所以200⎛⎫=⎝A, 20==|A|所以11020-⎛⎫ ⎪= ⎝A 19. 解:(Ⅰ)设0H :反感“中国式过马路 ”与性别与否无关由已知数据得:2230(10866) 1.158 3.84116141614K ⨯-⨯=≈<⨯⨯⨯, 所以,没有95%的把握认为反感“中国式过马路”与性别有关. (Ⅱ)X 的可能取值为0,1,2.282144(0),13C C P X === 116821448(1),91C C C P X ===2621415(2),91C C P X ===所以X20.解:(Ⅰ)由62().12x t y t ⎧=-⎪⎪⎨⎪=⎪⎩为参数得,:60-=l x , 由1ρ=得,圆22:1C x y +=.(Ⅱ)设点(,)P x y 是圆C 上的任意一点,经过伸缩变换''3x x y y ⎧=⎪⎨=⎪⎩得到点'''(,)P x y由''3x x y y ⎧=⎪⎨=⎪⎩得''3x x y y ⎧=⎪⎨⎪=⎩,把''3x x y y ⎧=⎪⎨⎪=⎩代入圆22:1C x y +=得,22''19x y += 所以曲线22':19x C y +=令(3cos ,sin ),[0,2)M ϕϕϕπ∈,则点M 到直线l 的距离1|sin )6|222d ϕϕ+⋅-==|)6|62πϕ--=∴当06πϕ-=即6πϕ=时,m i n6332d -==-,此时,13cos 2ϕϕ==∴当1)2M 时,点M 到直线l的距离的最小值为3- 21.解:(Ⅰ)记事件A 为甲乙两人一次竞猜成功,则11666524()9p A C C +⨯==⋅ 则甲乙两人获奖的概率为223333454304()()()999729C C ⋅+=(Ⅱ)由题意可知6人中选取4人,双胞胎的对数X 取值为0,1,2 则1121112222222222444666()421(0),(1),(0)15315C C C C C C C C p X p X p X C C C ⋅⋅⋅+======, ∴分布列为∴4214()012153155E x =⨯+⨯+⨯= 22.解:(Ⅰ)399(10)(11)990A -=-⨯-⨯-=-X 0 1 2 p415 23 115(Ⅱ)性质①、②均可推广,推广的形式分别是①mx A =11m x xA --,②m x A 1m x mA -+1m x A +=(*,x R m N ∈∈) 证明:①当1m =时,左边1x A x ==,右边0x xA x ==,等式成立;当2m ≥时,左边11(1)(1){(1)(2)[(1)(1)1]},m x x x x m x x x x m xA --=--+=-----+= 因此,m x A =11m x xA --(*,x R m N ∈∈)成立. ②当1m =时,左边10111x x x A A x A +=+=+==右边,等式成立;当2m ≥时,左边(1)(1)(1)(2)x x x m mx x x m =--++--+ (1)(2)(1)x x x m x m m =--+-++ (1)(1)(2)x x x x m =+--+ (1)(1)[(1)1)]x x x x m =+-+-+1m x A +==右边因此,m x A 1m x mA -+1m x A +=(*,x R m N ∈∈)成立.(Ⅲ)332()4ln (1)(2)4ln 324ln x f x A x m x x x x m x x x x m =--=----=-+--设函数32()324ln g x x x x x =-+-,则函数()f x 零点的个数等价于函数()g x 与y m =公共点的个数.()f x 的定义域为(0,)+∞3222'2436243(2)2(2)(2)(32)()362x x x x x x x x g x x x x x x x-+--+--+=-+-===令'()0g x =,得2x =x (0,2)2(2,)+∞'()g x- 0+ ()g x减4ln 2-增∴当4ln 2m <-时,函数()g x 与y m =没有公共点,即函数()f x 不存在零点, 当4ln 2m =-时,函数()g x 与y m =有一个公共点,即函数()f x 有且只有一个零点, 当4ln 2m >-时,函数()g x 与y m =有两个公共点,即函数()f x 有且只有两个零点.。

