2018年上海高考模拟卷数学试题(含答案)
【高考】2018年上海市高考数学试题有答案
2018年高考数学真题试卷(上海卷)一、填空题1.(2018•上海)行列式4125的值为 。
【答案】18 【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 2.(2018•上海)双曲线2214x y -=的渐近线方程为 。
【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。
故渐近线方程为12y x =± 【分析】渐近线方程公式。
注意易错点焦点在x 轴上,渐近线直线方程为22221x y b a -=时,by x a=±。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示) 【答案】21【解析】【解答】(1+x )7中有T r+1=7r r C x ,故当r=2时,27C =762⨯=21 【分析】注意二项式系数,与各项系数之间差别。
考点公式()na b +第r+1项为T r+1=r n r rn C a b-。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。
【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7. 【分析】原函数()f x 与反函数图像关于y=x 对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
(完整版)2018年上海高考数学试卷(参考答案)
2018年普通高等学校招生全国统一考试上海 数学试卷一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)1.行列式4125的值为_________.2.双曲线2214x y -=的渐近线方程为_________. 3.在7(1)x +的二项展开式中,2x 项的系数为_________.(结果用数值表示) 4.设常数a R ∈,函数2()log ()f x x a =+。
若()f x 的反函数的图像经过点(3,1),则a =_________.5.已知复数z 满足(1)17i z i +=-(i 是虚数单位),则z =_________.6.记等差数列{}n a 的前n 项和为n S ,若30a =,6714a a +=,则7S =_________.7.已知12,1,,1,2,32α⎧⎫∈---⎨⎬⎩⎭。
若幂函数()f x x α=为奇函数,且在(0,)+∞上递减,则 α=_________.8.在平面直角坐标系中,已知点(1,0)A -,(2,0)B ,E 、F 是y 轴上的两个动点,且2EF =u u u r,则AE BF ⋅u u u r u u u r的最小值为_________.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个。
从中随机选取三个,则这三个砝码的总质量为9克的概率是_________.(结果用最简分数表示)10.设等比数列{}n a 的通项公式为1n n a q-=(*n ∈N ),前n 项和为n S 。
若11lim2n n n S a →+∞+=,则q =_________.11.已知常数0a >,函数2()2x x f x ax =+的图像经过点6,5P p ⎛⎫ ⎪⎝⎭、1,5Q q ⎛⎫- ⎪⎝⎭。
若236p q pq +=,则a =_________.12.已知实数1x 、2x 、1y 、2y 满足:22111x y +=,22221x y +=,121212x x y y +=,则的最大值为_________.二、选择题(本大题共有4题,满分20分,每题5分)13.设P 是椭圆22153x y +=上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A) (B) (C) (D) 14.已知a ∈R ,则“1a >”是“11a<”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马。
2018年上海高考数学真题和答案
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果。
1.(4分)(2018•上海)行列式的值为18 .【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018•上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018•上海)在(1+x)7的二项展开式中,x2项的系数为21 (结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=•x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)(2018•上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a= 7 .【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018•上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5 .【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018•上海)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7= 14 .【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018•上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f (x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1 .【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018•上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3 .【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018•上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018•上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n项和为S n.若=,则q= 3 .【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018•上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a= 6 .【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018•上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项。
2018年上海高考模拟卷数学试题
