傅里叶变换及其性质
傅里叶变换性质证明
傅里叶变换性质证明性质一:线性性质F[a*f(t)+b*g(t)]=a*F[f(t)]+b*F[g(t)]其中F表示傅里叶变换。
这个性质的证明非常简单,我们只需将傅里叶变换的定义代入到等式中即可。
性质二:时移性质时移性质指的是时域上的移动会导致频域上的相位变化。
设F[f(t)]表示函数f(t)的傅里叶变换,则有:F[f(t - a)] = e^(-2πiaω) * F[f(t)]其中a是常数,ω是角频率。
这个性质的证明可以通过将f(t-a)展开成泰勒级数,并代入傅里叶变换的定义进行推导得到。
性质三:频移性质频移性质指的是频域上的移动会导致时域上的相位变化。
设F[f(t)]表示函数f(t)的傅里叶变换,则有:F[e^(2πiaω0) * f(t)] = F[f(t - a)]其中a是常数,ω0是角频率。
这个性质的证明可以利用傅里叶变换的定义以及欧拉公式进行推导。
性质四:尺度变换性质尺度变换性质指的是时域上的信号缩放会导致频域上的信号压缩。
设F[f(t)]表示函数f(t)的傅里叶变换,则有:F[f(a*t)]=,a,^(-1)*F[f(t/a)]其中a是常数。
这个性质的证明可以通过将f(a*t)展开成泰勒级数,并代入傅里叶变换的定义进行推导得到。
性质五:卷积定理卷积定理是傅里叶变换中最重要的性质之一、它指出卷积在频域上等于两个函数的傅里叶变换的乘积。
设f(t)和g(t)是两个函数,f(t)*g(t)表示它们的卷积,F[f(t)]和F[g(t)]表示它们的傅里叶变换,则有:F[f(t)*g(t)]=F[f(t)]*F[g(t)]其中*表示卷积,乘法表示两个函数的傅里叶变换的乘积。
这个性质的证明可以通过将卷积展开成积分形式,然后利用傅里叶变换的定义进行推导得到。
以上是傅里叶变换的几个重要性质及其证明。
这些性质使得傅里叶变换具有很强的分析和应用能力,在信号处理、图像处理、通信等领域得到广泛应用。
这些性质的正确性和证明对于理解和应用傅里叶变换非常重要。
傅里叶变换及其应用
傅里叶变换及其应用傅里叶变换(Fourier Transform)是一种重要的数学工具和数学分析方法,广泛应用于信号处理、图像处理、通信系统、量子力学等领域。
通过将一个函数表示成一组正弦和余弦函数的叠加,傅里叶变换能够将时域中的信号转化为频域中的信号,从而使得复杂的信号处理问题变得更加简单。
本文将介绍傅里叶变换的原理、性质以及其在实际应用中的几个重要方面。
一、傅里叶变换的原理和基本定义傅里叶变换是将一个函数f(x)表示成指数函数的叠加的过程。
设f(x)在时域上是以周期T为基本周期的连续函数,那么其傅里叶变换F(k)在频域上将成为以1/T为基本周期的连续函数。
傅里叶变换的基本定义如下:F(k) = ∫[f(x) * e^(-i2πkx/T)]dx其中,i是虚数单位,k是频率变量。
通过这样的变换,我们可以将时域上的函数转换为频域上的函数,从而可以更加清晰地分析信号的频谱特征。
二、傅里叶变换的性质傅里叶变换具有一些重要的性质,这些性质使得傅里叶变换成为一种强大的工具。
1. 线性性质:傅里叶变换具有线性性质,即若f(x)和g(x)的傅里叶变换分别为F(k)和G(k),则对应线性组合的傅里叶变换为aF(k) +bG(k),其中a和b为常数。
2. 时移性质:若f(x)的傅里叶变换为F(k),则f(x - a)的傅里叶变换为e^(-i2πak/T)F(k),即时域上的平移将对频域上的函数进行相位调制。
3. 频移性质:若f(x)的傅里叶变换为F(k),则e^(i2πax/T)f(x)的傅里叶变换为F(k - a),即频域上的平移将对时域上的函数进行相位调制。
4. 尺度变换性质:若f(x)的傅里叶变换为F(k),则f(ax)的傅里叶变换为1/|a|F(k/a),即函数在时域上的尺度变换会对频域上的函数进行缩放。
5. 卷积定理:若f(x)和g(x)的傅里叶变换分别为F(k)和G(k),则f(x) * g(x)的傅里叶变换为F(k)G(k),即在频域上的乘积等于时域上的卷积。
常用傅里叶变换表
常用傅里叶变换表傅里叶变换(Fourier Transform)是一种重要的信号处理方法,可以将一个信号表示为频域上的复合波。
在实际应用中,我们常常需要用到一些常用的傅里叶变换表来简化计算过程。
下面是常用的傅里叶变换表。
1. 频域采样点数与时间域采样点数的对应关系:当时间域采样点数为 N 时,对应的频域采样点数为 N/2+1。