高二数学复习考点知识精讲与练习4 等比数列的前n项和公式

高二数学复习考点知识精讲与练习4 等比数列的前n项和公式

高二数学复习考点知识精讲与练习专题4 等比数列的前n项和公式【考点梳理】考点一等比数列的前n项和公式考点二等比数列前n项和的性质1.数列{a n}为公比不为-1的等比数列(或公比为-1,且n不是偶数),S n为其前n项和,则S n,S2n-S n,S3n-S2n仍构成等比数列.2.若{a n}是公比为q的等比数列,则S n+m=S n+q n S m(n,m∈N*).3.若{a n}是公比为q的等比数列,S偶,S奇分别是数列的偶数项和与奇数项和,则:①在其前2n项中,S偶S奇=q;②在其前2n+1项中,S奇-S偶=a1-a2+a3-a4+…-a2n+a2n+1=a1+a2n+1q1-(-q)=a1+a2n+21+q(q≠-1).考点三:等比数列前n项和的实际应用1.解应用问题的核心是建立数学模型.2.一般步骤:审题、抓住数量关系、建立数学模型.3.注意问题是求什么(n ,a n ,S n ). 注意:(1)解答数列应用题要注意步骤的规范性:设数列,判断数列,解题完毕要作答. (2)在归纳或求通项公式时,一定要将项数n 计算准确. (3)在数列类型不易分辨时,要注意归纳递推关系.(4)在近似计算时,要注意应用对数方法,且要看清题中对近似程度的要求.【题型归纳】题型一:等比数列前n 项和公式的基本运算1.(2022·江苏南通·高二期末)已知等比数列{}n a 的前6项和为1894,公比为12,则6a =( ) A .738B .34C .38D .242.(2022·河南商丘·高二期中(理))已知正项等比数列{}n a 中,22a =,48a =,数列{}2n n a a ++的前n 项和为n S ,则62SS =( )A .32B .21C .16D .83.(2022·全国·高二课时练习)设正项等比数列{}n a 的前n 项和为n S ,若23S =,3412a a +=,则公比q 等于( ).A .1B .2C .3D .4题型二:等比数列的判断和性质的应用4.(2022·全国·高二课时练习)设等比数列{}n a 前n 项和为S n ,若S 3=8,S 6=24,则a 10+a 11+a 12=( ) A .32B .64 C .72D .2165.(2022·广西·田东中学高二期末(理))已知数列{}n a 是等比数列,n S 为其前n 项和,若1234a a a ++=,4568a a a ++=,则12S =( ) A .40B .60C .32D .506.(2020·四川·双流中学高二期中(理))设n S 是等比数列{}n a 的前n 项和,若423S S =,则64S S =( ) A .2B .73C .310D .12或题型三:等比数列奇偶项和的性质7.(2020·河南·高二月考(理))已知等比数列{}n a 共有32项,其公比3q =,且奇数项之和比偶数项之和少60,则数列{}n a 的所有项之和是( ) A .30B .60C .90D .1208.(2022·全国·高二课时练习)已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( )A .2B .3C .4D .59.(2022·全国·高二课时练习)已知一个等比数列首项为1,项数是偶数,其奇数项之和为85,偶数项之和为170,则这个数列的公比和项数分别为( ) A .8,2B .2,4C .4,10D .2,8题型四:等比数列中an 与Sn 的关系10.(2022·全国·高二课时练习)记数列{}n a 的前n 项和为n S ,21n n S a =-,则2020S =( )A .202021-B .202121-C .2020122⎛⎫- ⎪⎝⎭D .2021122⎛⎫- ⎪⎝⎭11.(2022·宁夏·六盘山高级中学高二月考(理))已知数列{}n a 的前n 项和112nn S ⎛⎫=- ⎪⎝⎭,那么数列{}n a ( ) A .是等差数列但不是等比数列 B .或者是等差数列,或者是等比数列 C .是等比数列但不是等差数列D .既不可能是等差数列,也不可能是等比数列12.(2020·江苏·高二专题练习)设数列{}n a 的前n 项和为n S ,若11a =,121n n S S +=+,则6S =( )A .63B .127C .128D .256题型五:等比数列的简单应用13.(2022·甘肃·西北师大附中高二期中(理))中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关”其意思为:有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地.那么请问此人前两天所走的里程为( ) A .189里B .216里C .288里D .192里14.(2022·全国·高二课时练习)为全力抗战疫情,响应政府“停课不停学”的号召,某市中小学按照教学计划,开展在线课程教学和答疑.某高一学生家长于3月5日在某购物平台采用分期付款的形式购买了一台价值m 元的平板电脑给学生进行网上学习使用,该平台规定:分12个月还清,从下个月5日即4月5日开始偿还,每月5日还款,且每个月还款钱数都相等.若购物平台的月利率为p ,则该家长每月的偿还金额是( )A .12m 元B .()()1212111mp p p ++-元C .()12112m p +元D .()()1313111mp p p ++-元 15.(2022·北京朝阳·高二期末)光圈是一个用来控制光线透过镜头,进入机身内感光面的光量的装置.表达光圈的大小我们可以用光圈的F 值表示,光圈的F 值系列如下:F 1,F 1.4,F 2,F 2.8,F 4,F 5.6,F 8,…,F 64.光圈的F 值越小,表示在同一单位时间内进光量越多,而且上一级的进光量是下一级的2倍,如光圈从F 8调整到F 5.6,进光量是原来的2倍.若光圈从F 4调整到F 1.4,则单位时间内的进光量为原来的( ) A .2倍B .4倍C .8倍D .16倍【双基达标】一、单选题16.(2022·河南·高二期中(文))n S 为等比数列{}n a 的前n 项和,且33a =,26S =,则5a 的值为( )A .34B .3或12C .3或34D .12或3417.(2022·河南商丘·高二期中(理))在正项等比数列{}n a 中,512a =,673a a +=,{}n a 的前n 项和为n S ,前n 项积为n T ,则满足1n n S a T +>的最大正整数n 的值为( ) A .11B .12 C .13D .1418.(2022·江西·九江市第三中学高二期中(理))若{}n a 是等比数列,已知对任意*n N ∈,2121n n a a a ++=-,则2222123n a a a a ++++=( )A .2(21)n -B .121(2)3n -C .41n -D .1(41)3n -19.(2022·全国·高二课时练习)等比数列{a n }中,a 1a 2a 3=1,a 4=4,则a 2+a 4+a 6+…+a 2n =( )A .2n-1B .413n -C .()143--nD .()123n--20.(2022·江西·景德镇一中高二期中(文))已知数列{}n a 满足11a =,若1114()n n nn N a a ++-=∈,则数列{}n a 的通项n a =( ) A .341n -B .431n -C .413n -D .314n -21.(2022·河南洛阳·高二期中(文))已知等比数列{}n a 的前n 项和为21nn S a b =⋅+-,则44a b +的最小值为( ) A .2B..4D .522.(2022·全国·高二课时练习)在等比数列{}n a 中,已知42S =,86S =,17181920a a a a +++=( )A .32B .16C .35D .16223.(2022·全国·高二课时练习)已知n S 是等比数列{}n a 的前n 项和,若存在*m ∈N ,满足29m mS S =,2511m m a m a m +=-,则m 的值为( )A .-2B .2C .-3D .324.(2022·全国·高二课时练习)某人于2020年6月1日去银行存款a 元,存的是一年定期储蓄,2022年6月1日将到期存款的本息一起取出再加a 元之后还存一年定期储蓄,此后每年的6月1日他都按照同样的方法在银行取款和存款.设银行定期储蓄的年利率r 不变,则到2025年6月1日他将所有的本息全部取出时,取出的钱共有( )A .()41a r +元B .()51a r +元C .()61a r +元D .()()611a r r r⎡⎤+-+⎣⎦元 25.(2022·江苏·高二单元测试)设{}n a 是公差为d 的等差数列,{}n b 是公比为q 的等比数列.已知数列{}n n a b +的前n 项和()2*51N n n S n n =+-∈,则d q -=( )A .3-B .1-C .2D .4【高分突破】一:单选题26.(2022·江苏省苏州第十中学校高二月考)已知等比数列{a n }的首项为1,公比为2,则a 12+a 22+⋯+a n 2=( ) A .(2n ﹣1)2B .()1213n -C .4n ﹣1D .()1413n - 27.(2022·全国·高二学业考试)已知一个项数为偶数的等比数列{}n a ,所有项之和为所有偶数项之和的4倍,前3项之积为64,则1a =( ) A .1B .4 C .12D .3628.(2022·全国·高二单元测试)设n S 为数列{}n a 的前n 项和,()112322n n n a a n ---=⋅≥,且1232a a =.记n T 为数列1nn a S ⎧⎫⎨⎬+⎩⎭的前n 项和,若对任意*n ∈N ,n T m <,则m 的最小值为( ) A .3B .13C .2D .1229.(2022·全国·高二单元测试)在正项数列{}n a 中,首项12a =,且()()22*12,,2n n a a n n -∈≥N 是直线80x y -=上的点,则数列{}n a 的前n 项和n S =( ) A .()122n--B .122n +-C .12n +D .122n-30.(2022·江苏·苏州市苏州高新区第一中学高二月考)公元前5世纪,古希腊哲学家芝诺发表了著名的阿基里斯悖论:他提出让乌龟在跑步英雄阿基里斯前面1000米处开始与阿基里斯赛跑,并且假定阿基里斯的速度是乌龟的10倍.当比赛开始后,若阿基里斯跑了1000米,此时乌龟便领先他100米,当阿基里斯跑完下一个100米时,乌龟领先他10米,当阿基里斯跑完下一个10米时,乌龟先他1米.所以,阿基里斯永远追不上乌龟.按照这样的规律,若阿基里斯和乌龟的距离恰好为0.001米时,乌龟爬行的总距离为( )A .61019000-米B .410190-米C .510990-米D .5101900-米31.(2022·全国·高二课时练习)等比数列{a n }的前n 项和为S n ,已知a 2a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5=( ) A .29B .31C .33D .3632.(2022·全国·高二课时练习)若正项等比数列{}n a 满足13116a a =,4322a a a +=,则()1121111n n nS a a a +=-++-=( )A .()2123n ⎡⎤+-⎣⎦B .()2123n -C .()2123n +D .()2123n⎡⎤--⎣⎦33.(2022·广西·崇左高中高二月考)已知{}n a 是公比不为1的等比数列,n S 为其前n 项和,满足2021201920192020a a a a -=-,则下列等式成立的是( )A .2202020212019S S S =B .2020202120192S S S +=C .2201920212020S S S =D .2019202120202S S S +=34.(2022·全国·高二课时练习)如图,画一个边长为2的正三角形,再将这个正三角形各边的中点相连得到第二个正三角形,依此类推,一共画了5个正三角形.那么这五个正三角形的面积之和等于( )A . 3. 213. 853D . 3413二、多选题35.(2022·江苏苏州·高二期中)已知等比数列{}n a 的各项均为正数,其前n 项和为n S ,若5432a a a +=,且存在两项m a ,n a ,使得14m n a a a =,则( ) A .12n n a a +=B .12n n S a a =-C .5mn =D .6m n +=36.(2022·全国·高二课时练习)n S 是数列{}n a 的前n 项的和,且满足11a =,12n n a S +=,则下列说法正确的是( ) A .{}n a 是等比数列 B .1123n n a -+=⨯C .{}n a 中能找到三项p a ,q a ,r a 使得p q r a a a =D .1n a ⎧⎫⎨⎬⎩⎭的前n 项的和74n T <37.(2022·江苏·高二单元测试)已知等比数列{}n a 的公比为q ,前n 项和0n S >,设2132n n n b a a ++=-,记{}n b 的前n 项和为n T ,则下列判断正确的是( )A .若2q ,则n n T S =B .若2q >,则n n T S >C .若14q =-,则n n T S >D .若34q =-,则n n T S <38.(2022·全国·高二单元测试)已知等比数列{}n a 的前n 项和为n S ,且214S a =,2a 是11a +与312a 的等差中项,数列{}n b 满足1n n n n a b S S+=⋅,数列{}n b 的前n 项和为n T ,则下列命题正确的是( )A .数列{}n a 的通项公式为13-=n n aB .31n n S =-C .数列{}n b 的通项公式为()()1233131nn nn b +⨯=--D .n T 的取值范围是11,86⎡⎫⎪⎢⎣⎭39.(2022·全国·高二课时练习)记数列{}n a 的前n 项和为n S ,若存在实数H ,使得对任意的*n ∈N ,都有n S H <,则称数列{}n a 为“和有界数列”.下列说法正确的是( ) A .若数列{}n a 是等差数列,且公差0d =,则数列{}n a 是“和有界数列” B .若数列{}n a 是等差数列,且数列{}n a 是“和有界数列”,则公差0d = C .若数列{}n a 是等比数列,且公比q 满足1q <,则数列{}n a 是“和有界数列” D .若数列{}n a 是等比数列,且数列{}n a 是“和有界数列”,则公比q 满足1q <40.(2022·全国·高二单元测试)已知数列{}n a 满足11a =,()*1N 23n n naa n a +=∈+,则下列结论正确的是( )A .13n a ⎧⎫+⎨⎬⎩⎭为等比数列B .{}n a 的通项公式为1123n n a -=- C .{}n a 为递增数列D .1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=--三、填空题41.(2022·全国·高二课时练习)数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为2的等比数列,那么a n =________.42.(2022·全国·高二课时练习)设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0,则公比q =________.43.(2022·全国·高二课时练习)已知等比数列{a n }的公比为12-,则135246a a a a a a ++++的值是________.44.(2022·江西·景德镇一中高二期中)在数列{}n a 及{}n b中,1n n n a a b +=+1n n n b a b +=+11a =,11b =.设11n n nc a b =+,则数列{}n c 的前2022项和为__________.45.(2022·全国·高二课时练习)等比数列{a n }的各项均为实数,其前n 项的和为S n ,已知S 3=74,S 6=634,则a 8=______.四、解答题46.(2022·河南商丘·高二期中(文))已知正项数列{}n a 满足19a =,()12n n n a a a +=+,设()lg 1n n b a =+.(1)求数列{}n b 的通项公式;(2)设1n n c a =+,数列{}n c 的前n 项积为n S ,若lg n n S b λ<恒成立,求实数λ的取值范围.47.(2022·河南商丘·高二期中(文))设公差不为0的等差数列{}n a 的前n 项和为n S ,已知636S =,且2a 是1a ,5a 的等比中项. (1)求{}n a 的通项公式;(2)设2nn n b a =⨯,求数列{}n b 的前n 项和n T .48.(2022·陕西·延安市宝塔区第四中学高二月考)已知数列{}n a 的前n 项和S n =2n +1+A ,若{}n a 为等比数列.(1)求实数A 及{}n a 的通项公式;(2)设b n =log 2a n ,求数列{a n b n }的前n 项和T n .49.(2022·河南洛阳·高二期中(理))已知正项数列{}n a 的前n 项和为n S ,且11a =,211n n n S S a +++=,数列{}n b 满足12b =,2112na n nb b ++⋅=. (1)求证{}n a 为等差数列;(2)求证:12122n na a ab bb ++⋅⋅⋅+<.50.(2022·甘肃省民乐县第一中学高二期中(文))已知数列{}n a 的前n 项和为n S ,111,1(*)n n a a S n N +==+∈,数列{}n b 满足11b =,12n n n b a b +=+.(1)求数列{}n a 、{}n b 的通项公式;(2)若数列{}n c 满足1nn n n ac b b +=,求证:1212n c c c +++<.【答案详解】1.B解:根据题意,等比数列{}n a 的前6项和为1894,公比为12,则有616(1)18914a q S q -==-,解可得124a =,则56134a a q ==; 故选:B . 2.B 【详解】设正项等比数列{}n a 的公比为q,则2q ==, 所以,()()()()()()()66111263486421234112412635121221151212a a a a a a a a SS a a a a a --++++++++⨯--====+++--. 故选:B. 3.B解:由题意,正项等比数列{}n a 中, 因为23S =,3412a a +=,所以()121221234331212a a a a q a a a a +=+=⎧⎧⇒⎨⎨+=+=⎩⎩,解得24q =. 因为0q >,所以2q .故选:B 4.B【详解】由于S 3、S 6-S 3、S 9-S 6,S 12-S 9成等比数列,S 3=8,S 6-S 3=16,故其比为2, 所以S 9-S 6=32,a 10+a 11+a 12=S 12-S 9=64. 故选:B . 5.B 【详解】由等比数列的性质可知,数列36396129,,,S S S S S S S ---是等比数列,即数列4,8,96129,S S S S --是等比数列,因此9661291216,12,32,32161260S S S S S S -==-==++=.故选:B. 6.B 【详解】设24,3S k S k ==,由数列{}n a 为等比数列(易知数列{}n a 的公比1q ≠-),得24264,,S S S S S --为等比数列又242,2S k S S k =-=644S S k ∴-= 67,S k ∴=647733S k S k ∴== 故选:B . 7.D 【详解】设等比数列{}n a 的奇数项之和为1S ,偶数项之和为2,S则311531a a S a a =++++,()2463213531123a a a a q a a a a S S ++++=++++==又1260S S +=,则11603S S +=,解得1230,90S S ==, 故数列{}n a 的所有项之和是3090120+=. 故选:D 8.B 【详解】设等比数列{}n a 的公比为q , 则132112285k k a a a a a a q q +++++++==,即()2285184k q a a ++=-=,因为24242k a a a +++=,所以2q,则()21123221112854212712k k k a a a a a ++⨯-+++++=+==-,即211282k +=,解得3k =, 故选:B. 9.D解:设等比数列项数为2n 项,所有奇数项之和为S 奇,所有偶数项之和为S 偶, 根据题意得:S 奇=85,S 偶=170, ∴q S S ==偶奇2,又a 1=1,∴S 奇()21211na q q -==-85,整理得:1﹣4n =﹣3×85,即4n =256,解得:n =4,则这个等比数列的项数为8.故选D . 10.A 【详解】依题意21n n S a =-,当n=1时,a 1=2a 1-1,解得a 1=1; 当2n ≥时,由21n n S a =-得1121n n S a --=-,两式相减,得1122n n n n S S a a ---=-,即12n n a a -=,所以12nn a a -=()2n ≥, 所以数列{}n a 是首项为1,公比为2的等比数列, 所以12n na ,202020202020122112S -==--. 故选:A . 11.C解:数列{}n a 的前n 项和112nn S ⎛⎫=- ⎪⎝⎭,∴当2n 时,1111112212nn nn n n a S S -- ⎡⎤=-=--=-⎢⎥⎢⎭⎛⎫⎛⎫⎛⎫- ⎪⎪⎪⎝⎝⎭⎝⎣⎭⎥⎦,当1n =时,1111122a S ==-=-,上式也成立.∴12nn a ⎛⎫=- ⎪⎝⎭可得112n n a a -=,∴数列{}n a 是首项为12-,公比为12的等比数列,但不是等差数列. 故选:C .12.A在121n n S S +=+中,令1n =,得23S =,所以22a =. 由121n n S S +=+得2121n n S S ++=+,两式相减得212n n a a ++=,即212n n a a ++=,又11a =,212a a =,所以数列{}n a 是以1为首项,2为公比的等比数列,所以66126312S -==-. 故选:A . 13.C 【详解】由题意,记每天走的路程为{}n a 是公比为12的等比数列,又由6161[1()]2378112-==-a S ,解得1192a =, 所以11192()2-=⨯n n a ,则21192()962a =⨯= 故前两天所走的路程为:192+96=288 故选:C 14.B 【详解】设每月的偿还金额都是a 元, 则()()()()122111111m p a a p a p a p +=+++++++,即()()()121211111a p m p p ⎡⎤-+⎣⎦+=-+,解得()()1212111mp p a p +=+-.故选:B 15.C 【详解】由题可得单位时间内的进光量形成公比为12的等比数列{}n a ,则F 4对应单位时间内的进光量为5a ,F 1.4对应单位时间内的进光量为2a ,从F 4调整到F 1.4,则单位时间内的进光量为原来的258a a =倍.故选:C. 16.C 【详解】设公比为q ,则211136a q a a q ⎧=⎨+=⎩解得12q =-或1q =,故25334a a q ==或53a =.故选:C. 17.B 【详解】设正项等比数列{}n a 的公比为q ,则()25267556a q q a a q qa a ++==+=,即260q q +-=,0q >,则2q,514132a a q ∴==, 所以,()11221321232n n nS --==-,()()211112122121122232nn n n n n n n n T a a a a --+++-⎛⎫=⋅⋅⋅=⋅=⋅= ⎪⎝⎭,因为1n n S a T +>,即211221123232n nn--+>,即2115222n n n -->,即213100n n -+<,n <,因为1112<,则25122<<, 因此,满足条件的正整数n 的最大值为12. 故选:B. 18.D 【详解】因为对任意*n N ∈,2121n n a a a ++=-①,当1n =时,11a =, 当2n ≥时,211121n n a a a --++=-②,①-②得11222n n n n a ---==,满足11a =,则()221124n n n a --==,即{}2n a 是首项为1,公比为4的等比数列,所以()22221231141(41)143n n n a a a a ⨯-++++==--. 故选:D. 19.B 【详解】由a 1a 2a 3=1得321,a =∴a 2=1,又a 4=4,故q 2=4,所以a 2+a 4+a 6+…+a 2n =1414n--=413n -. 故选:B20.A 【详解】根据题意,由1114n n n aa +-=, 得12121321111111444n nn a a a a a a --⎛⎫⎛⎫⎛⎫-+-++-=+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,化简得()114141144143n n n a a -⨯---==-,因11a =,所以1413n n a -=,即341n n a =-.故选:A. 21.C 【详解】当1n =时,1121a S a b ==+-,当2n ≥时,11121221n n n n n n a S S a b a a b ---==⋅+--⋅⋅--+=从而22a a =,34a a = 因为{}n a 是等比数列所以公比322a q a ==,且212a a a ==,即21ab a +-=,即1a b += 所以444a b ≥==+,当且仅当44a b =,即12a b ==时,等号成立所以44a b +的最小值为4 故选:C 22.A 【详解】解:由等比数列前n 项和的性质知,当数列依次每k 项和不为0时,则依次每k 项和仍成等比数列,所以4S ,84S S -,128S S -,1612S S -,2016S S -成等比数列,且公比为4q .又441232S a a a a =+++=,484567844S S a a a a S q -=+++==,所以42q =,所以16201617181920432S S a a a a S q -=+++==.故选:A 23.D 【详解】设等比数列{}n a 的公比为q . 当1q =时,21122m m S ma S ma ==与29m m S S =矛盾,不合乎题意;当1q ≠时,()()2122111119111m m m m m m m a q S q q q S qa q q---===+=---,则8mq =, 又2511m mma m q a m +==-,即5181m m +=-,解得3m =. 故选:D. 24.D设此人2020年6月1日存入银行的钱为1a 元,2022年6月1日存入银行的钱为2a 元,以此类推,则2025年6月1日存入银行的钱为6a 元,那么此人2025年6月1日从银行取出的钱有()6a a -元.由题意,得1a a =,()21a a r a =++,()()2311a a r a r a =++++,……,()()()()()5432611111a a r a r a r a r a r a =++++++++++,所以()()()256111a a a r r r ⎡⎤-=++++++⎣⎦()()()()()561111111r r a r r r a r ⎡⎤+-+⎣⎦⎡⎤=+-++⋅⎣-=⎦. 故选:D . 25.A 【详解】设数列{}n a 和{}n b 的前n 项和分别为,n n A B ,则()()1211111,222111n n n n b q n n db d d q A a n a n n B q q q --⎛⎫=+=-+==-⎪---⎝⎭(1q ≠), 若1q =,则1n B nb =,则2211()5122n n n n dd S A n B a n n nb =+==+++--,显然没有出现5n ,所以1q ≠,所以21121221511n n b n b q d d a n n q q ⎛⎫-++-+= ⎪--⎝-⎭, 由两边的对应项相等可得110,1,5,1221bd d a q q -====--,解得111,2,5,4a d q b ====, 所以3d q -=-. 故选:A 26.D 【详解】由等比数列的定义,11122n n n a --=⋅=故222124n n n n b a --===由于112144,104n n n n b b b ---===≠ 故{}n b 是以1为首项,4为公比的等比数列a 12+a 22+⋯+a n 2=1(14)41143nn ⋅--=-故选:D 27.C 【详解】由题意可得所有项之和S S +奇偶是所有偶数项之和S 偶的4倍,所以,4S S S +=奇偶偶,故13S S =奇偶设等比数列{}n a 的公比为q ,设该等比数列共有()2k k N *∈项,则()242132113k k S a a a q a a a qS S -=+++=+++==奇奇偶,所以,13q =,因为3212364a a a a ==,可得24a =,因此,2112aa q ==.故选:C. 28.B解:由()112322n n n a a n ---=⋅≥,得()111322424n n n n a a n --=⋅+≥,∴()111112242n n n n a a n --⎛⎫-=-≥ ⎪⎝⎭. 又由()112322n n n a a n ---=⋅≥,得2126a a -=,又1232a a =,∴13a =.所以111122a -=, ∴数列12n n a ⎧⎫-⎨⎬⎩⎭是以12为首项,14为公比的等比数列,则12111112242n n n n a --⎛⎫⎛⎫-=⋅= ⎪ ⎪⎝⎭⎝⎭,∴()12122122n n n nn a --=+=+,∴()()231111212112122222221221212nn nn n n n S --⎛⎫- ⎪-⎛⎫⎝⎭=++⋅⋅⋅+++++⋅⋅⋅+=+=⋅- ⎪-⎝⎭-,∴111112222232n n n n n n na S --==+++⋅-⋅.∴+12111111111122113222332312n n n n T ⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=++⋅⋅⋅+=⨯=-< ⎪ ⎪⎝⎭⎝⎭-. ∵对任意*n ∈N ,n T m <,∴m 的最小值为13. 故选:B. 29.B 【详解】在正项数列{}n a 中,12a =,且()2212,n n a a -是直线80x y -=上的点,可得22128n n a a -=,所以12n n a a -=,可得数列{}n a 是首项为2,公比为2的等比数列, 则{}n a 的前n 项和()12122212n n n S +-==--.故选:B 30.A由题意,乌龟每次爬行的距离构成等比数列{}n a , 其中11100,10a q ==,且30.00110n a -==, 所以乌龟爬行的总距离为3611110010(1)101101119000110nn n a a qa q S q q---⨯---====---. 故选:A. 31.B 【详解】由题意,231136112522a q a a q a q ⎧=⎪⎨+=⎪⎩,则3161214a q a q ⎧=⎪⎨=⎪⎩,可得q 3=18, ∴q =12,a 1=16,∴S 5=551116[1()](1)231112a q q--==-. 故选:B 32.D 【详解】由题意,2132116a a a ==,得214a =.令{}n a 的公比为0q >,由4322a a a +=,得2210q q +-=,得12q =,∴112a =,∴12n na =,令()111n n n b a +=-,则()2nn b =--,∴()()()12212212123nn n n S b b b ⎡⎤--⎣⎦⎡⎤=++⋅⋅⋅+==--⎣⎦--, 故选:D. 33.B 【详解】设等比数列{}n a 的公比为q (q ≠1),又2021201920192020a a a a -=-,即201920129290120a a q a q -=+,而20190a ≠,则220q q +-=,解得2q =-,则201911201923a a S +⋅=,2019112020223a a S -⋅=,2019112021423a a S +⋅=,10a ≠,20192019201922111111202020212019(22)(42)(2)99a a a a a a S S S -⋅⋅+⋅+⋅=≠=,A 不正确;20192020202120192019201911111122422223323a a a a S a S a S -⋅+⋅+⋅=+==+,B 正确;20192019201922111111201920212020(2)(42)(22)99a a a a a a S S S +⋅⋅+⋅-⋅=≠=,C 不正确;2019201920191111201920212020112422523323a a a a a a S S S +⋅+⋅+⋅=+=+≠,D 不正确.故选:B 34.D 【详解】根据三角形中位线的性质可知:这五个正三角形的边长形成等比数列{}n a :前5项分别为:2,1,12,14,18, 所以这五个正三角形的面积之和为22222222461111112121248222⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++++=++++⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦51414114⎛⎫⨯- ⎪⎝⎭==-,故选:D . 35.BD 【详解】解:设等比数列{}n a 的公比为q ,且0q >因为5432a a a +=,即4321112a q a q a q +=化简得:221q q +=解得:12q =或1q =-(舍去)对A ,因为12q =,所以112n n a a +=,故A 错误;对B ,1111112211112nn n n n a a a a q a a q S a a q q ---====----,故B 正确; 对C,因为1a,即1a =,化简得:2214m n q+-=,又12q =解得6m n +=,当2m =,4n =时,8mn =,故C 错误; 对D ,由C 知,6m n +=,故D 正确. 故选:BD. 36.BD 【详解】当1n =时,211222a S a ===;当2n ≥时,由12n n a S +=可得12n n a S -=, 两式相减得12n n n a a a +=-,所以13n n a a +=,且2123aa =≠, 则数列{}n a 从第二项开始成以3为公比的等比数列,则222323n n n a a --=⋅=⨯,所以21,1,23,2,n n n a n -=⎧=⎨⨯≥⎩则1123n n a -+=⨯,所以A 选项错误,B 选项正确. 由题意可知,数列{}n a 为单调递增数列,设p q <,若在数列{}n a 中能找到三项p a ,q a ,r a ,使得p q r a a a =, 则r q p >>且p ,q ,*r ∈N ,若1p =,则p r a a =,这与数列{}n a 单调递增矛盾, 若2p ≥,则224323292p q p q p q a a --+-=⨯⨯⨯=⨯,232r r a -=⨯,由p q r a a a =,可得42322p q r +--⨯=,由于432b q +-⨯能被3整除,22r -不能被3整除,故C 选项错误;因为21,1,11,2,23n n n a n -=⎧⎪=⎨≥⎪⨯⎩所以11T =;当2n ≥时,122111111113137231111112232323434413n n n n T ---⎛⎫- ⎪⎛⎫⎝⎭=++++⋅⋅⋅+=+=+-<+= ⎪⨯⨯⨯⎝⎭-,故选项D 正确. 故选:BD 37.AB 【详解】由于{}n a 是等比数列,0n S >,所以110a S =>,0q ≠, 当1q =时,10n S na =>,符合题意; 当1q ≠时,()1101n n a q S q-=>-,即101nq q->-, 等价于1010n q q ⎧->⎨->⎩或1010n q q ⎧-<⎨-<⎩,对于1010n q q ⎧->⎨->⎩,由于n 可能是奇数,也可能是偶数,所以(1,0)(0,1)q ∈-⋃,对于1010n q q ⎧-<⎨-<⎩可得:1q >.综上所述,q 的取值范围是(1,0)(0,)-+∞;因为2213322n n n n b a a a q q ++⎛⎫=-=- ⎪⎝⎭,所以232n n T q q S ⎛⎫=- ⎪⎝⎭,所以2311(2)22n n n n T S S q q S q q ⎛⎫⎛⎫-=⋅--=⋅+⋅- ⎪ ⎪⎝⎭⎝⎭,因为0n S >,且(1,0)(0,)q ∈-⋃+∞,所以,当12q =-或2q 时,0n n T S -=,即n n T S =,故A选项正确.当112q -<<-或2q >时,0n n T S ->,即n n T S >,故B 选项正确,D 选项错误. 当12(0)2q q -<<≠时,0n n T S -<,即n n T S <,故C 选项错误; 故选:AB. 38.BD 【详解】A :由214S a =可得213a a =,所以等比数列{}n a 的公比3q =,所以113n n a a -=⨯. 由2a 是11a +与312a 的等差中项,可得2131212a a a =++,即()2111123132a a a ⨯=++⨯,解得12a =,所以123n n a -=⨯,所以A 不正确; B :()()1121331113nnnn a q S q-⨯-===---,所以B 正确;C :()()111123111331313131n n n n n n n n n a b S S -+++⨯⎛⎫===- ⎪⋅----⎝⎭,所以C 不正确;D :12n n T b b b =++⋅⋅⋅+1223111111111111113333231313131313131n n n ++⎛⎫⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭⎝⎭所以数列{}n T 是递增数列,得11110326n T T ⎛⎫≤<⨯-= ⎪⎝⎭,所以1186n T ≤<,所以D 正确.故选:BD. 39.BC【详解】若数列{}n a 是公差为d 的等差数列,则211(1)()222n n n d d dS na n a n -=+=+-, 当0d =时,若10a ≠,则1n S a n =⋅,n S 是n 的一次函数,不存在符合题意的H ,A 错误; 数列{}n a 是“和有界数列”,当0d ≠时,n S 是n 的二次函数,不存在符合题意的H ,当0d =,10a =时,存在符合题意的H ,B 正确;若数列{}n a 是公比为(1)≠q q 的等比数列,则1(1)1-=-n n a q S q,因q 满足1q <,则||1n q <,即|1|2nq -<,11|||||1|2||11n n a a S q qq=⋅-<--,则存在符合题意的实数H ,即数列{}n a 是“和有界数列”,C 正确;若等比数列{}n a 是“和有界数列”,当1q =-时,若n 为偶数,则0n S =,若n 为奇数,则1n S a =,即1=n S a ,从而存在符合题意的实数H ,D 错误. 故选:BC 40.AD 【详解】因为123nn n a a a +=+,所以112323n nn n a a a a ++==+, 所以111323n n a a +⎛⎫+=+ ⎪⎝⎭,且11340a +=≠, 所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2为公比的等比数列,即11342n na -+=⨯,所以1231n na +=-,可得1123n n a +=-,故选项A 正确,选项B 不正确;因为1231n na +=-单调递增,所以1123n n a +=-单调递减,即{}n a 为递减数列,故选项C 不正确;1n a ⎧⎫⎨⎬⎩⎭的前n 项和()()()()2312132323232223n n n T n ++=-+-+⋅⋅⋅+-=++⋅⋅⋅+- 22122323412nn n n +-=⨯-=---.故选项D 正确;故选:AD . 41.2n -1(n ∈N *) 【详解】a n -a n -1=a 1q n -1=2n -1,即21232112,2,2n n n a a a a a a ---=⎧⎪-=⎪⎨⎪⎪-=⎩ 各式相加得a n -a 1=2+22+…+2n -1=2n -2, 故a n =a 1+2n -2=2n -1(n ∈N *). 又1n =时,11a =符合a n =2n -1 故答案为:2n -1(n ∈N *). 42.12 【详解】由210S 30-(210+1)S 20+S 10=0, 得210(S 30-S 20)=S 20-S 10.∴302010201012S S S S -=-,∵数列{a n }是等比数列∴10302021222330201011121320S S a a a a q S S a a a a -++++==-++++ 故101012q =,解得:12q =± 因为等比数列{a n }为正项数列,所以0q >,故12q = 故答案为:12 43.2- 【分析】由等比数列的通项公式与性质求解即可 【详解】∵等比数列{a n }的公比为12-,则()1351352461352a a a a aa a a a q a a a ++++==-++++.故答案为:2-44.4042. 【详解】由1n n n a a b +=+1n n n b a b +=+ 两式相加可得:()112n n n n a b a b +++=+,故数列{}n n a b +是以2为首项,2为公比的等比数列, 所以2nn n a b +=;两式相乘可得:()()222112n n n n n n n n a b a b a b a b ++⋅=+-+=⋅,故数列{}n n a b ⋅是以1为首项,2为公比的等比数列, 所以12n n n a b -⋅=, 故112n nn nn n n a b c a b a b ⎛⎫+=+==⎪⋅⎝⎭, 故数列{}n c 的前2022项和为2021202124042S =⨯=, 故答案为:4042 45.32 【详解】当q =1时,显然不符合题意;当q ≠1时,3161(1)714(1)6314a q q a q q ⎧-=⎪-⎪⎨-⎪=⎪-⎩,解得1142a q ⎧=⎪⎨⎪=⎩,∴a 8=14×27=32. 故答案为:32 46.(1)12n n b -=(2)[)2,+∞ (1)由已知可得()2111++=+n n a a ,所以()()1lg 12lg 1++=+n n a a ,即12n n b b +=, 又()()11lg 1lg 191b a =+=+=,所以{}n b 是首项为1,公比为2的等比数列,所以12n n b -=.(2)由(1)可知()1lg 12n n n a b -=+=,所以12101n n a -=-,12110n n n c a -=+=.所以021112222122212122101011010100n nn n n S c c c --+++⋅⋅⋅+-⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅==⋅=⋅.lg n n S b λ<即1212n n λ--<,即1122n λ->-, 因为1122n --关于n 单调递增,而11222n --<且无限接近于2, 所以实数λ的取值范围是[)2,+∞. 47.(1)21n a n =-(2)()12326n n T n +=-⨯+(1)设{}n a 的公差为d (0d ≠).由题可知()()1211165636,24,a d a d a a d ⨯⎧+=⎪⎨⎪+=+⎩解得11,2,a d =⎧⎨=⎩所以{}n a 的通项公式为()12121n a n n =+-=-. (2)由(1)可知()212nn b n =-⨯,所以()()231123252232212n nn T n n -=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯…①()()23412123252232212n n n T n n +=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯…②①-②得()()23122222212n n n T n +-=+⨯++⋅⋅⋅+--⨯()()()211121222212322612n n n n n -++⨯-=+⨯--⨯=-⨯--,所以()12326n n T n +=-⨯+.48.(1)A =-2,2nn a =.(2)()1122n n T n ++=-(1)根据题意,数列{}n a 的前n 项和S n =2n +1+A , 则a 1=S 1=22+A =4+A ,a 2=S 2-S 1=(23+A )-(22+A )=4, a 3=S 3-S 2=(24+A )-(23+A )=8,又由{}n a 为等比数列,则a 1×a 3=(a 2)2,即(4+A )×8=42=16, 解可得A =-2,则a 1=4-2=2,即数列{}n a 是首项为2,公比为2的等比数列, 则2nn a =, (2)设2n n b log a =,则设222nn n b log a log n ===, 则2nn n a b n ⨯=,故231222322nn T n ⨯⨯⨯⋯⋯⨯=++++,①则有()23121222122n n n T n n ⨯+⨯+⋯⋯+⨯⨯+=-+,② ①-②可得:()231122222122n n n n T n n +++++⋯⋯+⨯-=-=--,变形可得:()1122n n T n ++=-,故()1122n n T n ++=-.49. (1)证明:由题意有22111,(2)n n n n n n S S a S S a n ++-+=+=≥,两式相减得2211n n n n a a a a +++=-,即()22110n n n n a a a a ++--+=,所以()()1110n n n n a a a a ++--+=,因为数列{}n a 为正项数列,所以10n n a a ++>, 所以11(2)n n a a n +-=≥,又因为2212S S a +=,即22122a a a +=,解得22a =,且11a =, 所以211a a -=也满足上式,所以*11()n n a a n N +-=∈,所以数列{}n a 为以1为首项1为公差的等差数列; (2)证明:由(1)有()111n a n n =+-⨯=,又2112na n nb b ++⋅=,所以2112n n n b b ++⋅=,()21122n n n b b n --⋅=≥,两式相除有()2112112422n n n n b n b ++--==≥,又12b =,24b =, 所以135721,,,,,n b b b b b -是以12b =为首项,公比为4的等比数列,24682,,,,,n b b b b b 是以24b =为首项,公比为4的等比数列,所以数列{}n b 是以12b =为首项,公比为2的等比数列,所以2nn b =,所以2n n na nb =,令1212n n na a a Tb b b =++⋅⋅⋅+, 则()2111111212222n n nT n n -=⨯+⨯+⋅⋅⋅+-⨯+⨯, ()2311111112122222n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+⨯, 两式相减可得231111111111111222112222222212nn n n n n n T n n +++⎛⎫- ⎪+⎝⎭=++++-⨯=-⨯=--,所以222n nn T +=-, 因为n N ∈,所以2222n nn T +=-<,从而得证原不等式成立. 50. (1)解:由11n n a S +=+,得11(2)n n a S n -=+≥, 所以11(2)2(2)n n n n n a a a n a a n ++-=≥=≥,即 又由11a =,得22a =,满足12n n a a +=,所以12n n a ,而122n n n n b b a +-==,所以1211222n n n b b ---=++⋯+,所以()1211212221=2121n n n nn b --⨯-=++++=--…;(2) 证明:因为11+12111()2(21)(21)2121n nn n n n c -+==-----, 所以121223111111111111()=(1)22221212121212121n n n n c c c ++++=-+-+--<-------.。

