人教版八年级下册第20章数据的分析单元检测试卷含答案解析

合集下载

人教版八年级数学下册第二十章-数据的分析综合测评试卷(含答案解析)

人教版八年级数学下册第二十章-数据的分析综合测评试卷(含答案解析)

人教版八年级数学下册第二十章-数据的分析综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在我校“文化艺术节”英语表演比赛中,有16名学生参加比赛,规定前8名的学生进入决赛,某选手想知道自己能否晋级,只需要知道这16名学生成绩的()A.中位数B.方差C.平均数D.众数2、甲、乙两人一周中每天制作工艺品的数量如图所示,则对甲、乙两人每天制作工艺品数量描述正确的是()A.甲比乙稳定B.乙比甲稳定C.甲与乙一样稳定D.无法确定3、对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中不正确的结论有( )A .1个B .2个C .3个D .4个4、已知数据1,2,3,3,4,5,则下列关于这组数据的说法错误的是( )A .平均数、中位数和众数都是3B .极差为4C .方差是53D5、某校有11名同学参加某比赛,预赛成绩各不同,要取前6名参加决赛,小敏己经知道了自己的成绩,她想知道自己能否进入决赛,只需要再知道这11名同学成绩的( )A .最高分B .中位数C .极差D .平均分6、若样本12,,,n x x x ⋯的平均数为10,方差为2,则对于样本1232,32,,32n x x x ++⋅⋅⋅+,下列结论正确的是( )A .平均数为30,方差为8B .平均数为32,方差为8C .平均数为32,方差为20D .平均数为32,方差为187、在对一组样本数据进行分析时,小华列出了方差的计算公式S 2=22222(5)(4)(4)(3)(3)5x x x x x -+-+-+-+-,下列说法错误的是( ) A .样本容量是5B .样本的中位数是4C .样本的平均数是3.8D .样本的众数是48、有一组数据:1,2,3,3,4.这组数据的众数是( )A .1B .2C .3D .49、2022年冬季奥运会将在北京张家口举行,如表记录了四名短道速滑选手几次选拔赛成绩的平均数x 和方差s 2.根据表中数据,可以判断乙选手是这四名选手中成绩最好且发挥最稳定的运动员,则m、n的值可以是()A.m=50,n=4 B.m=50,n=18 C.m=54,n=4 D.m=54,n=1810、某校随机抽查了10名学生的体育成绩,得到的结果如表:下列说法正确的是()A.这10名同学的体育成绩的方差为50B.这10名同学的体育成绩的众数为50分C.这10名同学的体育成绩的中位数为48分D.这10名同学的体育成绩的平均数为48分第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、跳远运动员李强在一次训练中,先跳了6次的成绩如下:7.6,7.8,7.7,7.8,8.0,7.9(单位:m).这六次成绩的平均数为7.8,方差为160.如果李强再跳两次,成绩分别为7.6,8.0,则李强这8次跳远成绩与前6次的成绩相比较,其方差 _____.(填“变大”、“不变”或“变小”)2、如果一组数据1a ,2a ,…,n a 的方差是2,那么一组新数据12a ,22a ,…,2n a 的方差是__________.3、某校九年级进行了3次体育中考项目﹣﹣1000米跑的模拟测试,甲、乙、丙三位同学3次模拟测试的平均成绩都是3分55秒,三位同学成绩的方差分别是s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093.则甲、乙、丙三位同学中成绩最稳定的是 ___.4、学校“校园之声”广播站要选拔一名英语主持人,小聪参加选拔的各项成绩如下:读:92分,听:80分,写:90分,若把读,听、写的成绩按5:3:2的比例计入个人的总分,则小聪的个人总分为____分.5、一组数据:2,5,7,3,5的众数是________.三、解答题(5小题,每小题10分,共计50分)1、某班10名男同学参加100米达标检测,15秒以下达标(包括15秒),这10名男同学成绩记录如下:+1.2,0,-0.8,+2,0,-1.4,-0.5,0,-0.3,+0.8 (其中超过15秒记为“+”,不足15秒记为“-”)(1)求这10名男同学的达标率是多少?(2)这10名男同学的平均成绩是多少?(3)最快的比最慢的快了多少秒?2、5,16,16,28,32,51,51的众数是什么?3、某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的满分均为100分,前6名选手的得分如下:根据规定,笔试成绩和面试成绩分别按一定的百分比折合成综合成绩.(1)这6名选手笔试成绩的众数是分.(2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比.(3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.4、某单位要买一批直径为60mm的螺丝,现有甲、乙两个螺丝加工厂,它们生产的螺丝的材料相同,价格也相同,该单位分别从甲、乙两厂的产品中抽样调查了20个螺丝,它们的直径(单位:mm)如下:甲厂:60,59,59.8,59.7,60.2,60.3,61,60,60,60.5,59.5,60.3,60.1,60.2,60,59.9,59.7,59.8,60,60;乙厂:60.1,60,60,60.2,59.9,60.1,59.7,59.9,60,60,60,60.1,60.5,60.4,60,59.6,59.5,59.9,60.1,60.你认为该单位应买哪个厂的螺丝?5、某中学为选拔一名选手参加我市“学宪法讲宪法”主题演讲比赛,经研究,按表所示的项目和权数对选拔赛参赛选手进行考评.下图分别是是小明、小华在选拔赛中的得分表和各项权数分布表:得分表结合以上信息,回答下列问题:(1)小明在选拔赛中四个项目所得分数的众数是,中位数是;(2)评分时按统计表中各项权数考评.①求出演讲技巧项目对应扇形的圆心角的大小.②如此考评,小明和小华谁更优秀,派出哪位同学代表学校参加比赛呢?---------参考答案-----------一、单选题1、A【解析】【分析】根据中位数的意义进行求解即可.【详解】解:16位学生参加比赛,取得前8名的学生进入决赛,中位数就是第8、第9个数的平均数,因而要判断自己能否晋级,只需要知道这16名学生成绩的中位数就可以.故选:A.【点睛】本题考查了中位数的意义,掌握中位数的意义是解题的关键.2、C【解析】【分析】先根据折线统计图得出甲、乙每天制作的个数,从而得出两组数据之间的关系,继而得出方差关系.【详解】解:由折线统计图知,甲5天制作的个数分别为15、20、15、25、20,乙5天制作的个数分别为10、15、10、20、15,∴甲从周一至周五每天制作的个数分别比乙每天制作的个数多5个,∴甲、乙制作的个数稳定性一样,故选:C.【点睛】本题主要考查了利用方差进行决策,准确分析判断是解题的关键.3、C【解析】【分析】直接根据众数、中位数和平均数的定义求解即可得出答案.【详解】数据3出现了6次,次数最多,所以众数是3,故①正确;这组数据按照从小到大的顺序排列为2,2,3,3,3,3,3,3,6,6,10,处于中间位置的是3,所以中位数是3,故②错误;平均数为22366210411⨯+⨯+⨯+=,故③、④错误;所以不正确的结论有②、③、④,故选:C.【点睛】本题主要考查众数、众数和平均数,掌握众数、中位数和平均数的定义是解题的关键.4、D【解析】【分析】分别求出这组数据的平均数、众数、中位数、极差、方差、标准差,再进行判断.【详解】解:这组数据的平均数为:(1+2+3+3+4+5)÷6=3,出现次数最多的是3,排序后处在第3、4位的数都是3,因此众数和中位数都是3,因此选项A不符合题意;极差为5﹣1=4,B选项不符合题意;S2=16×[(1﹣3)2+(2﹣3)2+(3﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=53,C选项不符合题意;S=D选项符合题意,故选:D.【点睛】考查平均数、中位数、众数、方差、标准差的计算方法,正确的计算是解答的前提.5、B【解析】【分析】由于共有11名同学参加某比赛,比赛取前6名参加决赛,根据中位数的意义分析即可.【详解】解:由于共有11个不同的成绩按从小到大排序后,中位数及中位数之后的共有6个数, 故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选:B .【点睛】本题考查了中位数意义,解题的关键是正确掌握中位数的意义.6、D【解析】【分析】由样本12,,,n x x x ⋯的平均数为10,方差为2,可得()()()()2222123123···10,101010?··102,n n x x x x n x x x x n ++++=-+-+-++-=再利用平均数公式与方差公式计算1232,32,,32n x x x ++⋅⋅⋅+的平均数与方差即可.【详解】 解: 样本12,,,n x x x ⋯的平均数为10,方差为2,()()()()()222212312311···10,?··2,n n x x x x x x x x x x x x x n n ⎡⎤∴=++++=-+-+-++-=⎣⎦ ()()()()2222123123···10,101010?··102,n n x x x x n x x x x n ∴++++=-+-+-++-=∴ ()1231323232?··32n x x x x n++++++++ ()1131023232,n n n n n=⨯+=⨯= ()()()()22221231323232323232?··3232n x x x x n ⎡⎤+-++-++-+++-⎣⎦()()()()22221231910910910?··910n x x x x n ⎡⎤=-+-+-++-⎣⎦ 19218,n n =⨯⨯= 故选D【点睛】本题考查的是平均数,方差的含义与计算,熟练的运用平均数公式与方差公式进行推导是解本题的顾客.7、D【解析】【分析】先根据方差的计算公式得出样本数据,从而可得样本的容量,再根据中位数(按顺序排列的一组数据中居于中间位置的数)与众数(一组数据中出现频数最多的数)的定义、平均数的计算公式逐项判断即可得.【详解】解:由方差的计算公式得:这组样本数据为5,4,4,3,3,则样本的容量是5,选项A 正确;样本的中位数是4,选项B 正确; 样本的平均数是54433 3.85++++=,选项C 正确; 样本的众数是3和4,选项D 错误;故选:D .【点睛】题目主要考查了中位数与众数的定义、平均数与方差的计算公式等知识点,依据方差的计算公式正确得出样本数据是解题关键.8、C【解析】【分析】找出数据中出现次数最多的数即可.【详解】解:∵3出现了2次,出现的次数最多,∴这组数据的众数为3;故选:C.【点睛】此题考查了众数.众数是这组数据中出现次数最多的数.9、A【解析】【分析】根据乙选手是这四名选手中成绩最好且发挥最稳定的运动员,可得到乙选手的成绩的平均数最大,方差最小,即可求解.【详解】解:因为乙选手是这四名选手中成绩最好的,所以乙选手的成绩的平均数最小,又因为乙选手发挥最稳定,所以乙选手成绩的方差最小.故选:A.【点睛】本题主要考查了平均数和方差的意义,理解方差是反映一组数据的波动大小的一个量:方差越大,则平均值的离散程度越大,稳定性也越差;反之,则它与其平均值的离散程度越小,稳定性越好.10、C【解析】【分析】根据众数、中位数、平均数及方差的定义列式计算即可.【详解】这组数据的平均数为110×(46+47×2+48×3+49×2+50×2)=48.2,故D选项错误,这组数据的方差为110×[(46﹣48.2)2+2×(47﹣48.2)2+3×(48﹣48.2)2+2×(49﹣48.2)2+2×(50﹣48.2)2]=1.56,故A选项错误,∵这组数据中,48出现的次数最多,∴这组数据的众数是48,故B选项错误,∵这组数据中间的两个数据为48、48,∴这组数据的中位数为48482=48,故C选项正确,故选:C.【点睛】本题考查众数、中位数、平均数及方差,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数;一组数据中,出现次数最多的数就叫这组数据的众数;熟练掌握定义及公式是解题关键.二、填空题1、变大【解析】【分析】先由平均数的公式计算出李强第二次的平均数,再根据方差的公式进行计算,然后比较即可得出答案.【详解】解:∵李强再跳两次,成绩分别为7.6,8.0, ∴这组数据的平均数是()7.867.68.07.88m ⨯++=, ∴这8次跳远成绩的方差是:()()()()()222222127.67.827.87.87.77.828.07.87.97.88S ⎡⎤=⨯-+⨯-+-+⨯-+-⎣⎦ 0.0225= ∵0.0225>160, ∴方差变大;故答案为:变大.【点睛】本题主要考查了平均数的计算和方差的计算,熟练掌握平均数和方差的计算是解答此题的关键. 2、8【解析】【分析】设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',代入方差公式2222121[()()()]n s x x x x x x n =-+-++-,计算即可.【详解】解:设一组数据1a ,2a ,…,n a 的平均数为x ,方差是22s =,则另一组数据12a ,22a ,…,2n a 的平均数为2x x '=,方差是2s ',∵2222121[()()()]n s a x a x a x n =-+-++-, ∴2222121[(22)(22)(22)]n s a x a x a x n '=-+-++-, 则2222121[4()4()4()]n s a x a x a x n '=-+-++-, ∴2222124[()()()]n s a x a x a x n '=-+-++-,∴224s s '=,2428s '=⨯=.【点睛】本题考查了方差的性质:当一组数据的每一个数都乘以同一个数时,方差变成这个数的平方倍.即如果一组数据1a ,2a ,…,n a 的方差是2s ,那么另一组数据1ka ,2ka ,⋯,n ka 的方差是22k s .3、乙【解析】【分析】根据方差的定义,方差越小数据越稳定.【详解】解:∵s 甲2=0.01,s 乙2=0.009,s 丙2=0.0093,∴s 乙2<s 丙2<s 甲2,∴甲、乙、丙三位同学中成绩最稳定的是乙.故答案为:乙.【点睛】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4、88【解析】【分析】利用加权平均数按照比例求得小莹的个人总分即可.【详解】解:根据题意得:532⨯⨯⨯(分),92+80+90=885+3+25+3+25+3+2答:小聪的个人总分为88分;故答案为:88.【点睛】本题考查了加权平均数的计算方法,在进行计算时候注意权的分配,另外还应细心,否则很容易出错.5、5【解析】【分析】根据众数的概念求解.【详解】解:这组数据5出现的次数最多.故众数为5.故答案为:5,【点睛】本题考查了众数的知识,一组数据中出现次数最多的数据叫做众数.三、解答题1、(1)70%;(2)15.1秒;(3)最快的比最慢的快了3.4秒【分析】(1)求这10名男同学的达标人数除以总人数即可求解;(2)根据10名男同学的成绩即可求出平均数;(3)分别求出最快与最慢的时间,故可求解.【详解】解(1)从记录数据可知达标人数是7∴ 达标率=7÷10×100%=70%(2)15+(+1.2+0-0.8+2+0-1.4-0.5+0-0.3+0.8 )÷10=15.1(秒)∴这10名男同学的平均成绩是15.1秒(3)最快的是(15-1.4)=13.6(秒)最慢的是(15+2)=17(秒)17-13.6=3.4(秒)∴最快的比最慢的快了3.4秒.【点睛】此题主要考查有理数的混合运算的实际应用,解题的关键是熟知有理数的运算法则.2、16和51【分析】根据众数的定义:在一组数据中出现次数最多的数据,由此可求解.【详解】解:因为5,16,16,28,32,51,51中出现最多的数据为16和51,分别为两次,所以这组数据的众数是16和51.【点睛】本题主要考查众数,熟练掌握求一组数据的众数是解题的关键.3、(1)84;(2)笔试成绩和面试成绩各占的百分比是40%,60%;(3)2号:89.6分,3号:85.2分,4号:90分,5号:81.6分,6号:83分,综合成绩排序前两名人选是4号和2号【分析】(1)根据中位数和众数的定义即把这组数据从小到大排列,再找出最中间两个数的平均数就是中位数,再找出出现的次数最多的数即是众数;(2)先设笔试成绩和面试成绩各占的百分百是x ,y ,根据题意列出方程组,求出x ,y 的值即可;(3)根据笔试成绩和面试成绩各占的百分比,分别求出其余五名选手的综合成绩,即可得出答案.【详解】解:(1)把这组数据从小到大排列为,80,84,84,85,90,92,84出现了2次,出现的次数最多,则这6名选手笔试成绩的众数是84分;故答案为:84;(2)设笔试成绩和面试成绩各占的百分比是x ,y ,根据题意得:1859088x y x y +=⎧⎨+=⎩, 解得40%60%x y =⎧⎨=⎩, ∴笔试成绩和面试成绩各占的百分比是40%,60%.(3)2号选手的综合成绩是92×0.4+88×0.6=89.6(分),3号选手的综合成绩是84×0.4+86×0.6=85.2(分),4号选手的综合成绩是90×0.4+90×0.6=90(分),5号选手的综合成绩是84×0.4+80×0.6=81.6(分),6号选手的综合成绩是80×0.4+85×0.6=83(分).∴综合成绩排序前两名人选是4号和2号.【点睛】本题考查了众数、二元一次方程组的实际应用,加权平均数等知识点,依据题意,正确建立方程求出题(2)中的笔试成绩和面试成绩各占的百分比是解题的关键.4、买乙厂的螺丝【分析】分别求出甲乙两厂螺丝的平均数,极差,方差,然后根据平均数,极差,方差综合选取即可.【详解】 解:60.2+60.3+61+600+60+60.5+59.60+59+59.8+59.70+.1=6205+60.3+60.1+6.2+60+599+59.759.86060x +++⎛⎫⨯= ⎪⎝⎭甲 mm , 60.1+60+60+60.2+59.9+60.1+59.7+59.9+60+60+600+60.1+60.5+60.4+60+59.6+59.5+59.9+60.1+601620x ⎛⎫=⨯= ⎪⎝⎭乙 mm ; 61592mm R =-=甲,60.559.51mm R =-=乙;2222222222222222222(60-60)+(59-60)+(59.8-60)+(59.7-60)+(60.2-60)+(60.3-60)+(61-60)1=+(60-60)+(60-60)+(60.5-60)+(59.5-60)+(60.3-60)+(60.1-60)+(60.2-60)20+(60-60)+(59.9-60)+(59.7-60)+(59.8-60)+(60-60S ⨯甲220.152)+(60-60)⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; 2222222222222222222(60.1-60)+(60-60)+(60-60)+(60.2-60)+(59.9-60)+(60.1-60)+(59.7-60)1=?+(59.9-60)+(60-60)+(60-60)+(60-60)+(60.1-60)+(60.5-60)+(60.4-60)20+(60-60)+(59.6-60)+(59.5-60)+(59.9-60)+(60.1-S 乙220.05160)+(60-60)⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦; ∴从甲、乙两厂抽取的10个螺丝直径的平均数都是60mm ,但甲厂20个螺丝直径的极差为2mm ,方差为0.152;乙厂20个螺丝直径的极差为1mm ,方差为0.051.因此在同等条件下应买乙厂的螺丝.【点睛】本题考查了平均数,极差,方差,以及根据平均数,极差,方差做决策,熟练掌握计算平均数,极差,方差的方法是解本题的关键.5、(1)85分,82.5分;(2)①144°;②小明更优秀,应派出小明代表学校参加比赛【分析】(1)根据众数和中位数的定义求解即可;(2)①根据扇形统计图中的数据,可以得到演讲技巧项目的百分比,进而求出圆心角大小;②根据加权平均数的定义列式计算出小明、小华的成绩,从而得出答案.【详解】解:(1)小明在选拔赛中四个项目所得分数的众数是85分,中位数是85802+=82.5(分);(2)①1-5%-15%-40%=40%360⨯40%=144°答:演讲技巧项目对应扇形的圆心角为144°;②小明分数为:855%7015%8040%8540%80.75⨯+⨯+⨯+⨯=小华分数为:905%7515%7540%8040%77.75⨯+⨯+⨯+⨯=80.75>77.75∴小明更优秀,应派出小明代表学校参加比赛【点睛】本题考查了众数、中位数、加权平均数,解题的关键是掌握众数、中位数、加权平均数的定义.。

人教版八年级下册数学 第20章 数据的分析 单元测试卷(含答案)

人教版八年级下册数学 第20章 数据的分析 单元测试卷(含答案)

第20章 数据的分析 单元测试卷一、填空题(共14小题,每题2分,共28分)1.对于数据组3,3,2,3,6,3,6,3,2,4中,众数是_______;平均数是______;•极差是_______,中位数是______. 2.数据3,5,4,2,5,1,3,1的方差是________.3.某学生7门学科考试成绩的总分是560分,其中3门学科的总分是234分,则另外4门学科成绩的平均分是_________.4.已知一组数据1、2、y 的平均数为4,那么y 的值是 . 5.若样本x 1+1,x 2+1,…,x n +1的平均数为10,方差为2,则另一样本x 1+2,x 2+2,…,x n +2,的平均数为 ,方差为 .6.小张和小李去练习射击,第一轮10枪打完后两人的成绩如图所示,•通常新手的成绩不太稳定,那么根据图的信息,估计小张和小李两人中新手是________.7.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为______℃.8.一班级组织一批学生去春游,预计共需费用120元,后来又有2人参加进来,总费用不变,于是每人可以少分摊3元,原来参加春游的学生人数是 . 9.当五个整数从第6题1 2 3 5 6 7123456789 10调查序号零花钱(元)第10题小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是___ __.10.八年级某班为了引导学生树立正确的消费观,随机调查了10名同学某日除三餐以外的零花钱情况,其统计图如下,据图可知:零花钱在3元以上(包括3元)的学生所占比例为,该班学生每日零花钱的平均数大约是元.11.为了调查某一段路的汽车流量,记录了30天中每天同一时段通过该路口的汽车辆数,其中有4天是284辆,4天是290辆,12天是312辆,10天是314辆,那么这30天该路口同一时段通过的汽车平均数是.12.小芳测得连续5天日最低气温并整理后得出下表:那么空缺的两个数据是,.13.一养雨专业户为了估计池塘里鱼的条数,先随意捕上100条做上标记,然后放回湖里,过一段时间,待带标记的鱼完全混合于鱼群后,又捕捞了5次,记录如下表:由此估计池塘里大约有条鱼.14.现有A、B两个班级,每个班级各有45名学生参加一次测试,每名参加者可获得0,1,2,3,4,5,6,7,8,9分这几种不同的分值中的一种.测试结果A班的成绩如下表所示,B班的成绩如右图所示.(1)由观察可知,______班的方差较大;(2)若两班合计共有60人及格,问参加者最少获______分才可以及格.二、选择题(共4小题,每题3分,共12分)15.某学校五个绿化小组一天植树的棵数如下:10,10,12,x,8,如果这组数据的平均数与众数相等,那么这组数据的中位数是()A.8 B.9 C.10 D.1216.某班50名学生的身高测量结果如下表:那么该班学生身高的众数和中位数分别是()A.1.60,1.56 B.1.59,1.58 C.1.60,1.58 D.1.60,1. 60 17.如果一组数据a1,a2,……,a n的方差是2,那么数据2a1,2a2,……,2a n 的方差是()A.2 B.4 C.6 D.818.甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:某同学分析上表后得出如下结论:(1)甲、乙两班学生成绩平均水平相等(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动比乙班大,上述结论正确的是()A.①②③B.①②C.①③D.②③三、解答题(共60分)19.(5分)某校规定学生期末数学总评成绩由三部分构成:期末统考卷面成绩(占70%)、•平时测验成绩(占20%)、上课表现成绩(占10%),若学生董方的三部分得分依次是92分、80分、•84分,则她这学期期末数学总评成绩是多少?20.(5(1(2)小明说,他所在年龄组的参赛人数占全体参赛人数的28%,你认为小明是哪个年龄组的选手?请说明理由.21.(5分)某校八年级(1)班50名学生参加2008年通州市数学质量监控考试,(1)该班学生考试成绩的众数是 . (2)该班学生考试成绩的中位数是 .(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.22.(6分)当今,青少年视力水平的下降已引起全社会的关注,为了了解某校3000名学生的视力情况,从中抽取了一部分学生进行了一次抽样调查,利用所得数据,绘制出如下的直方图(长方形的高表示人数),根据图形,回答下列问题:(1)本次抽样调查共抽测了 名学生;(2)参加抽测学生的视力的众数在 内;(3)如果视力为4.9(包括4.9)以上为正常,估计该校学生视力正常的人数约为 .23.(6分)为了了解某校2000名学生参加环保知识竞赛的成绩,从中抽取了部分学生的竞赛成绩(均为整数),整理后绘制成如下的频数分布直方图(如图8),请结合图形解答下列问题.(1) 指出这个问题中的总体.2030405060(2)求竞赛成绩在79.5~89.5这一小组的频率.(3) 如果竞赛成绩在90分以上(含90分)的同学可获得奖励,请估计全校约有多少人获得奖励.24.(6分)小红的奶奶开了一个金键牛奶销售店,主要经营“金键学生奶”、“金键酸牛奶”、“金键原味奶”,可奶奶经营不善,经常有品种的牛奶滞销(没卖完)或脱销(量不够),造成了浪费或亏损,细心的小红结合所学的统计知识帮奶奶统计了一个星期牛奶的销售情况,并绘制了下表:(1)计算各品种牛奶的日平均销售量,并说明哪种牛奶销量最高? (2)计算各品种牛奶的方差(保留两位小数),并比较哪种牛奶销量最稳定?(3)假如你是小红,你会对奶奶有哪些好的建议.25.(6分)为了增强环境保护意识,6月5日“世界环境日”当天,在环保局工作49.5 79.5 89.5 69.5 6人数99.5 成绩人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),得频数分布表如下:组别噪声声级分组频数频率1 44.5——59.5 4 0.12 59.5——74.5 a0.23 74.5——89.5 10 0.254 89.5——104.5 b c5 104.5——119.56 0.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a =________,b=________,c =_________;(2)补充完整频数分布直方图;(3)如果全市共有200个测量点,那么在这一时刻噪声声级小于75dB的测量点约有多少个?26.(6分)今年3月5日,花溪中学组织全体学生参加了“走出校门,服务社会”的活动.九年级一班高伟同学统计了该天本班学生打扫街道,去敬老院服务和到社区文艺演出的人数,并做了如下直方图和扇形统计图.请根据高伟同学所作的两个图形,解答:(1)九年级一班有多少名学生?(2)补全直方图的空缺部分.(3)若九年级有800名学生,估计该年级去敬老院的人数.参考答案一、填空题1.3,3.5,4,3 2.2.25 3.81.5分4.9 5.11,2 6.小李7.-2 8.8 9.2110.50%,2.8 11.306 12.4,2 13.1000 14.A,4二、选择题15.C 16.C 17.D 18.A三、解答题19.88.8分20.(1)众数是:14岁;中位数是:15岁;(2)16岁年龄组21.(1)88分;(2)86分;(3)略22.(1)150;(2)3.95-4.25;(3)600 23.(1)2000名学生参加环保知识竞赛的成绩;(2)0.25;(2)300人24.(1)x学生奶=3,x酸牛奶=80,x原味奶=40,金键酸牛奶销量高;(2)12.57,91.71,96.86,•金键学生奶销量最稳定;(3)建议学生奶平常尽量少进或不进,周末可进几瓶25.(1)8,12,0.3;(2)略;(3)60个26.(1)50人;(2)略;(3)160人。