采样点数越多,则频域分辨率越高,对于高频信号的分析会更准确。
2. 傅里叶变换对称性:傅里叶变换具有一定的对称性,包括对称性、共轭对称性和反对称性。
利用这些对称性,我们可以简化计算过程。
- 偶函数的频谱是实数,在频域中左右对称;- 奇函数的频谱是虚数,具有共轭对称;- 复合偶函数和复合奇函数的频谱会具有反对称性。
3. 常用信号的傅里叶变换表:以下是一些常见的信号的傅里叶变换表:- 矩形脉冲信号(Rectangular Pulse)的傅里叶变换:矩形脉冲信号在时域上是一个宽度有限且幅度为常数的信号。
其傅里叶变换在频域上是一个 sinc 函数,表达式为:F(w) = wwww(ww/2) / (ww/2)其中,w是信号的宽度,w是频率。
- 高斯函数(Gaussian Function)的傅里叶变换:高斯函数在时域上是一个钟形曲线,其傅里叶变换仍然是一个高斯函数。
傅里叶变换的表达式如下:F(w) = ww^(−w^2w^2/4w^2)其中,w是高斯函数的标准差,w是时间尺度。
- 正弦函数(Sine Function)的傅里叶变换:正弦函数在时域上是一个连续的周期函数。
其傅里叶变换也是一个周期函数,表达式为:F(w) = 0.5j (w(w−w)−w(w+w))其中,w是正弦函数的频率。
4. 傅里叶变换的性质:傅里叶变换具有很多重要的性质,包括线性性质、平移性质、尺度性质、卷积定理等。
这些性质在信号处理中起到了重要的作用,可以简化傅里叶变换的计算过程。
- 线性性质:傅里叶变换具有线性性质,即线性组合的函数的傅里叶变换等于各个函数的傅里叶变换之和。
简述傅里叶变换
简述傅里叶变换傅里叶变换是现代数学、物理及工程学的基石之一,它能将一个时间域信号转换成一个频域信号,为各种信号处理、控制、通信、图像处理等领域提供了有力的工具,是第一次把两个物理量之间的变换相结合,并在证明中使用了一些非常复杂的数学方法以及接近两个世纪的科学发展而发明的。
一、傅里叶变换的定义傅里叶变换是指将一个时间域函数f(x)转换成一个频域函数F(u)的过程。
其定义是:$$F(u) = \frac{1}{\sqrt{2\pi}}\int_{-\infty}^{+\infty}f(x)e^{-jux}dx$$其中,j为虚数单位,u为频率,f(x)为原信号,F(u)为转换后的频率信号。
该公式中,积分的上下限为负无穷到正无穷。
分析以上公式,可以发现傅里叶变换有以下几个特点:1. 将原信号f(x)从时域转换到频域;2. 傅里叶变换公式是一个积分表达式,波形的具体形式决定了计算的难度;3. 积分变量是虚数u,表示频率;4. 傅里叶变换是线性的。
二、傅里叶变换的性质1. 时间移位性质该性质指的是如果将函数f(x)向右移动a单位,则傅里叶变换的频域函数F(u)将乘以e^-j2πau:$$FT(f(x-a)) = F(u) \cdot e^{-j2\pi ua}$$2. 频率移位性质该性质是当函数f(t)乘以一个复指数时,经傅里叶变换后,其频率也将发生移位。
$$FT(e^{j2\pi Tu}f(t)) = F(u-T) $$其中T是一个常数,表示频域移位的量。
3. 线性性质傅里叶变换是线性的,即对于任何两个函数f1(t)和f2(t),有:$$FT(af_1(t)+bf_2(t)) = aF_1(u)+bF_2(u)$$其中a和b是任何常数。
4. 傅里叶变换的共轭对称性傅里叶变换具有共轭对称性,即:$$F^*(u) = F(-u)$$5. 卷积定理该性质的表述是:f和g的卷积时f和g的傅里叶变换的乘积。
即:$$FT(f*g) = FT(f)\cdot FT(g)$$其中“*”表示卷积操作。
常用的傅里叶变换
常用的傅里叶变换1. 引言傅里叶变换是一种重要的数学工具,用于将一个函数或信号从时域转换到频域。
它在信号处理、图像处理、通信等领域广泛应用。
本文将介绍傅里叶变换的基本概念、性质和常见应用。
2. 傅里叶级数傅里叶级数是傅里叶变换的基础,它将周期函数表示为一系列正弦和余弦函数的和。
对于周期为T 的函数f(t),其傅里叶级数表示为:f (t )=a 0+∑(a n cos (2πnt T )+b n sin (2πnt T ))∞n=1 其中,a 0、a n 和b n 是系数,可以通过函数f(t)在一个周期内的积分得到。
傅里叶级数展开了周期函数在频域上的频谱分布。