2018年高考数学模拟卷2018.05一. 填空题 1. 若(1)3lim42n a n n →∞+-=+,则常数a =2. 椭圆224312x y +=的焦距为3. 若复数z 满足(34)43i z i -=+,则z z⋅=4. 如图,正四棱锥P-ABCD 中所有棱长均相等,则侧棱与 底面所成角的大小为5. 已知函数()y f x =和函数2log (1)y x =+的图像关于直 线0x y -=对称,则函数()y f x =的解析式为6.满足sin 0cos x x =的实数x 的取值集合是 7. 某学生参加2门选修课的考试.假设该学生第一门、第二门课程取得A 的概率依次为45、35,且不同课程是否取得A 相互独立.则该生只取得一门课程A 的概率为 8. 若z 为复数,则方程2z z =的解集为9. 已知4024012341(32)x a a x a x a x +=++++L ,若数列1a 、2a 、…、k a (141,)k k ≤≤∈N 是一个单调递增数列,则k 的最大值为10.有一圆锥,底面和顶点均在一个半径为5的球面上,且圆锥底面经过球面上直线距离为6 的两点,则该圆锥体积的最小值为11. 若点P 在△ABC 的边界和内部运动,且AP xAB yAC =+u u u r u u u r u u u r.另有0a ≥,0b ≥,且恒有1ax by +≤,则以a 、b 为坐标的点所形成的平面区域的面积为12. 在投票评选活动中,经常采用简单多数原则或积分原则. 简单多数原则指n 个评委对k 个候选人进行一次表决,各自 选出认为最佳的人选,按每个候选人所得票数不同决定不同 名次;积分原则指每个评委先对k 个候选人排定顺序,第一 名得k 分,第二名得1k -分…,依此类推,最后一名得1分, 每个候选人最后的积分多少决定各自名次. 右表是33个评委 对A 、B 、C 、D 四名候选人做出的选择,则按不同原则评选, 名次不相同的候选人是(,)P ab二. 选择题13. 下列对函数3()3x f x x =+性质判断正确的是( ) A. ()f x 是奇函数 B. ()f x 是偶函数 C. ()f x 是增函数 D. ()f x 是减函数14. 已知α:区间[,]a b 内恰含两个整数. 则以下结论正确的是( ) A. “1b a -≥”是α成立的充分条件 B. “1b a -≥”是α成立的必要条件 C. “2b a -≤”是α成立的充分条件 D. “2b a -≤”是α成立的必要条件15. 若实数a 、b 、c 同时满足:① 22a b >;② 1ac a c +<+;③ log b a c >. 则a 、b 、c 的大小关系是( ) A. b a c >> B. c b a >> C. c a b >> D. a b c >>16. 如果一个几何体绕着一条直线旋转θ角与原几何体重合,其中0180θ︒︒<≤,称该直线 为该几何体的一条旋转轴. 正四面体的不同旋转轴有( )条 A. 3 B. 4 C. 6 D. 7三. 解答题17. 如图,P A ⊥平面ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动.(1)求三棱锥E -P AD 的体积;(2)证明:无论点E 在边BC 的何处,都有AF ⊥PE .18. 已知函数1()log 1axf x x+=-(0,1)a a >≠. (1)判断并证明函数()f x 的奇偶性;(2)若2(1)(2)0f t t f t --+-<,求实数的取值范围.19. 如图,直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中AB BE <,设AO B θ∠=. (1)将十字形的面积S 表示为θ的函数;(2)求十字形的面积S 的最大值,并求相应θ的值.t20. 已知曲线:(,)0F x y Γ=,对坐标平面上任意一点(,)P x y ,定义[](,)F P F x y =. 若两点P 、Q ,满足[][]0F P F Q ⋅>,称点P 、Q 在曲线Γ同侧;若[][]0F P F Q ⋅<,称点P 、Q 在曲线Γ两侧.(1)直线l 过原点,线段AB 上所有点都在直线l 同侧,其中(1,1)A -、(2,3)B ,求直线l 的倾斜角的取值范围;(2)已知曲线(,)(345)0F x y x y =+-=,O 为坐标原点,求点集{|[][]0}S P F P F O =⋅>的面积;(3)记到点(0,1)与到x 轴距离和为5的点的轨迹为曲线C ,曲线22:(,)0F x y x y y a Γ=+--=,若曲线C 上总存在两点M 、N 在曲线Γ两侧, 求曲线C 的方程与实数a 的取值范围.21. 已知数列{}n a ,11a =,{}n a 的前n 项和为n S . (1)若12n n a a +-=,n ∈*N ,求证:22111111n n n n a a a a -+-++>+,其中3n ≥,n ∈*N ; (2)若对任意n ∈*N 均有131n n a a +=-,求{}n S 的通项公式; (3)若对任意n ∈*N 均有11nn n a a a +=+,求证:234n n S S -<.参考答案一.填空题1. 32. 23. 14.4π5. 21,x y x R =-∈6. {|,}3x x k k Z =+∈ππ7.1125 8. 11{0,1,,}22-- 9. 17 10. 3π 11. 1 12. A 、C二.选择题 13.C14.B15.D16.D三.解答题 17、(1)1133P ADE ADE V PA S -∆=⋅⋅= …… 6分(2)只需证明AF PBC ⊥面因为PA ABCD ⊥面,故PA BC ⊥,又BC AB ⊥, 故BC AB ⊥面P ,所以BC AF ⊥;……10分 PAB ∆中,PA AB =,点F 是PB 的中点,故AF PB ⊥……12分 所以,AF PBC ⊥面,故无论点E 在边BC 的何处,都有AF PE ⊥.……14分(用向量证明类似评分)18. 【解】(1)10(1,1)1xD x+>⇒=--关于原点对称; …… 2分任意取(1,1)x ∈-,11()log log ()11aa x xf x f x x x-+-==-=-+-, 故函数()f x 是奇函数.…… 6分(2)因为(1,1)x ∈-时,12111x x x+=-+--单调递增 故1a >时,()f x 单调递增;01a <<时,()f x 单调递减.…… 8分因为()f x 是奇函数,故22(1)(2)0(1)(2)f t t f t f t t f t --+-<⇔--<- ……10分当1a >时,21121t t t -<--<-<得(1t ∈;……12分当01a <<时,21211tt t -<-<--<得t ∈;……14分19.(1)由题意,sin ,cos 22AB BE θθ==,又AB BE <,故(0,)2πθ∈ ……3分 故22sincos sin ,(0,)2222S θθθπ=-θ∈……7分(2) 21cos 12sincos sin sin )22222S θθθ-θ=-=θ-=θ+ϕ- ……10分其中1arctan2ϕ=,当arctan 2θ=时,max S =……14分20. (1)显然直线l 斜率存在,设方程为(,)0y kx F x y kx y =⇒=-= 则3[][](1)(23)012F A F B k k k ⋅=--->⇒-<< ……2分 故倾斜角的范围是33[0,arctan )(,)24π⋃π……4分(2)因为[]0[](345)0F O F P x y <⇒=+-<故2234504x y x y +-<⎧⎨+<⎩,点集S 为圆224x y +=在直线3450x y +-=下方内部.……6分设直线和圆的交点为A 、B ,则O 到AB 的距离为1,故23AOB π∠=故所求面积为221418222323ππ⋅⋅+=……9分(3)设曲线C 上的动点为(,)x y ,||5y =,化简得曲线C 的方程为28(3)(03)x y y =-≤≤和212(2)(20)x y y =+-≤≤,其轨迹为两段抛物线弧……12分【方法一】2222110()24x y y a x y a +--=⇒+-=+而曲线C 上的点到1(0,)2的距离的范围是5[2,……14分故56242a <⇒<<……16分【方法二】当03y ≤≤时,2(,)924[6,24]F x y y y a a a =-+-∈--; 当20y -≤≤时,2(,)1124[6,24]F x y y y a a a =++-∈--; ……14分 故若有[][]0F M F N ⋅<,则(6)(24)0624a a a --<⇒<<. ……16分 21.(1) {}n a 为等差数列,21n a n =-……2分于是,22111111111125232321n n n n a a a a n n n n -+-++>+⇔+>+-+-+ 224242448443(25)(23)(23)(21)n n n n n n n n n n --⇔>⇔--<---+-+成立故原不等式成立. ……4分(2) 1111313()22n n n n a a a a ++=-⇒-=-,11122a -=所以12n a ⎧⎫-⎨⎬⎩⎭是首项为12,公比为3的等比数列.……7分故1312n n a -+=,……8分131312()224n n n n S n --+=+=.……10分(3) 111111n n n n na a a a a ++=⇒=++, 即1n a ⎧⎫⎨⎬⎩⎭是首项为1,公差为1的等差数列, 故11n n n a a n=⇒=. 记2111122n n n T S S n n n=-=+++++ . ……14分 由(1)知,11112112n k n k n n+≤++-++……16分故11111313()12221242(1)4n n T n n n n n n =+++≤+=-<++++ . ……18分2018高考数学模拟卷201805双向细目表。