人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第20章数据的分析》单元测试卷(1)一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.52.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.94.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为46.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是.9.(3分)已知样本方差S2=,则这个样本的容量是,样本的平均数是.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为分.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是环,众数是环.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是,方差是.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数111113220000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是;所有员工工资的中位数是.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.频数(人数)频率组别个人年消费金额x(元)A x≤2000180.15B2000<x≤4000a bC4000<x≤6000D6000<x≤8000240.20E x>8000120.10合计c 1.00根据以上信息回答下列问题:(1)a=,b=,c=.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?人教新版八年级下册《第20章数据的分析》单元测试卷(1)参考答案与试题解析一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.5【考点】众数.【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【解答】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故选:D.2.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对【考点】统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.9【考点】众数;算术平均数.【分析】根据题意先确定x的值,再根据定义求解即可.【解答】解:当x=8或12时,有两个众数,而平均数只有一个,不合题意舍去,当众数为10,根据题意得=10,解得x=10,∵这组数据的众数与平均数相同,∴这组数据的平均数是10;故选:B.4.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克【考点】用样本估计总体;算术平均数.【分析】先计算出8条鱼的平均质量,然后乘以240即可.【解答】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选:B.5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为4【考点】方差;算术平均数.【分析】一般地设n个数据,x1,x2,…x n,平均数=(x1+x2+x3…+x n),方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].直接用公式计算.【解答】解:由题知,x1+1+x2+1+x3+1+…+x n+1=10n,∴x1+x2+…+x n=10n﹣n=9nS12=[(x1+1﹣10)2+(x2+1﹣10)2+…+(x n+1﹣10)2]=[(x12+x22+x32+…+x n2)﹣18(x1+x2+x3+…+x n)+81n]=2,∴(x12+x22+x32+…+x n2)=83n另一组数据的平均数=[x1+2+x2+2+…+x n+2]=[(x1+x2+x3+…+x n)+2n]=[9n+2n]=×11n=11,另一组数据的方差=[(x1+2﹣11)2+(x2+2﹣11)2+…+(x n+2﹣11)2]=[(x12+x22+…+x n2)﹣18(x1+x2+…+x n)+81n]=[83n﹣18×9n+81n]=2,故选:C.6.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是32.【考点】算术平均数.【分析】5x+3,5y﹣2,5z+5的平均数是(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3,因为x,y,z的平均数是6,则x+y+z=18;再整体代入即可求解.【解答】解:∵x,y,z的平均数是6,∴x+y+z=18;∴(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3=[5×18+6]÷3=96÷3=32.故答案为:32.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是2.【考点】中位数;众数.【分析】一组数据中出现次数最多的数据叫做众数,由此可得出a的值,将数据从小到大排列可得出中位数.【解答】解:1,3,2,5,2,a的众数是a,∴a=2,将数据从小到大排列为:1,2,2,2,3,5,中位数为:2.故答案为:2.9.(3分)已知样本方差S2=,则这个样本的容量是4,样本的平均数是3.【考点】方差;总体、个体、样本、样本容量;算术平均数.【分析】从方差公式中可以得到样本容量和平均数.【解答】解:根据样本方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,其中n是这个样本的容量,是样本的平均数,所以本题中这个样本的容量是4,样本的平均数是3.故填4,3.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为89分.【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(80×3+90×5+100×2)÷(3+5+2)=89(分);故答案为:89.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是8.5环,众数是8环.【考点】众数;条形统计图;中位数.【分析】根据众数和中位数的概念求解.【解答】解:把数据按照从小到大的顺序排列为:7,8,8,8,9,9,10,10,中位数为:=8.5,众数为:8.故答案为:8.5,8.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是6,方差是8.【考点】方差;算术平均数.【分析】由题意可知,将这组数据的每个数都扩大2倍,那它的和也将扩大2倍,它的平均数也扩大2倍;根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.【解答】解:设这组数有x个,这组数的平均数是3,那么这组数的和为3x,如果这组数据的每个数都扩大2倍,则这组数的总和为3x×2,平均数为3x×2÷x=6.将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,∴新数据的方差是2×4=8,故答案为:6;8.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.【考点】加权平均数.【分析】根据三项成绩的不同权重,分别计算三人的成绩.【解答】解:班长的成绩=24×0.3+26×0.3+28×0.4=26.2(分);学习委员的成绩=28×0.3+26×0.3+24×0.4=25.8(分);团支部书记的成绩=26×0.3+24×0.3+26×0.4=25.4(分);∵26.2>25.8>25.4,∴班长应当选.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数1111132 20000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是4350;所有员工工资的中位数是2000.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?【考点】中位数;加权平均数.【分析】(1)根据加权平均数的定义和中位数的定义即可得到结论;(2)中位数描述该餐厅员工工资的一般水平比较恰当;(3)由平均数的定义即可得到结论.【解答】解:(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;工资的中位数为=2000元;故答案为:4350,2000;(2)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(3)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.【考点】众数;二元一次方程组的应用;统计表;中位数.【分析】(1)根据题意:设该班80分和90分的人数分别是x、y;得方程=76与x+y=30﹣2﹣5﹣7﹣3;解方程组即可.(2)众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.求出a,b的值就可以.【解答】解:(1)据题意得,∴∴该班80分和90分的人数分别是8人,5人.成绩(分)5060708090100人数(人)257853(2)据题意得a=80,b=(80+80)÷2=80∴a+b=160四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.组别个人年消费金额x(元)频数(人数)频率A x ≤2000180.15B 2000<x ≤4000abC 4000<x ≤6000D 6000<x ≤8000240.20Ex >8000120.10合计c1.00根据以上信息回答下列问题:(1)a =36,b =0.30,c =120.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在C组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.【考点】频数(率)分布表;条形统计图;中位数;用样本估计总体.【分析】(1)首先根据A 组的人数和所占的百分比确定c 的值,然后确定a 和b 的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.【解答】解:(1)观察频数分布表知:A 组有18人,频率为0.15,∴c =18÷0.15=120,∵a =36,∴b =36÷120=0.30;∴C 组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.【考点】条形统计图;中位数;众数;扇形统计图.【分析】(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;(2)求出185型的人数,然后补全统计图即可;(3)用185型所占的百分比乘以360°计算即可得解;(4)根据众数的定义以及中位数的定义解答.【解答】解:(1)15÷30%=50(名),50×20%=10(名),即该班共有50名学生,其中穿175型校服的学生有10名;(2)185型的学生人数为:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),补全统计图如图所示;(3)185型校服所对应的扇形圆心角为:×360°=14.4°;(4)165型和170型出现的次数最多,都是15次,故众数是165和170;共有50个数据,第25、26个数据都是170,故中位数是170.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?【考点】方差;算术平均数;极差.【分析】(1)根据平均数的公式进行计算即可;(2)根据极差和方差的计算公式计算即可;(3)从方差和极差两个数比较即可;(4)根据成绩稳定性与目标进行分析即可.【解答】解:(1)甲的平均数=(584+594+…+599)=600(cm),乙的平均数=(615+618+…+624)=600(cm);(2)甲的极差为:612﹣584=28;乙的极差为:624﹣579=45;S甲2=[(584﹣600)2+(594﹣600)2+…+(599﹣600)2]=59.4,S乙2=[(615﹣600)2+(618﹣600)2+…+(624﹣600)2]=266.8.(3)甲的方差较小,成绩较稳定,乙的方差较大,波动较大,但最好成绩较好,爆发力强.(4)若只想夺冠,选甲参加比赛,因为甲的方差较小,成绩较稳定,且大于或等于5.96m 的次数有8次;若要打破纪录,应选乙参加比赛,因为有四次超过6.10m,最好成绩较好,爆发力强.。

人教版八年级下册数学 第20章 数据的分析 单元测试(含答案)

人教版八年级下册数学 第20章 数据的分析 单元测试(含答案)

第20章数据的分析一、选择题1.数据2、3、2、3、5、3的众数是()A. 2B. 2.5C. 3D. 52.已知一组数据:1,2,6,3,3,下列说法正确的是()A. 中位数是6B. 平均数是4C. 众数是3D. 方差是53.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高为1.65米,而小华的身高为1.66米.下列说法错误的是().A. 1.65米是该班学生身高的平均水平B. 班上比小华高的学生不会超过25人C. 这组身高的中位数不一定是1.65米D. 这组身高的众数不一定是1.65米4.在体育达标测试中,某校初三5班第一小组六名同学一分钟跳绳成绩如下:93,138,98,152,138,183;则这组数据的极差是()A. 138B. 183C. 90D. 935.在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、、90、70,若这四个同学得分的众数与平均数恰好相等,则他们得分的中位数是()A. 100B. 90C. 80D. 706.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是( )A. 甲B. 乙C. 丙D. 丁7.某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是()A. 6.2小时B. 6.4小时C. 6.5小时D. 7小时8.某青年排球队12名队员的年龄情况如下:则12名队员的年龄()A. 众数是20岁,中位数是19岁B. 众数是19岁,中位数是19岁C. 众数是19岁,中位数是20.5岁D. 众数是19岁,中位数是20岁9.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x,3,4,6.已知他们平均每人捐5本,则这组数据的方差是()A. B. 10 C. D.10.某班50名学生身高测量结果如下表:该班学生身高的众数和中位数分别是()A. 1.60,1.56B. 1.59,1.58C. 1.60,1.58D. 1.60,1.6011.已知样本x1,x2,x3,x4的平均数是2,则x1+3,x2+3,x3+3,x4+3的平均数为()A. 2B. 2.75C. 3D. 512.一名学生军训时连续射靶10次,命中环数分别为7,8,6,8,5,9,10,7,6,4.则这名学生射击环数的方差是()A. 3B. 2.9C. 2.8D. 2.7二、填空题13.用计算器计算平均数时,必须先清除________中的数值.14.一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的中位数为________ .15.已知一组数据﹣3,x,﹣2,3,1,6的中位数为1,则其方差为________.16.一组数据x 1,x2,…x n的平均数为,另一组数据y1,y2,…y n的平均数为,则第三组数据x 1+y1,x2+y2,…x n+y n的平均数为________(用,表示)17.若一组数据3,3,4,x,8的平均数是4,则这组数据的中位数是________18.某班全体学生参加了一次“献爱心一日捐”活动,捐款人数与捐款额如图所示,根据图中所提供的信息,你认为这次捐款活动中捐款额的中位数是________元.19. 在市委宣传部举办的以“弘扬社会主义核心价值观”为主题的演讲比赛中,其中9位参赛选手的成绩如下:9.3;9.5;8.9;9.3;9.5;9.5;9.7;9.4;9.5,这组数据的众数是 ________.20.小颖使用计算器求30个数据的平均数时,错将其中一个数据15输入为105,那么由此求出的平均数与实际平均数的差是________21.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,已知新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是________.三、解答题22.某校九年级甲班学生中,有5人13岁,30人14岁,5人15岁,求这个班级学生的平均年龄.23.某乡镇企业生产部有技术工人15人,生产部为了合理制定产品的每月生产定额,统计了这15人某月的加工零件数如下:(1)写出这15人该月加工零件的平均数、中位数和众数;(2)生产部负责人要定出合理的每人每月生产定额,你认为应该定为多少件合适?24.为了解某学校初三男生1000米长跑,女生800米长跑的成绩情况,从该校初三学生中随机抽取了10名男生和10名女生进行测试,将所得的成绩分别制成如下的表1和图1,并根据男生成绩绘制成了不完整的频率分布直方图(图2).表1(1)根据表1,补全图片2;(2)根据图1,10名女生成绩的中位数是多少?众数是多少?(3)按规定,初三女生800米长跑成绩不超过3′19″就可以得满分.该校初三学生共490人,其中男生比女生少70人.如果该校初三女生全部参加800米长跑测试,请你估计可获得满分的人数约为多少?25.我市某中学七、八年级各选派10名选手参加学校举办的环保知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表(不完整)如下所示:(1)观察条形统计图,可以发现:八年级成绩的标准差________,七年级成绩的标准差(填“>”、“<”或“=”),表格中m=________,n=________;(2)计算七年级的平均分;(3)有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.参考答案一、选择题C C B C B B BD D C D A二、填空题13.统计存储器14.115.916.17.318.1519.9.520.321.小林三、解答题22.解:根据题意得:=14(岁),答:这个班级学生的平均年龄是14岁.23.解:(1)==260(件),中位数是:240件,众数是:240件;(2)240合适.24.解:(1)如图2所示:(2)∵10名女生的成绩分别是:3′10〞,3′10〞,3′10〞,3′16〞,3′21〞,3′21〞,3′27〞,3′33〞,3′43〞,3′49〞,∴这10名女生成绩的中位数是:(3′21〞+3′21〞)÷2=3′21〞,众数是:3′10〞;故答案为:3′21″;3′10″;(3)设女生有x人,男生有(x﹣70)人,由题意得:x+x﹣70=490,x=280,∵这10名同学有4名同学成绩达满分,∴估计该校女生的满分率为×100%=40%,∴280×40%=112(人).答:女生得满分的人数是112人25.(1)<;6;7.5(2)解:七年级成绩的平均分=(3×1+5×6+7×1+8×1+9×1+10×1)÷10=6.7(3)解:①八年级队平均分高于七年级队;②八年级队的成绩比七年级队稳定;③八年级队的成绩集中在中上游;所以支持八年级队成绩好。

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)

人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共9小题,满分36分)1.某商店5天的营业额如下(单位:元):14845,25706,18957,11672,16330,利用计算器求得这5天的平均营业额是()A.18116元B.17805元C.17502元D.16678元2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S2甲、S2乙的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.S2甲≤S23.一组数据5,3,3,2,5,7的中位数是()A.2B.2.5C.3D.44.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A.100分,95分B.98分.95分C.98分,98分D.97分,98分5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A.平均数是7B.众数是7C.极差是5D.中位数8.5 6.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩波动情况是()A.甲波动大B.乙波动大C.甲、乙波动一样D.无法比较7.一组数据x、0、1、﹣2、3的平均数是1,则x的值是()A.3B.1C.2.5D.08.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁9.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.方差二、填空题(共9小题,满分36分)10.一组数据1,6,3,﹣4,5的极差是.11.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)12.有甲、乙两组数据,如表所示:甲1012131416乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2s乙2(填“>”、“<”或“=”).13.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是.14.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.15.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.17.已知数据a,b,c的平均数为8,那么数据a+1,b+1,c+1的平均数是.18.利用计算器求数据2,1,3,4,3,5的平均数是;方差;中位数.三、解答题(共6小题,满分78分)19.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.20.2021年12月4日是我国第二十一个法制宣传日,也是第八个国家宪法日.为大力弘扬宪法精神,维护宪法权威,普及宪法知识,进一步增强学生的法制观念,某学校在全校七、八年级共2000名学生中开展“国家宪法日”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:七年级抽取的学生的竞赛成绩:2,4,5,6,7,7,7,7,7,7,8,8,9,9,9,9,9,10,10,10.八年级抽取的学生的竞赛成绩:4,5,5,5,6,6,7,7,7,8,8,8,8,8,9,9,10,10,10,10.七、八年级抽取的学生的竞赛成绩的统计表年级七年级八年级平均数7.57.5中位数7.5m众数n8根据以上信息,解答下列问题:(1)填空:m=,n=;(2)你觉得哪个年级学生的知识竞赛成绩更好?请说明理由(一条理由即可);(3)若该校七、八年级学生人数均为1000人,估计本次竞赛中成绩合格的人数.21.至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?22.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848723.某校为了了解九年级学生在寒假期间的数学学习情况,开学之际进行了一次数学小测验(满分100分),并从甲、乙两个班各抽取10名学生的测验成绩进行统计分析.收集数据:甲班:90,90,70,90,100,80,80,90,95,65乙班:95,70,80,90,70,80,95,80,100,90整理数据成绩x (分)60≤x≤7070<x≤8080<x≤9090<x≤100甲班2242乙班23a3分析数据数据平均数中位数众数甲班8590d乙班b c80解答下列问题:(1)直接写出a、b、c、d的值;(2)小明同学说:“这次测验我得了90分,在我们小组中属于中游偏上!”观察上面的表格判断,小明可能是班的学生;(3)若乙班共有50人参加测验,请估计乙班测验成绩超过90分的人数.24.2022年北京冬奥会的成功举办,掀起了广大群众的冰雪热情.某学校社团发起了对同学们的冰雪运动知识了解程度的调查,现从初中、高中各随机抽取了15名同学进行知识问答测试,测试成绩用x表示,共分成4组:A:70以下.B:70≤x<80.C;80≤x<90,D:90≤x<100,对成绩进行整理分析,给出了下面部分信息:初中同学的测试成绩在C组中的数据为:81,85,88.高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如表:校部平均数中位数最高分众数极差初中88a989832高中8888100b c (1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)的学生对冰雪项目的知识掌握更好?请写出理由(给出一条理由即可);(3)若初中、高中共有2400名学生,请估计此次测试成绩达到90分及以上的学生共有多少人?参考答案一、选择题(共9小题,满分36分)1.C2.A3.D4.C5.D6.A7.A8.B9.A二、填空题(共9小题,满分36分)10.10.11.众数.12.>.13.5,6.14.46.15.﹣3.16.86.17.9.18.3,,3.三、解答题(共6小题,满分78分)19.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:=153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:×100%=70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.20.解:(1)由图表可得:m==8,n=8.故答案为:8,7;(2)八年级学生的知识竞赛成绩更好,理由:八年级的中位数和众数高于七年级的中位数和众数,∴八年级学生的知识竞赛成绩更好;(3)1000×2×=1650(人),答:本次竞赛中成绩合格的人数为1650人.21.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.22.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:=87.4(分),乙班的平均分为:=87.6(分),∵87.4<87.6,∴乙班将获胜.23.解:(1)a=10﹣2﹣3﹣3=2,乙班的平均数b=(95+70+80+90+70+80+95+80+100+90)=85(分),乙班成绩按顺序排列后第5个数是80,第6个数是90,所以中位数c=(80+90)=85(分),甲班的众数d=90(分),答:a=2,b=85,c=85,d=90;(2)小明可能是乙班的学生,理由如下:因为甲班的中位数是90分,乙班的中位数是85分,所以小明可能在乙班,故答案为:乙;(3)50×=15(人),答:估计乙班测验成绩超过90分的有15人.24.解:(1)由直方图可知,初中同学的测试成绩15个数据按从小到大的顺序排列,第8个数落在C组的第二个,∵初中同学的测试成绩在C组中的数据为:81,85,88,∴中位数a=85,∵高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.∴按从小到大排列是:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100,∴众数b=100,极差c=100﹣71=29,故答案为:85,100,29;(2)根据以上数据,我认为高中的同学对冰雪项目的知识掌握更好.理由:两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好.故答案为:高中,两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好(答案不唯一);(3)2400×=960(人).答:此次测试成绩达到90分及以上的学生共有960人.。