3. 傅里叶变换傅里叶变换是将非周期函数表示为连续频谱的一种方法。
对于函数f(t),其傅里叶变换表示为:F (ω)=∫f ∞−∞(t )e −jωt dt其中,F (ω)是函数f(t)的频谱,ω是频率。
傅里叶变换的逆变换为:f (t )=12π∫F ∞−∞(ω)e jωt dω 傅里叶变换将函数从时域转换到频域,可以将信号分解为不同频率的成分,从而方便分析和处理。
4. 傅里叶变换的性质傅里叶变换具有许多重要的性质,其中一些常用的性质包括:•线性性质:傅里叶变换是线性的,即对于常数a 和b ,有F(af (t )+bf (t ))=aF(f (t ))+bF(g (t ))。
• 平移性质:如果f (t )的傅里叶变换为F (ω),那么f (t −t 0)的傅里叶变换为e −jωt 0F (ω)。
•尺度性质:如果f(t)的傅里叶变换为F(ω),那么f(at)的傅里叶变换为1 |a|F(ωa)。
•对称性质:如果f(t)是实函数,并且其傅里叶变换为F(ω),那么F(−ω)为F(ω)的共轭。
这些性质使得傅里叶变换更加灵活和方便,在实际应用中能够简化计算和分析过程。
5. 傅里叶变换的应用傅里叶变换在信号处理、图像处理、通信等领域有广泛的应用。
以下是一些常见的应用:•频谱分析:傅里叶变换可以将信号从时域转换到频域,可以分析信号的频谱分布,帮助理解信号的频率成分和特征。
信息光学基础1-6傅里叶变换性质
2
f
b 2
e
j
2
f
b 2
]
Hale Waihona Puke j2 f b e j2 fa sin( bf ) bf
b e j2 fa sin c(bf )
解法二: 比例和位移性质
F sin(2
f0 x)
1 2j
[d (
fx
f0 )
d
(
fx
f0 )]
F cos(2
f0 x)
b
解法一:根据傅里叶变换的定义
F 1{rect( x a )} rect( x a ) e j2 fx dx
b
b
b 2
a
e j2 fxdx
b 2
a
j 2 fx
b 2
a
[e ]
b 2
a
j2 f
e j2 fa
[e
j
d(x)
x
d (x a)g(x)dx g(a)
d(x)函数的筛选性质
1 ei2 fxdf d (u)
2)rect 函数的傅里叶变换
f
(x,
y)
rect(x,
y)
1
0
x
1 2
,
y
1 2
其它
解:F{rect(x)}
rect(x)exp(i2 fx)dx
1 2
(ei 2
f0x
ei 2
) f0 x
1 F{ei2 f0x} 1 F{ei2 } f0x
连续与离散信号三大变换(傅立叶、拉斯、Z变换)性质总结
连续傅里叶变换对
相对偶的连续傅里叶变换对
名称
连续时间函数
傅里叶变换
名称
连续时间函数
傅里叶变换
线性
对称性
尺度变换
时移
频移
时域微分
频域微分
时域积分
频域积分
时域卷积
频域卷积
时域抽样
频域抽样
希尔伯特变换
帕什瓦尔公式
, :能量谱密度
二、离散傅里叶变换性质
连续傅里叶变换对
相对偶的连续傅里叶变换对
名称
连续时间函数
傅里叶变换
名称
连续时间函数
傅里叶变换
线性
对称性
尺度变换
为整数
时移
频移
频域微分
差分
时域卷积
频域卷积
时域对偶
频域对偶
帕什瓦尔公式
, :能量谱密度
三、拉氏变换与
双边拉氏变换对
双边 变换对
连续时间函数
像函数
离散时间序列
像函数
1
1
,
,
,
,
,
,,Βιβλιοθήκη ,四、拉氏变换性质
连续拉普拉斯变换对
相对偶的连续拉普拉斯变换对
1
1
七、
变换对
相对偶的 变换对
名称
离散时间函数
变换
名称
离散时间函数
变换
线性
收敛域
收敛域
尺度变换
收敛域:
收敛域:
时移
频移
收敛域:
收敛域:
收敛域:
收敛域:
Z域微分
时域卷积
Z域卷积
初值定理
若 是因果序列,则
傅里叶变换的五种不同形式
傅里叶变换的五种不同形式标题:傅里叶变换的五种不同形式导论:傅里叶变换是一种基础且重要的数学工具,广泛应用于信号处理、图像处理、量子力学等领域。
它通过将函数表示为频域上的复指数函数的线性组合来描述一个函数。
本文将介绍傅里叶变换的五种不同形式,深入探讨它们的定义、性质和应用,旨在帮助读者对傅里叶变换有更全面、深刻和灵活的理解。
第一种形式:连续傅里叶变换(CTFT)1. 定义与性质:介绍CTFT的定义和性质,包括线性性、平移性、尺度性等。
解释连续傅里叶变换在时域和频域之间的转换关系。
2. 应用举例:说明CTFT在信号处理中的应用,包括信号滤波、频谱分析等。