2018年上海市杨浦区高考高三数学一模试卷及解析
2018年上海市杨浦区高考数学一模试卷一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=.3.(4分)已知,则=.4.(4分)若行列式,则x=.5.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y =.6.(4分)在的二项展开式中,常数项等于.7.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=.9.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f(x +α)为奇函数,则α的值为.12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是()A. B.2 C.4 D.8三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P 是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO 与PA 所成角的大小.(结果用反三角函数值表示)19.(14分)已知函数的定义域为集合A,集合B =(a,a +1),且B ⊆A.(1)求实数a 的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.20.(16分)设直线l 与抛物线Ω:y 2=4x 相交于不同两点A 、B,O 为坐标原点. (1)求抛物线Ω的焦点到准线的距离;(2)若直线l 又与圆C :(x ﹣5)2+y 2=16相切于点M,且M 为线段AB 的中点,求直线l 的方程; (3)若,点Q 在线段AB 上,满足OQ ⊥AB,求点Q 的轨迹方程.21.(18分)若数列A :a 1,a 2,…,a n (n ≥3)中(1≤i ≤n)且对任意的2≤k ≤n ﹣1,a k+1+a k ﹣1>2a k 恒成立,则称数列A 为“U ﹣数列”.(1)若数列1,x,y,7为“U ﹣数列”,写出所有可能的x 、y ;(2)若“U ﹣数列”A :a 1,a 2,…,a n 中,a 1=1,a n =2017,求n 的最大值;(3)设n0为给定的偶数,对所有可能的“U ﹣数列”A :a 1,a 2,…,,记,其中max {x1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数,求M 的最小值.2018年上海市杨浦区高考数学一模试卷参考答案与试题解析一.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1.(4分)计算的结果是1.【试题解答】解:当n→+∞,→0,∴=1,故答案为:1.2.(4分)已知集合A={1,2,m},B={3,4},若A∩B={3},则实数m=3.【试题解答】解:∵集合A={1,2,m},B={3,4},A∩B={3},∴实数m=3.故答案为:3.3.(4分)已知,则=﹣.【试题解答】解:∵,∴=.故答案为:﹣.4.(4分)若行列式,则x=2.【试题解答】解:∵,∴2×2x﹣1﹣4=0即x﹣1=1∴x=2故答案为:25.(4分)已知一个关于x、y的二元一次方程组的增广矩阵是,则x+y=6.【试题解答】解:∵一个关于x、y的二元一次方程组的增广矩阵是,∴由二元线性方程组的增广矩阵可得到二元线性方程组的表达式,解得x=4,y=2,∴x+y=6.故答案为:6.6.(4分)在的二项展开式中,常数项等于﹣160.【试题解答】解:展开式的通项为T r=x6﹣r(﹣)r=(﹣2)r x6﹣2r+1令6﹣2r=0可得r=3常数项为(﹣2)3=﹣160故答案为:﹣1607.(5分)若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷2次,则出现向上的点数之和为4的概率是.【试题解答】解:基本事件共6×6个,点数和为4的有(1,3)、(2,2)、(3,1)共3个,故P==.故答案为:.8.(5分)数列{a n}的前n项和为S n,若点(n,S n)(n∈N*)在函数y=log2(x+1)的反函数的图象上,则a n=2n﹣1.【试题解答】解:由题意得n=log2(S n+1)⇒s n=2n﹣1.n≥2时,a n=s n﹣s n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=s1=21﹣1=1也适合上式,∴数列{a n}的通项公式为a n=2n﹣1;故答案为:2n﹣19.(5分)在△ABC中,若sinA、sinB、sinC成等比数列,则角B的最大值为.【试题解答】解:∵在△ABC中,sinA、sinB、sinC依次成等比数列,∴sin2B=sinAsinC,利用正弦定理化简得:b2=ac,由余弦定理得:cosB==≥=(当且仅当a=c时取等号),则B的范围为(0,],即角B的最大值为.故答案为:.10.(5分)抛物线y2=﹣8x的焦点与双曲线﹣y2=1的左焦点重合,则这条双曲线的两条渐近线的夹角为.【试题解答】解:∵抛物线y2=﹣8x的焦点F(﹣2,0)与双曲线﹣y2=1的左焦点重合,∴a2+1=4,解得a=,∴双曲线的渐近线方程为y=,∴这条双曲线的两条渐近线的夹角为,故答案为:.11.(5分)已知函数,x∈R,设a>0,若函数g(x)=f(x+α)为奇函数,则α的值为.【试题解答】解:函数,=,=s,函数g(x)=f(x+α)=为奇函数,则:(k∈Z),解得:,故答案为:12.(5分)已知点C、D是椭圆上的两个动点,且点M(0,2),若,则实数λ的取值范围为.【试题解答】解:假设CD的斜率存在时,设过点M(0,2)得直线方程为y=kx+2,联立方程,整理可得(1+4k2)x2+16kx+12=0,设C(x1,y1),N(x2,y2),则△=(16k)2﹣4×(1+4k2)×12≥0,整理得k2≥,x1+x2=﹣,x1x2=,(*)由,可得,x1=λx2代入到(*)式整理可得==,由k2≥,可得4≤≤,解可得<λ<3且λ≠1,当M和N点重合时,λ=1,当斜率不存在时,则D(0,1),C(0,﹣1),或D(0,1),C(0,﹣1),则λ=或λ=3∴实数λ的取值范围.故答案为:.二.选择题(本大题共4题,每题5分,共20分)13.(5分)在复平面内,复数对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【试题解答】解:∵=,∴复数对应的点的坐标为(﹣1,﹣2),位于第三象限.故选:C.14.(5分)给出下列函数:①y=log2x;②y=x2;③y=2|x|;④y=arcsinx.其中图象关于y轴对称的函数的序号是()A.①②B.②③C.①③D.②④【试题解答】解:①y=log2x的定义域为(0,+∞),定义域关于原点不对称,则函数为非奇非偶函数;②y=x2;是偶函数,图象关于y轴对称,满足条件.③y=2|x|是偶函数,图象关于y轴对称,满足条件.④y=arcsinx是奇函数,图象关于y轴不对称,不满足条件,故选:B.15.