人教版初中数学八年级下册《第20章 数据的分析》单元测试卷(含答案解析

人教版初中数学八年级下册《第20章 数据的分析》单元测试卷(含答案解析

人教新版八年级下学期《第20章数据的分析》单元测试卷一.选择题(共10小题)1.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4B.5C.6D.72.一组数据2,3,5,7,8的平均数是()A.2B.3C.4D.53.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87B.87.5C.87.6D.884.某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元5.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.206.已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()A .a >b ,c >dB .a >b ,c <dC .a <b ,c >dD .a <b ,c <d7.若一组数据4,1,7,x ,5的平均数为4,则这组数据的中位数为( )A .7B .5C .4D .38.近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是( )A .319.79万件 B.332.68万件 C .338.87万件 D .416.01万件9.受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是( )A .2,1B .1,1.5C .1,2 D.1,1 10.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:则这15双鞋的尺码组成的一组数据中,众数和中位数分别为( )A .24.5,24.5B .24.5,24C .24,24D .23.5,24二.填空题(共15小题)11.睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是.12.在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是.13.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为分.14.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是元.15.数据5,5,4,2,3,7,6的中位数是.16.五名工人每天生产零件数分别是:5,7,8,5,10,则这组数据的中位数是.17.某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是.18.一组数据2,3,3,1,5的众数是.19.一组数据10,10,9,8,x的平均数是9,则这列数据的极差是.20.下表是我市某一天在不同时段测得的气温情况则这一天气温的极差是 ℃.21.样本数据1,2,3,4,5.则这个样本的方差是 .22.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差S 甲2,S 乙2,结果为:S 甲2 S 乙2.(选填“>”“=”或“<“)23.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为 ,标准差为 .(精确到0.1)24.(1)用计算器进行统计计算时,样本数据输入完后,求标准差应按键 ;(2)数据9.9、9.8、10.1、10.4、9.8的方差是 .(结果保留两个有效数字)25.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是 .三.解答题(共5小题)26.一位同学进行五次投实心球的练习,每次投出的成绩如表:求该同学这五次投实心球的平均成绩.27.某公司内设四个部门,2015年各部门人数及相应的每人所创年利润如表所示,求该公司2015年平均每人所创年利润.28.下表是随机抽取的某公司部分员工的月收入资料.(1)请计算以上样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;(3)指出谁的推断比较科学合理,能真实地反映公司全体员工月收入水平,并说出另一个人的推断依据不能真实反映公司全体员工月收入水平的原因.29.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.(1)这天部分出行学生使用共享单车次数的中位数是,众数是,该中位数的意义是;(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?30.截止到2012年5月31日,“中国飞人”刘翔在国际男子110米栏比赛中,共7次突破13秒关卡.成绩分别是(单位:秒):12.97 12.87 12.91 12.88 12.93 12.92 12.95(1)求这7个成绩的中位数、极差;(2)求这7个成绩的平均数(精确到0.01秒).人教新版八年级下学期《第20章数据的分析》单元测试卷参考答案与试题解析一.选择题(共10小题)1.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4B.5C.6D.7【分析】根据平均数的定义计算即可;【解答】解:由题意(3+4+5+x+6+7)=5,解得x=5,故选:B.【点评】本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题,属于中考基础题.2.一组数据2,3,5,7,8的平均数是()A.2B.3C.4D.5【分析】根据平均数的定义计算.【解答】解:数据2,3,5,7,8的平均数==5.故选:D.【点评】本题考查了平均数:平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.3.某单位定期对员工的专业知识、工作业绩、出勤情况三个方面进行考核(考核的满分均为100分),三个方面的重要性之比依次为3:5:2.小王经过考核后所得的分数依次为90、88、83分,那么小王的最后得分是()A.87B.87.5C.87.6D.88【分析】将三个方面考核后所得的分数分别乘上它们的权重,再相加,即可得到最后得分.【解答】解:小王的最后得分=90×+88×+83×=27+44+16.6=87.6(分),故选:C.【点评】本题主要考查了加权平均数,数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.4.某商场为了解产品A的销售情况,在上个月的销售记录中,随机抽取了5天A产品的销售记录,其售价x(元/件)与对应销量y(件)的全部数据如下表:则这5天中,A产品平均每件的售价为()A.100元B.95元C.98元D.97.5元【分析】根据加权平均数列式计算可得.【解答】解:由表可知,这5天中,A产品平均每件的售价为=98(元/件),故选:C.【点评】本题主要考查加权平均数,解题的关键是掌握加权平均数的定义及其计算公式.5.用计算器计算数据13.49,13.53,14.07,13.51,13.84,13.98,14.67,14.80,14.61,14.60,14.41,14.31,14.38,14.02,14.17的平均数约为()A.14.15B.14.16C.14.17D.14.20【分析】本题要求同学们,熟练应用计算器.【解答】解:借助计算器,先按MOOE按2再按1,会出现一竖,然后把你要求平均数的数字输进去,好了之后按AC键,再按shift再按1,然后按5,就会出现平均数的数值.故选:B.【点评】本题要求同学们能熟练应用计算器,会用科学记算器进行计算.6.已知甲、乙两班的学生人数相同,如图为两班某次数学小考成绩的盒状图,若甲班、乙班学生小考成绩的中位数分别为a、b;甲班、乙班中小考成绩超过80分的学生人数分别为c、d,则下列a、b、c、d的大小关系,何者正确?()A.a>b,c>d B.a>b,c<d C.a<b,c>d D.a<b,c<d 【分析】根据中位数的定义和成绩分布进行判断.【解答】解:根据盒状图得到a>b,c>d.故选:A.【点评】本题考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.7.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为()A.7B.5C.4D.3【分析】先根据平均数为4求出x的值,然后根据中位数的概念求解.【解答】解:∵数据4,1,7,x,5的平均数为4,∴=4,解得:x=3,则将数据重新排列为1、3、4、5、7,所以这组数据的中位数为4,故选:C.【点评】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:首先按从小到大排列数据:302.34,319.79,332.68,338.87,416.01,725.86,3303.78由于这组数据有奇数个,中间的数据是338.87所以这组数据的中位数是338.87故选:C.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.9.受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()A.2,1B.1,1.5C.1,2D.1,1【分析】根据表格中的数据可知七年级2班有30人,从而可以得到全班学生平均每天阅读时间的中位数和众数,本题得以解决.【解答】解:由表格可得,全班学生平均每天阅读时间的中位数和众数分别是1、1.5,故选:B.【点评】本题考查众数、加权平均数、中位数,解答本题的关键是明确题意,会求一组数据的众数和中位数.10.某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5B.24.5,24C.24,24D.23.5,24【分析】利用众数和中位数的定义求解.【解答】解:这组数据中,众数为24.5,中位数为24.5.故选:A.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.二.填空题(共15小题)11.睡眠是评价人类健康水平的一项重要指标,充足的睡眠是青少年健康成长的必要条件之一,小强同学通过问卷调查的方式了解到本班三位同学某天的睡眠时间分别为7.8小时,8.6小时,8.8小时,则这三位同学该天的平均睡眠时间是8.4小时.【分析】求出已知三个数据的平均数即可.【解答】解:根据题意得:(7.8+8.6+8.8)÷3=8.4小时,则这三位同学该天的平均睡眠时间是8.4小时,故答案为:8.4小时【点评】此题考查了算术平均数,熟练掌握算术平均数的定义是解本题的关键.12.在校园歌手大赛中,参赛歌手的成绩为5位评委所给分数的平均分.各位评委给某位歌手的分数分别是92,93,88,87,90,则这位歌手的成绩是90.【分析】根据算术平均数的计算公式,把这5个分数加起来,再除以5,即可得出答案.【解答】解:这位参赛选手在这次比赛中获得的平均分为:(92+93+88+87+90)÷5=90(分);故答案为:90.【点评】此题考查了平均数的求法,平均数是指在一组数据中所有数据之和再除以数据的个数,熟记平均数的公式是解决本题的关键.13.某学习小组共有学生5人,在一次数学测验中,有2人得85分,2人得90分,1人得70分,该学习小组的平均分为84分.【分析】根据加权平均数的定义列出算式求解即可.【解答】解:(85×2+90×2+70)÷(2+2+1)=(170+180+70)÷5=420÷5=84(分).答:该学习小组的平均分为84分.故答案为:84.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求85,90,70这三个数的平均数,对平均数的理解不正确.14.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是15.3元.【分析】根据加权平均数的计算方法,分别用单价乘以相应的百分比,计算即可得解.【解答】解:该店当月销售出水果的平均价格是11×60%+18×15%+24×25%=15.3(元),故答案为:15.3.【点评】本题考查扇形统计图及加权平均数,解题的关键是掌握扇形统计图直接反映部分占总体的百分比大小及加权平均数的计算公式.15.数据5,5,4,2,3,7,6的中位数是5.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:2、3、4、5、5、6、7,一共7个数据,其中5处在第4位为中位数.故答案为:5.【点评】考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.16.五名工人每天生产零件数分别是:5,7,8,5,10,则这组数据的中位数是7.【分析】根据将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数可得答案.【解答】解:把数据从小到大排列:5,5,7,8,10,中位数为7,故答案为:7.【点评】此题主要考查了中位数,关键是掌握中位数定义.17.某公司有10名工作人员,他们的月工资情况如表,根据表中信息,该公司工作人员的月工资的众数是0.6万元.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:由表可知0.6万元出现次数最多,有4次,所以该公司工作人员的月工资的众数是0.6万元,故答案为:0.6万元.【点评】本题主要考查众数,解题的关键是掌握众数的定义:众数是指一组数据中出现次数最多的数据.18.一组数据2,3,3,1,5的众数是3.【分析】根据众数的定义求解.【解答】解:数据2,3,3,1,5的众数为3.故答案为3.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.19.一组数据10,10,9,8,x的平均数是9,则这列数据的极差是2.【分析】先根据平均数求出x,再根据极差定义可得答案.【解答】解:由题意知=9,解得:x=8,∴这列数据的极差是10﹣8=2,故答案为:2.【点评】本题主要考查平均数和极差,熟练掌握平均数的计算得出x的值是解题的关键.20.下表是我市某一天在不同时段测得的气温情况则这一天气温的极差是9℃.【分析】根据极差的定义即极差就是这组数中最大值与最小值的差,即可得出答案.【解答】解:这组数据的最大值是34℃,最小值是25℃,则极差是34﹣25=9(℃).故答案为:9.【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值.注意:极差的单位与原数据单位一致.21.样本数据1,2,3,4,5.则这个样本的方差是2.【分析】先平均数的公式计算出平均数,再根据方差的公式计算即可.【解答】解:∵1、2、3、4、5的平均数是(1+2+3+4+5)÷5=3,∴这个样本方差为s2=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]=2;故答案为:2.【点评】本题考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.22.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差S甲2,S乙2,结果为:S甲2<S乙2.(选填“>”“=”或“<“)【分析】首先求出各组数据的平均数,再利用方差公式计算得出答案.【解答】解:=(7+8+9+8+8)=8,=(6+10+9+7+8)=8,=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(8﹣8)2+(8﹣8)2]=0.4;=[(6﹣8)2+(10﹣8)2+(9﹣8)2+(7﹣8)2+(8﹣8)2]=2;则S甲2<S乙2.故答案为:<.【点评】此题主要考查了方差,正确掌握方差计算公式是解题关键.23.用科学记算器求得271,315,263,289,300,277,286,293,297,280的平均数为287.1,标准差为14.4.(精确到0.1)【分析】根据平均数、标准差的概念计算.方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],标准差是方差的算术平方根.【解答】解:由题意知,数据的平均数=(271+315+263+289+300+277+286+293+297+280)=287.1方差S2=[(271﹣287.1)2+(315﹣287.1)2+(263﹣287.1)2+(289﹣287.1)2+(300﹣287.1)2+(277﹣287.1)2+(286﹣287.1)2+(293﹣287.1)2+(297﹣287.1)2+(280﹣287.1)2]=207.4标准差为≈14.4.故填287.1,14.4.【点评】本题考查了平均数,方差和标准差的概念.标准差是方差的算术平方根.24.(1)用计算器进行统计计算时,样本数据输入完后,求标准差应按键2ndF;(2)数据9.9、9.8、10.1、10.4、9.8的方差是0.052.(结果保留两个有效数字)【分析】(1)计算器按键顺序可知按2ndF;(2)先计算出数据的平均数,再计算方差,一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2].【解答】解:(1)计算器按键顺序可知按2ndF;(2)平均数=(9.9+9.8+10.1+10.4+9.8)=10,方差S2=[(9.9﹣10)2+(9.8﹣10)2+(10.1﹣10)2+(10.4﹣10)2+(9.8﹣10)2]=0.052.故填2ndF,0.052.【点评】本题考查计算器按键顺序和方差计算方法.一般地设n个数据,x1,x2,…x n 的平均数为,=(x1+x2+…+x n),则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].25.某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位数、众数和方差等数个统计量中,该鞋厂最关注的是众数.【分析】鞋厂最感兴趣的是各种鞋号的鞋的销售量,特别是销售量最多的即这组数据的众数.【解答】解:由于众数是数据中出现最多的数,故鞋厂最感兴趣的销售量最多的鞋号即这组数据的众数.故答案为:众数.【点评】本题主要考查了学生对统计量的意义的理解与运用,要求学生对对统计量进行合理的选择和恰当的运用,比较简单.三.解答题(共5小题)26.一位同学进行五次投实心球的练习,每次投出的成绩如表:求该同学这五次投实心球的平均成绩.【分析】平均数是指在一组数据中所有数据之和再除以数据的个数.【解答】解:该同学这五次投实心球的平均成绩为:=10.4.故该同学这五次投实心球的平均成绩为10.4m.【点评】此题考查了平均数,解题的关键是掌握平均数的计算公式.27.某公司内设四个部门,2015年各部门人数及相应的每人所创年利润如表所示,求该公司2015年平均每人所创年利润.【分析】利用加权平均数的计算公式计算即可.【解答】解:该公司2015年平均每人所创年利润为:=21,答:该公司2015年平均每人所创年利润为21万元.【点评】本题考查的是加权平均数的计算,掌握加权平均数的计算公式是解题的关键.28.下表是随机抽取的某公司部分员工的月收入资料.(1)请计算以上样本的平均数和中位数;(2)甲乙两人分别用样本平均数和中位数来估计推断公司全体员工月收入水平,请你写出甲乙两人的推断结论;(3)指出谁的推断比较科学合理,能真实地反映公司全体员工月收入水平,并说出另一个人的推断依据不能真实反映公司全体员工月收入水平的原因.【分析】(1)要求平均数只要求出各个数据之和再除以数据个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可;(2)甲从员工平均工资水平的角度推断公司员工月收入,乙从员工中间工资水平的角度推断公司员工的收入;(3)推断的合理性取决于数据的极差、某些数据的集中程度等因素.【解答】解:(1)样本的平均数为:=6150(元);这组数据共有26个,第13、14个数据分别是3400、3000,所以样本的中位数为:=3200(元).(2)甲:由样本平均数6150元,估计公司全体员工月平均收入大约为6150元;乙:由样本中位数为3200元,估计公司全体员工约有一半的月收入超过3200元,约有一半的月收入不足3200元.(3)乙的推断比较科学合理.由题意知样本中的26名员工,只有3名员工的收入在6150元以上,原因是该样本数据极差较大,所以平均数不能真实的反映实际情况.【点评】本题考查了计算平均数和中位数,并用中位数和平均数说明具体问题.题目难度不大,有的问题的答案不唯一.29.近年来,共享单车逐渐成为高校学生喜爱的“绿色出行”方式之一,自2016年国庆后,许多高校均投放了使用手机支付就可随取随用的共享单车.某高校为了解本校学生出行使用共享单车的情况,随机调查了某天部分出行学生使用共享单车的情况,并整理成如下统计表.(1)这天部分出行学生使用共享单车次数的中位数是3,众数是3,该中位数的意义是表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)这天部分出行学生平均每人使用共享单车约多少次?(结果保留整数)(3)若该校某天有1500名学生出行,请你估计这天使用共享单车次数在3次以上(含3次)的学生有多少人?【分析】(1)根据中位数和众数的定义求解可得;(2)根据加权平均数的公式列式计算即可;(3)用总人数乘以样本中使用共享单车次数在3次以上(含3次)的学生所占比例即可得.【解答】解:(1)∵总人数为11+15+23+28+18+5=100,∴中位数为第50、51个数据的平均数,即中位数为=3次,众数为3次,其中中位数表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次),故答案为:3、3、表示这部分出行学生这天约有一半使用共享单车的次数在3次以上(或3次);(2)=≈2(次),答:这天部分出行学生平均每人使用共享单车约2次;(3)1500×=765(人),答:估计这天使用共享单车次数在3次以上(含3次)的学生有765人.【点评】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.30.截止到2012年5月31日,“中国飞人”刘翔在国际男子110米栏比赛中,共7次突破13秒关卡.成绩分别是(单位:秒):12.97 12.87 12.91 12.88 12.93 12.92 12.95(1)求这7个成绩的中位数、极差;(2)求这7个成绩的平均数(精确到0.01秒).【分析】(1)根据中位数的定义:把数据从小到大排列,位置处于中间的数就是中位数;极差=最大数﹣最小数即可得到答案;(2)根据平均数的计算方法:把所有数据加起来再除以数据的个数即可计算出答案.【解答】解:(1)将7次个成绩从小到大排列为:12.87,12.88,12.91,12.92,12.93,12.95,12.97,位置处于中间的是12.92秒,故这7个成绩的中位数12.92秒;极差:12.97﹣12.87=0.1(秒);(2)这7个成绩的平均成绩:(12.97+12.87+12.91+12.88+12.93+12.92+12.95)÷7≈12.92(秒).【点评】此题主要考查了极差、中位数、平均数,关键是熟练掌握其计算方法.。

人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册《第20章数据的分析》单元测试卷(2)一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.894.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9 9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是(精确到0.1),众数是,中位数是.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为.成绩/分345678910人数112289151214.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是(填“变大”“变小”或“不变”).三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.50.7高中队8.510(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.人教新版八年级下册《第20章数据的分析》单元测试卷(2)参考答案与试题解析一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【考点】标准差;算术平均数;中位数;方差.【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【分析】依据平均数、中位数、众数、方差的定义和公式分别进行求解即可.【解答】解:A、原来数据的平均数是(2+3+5+5+5+6+9)=5,去掉一个数据5后平均数仍为5,故A与要求不符;B、原来数据的众数是5,去掉一个数据5后众数仍为5,故B与要求不符;C、原来数据的中位数是5,去掉一个数据5后中位数仍为5,故C与要求不符;D、原来数据的方差是:[(2﹣5)2+(3﹣5)2+3×(5﹣5)2+(6﹣5)2+(9﹣5)2]=,去掉一个数据5后,方差是[(2﹣5)2+(3﹣5)2+2×(5﹣5)2+(6﹣5)2+(9﹣5)2]=5,发生变化的是方差;故选:D.3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.89【考点】加权平均数.【分析】根据加权平均数的计算方法计算即可.【解答】解:她本学期的学业成绩为:20%×85+30%×90+50%×92=90(分).故选:B.4.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:C.5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是=91(分),错误;D、×[(85﹣91)2×2+(90﹣91)2×5+(100﹣91)2+2(95﹣91)2]=19(分2),错误;故选:A.7.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小【考点】方差;算术平均数.【分析】根据平均数、中位数的意义、方差的意义,可得答案.【解答】解:原数据的平均数为×(160+165+170+163+172)=166(cm)、方差为×[(160﹣166)2+(165﹣166)2+(170﹣166)2+(163﹣166)2+(172﹣166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165﹣167)2+(170﹣167)2+(163﹣167)2+(172﹣167)2]=11.6(cm2),所以平均数变大,方差变小,故选:D.8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9【考点】条形统计图;加权平均数;中位数;众数;方差.【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.【解答】解:A、平均数是:=9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:【2(7﹣9)2+12(8﹣9)2+20(9﹣9)2+10(10﹣9)2】=0.6,故命题错误.故选:D.9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差【考点】方差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数的定义以及方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:A、把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8环,故本选项正确;B、在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9,故本选项错误;C、甲的平均数是:(7+8+8+8+9)÷5=8(环),乙的平均数是:(6+6+9+9+10)÷5=8(环),则甲的平均数和乙的平均数相等,故本选项正确;D、甲的方差是:[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,乙的方差是:[2×(6﹣8)2+2×(9﹣8)2+(10﹣8)2]=2.8,则甲的方差小于乙的方差,故本选项正确;故选:B.10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大【考点】方差;算术平均数;中位数.【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:C.二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是7和8.【考点】众数;算术平均数.【分析】根据平均数先求出x,再确定众数.【解答】解:因为数据的平均数是7,所以x=42﹣8﹣9﹣7﹣8﹣3=7.根据众数的定义可知,众数为7和8.故答案为:7和8.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是 6.4(精确到0.1),众数是80和90,中位数是80.【考点】众数;加权平均数;中位数.【分析】根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.【解答】解;平均数是:300÷(4+11+11+8+5+8)=300÷47≈6.4,90分的有11人,80分的有11人,出现的次数最多,则众数是80和90,把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;故答案为;6.4,80和90,80.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为9.成绩/分345678910人数1122891512【考点】众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:本题中数据9出现了15次,出现的次数最多,所以本题的众数是9.故填9.14.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有9名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是90分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?【考点】众数;用样本估计总体;中位数.【分析】(1)由统计结果图即可得出结果;(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.【解答】解:(1)由统计结果图得,参加“引体向上”测试的男生有9名;故答案为:9;(2)①九(1)班男生参加“耐久跑1000米”测试的部分成绩从高到低排列为:100,95,95,90,85,82,共有8名男生参加“耐久跑1000米”.若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,故答案为:90;则这8名男生中共有三名男生得分为90分,则参加“耐久跑1000米”测试的男生成绩的中位数是.则6÷8×120=90(人),∴该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有90人.15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是乙;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是变小(填“变大”“变小”或“不变”).【考点】条形统计图;方差.【分析】根据条形统计图中提供的数据分别计算甲、乙两组的平均数、方差,通过方差的大小比较,得出稳定性.【解答】解:甲的平均数是:=9(环),甲的方差是:×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=0.8,乙的平均数是:=9(环),乙的方差是:×[(8﹣9)2×3+(9﹣9)2×4+(10﹣9)2×3]=0.6,∵0.8>0.6,∴乙成绩稳定.甲又连续射击5次,环数均为9环,则平均数还为9,则方差为×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=<0.8,故方差变小.故答案为:乙;变小.三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.【考点】算术平均数.【分析】(1)根据平均数的计算公式列出算式,再进行计算即可得出答案;(2)根据这三个数的平均数是2,得出=2,然后求解即可得出答案.【解答】解:(1)﹣3,1这两个数的平均数为=﹣1;(2)∵这三个数的平均数是2,∴=2,∴m=8.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.【考点】方差;算术平均数;中位数;众数.【分析】(1)由条形图得出初中队和高中队成绩,再根据中位数、众数及方差的概念求解可得;(2)根据中位数的意义求解可得;(3)从平均数、中位数及方差的意义求解可得.【解答】解:(1)由图知初中队的成绩从小到大排列为:7.5、8、8.5、8.5、10,所以初中队成绩的中位数是8.5,众数是8.5;高中队成绩从小到大排列为:7、7.5、8、10、10,所以高中队成绩的中位数为8,方差为×[(7﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+2×(10﹣8.5)2]=1.6,补全表格如下:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明在初中队.理由如下:根据(1)可知,初中、高中队的中位数分别为8.5分和8分,∵8<8.5,∴小明在初中队.(3)初中队的成绩好些.因为两个队的平均数相同,初中队的中位数高,而且初中队的方差小于高中队的方差,所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【考点】中位数;众数;条形统计图;算术平均数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【考点】频数(率)分布直方图;加权平均数;中位数;用样本估计总体.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【解答】解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).。

人教版八年级数学下册《第二十章数据的分析》单元测试题(含答案)

人教版八年级数学下册《第二十章数据的分析》单元测试题(含答案)

第二十章数据的分析第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.若一组数据有8个数,它们的平均数为12,另一组数据有4个数,它们的平均数为18,则这12个数的平均数为( )A.12 B.13C.14 D.152.在学校演讲比赛中,10名选手成绩的折线统计图如图1所示,则这10名选手成绩的众数是( )图1A.95分 B.90分C.85分 D.80分3.在一次捐款活动中,某单位共有13人参加捐款,其中小王捐款数比13人捐款的平均数多2元,据此可知,下列说法错误的是( )A.小王的捐款数不可能最少B.小王的捐款数可能最多C.将捐款数按从少到多排列,小王的捐款数可能排在第十二位D.将捐款数按从少到多排列,小王的捐款数一定比第七名多4.图2是交警在一个路口统计的某个时段来往车辆的速度(单位:千米/时)情况,则这些车辆的车速的中位数(单位:千米/时)是( )图2A.51.5 B.52C.52.5 D.535.下列说法中,正确的有( )①在一组数据中,平均数越大,众数越大;②在一组数据中,众数越大,中位数越大;③在一组数据中,中位数越大,平均数越大;④在一组数据中,众数越大,平均数越大.A.0个 B.1个C.2个 D.3个6.在全国汉字听写大赛的热潮下,某学校进行了选拔赛,有15名学生进入了半决赛,他们的成绩各不相同,并且要按成绩取前8名进入决赛.小明只知道自己的成绩,他要判断自己能否进入决赛,可用下列哪个统计结果判断( )A.平均数 B.众数C.中位数 D.方差7.某学校教师分为四个植树小组参加植树节活动,其中三个小组植树的棵数分别为8,10,12,另一个小组的植树棵数与其他三组中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是( )A.8 B.10C.12 D.10或128.某校合唱团有30名成员,下表是合唱团成员的年龄分布统计表.对于不同的x,下列关于年龄的统计量不会发生改变的是(年龄(岁)13141516频数515x 10-xA.平均数、中位数B.平均数、方差C.众数、中位数D.众数、方差9.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下表.现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权的比由2∶3∶5变成5∶3∶2,那么成绩变化情况是( )采访写作计算机创意设计小明70分60分86分小亮90分75分51分小丽60分84分72分A.小明增加最多B.小亮增加最多C.小丽增加最多D.三人的成绩增加相同10.已知一组数据x1,x2,x3,x4,x5的平均数为8,方差为2,那么另一组数据4x1+1,4x2+1,4x3+1,4x4+1,4x5+1的平均数和方差分别为( )A.33与2B.8与2C.33与32D.8与33请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.如图3是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是________.(填“甲”或“乙”)图312.为了了解某班数学成绩情况,抽样调查了13份试卷成绩,结果如下:3个140分,4个135分,2个130分,2个120分,1个100分,1个80分.则这组数据的中位数为________分.13.国庆节期间,小李调查了“福美小区”10户家庭一周内使用环保袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9.据此,估计该小区2000户家庭一周内使用环保袋的数量为________只.14.已知一组数据-3,x,-2,3,1,6的中位数为1,则其方差为________.15.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,某市四名中学生参加了男子100米自由泳训练,他们成绩的平均数x及方差s2如右表所示.如果选拔一名学生去参赛,应派________去.16.有5个从小到大排列的正整数,中位数是3,唯一的众数是6,则这5个数的和为________.三、解答题(共52分)(1)小谢家的小轿车每月(每月按30天计算)要行驶多少千米?(2)若每行驶100 km需汽油8 L,汽油每升3.45元,求出小谢家一年(按12个月计算)的汽油费用是多少元.18.(本小题6分)已知一组数据8,9,6,m的平均数与中位数相等,求m的值.19.(本小题6分)某商店3,4月份出售某一品牌各种规格的空调,销售台数如下表所示.根据表格回答问题:(1)商店出售的各种规格空调中,众数是多少?(2)假如你是经理,现要进货,6月份在有限的资金下将如何安排进货?20.(本小题6分)某公司欲聘请一位员工,三位应聘者A,B,C的原始评分(单位:分)如下表:(2)如果按仪表、工作经验、电脑操作、社交能力、工作效率的原始评分分别占10%,15%,20%,25%,30%综合评分,择优录取,应录取谁?为什么?21.(本小题6分)某高科技产品开发公司现有员工50名,所有员工的月工资情况如下表:(1)该公司“高级技工”有________名;(2)所有员工月工资的平均数x为2500元,中位数为________元,众数为________元;(3)小张到这家公司应聘普通工作人员.请你回答图4中小张的问题,并指出用(2)中的哪个数据向小张介绍员工的月工资实际水平更合理些;(4)去掉四个管理人员的工资后,请你计算出其他员工的月平均工资y(结果保留整数),并判断y能否反映该公司员工的月工资实际水平.图422.(本小题7分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).图5甲、乙两人射箭成绩统计表小宇的作业:解:x 甲=15×(9+4+7+4+6)=6,s 甲2=15×[(9-6)2+(4-6)2+(7-6)2+(4-6)2+(6-6)2]=15×(9+4+1+4+0)=3.6.(1)a =________,x 乙=________.(2)请完成图中表示乙成绩变化情况的折线.(3)①观察统计图,可看出________的成绩比较稳定(填“甲”或“乙”),参照小宇的计算方法,计算乙成绩的方差,并验证你的判断;②请你从平均数和方差的角度分析,谁将被选中.23.(本小题7分)某班男生分成甲、乙两组进行引体向上的专项训练,已知甲组有6名男生,并对两组男生训练前、后引体向上的个数进行统计分析,得到乙组男生训练前、后引体向上的平均个数分别是6个和10个,以及下面不完整的统计表和统计图.甲组男生训练前、后引体向上个数统计表(单位:个)(1)a =________,b =________,c =________;(2)甲组训练后引体向上的平均个数比训练前增长了________%; (3)你认为哪组训练效果较好?并提供一个支持你观点的理由; (4)小明说他发现了一个错误:“乙组训练后引体向上个数不变的人数占到该组人数的50%,所以乙组的平均个数不可能提高4个之多.”你同意他的观点吗?请说明理由.图624.(本小题8分)为了迎接体育中考,九年级7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如图7.(1) 平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 91.7% 16.7% 女生1.383.3%8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请你给出两条支持女生观点的理由;(3)体育老师说:“咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是全班优秀率达到50%.”如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?图7答案1.C 2.B 3.D 4.B 5.A 6.C 7.B 8.C 9.B 10.C 11.甲 12.135 13.14000 14.9 15.乙 16.1817.解:(1)由表中七天的数据可知,平均每天行驶的路程为:17×(46+39+36+50+54+91+34)=50(km),故小谢家的小轿车每月(每月按30天计算)要行驶50×30=1500(km). (2)小谢家一年的汽油费用为 1500×12100×8×3.45=4968(元). 18.解:①当m 为最大值时,排序为:m ,9,8,6, 根据题意,得m +9+8+64=9+82,解得m =11;②当m 为最小值时,排序为:9,8,6,m ,根据题意,得m +9+8+64=8+62,解得m =5;③当m 既不是最大值,也不是最小值时,排序为:9,8,m ,6或9,m ,8,6,根据题意,得m +9+8+64=8+m2,解得m =7. 综上可知,m 的值为5或7或11. 19.解:(1)众数为1.2匹.(2)通过观察可得:1.2匹的空调的销售量最大,所以要多进1.2匹的空调,由于资金有限,就要少进2匹的空调.20.解:(1)A 的平均分为15×(4+5+5+3+3)=4(分),B 的平均分为15×(4+3+3+5+4)=3.8(分),C 的平均分为15×(3+3+4+4+4)=3.6(分),因此应录取A.(2)应录取B.理由:根据题意,三人的综合评分如下: A 的综合评分为4×10%+5×15%+5×20%+3×25%+3×30%=3.8(分), B 的综合评分为4×10%+3×15%+3×20%+5×25%+4×30%=3.9(分), C 的综合评分为3×10%+3×15%+4×20%+4×25%+4×30%=3.75(分). 因此应录取B.21.解:(1)该公司“高级技工”的人数=50-1-3-2-3-24-1=16(名).故答案为16.(2)工资数从小到大排列,第25个和第26个分别是1600元和1800元,因而中位数是1700元; 在这些数中,1600元出现的次数最多,因而众数是1600元. 故答案为1700,1600.(3)这个经理的介绍不能反映该公司员工的月工资实际水平. 用1700元或1600元来介绍更合理些. (4)y =2500×50-21000-8400×346≈1713(元).y 能反映该公司员工的月工资实际水平.22.解:(1)4 6 (2)如图所示:(3)①观察统计图,可看出乙的成绩比较稳定;s 乙2=15×[(7-6)2+(5-6)2+(7-6)2+(4-6)2+(7-6)2]=1.6.因为s 乙2<s 甲2,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 23.解:(1)a =(8+9+6+6+7+6)÷6=7, b =4,c =(6+7)÷2=6.5. (2)(7-4)÷4×100%=75%.(3)(答案合理即可)甲组训练效果较好.理由:因为甲组训练后的平均个数比训练前增长75%,乙组训练后的平均个数比训练前增长约67%, 甲组训练前、后平均个数的增长率大于乙组训练前后平均个数的增长率,所以甲组训练效果较好.(4)不同意.理由:因为乙组训练后的平均个数增加了50%×0+20%×7+20%×8+10%×10=4(个),所以我不同意小明的观点.24平均数(分)方差 中位数(分)合格率 优秀率 男生 6.9 2.4 7 91.7% 16.7% 女生71.3783.3%8.3%(2)从平均数上看,女生平均数高于男生;从方差上看,女生成绩的方差低于男生,波动性小(答案合理即可). (3)设男生新增优秀人数为x 人, 则2+4+x +2x =48×50%, 解得x =6, 故6×2=12.答:男生新增优秀人数为6人,女生新增优秀人数为12人.。