详细解释如何使用连续傅里叶变换分析一个信号的频谱特性。
第二种形式:离散傅里叶变换(DFT)1. 定义与性质:介绍DFT的定义和性质,包括线性性、周期性等。
解释离散傅里叶变换与连续傅里叶变换之间的关系。
2. 应用举例:说明DFT在数字信号处理中的应用,包括图像压缩、频谱分析等。
详细解释如何使用离散傅里叶变换对一个离散信号进行频谱分析。
第三种形式:快速傅里叶变换(FFT)1. 定义与原理:引入FFT的定义和原理,解释为什么快速傅里叶变换可以大大提高计算效率。
2. 应用举例:介绍FFT在信号处理和图像处理中的广泛应用,包括音频信号处理、图像滤波等。
详细解释快速傅里叶变换如何在这些应用中提高计算效率。
第四种形式:多维傅里叶变换(NDFT)1. 定义与性质:介绍多维傅里叶变换的定义和性质,包括线性性、平移性等。
2. 应用举例:说明多维傅里叶变换在图像处理和空间频率分析等领域中的应用。
详细解释如何使用多维傅里叶变换对二维图像进行频谱分析。
第五种形式:短时傅里叶变换(STFT)1. 定义与原理:介绍短时傅里叶变换的定义和原理,解释其在非平稳信号分析中的重要性。
2. 应用举例:说明短时傅里叶变换在语音信号处理和音频分析中的应用。
详细解释如何使用短时傅里叶变换来分析非平稳信号的频谱特性。
付立叶变换及其性质
傅里叶变换的性质这里主要介绍二维离散傅里叶变换(DFT ,discrete FT )中的几个常用性质(可分离线、周期性和共轭对称性、平移性、旋转性质、卷积与相关定理):可分离性二维离散傅立叶变换DFT 可分离性的基本思想是二维DFT 可分离为两次一维DFT 。
因此可以用通过计算两次一维的FFT 来得到二维快速傅立叶变换FFT 算法 。
根据快速傅里叶变换的计算要求,需要图像的行列数均满足2的n 次,如果不满足,在计算FFT 之前先要对图像补零以满足2的n 次。
一个M 行N 列的二维图像f(x,y),先按行对列变量y 做一次长度为N 的一维离散傅里叶变换,再将计算结果按列向对变量x 做一次长度为M 傅里叶变换就可以得到该图像的傅里叶变换结果,如下式所示:()()()()∑∑-=-=-⎥⎥⎦⎤⎢⎢⎣⎡-=10102exp 2exp ,1,M x N y M ux j N vy j y x f MN v u F ππ 将上式分解开来就是如下两部分,首先得到F(x,v)再由F(x,v)得到F(u,v):∑-=-=-=101...10]/2exp[),(1),(N y N v N vy j y x f N v x F ,,,π∑-=-=-=101,...,1,0,]/2exp[),(1),(N x M v u M ux j v x F M v u F πu=0,1,2,…M-1;v=0,1,2,...N-1计算过程如下图所示:每一行有N 个点,对每一行的一维N 点序列进行离散傅里叶变换得到F(x,u),再对得到F(x,u)按列向对每一列做M 点的离散傅里叶变换,就可以得到二维图像f(x,y)的离散傅里叶变换F(u,v)同样,做傅里叶逆变换时,先对列向做一维傅里叶逆变换,再对行做一维逆傅里叶变换,如下式所示:()()()()∑∑-=-=⎥⎦⎤⎢⎣⎡=10102exp 2exp ,,M u N v M ux j N vy j v u F y x f ππ x=0,1,2,…M-1;y=0,1,2,...N-1周期性和共轭对称性由傅里叶变换的基本性质可以知道,离散信号的频谱具有周期性。
傅里叶变换的性质与应用
傅里叶变换的性质与应用傅里叶变换(Fourier Transform)是一种在信号和图像处理领域中广泛应用的数学工具。
它通过将一个函数表示为一系列正弦和余弦函数的线性组合来描述时域和频域之间的关系。
在本文中,我们将探讨傅里叶变换的性质以及其在各个领域中的应用。
一、傅里叶变换的性质1. 线性性质傅里叶变换具有线性性质,即对于任意常数a和b以及函数f(t)和g(t),有以下等式成立:F(af(t) + bg(t))= aF(f(t))+ bF(g(t))其中F(f(t))表示对函数f(t)进行傅里叶变换后得到的频域函数。
2. 对称性质傅里叶变换具有一系列对称性质。
其中最为重要的对称性质为奇偶对称性。
当函数f(t)为实函数并满足奇偶对称时,其傅里叶变换具有如下关系:F(-t)= F(t)(偶对称函数)F(-t)= -F(t)(奇对称函数)3. 尺度变换性质傅里叶变换可以对函数的尺度进行变换。