福建省福建师范大学附属中学2023-2024学年高一下学期7月期末考试数学试题(含答案)

福建省福建师范大学附属中学2023-2024学年高一下学期7月期末考试数学试题(含答案)

福建师大附中2023-2024学年第二学期期末考试高一数学试卷时间:120分钟满分:150分试卷说明:(1)本卷共四大题,20小题,解答写在答卷的指定位置上,考试结束后,只交答卷.(2)考试过程中不得使用计算器或具有计算功能的电子设备.第Ⅰ卷(选择题,共58分)一、选择题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.设i 为虚数单位,复数满足,则复数的虚部是( )A .B .C .3iD .32.某汽车生产厂家用比例分配的分层随机抽样方法从A ,B ,C 三个城市中抽取若干汽车进行调查,各城市的汽车销售总数和抽取数量如右表所示,则样本容量为( )城市销售总数抽取数量A 420m B 28020C 700nA .60B .80C .100D .1203.某校文艺部有4名学生,其中高一、高二年级各2名,从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A.B .C .D .4.设是两条不同的直线,是两个不同的平面,给出下列说法,其中正确的是( )A .若,则B .若,则C .若,则D .若,则5.如图,在三棱锥中,分别是,的中点,则异面直线所成角的余弦值为()z ()i 142i z +=+z i-1-16131223,m n ,αβ,,m n m n αβ⊥⊥∥αβ⊥,m m αβ⊥∥αβ⊥,,m n m n αβ⊥⊂⊂αβ⊥,,m n m n αβ⊥⊂⊥αβ⊥A BCD -6,4,,AB AC BD CD AD BC M N ======AD BC ,AN CMA.B .C .D .6.有一组样本数据:,其平均数为2024.由这组数据得到一组新的样本数据:,那么这两组数据一定有相同的( )A .极差B .中位数C .方差D .众数7.已知正四棱台上底面边长为1,下底面边长为2,体积为7,则正四棱台的侧棱与底面所成角的正切值为( )ABCD .8.已知三棱锥中,平面,底面是以为直角顶点的直角三角形,且,三棱锥,过点作于,过作于,则三棱锥外接球的体积为()A .BCD .二、选择题:本题共3小题,每小题6分,共18分。

高中数学《抛物线切线2》导学案

高中数学《抛物线切线2》导学案

抛物线切线的性质2例1:过点P (3,4)作抛物线x 2=2y 的两条切线,切点分别为A 、B ,则直线AB 的斜率为 . 解:根据定理1的公式得,AB 直线方程为:()4300+=⇒+=y x y y p xx ,故斜率为3。

切点弦性质定理1:设过点P 与抛物线对称轴平行的直线交抛物线于M ,交切点弦于点Q ,则Q 点平分切点弦AB 。

(无论点P 在曲线的什么位置,上述结论均成立)。

且M 处的切线平行于抛物线的切点弦。

(图1,3) 定理2:直线:l y kx m =+上一动点Q 引抛物线两切线,QA QB ,则过两切点的直线AB 必过定点G (图2,4)如图1,点()00,y x P 为抛物线py x 22=外任意一点,过点P 作抛物线两条切线分别切于A 、B 两点,AB 的中点为Q ,直线PQ 交抛物线于点M ,求证:(1)()轴上的截距在为直线,y AB m m y x x G -==00;且直线AB 方程为()00y y p xx +=;(2)设点M 处的切线l ,求证AB //l 。

证明:(1) 点()11,y x A ()22,y x B 在抛物线上∴2221212;2py x py x ==求导得pxp x y =='22;在点()11,y x A ()22,y x B 的切线方程为:()()⎪⎪⎩⎪⎪⎨⎧-=--=-222111x x p x y y x x p x y y 即()()()()⎩⎨⎧+=+=212211y y p xx y y p xx ()()12-得:()1212)(y y p x x x -=-,即222)(12212212x x x p x p x p x x x +=⇒⎪⎪⎭⎫⎝⎛-=-∴Q x x x x =+=2120 将点Q ),2(012y x x +代入切线方程得:()0211011222py x x y y p x x x =⇒+=+令AB 方程为y kx m =+,代入22x py =得:0222=--pm pkx x 02122py pm x x =-=∴所以直线AB 过定点(0,0y -);故AB 方程为()()0000x y x y xx p y y p=+-⇒=+ (2)p x k pk x x x pm pkx x 012022022=⇒=+=⇒=--,M 点坐标为⎪⎪⎭⎫ ⎝⎛p x x 2,200,以M 点为切点的切线斜率为px p x y 0022==',故AB //l 。