(5分)“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【试题解答】解:t≥0⇒△=t2+4t≥0⇒函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点,函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点⇒△=t2+4t≥0⇒t≥0或t≤﹣4.∴“t≥0”是“函数f(x)=x2+tx﹣t在(﹣∞,+∞)内存在零点”的充分非必要条件.故选:A.16.(5分)设A、B、C、D是半径为1的球面上的四个不同点,且满足•=0,•=0,•=0,用S1、S2、S3分别表示△ABC、△ACD、△ABD的面积,则S1+S2+S3的最大值是()A. B.2 C.4 D.8【试题解答】解:设AB=a,AC=b,AD=c,因为AB,AC,AD两两互相垂直,扩展为长方体,它的对角线为球的直径,所以a2+b2+c2=4R2=4所以S△ABC +S△ACD+S△ADB=(ab+ac+bc )≤(a2+b2+c2)=2即最大值为:2故选:B.三.解答题(本大题共5题,共14+14+14+16+18=76分)17.(14分)如图所示,用总长为定值l的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开.(1)设场地面积为y,垂直于墙的边长为x,试用解析式将y表示成x的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?【试题解答】解:(1)设场地面积为y,垂直于墙的边长为x,它的面积y=x(l﹣3x);由x>0,且l﹣3x>0,可得函数的定义域为(0,l);(2)y=x(l﹣3x)=×3x(1﹣3x)≤×()2=,当x=时,这块长方形场地的面积最大,这时的长为l﹣3x=l,最大面积为.18.(14分)如图,已知圆锥的侧面积为15π,底面半径OA和OB互相垂直,且OA=3,P 是母线BS的中点.(1)求圆锥的体积;(2)求异面直线SO与PA所成角的大小.(结果用反三角函数值表示)【试题解答】(本题满分(14分),第1小题满分(7分),第2小题满分7分)解:(1)由题意,π•OA•SB=15π,解得BS=5,…(2分)故…(4分)从而体积.…(7分)(2)如图,取OB中点H,连结PH、AH.由P是SB的中点知PH∥SO,则∠APH(或其补角)就是异面直线SO与PA所成角.…(10分)∵SO⊥平面OAB,∴PH⊥平面OAB,∴PH⊥AH.在△OAH中,由OA⊥OB,得,…(11分)在Rt△APH中,∠AHP=90 O,,…(12分)则,∴异面直线SO与PA所成角的大小.…(14分)19.(14分)已知函数的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数f(x)是奇函数但不是偶函数.【试题解答】解:(1)令,解得﹣1<x<1,所以A=(﹣1,1),因为B⊆A,所以,解得﹣1≤a≤0,即实数a的取值范围是[﹣1,0];(2)证明:函数f(x)的定义域A=(﹣1,1),定义域关于原点对称,f(﹣x)=ln=ln()﹣1=﹣ln=﹣f(x),而,,所以,所以函数f(x)是奇函数但不是偶函数.20.(16分)设直线l与抛物线Ω:y2=4x相交于不同两点A、B,O为坐标原点.(1)求抛物线Ω的焦点到准线的距离;(2)若直线l又与圆C:(x﹣5)2+y2=16相切于点M,且M为线段AB的中点,求直线l的方程;(3)若,点Q在线段AB上,满足OQ⊥AB,求点Q的轨迹方程.【试题解答】解:(1)根据题意,抛物线Ω的方程为y2=4x,则p=2,故抛物线Ω的焦点到准线的距离为2;(2)设直线l:x=my+b当m =0时,x =1和x =9符合题意;当m ≠0时,A(x 1,y 1)、B(x 2,y 2)的坐标满足方程组,所以y 2﹣4my ﹣4b =0的两根为y 1、y 2. △=16(m 2+b)>0,y 1+y 2=4m, 所以,所以线段AB 的中点M(2m 2+b,2m)因为k AB •k CM =﹣1,,所以,得b =3﹣2m 2所以△=16(m 2+b)=16(3﹣m 2)>0,得0<m 2<3 因为,所以m 2=3(舍去)综上所述,直线l 的方程为:x =1,x =9(3)设直线AB :x =my +b,A(x 1,y 1)、B(x 2,y 2)的坐标满足方程组,所以y 2﹣4my ﹣4b =0的两根为y 1、y 2 △=16(m 2+b)>0,y 1+y 2=4m,y 1y 2=﹣4b 所以,得b =0或b =4b =0时,直线AB 过原点,所以Q(0,0); b =4时,直线AB 过定点P(4,0) 设Q(x,y),因为OQ ⊥AB, 所以(x ≠0),综上,点Q 的轨迹方程为x 2﹣4x +y 2=021.(18分)若数列A :a 1,a 2,…,a n (n ≥3)中(1≤i ≤n)且对任意的2≤k ≤n ﹣1,a k+1+a k ﹣1>2a k 恒成立,则称数列A 为“U ﹣数列”.(1)若数列1,x,y,7为“U ﹣数列”,写出所有可能的x 、y ;(2)若“U﹣数列”A:a1,a2,…,a n中,a1=1,a n=2017,求n的最大值;(3)设n为给定的偶数,对所有可能的“U﹣数列”A:a1,a2,…,,记,其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数,求M的最小值.【试题解答】解:(1)x=1时,,所以y=2或3;x=2时,,所以y=4;x≥3时,,无整数解;所以所有可能的x,y为,或.(2)n的最大值为65,理由如下:一方面,注意到:a k+1+a k﹣1>2a k⇔a k+1﹣a k>a k﹣a k﹣1.对任意的1≤i≤n﹣1,令b i=a i+1﹣a i,则b i∈Z且b k>b k﹣1(2≤k≤n﹣1),故b k≥b k﹣1+1对任意的2≤k≤n﹣1恒成立.(*)当a1=1,a n=2017时,注意到b1=a2﹣a1≥1﹣1=0,得(2≤i≤n﹣1)即b i≥i﹣1,此时a n﹣a1=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)=b n﹣1+b n﹣2+…+b1≥0+1+2+…+(n﹣2)=,(**)即,解得:﹣62≤n≤65,故n≤65.另一方面,为使(**)取到等号,所以取b i=i﹣1(1≤i≤64),则对任意的2≤k≤64,b k>b k﹣1,故数列{a n}为“U﹣数列”,此时由(**)式得,所以a65=2017,即n=65符合题意. 综上,n的最大值为65.(3)M的最小值为,证明如下:当n0=2m(m≥2,m∈N*)时,一方面:由(*)式,b k+1﹣b k≥1,b m+k﹣b k=(b m+k﹣b m+k﹣1)+(b m+k﹣1﹣b m+k﹣2)+…+(b k+1﹣b k)≥m.此时有:(a1+a2m)﹣(a m+a m+1)=(a2m﹣a m+1)﹣(a m﹣a1)=(b m+1+b m+2+…+b2m﹣1)﹣(b1+b2+…+b m﹣1)=(b m+1﹣b1)+(b m+2﹣b2)+…+(b2m+1﹣b m﹣1)≥m+m+…+m=m(m﹣1).即(a1+a2m)≥(a m+a m+1)+m(m﹣1)故因为,所以,另一方面,当b1=1﹣m,b2=2﹣m,…,b m﹣1=﹣1,b m=0,b m+1=1,b2m﹣1=m﹣1时,a k+1+a k﹣1﹣2a k=(a k+1﹣a k)﹣(a k﹣a k﹣1)=b k﹣b k﹣1=1>0取a m=1,则a m+1=1,a1>a2>a3>…>a m,a m+1<a m+2<…<a2m,且此时.综上,M的最小值为.。
2018年普通高等学校招生上海市数学真题卷(含答案)
(C) 3 3
(D)0【答案】 B
【知识点】函数的概念【考查能力】空间想象能力
【解析】点 (1, f (1)) 在直线 x = 1 上,把直线进行旋转可得旋转后的直线,这样进
行下去直到回到 (1, f (1)) 点可知 f (1) = 3 2
17. 已知圆锥的顶点为 P ,底面圆心为 O ,半径为 2,
2
2
【知识点】直线的交点坐标与距离公式
【解析】数形结合,转化单位圆上圆心角为 60o的两点到直线 x + y -1 = 0 的距离
之和,可求得最大值为 2 + 3 。
13. 设 P 是椭圆 x2 + y2 = 1 上的动点,则 P 到该椭圆的两个焦点的距离之和为(
).