对于函数f(a * t)的傅里叶变换后得到的频域函数为F(w / a),其中a为正数。
二、傅里叶变换的应用1. 信号处理傅里叶变换在信号处理中被广泛应用。
它可以将时域信号转换为频域信号,使得信号的频率成分更加明确。
通过傅里叶变换,我们可以分析和处理各种信号,例如音频信号、图像信号和视频信号等。
在音频领域中,傅里叶变换可以用于音乐频谱分析、滤波器设计和音频压缩等方面。
在图像处理领域中,傅里叶变换可以用于图像增强、图像去噪和图像压缩等方面。
2. 通信系统傅里叶变换在通信系统中具有重要的应用。
通过傅里叶变换,我们可以将信号转换为频域信号,并根据频域特性进行信号调制和解调。
傅里叶变换可以用于调制解调器的设计、信道估计和信号的频谱分析等方面。
在无线通信系统中,傅里叶变换也广泛应用于OFDM(正交频分复用)技术,以提高信号传输效率和抗干扰性能。
3. 图像处理傅里叶变换在图像处理中有广泛的应用。
通过将图像转换到频域,我们可以对图像进行滤波、增强和去噪等操作。
傅里叶变换的11个性质公式
傅里叶变换的11个性质公式傅里叶变换的11个性质公式是傅立叶变换的基本性质,由他们可以推出其它性质。
其中包括线性性质、有穷性质、周期性质、旋转性质、折叠性质、应变性质、平移性质、对称性质、频域算子性质、滤波性质、压缩性质等共11条。
1、线性性质:如果x(t)和y(t)是两个信号,则有:X(ω)=F[x(t)],Y(ω)=F[y(t)],则有:X(ω)+Y(ω)=F[x(t)+y(t)];αX(ω)=F[αx(t)];X(ω)*Y(ω)=F[x(t)*y(t)]。
2、有穷性质:如果x(t)是有穷的,则X(ω)也是有穷的。
3、周期性质:如果x(t)在周期T内无穷重复,则X(ω)也在周期2π/T内无穷重复。
4、旋转性质:X(ω-ω0) = F[x(t)e^(-jω0t)],即信号x(t)经过相位旋转成x(t)e^(-jω0t),其傅里叶变换也会经过相位旋转成X(ω-ω0)。
5、折叠性质:X(ω+nω0)=F[x(t)e^(-jnω0t)],即信号x(t)经过频率折叠后变为x(t)e^(-jnω0t),其傅里叶变换也会经过频率折叠成X(ω+nω0)。
6、应变性质:X(aω)=F[x(at)],即信号x(t)经过时间应变成x(at),其傅里叶变换也会经过频率应变成X(aω)。
7、平移性质:X(ω-ω0) = F[x(t-t0)],即信号x(t)经过时间平移成x(t-t0),其傅里叶变换也会经过频率平移成X(ω-ω0)。
8、对称性质:X(-ω) = X*(-ω),即傅里叶变换的实部和虚部对称。
9、频域算子性质:X(ω)Y(ω)=F[h(t)*x(t)],即傅里叶变换不仅可以表示信号,还可以表示系统的频域表示,即h(t)*x(t),其傅里叶变换为X(ω)Y(ω)。
10、滤波性质:H(ω)X(ω)=F[h(t)*x(t)],即傅里叶变换可以用来表示滤波器的频域表示,即h(t)*x(t),其傅里叶变换为H(ω)X(ω)。
傅里叶变换及其性质
小量dω,而离散频率nΩ变成连续频率ω。在这种极限情况下,
Fn趋于无穷小量,但
Fn
T
可2望Fn趋
于
有
限
值
,
且
为
一
种连续函数,一般记为F(jω),即
第2章 连续时间傅里叶变换
f(t)lim F nej n t 1F (j )ej td
T n
2
非周期信号旳傅里叶变换可简记为
一般来说,傅里叶变换存在旳充分条件为f(t)应满足绝对
这是一种偶函数,且x→0时,Sa(x)=1;当x=kπ时,Sa(kπ)=0。
据此,可将周期矩形脉冲信号旳复振幅写成取样函数旳形式,即
Fn
E
T
San
2
第2章 连续时间傅里叶变换
Sa(x) 1
-3-2 - o
2 3
x
图 2.2-3 Sa(x)函数旳波形
第2章 连续时间傅里叶变换
Fn
E
T
2 4
o 3
特点旳频谱图一般要画两个,一种称为振幅频谱,另一种称 为相位频谱。振幅频谱以ω为横坐标,以振幅为纵坐标画出谱 线图;相位频谱以ω为横坐标,以相位为纵坐标得到谱线图。
若信号旳复振幅 为FnnΩ旳实函数,其复振幅Fn与变量(nΩ)
旳关系也能够用一种图绘出。
第2章 连续时间傅里叶变换
取样函数定义为
Sa(x) sinx x
第2章 连续时间傅里叶变换
2.5 傅里叶变换旳性质
根据傅里叶变换旳概念,一种非周期信号能够表述为指数 函数旳积分, 即
第2章 连续时间傅里叶变换
1.