数学(理)卷·2014届福建省师大附中高二下学期期末考试

数学(理)卷·2014届福建省师大附中高二下学期期末考试
若第 n 行中从左至右第 14 与第 15 个数的比为 2 : 3 , 则 n 的值为 A. 32 C. 34
5 10
12.在右图所示的电路中,5 只箱子表示保险匣,箱中所示数值表示通
电时保险丝被切断的概率,当开关合上时,电路畅通的概率是 A.
29 36
B.
551 720 第Ⅱ卷
C.
29 72
D.
29 144
“中国式过马路” 存在很大的交通安全隐患.某调查机构为了解路人对 “中国式过马路 ” 的态度是否与性别有关,从马路旁随机抽取 30 名路人进行了问卷调查,得到了如下列 联表: 反感 不反感 合计 男性 10 女性 8 30 合计
已知在这 30 人中随机抽取 1 人抽到反感“中国式过马路 ”的路人的概率是
所以,没有 95 的把握认为反感“中国式过马路”与性别有关. (Ⅱ) X 的可能取值为 0,1, 2.
ì x = t -1 C. í î y = 2t - 1
x = sin q D. ì í î y = 2 sin q + 1
4.已知随机变量 X ~ N (3,1) ,且 P (2 £ X £ 4) = 0.6826 ,则 P ( X > 4) 等于
A. 0.1585 B. 0.1586 C. 0.1587 D. 0.1588
福建师大附中 2012—2013 学年度下学期期末考试
高二数学理试题
本试卷共 4 页. 满分 150 分,考试时间 120 分钟. 注意事项:试卷分第 I 卷和第 II 卷两部分,将答案填写在答卷纸上,考试结束后只交答案 卷.
第I卷
共 60 分
一、选择题:本大题有 12 小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只

空间向量与平行关系

空间向量与平行关系

服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
(1)设 n1=(x1,y1,z1)是平面 ADE 的法向量,则 n1⊥D→A,n1 ⊥A→E,
即nn11··DA→→EA==22yx11+=z01,=0, 得zx11==-0,2y1, 令 z1=2,则 y1=-1,所以 n1=(0,-1,2). 因为F→C1·n1=-2+2=0,所以F→C1⊥n1. 又因为 FC1⊄平面 ADE,所以 FC1∥平面 ADE.
服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
【解析】 A→B=(1,-2,0),A→C=(2,-4,2),设平面 ABC 的 法向量为 n=(x,y,z),
则2x-x-24y=y+02,z=0, 令 y=1,得 x=2,z=0, 故平面 ABC 的一个法向量为 n=(2,1,0). 【答案】 (2,1,0)(答案不唯一)
量为( )
A.(1,2,3)
B.(1,3,2)
C.(2,1,3)
D.(3,2,1)
【解析】 A→B=(2,4,6)=2(1,2,3).
【答案】 A
服/务/教/师 免/费/馈/赠
返回菜单
数学-选修2-1
2.(2014·济宁高二质检)已知向量 a=(2,-3,5)与 b=(4,x,
y)平行,则 x,y 的值分别为( )
返回菜单
数学-选修2-1
正方体 ABCD-A1B1C1D1 中,E、F 分别为棱 A1D1、A1B1 的中点, 在如图 3-2-2 所示的空间直角坐标系中,求:
图 3-2-2
(1)平面 BDD1B1 的一个法向量; (2)平面 BDEF 的一个法向量.
服/务/教/师 免/费/馈/赠

福建省师大附中10-11学年高二上学期期末考试数学理试题

福建省师大附中10-11学年高二上学期期末考试数学理试题

福建省师大附中2010-2011学年高二上学期期末考试数学(理科)试卷(满分:150分,时间:120分钟)说明:试卷分第I 卷和第II 卷两部分,请将答案填写在答案卷上,考试结束后只交答案卷.第I 卷 共100分一、选择题:(每小题5分,共50分,在每小题给出的四个选项中,只有一项符合要求)1、准线方程为x=1的抛物线的标准方程是( *** )A.x y 22-=B.x y 42-=C.x y 22=D.x y 42= 2、已知命题x x R x p sin ,:>∈∀,则p 的否定形式为( *** ) A .x x R x p sin ,:<∈∃⌝ B .x x R x p sin ,:≤∈∀⌝ C .x x R x p sin ,:≤∈∃⌝ D .x x R x p sin ,:<∈∀⌝ 3、两个非零向量的模相等是这两个向量相等的( *** ) A .充分不必要条件. B .必要不充分条件C .充要条件D .既不充分也不必要条件4、若双曲线2214x y m-=的焦距为6, 则m 的值等于( *** ) A .32 B .8 C .5 D . 5-5、在四棱锥P ABCD -中,底面ABCD 是正方形,E 为PD 中点,若PA a =,PB b =,PC c =,则BE =( *** ) A.111222a b c -+ B.111222a b c -- C.131222a b c -+ D.113222a b c -+6、如图,ABCD —A 1B 1C 1D 1是正方体,B 1E 1=D 1F 1=411B A , 则BE 1与DF 1所成角的余弦值是( *** ) A .1715 B .21C .178D .237、过抛物线 y 2 = 8x 的焦点作直线交抛物线于A (x 1, y 1)B (x 2, y 2)两点,如果21x x +=6,那么AB = ( *** )A .6B .8C .9D .108、已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =( *** )A .2B .4C . 6D .89、椭圆221259x y +=上一点M 到焦点1F 的距离为2,N 是1MF 的中点, 则ON 等于( *** ) A .2 B .4 C .6 D .3210、方程)022≠+==ab b ax y ay x (与的图像只可能是下图中( *** )二、填空题:(每小题5分,共15分)11、已知向量(1,0,1)a =-,(1,2,3),b k R =∈,且()ka b -与b 垂直,则k 等于*****.12、已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程是,它的一个焦点在抛物线224y x =的准线上,则双曲线的方程为 ****** .13、以下四个命题中:①“若对所有满足22a b =的,a b ,都有a b =”的否命题;②若直线l 的方向向量为=(1,1-,2),平面α的法向量为=(-2,0,1), 则l ∥α.③曲线192522=+y x 与曲线125922=-+-k y k x (0﹤k ﹤9)有相同的焦点; ④,,,A B M N 是空间四点,若,,BA BM BN 不能构成空间的一个基底,那么,,,A B M N 四点共面;其中真命题的序号为*****.三、解答题:(本大题共3题,共35分) 14、(本小题10分)某隧道的横段面是由一段抛物线及矩形的三边组成的,尺寸如图所示。

福建师大附中2013-2014学年高二上学期期末考试数学理试题

福建师大附中2013-2014学年高二上学期期末考试数学理试题

福建师大附中2013—2014学年度上学期期末考试高二数学理试题本试卷共4页. 满分150分,考试时间120分钟.注意事项:试卷分第I 卷和第II 卷两部分,将答案填写在答卷纸上,考试结束后只交答案卷.第I 卷 共60分一、选择题:本大题有12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求.1.抛物线x y 212=的焦点到准线的距离为( ***** ) A. 18 B. 14 C. 12 D. 12.已知()()0,3,0,321F F -,动点P 满足:621=+PF PF ,则动点P 的轨迹为( ***** )A.椭圆B. 抛物线C. 线段D. 双曲线3.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中,真命题的个数为( ***** )A .1B .2C .3D .44.已知向量)0,1,1(=,)2,0,1(-=,且k +与-2互相垂直,则k 的值是( ***** )A .1B .51 C .53 D .575. 下列有关命题的说法正确的是( ***** )A .命题“若21x =,则1=x ”的否命题为:“若21x =,则1x ≠”.B .“1x =-”是“2560x x --=”的必要不充分条件.C .命题“x R ∃∈,使得210x x ++<”的否定是:“x R ∀∈, 均有210x x ++<”. D .命题“若x y =,则sin sin x y =”的逆否命题为真命题。

6.在棱长为1的正方体ABCD —A 1B 1C 1D 1中,M 和N 分别为A 1B 1和BB 1的中点,那么异面直 线AM 与CN 所成角的余弦值是( ***** )A .52- B .52 C .1010- D .10107.在四棱锥P ABCD -中,底面ABCD 是正方形,E 为PD 中点,若PA a = ,PB b = ,PC c = ,则BE =( ***** ) A.111222a b c -+ B.111222a b c -- C.131222a b c -+ D.113222a b c -+8.设21,F F 为双曲线1422=-y x 的两个焦点,点P 在双曲线上且02190=∠PF F ,则21PF F ∆的面积是( ***** )A .1B .25C .2D .5 9.已知双曲线22221x y a b-=的一条渐近线与抛物线21y x =+只有一个公共点,则双曲线的离心率为(***** )A. 5B.C. D.5410.如图,在棱长为3的正方体ABCD —A 1B 1C 1D 1中, M 、N 分别是棱A 1B 1、A 1D 1的中点,则点B 到平面AMN 的距离是( ***** )A .29B .3C .32D .211.如图,在平行六面体1111ABCD A B C D -中,底面是边长为1的正方形,若01160A AB A AD ∠=∠=,且13A A =,则1AC 的长为( ***** )A B .CD 12.由半椭圆12222=+by a x (x ≥0)与半椭圆12222=+c x b y (x ≤0)合成的曲线称作“果圆”,如图所示,其中222a b c =+,a >0b c >>.由右椭圆12222=+by a x (0x ≥)的焦点0F 和左椭圆12222=+c x b y (0x ≤)的焦点1F ,2F 确定的012F F F ∆叫做果圆的焦点三角形,若果圆的焦点三角形为锐角三角形,则右椭圆12222=+b y a x (0x ≥)的离心率的取值范围为( ***** )A .)1,31( B .)1,32( C .)1,33( D .)33,0(第Ⅱ卷 共90分二、填空题:本大题有5小题,每小题5分,共25分,把答案填在答卷的相应位置.13.椭圆1422=+y m x 的焦距为2,则m 的值等于 ******** . 14.已知点P 是圆F 14)3(:22=++y x 上任意一点,点F 2与点F 1关于原点对称. 线段PF 2的中垂线与PF 1交于M 点,则点M 的轨迹C 的方程为 ******** .15.设P 是曲线24=y x 上的一个动点,则点P 到点(1,2)-A 的距离与点P 到1=-x 的距离之和的最小值为 ******** .16.如图,抛物线形拱桥的顶点距水面2米时,测得拱桥内水面宽为12米,当水面升高1米后,则拱桥内水面的宽度为 ******** 米.17.已知动点(,)P x y 在椭圆2212516x y +=上,若A 点坐标为(3,0),||1AM = ,且0PM AM ⋅= 则||PM 的最小值是 ******** .三、解答题:本大题有5题,共65分,解答应写出文字说明、证明过程或演算步骤.18.(本小题满分12分)已知命题p :方程11222=--m y m x 表示焦点在y 轴上的椭圆,命题q :双曲线1522=-mx y 的离心率)2,1(∈e ,若 “p q 或”为真命题,“p q 且”为假命题,求实数m 的取值范围.19.(本小题满分15分)已知直三棱柱111C B A ABC -中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =1AA ,D 、E 、F 分别为A B 1、C C 1、BC 的中点. (I)求证:DE ∥平面ABC ; (II)求证:F B 1⊥平面AEF ;(III)求二面角F AE B --1的余弦值.20.(本小题满分12分)在平面直角坐标系xoy 中,F 是抛物线)0(2:2>=p px y C 的焦点,圆Q 过O 点与F 点,且圆心Q 到抛物线C 的准线的距离为23. (1)求抛物线C 的方程;(2)过F 作倾斜角为060的直线L ,交曲线C 于A ,B 两点,求OAB ∆的面积;(3)已知抛物线上一点)4,4(M ,过点M 作抛物线的两条弦ME MD 和,且ME MD ⊥,判断:直线DE 是否过定点?说明理由。

福建师范大学附属中学2021-2022学年高一下学期期中考试数学试卷

福建师范大学附属中学2021-2022学年高一下学期期中考试数学试卷

福建师大附中2021 - 2022学年下学期期中考试高一数学试卷时间:120分钟满分:150分试卷说明:(1)本卷共四大题,22小题,解答写在答卷的指定位置上,考试结束后,只交答卷.(2)考试过程中不得使用计算器或具有计算功能的电子设备.第Ⅰ卷(选择题,共48分)一、选择题:本题共8小题,每小题5分,共40分.在每小圆给出的四个选项中,只有一项是符合题目要求的.1.已知复数z满足z(1 + 2i)= |4 + 3i|,(其中i为虚数单位),则复数z的虚部为A. - 2B. - 2iC.1D.i2.在棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为A. a33B.a34C.a36D.a3123.若复数z满足|z - i|≤2,则z·z(其中z为z的共顿复数)的最大值为A.1B.2C.4D.94.在△ABC中,根据下列条件解三角形,其中有两个解的是A.b = 10,A = 45°,C = 70°B.a = 6,c = 8,B = 60°C.a = 8,b = 16,A = 30°D.a = 13,b = 16,A = 45°5.已知向量a,b的夹角为π3,且|a|= 4,|b| = 2,则向量a与向量a+ 2b的夹角等于A.π3B.π6C.5π6D.π26.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为R的水车,以水车的中心为原点,过水车的中心且平行于水平面的直线为x轴,建立平面直角坐标系,一个水斗从点A(3,- 33)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时120秒.经过t秒后,水斗旋转到P点,设P点的坐标为(x,y),其纵坐标满足y = Rsin(ωt + φ)(t≥0,ω > 0,|φ|< π2),当t = 100时,|PA| =A.6B.62C.63D.3(6-2)7.在△ABC中,内角A,B,C的对边长分别为a,b,c,且a2-c2 = 2b,sinAcosC= 3cosAsin C,则b等于A.3B.4C.6D.78.在锐角△ABC中,角A,B,C的对边分别为a,b,c,△ABC的面积为S,若sin(A + C)=2sb2 −c2,则tanC +12tan(B−C)的取值范围A.[2,5√36)B.[2,32)C.(1,7√36)D.(1,√32)二、选择题:本题共4小题,每小题5分,共20分.在每小思给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知a=(1,2),b=(- 4,t),则A.若a∥b,则t = 8B.若a⊥b,则t = 2C.|a-b|的最小值为5D.若a,b的夹角为2π3,则t = 1高一数学试卷第2页,共6页10.设z1,z2是复数,则下列说法中正确的是A.若|z1| = |z2|,则z12 = z22B.若|z1|=|z2|,则z1=±z2C.若z1z2 = 0,则z1 = 0或z2 = 0D.若|z1-z2| = 0,则z1 = z211.已知△ABC是边长为2的等边三角形,D,E分别是AC,AB上的点,且AE=EB,AD = 2DC,BD与CE交于点O,则A.OC = EOB.AB·CE = 0C.|OA + OB + OC + OD| =3D.ED在BC方向上的投影向量为712BC12.在直三棱柱ABC - A1B1C1中,∠ABC = π3,AC = AA1,若该三校柱的外接球的表面积为28π,则该三棱柱的体积不可能是A.15B.18C.21D.24三、填空题:本题共4小题,每小题5分,共20分。