人教版八年级数学下册 第20章 数据的分析 单元检测试题(有答案)

人教版八年级数学下册  第20章  数据的分析  单元检测试题(有答案)

第20章 数据分析 单元检测试题(满分120分;时间:120分钟)一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )1. 某鞋店销售同种品牌不同尺码的男鞋,采购员再次进货时,对于男鞋的尺码,他最关注的是( )A.方差B.众数C.中位数D.平均数2. 一次数学考试,七年一班45人的分数和为a ,七年二班47人的分数和为b ,则这次考试两个班的平均分为( )A.a+b 2 B.45a+47b 92 C.12(a 45+b 47) D.a+b 923. 下列说法正确的是( )A.数据1,2,3,2,5的中位数是3B.数据5,5,7,5,7,6,11的众数是7C.若甲组数据方差S 甲2=0.15,乙组数据方差S 乙2=0.15,则乙组数据比甲组数据稳定D.数据1,2,2,3,7的平均数是34. 某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:则这些队员投中次数的众数、中位数和平均数分别为( )A.5,6,6.2B.2,6,6C.5,5,6D.5,6,55. 某服装厂为了解某中学八年级学生的校服尺码,随机抽查了50名学生的校服尺码,经统计得到下表:则这组数据的中位数所在的范围是()A.140≤x<150B.150≤x<160C.160≤x<170D.170≤x<1806. 以下是某校九年级10名同学参加学校首届“汉字听写大赛”的成绩统计表:)A.90,89B.90,90C.85,89D.90,87.57. 某班六名同学体能测试成绩(分)如下:80,90,75,75,80,80,对这组数据表述错误的是()A.众数是80B.方差是25C.平均数是80D.中位数是758. 对于一组统计数据:1,6,2,3,3,下列说法错误的是()A.平均数是3B.中位数是3C.众数是3D.方差是2.59. 某班6名同学参加体能测试的成绩分别为:80,90,75,75,80,80.下列表述错误的是()A.众数是80B.中位数是75C.平均数是80D.方差是2510. 甲、乙两人一周五天工作日每天生产合格产品的个数如下表所示,其中a为自然数.则下列说法不正确的是()A.甲、乙的中位数一定相同B.当a =0 时,甲的方差大于乙的方差C.甲、乙的众数一定相同D.甲的平均数一定大于乙的平均数二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 , )11. 为了测试甲、乙两种电子表走时的误差,做了如下所示统计:甲、乙两种电子表走时误差平均数都是0.36秒,方差分别为0.218和0.025,则两种电子表走时较稳定的是________.(填“甲”或“乙”)12. 在初三基础测试中,从化某中学的小明的6科成绩分别为语文120分,英语127分,数学123分,物理83分,化学80分,政治83分,则他的成绩的众数为________ 分.13. 已知一组数据3,7,7,5,x 的平均数是5,那么这组数据的方差是________.14. 已知一个样本1,3,2,2,a ,b ,c 的众数为3,平均数为2,则该样本的方差为________.15. 一组数据4,−2,3,x ,3,−2,若这组数据中的每个数据都是这组数据的众数,则这组数据的平均数是________.16. 某中学八年级2班学生为地震灾区举行了一次募捐活动,有37名同学捐了5元,2位同学捐了50元,还有一位同学捐了100元.你认为这40个同学捐款的平均数、中位数、众数,用哪一个来代表他们每人捐款的一般数额比较好呢?________.17. 若5个数2,0,1,−3,a 的平均数是1,则a =________.18. 学校规定学生的数学期末总评成绩由三部分组成,平时成绩占20%,期中成绩占35%,期末成绩占45%.小红的平时成绩、期中成绩、期末成绩依次为92分、86分、94分,那么小红的数学期末总评成绩为________分.19. 为从甲、乙两名射击运动员中选出一人参加市锦标赛,特统计了他们最近10次射击训练的成绩,其中,他们射击的平均成绩都为8.9环,方差分别是S 甲2=0.8,S 乙2=1.3,从稳定性的角度来看________的成绩更稳定.(填“甲”或“乙”)20. 学校举行“纪念反法西斯战争胜利70周年”演讲比赛,共有15同学进入决赛,比赛将评出金奖1名,银奖3名,铜奖4名.某参赛选手知道自己的分数后,要判断自己能否获奖,他应当关注的是有关成绩的________.(填“平均数”、“中位数”或“众数”)三、解答题(本题共计6 小题,共计60分,)21. 在一次歌咏比赛中,六个评委给周小红打的分数分别为:8.1,7.5,8.3,8.4,9.0,8.0.为了尽可能减少人为因素的影响,去掉一个最高分,去掉一个最低分,那么,周小红的平均分是多少?22. 某中学对各个班级的教室卫生情况的考查包括以下几项:黑板、门窗、桌椅、地面,一天,三个班级各项卫生成绩分别如表:小明将黑板、门窗、桌椅、地面这四项得分依次按15%、15%、35%、35%的比例计算各班的卫生成绩,那么哪个班的成绩最高?23. 为了参加“中小学生首届诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:(1)直接写出表中a,b,c的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.24. 某校举行了主题为“新冠肺炎防护”的知识竞赛活动,对八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:(1)直接写出表中a,b,c的值:a=________,b=________,c=________;(2)求d的值,并根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.25. 为全力抗击疫情,响应政府“停课不停学”的号召,某市教育局发布关于疫情防控期间开展在线课程教学的通知:从2月10日开始,全市初高中毕业班按照教学计划,开展在线课程教学和答疑,据互联网后台数据显示,某中学九年级七科老师3月5日在线答疑问题各学科个数如下表.(1)直接写出九年级七科老师3月5日在线答疑问题各学科个数的众数与中位数;(2)计算九年级七科老师在线答疑问题各学科个数的平均数.26. 市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.参考答案与试题解析一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】B【解答】解:由于众数是数据中出现次数最多的数,故他应更关心同种品牌不同尺码的男鞋的销售数量最多的,即这组数据的众数.故选B .2.【答案】D【解答】解:∵ 七年一班45人的分数和为a ,七年二班47人的分数和为b ,∵ 两班的总成绩是a +b ,∵ 这次考试两个班的平均分为a+b 45+47=a+b 92.故选D .3.【答案】D【解答】解:A 、把这组数据从小到大排列为:1,2,2,3,5,中位数是2,故本选项错误; B 、在数据5,5,7,5,7,6,11中,5出现了3次,出现的次数最多,则众数是5,故本选项错误;C 、因为甲组数据方差S 甲2=0.15,乙组数据方差S 乙2=0.15,则S 甲2=S 乙2,所以乙组数据和甲组数据同样稳定,故本选项错误;D 、数据1,2,2,3,7的平均数是(1+2+2+3+7)÷5=3,故本选项正确; 故选D .4.【答案】A【解答】在这一组数据中5是出现次数最多的,故众数是5次;处于中间位置的两个数的平均数是(6+6)÷2=6,那么由中位数的定义可知,这组数据的中位数是6次.平均数是:(3+15+12+14+18)÷10=6.2(次),所以答案为:5、6、6.2,5.【答案】B【解答】解:∵ 将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都在150≤x< 160,∵ 这组数据的中位数所在的范围是150≤x<160.故选B.6.【答案】A【解答】解:∵ 共有10名同学,中位数是第5和6的平均数,∵ 这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选:A.7.【答案】D【解答】A、80出现的次数最多,所以众数是80,正确,不符合题意;×[3×(80−80)2+(90−80)2+2×(80−75)2]=25,正确,不符合题意;B、方差是:16C、平均数是(80+90+75+75+80+80)÷6=80,正确,不符合题意;D、把数据按大小排列,中间两个数都为80,80,所以中位数是80,错误,符合题意.8.【答案】D【解答】=3,正确;A、平均数为1+6+2+3+35B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为1×[(1−3)2+(6−3)2+(2−3)2+(3−3)2+(3−3)2]=2.8,错误;59.【答案】B【解答】解:A 、80出现的次数最多,所以众数是80,A 正确;B 、把数据按大小排列,中间两个数为80,80,所以中位数是80,B 错误;C 、平均数是16×(75×2+80×3+90)=80,C 正确;D 、方差是S 2=16[3(80−80)2+2(75−80)2+(90−80)2]=25,D 正确. 故选B .10.【答案】C【解答】解:∵ a 为自然数,∴ 6−a ≤6,∴ 甲、乙的中位数一定相同,都是7,故A 正确;当a =0时,甲的平均数=7,乙的平均数=6.8,∴ S 甲2=15[(11−7)2+(4−7)2+(6−7)2+(7−7)2+(7−7)2]=5.2, S 乙2=15[(8−6.8)2+(6−6.8)2+(6−6.8)2+(7−6.8)2+(7−6.8)2]=0.56, ∴ 甲的方差大于乙的方差,故B 正确;∵ a 为自然数,∴ 6−a 不确定,∴ 乙的众数不确定,∴ 甲、乙的众数不一定相同,故C 错误;∵ 甲的平均数=7,乙的平均数=345−a 5<7, ∴ 甲的平均数一定大于乙的平均数,故D 正确.故选D .二、 填空题 (本题共计 10 小题 ,每题 3 分 ,共计30分 ) 11.【答案】乙【解答】解:方差反映了一组数据的波动大小,方差越大,波动性越大,∵ 0.218>0.025,∵ 乙电子表更稳定.故答案为:乙.12.【答案】83【解答】解:∵ 83出现了两次,出现的次数最多,∵ 其众数为83分.故答案为83.13.【答案】3.2【解答】1(3+7+7+5+x)=5,5解得x=3,[(3−5)2+(7−5)2+(7−5)2+(5−5)2+(3−5)2]=3.2.s2=1514.【答案】87【解答】解:解:因为众数为3,可设a=3,b=3,c未知,(1+3+2+2+3+3+c)=2,平均数=17解得c=0,[(1−2)2+(3−2)2+(2−2)2+(2−2)2+(3−2)2+(3−2)2+根据方差公式S2=17(0−2)2]=8;7故答案为:8.715.【答案】53解;∵ 数据4,−2,3,x ,3,−2中的每个数据都是这组数据的众数,∵ x =4,∵ 这组数据的平均数是(4−2+3+4+3−2)÷6=53,故答案为:53.16.【答案】众数【解答】解:由于众数是数据中出现次数最多的数,故代表他们每人捐款的一般数额是众数. 故填众数.17.【答案】5【解答】解:2,0,1,−3,a 的平均数是1,(2+0+1−3+a)÷5=1,a =5.故答案为:5.18.【答案】90.8【解答】解:小红的数学期末总评成绩=20×92+35×86+45×94100=90.8(分).故填90.8.19.【答案】甲【解答】∵ S 甲2=0.8,S 乙2=1.3,∵ S 甲2<S 乙2, ∵ 成绩最稳定的运动员是甲,20.中位数【解答】解:∵ 进入决赛的15名学生所得分数互不相同,共有1+3+4=8个奖项,∵ 这15名学生所得分数的中位数即是获奖的学生中的最低分,∵ 某学生知道自己的分数后,要判断自己能否获奖,他应该关注的统计量是中位数,如果这名学生的分数大于或等于中位数,则他能获奖,如果这名学生的分数小于中位数,则他不能获奖.故答案为:中位数.三、解答题(本题共计6 小题,每题10 分,共计60分)21.【答案】=8.2.周小红的平均分是8.1+8.3+8.4+8.04【解答】=8.2.周小红的平均分是8.1+8.3+8.4+8.0422.【答案】解:一班的成绩是:95×15%+90×15%+90×35%+85×35%=89(分);二班的成绩是:90×15%+95×15%+85×35%+80×35%=85.5(分);三班的成绩是:85×15%+90×15%+95×35%+90×35%=91(分);则三班的成绩最高.【解答】解:一班的成绩是:95×15%+90×15%+90×35%+85×35%=89(分);二班的成绩是:90×15%+95×15%+85×35%+80×35%=85.5(分);三班的成绩是:85×15%+90×15%+95×35%+90×35%=91(分);则三班的成绩最高.23.【答案】=86,解:(1)a=79+85+92+85+895由小到大将八(1)班5名学生的成绩排列:77,85,85,86,92,所以b=85,c=85;(2)八(2)班前5名同学的成绩较好.理由:虽然八(1)班,八(2)两班的成绩的中位数、众数相同,但八(2)班的成绩的平均数大,且方差小,∵ 八(2)班前5名同学的成绩较好.【解答】=86,解:(1)a=79+85+92+85+895由小到大将八(1)班5名学生的成绩排列:77,85,85,86,92,所以b=85,c=85;(2)八(2)班前5名同学的成绩较好.理由:虽然八(1)班,八(2)两班的成绩的中位数、众数相同,但八(2)班的成绩的平均数大,且方差小,∵ 八(2)班前5名同学的成绩较好.24.【答案】86,85,85∵ 八(2)班的方差e=[(79−86)2+(85−86)2+(92−86)2+(85−86)2+(89−86)2]÷5=19.2.∵ 由数据可知,两班成绩中位数,众数相同,而八(2)班平均成绩更高,且方差更小,成绩更稳定,∵ 八(2)班前5名同学的成绩较好;【解答】八(2)班的平均分a=(79+85+92+85+89)÷5=86,将八(1)班的前5名学生的成绩按从小到大的顺序排列为:77,85,85,86,92,第三个数是85,所以中位数b=85,85出现了2次,次数最多,所以众数c=85.故答案为86,85,85;∵ 八(2)班的方差e=[(79−86)2+(85−86)2+(92−86)2+(85−86)2+(89−86)2]÷5=19.2.∵ 由数据可知,两班成绩中位数,众数相同,而八(2)班平均成绩更高,且方差更小,成绩更稳定,∵ 八(2)班前5名同学的成绩较好;25.【答案】解:(1)九年级七科老师3月5日在线答疑问题各学科个数的众数是28,中位数是26.(2)x ¯=27+28+28+26+23+21+227=25.答:九年级七科老师在线答疑问题各学科个数的平均数是25.【解答】解:(1)九年级七科老师3月5日在线答疑问题各学科个数的众数是28,中位数是26.(2)x ¯=27+28+28+26+23+21+227=25.答:九年级七科老师在线答疑问题各学科个数的平均数是25.26.【答案】甲:(10+8+9+8+10+9)÷6=9,乙:(10+7+10+10+9+8)÷6=9;s 甲2=16[(10−9)2+(8−9)2+(9−9)2+(8−9)2+(10−9)2+(9−9)2] =16(1+1+0+1+1+0)=23; s 乙2=16[(10−9)2+(7−9)2+(10−9)2+(10−9)2+(9−9)2+(8−9)2] =16(1+4+1+1+0+1)=43;推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.【解答】甲:(10+8+9+8+10+9)÷6=9,乙:(10+7+10+10+9+8)÷6=9;s 甲2=16[(10−9)2+(8−9)2+(9−9)2+(8−9)2+(10−9)2+(9−9)2] =16(1+1+0+1+1+0)=23;s 乙2=16[(10−9)2+(7−9)2+(10−9)2+(10−9)2+(9−9)2+(8−9)2] =16(1+4+1+1+0+1)=43; 推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.。

【3套】人教版八年级下册 第20章数据的分析单元测试题-(含答案)

【3套】人教版八年级下册  第20章数据的分析单元测试题-(含答案)