53
(A) 2 2
(B) 2 3
O
B
A
M
(2)若
f
æ çè
p 4
ö ÷ø
=
3 +1,求方程 f ( x) = 1-
2 在区间[-p ,p ] 上的解.
1)、由偶函数可知 f (-x) = f (x) 得 a = 0 。
(2)、 f (p ) = 3 +1Þ a = 3 , f (x) = 2sin(2x + p ) +1, \sin(2x + p ) = - 2 ,在
(C) 2 5
(D) 4 2 【答案】 C
14. 已知 a Î R ,则“ a > 1”是“ 1 < 1 ”的(
).
a
(A)充分非必要条件 (B)必要非充分条件
(C)充要条件 (D)既非充分又非必要条件【答案】 A
15. 《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设 AA1 是正六 棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以 AA1 为底面矩形的一边,
2018年上海高考数学真题及答案
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018?上海)行列式的值为18.【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018?上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21(结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为T r+1=?x r,令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.(4分)(2018?上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f(x)=1og2(x+a)的图象经过点(1,3),由此能求出a.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018?上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5.【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018?上海)记等差数列{a n}的前n项和为S n,若a3=0,a6+a7=14,则S7=14.【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{a n}的前n项和为S n,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018?上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f (x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018?上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018?上海)设等比数列{a n}的通项公式为a n=q n﹣1(n∈N*),前n 项和为S n.若=,则q=3.【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,,a n+1=q n.可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018?上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018?上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且?=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018?上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2 B.2 C.2 D.4【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.>1”是“<1”的()14.(5分)(2018?上海)已知a∈R,则“aA.充分非必要条件 B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”?“”,“”?“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”?“”,“”?“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018?上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B.C.D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018?上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30?x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)?x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018?上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线k PF?k FQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),k QF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则k PF==,k FQ=,直线QF方程为y=(x﹣2),∴y Q=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018?上海)给定无穷数列{a n},若无穷数列{b n}满足:对任意n ∈N*,都有|b n﹣a n|≤1,则称{b n}与{a n}“接近”.(1)设{a n}是首项为1,公比为的等比数列,b n=a n+1+1,n∈N*,判断数列{b n}是否与{a n}接近,并说明理由;(2)设数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,{b n}是一个与{a n}接近的数列,记集合M={x|x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得a n﹣1≤b n≤a n+1,求得b i,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{a n}接近.理由:{a n}是首项为1,公比为的等比数列,可得a n=,b n=a n+1+1=+1,则|b n﹣a n|=|+1﹣|=1﹣<1,n∈N*,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n﹣1≤b n≤a n+1,数列{a n}的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i,i=1,2,3,4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,可得a n=a1+(n﹣1)d,①若d>0,取b n=a n,可得b n+1﹣b n=a n+1﹣a n=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取b n=a1﹣,则|b n﹣a n|=|a1﹣﹣a1|=<1,n∈N*,可得b n+1﹣b n=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n﹣1≤b n≤a n+1,a n+1﹣1≤b n+1≤a n+1+1,可得b n+1﹣b n≤a n+1+1﹣(a n﹣1)=2+d≤0,b2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.感恩和爱是亲姐妹。