湖南师大附中高二第一次月考理科数学试卷

湖南师大附中高二第一次月考理科数学试卷

湖南师大附中高二第一学期第一次阶段性检测数学(理科)时量:120分钟 满分:150分一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 已知集合⎭⎬⎫⎩⎨⎧≤<=2221x xA ,⎭⎬⎫⎩⎨⎧≤⎪⎭⎫ ⎝⎛-=021ln x x B ,则()=B C A R I ( )A. φB. ⎥⎦⎤ ⎝⎛-21,1C. ⎪⎭⎫⎢⎣⎡1,21D. (]1,1-2. 下列有关命题的说法正确的是( )A. 命题“若12=x ,则1=x ”的否命题为:“若12=x ,则1≠x ” B. “1-=x ”是“0652=--x x ”的必要不充分条件C. “2=a ”是函数“()x x f 4log =在区间()+∞,0上为增函数”的充分不必要条件D. 命题“若y x ≠,则y x sin sin ≠”的逆命题为真命题 3. 设正项等比数列{}n a 的前n 项和为n S ,且11<+nn a a ,若2053=+a a ,6453=a a ,则=4S ( ) A. 63或120B. 256C. 120D. 634. 若0>x 且1≠x ,则函数10log lg x x y +=的值域为( ) A. RB. [)+∞,2C. (]2,-∞-D. (]2,-∞-U [)+∞,25. 设集合⎭⎬⎫⎩⎨⎧<+-=011x x xA ,{}a x x B <-=1,则“1=a ”是“A ∩B ≠0”的( ) A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6. 已知等差数列{}n a 的公差0≠d ,且1a ,3a ,13a 成等比数列,若11=a ,n S 为数列{}n a 的前n 项和,则3162++n n a S 的最小值为( )A. 3B. 4C. 232-D.297. 4枝玫瑰花与5枝茶花的价格之和不小于22元,而6枝玫瑰花与3枝茶花的价格之和不大于24元,则2枝玫瑰花和3枝茶花的价格之差的最大值是( ) A. 1- B. 0 C. 1 D. 2 8. 设n S 为等差数列{}n a 的前n 项的和,且11=a ,12016201820162018=-S S ,则数列⎭⎬⎫⎩⎨⎧n S 1的前2018项和为( )A. 20171B. 20182017C.10092017D.201940369. 已知1-=+y x ,且x 、y 都是负数,则xyxy 1+有( ) A. 最小值2B. 最大值2C. 最小值417D. 最大值417-10. 已知函数()x x a x f cos sin +=(a 为常数,R x ∈)的图象关于直线6π=x 对称,则函数()x a x x g cos sin +=的图象( ) A. 关于直线3π=x 对称B. 关于点⎪⎭⎫⎝⎛0,32π对称 C. 关于点⎪⎭⎫⎝⎛0,3π对称D. 关于直线6π=x 对称11. 我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,长5尺,一头粗,一头细,在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”设该金杖由粗到细是均匀变化的,其重量为M ,现将该金杖截成长度相等的10段,记第i 段的重量为()10,,2,1Λ=i a i ,且1021a a a <<<Λ,若M a i 548=,则=i ( ) A. 4B. 5C. 6D. 712. 已知函数()()1sin 2++=ϕωx x f ⎪⎭⎫⎝⎛≤>2,1πϕω,其图象与直线1-=y 相邻两个交点的距离为π,若()1>x f 对于任意的⎪⎭⎫⎝⎛-∈3,12ππx 恒成立,则ϕ的取值范围是( ) A. ⎥⎦⎤⎢⎣⎡3,12ππB. ⎥⎦⎤⎢⎣⎡2,12ππC. ⎥⎦⎤⎢⎣⎡3,6ππ D. ⎥⎦⎤⎝⎛2,6ππ二、填空题:本大题共4小题,每题5分,共20分.13. 已知向量()2,1=,()3,4=,且()t +⊥,则实数=t ;14. 太极图是以黑白两个鱼形纹组成的图形图案,它形象化地表达了阴阳轮转,相反相成是万物生成变化根源的哲理,展现了一种相互转化,相对统一的形式美,按照太极图的构图方法,在平面直角坐标系中,圆O 被x y4sin3π=的图象分割为两个对称的鱼形图案,其中小圆的半径均为1,现在大圆内随机取一点,则此点取自阴影部分的概率为 ;15. 若直线()0,002>>=-+b a by ax 始终平分圆22222=--+y x y x 的周长,则ba 121+的最小值为 ; 16. 已知实数x 、y 满足⎪⎩⎪⎨⎧≥-+≥+-≤--022*******y x y x y x ,在这两个实数x 、y 之间插入三个实数,使这五个数构成等差数列,那么这个等差数列后三项和的最大值为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17. (本小题满分10分)已知()21cos 2sin 232-+=x x x f ,R x ∈ (Ⅰ)求函数()x f 的单调递增区间,并求满足函数()x f 在区间[]m m ,-上是单调递增函数的实数m 的最大值; (Ⅱ)若()310=x f ,⎥⎦⎤⎢⎣⎡∈125,60ππx ,求02sin x 的值.18. (本小题满分12分)如图,在平面四边形ABCD 中,AD AB ⊥,1=AB ,7=AC ,ABC ∆的面积23=∆ABC S ,574=DC . (Ⅰ)求BC 的长;(Ⅱ)求ACD ∠的大小.19. (本小题满分12分)在公比为q 的等比数列{}n a 中,已知161=a ,且1a ,22+a ,3a 成等差数列. (Ⅰ)求q ,n a ;(Ⅱ)若1<q ,求满足()101212321>-+-+--n n a a a a Λ的最小的正整数n 的值.20. (本小题满分12分)如图,几何体11DC A ABC -由一个正三棱柱截去一个三棱锥而得,4=AB ,231=AA ,11=D A ,⊥1AA 平面ABC ,M 为AB 的中点,E 为棱1AA 上一点,且//EM 平面D BC 1.(Ⅰ)若N 在棱BC 上,且NC BN 2=,证明://EN 平面D BC 1;(Ⅱ)过A 作平面BCE 的垂线,垂足为O ,确定O 的位置(说明做法及理由),并求线段OE 的长.21. (本小题满分12分)水培植需要一种植物专用营养液,已知每投放a (40≤<a 且R a ∈)个单位的营养液,它在水中释放的浓度y (克/升)随着时间x (天)变化的函数关系式近似为()x af y =,其中()()()⎪⎩⎪⎨⎧≤<-≤≤-+=5252033x x x x xx f ,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.(Ⅰ)若只投放一次2个单位的营养液,则有效时间最多可持续几天?(Ⅱ)若先投放2个单位的营养液,3天后再投放b 个单位的营养液,要使接下来的2个单位的营养液天中,营养液能够持续有效,试求b 的最小值.22. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,点⎪⎭⎫ ⎝⎛n S n n ,在直线21121+=x y 上. 正项数列{}n b 满足221++=n n n b b b ()*∈N n ,且273=b ,前3项和为39.(Ⅰ)求数列{}n a ,{}n b 的通项公式; (Ⅱ)求数列(){}na n a 25⋅-的前n 项和nT ;(Ⅲ)设数列()⎭⎬⎫⎩⎨⎧-212n n b b 的前n 项和为n M ,求证:对任意*∈N n ,都有2<n M .。