若 f1 ( t) F 1 (j)f2 ,( t) F 2 (j),
傅里叶变换的定义
傅里叶变换的定义介绍傅里叶变换是一种数学工具,它能够将时域上的信号转换为频域上的表示。
傅里叶变换的定义是通过对信号进行积分求解,将信号分解成一系列复指数函数的和。
它是信号处理、图像处理、电子通信等领域中广泛应用的工具。
傅里叶变换的数学定义傅里叶变换的数学定义如下所示:∞(t)e−jωt dtF(ω)=∫f−∞其中,F(ω)表示频域上的表示,f(t)表示时域上的信号,ω表示频率。
时域和频域的关系傅里叶变换将时域上的信号转换为频域上的表示,这个转换能够揭示信号的频率成分。
时域上的信号可以看作是频域上多个正弦波的叠加,傅里叶变换可以将这些正弦波的振幅、相位信息提取出来。
傅里叶变换的性质傅里叶变换具有许多重要的性质,这些性质使得它成为一种非常强大的工具。
以下是傅里叶变换的一些常见性质:线性性质傅里叶变换具有线性性质,即对于任意常数a和b,以及两个信号f(t)和g(t),有以下性质:•F[af(t)+bg(t)]=aF[f(t)]+bF[g(t)]傅里叶变换具有平移性质,即对于时域上的信号f(t),有以下平移性质:•F[f(t−τ)]=e−jτωF[f(t)]其中,τ表示时间的平移量,ω表示对应的频率。
频率平移性质傅里叶变换还具有频率平移性质,即对于时域上的信号f(t),有以下频率平移性质:•F[e jω0t f(t)]=F[f(t−τ)]其中,ω0表示频率的平移量,τ表示对应的时间。
卷积性质傅里叶变换具有卷积性质,即对于两个信号f(t)和g(t)的卷积f(t)∗g(t),有以下卷积性质:•F[f(t)∗g(t)]=F[f(t)]⋅F[g(t)]其中,⋅表示频域上的乘法运算。
傅里叶变换的应用傅里叶变换在许多领域中都有广泛的应用,包括信号处理、图像处理、电子通信等。
信号处理在信号处理领域,傅里叶变换可以用于频谱分析、滤波器设计等方面。
通过将信号从时域转换为频域,我们可以更好地理解信号的频率成分,从而能够对信号进行更准确的分析和处理。
§3-5 傅里叶变换的性质
FT x ( t ) e jΩ 0 t ← ⎯→ X [ j ( Ω − Ω 0 )]
ℱ x ( t ) e jΩ 0 t
{
} = ∫ x (t ) e
−∞
∞
∞
jΩ 0 t
e − j Ω t dt =
−∞
∫
x ( t ) e − j ( Ω − Ω 0 ) t dt
19
设
X ( jΩ) = X ( jΩ) e jϕ( Ω ) = X R (Ω) + jX I (Ω)
X * ( jΩ) = X ( jΩ) e − jϕ( Ω ) = X R (Ω) − jX I (Ω)
于是
X * (− jΩ) = X (− jΩ) e − jϕ( − Ω ) = X R (−Ω) − jX I (−Ω)
jtx ( t ) e
− jΩ t
dt
dX ( j Ω ) tx ( t ) ← ⎯→ j dΩ
FT
例如: du ( t )
dt
= δ (t )
对应的傅里叶变换
jΩ 1 = j 0 ⋅ πδ ( Ω ) + =1 δ(t ) ←⎯→ jΩ[πδ(Ω) + ] jΩ jΩ
FT
再例如:
1 d [πδ ( Ω ) + ] 1 jΩ FT ′ = jπ δ ( Ω ) − 2 tu ( t ) ← ⎯→ j Ω dΩ
x(t )
1
τ −2 τ 2
τ
X ( jΩ )
t
2π τ
Ω
τ
X ( jt )
x (Ω )
2π
若x(t)是偶对称的,则
FT X ( jt ) ←⎯→ 2πx(Ω)
傅里叶变换性质及定理
仍以例1-3的f1(t)、 f(t)为例, f0(t)
的频谱F0(ω)如图1-7(b)所示。 利用一个
低通滤波器(在后面介绍), 滤除2ω0附
近的频率分量, 即可提取f1(t), 实现解
调。
(a)
f (t)
f0(t)
低 通 滤波 器
f1(t)
cos0t
F() A 2
A 4
(b) - 20
-0
0
0
A F0() 2
0
A F1()/ 2 2Leabharlann 0A 420
图 1-7 一种同步解调的原理框图及频谱图
• 在通信系统中调制也广泛应用在多 路复用技术上, 即不同的信号频谱通过 调制, 可移至不同的载波频率上, 在同 一信道上发送而互不干扰, 实现“频分 多路”复用。
• 以上讨论的是频移特性在调制解调 中的一些具体应用, 调制解调理论及各 种实现调制解调电路是后续课程的内容, 已超出本课程范围, 不再讨论。
f2 (t)e jtdt
aF1() b F1()
利用傅氏变换的线性特性, 可以将待求信号分解为若 干基本信号之和, 如在上一节我们将阶跃信号分解为直流 信号与符号函数之和。
•
2. 时延(时移、 移位)性
•
若f(t)←→F(ω), 则
f1(t) f (t t0 ) F1( ) F ( )e jt0 (3.3-2)
f (t) A
-
2
0
-A
图 1-4 例1-3f(t)
t
2
• 解 令f1(t)=gτ(t),
则
而
F1( )
ASa
2
f (t) f1(t) cos0t
F ( )
傅里叶变换的性质
03
共轭性质
共轭对称
定义
如果一个函数的傅里叶变换和其共轭函数的傅里叶变 换相等,则称该函数具有共轭对称性质。
数学表达式
如果 $f(t)$ 的傅里叶变换是 $F(omega)$,那么 $f(t)$ 的傅里叶变换是 $F(-omega)$。
应用
在信号处理中,共轭对称性质可以用于对称信号的分 析和合成。
共轭反对称
定义
01
如果一个函数的傅里叶变换和其共轭函数的傅里叶变
换互为相反数,则称该函数具有共轭反对称性质。
数学表达式
02
如果 $f(t)$ 的傅里叶变换是 $F(omega)$,那么 $f(-
t)$ 的傅里叶变换是 $-F(-omega)$。