第4题图4元3元2元③②①人教版八年级下册 第20章数据的分析单元测试题-(含答案)一、选择题(本大题共分12小题,每小题2分共24分)1.某班七个兴趣小组人数分别为:3,3,4,4,5,5,6,则这组数据的中位数是() A. 2 B. 4 C. 4.5 D. 52.数据2、4、4、5、5、3、3、4的众数是()A. 2B. 3C. 4D. 53.已知样本x 1,x 2,x 3,x 4的平均数是2,则x 1+3,x 2+3,x 3+3,x 4+3的平均数是() A. 2 B. 2.75 C. 3 D. 54.学校食堂有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).如图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是() A. 2.95元,3元 B. 3元,3元 C. 3元,4元 D. 2.95元,4元5.如果a 、b 、c 的中位数与众数都是5,平均数是4,且a ≤b ≤c ,那么a 可能是() A. 2 B. 3 C. 4 D. 56.已知甲、乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则()A.甲组数据比乙组数据波动大B. 乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大D. 甲、乙两组数据的数据波动不能比较 7.样本数据3,6,a ,4,2的平均数是4,则这个样本的方差是() A. 4 B.2 C. 3 D. 28.某同学5次上学途中所花的时间(单位:分钟)分别为x ,y ,10,11,9,已知这组数据的平均数为10,方差为2,则y x 的值为()A. 1B. 2C. 3D. 49.若样本x 1+1,x 2+1,x 3+1,…,x n +1的平均数为18,方差为2,则对于样本x 1+2,x 2+2,x 3+2,…,x n +2,下列结论正确的是()A.平均数为18,方差为2B.平均数为19,方差为3C.平均数为19,方差为2D.平均数为20,方差为410.小波同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下C.该组数据的中位数是24分D.该组数据的极差是8分11.为了解某校计算机考试情况,抽取了50名学生的计算机考试进行统计,统计结果如下表所示,则50名学生计算机考试成绩的众数、中位数分别为()第18题图分数/分A.20,16B.16,20C.20,12D.16,12 12.如果将一组数据中的每一个数都乘以一个非零常数,那么该组数据的() A.平均数改变,方差不变 B.平均数改变,方差改变 C.平均数不变,方差改变 D.平均数不变,方差不变二、填空题(本大题共8小题,每小题3分,共24分)13.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是.14.若x 1,x 2,x 3的平均数为7,则x 1+3,x 2+2,x 3+4的平均数为. 15.一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是. 16.五个数1,2,4,5,a 的平均数是3,则a =,这五个数的方差为.17.若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是,极差是.18.如图是某同学6次数学测验成绩统计表,则该同学6次成绩的中位数是.19. 已知数据3x 1,3x 2,3x 3,…,3x n 的方差为3,则一组新数据6x 1,6x 2,…,6x n 的方差是.20.已知样本99,101,102,x ,y (x ≤y )的平均数为100,方差为2,则x =,y =. 三、解答题(本大题共52分)21.计算题(每小题6分,共12分)(1)若1,2,3,a 的平均数是3;4,5,a ,b 的平均数是5.求:0,1,2,3,4,a ,b 的方差是多少?(2)有七个数由小到大依次排列,其平均数是38,如果这组数的前四位数的平均数是33,小时()736次甲乙后四个数的平均数是42. 求它们的中位数.22.(本小题10分)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班学生每周锻炼时间的中位数是多少?23.(本小题10分)如图是某中学乒乓球队队员年龄分布的条形图.⑴计算这些队员的平均年龄;⑵大多数队员的年龄是多少?⑶中间的队员的年龄是多少?24.(本小题10分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:(1)你根据图中的数据填写下表:(2)从平均数和方差相结合看,分析谁的成绩好些.25.(本小题10分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩分别选出了10名同学参加决赛,这些选手的决赛成绩(满分为⑴ 请你填写下表:⑵ 请从以下两个不同的角度对三个年级的决赛成绩进行分析: ① 从平均数和众数相结合看(分析哪个年级成绩好些); ② 从平均数和中位数相结合看(分析哪个年级成绩好些)③ 如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.参考答案:一、1.B;2.C;3.D;4.A;5.A;6.B;7.D;8.D;9.C;10.B;11.A;12.B;二、13.14;14.10;15.5;16.3,2;17.30,40;18.75分;19.12;20.98,100;三、21. ⑴由=3 得a=6;由=5 得b=50,1,2,3,4,6,5的平均数为3,∴=4.⑶设七个数为a,b,c,d,e,f,g,a<b<c<d<e<f<g依题意得=38 ①,=33 ②,=42 ③,由①、②得e+f+g=7×38-33×4 ④,将④代入③得d=34.22.因为有40名学生,所以中位数应是从小到大排列后的第20、第21个数据的平均数.因为从图中可以看到锻炼时间是7小时的有3人;锻炼8小时的有16人,3+16=19人;锻炼9小时的有14人;所以,该班学生的每周锻炼时间中位数是9小时.23. ⑴这些队员平均年龄是:=15⑵大多数队员是15岁⑶中间的队员的年龄是15岁24. ⑴甲:6,6,0.4 乙:6,6,2.8⑵甲、乙成绩的平均数都是6,且<,所以,甲的成绩较为稳定,甲成绩比乙成绩要好些.25.⑴七年级众数是80;八年级中位数是86;九年级的平均数为85.5,众数为78.⑵①从平均数和众数相结合看,八年级的成绩好些.②从平均数和中位数相结合看,七年级成绩好些.⑶九年级.人教版八年级下册数学第20章数据的分析单元检测卷一、选择题1.今年3月份某周,我市每天的最高气温单位::,则这组数据的中位数与极差分别是A. B. C. D.2.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是A. 平均数B. 中位数C. 众数D. 方差3.某校八年级一班在两位同学中推荐一位同学参加学校短跑比赛,统计了他们平时10次成绩,经计算,他们的平均成绩一样,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的A. 最低分B. 众数C. 中位数D. 方差4.一个射击运动员连续射击5次,所得环数分别是,则这个运动员本次射击所得环数的标准差为A. 2B.C. 0D.5.在某校“我的中国梦”演讲比赛中,有7名学生参加决赛,他们决赛的最终成绩各不相同,其中一名学生想要知道自己能否进入前3名,他不仅要了解自己的成绩,还要了解这7名学生成绩的A. 众数B. 方差C. 平均数D. 中位数6.在本学期数学期中考中,某小组8名同学的成绩如下:90、103、105、105、105、115、140、140,则这组数据的众数为A. 105B. 90C. 140D. 507.10名学生的体重分别是单位:,这组数据的极差是A. 27B. 26C. 25D. 248.一位经销商计划进一批“运动鞋”,他到眉山的一所学校里对初二的100名男生的鞋号进行了调查,经销商最感兴趣的是这组鞋号的A. 中位数B. 平均数C. 方差D. 众数9.小颖随机抽样调查本班20名女同学所穿运动鞋尺码,并统计如表:尺码学校附近的商店经理根据表中决定本月多进尺码为的女式运动鞋,商店经理的这一决定应用了哪个统计知识A. 众数B. 中位数C. 平均数D. 方差二、填空题10.数据的中位数是______.11.数据:的众数为______.12.一组数据的众数是6,则这组数据的中位数是______.13.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差分别是,那么身高更整齐的是队填“甲”或“乙”.三、解答题14.数学老师布置10道选择题当堂测试,统计结果每人至少答对7道题,数学课代表对全班48名同学的答题情况绘制了条形统计图.请你补全统计图;若规定学生至少答对9道题为优秀,求这次测试的优秀率.15.星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示:根据上述数据完成下表:根据前面的统计分析,回答下列问题:能代表甲队游客一般年龄的统计量是______ ;平均数能较好地反映乙队游客的年龄特征吗?为什么?16.市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如表单位:环:根据表格中的数据,分别计算甲、乙的平均成绩;已知甲六次成绩的方差,试计算乙六次测试成绩的方差;根据、计算的结果,你认为推荐谁参加省比赛更合适,请说明理由.17.在一组数据中,各数据与它们的平均数的差的绝对值的平均数,即叫做这组数据的“平均差”“平均差”也能描述一组数据的离散程度“平均差”越大说明数据的离散程度越大因为“平均差”的计算要比方差的计算要容易一点,所以有时人们也用它来代替方差来比较数据的离散程度极差、方差标准差、平均差都是反映数据离散程度的量.一水产养殖户李大爷要了解鱼塘中鱼的重量的离散程度,因为个头大小差异太大会出现“大鱼吃小鱼”的情况;为防止出现“大鱼吃小鱼”的情况,在能反映数据离散程度几个的量中某些值超标时就要捕捞;分开养殖或出售;他从两个鱼塘各随机捕捞10条鱼称得重量如下:单位:千克A鱼塘:3、5、5、5、7、7、5、5、5、3B鱼塘:4、4、5、6、6、5、6、6、4、4分别计算甲、乙两个鱼塘中抽取的样本的极差、方差、平均差;完成下面的表格:如果你是技术人员,你会建议李大爷注意哪个鱼塘的风险更大些?计算哪些量更能说明鱼重量的离散程度?18.某校要从八年级甲、乙两个班中各选取10名女同学组成礼仪队,选取的两个班女生的身高如下单位::甲班:168 167 170 165 168 166 171 168 167 170乙班:165 167 169 170 165 168 170 171 168 167补充完成下面的统计分析表:根据如表,请选择一个合适的统计量作为选择标准,说明哪一个班能被选取.【答案】1. C2. D3. D4. B5. D6. A7. B8. D9. A10. 211.12. 613. 甲14. 解:道,补全统计图如下:.答:这次测试的优秀率为.15. 15;;;6;平均数或中位数或众数16. 解:甲的平均成绩是:,乙的平均成绩是:;推荐甲参加全国比赛更合适,理由如下:两人的平均成绩相等,说明实力相当;但甲的六次测试成绩的方差比乙小,说明甲发挥较为稳定,故推荐甲参加比赛更合适.17. 解:甲组数据中最大的值7,最小值3,故极差,,,;乙组数据中最大的值6,最小值4,故极差;,;,;根据的极差与方差可以得出A鱼塘风险更大极差与方差更能说明鱼重量的离散程度18. 解:甲班的方差;乙班的中位数为168;补全表格如下:选择方差做标准,甲班方差乙班方差,甲班可能被选取.人教版八年级下册第二十章数据的分析单元练习题(含答案)一、选择题1.某单位3月上旬中的1日至6日每天用水量的变化如图所示,那么这6天用水量的中位数是()A.31.5B.32C.32.5D.332.商厦信誉楼女鞋专柜试销一种新款女鞋,一个月内销售情况如表所示:经理最关心的是,哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是() A.平均数B.众数C.中位数D.方差3.我市从2017年1月1日起连续七天空气质量堪忧,PM2.5大于300时为严重污染,下表是这几天的PM2.5空气质量指数:则这组数据的中位数和平均数分别为()A.446,416C.451,406D.499,4164.为了解某社区居民的用电情况,随机对该社区10户居民进行调查,下表是这10户居民2016年4月份用电量的调查结果:那么关于这10户居民月用电量的说法错误的是()A.中位数是50B.众数是51C.平均数是46.8D.方差是425.2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市,某校开设了冰球选修课,12名同学被分成甲、乙两组进行训练,他们的身高(单位:cm)如表所示:设两队队员身高的平均数依次为甲,乙,方差依次为,,下列关系中正确的是()A.甲=乙,<B.甲=乙,>C.甲<乙,<D.甲>乙,>6.某学习小组13名学生的一次英语听力测试成绩分布如下表所示(满分20分):这13名学生听力测试成绩的中位数是()B.17分C.18分D.19分7.已知a,b,c三数的平均数是4,且a,b,c,d四个数的平均数是5,则d的值为() A.4B.8C.12D.208.在“爱我济宁”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8乙:7,9,6,9,9则下列说法中错误的是()A.甲、乙得分的平均数都是8B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6D.甲得分的方差比乙得分的方差小二、填空题9.某中学篮球队12名队员的年龄情况如下:则这个队中,队员年龄的平均数是________.10.在庆元旦文体活动中,小东参加了飞镖比赛,共投飞镖五次,投中的环数分别为:5,10,6,x,9.若这组数据的平均数为8,则这组数据的中位数是________.11.2016年5月15日,是世界第二十六个助残日,这天某校50名教师为本区的特殊教育中心捐款的情况如下表:(单位:元)该校教师平均每人捐款约________元(精确到1元).12.某中学篮球队12名队员的年龄情况如下:则这个队中,队员年龄的平均数是________.13.实验中学规定学生学期的数学成绩满分为120分,其中平时成绩占20%,期中考试成绩占30%,期末考试成绩占50%,王玲的三项成绩依次是100分,90分,106分,那么王玲这学期的数学成绩为________分.14.一组数据按从小到大的顺序排列为1,2,3,x,4,5,若这组数据的平均数为3,则x的值是________.15.厦门市2014年中考体育考试中,某校九年级(3)班50人参加考试,具体的成绩与人数如下表,则该班的中考体育的平均成绩是________分.16.在植树节到来之际,某学校教师分为四个植树小组参加了“大美济宁”的植树节活动,其中三个小组植树的棵数分别为:8,10,12,另一个小组的植树棵数与它们中的一组相同,且这四个数据的众数与平均数相等,则这四个数据的中位数是________.三、解答题17.为了解2路公共汽车的运营情况,公交部门统计了某天2路公共汽车每个运行班次的载客量,得到如下表各项数据:(1)求出以上表格中a=________,b=________;(2)计算该2路公共汽车平均每班的载客量是多少?18.五位同学在一次考试中的得分分别是:18、73、78、90、100,考分为73的同学在平均分之上还是之下?你认为他在五人中属“中上”水平吗?19.某小区响应市政府号召,开展节约用水活动,效果显著.为了解某居民小区节约用水情况,随机对该小区居民户家庭用水情况作抽样调查,3月份较2月份的节水情况如下表所示(在每组的取值范围中,含最低值,不含最高值):(1)试估计该小区3月份较2月份节水量不低于1吨的户数占小区总户数的百分比;(2)已知该小区共有居民5 000户,若把每组中各个节水量值用该组的中间值(如0.2~0.6的中间值为0.4)来代替,请你估计该小区3月份较2月份共节水多少吨?20.抽样调查了是我市某校八年级学生为玉树灾区捐款情况其条形图和扇形统计图如下:(1)求该样本的容量;(2)在扇形统计图中,求该样本中捐款5元的圆心角度数;(3)若该校八年级学生有800人,据此样本求八年级捐款总数.21.有关部门准备对某居民小区的自来水管网系统进行改造,为此,需了解该小区的自来水用水的情况.该部门通过随机抽样,调查了其中的20户家庭,这20户家庭的月用水量见下表:求这20户家庭的户均月用水量.22.为掌握某轮渡码头今年内每天的客运量,在一周内作了详细统计如下表:(1)求这一周平均每天的客运量;(2)本周哪几天的客运量超过了平均客运量?答案解析1.【答案】A【解析】将6天的用水量排序后,找到位于中间的两数,求平均数即可求得中位数.解:观察条形统计图知6天的用水量分别为28,30,31,32,34,37,位于中间的两个数为31和32,故中位数为31.5升,故选A.2.【答案】B【解析】平均数、中位数、众数是描述一组数据集中程度的统计量;方差是描述一组数据离散程度的统计量.鞋店经理最关心的是哪种型号的鞋销量最大,就是关心那种型号销的最多,故值得关注的是众数.由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选B.3.【答案】B【解析】把1至7号的空气指数从小到大排列为:105、402、434、446、456、499、500,所以中位数是446,平均数:==406;故选B.4.【答案】D【解析】根据表格中的数据,求出平均数,中位数,众数,方差,即可做出判断.10户居民2016年4月份用电量为30,42,42,50,50,50,51,51,51,51,平均数为(30+42+42+50+50+50+51+51+51+51)=46.8,中位数为50;众数为51,方差为[(30-46.8)2+2×(42-46.8)2+3×(50-46.8)2+4×(51-46.8)2]=42.96.故选D.5.【答案】A【解析】先根据平均数的定义分别计算出甲组和乙组的平均数,然后根据方程公式计算出甲组和乙组的方差即可对各选项进行判断.=(176+177+175+176+177+175)=176(cm),甲=(178+175+170+174+183+176)=176(cm),乙=[2×(176-176)2+2×(175-176)2+2×(177-176)2]=,=[(178-176)2+(175-176)2+(170-176)2+(174-176)2+(183-176)2+(176-176)2]=15,所以甲=乙,<.故选A.6.【答案】B【解析】可得按从小到大的顺序排列后,第7个数据都是17分,所以中位数为17分.故选B.7.【答案】B【解析】只要运用求平均数公式:=即可列出关于d的方程,解出d即可.∵a,b,c三数的平均数是4,∴a+b+c=12,又a+b+c+d=20,故d=8.故选B.8.【答案】C【解析】分别求出甲、乙的平均数、众数、中位数及方差可逐一判断.A.甲==8,乙==8,故此选项正确;B.甲得分次数最多是8分,即众数为8分,乙得分最多的是9分,即众数为9分,故此选项正确;C.∵甲得分从小到大排列为:7、8、8、8、9,∴甲的中位数是8分;∵乙得分从小到大排列为:6、7、9、9、9,∴乙的中位数是9分;故此选项错误;D.∵=×[(8-8)2+(7-8)2+(9-8)2+(8-8)2+(8-8)2]=×2=0.4,=×[(7-8)2+(9-8)2+(6-8)2+(9-8)2+(9-8)2]=×8=1.6,∴<,故D正确;故选C.9.【答案】16【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.fk所以,队员年龄的平均数是=16.10.【答案】9【解析】先根据平均数的概念求出x的值,然后根据中位数的概念求解.由题意得,=8,解得:x=10,这组数据按照从小到大的顺序排列为:5,6,9,10,10,则中位数为:9.11.【答案】182【解析】由题意知,该校教师平均每人捐款数为(50×5+100×15+150×9+200×11+300×6+500×4)÷50=182元.12.【答案】16【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.fk所以,队员年龄的平均数是=16.13.【答案】100【解析】该生这学期的数学成绩是:=100.14.【答案】3【解析】根据算术平均数的定义列出算式求出x即可.根据题意可得=3,解得:x=3.15.【答案】23.6【解析】加权平均数:若n个数x1,x2,x3,…,xn的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+xn w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数.所以,该班的中考体育的平均成绩是(25×24+24×10+22×10+20×6)÷50=(600+240+220+120)÷50=1180÷50=23.6(分),故该班的中考体育的平均成绩是23.6分.16.【答案】10【解析】设另一个小组的植树棵数为x,根据这四个数据的众数与平均数相等列出方程x=(x +8+10+12),求出x的值,再根据中位数的定义求解即可.设另一个小组的植树棵数为x,由题意得x=(x+8+10+12),解得x=10;将这组数据从小到大的顺序排列8,10,10,12,处于中间位置的是10,10,所以这组数据的中位数是(10+10)÷2=10.17.【答案】解:(1)a=31,b=51,故答案为31;51;(2)=43(人)答:该2路公共汽车平均每班的载客量是43人.【解析】(1)利用组中值的定义写出第2、3组的组中值即可得a和b的值;(2)利用组中值表示各组的平均数,然后根据加权平均数的计算方法求解.18.【答案】解:本组数据分别为:18、73、78、90、100,平均分为=71.8.中位数为78.所以考分为73的同学在平均分以上,但是他的分数在五人中倒数第二,不能算是“中等”水平.【解析】根据平均数的概念先求得平均分,然后分析比较.19.【答案】解:(1)3月份较2月份节水量不低于1吨的用户数为35+30+10=75,又样本总量为5+20+75=100(户),故所求的百分比为=75%,答:3月份较2月份节水量不低于1吨的户数占小区总户数的百分比为75%;(2)节水量各组的中间值依次为0.4,0.8,1.2,1.6,2.0.故抽样的100户总节水量约为0.4×5+0.8×20+1.2×35+1.6×30+2.0×10=128(吨),所以全小区居民户的总节水量约为128×=6 400(吨),答:该小区居民户3月份较2月份共节水约6 400吨.【解析】(1)由题意可知:节水在1.0~1.4吨的用户为35户,节水在1.4~1.8吨的用户为30户,节水在1.8~2.2吨的用户为10户,则该小区3月份较2月份节水量不低于1吨的户数为30+35+10=75户,又样本总量为5+20+75=100(户),故该小区3月份较2月份节水量不低于1吨的户数占小区总户数的百分为=75%;(2)由题意可知:节水量各组的中间值依次为0.4,0.8,1.2,1.6,2.0.故抽样的100户总节水量约为0.4×5+0.8×20+1.2×35+1.6×30+2.0×10=128(吨),则每户的平均节水量为128÷100=1.28吨,则5000户共节水5 000×1.28=6 400吨.20.【答案】解:(1)15÷30%=50(人),答:该样本的容量是50;(2)30%×360°=108°;(3)×800=9.5×800=7 600元.【解析】(1)样本的容量为;(2)捐款5元的人数所占的圆心角度数=捐款5元的人数所占的百分比×360°;(3)先算出50人捐款的平均数,再算八年级捐款总数.21.【答案】解:这20户家庭的户均月用水量是:==15.5(m3).【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.fk22.【答案】解:(1)平均数为≈13.5∴平均每天的客运量为13.5万人;(2)由(1)所求的平均数及表格可确定星期一、六、日的客运量超过了平均客运量.答:平均每天的客运量为13.5万人;本周星期一、六、日的客运量超过了平均客运量.【解析】(1)根据平均客运量=,可求出平均客运量.(2)由(1)及表格可直接得出.。

【3套】八年级下册人教版《第20章 数据的分析》单元测试卷(解析版)

【3套】八年级下册人教版《第20章 数据的分析》单元测试卷(解析版)

八年级下册人教版《第20章数据的分析》单元测试卷(解析版)一.选择题(共10小题)1.x1,x2,...,x10的平均数为a,x11,x12,...,x50的平均数为b,则x1,x2, (x50)平均数为()A.a+b B.C.D.2.已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他应该是以下哪个分数吗?()A.93B.95C.94D.963.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89B.90C.92D.934.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.7元B.6.8元C.7.5元D.8.6元5.某商店在一周内卖出某种品牌衬衫的尺寸数据如下:38,42,38,41,36,41,39,40,41,40,43那么这组数据的中位数和众数分别为()A.40,40B.41,40C.40,41D.41,416.一组数据7,9,6,8,10,12中,下面说法正确的是()A.中位数等于平均数B.中位数大于平均数C.中位数小于平均数D.中位数是87.某班50名同学的数学成绩为:5人100分,30人90分,10人75分,5人60分,则这组数据的众数和平均数分别是()A.90,85B.30,85C.30,90D.40,82.58.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.89.在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分10.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,45.则这组数据的极差为()A.2B.4C.6D.8二.填空题(共5小题)11.如果数据1,4,x,5的平均数是3,那么x=.12.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是分.13.某同学用计算器求30个数据的平均数时,错将其中的一个数据105输入成15,则由此求出的平均数与实际平均数的差是.14.一组数据﹣1,x,0,5,3,﹣2的平均数是1,则这组数据的中位数是.15.自然数4、5、5、x、y从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x、y中,x+y的最大值是.三.解答题(共4小题)16.下表是某班5名同学某次数学测试成绩.根据信息完成下表,并回答问题.五人中分数最高的是谁?分数最低的是谁?谁的分数与全班平均分最接近?17.某校八年级一班20名女生某次体育测试的成绩统计如下:(1)如果这20名女生体育成绩的平均分数是82分,求x 、y 的值;(2)在(1)的条件下,设20名学生本次测试成绩的众数是a ,中位数为b ,求的值.18.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生有多少人?并补全条形统计图; (2)每天户外活动时间的中位数是 小时?(3)该校共有1850名学生,请估计该校每天户外活动时间超过1小时的学生有多少人? 19.某品牌汽车的销售公司有营销人员14人,销售部为制定营销人员的月销售汽车定额,统计了这14人在某月的销售量如下表:(1)这14位销售员该月销售某品牌汽车的平均数、众数和中位数各是多少辆? (2)销售部经理把每位销售员每月销售汽车定额为9辆,你认为是否合理?为什么?如果不合理,请你设计一个比较合理的销售定额,并说明理由.2019年八年级下册人教新版《第20章数据的分析》单元测试卷参考答案与试题解析一.选择题(共10小题)1.x1,x2,...,x10的平均数为a,x11,x12,...,x50的平均数为b,则x1,x2, (x50)平均数为()A.a+b B.C.D.【分析】先求前10个数的和,再求后40个数的和,然后利用平均数的定义求出50个数的平均数.【解答】解:前10个数的和为10a,后40个数的和为40b,50个数的平均数为.故选:D.【点评】正确理解算术平均数的概念是解题的关键.2.已知小华上学期语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了95分,但他把数学成绩忘记了,你能告诉他应该是以下哪个分数吗?()A.93B.95C.94D.96【分析】设他的数学分为x分,由题意得,(88+95+x)÷3=92,据此即可解得x的值.【解答】解:设数学成绩为x分,则(88+95+x)÷3=92,解得x=93.故选:A.【点评】本题考查了平均数的应用.记住平均数的计算公式是解决本题的关键.3.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)次为95,90,88,则小彤这学期的体育成绩为()A.89B.90C.92D.93【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:95×20%+90×30%+88×50%=90(分).即小彤这学期的体育成绩为90分.故选:B.【点评】此题考查了加权平均数,掌握加权平均数的计算公式是本题的关键,是一道常考题.4.甲、乙、丙三种糖果的售价分别为每千克6元、7元、8元,若将甲种8千克,乙种10千克,丙种3千克混在一起,则售价应定为每千克()A.7元B.6.8元C.7.5元D.8.6元【分析】根据加权平均数的计算方法:先求出所有糖果的总钱数,再除以糖果的总质量,即可得出答案.【解答】解:售价应定为:≈6.8(元);故选:B.【点评】本题考查的是加权平均数的求法.本题易出现的错误是对加权平均数的理解不正确,而求6、7、8这三个数的平均数.5.某商店在一周内卖出某种品牌衬衫的尺寸数据如下:38,42,38,41,36,41,39,40,41,40,43那么这组数据的中位数和众数分别为()A.40,40B.41,40C.40,41D.41,41【分析】首先把所给数据重新从小到大排序,然后根据中位数和众数的定义即可求出结果.【解答】解:把已知数据重新从小到大排序后为36,38,38,39,40,40,41,41,41,42,43,∴中位数为40,众数为41.故选:C.【点评】本题用到的知识点是:①一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数;②给定一组数据,出现次数最多的那个数,称为这组数据的众数.一组数据是不一定存在众数的;如果一组数据存在众数,则众数一定是数据集里的数.6.一组数据7,9,6,8,10,12中,下面说法正确的是()A.中位数等于平均数B.中位数大于平均数C.中位数小于平均数D.中位数是8【分析】分别求出中位数与平均数比较即可.【解答】解:平均数为×(7+9+6+8+10+12)=,中位数为=8.5.所以中位数小于平均数.故选:C.【点评】此题考查了中位数与平均数的概念.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,可能出错.7.某班50名同学的数学成绩为:5人100分,30人90分,10人75分,5人60分,则这组数据的众数和平均数分别是()A.90,85B.30,85C.30,90D.40,82.5【分析】根据加权平均数的计算公式就可以求出平均数;根据众数的定义就可以求解.【解答】解:在这一组数据中90分是出现次数最多的,故众数是90分;这组数据的平均数为=85(分);所以这组数据的众数和平均数分别是90(分),85(分).故选:A.【点评】本题为统计题,考查众数和加权平均数的意义,解题时要细心.8.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.8【分析】根据众数、平均数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选:C.【点评】本题考查了众数、中位数及加权平均数的知识,解题的关键是了解有关的定义,难度不大.9.在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示,对于这10名学生的参赛成绩,下列说法中错误的是()A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;极差是:95﹣80=15;故D正确.综上所述,C选项符合题意,故选:C.【点评】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.10.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,45.则这组数据的极差为()A.2B.4C.6D.8【分析】根据极差的定义,找出这组数据的最大值和最小值,再求出最大值与最小值的差即可.【解答】解:∵46,44,45,42,48,46,47,45中,最大的数是48,最小的数是42,∴这组数据的极差为48﹣42=6,故选:C.【点评】此题考查了极差,极差反映了一组数据变化范围的大小,求极差的方法是用一组数据中的最大值减去最小值,注意:极差的单位与原数据单位一致.二.填空题(共5小题)11.如果数据1,4,x,5的平均数是3,那么x=2.【分析】根据平均数的概念建立关于x的方程,然后解方程即可.【解答】解:根据题意得,(1+4+x+5)=3,解得x=2.故答案为:2.【点评】解题的关键熟悉平均数的定义.平均数等于所有数据的和除以数据的个数.12.小明某学期的数学平时成绩70分,期中考试80分,期末考试85分,若计算学期总评成绩的方法如下:平时:期中:期末=3:3:4,则小明总评成绩是79分.【分析】按3:3:4的比例算出本学期数学总评分即可.【解答】解:本学期数学总评分=70×30%+80×30%+85×40%=79(分).故答案为:79.【点评】本题考查了加权成绩的计算,平时成绩:期中考试成绩:期末考试成绩=3:3:4的含义就是分别占总数的30%、30%、40%.13.某同学用计算器求30个数据的平均数时,错将其中的一个数据105输入成15,则由此求出的平均数与实际平均数的差是﹣3.【分析】根据平均数的公式求解即可.前后数据的和相差90,则平均数相差90÷30.【解答】解:求30个数据的平均数时,错将其中的一个数据105输入成15,即少加了90;则由此求出的平均数与实际平均数的差是﹣=﹣3.故答案为﹣3.【点评】本题考查的是样本平均数的求法及运用.14.一组数据﹣1,x,0,5,3,﹣2的平均数是1,则这组数据的中位数是0.5.【分析】先根据平均数的定义求出x的值,然后根据中位数的定义求解.【解答】解:由题意可知,(﹣1+0+5+x+3﹣2)÷6=1,x=﹣1,这组数据从小到大排列﹣2,﹣1,0,1,3,5,∴中位数是0.5.故答案为0.5.【点评】本题为统计题,考查平均数与中位数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.15.自然数4、5、5、x、y从小到大排列后,其中位数为4,如果这组数据唯一的众数是5,那么,所有满足条件的x、y中,x+y的最大值是5.【分析】根据题意得x与y都不超过4,再由这组数据唯一的众数是5,则x≠4且y≠4,则x+y的最大值为2+3.【解答】解:∵这组数据的中位数为4,∴x≤4,y≤4,∵这组数据唯一的众数是5,∴x≠4且y≠4,∵要求x+y的最大值,∴x=2,y=3,或x=3,y=2,即x+y的最大值=2+3=5,故答案为5.【点评】本题考查了众数和中位数的定义及求法,根据条件推出x与y的最大值是解此题的关键.三.解答题(共4小题)16.下表是某班5名同学某次数学测试成绩.根据信息完成下表,并回答问题.五人中分数最高的是谁?分数最低的是谁?谁的分数与全班平均分最接近?【分析】由表格中数据可得出,平均分为90分,把表格完成,可以得出分数最高的是刘兵,分数最低的是李聪,张昕的分数与全班平均分最接近. 【解答】解:完成表格得故答案为分数最高的是刘兵,分数最低的是李聪,张昕的分数与全班平均分最接近. 【点评】本题考查了统计表格的应用,可以从中得出每个学生与平均分的关系. 17.某校八年级一班20名女生某次体育测试的成绩统计如下:(1)如果这20名女生体育成绩的平均分数是82分,求x 、y 的值;(2)在(1)的条件下,设20名学生本次测试成绩的众数是a ,中位数为b ,求的值.【分析】(1)根据题意可以得到关于x 、y 的二元一次方程组,解方程组即可求得x 、y 的值.(2)众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.根据定义求出a ,b ,再求代数式的值. 【解答】解:(1)由题意,有解得.(2)由(1),众数a =90,中位数b =80. ∴.【点评】本题为综合体.考查了平均数、众数与中位数的意义,以及解二元一次和二次根式的化简.18.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)求被抽样调查的学生有多少人?并补全条形统计图;(2)每天户外活动时间的中位数是1小时?(3)该校共有1850名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;(3)根据条形统计图可以求得校共有1850名学生,该校每天户外活动时间超过1小时的学生有多少人.【解答】解:(1)由条形统计图和扇形统计图可得,0.5小时的有100人占被调查总人数的20%,故被调查的人数有:100÷20%=500,1小时的人数有:500﹣100﹣200﹣80=120,即被调查的学生有500人,补全的条形统计图如下图所示,(2)由(1)可知被调查学生500人,由条形统计图可得,中位数是1小时,故答案为:1;(3)由题意可得,该校每天户外活动时间超过1小时的学生数为:=740人,即该校每天户外活动时间超过1小时的学生有740人.【点评】本题考查中位数、用样本估计总体、扇形统计图、条形统计图,解题的关键是明确题意,利用数形结合的思想解答问题.19.某品牌汽车的销售公司有营销人员14人,销售部为制定营销人员的月销售汽车定额,统计了这14人在某月的销售量如下表:(1)这14位销售员该月销售某品牌汽车的平均数、众数和中位数各是多少辆?(2)销售部经理把每位销售员每月销售汽车定额为9辆,你认为是否合理?为什么?如果不合理,请你设计一个比较合理的销售定额,并说明理由.【分析】(1)用加权平均数的求法求得其平均数,出现最多的数据为众数,排序后位于中间位置的数即为中位数.【解答】解:(1)平均数:=9;众数:8;中位数:8(2)不合理,因为达到指标的人数太少.应选8比较合理,因为中位数和众数都是8,能代表一般水平.【点评】本题考查了中位数、众数的确定及加权平均数的计算方法,解决本题的关键是正确的从表中整理出所有数据,并进行正确的计算和分析.人教版八年级数学下册:第二十章检测题一、选择题(每小题3分,共30分)1.在某校八(2)班组织的跳绳比赛中,第一小组五位同学跳绳的个数分别为198,230,220,216,209,则这五个数据的中位数为(C)A.220 B.218 C.216 D.2092.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表,你认为商家更应该关注鞋子尺码的(C)A.3.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为s甲2=0.56,s乙2=0.60,s丙2=0.50,s丁2=0.45,则成绩最稳定的是(D)A.甲B.乙C.丙D.丁4.(2016·孝感)在2016年体育中考中,某班一学习小组6名学生的体育成绩如下表,则这组学生的体育成绩的众数、中位数、方差依次为(A)A.28,28,1 B5.(2017·清远模拟)已知a,b,c,d,e的平均数是x,则a+5,b+12,c+22,d+9,e+2的平均数是(C)A.x-1 B.x+3 C.x+10 D.x+126.去年我市6月1日到10日的每一天最高气温变化如折线图所示,则这10天最高气温的中位数和众数分别是(A)A.33 ℃,33 ℃B.33 ℃,32 ℃C.34 ℃,33 ℃D.35 ℃,33 ℃7.(2016·永州)在“爱我中华”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8 ;乙:7,9,6,9,9,则下列说法中错误的是(C)A.甲、乙得分的平均数都是8 B.甲得分的众数是8,乙得分的众数是9C.甲得分的中位数是9,乙得分的中位数是6 D.甲得分的方差比乙得分的方差小8.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为(B)A.0 B.1 C.2 D.49.下列说法正确的是(C)A.中位数就是一组数据中最中间的一个数B.8,9,9,10,10,11这组数据的众数是9C.如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=0D.一组数据的方差是这组数据的平均数的平方10.对某校八年级学生随机抽取若干名进行体能测试,成绩记为1分、2分、3分、4分共4个等级,将调查结果绘制成如下条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是(C)A.2.25 B.2.5 C.2.95 D.3,第10题图),第15题图)二、填空题(每小题3分,共24分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小王笔试成绩90分,面试成绩85分,那么小王的总成绩是__88__分.12.已知一组数据0,2,x,4,5的众数是4,那么这组数据中位数是__4__.13.有13位同学参加学校组织的才艺表演比赛,已知他们所得的分数互不相同,共设7个获奖名额,某同学知道自己的比赛分数后,要判断自己能否获奖,在这13名同学成绩的统计量中只需知道一个量,它是__中位数__.(填“众数”“方差”“中位数”或“平均数”)14.一组数据3,5,a ,4,3的平均数是4,这组数据的方差为__0.8__.15.小华和小苗练习射击,两人的成绩如图所示,小华和小苗两人成绩的方差分别为s 12,s 22,根据图中的信息判断两人方差的大小关系为__s 12<s 22__.16.甲、乙两人各射击5次,成绩统计表如下:那么射击成绩比较稳定的是__乙__.(填“甲”或“乙”)17.当五个整数从小到大排列后,其中位数是4,如果这组数据的唯一众数是6,那么这组数据可能的最大的和是__21__.18.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0的整数,则这组数据的平均数是__5__.三、解答题(共66分)19.(8分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对三种水果7天的销售量进行了统计,统计结果如图所示:(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额最大的水果品种是__A __.A .西瓜B .苹果C .香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克? 解:1407×30=600(千克)20.(8分)(2016·呼和浩特)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148(1)计算该样本数据的中位数和平均数;(2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何? 解:(1)中位数为150分钟,平均数为151分钟 (2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好21.(9分)为了全面了解学生的学习、生活及家庭的基本情况,加强学校、家庭的联系,某中学积极组织全体教师开展“课外访万家活动”,王老师对所在班级的全体学生进行实地家访,了解到每名学生家庭的相关信息,现从中随机抽取15名学生家庭的收入情况,统计数据如下表:(1)(2)你认为用(1)中的哪个数据来代表这15名学生家庭年收入的一般水平较为合适?请简要说明理由.解:(1)平均数为4.3万元,中位数为3万元,众数为3万元 (2)中位数或众数,理由:虽然平均数为4.3万元,但年收入达到4.3万元的家庭只有4个,大部分家庭的年收入未达到这一水平,而中位数或众数3万元是大部分家庭可以达到的水平,因此用中位数或众数较为合适22.(9分)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如下表:(1)(2)从计算的结果来看,在10天中,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?解:(1)x甲=1.2(个),x乙=1.3(个);s甲2=0.76,s乙2=1.21(2)由(1)知x甲<x乙,∴甲台机床出次品的平均数较小,由(1)知s甲2<s乙2,∴甲台机床出次品的波动较小23.(10分)某校在招聘教师时以考评成绩确定人选,甲、乙两位高校毕业生的各项考评成绩如下表:(1),那么谁会被录用?(2)如果按教学设计占30%,课堂教学占50%,答辩占20%来计算各人的考评成绩,那么又是谁会被录用?解:(1)x甲=87,x乙=87.8,∵87<87.8,∴乙会被录取(2)x甲=87.5,x乙=86.6,∵87.5>86.6,∴甲会被录取24.(10分)某地发生地震后,某校学生会向全校1900名学生发起了“心系灾区”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为__50__,图①中m的值是__32__;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.解:(2)平均数、众数和中位数,分别为16元、10元、15元(3)1900×32%=608(人),∴估计该校本次活动捐款金额为10元的学生人数约为608人25.(12分)为了从甲、乙两名选手中选拔一人参加射击比赛,现对他们进行一次测验,两个人在相同条件下各射靶10次,为了比较两人的成绩,制作了如下统计图表:甲、乙射击成绩统计表(2)如果规定成绩较稳定者胜出,你认为谁将胜出?说明你的理由;(3)如果希望(2)中的另一名选手胜出,根据图表中的信息,应该制定怎样的评判规则?为什么?解:(1)(2)由甲的方差小于乙的方差,甲比较稳定,故甲胜出(3)如果希望乙胜出,应该制定的评判规则为:平均成绩高的胜出;如果平均成绩相同,则随着比赛的进行,发挥越来越好者或命中满环(10环)次数多者胜出,因为甲、乙的平均成绩相同,随着比赛的进行,乙的射击成绩越来越好(回答合理即可)人教版八年级数学下册第二十章数据分析专题研究(有答案)一.知识归纳:知识点1:平均数、众数、中位数例题:.某文具商店共有单价分别为10元、15元和20元的3种文具盒出售,该商店统计了2016年3月份这三种文具盒的销售情况,并绘制统计图如下:①请把条形统计图补充完整;②小亮认为该商店3月份这三种文具盒总的平均销售价格为13(10+15+20)=15元,你认为小亮的计算方法正确吗?如果不正确,请计算总的平均销售价格.解:①条形统计图补充如右:②不正确,平均销售价格为(10×150+15×360+20×90)÷(150+360+90)=8 700÷600=14.5(元)方法总结 平均数、众数和中位数是以不同角度反映一组数据的集中趋势.众数是一组数据中出现次数最多的,而中位数是一组数据从小到大(或从大到小)排列处于中间位置的一个数或两个数的平均数,平均数则是所有数的和与个数的商,求解时一定要明确其求法. 知识点2:极差与方差例题:一次学科测验,学生得分均为整数,满分为10分,成绩达到6分以上(包括6分)为合格,成绩达到9分为优秀.这次测验中甲、乙两组学生成绩分布的条形统计图如图.。