2018年上海市长宁区、嘉定区高考数学一模试卷
2018年上海市长宁区、嘉定区高考数学一模试卷.填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. (4 分)已知集合A={1, 2,3, 4},B={2,4,5},则A H B=2. _________________________________ (4分)不等式亠「I的解集为.x+13. (4分)已知"门ci 二令,贝U cos (a=.nn_,4. (4 分)1山一= .fl5. ________________________________________________ (4分)已知球的表面积为16 n,则该球的体积为_______________________________ .6. (4分)已知函数f (x)=1+log a X,y=「(x)是函数y=f (x)的反函数,若y=f1(x)的图象过点(2,4),则a的值为______ .一7. (5分)若数列{a n}为等比数列,且a5=3,贝U °7= _____ .a3 78. (5分)设厶ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a- b+c)=ac,贝U B= ___ .9. (5分)若(2吒严的二项展开式中的所有二项式系数之和等于256,贝够展开式中常数项的值为________ .10. (5分)已知函数f (x)是定义在R上且周期为4的偶函数,当x€ [2, 4]时,F&)二11口旬G宅)I,贝Ufg)的值为______ .11. (5 分)已知数列{an}的前n 项和为Si,且a1=1, 2S=a n?a n+1 (n € N*).若b n=(-1)n… ,则数列{b n}的前n项和T n= _________ .12 . (5分)若不等式x2- 2y2<cx (y -x)对任意满足x>y>0的实数x、y恒成立,贝U实数c的最大值为___________ .二•选择题(本大题共4题,每题5分,共20分)13 . (5分)设角a的始边为x轴正半轴,则“的终边在第一、二象限”是“ Sin a > 0”的()18. (14分)已知复数z满足1 . ::, z2的虚部为2.A .充分非必要条件B.必要非充分条件 C.充分必要条件 D .既非充分又非必要条件14. ( 5分)若直线l i 和12是异面直线,11在平面 a 内,12在平面B 内,I 是平 面a 与平面B 的交线,贝U 下列命题正确的是( )A . I 与l i ,l 2都不相交 B. I 与l i ,l 2都相交C. I 至多与l i , l 2中的一条相交D. l 至少与l i , l 2中的一条相交中B 为a 和$的夹角,若两个非零的平面向量◎和b 满足:①I 赵I 〉I b I ;②目和兀③ ^和^ 的值都在集合Ulx-p n£M }中,贝咗屈的值为(C. 1 D .,且 f 1 (X )=f (X ),f n (X )=f (f n -1 (x )),n=1,2,3,….贝U 满足方程f n (x ) =x 的根的个数为( )A . 2n 个B . 2n 2个 C. 2n 个D . 2 (2n - 1)个三•解答题(本大题共 5题,共14+14+14+16+18=76分)17. (14 分)如图,设长方体 ABCD- A 1B 1C 1D 1 中,AB=BC=3 AA 1=4. (1) 求四棱锥A 1- ABCD 的体积;(2) 求异面直线A 1B 与B 1C 所成角的大小.(结果用反三角函数值表示)15. (5分)对任意两个非零的平面向量16. (5分)已知函数■和「,定义,其18. (14分)已知复数z 满足1 . ::, z 2的虚部为2.(1) 求复数z ;(2) 设z 、z 2、Z -z 2在复平面上的对应点分别为 A 、B 、。
2018年普通高等学校招生全国统一考试数学试题(上海卷,含答案)
2018年普通高等学校招生全国统一考试数学试题(上海卷)一、填空题(本大题共有12题,满分54分第1-6题每题4分,第7-12题每题5分)1.行列式4125的值为 。
2.双曲线2214x y -=的渐近线方程为 。
3.在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示) 4.设常数a R ∈,函数f x x a =+()㏒₂(),若f x ()的反函数的图像经过点31(,),则a= 。
5.已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
6.记等差数列{} n a 的前几项和为S n ,若87014a a a =+=₃,,则S 7= 。
7.已知21123α∈---{,,,,,,},若幂函数()n f x x =为奇函数,且在0+∞(,)上速减,则α=_____8.在平面直角坐标系中,已知点A (-1,0),B (2,0),E ,F 是y 轴上的两个动点,且|EF |=2,则AE ·BF 的最小值为______9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是______(结果用最简分数表示)10.设等比数列{}的通项公式为a n =q ⁿ+1(n ∈N*),前n 项和为S n 。
若1Sn 1lim 2n n a →∞+=,则q=____________ 11.已知常数a >0,函数222()(2)f x ax =+的图像经过点65p p ⎛⎫ ⎪⎝⎭,、15Q q ⎛⎫- ⎪⎝⎭,,若236p q pq +=,则a =__________ 12.已知实数x ₁、x ₂、y ₁、y ₂满足:²²1x y +=₁₁,²²1x y +=₂₂,212x x y y +=₁₂₁,则的最大值为__________二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆 ²5x + ²3y =1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) (A )2(B )2(C )2(D )414.已知a R ,则“1a﹥”是“1a1﹤”的( ) (A )充分非必要条件(B )必要非充分条件(C )充要条件(D )既非充分又非必要条件 15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马.设AA ₁是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点,以AA ₁为底面矩形的一边,则这样的阳马的个数是( )(A )4(B )8(C )12(D )1616.设D 是含数1的有限实数集,f x ()是定义在D 上的函数,若f x ()的图像绕原点逆时针旋转π6后与原图像重合,则在以下各项中,1f ()的可能取值只能是( )(A(B(C (D )0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(本题满分14分,第1小题满分6分,第2小题满分8分)已知圆锥的顶点为P ,底面圆心为O ,半径为2(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB的中点,如图,求异面直线PM 与OB 所成的角的大小.18.(本题满分14分,第1小题满分6分,第2小题满分8分)设常数a R ∈,函数f x ()22?asin x cos x =+ (1)若f x ()为偶函数,求a 的值;(2)若4f π〔〕1=,求方程1f x =()ππ-[,]上的解。