高二数学复习考点知识与题型专题讲解3---空间向量基本定理

高二数学复习考点知识与题型专题讲解3---空间向量基本定理

高二数学复习考点知识与题型专题讲解1.2 空间向量基本定理【考点梳理】考点一空间向量基本定理如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯一的有序实数组(x,y,z),使得p=x a+y b+z c.我们把{a,b,c}叫做空间的一个基底,a,b,c都叫做基向量.考点二空间向量的正交分解1.单位正交基底如果空间的一个基底中的三个基向量两两垂直,且长度都是1,那么这个基底叫做单位正交基底,常用{i,j,k}表示.2.向量的正交分解由空间向量基本定理可知,对空间任一向量a,均可以分解为三个向量x i,y j,z k使得a=x i+y j+z k. 像这样把一个空间向量分解为三个两两垂直的向量,叫做把空间向量进行正交分解.考点三证明平行、共线、共面问题(1) 对于空间任意两个向量a,b(b≠0),a∥b的充要条件是存在实数λ,使a=λb.(2) 如果两个向量a,b不共线,那么向量p与向量a,b共面的充要条件是存在唯一的有序实数对(x,y),使p=x a+y b.考点三求夹角、证明垂直问题(1)θ为a,b的夹角,则cos θ=a·b|a||b|.(2)若a ,b 是非零向量,则a ⊥b ⇔a ·b =0. 知识点三 求距离(长度)问题 ||a =a ·a ( ||AB →=AB →·AB → ).【题型归纳】题型一:空间向量基底概念1.(2021·广东·广州市海珠中学高二期中)下列说法正确的是( ) A .任何三个不共线的向量可构成空间向量的一个基底 B .空间的基底有且仅有一个C .两两垂直的三个非零向量可构成空间的一个基底D .直线的方向向量有且仅有一个2.(2021·云南师大附中高二期中)已知{},,a b c 能构成空间的一个基底,则下面的各组向量中,不能构成空间基底的是( ) A .,,a b b c +B .,,a a b c -C .,,a c b c a b ---D .,,a b a b c ++3.(2021·湖南·周南中学高二)设向量,,a b c 不共面,则下列可作为空间的一个基底的是( ) A .{,,}a b b a a +-B .{,,}a b b a b +- C .{,,}a b b a c +-D .{,,}a b c a b c +++ 题型二:空间基底表示向量4.(2022·四川·成都外国语学校高二阶段练习(理))如图,在三棱锥O ABC -中,设,,,OA a OB b OC c ===,若,2AN NB BM MC ==,则MN =( )A .112263a b c +-B .112263a b c -+ C .111263a b c --D .111263a b c ++5.(2022·江苏常州·高二期中)在四面体OABC 中,,,OA a OB b OC c ===,点M 在OA 上,且2,OM MA N =为BC 中点,则MN =( ) A .121232a b c -+B .211322a b c -++C .111222a b c +-D .221332a b c ++6.(2022·湖北·武汉市第十九中学高二期末)如图,在四面体OABC 中,OA a =,OB b =,OC c =,点M 在线段OA 上,且2OM MA =,N 为BC 的中点,则MN 等于( )A .111322a b c ++B .111322a b c -+ C .111322a b c +-D .111322a b c -++ 题型三:空间向量基本定理判断共面7.(2022·全国·高二)已知A ,B ,C 三点不共线,O 为平面ABC 外一点,下列条件中能确定P ,A ,B ,C 四点共面的是( )A .OP OA OB OC =++B .2OP OA OB OC =-- C .111532OP OA OB OC =++D .111333OP OA OB OC =++8.(2022·全国·高二)对空间任一点O 和不共线三点A 、B 、C ,能得到P 、A 、B 、C 四点共面的是( )A .OP OA OB OC =++B .111236OP OA OB OC =++ C .1122OP OA OB OC =++D .以上都错9.(2022·全国·高二)下列向量关系式中,能确定空间四点P ,Q ,R ,S 共面的是( )A .AP AQ AR AS →→→→=++B .23AP AQ AR AS →→→→=++ C .23AP AQ AR AS →→→→=+-D .243AP AQ AR AS →→→→=-+ 题型四:空间向量共面求参数10.(2022·江西·临川一中高二期末(理))已知空间向量()2,1,a m =-,()1,1,2b =-,()1,2,2c t =-,若a ,b ,c 共面,则m +2t =( )A .-1B .0C .1D .-611.(2022·江苏·高二课时练习)已知i ,j ,k 是三个不共面的向量,22AB i j k =-+,23BC i j k =+-,35CD i j k λ=+-,且A ,B ,C ,D 四点共面,则λ的值为( ).A .1-B .1C .2-D .212.(2021·山东省实验中学高二期中)已知A ,B ,C 三点不共线,O 是平面ABC 外任意一点,若2156OM OA OB OC λ=++,则A ,B ,C ,M 四点共面的充要条件是( ) A .1730λ=B .1330λ=C .1730λ=-D .1330λ=-题型五:空间向量基本定理的应用13.(2022·四川·阆中中学高二阶段练习(理))已知存在非零实数λ使得AP BC λ=,且(,0)OP OA xOB yOC x y =-++>,则62x y +的最小值为( )A .4+.8C .6.6+14.(2022·安徽蚌埠·高二期末)在下列命题中正确的是( ) A .已知,,a b c 是空间三个向量,则空间任意一个向量p 总可以唯一表示为p xa yb zc =++ B .若,C AB D 所在的直线是异面直线,则,C AB D 不共面 C .若三个向量,,a b c 两两共面,则,,a b c 共面D .已知A ,B ,C 三点不共线,若111236OD OA OB OC =++,则A ,B ,C ,D 四点共面15.(2021·吉林·长春市第二十九中学高二)已知A 、B 、C 三点不共线,点O 是平面ABC 外一点,则在下列各条件中,能得到点M 与A 、B 、C 一定共面的是( )A .111222OM OA OB OC =++B .1313O OB OC M OA =-+ C .OM OA OB OC =++D .2OM O OB OC A =-- 题型六:空间向量基本定理16.(2022·全国·高二课时练习)如图所示,已知1111ABCD A B C D -是平行六面体.(1)化简1AA BC AB ++;(2)设M 是底面ABCD 的中心,N 是侧面11BCC B 对角线1BC 上的34分点,设1MN AB AD AA αβγ=++,试求α,β,γ的值.17.(2021·河北·石家庄市第六中学高二期中)如图,已知正方体'ABCD A B C D -'''.点E是上底面''''A B C D 的中心,取{,,}AB AD AA ' 为一个基底,在下列条件下,分别求,,x y z的值.(1)BD x AD y AB z AA =+'+'; (2)AE x AD y AB z AA =+'+.【双基达标】一、单选题18.(2022·四川省成都市新都一中高二期中(理))已知M ,A ,B ,C 为空间中四点,任意三点不共线,且2OM OA xOB yOC =-++,若M ,A ,B ,C 四点共面,则x y +的值为( ) A .0B .1C .2D .319.(2022·江苏·涟水县第一中学高二阶段练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++D .1OG =111888OA OB OC ++ 20.(2022·四川省绵阳南山中学高二期中(理))如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且13OG OG =,则( )A .1OG OA OB OC =++B .1111333OG OA OB OC =++ C .1111444OG OA OB OC =++D .1111999OG OA OB OC =++21.(2022·四川省绵阳南山中学高二期中(理))已知O ,A ,B ,C 为空间四点,且向量OA ,OB ,OC 不能构成空间的一个基底,则一定有( ) A .OA ,OB ,OC 共线B .O ,A ,B ,C 中至少有三点共线 C .OA OB +与OC 共线D .O ,A ,B ,C 四点共面22.(2022·江苏宿迁·高二期中)已知P 是ABC 所在平面外一点,M 是PC 中点,且BM x AB y AC z AP =++,则x y z ++=( )A .0B .1C .2D .323.(2022·福建龙岩·高二期中)在平行六面体1111ABCD A B C D -中,点E 是线段1CD 的中点,3AC AF =,设AB a =,AD b =,1AA c =,则EF =( ) A .521632a b c +-B .121632a b c ---C .121632a b c ++D .521632a b c --+24.(2022·全国·高二课时练习)设x a b =+,y b c =+,z c a =+,且{},,a b c 是空间的一个基底,给出下列向量组:①{},,a b x ;②{},,x y z ;③{},,b c z ;④{},,x y a b c ++,则其中可以作为空间的基底的向量组有( ) A .1B .2C .3D .425.(2022·广东深圳·高二期末)如图,在三棱柱111ABC A B C -中,E ,F 分别是BC ,1CC 的中点,2AG GE =,则GF =( )A .1121332AB AC AA -+B .1121332AB AC AA ++C .1211332AB AC AA -+-D .1121332AB AC AA -++26.(2022·全国·高二课时练习)在平行六面体ABCD A B C D ''''-中,已知BA ,BC ,BB '为三条不共面的线段,若23AC x AB yBC zC C ''=++,则x y z ++的值为( ). A .1B .76C .56D .11627.(2022·四川省内江市第六中学高二阶段练习(理))已知空间的一组基底{},,a b c ,若m a b c =-+与n xa yb c =++共线,则x y +的值为( ). A .2B .2-C .1D .0【高分突破】一:单选题28.(2022·吉林·长春吉大附中实验学校高二期末)已知空间向量a ,b ,c ,下列命题中正确的个数是( ) ①若a 与b 共线,b 与c 共线,则a 与c 共线; ②若a ,b ,c 非零且共面,则它们所在的直线共面;⑧若a ,b ,c 不共面,那么对任意一个空间向量p ,存在唯一有序实数组(),,x y z ,使得p xa yb zc =++;④若a ,b 不共线,向量(),,0c a b R λμλμλμ=+∈≠,则{},,a b c 可以构成空间的一个基底. A .0B .1C .2D .329.(2022·江苏省阜宁中学高二期中)《九章算术》中的“商功”篇主要讲述了以立体几何为主的各种形体体积的计算,其中堑堵是指底面为直角三角形的直棱柱.如图,在堑堵111ABC A B C -中,,M N 分别是111,A C BB 的中点,G 是MN 的中点,若1AG xAB yAA zAC =++,则x y z ++=( )A .1B .12C .32D .3430.(2022·安徽芜湖·高二期末)下列命题中正确的个数为( ) ①若向量a ,b 与空间任意向量都不能构成基底,则a b ∥;②若向量a b +,b c +,c a +是空间一组基底,则a ,b ,c 也是空间的一组基底; ③{},,a b c 为空间一组基底,若()0,,xa yb zc x y z R ++=∈,则2220x y z ++=;④对于任意非零空间向量()123,,a a a a =,()123,,b b b b =,若a b ∥,则312123aa ab b b ==.A .1B .2C .3D .4 二、多选题31.(2022·福建福州·高二期中)如图,在平行六面体ABCD A B C D ''''-中,AB a =,AD b =,AA c '=.若CM MD '=,12A C A P ''=,则( )A .a A C b c =++'B .1122AM a b c =++C .A ,P ,D 三点共线D .A ,P ,M ,D 四点共面32.(2022·河北邯郸·高二期末)已知a ,b ,c 是空间的一个基底,则下列说法中正确的是( ) A .若0xa yb zc ++=,则0x y z ===B .a ,b ,c 两两共面,但a ,b ,c 不共面C .一定存在实数x ,y ,使得a xb yc =+D .a b +,b c -,2c a +一定能构成空间的一个基底33.(2022·广东惠州·高二期末)下面四个结论正确的是( )A .空间向量a ,()0,0b a b ≠≠,若a b ⊥,则0a b ⋅=B .若对空间中任意一点O ,有111632OP OA OB OC =++,则P 、A 、B 、C 四点共面C .已知{},,a b c 是空间的一组基底,若m a c =+,则{},,a b m 也是空间的一组基底D .任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅34.(2021·浙江·金华市曙光学校高二阶段练习)已知点P 为三棱锥O ABC -的底面ABC 所在平面内的一点,且12OP OA mOB nOC =+-(m ,n R ∈),则m ,n 的值可能为( )A .1m =,12n =-B .12m =,1n =C .12m =-,1n =-D .32m =,1n =35.(2021·湖南·郴州市第三中学高二期中)下列结论正确的是( )A .三个非零向量能构成空间的一个基底,则它们不共面B .两个非零向量与任何一个向量都不能构成空间的一个基底,则这两个向量共线C .若a ,b 是两个不共线的向量,且(c a b λμλ=+,R μ∈且0)λμ≠,则{a ,b ,}c 构成空间的一个基底D .若OA ,OB ,OC 不能构成空间的一个基底,则O ,A ,B ,C 四点共面36.(2021·浙江省杭州第二中学高二期中)已知{},,a b c 是空间中的一个基底,则下列说法正确的是( )A .存在不全为零的实数x ,y ,z ,使得0xa yb zc ++=B .对空间任一向量p ,存在唯一的有序实数组(),,x y z ,使得p xa yb zc =++C .在a ,b ,c 中,能与a b +,a b -构成空间另一个基底的只有cD .不存在另一个基底{},,a b c ''',使得2323a b c a b c '''++=++37.(2021·重庆·高二阶段练习)下列命题中,正确的有( )A .空间任意向量,a b 都是共面向量B .已知P ,A ,B ,C 四点共面,对空间任意一点O ,若2OP OA OB tOC =++,则1t =-C .在四面体中P ABC -,若0PA BC ⋅=,0PC AB ⋅=,则0PB AC ⋅=D .若向量,,a b b c c a +++是空间一组基底,则,,a b c 也是空间的一组基底38.(2022·湖南省临湘市教研室高二期末)已知M ,A ,B ,C 四点互不重合且任意三点不共线,则下列式子中能使{,,}MA MB MC 成为空间的一个基底的是( )A .111345OM OA OB OC =++B .2MA MB MC =+C .23OM OA OB OC =++D .32MA MB MC =-三、填空题39.(2022·全国·高二课时练习)如图,在三棱柱111ABC A B C -中,M 为11A C 的中点,若AB a =,BC b =,1AA c =,则BM =______.(用a 、b 、c 表示)40.(2022·江苏常州·高二期中)已知P 是ABC 所在平面外一点,2=PM MC ,且BM x AB y AC z AP =++,则实数x y z ++的值为____________.41.(2022·全国·高二)已知,a b 是平面α上的两个向量,有以下命题:①平面α上任意一个向量(),p a b R λμλμ=+∈;②若存在,R λμ∈,使0a b λμ+=,则0λμ==;③若,a b 不共线,则空间任意一个向量(),p a b R λμλμ=+∈;④若,a b 不共线,且p 与,a b 共面,则都有(),p a b R λμλμ=+∈.请填上所有真命题的序号___________.42.(2022·广东珠海·高二期末)已知四面体OABC 中,D ,E 分别在AB ,OC 上,且AD DB =,2OE EC =,若DE OA OB OC αβγ=++,则αβγ++=________.43.(2021·福建·三明一中高二)如图所示,M 是四面体OABC 的棱BC 的中点,点N在线段OM 上,点P 在线段AN 上,且AP =3PN ,23ON OM =,设OA a =,,OB b OC c ==,则OP =________(用,,a b c 来表示)44.(2022·全国·高二期末)已知三棱锥O ABC -,点M ,N 分别为线段AB ,OC 的中点,且OA a =,OB b =,OC c =,用a ,b ,c 表示MN ,则MN 等于_____________.45.(2022·全国·高二)已知关于向量的命题,(1)a b a b -=+是a ,b 共线的充分不必要条件;(2)若//a b ,则存在唯一的实数λ,使a b λ=;(3)0a b ⋅=,0b c ⋅=,则a c =; (4)若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一基底; (5)()a b c a b c ⋅⋅=⋅⋅.在以上命题中,所有正确命题的序号是________.四、解答题46.(2022·江苏·徐州市王杰中学高二)如图,在空间四边形OABC 中,已知E 是线段BC 的中点,G 在AE 上,且2AG GE =.(1)试用OA ,OB ,OC 表示向量OG ;(2)若2OA =,3OB =,4OC =,60AOC BOC ∠=∠=︒,90AOB ∠=︒,求OG AB ⋅的值.47.(2022·全国·高二)如图,在平行六面体1111ABCD A B C D -中,12C C EC =,13AC FC =.(1)求证:A 、F 、E 三点共线;(2)若点G 是平行四边形11B BCC 的中心,求证:D 、F 、G 三点共线.48.(2022·江苏·扬州中学高二阶段练习)如图,在四面体OABC 中,M 是棱OA 上靠近A 的三等分点,N 是棱BC 的中点,P 是线段MN 的中点.设OA a =,OB b =,OC c =.(1)用a ,b ,c 表示向量OP ;(2)若1a b c ===,且满足(从下列三个条件中任选一个,填上序号:①,,,3π===a b b c c a ;②,,,,32ππ===a b c a b c ;③2,,,,23a b c a b c ππ===,则可求出OP 的值;并求出OP 的大小.49.(2021·山东济宁·高二期中)已知平行六面体1111ABCD A B C D -中,底面ABCD 是边长为1的正方形,12AA =,1160A AB A AD ∠=∠=︒.(1)求1AD AC ⋅;(2)求1AC .【答案详解】1.C【详解】对于A,任何三个不共面的向量都可构成空间的一个基底,所以A错误,B错误;对于C,两两垂直的三个非零向量不共面,可构成空间的一个基底,C正确;对于D,直线的方向向量有无数个,所以D错误.故选:C2.C【详解】由图形结合分析---,,a cbc a b三个向量共面,不构成基底,故选:C3.C选项A:由于()()2+--=,三个向量共面,故不能作为空间的一个基底;a b b a a选项B:由于()()2++-=,三个向量共面,故不能作为空间的一个基底;a b b a b选项C :若,,a b b a c +-三个向量共面,则存在,x y R ∈,使得()()()()c x a b y b a x y a x y b =++-=-++,则向量,,a b c 共面,矛盾,故,,a b b a c +-三个向量不共面,因此可以作为空间的一个基底;选项D :由于()a b c a b c ++=++,三个向量共面,故不能作为空间的一个基底; 故选:C4.A【详解】连接,,OM ON 111()()()223MN ON OM OA OB OC CM OA OB OC CB =-=+-+=+--=11112112()()23263263OA OB OC OB OC OA OB OC a b c +---=+-=+-. 故选:A5.B【解析】【分析】利用空间向量的线性运算,空间向量基本定理求解即可.【详解】解:点M 在线段OA 上,且2OM MA =,N 为BC 中点,∴23OM OA =,111()222ON OB OC OB OC =+=+, ∴122113122223a b c MN ON OM OB OC OA =-=+-+=-+. 故选:B .6.D【解析】【分析】利用空间向量的加法与减法可得出OM 关于a 、b 、c 的表达式.【详解】()()21113232MN MA AB BN OA OB OA BC OB OA OC OB =++=+-+=-+- 111322a b c =-++. 故选:D.7.D【解析】【分析】根据点P 与点,,A B C 共面,可得1x y z ++=,验证选项,即可得到答案.【详解】设OP xOA yOB zOC =++,若点P 与点,,A B C 共面,则1x y z ++=,对于选项A :11131x y z ++=++=≠,不满足题意;对于选项B :21101x y z ++=--=≠,不满足题意;对于选项C :11131153230x y z ++=++=≠,不满足题意; 对于选项D :1111333x y z ++=++=,满足题意.故选:D.8.B【解析】【分析】证明出若OP xOA yOB zOC =++且1x y z ++=,则P 、A 、B 、C 四点共面,进而可得出合适的选项.【详解】设OP xOA yOB zOC =++且1x y z ++=,则()1OP xOA yOB x y OC =++--,()()OP OC x OA OC y OB OC ∴-=-+-, 则CP xCA yCB =+,所以,CP 、CA 、CB 为共面向量,则P 、A 、B 、C 四点共面. 对于A 选项,OP OA OB OC =++,11131++=≠,P 、A 、B 、C 四点不共面; 对于B 选项,111236OP OA OB OC =++,1111236++=,P 、A 、B 、C 四点共面; 对于C 选项,1122OP OA OB OC =++,1112122++=≠,P 、A 、B 、C 四点不共面.故选:B.9.D【解析】【分析】由243AP AQ AR AS →→→→=-+,得23RP RQ RS →→→=+,即得解. 