人教版八年级数学下册第二十章《数据的分析》单元测试卷附答案

人教版八年级数学下册第二十章《数据的分析》单元测试卷附答案

第二十章《数据的分析》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.一组数据2,3,5,7,8的平均数是()A.2B.3C.4D.52.已知n个数据的和为108,平均数为12,则n为()A.7B.8C.9D.103.(跨学科融合)“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某校为了解同学们某季度学习“青年大学习”的情况,从中随机抽取5位同学,经统计他们的学习时间(单位:分钟)分别为78,80,85,90,80,则这组数据的众数为()A.78B.80C.85D.904.在以下一列数3,3,5,6,7,8中,中位数是()A.3B.5C.5.5D.65.现有相同个数的甲、乙两组数据,经计算得x甲=x乙,且s甲2=0.35,s乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定D.无法确定6.八年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分7.(跨学科融合)奥林匹克官方旗舰店统计了某一段时间内各款“冰墩墩”销售情况(如下表),厂家决定多生产20 cm高的“冰墩墩”,则依据的统计量是()A.平均数8.对于一组统计数据3,3,6,5,3,下列说法错误的是()A.众数是3B.平均数是4C.方差是1.6D.中位数是69.学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元B.8元C.8.9元D.9.2元10.某市举行了一次数学竞赛,分段统计参赛同学的成绩,从中抽查了50名学生的成绩如下表:A.81分B.82分C.79分D.75.5分二、填空题(共5小题,每小题3分,共15分)11.冬天某地区一周最高气温的走势图如图所示,则这组数据的众数是℃.12.某班50人一次测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人,6分5人,5分2人,则本次测验的中位数是分.13.学校组织“我的青春我做主”演讲比赛,小红演讲内容得100分,语言表达得80分,若按演讲内容占40%,语言表达占60%的比例计算总成绩,则她的总成绩是分.14.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(从“平均数、中位数、众数、方差”中选择答案).15.(创新题)某学校随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图(如图),其中条形图被墨迹遮盖了一部分,则被调查的学生读课外书册数的中位数为.三、解答题(一)(共3小题,每小题8分,共24分)16.某饮料店为了解某一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,24,31.求这6天的日销售量的众数和平均数.17.在一次大学生一年级新生训练射击比赛中,某小组10人的成绩如下表:(1)该小组射击数据的众数是,中位数是;(2)该小组的平均成绩为多少?18.在校体育集训队中,跳高运动员小军和小明的9次成绩如下(单位:m):小军:1.41,1.42,1.42,1.43,1.43,1.43,1.44,1.44,1.45;。

人教版八年级下《第二十章数据的分析》单元检测试题(有答案)

人教版八年级下《第二十章数据的分析》单元检测试题(有答案)

第二十章检测试题一、选择题(每小题4分,共48分)1.一组数据:5,7,10,5,7,5,6,这组数据的众数和中位数分别( )(A)10和7 (B)5和7 (C)6和7 (D)5和62.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.张明的三项成绩(百分制)依次为95,90,88,则张明这学期的体育成绩为( )(A)89 (B)90 (C)92 (D)933.要判断一个学生的数学考试成绩是否稳定,那么需要知道他最近连续几次数学考试成绩的( )(A)平均数(B)中位数(C)众数(D)方差4.近年来,我国持续大面积的雾霾天气让环保和健康问题成为焦点,为进一步普及环保和健康知识,某校举行了“关注环境保护”的知识竞赛,某班学生的成绩统计如下:则该班学生成绩的众数和中位数分别是( )(A)70分,80分(B)80分,80分(C)90分,80分(D)80分,90分5.一组数据2,3,2,3,5的方差是( )(A)6 (B)3 (C)1.2 (D)26.八年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多.”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是( )(A)平均数和众数(B)众数和极差(C)众数和方差(D)中位数和极差7.某校八年级甲、乙两班学生在一学期里的多次检测中,其数学成绩的平均分相等,但两班成绩的方差不等,那么能够正确评价他们的数学学习情况的是( )(A)学习水平一样(B)成绩虽然一样,但方差大的班里学生学习潜力大(C)虽然平均成绩一样,但方差小的班学习成绩稳定(D)方差较小的班学习成绩不稳定,忽高忽低8.7名同学参加数学竞赛初赛,他们的得分互不相同,按从高分录到低分的原则,取前4名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的( )(A)平均数(B)中位数(C)众数(D)方差9.某市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如表,则该周PM2.5指数的众数和中位数分别是( )(A)150,150 (B)150,155 (C)155,150 (D)150,152.510.在一次统计调查中,小明得到以下一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数、中位数分别为( )(A)3.5,3 (B)3,4 (C)3,3.5 (D)4,311.已知:一组数据x1,x2,x3,x4,x5的平均数是2,方差是,那么另一组数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的平均数和方差分别是( )(A)2, (B)2,1 (C)4, (D)4,312.某射击小组有20人,教练根据他们某次射击的数据绘制成如图所示的统计图,则这组数据的众数和中位数分别是( )(A)7,7 (B)8,7.5 (C)7,7.5 (D)8,6.5二、填空题(每小题4分,共20分)13.某班中考数学成绩如下:7人得100分,14人得90分,17人得80分,8人得70分,3人得60分,1人得50分,那么中考全班数学成绩的平均分为,中位数为,众数为.14.某校规定学生的数学学期综合成绩是由平时、期中和期末三项成绩按3∶3∶4的比例计算所得.若某同学本学期数学的平时、期中和期末成绩分别是90分、90分和85分,则他本学期数学学期综合成绩是分.15.张老师对同学们的打字能力进行测试,他将全班同学分成五组.经统计,这五个小组平均每分钟打字个数如下:100,80,x,90,90,已知这组数据的众数与平均数相等,那么这组数据的中位数是.16.某校五个绿化小组一天的植树棵数如下:10,10,12,x,8.已知这组数据的平均数是10,那么这组数据的方差是.17.小亮调查本班同学的身高后,将数据绘制成如图所示的频数分布直方图(每小组数据包含最小值,但不包含最大值.比如,第二小组数据x满足:145≤x<150,其他小组的数据类似).设班上学生身高的平均数为,则的取值范围是.三、解答题(共82分,解答时写出必要的解答过程)18.(6分)某公司共25名员工,下表是他们月收入的资料.(1)该公司员工月收入的中位数是元,众数是元;(2)根据上表,可以算得该公司员工月收入的平均数为6 276元.你认为用平均数、中位数和众数中的哪一个反映该公司全体员工月收入水平较为合适?说明理由.19.(6分)某文具商店共有单价分别为10元、15元和20元的3种文具盒出售,该商店统计了2017年3月份这3种文具盒的销售情况,并绘制统计图如图所示.(1)请把条形统计图补充完整;(2)小亮认为该商店3月份这3种文具盒总的平均销售价格为(10+15+20)÷3=15元,你认为小亮的计算方法正确吗?如果不正确,请计算总的平均销售价格.20.(8分)为了宣传节约用水,小明随机调查了某小区家庭5月份的用水情况,并将收集的数据整理成如图所示的统计图.(1)小明一共调查了多少户家庭?(2)求所调查家庭5月份用水量的平均数;(3)若该小区有400户居民,请你估计这个小区5月份的用水量.21.(8分)甲、乙两台机床同时生产同一种零件,在10天中两台机床每天生产的次品数如下:甲:0,1,0,2,2,0,3,1,2,4;乙:2,3,1,1,0,2,1,1,0,1.(1)分别计算两组数据的平均数和方差;(2)从结果看,在10天中哪台机床出现次品的波动较小?(3)由此推测哪台机床的性能较好22.(8分)(2018云南)某同学参加了学校举行的“五好小公民·红旗飘飘”演讲比赛,7位评委给该同学的打分(单位:分)情况如下表:(1)直接写出该同学所得分数的众数与中位数;(2)计算该同学所得分数的平均数.23.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案①:所有评委所给分的平均数.方案②:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案③:所有评委所给分的中位数.方案④:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验.如图是这个同学的得分统计图.(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.24.(10分)(2018包头)某公司招聘职员两名,对甲、乙、丙、丁四名候选人进行了笔试和面试,各项成绩满分均为100分,然后再按笔试占60%、面试占40%计算候选人的综合成绩(满分为100分).他们的各项成绩如下表所示:(1)直接写出这四名候选人面试成绩的中位数;(2)现得知候选人丙的综合成绩为87.6分,求表中x的值;(3)求出其余三名候选人的综合成绩,并以综合成绩排序确定所要招聘的前两名的人选.25.(12分)某中学七、八年级各选派10名选手参加学校举办的知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下所示,其中七年级代表队得6分、10分的选手人数为a,b.(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说七年级队的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.26.(14分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级(3)班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少人?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.第二十章检测试题参考答案1.D2.B3.D4.B5.C6.B7.C8.B9.B 10.A 11.D12.C13.82.2 80 80 14.8815.9016.1.6 17.154.5≤<159.518.解:(1)共有25名员工,中位数是第13个数,则中位数是3 400元;3 000出现了11次,出现的次数最多,则众数是3 000元.(2)用中位数或众数来描述更为恰当.理由:平均数受极端值45 000元的影响,只有3个人的工资达到了6 276元,不恰当.19.解:(1)由题意知,单价为10元的文具盒的销售数量为90÷15%×25%=150(个),补全条形统计图,如图所示.(2)小亮的计算方法不正确.法一总的平均销售价格为20×15%+10×25%+15×60%=14.5(元).法二总的平均销售价格为(10×150+15×360+20×90)÷(150+360+90)=8 700÷600=14.5(元).20.解:(1)1+1+3+6+4+2+2+1=20(户).答:小明一共调查了20户家庭.(2)所调查家庭5月份用水量的平均数为(1×1+2×1+3×3+ 4×6+5×4+6×2+7×2+8×1)÷20=4.5(吨),答:所调查家庭5月份用水量的平均数为 4.5 吨.(3)400×4.5=1 800(吨).答:估计这个小区5月份的用水量为1 800吨.21.解:(1)甲的平均数是=×(0+1+0+2+2+0+3+1+2+4)=1.5;乙的平均数是=×(2+3+1+1+0+2+1+1+0+1)=1.2.甲的方差是=[(0-1.5)2+(1-1.5)2+(0-1.5)2+…+(4-1.5)2]=1.65;乙的方差是=[(2-1.2)2+(3-1.2)2+(1-1.2)2+…+(1-1.2)2]=0.76.(2)因为=1.65,=0.76,所以>,所以乙机床出现次品的波动较小.(3)乙的平均数比甲的平均数小,且>,所以乙机床的性能较好.22.解:(1)众数为8分,中位数为7分.(2)=×(6+8+7+8+5+7+8)=7(分).答:该同学所得分数的平均数为7分.23.解:(1)方案①最后得分:×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案②最后得分:(7.0+7.8+3×8+3×8.4)=8;方案③最后得分:中位数是8;方案④最后得分:众数是8或8.4.(2)因为方案①中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,方案④中的众数有两个,众数失去了实际意义,不适合作为最后得分的方案.所以方案①和方案④不适合作为这个同学演讲的最后得分.24.解:(1)这四名候选人面试成绩的中位数为=89(分).(2)由题意得,x×60%+90×40%=87.6,解得,x=86.答:表中x的值为86.(3)甲候选人的综合成绩为90×60%+88×40%=89.2(分),乙候选人的综合成绩为84×60%+92×40%=87.2(分),丁候选人的综合成绩为88×60%+86×40%=87.2(分),∴以综合成绩排序确定所要招聘的前两名的人选是甲和丙.25.解:(1)由题意,得解得(2)m=6,n=20%.(3)①八年级队平均分高于七年级队;②八年级队的成绩比七年级队的稳定;③八年级队的成绩集中在中上游.答案不唯一,以上三条中任选两条即可.26.解:(1)该班的学生总人数为15÷30%=50(名),穿175型校服的学生人数为50×20%=10(名).答:该班共有50名学生,其中穿175型校服的学生有10名.(2)穿185型校服的学生人数为50-3-15-15-10-5=50-48=2(名),补全条形统计图,如图所示.(3)185型校服所对应的扇形圆心角为×360°=14.4°.答:185型校服所对应的圆心角的大小为14.4°.(4)165型和170型出现的次数最多,都是15次,所以众数是165和170.共有50个数据,第25,26个数据都是170,所以中位数是170.答:该班学生所穿校服型号的众数是165和170,中位数是170.。

人教版初中八年级数学下册第二十章《数据的分析》经典测试卷(含答案解析)

人教版初中八年级数学下册第二十章《数据的分析》经典测试卷(含答案解析)