2018年上海高考数学真题及答案
2018年上海高考数学真题及答案2018年上海市高考数学试卷参考答案与试题解析一、填空题1.(4分)(2018•上海)行列式的值为18.考点】二阶行列式的定义。
分析】直接利用行列式的定义,计算求解即可。
解答】解:行列式为:故答案为:18.点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查。
2.(4分)(2018•上海)双曲线的方程为x^2/4-y^2/1=1,渐近线方程为y=±2x。
考点】双曲线的性质。
分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程。
解答】解:由双曲线方程得:又由双曲线的性质可知,a=2,b=1,焦点在x轴上。
因此,渐近线方程为y=±2x。
点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想。
3.(4分)(2018•上海)在(1+x)^7的二项展开式中,x^2项的系数为21.考点】二项式定理。
分析】利用二项式展开式的通项公式求得展开式中x^2的系数。
解答】解:二项式(1+x)^7展开式的通项公式为:T(r+1)=C(7,r)x^r因此,x^2的系数为C(7,2)=21.故答案为:21.点评】本题考查了二项展开式的通项公式的应用问题,是基础题。
4.(4分)(2018•上海)设常数a∈R,函数f(x)=log2(x+a)。
若f(x)的反函数的图象经过点(3,1),则a=7.考点】反函数。
分析】由反函数的性质得函数f(x)=log2(x+a)的图象经过点(1,3),由此能求出a。
解答】解:由题意可得,f(x)的反函数的图象经过点(3,1)。
因此,函数f(x)=log2(x+a)的图象经过点(1,3)。
由此可得:log2(1+a)=3解得a=7.故答案为:7.点评】本题考查了反函数的性质,需要注意对数函数的定义域和值域,以及反函数和原函数的图象关系。
5.(4分)(2018•上海)已知向量a=(2,1,-1),b=(1,-1,2),则a×b的模长为√14.考点】向量的叉乘。
2018届上海市高考模拟数学试卷及答案
上海市2018学年度高考数学模拟试卷一、填空题(本大题共有14题,满分56分)只要求直接填写结果,每个空格填对得4分,否则一律得零分. 1.函数)2(log 1)(2-=x x f 的定义域为2.复数z 满足iiz 1=i +1,则i z 31-+= 3.底面边长为2m ,高为1m 的正三棱锥的全面积为 m 2 4.某工厂生产10个产品,其中有2个次品,从中任取3个产5.若非零向量,a b 满足32a b a b ==+,则,a b 夹角的余弦值为_______6.已知圆O :522=+y x ,直线l :)20(1sin cos πθθθ<<=+y x ,设圆O 上到直线l 的距离等于1的点的个数为k ,则k = 7.已知)(x f 是定义在R 上的奇函数.当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为8.已知{}n a 为等比数列,其前n 项和为n S ,且2n n S a =+*()n ∈N ,则数列{}n a 的通项公式为9.设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值范围为_____________10.已知F 是抛物线42y x =的焦点,B A ,是抛物线上两点,线段AB 的中点为)2,2(M ,则ABF ∆的面积为 11.如图,已知树顶A 离地面212米,树上另一点B 离地面112米,某人在离地面32米的C 处看此树,则该人离此树 米时,第11题图看A 、B 的视角最大12.将函数()2sin()3f x x πω=-(0ω>)的图象向左平移3πω个单位,得到函数()y g x =的图象,若()y g x =在[0,]4π上为增函数,则ω的最大值为13.如图,矩形n n n n D C B A 的一边n n B A 在x 轴上,另外两个顶点n n D C 在函数)0(1)(>+=x xx x f 的图象上.若点n B 的坐标),2)(0,(+∈≥N n n n ,记矩形n n n n D C B A 的周长为n a ,数列{}n a 的前m ()+∈N m 项和为m S ,则2limnmn a S +∞→= 14.已知定义域为R 的偶函数)(x f ,对于任意R x ∈,满足)2()2(x f x f -=+。
2018年上海市高考数学试题有答案
2018年高考数学真题试卷(上海卷)一、填空题1.(2018•上海)行列式4125的值为 。
【答案】18 【解析】【解答】4125=45-21=18 【分析】a cb d=ad-bc 交叉相乘再相减。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷) 2.(2018•上海)双曲线2214x y -=的渐近线方程为 。
【答案】12y x =±【解析】【解答】2214x y -=,a=2,b=1。
故渐近线方程为12y x =± 【分析】渐近线方程公式。
注意易错点焦点在x 轴上,渐近线直线方程为22221x y b a -=时,by x a=±。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)3.(2018•上海)在(1+x )7的二项展开式中,x ²项的系数为 。
(结果用数值表示) 【答案】21【解析】【解答】(1+x )7中有T r+1=7r r C x ,故当r=2时,27C =762⨯=21 【分析】注意二项式系数,与各项系数之间差别。
考点公式()na b +第r+1项为T r+1=r n r rn C a b-。
【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)4.(2018•上海)设常数a R ∈,函数2()log ()f x x a =+,若f x ()的反函数的图像经过点31(,),则a= 。
【答案】7【解析】【解答】f x ()的反函数的图像经过点31(,),故()f x 过点3(1,),则()13f =,()2log 1a +=3,1+a=23所以a=23-1,故a=7. 【分析】原函数()f x 与反函数图像关于y=x 对称,如:原函数上任意点()00,x y ,则反函数上点为()00,y x【题型】填空题 【考查类型】中考真题 【试题级别】高三 【试题地区】上海【试题来源】2018年高考数学真题试卷(上海卷)5.(2018•上海)已知复数z 满足117i z i +=-()(i 是虚数单位),则∣z ∣= 。
2018年上海市徐汇区高考数学一模试卷及答案