应用
03
在信号处理中,共轭反对称性质可以用于分析信号的
周期性
傅里叶变换具有周期性,这意味着对于一个函数进行傅里叶变换后,其结果仍具有周期性。这 是因为傅里叶变换将一个时域函数转换为频域函数,而频域函数中的频率分量具有周期性。
周期性的具体表现是,对于一个具有周期T的函数f(t),其傅里叶变换F(ω)在频域中也是周期性 的,周期为2π/T。
傅里叶级数
傅里叶级数是傅里叶变换的一种特殊形式,它适用于具有有限个离散频率 分量的信号。
总结词
频域对称性质揭示了信号在频域和时间域之间的对称关系,为信号处理提供了重要的理论依据。
时间反转与频域反转
时间反转
将信号在时间轴上反转,其傅里叶变换在频域上会产生负 频率分量。
频域反转
将信号在频域上反转,其在时间域上会产生负时间位移。
总结词
时间反转与频域反转的性质表明,信号在时间域和频域的反转 具有对应关系,这种关系在信号处理和通信领域中具有重要应
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信息工程学院实验报告课程名称:信号与系统实验项目名称:实验3 傅里叶变换及其性质实验时间:2013-11-29班级: 姓名: 学号:一、实验目的:1、学会运用MATLAB 求连续时间信号的傅里叶(Fourier )变换;2、学会运用MATLAB 求连续时间信号的频谱图;3、学会运用MATLAB 分析连续时间信号的傅里叶变换的性质。
二、实验环境:1、硬件:在windows 7 操作环境下;2、软件:Matlab 版本7.1三、实验原理:3.1傅里叶变换的实现信号()f t 的傅里叶变换定义为: ()[()]()j t F F f t f t e dt ωω∞--∞==⎰,傅里叶反变换定义为:11()[()]()2j t f t F F f e d ωωωωπ∞--∞==⎰。
信号的傅里叶变换主要包括MATLAB 符号运算和MATLAB 数值分析两种方法,下面分别加以探讨。
同时,学习连续时间信号的频谱图。
3.1.1 MATLAB 符号运算求解法MATLAB 符号数学工具箱提供了直接求解傅里叶变换与傅里叶反变换的函数fourier( )和ifourier( )。
Fourier 变换的语句格式分为三种。
(1)F=fourier(f):它是符号函数f 的Fourier 变换,默认返回是关于ω的函数。
(2)F=fourier(f,v):它返回函数F 是关于符号对象v 的函数,而不是默认的ω,即()()jvt F v f t e dt ∞--∞=⎰。
(3)F=fourier(f,u,v):是对关于u 的函数f 进行变换,返回函数F 是关于v 的函数,即()()jvu F v f t e du ∞--∞=⎰。
傅里叶反变换的语句格式也分为三种。
(1)f=ifourier(F):它是符号函数F 的Fourier 反变换,独立变量默认为ω,默认返回是关于x 的函数。
(2)f=ifourier(F,u):它返回函数f 是u 的函数,而不是默认的x 。
(3)f=ifourier(F,u,v):是对关于v 的函数F 进行反变换,返回关于u 的函数f 。
值得注意的是,函数fourier( )和ifourier( )都是接受由sym 函数所定义的符号变量或者符号表达式。
3.1.2连续时间信号的频谱图信号()f t 的傅里叶变换()F ω表达了信号在ω处的频谱密度分布情况,这就是信号的傅里叶变换的物理含义。
()F ω一般是复函数,可以表示成()()()j F F eϕωωω=。
()~F ωω与()~ϕωω曲线分别称为非周期信号的幅度频谱与相位频谱,它们都是频率ω的连续函数,在形状上与相应的周期信号频谱包络线相同。
非周期信号的频谱有两个特点,密度谱和连续谱。
要注意到,采用fourier()和ifourier() 得到的返回函数,仍然是符号表达式。
若需对返回函数作图,则需应用ezplot()绘图命令。
3.1.3 MATLAB 数值计算求解法fourier( )和ifourier( )函数的一个局限性是,如果返回函数中有诸如单位冲激函数()t δ等项,则用ezplot()函数无法作图。
对某些信号求变换时,其返回函数可能包含一些不能直接用符号表达的式子,因此不能对返回函数作图。
此外,在很多实际情况中,尽管信号()f t 是连续的,但经过抽样所获得的信号则是多组离散的数值量()f n ,因此无法表示成符号表达式,此时不能应用fourier()函数对f(n)进行处理,而只能用数值计算方法来近似求解。
从傅里叶变换定义出发有0()()lim ()j tj n F f t edt f n e ωωω∞∞-∞∆→-∞--∆==∆∆∑⎰,当∆足够小时,上式的近似情况可以满足实际需要。
对于时限信号()f t ,或者在所研究的时间范围内让()f t 衰减到足够小,从而近似地看成时限信号,则对于上式可以考虑有限n 的取值。
假设是因果信号,则有1()(),01M n j n F f n e n M ωω-=-∆=∆∆≤≤-∑傅里叶变换后在ω域用MATLAB 进行求解,对上式的角频率ω进行离散化。
假设离散化后得到N 个样值,即 2,0k k k N N πω=≤≤∆-1,因此有 1()(),01M n k j n F k f n ek N ω-=-∆=∆∆≤≤-∑。
采用行向量,用矩阵表示为1*1**[()][()][]k j n T TT N M M N F k f n e ω-∆=∆∆。
其要点是要正确生成()f t 的M 个样本向量[()]f n ∆与向量[]j n k e ω-∆。
当∆足够小时,上式的内积运算(即相乘求和运算)结果即为所求的连续时间信号傅里叶变换的数值解。
3.2傅里叶变换的性质傅里叶变换的性质包含了丰富的物理意义,并且揭示了信号的时域和频域的关系。