【详解】由243AP AQ AR AS →→→→=-+,得23AP AR AQ AR AS AR →→→→→→⎛⎫⎛⎫-=-+- ⎪ ⎪⎝⎭⎝⎭,即23RP RQ RS →→→=+,所以RP →,,RQ RS →→为共面向量, 故,,,P Q R S 四点共面. 故选:D . 10.D 【解析】 【分析】根据向量共面列方程,化简求得2m t +. 【详解】2111-≠-,所以,a b 不共线, 由于a ,b ,c 共面, 所以存在,x y ,使c xa yb =+, 即()()()21,2,22,,1,11,t x m y -=--+,()()(),,21,2,22,,t x x y x y y m -+-=-, ()()1,2,22,,2y t x y x x m y ---+=+,21222x y x y mx y t-+=-⎧⎪-=⎨⎪+=⎩,()()13123222x y m t mx y t =-⎧⎪=-⇒⋅-+⋅-=⎨⎪+=⎩, 即26m t +=-.故选:D 11.B 【解析】 【分析】根据已知条件用i ,j ,k 表示AC ,AD ,再由空间共面向量定理设AD x AB y AC =+,再列方程组,解方程组即可求解. 【详解】因为22AB i j k =-+,23BC i j k =+-,35CD i j k λ=+-所以3AC AB BC i j k =+=-- ,()326A AC D CD i j k λ+==++-, 由空间共面向量定理可知,存在实数,x y 满足AD x AB y AC =+, 即()()()326232i j k x i j k i j k y λ++-=-+-+-,所以332262x y x y x y λ+=+⎧⎪=--⎨⎪-=-⎩,解得221x y λ=-⎧⎪=⎨⎪=⎩,所以λ的值为1,故选:B. 12.B 【解析】 【分析】由四点共面的充要可得21156λ++=,求解即可. 【详解】O 是平面ABC 外任意一点,且2156OM OA OB OC λ=++,若A ,B ,C ,M 四点共面的充要条件是21156λ++=,即1330λ=. 故选:B. 13.A 【解析】 【分析】根据向量的共面定理,得到2x y +=,再结合基本不等式,即可求解. 【详解】由题意,存在非零实数λ使得AP BC λ=,可得//AP BC ,即,,,P A B C 四点共面, 因为(,0)OP OA xOB yOC x y =-++>,根据向量的共面定量,可得11x y -++=,即2x y +=,又由621621621()()(62)(84222y x x y x y x y x y +=⋅++=⋅+++≥+=+当且仅当62y x x y=时,即x =时,等号成立,所以62x y +的最小值为4+故选:A. 14.D 【解析】 【分析】对于A ,利用空间向量基本定理判断,对于B ,利用向量的定义判断,对于C ,举例判断,对于D ,共面向量定理判断 【详解】对于A ,若,,a b c 三个向量共面,在平面α,则空间中不在平面α的向量不能用,,a b c 表示,所以A 错误,对于B ,因为向量是自由向量,是可以自由平移,所以当,C AB D 所在的直线是异面直线时,,C AB D 有可能共面,所以B 错误,对于C ,当三个向量,,a b c 两两共面时,如空间直角坐标系中的3个基向量两两共面,但这3个向量不共面,所以C 错误,对于D ,因为A ,B ,C 三点不共线,111236OD OA OB OC =++,且1111236++=,所以A ,B ,C ,D 四点共面,所以D 正确, 故选:D 15.B 【解析】 【分析】证明出当1x y z ++=,且OM xOA yOB zOC =++,则点M 、A 、B 、C 共面.然后逐项验证可得合适的选项. 【详解】若1x y z ++=,且OM xOA yOB zOC =++,则()1OM xOA yOB x y OC =++--,则()()OM OC x OA OC y OB OC -=-+-, 即xCA yCB CM =+,所以,点M 、A 、B 、C 共面. 对于A 选项,1111222++≠,A 选项中的点M 、A 、B 、C 不共面; 对于B 选项,111133-+=,B 选项中的点M 、A 、B 、C 共面;对于C 选项,1111++≠,C 选项中的点M 、A 、B 、C 不共面; 对于D 选项,2111--≠,D 选项中的点M 、A 、B 、C 不共面. 故选:B. 16.(1)1AC ; (2)12α=,14,34γ=. 【解析】 【分析】(1)利用平行六面体的性质及向量的线性运算即得;(2)利用向量线性运算的几何表示可得1113244AB A MN AA D =++,进而即得. (1)∵1111ABCD A B C D -是平行六面体, ∴1111111AA BC AB AA BC A B AC ++=++= (2)∵MN =MB BN +11324DB BC =+()()11324AB AD AA AD =-++ 1113244AB AD AA =++,又1MN AB AD AA αβγ=++, ∴12α=,14,34γ=. 17.(1)1,1,1x y z ==-= (2)11,,122x y z === 【解析】 【分析】(1)利用空间向量的加法运算,结合相等向量,由空间向量的基本定理求解; (2)利用空间向量的加法运算,结合相等向量,由空间向量的基本定理求解; (1)解:BD BA AA A D ''''=++,AD AB AA '=-+,又因为BD x AD y AB z AA =+'+', 所以1,1,1x y z ==-=; (2)AE AA A D D E =+''''+,12AA AD DB ='++,()12AA AD AB AD =++-', 1122AD AB AA =+'+, 又因为AE x AD y AB z AA =+'+, 所以11,,122x y z ===. 18.D 【解析】 【分析】根据四点共面结论:若,,,A B C D 四点共面,则OD aOA bOB cOC =++且1a b c ++=, 【详解】若M ,A ,B ,C 四点共面,则21x y -++=,则3x y += 故选:D . 19.B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++ 故选:B 20.D 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112111333333999OG OG OA AG OA OB OC OA OA OB OC ⎛⎫==+=++-=++ ⎪⎝⎭ 故选:D 21.D 【解析】 【分析】根据空间向量基本定理即可判断 【详解】由于向量OA ,OB ,OC 不能构成空间的一个基底知OA ,OB ,OC 共面,所以O ,A ,B ,C 四点共面 故选:D 22.A 【解析】 【分析】利用向量减法的三角形法则进行计算即可. 【详解】因为M 是PC 中点,()()()1122BM PM PB PC AB AP AC AP AB AP ∴=-=--=--- 1122AB AC AP =-++,又BM x AB y AC z AP =++, 111,,22x y z ∴=-==,∴0x y z ++=. 故选:A. 23.B 【解析】 【分析】利用向量加法的平行四边形法则,减法的三角形法则即可求解 【详解】因为E 为1CD 中点, 所以()()11111112222AE AD AC AA AD AD AB AA AD AB =+=+++=++ ()11333AC AF AF AC AD AB =⇒==+ 所以1111111213322632EF AF AE AD AB AA AD AB AB AD AA =-=+---=--- 即121362a b c EF =--- 故选:B 24.C 【解析】 【分析】以A 为顶点作AB a =,AD b =,1AA c =,作出平行六面体1111ABCD A B C D -,根据空间向量的加法法则作出,,,,x y z a b c ++,然后判断各组向量是否共面可得结论. 【详解】如图,作平行六面体1111ABCD A B C D -,AB a =,AD b =,1AA c =, 则AC a b =+,1AD b c =+,1AB c a =+,1AC a b c =++,由平行六面体知,,,a b x 共面,,,x y z 不共面,,,b c z 不共面,,,x y a b c ++不共面, 因此可以作为空间的基底的有3组. 故选:C .25.D 【解析】 【分析】根据空间向量线性运算的几何意义进行求解即可. 【详解】23GF AF AG AC CF AE =-=+-()11121121232332AC AA AB AC AB AC AA =+-⨯+=-++, 故选:D . 26.B 【解析】 【分析】根据向量的加法法则及共面向量的基本定理即可求解. 【详解】根据向量的加法法则可得AC AB BC CC AB BC C C '''=++=+-,又23AC x AB yBC zC C ''=++,且,,AB BC C C '不共面,所以 1 2=1 3=-1x y z =⎧⎪⎨⎪⎩,解得111,,23x y z ===-,所以1171236x y z ++=+-=. 故选:B. 27.D 【解析】 【分析】根据m 与n 共线,由()xa yb c z a b c ++=-+,即可求解. 【详解】因为m 与n 共线,空间的一组基底{},,a b c , 所以()xa yb c z a b c ++=-+,所以,,1,x z y z z =⎧⎪=-⎨⎪=⎩解得1,1.x y =⎧⎨=-⎩,所以x +y =0. 故选:D. 28.B 【解析】【分析】用向量共线或共面的基本定理即可判断. 【详解】若 a 与b ,b 与c 共线,0b = ,则不能判定a c λ= , 故①错误;若非零向量,,a b c 共面,则向量c 可以在一个与,a b 组成的平面平行的平面上, 故②错误;,,a b c 不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;c a b λμ=+,∴ c 与,a b 共面,故,,a b c 不能组成一个基底,故④错误; 故选:C. 29.C 【解析】 【分析】连接,AM AN ,由()111312244AG AM AN AB AA AC =+=++,即可求出答案. 【详解】连接,AM AN 如下图:由于G 是MN 的中点,()12AG AM AN =+∴ 11111222AA AC AB AA ⎛⎫=+++ ⎪⎝⎭1131244AB AA AC =++. 根据题意知1AG xAB yAA zAC =++.32x y z ∴++=. 故选:C. 30.C 【解析】 【分析】根据题意、空间向量基底的概念和共线的运算即可判断命题①②③,根据空间向量的平行关系即可判断命题④. 【详解】①:向量a b ,与空间任意向量都不能构成一个基底,则a 与b 共线或a 与b 其中有一个为零向量,所以//a b ,故①正确;②:由向量a b b c c a +++,,是空间一组基底,则空间中任意一个向量d ,存在唯一的实数组()x y z ,,使得d ()()()()()()x a b y b c z c a x z a x y b y z c =+++++=+++++,所以a b c ,,也是空间一组基底,故②正确;③:由{}a b c ,,为空间一组基底,若0()xa yb zc x y z R ++=∈,,, 则0x y z ===,所以2220x y z ++=,故③正确;④:对于任意非零空间向量123()a a a a =,,,123()b b b b =,,,若//a b ,则存在一个实数λ使得=a b λ,有112233a b a b a bλλλ=⎧⎪=⎨⎪=⎩,又123b b b ,,中可以有为0的,分式没有意义,故④错误. 故选:C 31.BD 【解析】 【分析】根据空间向量运算判断AB 选项的正确性,根据三点共线、四点共面的知识判断CD 选项的正确性. 【详解】A C AC AB AD a b c A A AA '=-=+-='+'-,A 选项错误. ()()11112222AM AC A AB AD AD a b c D AA =+=+++='++',B 选项正确. 12A C A P ''=则P 是A C '的中点, ()()()111222c AP AC AA AB AD A b A a ''=+=++++=, c AD b AD AA ''=+=+,则不存在实数λ使AP AD λ'=,所以C 选项错误.()1112212122P a b c a b c b M AM AP AD +==⎛⎫=--= ⎪⎝++⎭+,由于,P M ∉直线AD ,所以,,,A P M D 四点共面,所以D 选项正确. 故选:BD 32.ABD 【解析】 【分析】利用空间向量的基底的概念及空间向量基本定理逐项分析即得. 【详解】∵a ,b ,c 是空间的一个基底,则a ,b ,c 不共面,且两两共面、不共线, ∴若0xa yb zc ++=,则0x y z ===,A 正确,B 正确;若存在x ,y 使得a xb yc =+,则a ,b ,c 共面,与已知矛盾,C 错误;设()()()22a b x b c y c a ya xb y x c +=-++=++-,则21,1,0,y x y x =⎧⎪=⎨⎪-=⎩,此方程组无解,∴a b +,b c -,2c a +不共面,D 正确. 故选:ABD. 33.ABC 【解析】 【分析】空间向量垂直的数量积表示可判断A ;由向量四点共面的条件可判断B ;由空间向量基底的定义可判断C ; a b ⋅是一个数值,c b ⋅也是一个数值,说明a 和c 存在倍数关系,或者说共线,可判断D. 【详解】空间向量a ,()0,0b a b ≠≠,若a b ⊥,则0a b ⋅=,故A 正确; 对空间中任意一点O ,有111632OP OA OB OC =++,且1111632++=,则P 、A 、B 、C 四点共面,故B 正确;因为{},,a b c 是空间的一组基底,所以,,a b c 不共面,m a c =+,则,,+a b a c 也不共面, 即{},,a b m 也是空间的一组基底,故C 正确;任意向量a ,b ,c 满足()()a b c a b c ⋅⋅=⋅⋅,由于a b ⋅是一个数值,c b ⋅也是一个数值, 则说明a 和c 存在倍数关系,或者说共线,不一定相等,故D 错误. 故选:ABC. 34.CD 【解析】 【分析】根据平面向量基本定理,结合空间向量加法的几何意义进行求解即可. 【详解】因为点P 为三棱锥O ABC -的底面ABC 所在平面内的一点, 所以由平面向量基本定理可知:()()AP y AC z AB AO OP y AO OC z AO OB =+⇒+=+++,化简得:(1)OP y z OA yOC zOB =--++,显然有11y z y z --++=, 而12OP OA mOB nOC =+-,所以有11122m n m n +-=⇒-=,当1m =,12n =-时,32m n -=,所以选项A 不可能;当12m =,1n =时,12m n -=-,所以选项B 不可能;当12m =-,1n =-时,12m n -=,所以选项C 可能; 当32m =,1n =时,12m n -=,所以选项D 可能, 故选:CD 35.ABD 【解析】 【分析】根据空间向量基本定理即可判断出各个选项的正误. 【详解】解:对于选项A :三个非零向量能构成空间的一个基底,则三个非零向量不共面,所以选项A 正确,对于选项B :三个非零向量不共面,则此三个向量可以构成空间的一个基底, 若两个非零向量与任何一个向量都不能构成空间的一个基底,则这三个向量共面, 则已知的两个向量共线,所以选项B 正确, 对于选项C :(c a b λμλ=+、R μ∈且λ、0)μ≠,∴a ,b,c 共面,不能构成基底,所以选项C 错误,对于选项D :OA 、OB 、OC 共起点,若O 、A 、B 、C 四点不共面,则必能作为空间的一个基底,所以选项D 正确, 故选:ABD .36.BC【解析】【分析】根据空间向量基底概念分别判断即可.【详解】对于A,若存在不全为零的实数x,y,z,使得x y za b c,++=0{a,b,}c不能构成空间的一个基底,所以A错;对于B,因为{a,b,}c构成空间的一个基底,所以对空间任一向量p,总存在唯一的有序实数组(x,y,)z,使得p xa yb zc=++,所以B对;对于C,因为2()()b a b a b=+--,=++-,2()()a ab a b所以a,b,不能与a b+,a b-构成空间另一个基底;又因为设x,y,z R∈若()()0++-+=x a b y a b zc⇒++-+=⇒===,x y a x y b zc x y z()()00所以c与a b+,a b-构成空间另一个基底;所以在a,b,c中,能与a b+,a b-构成空间另一个基底的只有c,所以C对;对于D,存在,根据向量运算几何意义,++表示以O为顶点,以1a,2b,3c为相邻三边的长方体对角线,a b c23绕此对角线长方体旋转,基底也变为另一基底{a',b',}c',都满足2323++='+'+',所以D错误.a b c a b c故选:BC37.ACD【解析】【分析】利用空间向量共面定理及数量积运算,逐一分析判断即可.【详解】解:对于A ,空间任意向量,a b 都是共面向量,所以A 正确;对于B ,已知P ,A ,B ,C 四点共面,对空间任意一点O ,若2OP OA OB tOC =++, 则211t ++=,解得2t =-,所以B 错误;对于C ,在四面体中P ABC -,若0PA BC ⋅=,0PC AB ⋅=,则()()2PA BC PB BA PC PB PB PC PB BA PC BA PB ⋅=+⋅-=⋅-+⋅-⋅ ()2PB PC PB BA PB PB PC PB BA =⋅--⋅=⋅--0PB AC =⋅=,所以C 正确; 对于D ,因为向量,,,a b b c c a +++是空间一组基底,则对于空间任一向量()d x y z =,,,都存在实数m ,n ,p ,使得()()()()d x y z m a b n b c p c a ==+++++,,,即()()()d m p a m n b n p c =+++++,所以,,a b c 也是空间的一组基底,所以D 正确. 故选:ACD .38.AC【解析】【分析】根据基底的性质,结合各选项中向量的线性关系、空间向量基本定理判断M 、A 、B 、C 是否共面,即可知{,,}MA MB MC 是否能成为空间基底.【详解】A :因为111345OM OA OB OC =++,且1111345++≠,利用平面向量基本定理知:点M 不在平面ABC 内,向量,,MA MB MC 能构成一个空间基底;B :因为2MA MB MC =+,利用平面向量基本定理知:向量,,MA MB MC 共面,不能构成一个空间基底;C :由23,1231OM OA OB OC =++++≠,利用平面向量基本定理和空间平行六面体法知:OM 是以点O 为顶点的对角线,向量,,MA MB MC 能构成一个空间基底;D :由32MA MB MC =-,根据平面向量的基本定理知:向量,,MA MB MC 共面,不能构成空间的一个基底.故选:AC.39.1122a b c -++ 【解析】【分析】利用空间向量的线性运算,结合题意,求解即可.【详解】根据题意,()1111111122BM BA AA A M AB AA AC AB AA AB BC =++=-++=-+++ 11122AB BC AA =-++=1122a b c -++. 故答案为:1122a b c -++.40.0【解析】 【分析】由2=PM MC 可得出BM 关于{},BP BC 的表达式,再利用空间向量的减法可求得x 、y 、z 的值,即可得解.【详解】因为2=PM MC ,则()2BM BP BC BM -=-, 所以,()()121221333333BM BP BC AP AB AC AB AB AC AP =+=-+-=-++, 所以,1x =-,23y =,13z =,因此,0x y z ++=.故答案为:0.41.④【解析】【分析】通过反例可知①②错误;根据平面向量基本定理、空间向量基本定理可判断出③④正误.【详解】对于①,若0a b ==,则对于平面内任意一个向量p ,无法得到(),p a b R λμλμ=+∈,①错误;对于②,若0a b ==,则,λμ为任意实数,②错误;对于③,若p 与,a b 不共面,则对于空间任意一个向量p ,无法得到p a b λμ=+(),R λμ∈,③错误;对于④,由平面向量基本定理可知④正确.故答案为:④.42.13-【解析】连接OD ,根据题意,结合空间向量加减法运算求解即可.【详解】解:连接OD∵四面体OABC 中,D ,E 分别在AB ,OC 上,且AD DB =,2OE EC = ∴()2111232223DE OE OD OC OA OB OA OB OC =-=-+=--+∴121223αβγ⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩∴13αβγ++=-.故答案为:13-43.111444a b c ++【解析】【分析】利用空间的基底结合空间向量的线性运算计算即可得解.,,OA a OB b OC c ===,而M 是四面体OABC 的棱BC 的中点,则1()2OM OB OC =+1122b c =+, 因AP =3PN ,23ON OM =,则33()44OP OA AP OA AN OA ON OA =+=+=+-132111443444OA OM a b c =+⋅=++, 所以111444OP a b c =++. 故答案为:111444a b c ++44.()12c a b -- 【解析】【分析】根据给定条件利用空间向量的线性运算即可得解.【详解】三棱锥O ABC -,点M ,N 分别为线段AB ,OC 的中点,则()11112222MN MB BO ON AB OB OC OB OA OB OC =++=-+=--+()11112222OC OA OB c a b =--=--, 所以MN 等于()12c a b --. 故答案为:()12c a b --. 45.(1)(4)【解析】根据共线向量,向量垂直,向量的基本定理,向量数量积的定义与性质,逐一分析5个命题的真假,即可得解.【详解】(1)若a b a b -=+,则a ,b 反向共线,即满足充分条件,但当非零向量a ,b 同向共线时,不存在a b a b -=+,即满足不必要条件,故(1)正确;(2)若向量a ,b 中有一个零向量,则存在无数个实数λ,使a b λ=,即(2)错误;(3)若0a b ⋅=,0b c ⋅=,说明a b ⊥,b c ⊥,不一定存在a c =,即(3)错误;(4)令()()a b b c c a λμ+=+++,则()a b a b c μλλμ+=+++,所以110λμλμ=⎧⎪=⎨⎪+=⎩,无解,即a b +,b c +,c a +不共面,所以{},,a b b c c a +++构成空间的另一基底,即(4)正确; (5)()()cos ,a b c a b c a b c a b ⋅⋅=⋅⋅=⋅⋅,即(5)错误.命题(1)(4)正确.故答案为:(1)(4).46.(1)111333OG OA OB OC =++(2)73【解析】【分析】(1)根据空间向量线性运算法则计算可得;(2)由(1)可得111()()333OG AB OA OB OC OB OA ⋅=++⋅-,根据空间向量数量积的运算律及定。