一、选择题1.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ).A .1B .6C .1或6D .5或6C解析:C【解析】根据数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同这个结论即可解决问题. 解:∵一组数据2,2,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等, ∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x 1,x 2,…x n 与数据x 1+a ,x 2+a ,…x n +a 的方差相同解决问题,属于中考常考题型.2.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.2环,方差分别是20.56S =甲,20.45S =乙,20.50S =丙,20.60S =丁;则成绩最稳定的是( ) A .甲B .乙C .丙D .丁B解析:B【分析】 直接利用方差是反映一组数据的波动大小的一个量,方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,进而分析即可.【详解】解:∵20.56S =甲,20.45S =乙,20.50S 丙=,20.60S =丁,∴2S 乙<2S 丙<2S 甲<2S 丁,∴成绩最稳定的是乙.故选B .【点睛】此题主要考查了方差,正确理解方差的意义是解题关键.3.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A .1999年B .2004年C .2009年D .2014年C解析:C【分析】 把数据的年份从小到大排列,根据中位数的定义即可得答案,【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年, ∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年,故选:C .【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.4.一组数据:3,2,5,3,7,5,x ,它们的众数为5,则x =( )A .2B .3C .5D .7C解析:C【分析】根据众数的定义(一组数据中出现次数最多的数叫众数),直接写出x 的值即可得到答案.【详解】解:∵一组数据:3,2,5,3,7,5,x ,它们的众数为5,∴5出现的次数最多,故5x =,故选C .【点睛】本题主要考查众数的基本概念,熟练掌握众数的基本概念是解题的关键,一组数据中出现次数最多的数据叫做众数.5.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B . 8. 99,1010,11,,这组数据的众数是9 C .如果123,,,,n x x x x ⋯的平均数是1,那么()()()121110n x x x -+-+⋯+-= D .一组数据的方差是这组数据的极差的平方C解析:C【分析】根据中位数以及众数和平均数和极差、方差的定义分别判断得出即可.【详解】A、当数据是奇数个时,按大小排列后,中位数就是一组数据中最中间的一个数,数据个数为偶数个时,按大小排列后,最中间的两个的平均数是中位数,故此选项错误;B、8,9,9,10,10,11这组数据的众数是9和10,故此选项错误;C、如果x1,x2,x3,…,x n的平均数是x,那么(x1-x)+(x2-x)+…+(x n-x)=x1+x2+x3+…+x n-n x=0,故此选项正确;D、一组数据的方差与极差没有关系,故此选项错误;故选C.【点睛】此题主要考查了中位数以及众数和平均数和极差、方差的定义,根据定义举出反例是解题关键.6.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )A.甲B.乙C.丙D.丁C解析:C【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选C.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.7.体育课上,某班两名同学分别进行了5次短跑训练,要判断哪一位同学的成绩比较稳定,通常要比较两名同学成绩的()A.平均数B.方差C.众数D.中位数B解析:B【分析】平均数、众数、中位数反映的是数据的集中趋势,方差反映的是数据的离散程度,方差越大,说明这组数据越不稳定,方差越小,说明这组数据越稳定.【详解】解:由于方差能反映数据的稳定性,故需要比较这两名同学5次短跑训练成绩的方差.故选B.【点睛】考核知识点:均数、众数、中位数、方差的意义.8.测试五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据,在统计时出现了一处错误:将最高成绩写得更高了,则计算结果不受影响的是()A.中位数B.平均数C.方差D.极差A解析:A【分析】根据中位数的定义解答可得.【详解】解:因为中位数是将数据按照大小顺序重新排列,代表了这组数据值大小的“中点”,不受极端值影响,所以将最高成绩写得更高了,计算结果不受影响的是中位数,故选A.【点睛】本题主要考查方差、极差、中位数和平均数,解题的关键是掌握中位数的定义.9.为了帮助我市一名贫困学生,某校组织捐款,现从全校所有学生的捐款数额中随机抽取10名学生的捐款数统计如下表:A.10名学生是总体的一个样本B.中位数是40C.众数是90D.方差是400D解析:D【分析】根据样本、众数、中位数及方差的定义,结合表格分别进行解答,即可得出答案.【详解】A、10名学生的捐款数是总体的一个样本,故本选项错误;B、中位数是30,故本选项错误;C、众数是30,故本选项错误;D、平均数是:(20×2+30×4+50×3+90)÷10=40(元),则方差是:110×[2×(20﹣40)2+4×(30﹣40)2+3×(50﹣40)2+(90﹣40)2]=400,故本选项正确,故选D.【点睛】本题考查了中位数、方差、众数及样本的知识,掌握相关的定义以及求解方法是解题的关键.10.下面的统计图表示某体校射击队甲、乙两名队员射击比赛的成绩,根据统计图中的信息,下列结论正确的是()A.甲队员成绩的平均数比乙队员的大B.乙队员成绩的平均数比甲队员的大C.甲队员成绩的中位数比乙队员的大D.甲队员成绩的方差比乙队员的大D解析:D【解析】【分析】根据平均数、中位数和方差的计算公式分别对每一项进行分析,即可得出答案.【详解】甲队员10次射击的成绩分别为6,7,7,7,8,8,9,9,9,10,则中位数882=8,甲10次射击成绩的平均数=(6+3×7+2×8+3×9+10)÷10=8(环),乙队员10次射击的成绩分别为6,7,7,8,8,8,8,9,9,10,则中位数是8,乙10次射击成绩的平均数=(6+2×7+4×8+2×9+10)÷9=8(环),甲队员成绩的方差=110×[(6-8)2+3×(7-8)2+2×(8-8)3+3×(9-8)2+(10-8)2]=1.4;乙队员成绩的方差=110×[(6-8)2+2×(7-8)2+4×(8-8)3+2×(9-8)2+(10-8)2]=1.2,综上可知甲、乙的中位数相同,平均数相同,甲的方差大于乙的方差,故选D.【点睛】本题考查了平均数、中位数和方差的定义和公式,熟练掌握平均数、中位数、方差的计算是解题的关键.二、填空题11.已知一组数据:x1,x2,x3,…,x n的平均数是2,方差是3,另一组数据:3x1﹣2,3x2﹣2,…3x n﹣2的方差是__________.27【分析】根据方差的定义得到把数据x1x2x3…xn都扩大3倍则方差扩大3的平方倍然后每个数据减2方差不变于是得到3x1﹣23x2﹣2…3xn﹣2的方差为27【详解】∵x1x2x3…xn的平均数是解析:27【分析】根据方差的定义得到把数据x1,x2,x3,…x n都扩大3倍,则方差扩大3的平方倍,然后每个数据减2,方差不变,于是得到3x1﹣2,3x2﹣2,…3x n﹣2的方差为27.【详解】∵x1,x2,x3,…x n的平均数是2,方差是3,∴3x1,3x2,…3x n的方差=3×32=27,∴3x1﹣2,3x2﹣2,…3x n﹣2的方差为27.故答案为27.【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差;方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.在学校演讲比赛中,10名选手的成绩统计图如图所示,则这10名选手成绩的平均分是____分.885【分析】首先求出10名选手的总成绩再求出平均分即可【详解】解:根据统计图可知这10名选手成绩的平均分为=885(分)故答案为885【点睛】本题主要考查了加权平均数的知识掌握加权平均数的计算公式解析:88.5【分析】首先求出10名选手的总成绩,再求出平均分即可.【详解】解:根据统计图可知,这10名选手成绩的平均分为28018559029510⨯+⨯+⨯+⨯=88.5(分),故答案为88.5.【点睛】本题主要考查了加权平均数的知识,掌握加权平均数的计算公式是解题的关键.13.已知一组数据a ,b ,c 的方差为2,那么数据3a +,3b +,3+c 的方差是________.2【分析】根据方差是用来衡量一组数据波动大小的量每个数都加3所以波动不会变方差不变【详解】解:设abc 的平均数是d 所以方差不变故答案为:2【点睛】本题主要考查了方差的公式解题的关键是当数据都加上一个 解析:2【分析】根据方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:设a 、b 、c 的平均数是d,()222211S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦ , ()222221S =33(33)(33)23a d b d c d ⎡⎤+-+++-+++-+=⎢⎥⎣⎦ , ()222221S =()()23a d b d c d ⎡⎤-+-+-=⎢⎥⎣⎦, 所以方差不变.故答案为:2.【点睛】本题主要考查了方差的公式,解题的关键是当数据都加上一个数时,方差不变. 14.今年某果园随机从甲、乙、丙三个品种的枇杷树中各选了5棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:__.甲【分析】先比较平均数得到甲和乙产量较高然后比较方差得到甲比较稳定【详解】解:因为甲乙的平均数比丙大所以甲乙的产量较高又甲的方差比乙小所以甲的产量比较稳定即从这三个品种中选出一种产量既高又稳定的枇杷 解析:甲【分析】先比较平均数得到甲和乙产量较高,然后比较方差得到甲比较稳定.【详解】解:因为甲、乙的平均数比丙大,所以甲、乙的产量较高,又甲的方差比乙小,所以甲的产量比较稳定,即从这三个品种中选出一种产量既高又稳定的枇杷树进行种植,则应选的品种是甲; 故答案为:甲.本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数.15.若这8个数据-3, 2,-1,0,1,2,3,x的极差是11,则这组数据的平均数是______.15或-05【分析】根据极差的概念求出x的值然后根据平均数的概念求解【详解】一组数据-32-10123x的极差是11当x为最大值时x﹣(﹣3)=11x=8平均数是:;当x是最小值时3﹣x=11解得:解析:1.5或-0.5【分析】根据极差的概念求出x的值,然后根据平均数的概念求解.【详解】一组数据-3, 2,-1,0,1,2,3,x的极差是11,当x为最大值时,x﹣(﹣3)=11,x=8,平均数是:[3+ 2+1+0+1+2+3+8]8 1.5--÷=();当x是最小值时,3﹣x=11,解得:x=﹣8,平均数是:[3+ 2+1+0+1+2+3+(8)]80.5--÷=-()-,故答案为:1.5或-0.5【点睛】本题考查了极差和平均数,掌握平均数是所有数据的和除以数据的个数;极差就是这组数中最大值与最小值的差,是解题的关键16.某班体育委员对本班所有学生一周锻炼时间(单位:小时)进行了统计,绘制了统计图,如图所示,根据统计图提供的信息,下列推断不正确的是__________________①该班学生共有44人;②.该班一周锻炼时间为10小时的学生最多;③该班学生一周锻炼时间的中位数是11;④该班学生一周锻炼的平均时间为910111213115++++=小时.①②④【解析】【分析】根据统计图中的数据可以得到一共多少人然后根据平均数中位数和众数的定义即可求得这组数据的平均数中位数和众数【详解】由统计图可知锻炼9小时的有6人锻炼10小时的有9人锻炼11小时的解析:①②④【解析】根据统计图中的数据可以得到一共多少人,然后根据平均数、中位数和众数的定义即可求得这组数据的平均数、中位数和众数.【详解】由统计图可知锻炼9小时的有6人,锻炼10小时的有9人,锻炼11小时的有10人,锻炼12小时的有8人,锻炼13小时的有7人,故该班学生共有6+9+10+8+7=40人,因此①错误;从统计图可以看出,该班一周锻炼时间为11小时的学生最多,因此②错误;该班学生一周锻炼时间的中位数是11小时,故③正确;该班学生一周锻炼的平均时间为69+910+1110+128+137=11.02540⨯⨯⨯⨯⨯小时,故④错误.故错误的有①②④【点睛】题考查折线统计图、平均数、中位数和众数的定义,解答本题的关键是明确中位数的定义,利用数形结合的思想解答.17.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.55【解析】【分析】根据众数和平均数的定义求解【详解】解:5出现了三次出现次数最多所以这组数据的众数是5这组数据的平均数=(5+45+5+55+55+5+45)=5故答案为:5;5【点睛】本题考查平解析:5 5【解析】【分析】根据众数和平均数的定义求解.【详解】解:5出现了三次,出现次数最多,所以这组数据的众数是5,这组数据的平均数=17(5+4.5+5+5.5+5.5+5+4.5)=5.故答案为:5;5.【点睛】本题考查平均数的求法以及众数的定义:一组数据中出现次数最多的数据叫做众数.18.若5个正整数从小到大排序,其中中位数是4,如果这组数据的唯一众数是5,当这5个正整数的和为最大值时,这组数据的方差为______.136【解析】【分析】根据中位数和众数的意义先求出后三位数由和为最大值求出前两个数然后求方差即可【详解】解:因为五个正整数从小到大排列后其中中位数是4这组数据的唯一众数是5所以这5个数据分别是xy4【解析】【分析】根据中位数和众数的意义先求出后三位数,由和为最大值求出前两个数,然后求方差即可.【详解】解:因为五个正整数从小到大排列后,其中中位数是4,这组数据的唯一众数是5.所以这5个数据分别是x,y,4,5,5,且x y 4<<,当这5个整数的和最大时,整数x,y 取最大值,此时x 2y 3==,, 所以这组数据的平均数()1192345555x =++++=, 22222211919191919S 23455555555⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦=1.36 【点睛】此题考查了中位数、众数的概念,牢记方差公式是解题关键.19.一组数据2、3、5、6、x 的平均数正好也是这组数据的中位数,那么正整数x 为_____.-149【分析】根据平均数的计算公式先表示出这组数据的平均数再根据中位数的定义进行讨论即可得出答案【详解】∵数据2356x 的平均数是=∴当x=-1时这组数据的平均数是3中位数也是3;当x=4时这组数解析:-1、4、9【分析】根据平均数的计算公式先表示出这组数据的平均数,再根据中位数的定义进行讨论,即可得出答案.【详解】∵数据2、3、5、6、x 的平均数是23565x ++++=165x +, ∴当x=-1时,这组数据的平均数是3,中位数也是3;当x=4时,这组数据的平均数是4,中位数也是4;当x=9时,这组数据的平均数是5,中位数也是5;∴x=-1,4或9;故答案为-1,4或9.【点睛】 此题考查了中位数和平均数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.20.现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S <甲乙,则两个队的队员的身高较整齐的是______.甲【解析】【分析】根据方差小的身高稳定判断即可【详解】现有甲乙两个合唱队队员的平均身高均为170cm 方差分别是且则两个队的队员的身高较整齐的是甲故答案为:甲【点睛】此题考查了方差方差是用来衡量一组数解析:甲 【解析】 【分析】根据方差小的身高稳定判断即可. 【详解】现有甲、乙两个合唱队队员的平均身高均为170cm ,方差分别是2S 甲,2S 乙,且22S S 甲乙,则两个队的队员的身高较整齐的是甲, 故答案为:甲 【点睛】此题考查了方差,方差是用来衡量一组数据波动大小的量.三、解答题21.为了了解七年级学生零花钱的使用情况,校团委随机调查了本校七年级部分学生每人一周的零花钱数额,并绘制了如图甲、乙所示的两个统计图(部分未完成),请根据图中信息,回答下列问题:(1)校团委随机调查了多少学生?请你补全条形统计图; (2)表示“50元”的扇形的圆心角是多少度?(3)某地发生自燃灾害后,七年级800名学生每人自发地捐出一周零花钱的一半,以支援灾区恢复生产,请估算七年级学生捐款多少元?解析:(1)40;补图见详解;(2)36°;(3)13200元. 【分析】(1)用捐款40元的人数除以所占百分比即可求出调查的学生数,用调查的学生数乘以15%求出捐款20元的学生数,不去统计图即可;(2)用捐款50元的学生人数除以调查总人次再乘以360°即可求解; (3)计算出本次调查的平均数,再根据题意列式计算即可求解. 【详解】解:(1)10÷25%=40(人), 40×15%=6(人),∴校团委随机调查了40名学生,补全条形统计图如图:(2)表示“50元”的扇形的圆心角为4360=3640⨯︒︒; (3)206302040105041800=13200402⨯+⨯+⨯+⨯⨯⨯(元),答:七年级学生捐款约为13200元. 【点睛】本题考查了条形统计图与扇形统计图,用样本估计总体,加权平均数等知识,根据条形统计图和扇形统计图的关联量求出各组数据是解题关键.22.为了强化暑期安全,在放暑假前夕,某校德育处利用班会课对全校师生进行了一次名为“暑期学生防溺水”的主题教育活动.活动结束后为了解全校各班学生对防溺水知识的掌握程度,德育处对他们进行了相关的知识测试.现从初一、初二两个年级各随机抽取了15名学生的测试成绩,得分用x 表示,共分成4组::6070A x ≤<,:7080B x ≤<,:8090C x ≤<,:90100D x ≤≤,对得分进行整理分析,给出了下面部分信息: 初一的测试成绩在C 组中的数据为:81,85,88.初二的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如下:(2)通过以上数据分析,你认为______(填“初一”或“初二”)学生对暑期防溺水知识的掌握更好?请写出一条理由:________.(3)若初一、初二共有800名学生,请估计此次测试成绩达到90分及以上的学生约有多少人?解析:(1)85,100;(2)初二,在平均数相同时,初二的众数(中位数)更大;(3)320人. 【分析】(1)根据条形图排序中位数在C 组数据为81,85,88.根据中位数定义知中位数位于(15+1)÷2=8位置,第8个数据为85,将初二的测试成绩重复最多是3次的100即可; (2)由平均数相同,从众数和中位数看,初二众数100,中位数86都比初一大即可得出结论;(3)求出初一初二 90分以上占样本的百分比,此次测试成绩达到90分及以上的学生约:总数×样本中90分以上的百分比即可. 【详解】解:(1)A 与B 组共有6个,D 组有6个为此中位数落在C 组,而C 组数据为81,85,88.根据中位数定义知中位数在(15+1)÷2=8位置上, 第8个数据为85, 中位数为85,85a ,观察初二的测试成绩,重复次数最多是3次的100, 为此初二的测试成绩的众数为100,100b =;(2)初二,从众数和中位数看,初二众数100,中位数86都比初一大,在平均数相同时,初二的众数(中位数)更大;说明初二的大部分学生的测试成绩优于初一; (3)初一:90100D x ≤≤,由6人,初二90分以上有6人,初一初二 90分以上占样本的百分比为66100%=40%30+⨯, 此次测试成绩达到90分及以上的学生约:80040%320⨯=, 答:此次测试成绩达到90分及以上的学生约有320人. 【点睛】本题考查中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量,掌握中位数,众数,平均数,利用中位数和众数进行决策,利用样本的百分含量估计总体的数量是解题关键.23.濮阳市团委举办“我的中国梦”为主题的知识竞赛,甲乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分,80分,90分,100分,并根据统计数据绘制了如下不完整的统计图表:乙校成绩统计表分数(分)人数(人)707809011008(1)请你将图②中条形统计图补充完整;(2)图①中,90分所在扇形的圆心角是 °;图③中80分有人.(3)分别求甲、乙两校成绩的平均分;(4)经计算知S2甲=135,S2乙=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.解析:(1)见解析;(2)108,4;(3)甲校85分,乙校85分;(4)见解析【分析】(1)甲校得“90分”的有6人,占调查人数的30%,可求出调查人数,再用总人数减其它分数段的人数,求出得100分的人数,从而补全统计图;(2)用360 乘以得90分的人数所占的百分比求出90分所在扇形的圆心角,用总人数减去乙校其它分数段的人数求出得80分的人数;(3)根据平均数的计算公式求出甲校和乙校的平均成绩;(4)从方差的大小,得出数据的离散程度.【详解】解:(1)甲校参赛的总人数是:630%20÷=(人),100分的人数有:206365---=(人),补全统计图如下:(2)图①中,90分所在扇形的圆心角是:36030%108︒⨯=︒,图③中80分有:207184---=(人),故答案为:108,4;(3)甲校的平均成绩是:1(7068039061005)8520⨯+⨯+⨯+⨯=(分),乙校的平均成绩是:1(7078049011008)8520⨯+⨯+⨯+⨯=(分).(4)甲、乙两校的平均分相同,22135175S S=<=乙甲,∴甲校的成绩离散程度较小,比较稳定.【点睛】此题考查中位数、平均数的意义,条形统计图、扇形统计图的意义,理解各个概念的内涵和外延是正确解答的前提.24.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数113334(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.解析:(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.【分析】(1)根据平均数、中位数、众数的概念以及求解方法分别进行求解即可;(2)分析不低于平均数、中位数、众数的人数,根据题意进行确定即可.【详解】(1)这15名销售人员该月销售量数据的平均数为177048022031803120390415++⨯+⨯+⨯+⨯=278,排序后位于中间位置的数为180,故中位数180, 数据90出现了4次,出现次数最多,故众数为90; (2)中位数最适合作为月销售目标.理由如下:在这15人中,月销售额不低于278(平均数)件的有2人,月销售额不低于180(中位数)件的有8人,月销售额不低于90(众数)件的有15人.所以,如果想让一半左右的营销人员都能够达到月销售目标,(1)中的平均数、中位数、众数中,中位数最适合作为月销售目标. 【点睛】本题考查了平均数、中位数、众数,熟练掌握平均数、中位数、众数的概念,意义以及求解方法是解题的关键.25.如图,在菱形ABCD 中,对角线AC 与BD 交于点O .过点C 作BD 的平行线,过点D 作AC 的平行线,两直线相交于点E . (1)求证:四边形OCED 是矩形;(2)若CE=1,DE=2,ABCD 的面积是 .解析:(1)证明见解析;(2)4. 【解析】【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答. 【详解】(1)∵四边形ABCD 是菱形, ∴AC ⊥BD , ∴∠COD=90°. ∵CE ∥OD ,DE ∥OC , ∴四边形OCED 是平行四边形, 又∠COD=90°,∴平行四边形OCED 是矩形;(2)由(1)知,平行四边形OCED 是矩形,则CE=OD=1,DE=OC=2. ∵四边形ABCD 是菱形, ∴AC=2OC=4,BD=2OD=2, ∴菱形ABCD 的面积为:12AC•BD=12×4×2=4, 故答案为4.【点睛】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.26.今年5月12日是我国第11个全国防灾减灾日,重庆某中学为普及推广全民防灾减灾知识和避灾自救技能,开展了“提高灾害防治能力,构筑生命安全防线”知识竞赛活动.初一、初二年级各500人,为了调查竞赛情况,学校进行了抽样调查,过程如下,请根据表格回答问题. 收集数据:从初一、初二年级各抽取20名同学的测试成绩(单位:分),记录如下:初一:68、79、100、98、98、86、88、99、100、93、90、100、80、76、84、98、99、86、98、90初二:92、89、100、99、98、94、100、62、100、86、75、98、89、100、100、68、79、100、92、89 整理数据: 表一分析数据: 表二得出结论:(1)在表中:m =_______,n =_______,x =_______,y =_______; (2)得分情况较稳定的是___________(填初一或初二);(3)估计该校初一、初二年级学生本次测试成绩中可以得满分的人数共有多少人? 解析:(1)2,5,93,98;(2)初一;(3)225 【分析】(1)根据给出的初一20名同学测试成绩,成绩在7080x ≤<范围内的共有2名,可知m 值,成绩在8090x ≤<范围内的有5名,可得n 值,再根据中位数、众数的定义即可得出x 、y ;(2)判断哪个年级得分情况较稳定,根据方差的意义即可得出答案;(3)先求出各年级满分的人数所占的百分比,用该校各年级的总人数分别乘以得满分的人。

人教版八年级数学下册第二十章数据的分析检测题(附答案)

人教版八年级数学下册第二十章数据的分析检测题(附答案)

第二十章检测题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.李大伯前年在驻村扶贫工作队的帮助下种了一片果林,今年收货一批成熟的果子.他选取了5棵果树,采摘后分别称重.每棵果树果子总质量(单位:kg)分别为:90,100,120,110,80.这五个数据的中位数是CA.120 B.110 C.100 D.902.小明记录了临沂市五月份某周每天的日最高气温(单位:℃),列成如表:天数(天)121 3最高气温(℃)22262829则这周最高气温的平均值是A.26.25 ℃ B.27 ℃ C.28 ℃ D.29 ℃3.从甲、乙、丙、丁四人中选一人参加射击比赛,经过三轮初赛,他们的平均成绩都是9环,方差分别是s甲2=0.25,s乙2=0.3,s丙2=0.4,s丁2=0.35,你认为派谁去参赛更合适AA.甲 B.乙 C.丙 D.丁4.为了解学生课外阅读时间情况,随机收集了30名学生一天课外阅读时间,整理如下表:阅读时间/小时0.5及以下0.70.9 1.1 1.3 1.5及以上人数29654 4 则本次调查中阅读时间的中位数和众数分别是A.0.7和0.7 B.0.9和0.7 C.1和0.7 D.0.9和1.15.某班七个兴趣小组人数如下:5,6,6,x,7,8,9,已知这组数据的平均数是7,则这组数据的中位数是CA.6 B.6.5 C.7 D.86.某企业1-6月份利润的变化情况如图所示,以下说法与图中反映的信息相符的是D A.1-6月份利润的众数是130万元 B.1-6月份利润的中位数是130万元C.1-6月份利润的平均数是130万元 D.1-6月份利润的极差是40万元第6题图第10题图7.在“爱我中华”中学生演讲比赛中,五位评委分别给甲、乙两位选手的评分如下:甲:8,7,9,8,8 ;乙:7,9,6,9,9,则下列说法中错误的是CA .甲、乙得分的平均数都是8B .甲得分的众数是8,乙得分的众数是9C .甲得分的中位数是9,乙得分的中位数是6D .甲得分的方差比乙得分的方差小 8.下列说法中:①样本中的方差越小,波动越小,说明样本稳定性越好;②一组数据的众数只有一个;③一组数据的中位数一定是这组数据中的某一个数据;④数据3,3,3,3,2,5中的众数为4;⑤一组数据的方差一定是正数.其中正确的个数为BA .0B .1C .2D .49.如表记录了两位射击运动员的八次训练成绩:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲 10 7 7 8 8 8 9 7 乙1055899810甲乙甲乙则下列结论正确的是AA .x 甲=x 乙,s 甲2<s 乙2B .x 甲=x 乙,s 甲2>s 乙2C .x 甲>x 乙,s 甲2<s 乙2D .x甲<x 乙,s 甲2<s 乙210.对某校八年级学生随机抽取若干名进行体能测试,成绩记为1分、2分、3分、4分共4个等级,将调查结果绘制成条形统计图和扇形统计图,根据图中信息,这些学生的平均分数是CA .2.25B .2.5C .2.95D .3 二、填空题(每小题3分,共15分)11.某招聘考试分笔试和面试两种,其中笔试按60%,面试按40%计算加权平均数作为总成绩,小王笔试成绩90分,面试成绩85分,那么小王的总成绩是88分.12.样本数据-2,0,3,4,-1的中位数是0.13.甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:班级 参赛人数 平均数 中位数 方差 甲 45 83 86 82 乙458384135②乙班优秀的人数少于甲班优秀的人数(竞赛得分≥85分为优秀);③甲班成绩的波动性比乙班小.上述结论中正确的是①②③.(填写所有正确结论的序号)14.一组数据4,5,6,x 的众数与中位数相等,则这组数据的方差是12.15.一组数据3,4,6,8,x 的中位数是x ,且x 是满足不等式组⎩⎪⎨⎪⎧x -3≥0,5-x >0 的整数,则这组数据的平均数是5.三、解答题(共75分)16.(8分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对三种水果7天的销售量进行了统计,统计结果如图所示:(1)若西瓜、苹果和香蕉的售价分别为6元/千克、8元/千克和3元/千克,则这7天销售额最大的水果品种是A .A .西瓜B .苹果C .香蕉 (2)估计一个月(按30天计算)该水果店可销售苹果多少千克? 解:1407×30=600(千克)17.(9分)在一次男子马拉松长跑比赛中,随机抽得12名选手所用的时间(单位:分钟)得到如下样本数据:140 146 143 175 125 164 134 155 152 168 162 148(1)计算该样本数据的中位数和平均数; (2)如果一名选手的成绩是147分钟,请你依据样本数据的中位数,推断他的成绩如何? 解:(1)中位数为150分钟,平均数为151分钟 (2)由(1)可得,中位数为150,可以估计在这次马拉松比赛中,大约有一半选手的成绩快于150分钟,有一半选手的成绩慢于150分钟,这名选手的成绩为147分钟,快于中位数150分钟,可以推断他的成绩估计比一半以上选手的成绩好18.(9分)某校在招聘教师时以考评成绩确定人选,甲、乙两位高校毕业生的各项考评成绩如下表:考评项目 教学设计课堂教学答辩 成绩(分) 甲 90 85 90 乙809283(1)如果学校将教学设计,课堂教学和答辩按1∶3∶1的比例来计算各人的考评成绩,那么谁会被录用?(2)如果按教学设计占30%,课堂教学占50%,答辩占20%来计算各人的考评成绩,那么又是谁会被录用?解:(1)甲的成绩为87,乙的成绩为87.8,∵87<87.8,∴乙会被录取 (2)甲的成绩为87.5,乙的成绩为86.6,∵87.5>86.6,∴甲会被录取19.(9分)某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:月销售量/件数177048022018012090人数11333 4(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.解:(1)这15名营业员该月销售量数据的平均数=1770+480+220×3+180×3+120×3+90×4=278(件),中位数为180件,∵90出现了4 15次,出现的次数最多,∴众数是90件(2)如果想让一半左右的营业员都能达到销售目标,平均数、中位数、众数中,中位数最适合作为月销售目标;理由如下:因为中位数为180件,即月销售量大于180与小于180的人数一样多,所以中位数最适合作为月销售目标,有一半左右的营业员能达到销售目标20.(9分)甲、乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如下表:甲1102132110乙022031013 1(1)(2)从计算的结果来看,在10天中,哪台机床出次品的平均数较小?哪台机床出次品的波动较小?解:(1)x甲=1.2(个),x乙=1.3(个);s甲2=0.76,s乙2=1.21 (2)由(1)知x甲<x乙,∴甲台机床出次品的平均数较小,由(1)知s甲2<s乙2,∴甲台机床出次品的波动较小21.(10分)为了解学生每天的睡眠情况,某初中学校从全校800名学生中随机抽取了40名学生,调查了他们平均每天的睡眠时间(单位:h),统计结果如下:9,8,10.5,7,9,8,10,9.5,8,9,9.5,7.5,9.5,9,8.5,7.5,10,9.5,8,9,7,9.5,8.5,9,7,9,9,7.5,8.5,8.5,9,8,7.5,9.5,10,9.5,8.5,9,8,9.在对这些数据整理后,绘制了如下的统计图表:睡眠时间分组统计表组别睡眠时间分组人数(频数)17≤t<8m28≤t<9113 9≤t <10 n410≤t <114请根据以上信息,解答下列问题: (1)m =7,n =18,a =17.5%,b =45%;(2)抽取的这40名学生平均每天睡眠时间的中位数落在3组(填组别);(3)如果按照学校要求,学生平均每天的睡眠时间应不少于9 h ,请估计该校学生中睡眠时间符合要求的人数.解:(1)7≤t <8时,频数为m =7;9≤t <10时,频数为n =18;∴a =740×100%=17.5%;b =1840×100%=45%;故答案为:7,18,17.5%,45% (2)由统计表可知,抽取的这40名学生平均每天睡眠时间的中位数为第20个和第21个数据的平均数,∴落在第3组;故答案为:3 (3)该校学生中睡眠时间符合要求的人数为800×18+440=440(人);答:估计该校学生中睡眠时间符合要求的人数为440人22.(10分)网上学习越来越受到学生的喜爱.某校信息小组为了解七年级学生网上学习的情况,从该校七年级随机抽取20名学生,进行了每周网上学习的调查.数据如下(单位:时):3 2.5 0.6 1.5 1 2 2 3.3 2.5 1.8 2.5 2.2 3.54 1.5 2.5 3.1 2.8 3.3 2.4整理上面的数据,得到表格如下:网上学习时间x (时)0<x ≤1 1<x ≤2 2<x ≤3 3<x ≤4 人数2585样本数据的平均数、中位数、众数如下表所示:统计量 平均数 中位数众数数值2.4m n根据以上信息,解答下列问题:(1)上表中的中位数m 的值为2.5,众数n 的值为2.5;(2)用样本中的平均数估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间;(3)已知该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数. 解:(1)从小到大排列为:0.6,1,1.5,1.5,1.8,2,2,2.2,2.4,2.5,2.5,2.5,2.5,2.8,3,3.1,3.3,3.3,3.5,4,∴中位数m 的值为2.5+2.52 =2.5,众数n 为2.5;故答案为:2.5,2.5 (2)2.4×18=43.2(小时),答:估计该校七年级学生平均每人一学期(按18周计算)网上学习的时间为43.2小时 (3)200×1320 =130(人),答:该校七年级学生有200名,估计每周网上学习时间超过2小时的学生人数为130人23.(11分)某校为了解七、八年级学生英语听力训练情况(七、八年级学生人数相同),某周从这两个年级学生中分别随机抽查了30名同学,调查了他们周一至周五的听力训练情况,根据调查情况得到如下统计图表:周一至周五英语听力训练人数统计表年级参加英语听力训练人数周一 周二 周三 周四周五 七年级 15 20 a 30 30 八年级 20 24 26 30 30 合计3544516060(1)填空:a =25;(2)根据上述统计图表完成下表中的相关统计量:年级 平均训练时间的中位数参加英语听力训练人数的方差七年级 24 34 八年级2714.4(3)请你利用上述统计图表对七、八年级英语听力训练情况写出两条合理的评价; (4)请你结合周一至周五英语听力训练人数统计表,估计该校七、八年级共480名学生中周一至周五平均每天有多少人进行英语听力训练.解:(1)由题意得:a =51-26=25;故答案为:25 (2)按照从小到大的顺序排列为:18,25,27,30,30,∴八年级平均训练时间的中位数为:27;故答案为:27 (3)参加训练的学生人数超过一半;从平均训练时间的中位数角度看,八年级英语听力训练的平均训练时间比七年级多 (4)抽查的七、八年级共60名学生中,周一至周五训练人数的平均数为15(35+44+51+60+60)=50,∴该校七、八年级共480名学生中周一至周五平均每天进行英语听力训练的人数为480×5060 =400(人)。