熟悉这些性质成为信号分析研究工作中最重要的内容之一。
3.2.1 尺度变换特性傅里叶变换的尺度变换特性为:若()()f t F ω↔,则有1()()f at F a aω↔,其中,a 为非零实常数。
3.2.2频移特性傅里叶变换的频移特性为:若()()f t F ω↔,则有00()()j tf t eF ωωω↔-。
频移技术在通信系统中得到广泛应用,诸如调幅变频等过程都是在频谱搬移的基础上完成的。
频移的实现原理是将信号()f t 乘以载波信号0cos t ω或0sin t ω,从而完成频谱的搬移,即0000001()cos [()()]2()sin [()()]2f t t F F jf t t F F ωωωωωωωωωω↔++-↔+--四、实验内容及结果分析:4.1试用MATLAB 命令求下列信号的傅里叶变换,并绘出其幅度谱和相位谱。
(1)1sin 2(1)()(1)t f t t ππ-=- (2)22sin()()t f t t ππ⎡⎤=⎢⎥⎣⎦第一题的实验程序代码:clc;clear;Ft=sym('sin(2*pi*(t-1))/(pi*(t-1))'); Fw = fourier(ft); subplot(211)ezplot(abs(Fw));grid ontitle('幅度谱');phase = atan(imag(Fw)/real(Fw)); subplot(212)ezplot(phase);grid on title('相位谱');第二题的实验程序代码:clc;clear;ft = sym('(sin(pi*t)/(pi*t))^2'); Fw = fourier(ft); subplot(211)ezplot(abs(Fw));grid ontitle('幅度谱');phase = atan(imag(Fw)/real(Fw)); subplot(212)ezplot(phase);grid ontitle('相位谱');第一题实验结果如图1所示,第二题实验结果如图2所示。
图1 图24.2试用MATLAB 命令求下列信号的傅里叶反变换,并绘出其时域信号图。
(1)1104()35F j j ωωω=-++ (2)224()F e ωω-=第一题的实验程序代码:clc;clear; t=sym('t');Fw = sym('10/(3+i*w)-4/(5+i*w)'); ft = ifourier(Fw); ezplot(ft),gridon第二题的实验程序代码:clc;clear; t=sym('t');Fw = sym('exp(-4*(w^2))'); ft = ifourier(Fw); ezplot(ft),grid on第一题实验结果如图3所示,第二题实验结果如图4所示。
图3 图44.3试用MATLAB数值计算方法求门信号的傅里叶变换,并画出其频谱图。
门信号即1,/2 ()0,/2tg ttτττ⎧≤⎪=⎨>⎪⎩,其中1τ=。
实验程序代码:clc;clear;ft1 =sym('Heaviside(t+1/2)-Heaviside(t-1/2)');subplot(121);ezplot(ft1,[-1.5 1.5]),grid onFw1 = simplify(fourier(ft1));subplot(122);ezplot(abs(Fw1),[-10*pi 10*pi]), gridonaxis([-10*pi 10*pi -0.2 1.2]);实验结果如图5所示:图54.4已知两个门信号的卷积为三角波信号,试用MATLAB命令验证傅里叶变换的时域卷积定理。
两个门信号卷积成为三角波信号的实验程序代码:clc;clear;dt = 0.01; t = -1:dt:2.5;f1 = uCT(t+1/2)- uCT(t-1/2);f2 = uCT(t+1/2)- uCT(t-1/2);f = conv(f1,f2)*dt;n =length(f);tt = (0:n-1)*dt-2;subplot(211), plot(t,f1),grid on;axis([-1, 1, -0.2,1.2]);title('f1(t)'); xlabel('t');subplot(212), plot(tt,f),grid on;axis([-2, 2, -0.2,1.2]);title('f(t)=f1(t)*f2(t)');xlabel('t');两个门信号卷积成为三角波信号的实验结果如图6所示:图6三角波信号傅里叶变换的实验程序代码:clc;clear;dt = 0.01;t = -4:dt:4;ft = (t+1).*uCT(t+1)-2*t.*uCT(t)+(t-1).*u CT(t-1);N = 2000;k = -N:N;W = 2*pi*k/((2*N+1)*dt);F = dt * ft*exp(-j*t'*W);plot(W,F), grid onaxis([-10*pi 10*pi -0.2 1.2]);xlabel('W'), ylabel('F(W)')title('f1(t)*f2(t)的频谱图');ft1和ft2分别傅里叶变换然后再相乘的代码:clc;clear;ft1 = sym('Heaviside(t+1/2)-Heaviside(t-1/ 2)');Fw1 = fourier(ft1);ft2 = sym('Heaviside(t+1/2)-Heaviside(t-1/ 2)');Fw2 = fourier(ft2);Fw=Fw1.*Fw2;ezplot(Fw,[-10*pi 10*pi]);grid onaxis([-10*pi 10*pi -0.2 1.2]);三角波信号傅里叶变换的实验结果如图7所示,ft1和ft2分别傅里叶变换然后再相乘的实验结果如图8所示。