【备战2019高考】黄金100题解读与扩展系列 专题1 两个计数原理 含解析

【备战2019高考】黄金100题解读与扩展系列 专题1 两个计数原理  含解析

I .题源探究·黄金母题【例1】随着人们生活水平的提高,某城市家庭汽车拥有量迅速增长,汽车牌照号码需要扩容.交通管理部门出台了一种汽车牌照组成办法,每一个汽车牌照都必须有3个不重复的英文字母和3个不重复的阿拉伯数字,并且3个字母必须合成一组出现,三个数字也必须合成一组出现,那么这种方法共能给多少汽车上牌照?【解析】将汽车牌照分为两类,即字母组合在左.字母组合在右边.字母在左时,分6步确定一个牌照的字母与数字: 第1步,从26个字母中选1个,放在首位,有26种选法; 第2步,从剩余的25个字母中选1个,放在第2位,有25种选法;第3步,从剩余的24个字母中选1个,放在第3位,有24种选法;第4步,10个数字中选1个,放在第4位,有10种选法; 第5步,从剩余的9个数字中选1个,放在第5位,有9种选法;第6步,从剩余的8个数字中选1个,放在第6位,有8种选法;根据分步计数原理,字母组合在左的牌照个数为 26×25×24×23×10×9×8=11232000. 同理,字母组合在右的牌照个数也为11232000.所以,根据分类计数原理,共能给 11232000+11232000=22464000. 辆汽车上牌照.精彩解读【试题来源】人教版A 版选修2-3第9页例9. 【母题评析】本题考查利用分类计数原理与分步计数原理计算简单的计数问题.【思路方法】认真阅读试题,探究需要分类还是需要分步,还是既要分类又要分步,然后按分析计算每类(或每步)的不同的方法数,再根据相应的计数原理计算出总的方法数.II .考场精彩·真题回放【例2】【2016高考新课标3理数】定义“规范01数列”{}n a 如下:{}n a 共有2m 项,其中m项为0,m 项为1,且对任意2k m ≤,12,,,k a a a 中0的个数不少于1的个数.若4m =,则不同的“规范01数列”共有()(A)18个(B)16个(C)14个(D)12个【答案】C【解析】由题意,得必有1a=,81a=,则具体的排法列表如下:0 1 1 1110 1 110 11 010 1 110 11 01 00 11 01 00 1 110 11 01 00 11 0求计数的结果不太大时,往往利用表格法、树枝法将其所有可能一一列举出来,常常会达到岀奇制胜的效果.【例3】【2013年高考山东,理】用0,1,2,...9十个数字,可以组成有重复数字的三位数的个数为A.243B.252C.261D.279【答案】B【命题意图】本类题问题主要考查利用分类计数原理和分步计数原理解决计数问题,考查考生运算求解能力.【考试方向】这类试题在考查题型上,通常以选择题或填空题的形式出现,难度中等偏易,考查利用两个计数原理解决实际问题的能力.【难点中心】解答此类问题的关键是认证阅读试题,弄清需要分类还是需要分步还是既要分类又要分步,判定方法是一种方法是否能独立完成任务,若能,若完成任务的方法类型不同,则需要分类,否则不需要分类,分类时要做到不重不漏;若一种方法不能独立完成任务,需要几步完成都完成才能完成,则需要分布.III .理论基础·解题原理考点一 分类加法计数原理(加法原理)一般形式:完成一件事有n 类不同方案,在第1类方案中有1m 种不同的方法,在第2类方案中有2m 种不同的方法,……,在第n 类方案中有n m 种不同的方法,那么完成这件事共有N=1m +2m +……+n m 种不同的方法. 考点二 分步乘法计数原理(乘法原理)一般形式:完成一件事需要n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事共有N=12n m m m ⨯⨯⨯…种不同的方法.考点三 两个原理的区别1.“每类”间与“每步”间的关系不同:分类加法计数原理中的每一类方案中的任何一种方法、不同类之间的任何一种方法都是相互独立,互不依赖的,且是一次性的;而分步乘法计数原理中的每一步是相互依赖,且是连续性的.2.“每类”与“每步”完成的效果不同:分类加法计数原理中所描述的每一种方法完成后,整个事件就完成了,而分步乘法计数原理中每一步中的每一种方法得到的只是中间结果,任何一步都不能独立完成这件事.IV .题型攻略·深度挖掘 【考试方向】这类试题在考查题型上,通常基本以选择题或填空题或古典概型、随机变量分布列大题的形式出现,小题难度中等偏下,大题为中档难度,有时也会与平面几何、立体几何等知识交汇. 【技能方法】1.计数问题中应用计数原理判定方法:如果已知的每类方法中的每一种方法都能单独完成这件事,用分类加法计数原理;如果每类方法中的每一种方法只能完成事件的一部分,用分步乘法计数原理.2.利用分类计数原理解决问题时: (1)将一个比较复杂的问题分解为若干个“类别”,先分类解决,然后将其整合,如何合理进行分类是解决问题的关键.(2)要准确把握分类加法计数原理的两个特点:①根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏;②分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复;③对于分类问题所含类型较多时也可考虑使用间接法.3.利用分步乘法计数原理解决问题时要注意:(1)要按事件发生的过程合理分步,即考虑分步的先后顺序.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这个事件.(3)对完成各步的方法数要准确确定.4.用两个计数原理解决计数问题时,关键是明确需要分类还是分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,只有完成了所有步骤,才完成任务,根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.(3)对于复杂问题,可同时运用两个计数原理或借助列表、画图的方法来帮助分析,使问题形象化、直观化.(4)在应用分类加法计数原理和分步乘法计数原理时,一般先分类再分步,每一步当中又可能用到分类加法计数原理. 【易错指导】1.分类加法计数原理在使用时易忽视每类做法中每一种方法都能完成这件事情,类与类之间是独立的.2.分步乘法计数原理在使用时易忽视每步中某一种方法只是完成这件事的一部分,而未完成这件事,步步之间是相关联的.V .举一反三·触类旁通 考向1 分类计数原理应用【例1】【2016届四川泸州市高三教学诊断性考试三数学(理)】某学校一共排7节课(其中上午4节,下午3节),某教师某天高三年级1班和2班各有一节课,但他要求不能连排2节课(其中上午第4节和下午第1节不算连排),那么该教师这一天的课的所有可能的排法种数共有( )A .16B .15C .32D .30 【答案】C【解析】运用分类计数原理求解:若第一节排课,则有5种排课方式;若第二节排课,则有4种排课方式;若第三节排课,则有3种排课方式;若第四节排课,则有3种排课方式;若第五节排课,则有1种排课方式.由分类计数原理共有32)13345(2=++++种排课方式.故应选C. 【方法指导】对只有一个限定条件的排列问题,可以用分类计数原理计算. 【跟踪训练】【2015-2016学年广西宾阳中学高二3月月考理】从甲地到乙地有两种走法,从乙地到丙地有4种走法,从甲地不经过乙地到丙地有3种走法,则从甲地到丙地共有__________种不同的走法. 【答案】11【解析】直接从甲地到丙地有三种走法,经过乙地到丙地有248⨯=种走法,所以合计有3811+=种走法考向2 分步计数原理应用【例】【2015-2016学年福建师大附中高二下期末数学(理)】如图,电路中共有7个电阻与一个电灯A ,若灯A 不亮,则因电阻断路的可能性的种数为( )A.12B.28C.54D.63 【答案】D【思路点睛】每个电阻都有断路与通路两种情况,图中从上到下有3条支线,分别记为a 、b 、c ,支线a 、b 中,至少有一个电阻断路的情况有3种,c 中至少有一个电阻断路的情况有23-1=7种,再根据分步计数原理求得结果. 【跟踪训练】【2015-2016学年海南文昌中学高二下期末理】2008年北京奥运会组委会要从小张、小赵、小李、小罗、小王五名志愿者中选派四人分别从事翻译、导游、礼仪、司机四项不同工作,若其中小张和小赵只能从事前两项工作,其余三人均能从事这四项工作,则不同的选派方案共有 ( )A .48种B .36种C .18种D .12种 【答案】B【解析】先安排后两项工作,共有32⨯种方案,再安排前两项工作,共有32⨯种方案,故不同的选派方案共有3232=36⨯⨯⨯种方案,选B.考向3 分类计数原理与分步计数原理的综合应用【例3】【2016届四川省成都市石室中学高三5月一模理】从9名高三年级优秀学生中挑选3人担任年级助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为( ) A .20 B .36 C .49 D .56 【答案】B【解析】第1类,甲、乙恰有1人入选,第1步在甲、乙中选1人,有2种不同方法,第2步,在除过甲、乙、丙外6人中选2人有26C 种方法,根据分步计数原理,有262C =30种不同方法;第2类,甲乙都入选,在除过甲、乙、丙外6人中选1人有6种不同方法,根据分类计数原理,不同选法数为30+6=36,故选B.【方法指导】对计数问题,要分析是需要分类还是需要分步,在每类或每步中在考虑分类或分步. 【跟踪训练】【2015-2016学年湖北省黄冈市蕲春县高二下期中理】某地政府召集5家企业的负责人开会,其中甲企业有2人到会,其余4家企业各有1人到会,会上有3人发言,则这3人来自3家不同企业的可能情况的种数为( ) A .14 B .16 C .20 D .48 【答案】B考向4 住店问题【例4】【2016届湖南省高考冲刺卷(理)(三)数学卷】某校高一开设4门选修课, 有4名同学, 每人只选一门, 恰有2门课程没有同学选修, 共有 种不同的选课方案.(用数字作答) 【答案】84【解析】先确定同学选修的2门:246C =,再确定4名同学选法42214-=,共有61484⨯=种不同的选课方案.【方法指导】对于“住店”问题,首项要分析清楚谁选谁的问题,然后逐个安排,然后用分类计数原理计算. 【跟踪训练】【2015-2016学年山西省怀仁一中高二下期末理科数学试卷】四名同学报名参加三项课外活动,每人限报其中的一项,不同报名方法共有( )A .12B .64C .81D .7 【答案】C【解析】对于三项活动来讲,每名同学都能选报,因此有813333=⨯⨯⨯种报名方法,应选C.考向5 染色问题【例5】【2017届内蒙古杭锦后旗奋斗中学高三上入学摸底】用红、黄、蓝三种颜色去涂图中标号为92,1 的9个小正方形,使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为“3,5,7”的小正方形涂相同的颜色,则符合条件的所有涂法共有( )种A .18B .36C .72D .108 【答案】D【解析】3(1222)(1222)⨯⨯⨯+⨯⨯⨯+108=.故选D . 【名师点睛】利用两个计数原理解决应用问题的一般思路 (1)弄清完成一件事是做什么.(2)确定是先分类后分步,还是先分步后分类. (3)弄清分步、分类的标准是什么. (4)利用两个计数原理求解. 【跟踪训练】【2015-2016学年江西省于都三中高二第三次月考理】用红、黄、蓝三种颜色去涂图中标号为92,1 的9个小正方形,使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为“3,5,7”的小正方形涂相同的颜色,则符合条件的所有涂法共有( )种A .18B .36C .72D .108 【答案】D。

2024年高二数学单元速记——计数原理(单元重点综合测试)(解析版)

2024年高二数学单元速记——计数原理(单元重点综合测试)(解析版)

计数原理(单元重点综合测试)144009,12,共有5项,故D 正确.故选:ABD.12.(2023上·重庆沙坪坝·高三重庆一中校考阶段练习)与二项式定理()0C nnk n k kn k a b a b -=+=∑类似,有莱布尼兹公式:()()()()()()()()()()()()0112200120C C C C C nn n n n n n k k n k nnnnn n uv u vuv uv u vuv ---==+++⋅⋅⋅+=∑,其中()k u (0,1k =,2,…,n )为u 的k 阶导数,()0u u =,()0v v =,则()A .1C 2nk nn k ==∑B .1351C C C 2n n n n -+++⋅⋅⋅=C .()()()()n n uv vu =D .()6e x f x x =,则()()606!f =【答案】BCD【详解】A.由二项式定理可知,当1a b ==时,()0C 1111C2n nnnk n k k k nnk k -==+===∑∑,1C221nk n n k n n C ==-=-∑,故A 错误;B.由二项式定理可知,当1,1a b ==-时,()012345.1C C C C C C .1.nn n n n n n =-+-+-+-()()024135C C C ...C C C ...0n n n n n n =+++-+++=,所以024135C C C ...C C C ...n n n n n n +++=+++又由A 可知,012345C C C C C C ...2nn n n n n n ++++++=,所以1351C C C 2n n n n -+++⋅⋅⋅=,故B 正确;C.()()()()()()()()()()011220012C C C ...C nn n n n n n n n n uv u v u v u v u v--=++++()()()()()()()()()()011220012C C C ...C nn n n n n n n n n vu v u v u v u v u--=++++,由组合数的性质可知,0C C n n n =,11C C n n n -=,22C C n n n -=,……,可知,()()()()n n uv vu =,故C 正确;D.()()()()()()()()()()()()()()()()()()6605142066061626666666e C e C e C e ...C e x xx x x x x x x x =++++,因为()()e e n x x =,()()066x x =,()()1656x x =,()()26465x x =⋅⋅,()()363654x x =⋅⋅⋅,()()4626543x x =⋅⋅⋅⋅,()()5665432x x =⋅⋅⋅⋅⋅,()()666543216!x =⋅⋅⋅⋅⋅=,所以()()606!f =,故D 正确.故选:BCD2【答案】22【详解】由题意知,得到的六位数的各个数位上均为数字1或5,要使这个六位数能被况:①6个1,只有111111;②6个5,只有555555;③3个1和3个5,有6A【答案】(1)(i)126;(【详解】(1)(i)16个相同的口罩,每位同学先拿一个,剩下的插入5块板子分成6份,每一种分法所得所以不同的发放方法59C=1。

福建省高二数学下学期期末试题理(含解析)(2021年整理)

福建省高二数学下学期期末试题理(含解析)(2021年整理)
【解答】解:设此射手每次射击命中的概率为p,
∵一射手对同一目标独立地射击四次,至少命中一次的概率为 ,
∴ ,
解得p= .
∴此射手每次射击命中的概率为 .
故选:C.
5.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )
A. B. C. D.
②用数学归纳法证明 + +…+ > (n∈N*)的过程中,由n=k推导到n=k+1 时,左边增加的项为 + ,没有减少的项;
③演绎推理的结论一定正确;
④( + )18的二项展开式中,共有4个有理项;
⑤从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张.则抽到的2张卡片上的数奇偶性不同的概率是 .
二、填空题:本大题有6小题,每个空格5分,共30分,把答案填在答卷的相应位置。
13.一批产品的二等品率为0。02,从这批产品中每次随机取一件,有放回地抽取100次.X表示抽到的二等品件数,则DX=.
14.(1+x)2(x﹣ )7的展开式中,含x3的项的系数为.
15.为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为 = x+ .已知 =225, =1600, =4.该班某学生的脚长为24,据此估计其身高.
最高气温
[10,15)
[15,20)
[20,25)
[25,30)
[30,35)
[35,40)
天数
2
16
36
25
7
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

福建师大附中2006-2007学年第一学期期中考试卷
高二数学(理)
(时间:120分钟 满分:150分)
(第一卷 选择题)
一、选择题(本题共12小题,每小题3分,共36分,在每小题给出的四个选项中只有
一个是正确的)
1、下列命题正确的是( )
A 、ac bc a b >⇒>
B 、2
2
ac bc a b >⇒> C 、2
2
a b a b <⇒< D 、,a d c b ac bd >>⇒> 2、如果直线210x ay ++=与直线(3a-1)x-ay+1=0平行,则( ) A 、16a =
B 、106a a ==-或
C 、1
06
a a ==或 D 、0a = 3、若椭圆224x y k +=上两点间的最大距离是6,则k 等于( ) A 、8 B 、9 C 、16 D 、36
4、已知向量1
(1,2),(1,)a x b x
=-= ,则关于x 的不等式0a b ⋅≥ 的解为( )
A 、01x x <>或
B 、01x x ≤≥或
C 、01x x ≤>或
D 、01x x <≥或
5、直线l 将圆22240x y x y +--=平分,且与直线20x y +=垂直,则直线l 的方程为
( )
A 、2y x =
B 、22y x =-
C 、1322y x =-
+ D 、1322
y x =+ 6、已知3230,0a b a b ab +=>>且,则( )
A 、38有最大值
B 、3
8有最小值
C 、34有最小值
D 、3
4
有最大值
7、过点P (1,1)作直线l 与两坐标轴相交所得的三角形面积为2,则满足条件的l 有
( )
命题人:余 霞 审核人:江 泽
A 、1条
B 、2条
C 、3条
D 、4条
8、已知△ABC 的顶点B ,C 在椭圆2
213
x y +=上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )
A 、
B 、6
C 、
D 、12
9、若a b c +<-,则在①a b c <--;②a b c +>;③a c b +<;④a c b +>; ⑤a b c +<-。

这五个式子中成立的是( )
A 、①②⑤
B 、②③④
C 、①③⑤
D 、①②③
10、已知两直线1110a x b y ++=和2210a x b y ++=的交点是P (2,3),则过两点
11,122,2(),()Q a b Q a b 的直线方程是( )
A 、320x y +=
B 、2350x y -+=
C 、2310x y ++=
D 、3210x y ++=
11、若不等式a ≤x ,
y 恒成立,则正数a 的最大值为( )
A B C D 、12、12,F F 是椭圆的两个焦点,Q 是椭圆上任一点,从任一焦点作12FQF ∠的外角平分线
的垂线,垂足为P ,则P 点的轨迹是( )
A 、直线
B 、圆
C 、椭圆
D 、其它曲线
福建师大附中2006—2007学年第一学期期中考答卷
高 二 数 学
(第二卷 非选择题部分)
一、将第一卷选择题答案填在下列表格中。

二、填空题(本题共4小题,每题4分,共16分)
13、10y ++=的夹角为
6
π
的直线方程为 。

14、设椭圆22
221(0)x y a b a b
+=>>的右焦点为1F ,右准线为1l ,若过点且垂直于x 轴的
弦长等于点1F 到准线1l 的距离,则椭圆的离心率是 。

15、已知点P 在曲线cos 3sin x y θ
θ=⎧⎨
=⎩
上,O 为坐标原点,若OP 的倾斜角为45︒,则OP =。

16
当[3,3]x ∈-时,不等式()0xf x <的解集为 。

三、解答题(本题共6小题,共74分)
17、(本题12分)已知a ,b ,x ,y 1R a b +
∈+=且,求证:2
()()()4
x y ax by ay bx +++≤
18、(本题12分)已知关于x 的不等式2
1(1)1x x a x -+<-+的解集为A ,且3A ∉
(1)求实数a 的取值范围; (2)求集合A 。

19、(本题12分)△ABC 中,A (4,-1),AB 边上的高所在直线为270x y +-=,B ∠ 的平分线所在直线为10x y --=,求△ABC 三边所在的直线方程。

20、(本题12分)求与两个定点O (0,0),A (a ,0)(0)a ≠距离的比为0λλ>()的
点M 的轨迹。

21、(本题12分)要将甲、乙两种长短不同的钢管
截成A 、B 、C 三种规格,每根钢管可同时截得三种规格的短钢管的根数如下表所示,今需A 、 B 、C 三种规格的钢管各13、16、18根,问各
截这两种钢管多少根可得所需三种规格钢管, 使所用钢管根数最少。

22、(本题14分)已知椭圆
2
21
2
x
y
+=的左焦点为F,O为坐标原点。

(1)求过点O,F,并且与椭圆的左准线l相切的圆的方程;
(2)设过点F且不与坐标轴垂直的直线交椭圆于A,B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围。

相关文档
最新文档