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析

人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共8小题,满分24分,每小题3分)1.比赛中“去掉一个最高分,去掉一个最低分”后,一定不会发生变化的统计量是()A.平均数B.众数C.中位数D.极差2.一组数据5、2、8、2、4,这组数据的中位数和众数分别是()A.2,2B.3,2C.2,4D.4,23.甲、乙、丙、丁四位同学五次数学测验成绩统计如下表,如果从这四位同学中,选出一位同学参加数学竞赛,那么应选()甲乙丙丁平均分90959590方差50425042A.甲B.乙C.丙D.丁4.某班同学抛携实心球的成绩统计表如下,则该成绩的众数是()成绩(分)678910频数16131416 A.10B.16C.9D.145.一组数据40,37,x,64的平均数是53,则x的值是()A.67B.69C.71D.726.甲、乙两人进行射击测试,每人10次射击成绩的平均数均是9.2环,方差分别为:S甲22=0.52,则成绩最稳定的是()=0.58,S乙A.甲B.乙C.甲和乙一样D.无法判定7.在方差计算公式s2=[(x1﹣15)2+(x2﹣15)2+…+(x20﹣15)2]中,可以看出15表示这组数据的()A.众数B.平均数C.中位数D.方差8.某公司计划招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,成绩如表:候选人甲乙丙丁测试成绩(百分制)面试86929083笔试90838392公司决定将面试与笔试成绩按6:4的比例计算个人总分,总分最高者将被录用,则公司将录用()A.甲B.乙C.丙D.丁二、填空题(共7小题,满分28分,每小题4分)9.在统计学中,样本的方差可以近似地反映总体的.(填写“集中趋势”、“波动大小”、“最大值”、“平均值”)10.已知某实验区甲、乙品种水稻的平均产量相等.且甲、乙品种水稻产量的方差分别为S甲2=79.6,S乙2=68.5.由此可知:在该地区种水稻更具有推广价值.11.已知一组数据2,2,8,x,7,4的中位数为5,则x的值是.12.一组数据3,5,3,x的众数只有一个,则x的值不能为.13.已知一组数据从小到大排列为:﹣1,0,4,x,6,15,且这组数据的中位数是5,那么这组数据的众数是.14.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.15.小华统计了自己过去五个学期期末考试数学成绩,分别为87,84,90,89,95,这组数据的方差分别为.三、解答题(共6小题,满分48分)16.(6分)甲、乙两人在5次打靶测试中命中的环数如下:甲:8,8,7,8,9乙:5,9,7,10,9(1)填写下表:平均数众数中位数方差甲880.4乙9 3.2(2)教练根据这5次成绩,选择甲参加射击比赛,教练的理由是什么?(3)如果乙再射击1次,命中8环,那么乙的射击成绩的方差.(填“变大”、“变小”或“不变”).17.(6分)从甲、乙两种农作物中各抽取10株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、11、12、7、13、10、8、12、8;乙:8、13、12、11、10、12、7、7、9、11;问:(1)哪种农作物的苗长得比较高?(2)哪种农作物的苗长得比较整齐?18.(6分)某社区准备在甲、乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩计算了甲成绩的平均数和方差(见小宇的作业).第1次第2次第3次第4次第5次甲成绩94746乙成绩757a7;(1)求a和乙的方差S乙(2)请你从平均数和方差的角度分析,谁将被选中.19.(10分)至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?20.(10分)促进青少年健康成长是实施“健康中国”战略的重要内容.为了引导学生积极参与体育运动,某校举办了一分钟跳绳比赛,据统计,所有学生一分钟的跳绳数不少于100次,现随机抽取了部分学生一分钟跳绳的次数进行调查统计,并根据成绩分布情况,将抽取的全部成绩分成A、B、C、D四组,并绘制了如下统计图表:等级次数频数A100≤x<1204B120≤x<14012C140≤x<16014D x≥160m请结合上述信息完成下列问题:(1)m=,n=;(2)上述样本数据的中位数落在组;(3)若A组学生一分钟跳绳的平均次数为110次,B组学生一分钟跳绳的平均次数为130次,C组学生一分钟跳绳的平均次数为150次,D组学生一分钟跳绳的平均次数为190次,请你估计该校学生一分钟跳绳的平均次数是多少?21.(10分)表格是小明一学期数学成绩的记录,根据表格提供的信息回答下面的问题.考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩889290869096(1)小明6次成绩的众数是分;中位数是分;(2)计算小明平时成绩的方差;(3)按照学校规定,本学期的综合成绩的权重如图所示,请你求出小明本学期的综合成绩,要写出解题过程.(注意:①平时成绩用四次成绩的平均数;②每次考试满分都是100分).参考答案一、选择题(共8小题,满分24分,每小题3分)1.C2.D3.B4.A5.C6.B7.B8.B二、填空题(共7小题,满分28分,每小题4分)9.波动大小.10.乙11.5.5.12.5.13.6.14.4.15.13.2.三、解答题(共6小题,满分48分)16.解:(1)∵8出现了3次,出现的次数最多,∴甲的众数为8,乙的平均数=(5+9+7+10+9)=8,把这些数从小到大排列,则乙的中位数为9.故填表如下:平均数众数中位数方差甲8880.4乙899 3.2故答案为:8,8,9;(2)因为他们的平均数相等,而甲的方差小,发挥比较稳定,所以选择甲参加射击比赛;(3)如果乙再射击1次,命中8环,平均数不变,根据方差公式可得乙的射击成绩的方差变小;故答案为:变小.17.解:(1)=(9+10+11+12+7+13+10+8+12+8)=10cm,=(8+13+12+11+10+12+7+7+9+11)=10cm.可见,两种农作物一样高均为10cm;2=[(9﹣10)2+(10﹣10)2+(11﹣10)2+(12﹣10)2+(7﹣10)2+(13(2)∵S甲﹣10)2+(10﹣10)2+(8﹣10)2+(12﹣10)2+(8﹣10)2]=3.6cm2;S乙2=[(8﹣10)2+(13﹣10)2+(12﹣10)2+(11﹣10)2+(10﹣10)2+(12﹣10)2+(7﹣10)2+(7﹣10)2+(9﹣10)2+(11﹣10)2]=4.2cm2.∴甲的方差为3.6cm2,乙的方差为4.2cm2.所以甲更整齐.18.解:(1)∵乙=,∴a=4,S乙==1.6;(2)因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中.19.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.20.解:(1)调查总人数为:4÷10%=40(人),∴m=40﹣4﹣12﹣14=10(人),n=1﹣10%﹣25%﹣35%=30%,故答案为:10;30%;(2)由题意可知,样本数据的中位数落在C组,故答案为:C;(3)×(4×110+12×130+14×150+10×190)=×6000=150(次),答:估计该校学生一分钟跳绳的平均次数是150次.21.解:(1)∵90出现了2次,其余分数只有1次,∴6次成绩的众数为90分;排列如下:86,88,90,90,92,96,∵(90+90)÷2=90,∴6次成绩的中位数为90分;故答案为:90,90;(2)∵=(86+88+90+92)=89(分),∴S2=[(86﹣89)2+(88﹣89)2+(90﹣89)2+(92﹣89)2]=×(9+1+1+9)=5(分2);(3)根据题意得:89×10%+90×30%+96×60%=8.9+27+57.6=93.5(分),则小明本学期的综合成绩为93.5分.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第20章数据的分析单元检测姓名:__________班级:__________考号:__________一.选择题(本大题共12小题,每小题4分,共48分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.将一组数据中的每一个数减去40后,所得新的一组数据的平均数是2,则原来那组数据的平均数是()A.40 B.42 C.38 D.22.有8个数的平均数是11,另外有12个数的平均数是12,这20个数的平均数是()A.11.6 B.2.32 C.23.2 D.11.53.已知数据:2,1,4,6,9,8,6,1,则这组数据的中位数是()A.4 B.6 C.5 D.4和64.在某次数学测验中,随机抽取了10份试卷,其成绩如下:72,77,79,81,81,81,83,83,85,89,则这组数据的众数、中位数分别为()A.81,82 B.83,81 C.81,81 D.83,825.2012年4月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,33,30,33,31,则下列表述错误的是()A.众数是31 B.中位数是30 C.平均数是32 D.极差是56.在一次射击训练中,甲、乙两人各射击10次,两人10次射击成绩的平均数均是9.1环,方差分别是S甲2=1.2,S乙2=1.6,则关于甲、乙两人在这次射击训练中成绩稳定的描述正确的是()A.甲比乙稳定B.乙比甲稳定 C.甲和乙一样稳定D.甲、乙稳定性没法对比7.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A.众数 B.平均数 C.中位数 D.方差8.调查某一路口某时段的汽车流量,记录了30天同一时段通过该路口的汽车辆数,其中有2天是256辆,2天是285辆,23天是899辆,3天是447辆.那么这30天在该时段通过该路口的汽车平均辆数为()A .125辆B .320辆C .770辆D .900辆9.济南园博园对2016年国庆黄金周七天假期的游客人数进行了统计,如表:其中平均数和中位数分别是( )A .2和2.2B .2和2C .1.5和2.2D .2.2和3.8 10.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是( ) A .中位数是4,平均数是3.75 B .众数是4,平均数是3.75 C .中位数是4,平均数是3.8 D .众数是2,平均数是3.811.在一次设计比赛中,小军10次射击的成绩是:6环1次,7环3次,8环2次,9环3次,10环1次,关于他的射击成绩,下列说法正确的是( )A .极差是2环B .中位数是8环C .众数是9环D .平均数是9环 12.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示. 根据以上图表信息,参赛选手应选( )A .甲B .乙C .丙D .丁二.填空题(本大题共6小题,每小题4分,共24分)13.某电视台举办青年歌手演唱大赛,7位评委给1号选手的评分如下:9.3 8.9 9.2 9.5 9.2 9.7 9.4按规定,去掉一个最高分和一个最低分后,将其余得分的平均数作为选手的最后得分.那么,1号选手的最后得分是分.14.老师在计算学期总平均分的时候按照如下标准:作业占10%,测验占30%,期中考试占25%,期末考试占35%.小丽和小明的成绩如下表所示,则小丽的总平均分是,小明的总平均分是.15.五名学生的数学成绩如下:78、79、80、82、82,则这组数据的中位数是.16.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数是.17.已知一组数据1,,x,,﹣1的平均数为1,则这组数据的极差是.18.如图是一次射击训练中甲、乙两人的10次射击成绩的分布情况,则射击成绩的方差较小的是(填“甲”或“乙”).三.解答题(共8小题)19.已知数x1,x2,…x n的平均数是,求(x1﹣)+(x2﹣)+…(x n﹣)20.在某一中学田径运动会上,参加男子跳高的17名运动员的成绩如表所示:分别求这些运动员成绩的中位数和平均数(结果保留到小数点后第2位).21.某公司招聘一名员工,对甲、乙、丙三名应聘者进行三项素质测试,各项测试成绩如下表:(1)如果根据三项成绩的平均分确定录用人选,那么应该选谁?为什么?(2)根据实际需要,公司将创新、综合知识和语言三项得分按3:2:1的比例确定最终人选,那么如何确定人选?为什么?22.公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:(1)求这15位营销人员销售量的平均数、中位数、众数(直接写出结果,不要求过程);(2)假设销售部把每位销售人员的月销售定额规定为320件,你认为是否合理,为什么?如果不合理,请你从表中选一个较合理的销售定额,并说明理由.23.现有甲、乙两家农副产品加工厂到快餐公司推销鸡腿,两家鸡腿的价格相同,品质相近.快餐公司决定通过检查鸡腿的质量来确定选购哪家的鸡腿.检查人员从两家的鸡腿中各随机抽取15个,记录它们的质量(单位:g)如表所示.根据表中数据,回答下列问题:(1)甲厂抽取质量的中位数是g;乙厂抽取质量的众数是g.(2)如果快餐公司决定从平均数和方差两方面考虑选购,现已知抽取乙厂的样本平均数乙=75,方差≈1.73.请你帮助计算出抽取甲厂的样本平均数及方差(结果保留小数点后两位),并指出快餐公司应选购哪家加工厂的鸡腿?24.在八次数学测试中,甲、乙两人的成绩如下:甲:89,93,88,91,94,90,88,87 乙:92,90,85,93,95,86,87,92 请你从下列角度比较两人成绩的情况,并说明理由:(1)分别计算两人的极差;并说明谁的成绩变化范围大;(2)根据平均数来判断两人的成绩谁优谁次;(3)根据众数来判断两人的成绩谁优谁次;(4)根据中位数来判断两人的成绩谁优谁次;(5)根据方差来判断两人的成绩谁更稳定.25.城东中学七年级举行跳绳比赛,要求与每班选出5名学生参加,在规定时间每人跳绳不低于150次为优秀,冠、亚军在甲、乙两班中产生,如表是这两个班的5名学生的比赛数据(单位:次)根据以上信息,解答下列问题:(1)写出表中a的值和甲、乙两班的优秀率;(2)写出两班比赛数据的中位数;(3)你认为冠军奖应发给那个班?简要说明理由.26.某地区在一次九年级数学做了检测中,有一道满分8分的解答题,按评分标准,所有考生的得分只有四种:0分,3分,5分,8分.老师为了了解学生的得分情况与题目的难易情况,从全区4500名考生的试卷中随机抽取一部分,通过分析与整理,绘制了如下两幅图不完整的统计图.请根据以上信息解答下列问题:(1)填空:a= ,b= ,并把条形统计图补全;(2)请估计该地区此题得满分(即8分)的学生人数;(3)已知难度系数的计算公式为L=,其中L为难度系数,X为样本平均得分,W为试题满分值.一般来说,根据试题的难度系数可将试题分为以下三类:当0<L≤0.4时,此题为难题;当0.4<L≤0.7时,此题为中等难度试题;当0.7<L<1时,此题为容易题.试问此题对于该地区的九年级学生来说属于哪一类?参考答案与试题解析一.选择题1.分析:根据所有数据均减去40后平均数也减去40,从而得出答案.解:一组数据中的每一个数减去40后的平均数是2,则原数据的平均数是42;故选B.2.分析:根据平均数的公式求解即可,8个数的和加12个数的和除以20即可.解:根据平均数的求法:共(8+12)=20个数,这些数之和为8×11+12×12=232,故这些数的平均数是=11.6.故选A.3.分析:要求中位数,是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可,本题是最中间的两个数的平均数.解:从小到大排列此数据为:1、1、2、4、6、6、8、9,第4位和第5位分别是4和6,平均数是5,则这组数据的中位数是5.故选C.4.分析:根据众数与中位数的定义分别进行解答即可.解:∵81出现了3次,出现的次数最多,∴这组数据的众数是81,把这组数据从小到大排列为72,77,79,81,81,81,83,83,85,89,最中间两个数的平均数是:(81+81)÷2=81,则这组数据的中位数是81;故选C.5.分析:分别计算该组数据的众数、中位数、平均数及极差后即可作出正确的判断.解:数据31出现了3次,最多,众数为31,故A不符合要求;按从小到大排序后为:30、31、31、31、33、33、35,位于中间位置的数是31,故B符合要求;平均数为(30+31+31+31+33+33+35)÷7=32,故C不符合要求;极差为35﹣30=5,故D不符合要求.故选B.6.分析:根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.解:∵S甲2=1.2,S乙2=1.6,∴S甲2<S乙2,∴甲、乙两人在这次射击训练中成绩稳定的是甲,∴甲比乙稳定;故选A.7.分析: 9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.解:由于总共有9个人,且他们的分数互不相同,第5名的成绩是中位数,要判断是否进入前5名,故应知道自已的成绩和中位数.故选C.8.分析:根据加权平均数的求法可以求得这30天在该时段通过该路口的汽车平均辆数,本题得以解决.解:由题意可得,这30天在该时段通过该路口的汽车平均辆数是:=770,故选C.9.分析:根据平均数和中位数的定义解答可得.解:平均数为=2,数据重新排列为:0.6、1.5、1.5、2.2、2.2、2.2、3.8,∴中位数为2.2,故选:A.10.分析:根据众数、平均数和中位数的概念求解.解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选C.11.分析:根据极差、中位数、众数和加权平均数的定义计算可得.解:根据射击成绩知极差是10﹣6=4环,故A错误;中位数是=8环,故B正确;众数是9环,故C错误;平均数为=8环,故D错误;故选:B.12.分析:根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可.解:由图可知丁射击10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为:×(8+8+9+7+8+8+9+7+8+8)=8,丁的成绩的方差为:×[(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2]=0.4,∵丁的成绩的方差最小,∴丁的成绩最稳定,∴参赛选手应选丁,故选:D.二.填空题(共6小题)13.分析:只要运用求平均数公式即可求出,为简单题.解:1号选手(9.3+9.2+9.5+9.2+9.4)÷5=9.32分.故答案为:9.32.14.分析:把不同的成绩分别乘以对应的权重后求和再除以权的和即可.解:小丽:80×10%+75×30%+71×25%+88×35%=79.05(分),小明:76×10%+80×30%+68×25%+90×35%=80.1(分),故答案为:79.05 80.1.15.分析:将这组数据从小到大的顺序排列后,处于中间位置的那个数是80,那么由中位数的定义可知,这组数据的中位数是80.解:将这组数据从小到大排列,中间的数为80,所以中位数是80.故答案为:80.16.分析:读懂统计图,利用众数的定义即可得出答案.解:一名射击运动员连续打靶8次,其中有3次为8环,所以数据的众数是8,故答案为:8.17.分析:根据平均数的定义求出x的值,再根据极差的定义解答.解:根据题意得出:1++x+()﹣1=5×1,解得:x=3,则这组数据的极差=3﹣(﹣1)=4.故答案为:4.18.分析:从一次射击训练中甲、乙两人的10次射击成绩的分布情况得出甲乙的射击成绩,再利用方差的公式计算.解:由图中知,甲的成绩为7,8,8,9,8,9,9,8,7,7,乙的成绩为6,8,8,9,8,10,9,8,6,7,=(7+8+8+9+8+9+9+8+7+7)÷10=8,=(6+8+8+9+8+10+9+8+6+7)÷10=7.9,甲的方差S甲2=[3×(7﹣8)2+4×(8﹣8)2+3×(9﹣8)2]÷10=0.6,乙的方差S乙2=[2×(6﹣7.9)2+4×(8﹣7.9)2+2×(9﹣7.9)2+(10﹣7.9)2+(7﹣7.9)2]÷10=1.49,则S2甲<S2乙,即射击成绩的方差较小的是甲.故答案为:甲.三.解答题(共8小题,共78分)19.分析:首先根据数x1,x2,…x n的平均数是,得到x1+x2+…+x n=n,最后代入(x1﹣)+(x2﹣)+…(x n﹣)即可求解.解:∵数x1,x2,…x n的平均数是,∴x1+x2+…+x n=n,∴(x1﹣)+(x2﹣)+…(x n﹣)=x1+x2+…+x n﹣n=n﹣n=0.20.分析:求中位数时,要先看相关数据的总数是奇数还是偶数,本题中人数的总个数是17人,奇数,因此应该看从小到大排列后第9名运动员的成绩是多少,即为所求;要求平均数只要求出数据之和再除以总个数即可.解:本题中人数的总个数是17人,奇数,从小到大排列后第9名运动员的成绩是1.70(米);平均数是:(1.50×2+1.60×3+1.65×2+1.70×3+1.75×4+1.80+1.85+1.90)÷17=(3+4.8+3.3+5.1+7+1.8+1.85+1.9)÷17=28.75÷17≈1.69(米),答:这些运动员成绩的中位数是1.70米,平均数大约是1.69米.21.分析:(1)代入求平均数公式即可求出三人的平均成绩,比较得出结果;(2)将三人的总成绩按比例求出测试成绩,比较得出结果.解:(1)x甲=(8+5+9)÷3=,x乙=(9+7+5)÷3=7,x丙=(7+7+7)÷3=7.甲将被录用;(2)解:甲成绩=(8×3+5×2+9×1)÷6≈7.17,乙成绩=(9×3+7×2+5×1)÷6≈7.67,丙成绩=(7×3+7×2+7×1)÷6≈7,乙将被录取.22.分析:(1)分别利用加权平均数计算其平均数,15人中的第8人的销售量为这组数据的中位数,销售210件的人数最多,据此可以找到众数;(2)当数据差距比较大的时候,不能采用平均数来作为销售定额,而采用中位数或众数.解:(1)平均数是320.中位数是210.众数是210.(2)不合理.因为15人中有13人销售额达不到320,销售额定为210较合适,因为210是众数也是中位数.…(5分)23.分析:(1)利用中位数及众数的定义直接回答即可;(2)计算甲的方差和平均数,然后比较方差及平均数,平均数相等方差较小的将被录用.解:(1)75;75.(2)解:=(73×2+74×4+75×4+76×3+77+78)÷15=75,=≈1.87,∵=,>∴两家加工厂的鸡腿质量大致相等,但乙加工厂的鸡腿质量更稳定.因此快餐公司应该选购乙加工厂生产的鸡腿.24.分析:(1)分别求得两人的极差,极差大的变化范围大;(2)分别求得两人的平均数,平均数大的优秀;(3)分别求得两人众数,众数大的优秀;(4)分别求得两人的中位数,中位数大的优秀;(5)分别求得两人的方差,极差大的变化范围大;解:(1)甲的极差为:94﹣87=7分乙的极差为:95﹣85=10∴乙的变化范围大;∴乙的变化范围大.89,93,88,91,94,90,88,87 乙:92,90,85,93,95,86,87,92(2)甲的平均数为:(89+93+88+91+94+90+88+87)÷8=90,乙的平均数为:(92+90+85+93+95+86+87+92)÷8=90,∴两人的成绩相当;(3)甲的众数为88,乙的众数为92,∴从众数的角度看乙的成绩稍好;(4)甲的中位数为:89.5,乙的中位数为91,∴从中位数的角度看乙的成绩稍好;(5)甲的方差为:【(89﹣90)2+(93﹣90)2+(88﹣90)2+(91﹣90)2+(94﹣90)2+(90﹣90)2+(88﹣90)2+(87﹣90)2】=5.5乙的方差为:【(92﹣90)2+(90﹣90)2+(85﹣90)2+(93﹣90)2+(95﹣90)2+(86﹣90)2+(87﹣90)2+(92﹣90)2】=10.375∴甲的成绩更稳定.25.分析:(1)根据平均数的计算公式求出a,计算出各自的优秀率;(2)根据中位数的定义求出各自的中位数即可;(3)根据以上计算和方差的性质解答即可.解:(1)a=(139+150+145+169+147)÷5=150,甲的优秀率为:3÷5×100%=60%,乙的优秀率为:2÷5×100%=40%;(2)甲的中位数是150,乙的中位数是147;(3)冠军奖应发给甲班,因为甲的优秀率高于乙,说明甲的优秀人数多,甲的中位数大于乙的中位数,说明甲的一般水平高,甲的方差小于乙的方差,说明甲比较稳定.26.分析:(1)根据条形统计图和扇形统计图可以得到a和b的值,从而可以得到得3分的人数将条形统计图补充完整;(2)根据第(1)问可以估计该地区此题得满分(即8分)的学生人数;(3)根据题意可以算出L的值,从而可以判断试题的难度系数.解:(1)由条形统计图可知0分的同学有24人,由扇形统计图可知,0分的同学占10%,∴抽取的总人数是:24÷10%=240,故得3分的学生数是;240﹣24﹣108﹣48=60,∴a%=,b%=,故答案为:25,20;补全的条形统计图如右图所示,(2)由(1)可得,得满分的占20%,∴该地区此题得满分(即8分)的学生人数是:4500×20%=900人,即该地区此题得满分(即8分)的学生数900人;(3)由题意可得,L===0.575,∵0.575处于0.4<L≤0.7之间,∴题对于该地区的九年级学生来说属于中等难度试题.。

相关文档
最新文档