2018年上海市徐汇区高考数学一模试卷一、填空题(本大题满分54分)本大题共有12题,考生必须在答题纸相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分)1.(4分)已知集合A={2,3},B={1,2,a},若A⊆B,则实数a=.2.(4分)在复平面内,复数(i为虚数单位)对应的点的坐标为.3.(4分)函数f(x)=的定义域为.4.(4分)二项式(x﹣)4的展开式中的常数项为.5.(4分)若=0,则x=.6.(4分)已知圆O:x2+y2=1与圆O′关于直线x+y=5对称,则圆O′的方程是.7.(5分)在坐标平面xOy内,O为坐标原点,已知点A(﹣),将绕原点按顺时针方向旋转,得到,则的坐标为.8.(5分)某船在海平面A处测得灯塔B在北偏东30°方向,与A相距6.0海里.船由A向正北方向航行8.1海里达到C处,这时灯塔B与船相距海里(精确到0.1海里)9.(5分)若公差为d的等差数列{a n}n∈N*,满足a3a4+1=0,则公差d的取值范围是.10.(5分)著名的斐波那契数列{a n}:1,1,2,3,5,8…,满足a1=a2=1,a n+2=a n+1+a n,n∈N*,那么1+a3+a5+a7+a9+…+a2017是斐波那契数列的第项.11.(5分)若不等式(﹣1)n•a<3对任意的正整数n恒成立,则实数a的取值范围是.12.(5分)已知函数y=f(x)和y=g(x)的图象关于y轴对称,当函数y=f(x)和y=g(x)在区间[a,b]上同时递增或者同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”,若区间[1,2]为函数y=|2x﹣t|的“不动区间”,则实数t 的取值范围是.二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分13.(5分)已知α是△ABC的一个内角,则“sin”是“α=45°”的…()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件14.(5分)下列命题中,假命题的是()A.若z为实数,则=z B.若=z,则z为实数C.若z为实数,则•z为实数D.若•z为实数,则z为实数15.(5分)现有8个人排成一排照相,期中甲、乙、丙三从两两不相邻的排法的种数为()A.P B.PC.P D.P﹣P16.(5分)如图,棱长为2的正方体ABCD﹣A1B1C1D1中,E 为CC1的中点,点P,Q分别为面A1B1C1D1和线段B1C上动点,则△PEQ周长的最小值为()A.2 B. C. D.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.(14分)如图,梯形ABCD满足AB∥CD,,BC=1,∠BAD=30°,现将梯形ABCD绕AB所在直线旋转一周,所得几何体记叙Ω(1)求Ω的体积V;(2)求Ω的表面积S.18.(14分)如图是函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<)图象的一部分,M、N是它与x轴的两个交点,C、D分别为它的最高点和最低点,E (0,1)是线段MC的中点,(1)若点M的坐标为(﹣1,0),求点C、点N和点D的坐标(2)若点M的坐标为(﹣m,0)(m>0),=,试确定函数f(x)的解析式.19.(14分)已知函数f(x)=|x|+,(m∈R,x≠0)(1)判断函数y=f(x)的奇偶性,并说明理由(2)讨论函数y=f(x)的零点个数.20.(16分)已知椭圆E:(a>b>0)的左,右焦点分别为F1,F2,且F1,F2与短轴的一个端点Q构成一个等腰直角三角形,点P()在椭圆E上,过点F2作互相垂直且与x轴不重合的两直线AB,CD分别交椭圆E于A,B,C,D且M,N分别是弦AB,CD的中点(1)求椭圆的方程(2)求证:直线MN过定点R(,0)(3)求△MNF2面积的最大值.21.(18分)设等差数列{a n}的公差为d1,等差数列{b n}的公差为d2,记c n=max{b1﹣a1n,b2﹣a2n,…b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…x s}表示a1,x2,…x s这s个数中最大的数(1)若a n=2n,b n=4n﹣2,求c1,c2,c3的值,并猜想数列c n的通项公式(不必证明)(2)设a n=﹣n,b n=﹣n+2,若不等式对不小于2的一切自然数n都成立,求λ的取值范围(3)试探究当无穷数列{c n}为等差数列时,d1、d2应满足的条件并证明你的结论.2018年上海市徐汇区高考数学一模试卷参考答案与试题解析一、填空题(本大题满分54分)本大题共有12题,考生必须在答题纸相应编号的空格内直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分)1.(4分)已知集合A={2,3},B={1,2,a},若A⊆B,则实数a=3.【解答】解:∵集合A={2,3},B={1,2,a},A⊆B,∴a=3.故答案为:3.2.(4分)在复平面内,复数(i为虚数单位)对应的点的坐标为(4,﹣5).【解答】解:∵=,∴复数对应的点的坐标为(4,﹣5).故答案为:(4,﹣5).3.(4分)函数f(x)=的定义域为(0,e] .【解答】解:函数的定义域为:{x|},解得0<x≤e.故答案为:(0,e].4.(4分)二项式(x﹣)4的展开式中的常数项为.【解答】解:二项式(x﹣)4的展开式的通项公式为T r+1=•x4﹣r••x﹣r=••x4﹣2r.令x的幂指数4﹣2r=0,解得r=2,∴展开式中的常数项为T3=•=6×=.故答案为:.5.(4分)若=0,则x=1.【解答】解:=4x﹣2×2x=0,设2x=t,t>0,则t2﹣2t=0,解得:t=2,或t=0(舍去)则2x=t=2,则x=1,故答案为:1.6.(4分)已知圆O:x2+y2=1与圆O′关于直线x+y=5对称,则圆O′的方程是(x ﹣5)2+(y﹣5)2=1.【解答】解:圆O:x2+y2=1的圆心坐标为(0,0)所以:点(0,0)关于直线的对称点的坐标设为(a.b),则:,解得:a=b=5,所以圆o′的方程是:(x﹣5)2+(y﹣5)2=1故答案为:(x﹣5)2+(y﹣5)2=17.(5分)在坐标平面xOy内,O为坐标原点,已知点A(﹣),将绕原点按顺时针方向旋转,得到,则的坐标为(,).【解答】解:在坐标平面xOy内,O为坐标原点,已知点A(﹣),即:A(cos,sin),将绕原点按顺时针方向旋转,得到,即:A′(cos(),sin()),所以:A′(),故答案为:().8.(5分)某船在海平面A处测得灯塔B在北偏东30°方向,与A相距6.0海里.船由A向正北方向航行8.1海里达到C处,这时灯塔B与船相距 4.2海里(精确到0.1海里)【解答】解:由余弦定理可得BC=≈4.2海里.故答案为:4.2.9.(5分)若公差为d的等差数列{a n}n∈N*,满足a3a4+1=0,则公差d的取值范围是(﹣∞,﹣2]∪[2,+∞).【解答】解:公差为d的等差数列{a n}n∈N*,满足a3a4+1=0,即有(a1+2d)(a1+3d)+1=0,化为a12+5da1+1+6d2=0,由方程有解的条件可得,△≥0即25d2﹣4(1+6d2)≥0,解得d≥2或d≤﹣2,故答案为:(﹣∞,﹣2]∪[2,+∞).10.(5分)著名的斐波那契数列{a n}:1,1,2,3,5,8…,满足a1=a2=1,a n+2=a n+1+a n,n∈N*,那么1+a3+a5+a7+a9+…+a2017是斐波那契数列的第2018项.=a n+1+a n,【解答】解:根据题意,斐波那契数列{a n}中,a n+2当n为奇数时,=a n+a n﹣1=a n+a n﹣2+a n﹣3=a n+a n﹣2+a n﹣4+a n﹣6=…=a n+a n﹣2+a n﹣4+a n﹣6+…+a1+1,则有a n+1则有1+a3+a5+a7+a9+…+a2017=a2018;即1+a3+a5+a7+a9+…+a2017是斐波那契数列的第2018项,答案为:2018.11.(5分)若不等式(﹣1)n•a<3对任意的正整数n恒成立,则实数a的取值范围是[﹣3,2).【解答】解:当n为奇数时,不等式可化为﹣a<3+,即a>﹣3﹣,要使不等式对任意自然数n恒成立,则a≥﹣3;当n为偶数时,不等式可化为a<3﹣,要使不等式对任意自然数n恒成立,则a<(3﹣)min=3﹣=,即a<2.综上:﹣3≤a<.故答案为:[﹣3,).12.(5分)已知函数y=f(x)和y=g(x)的图象关于y轴对称,当函数y=f(x)和y=g(x)在区间[a,b]上同时递增或者同时递减时,把区间[a,b]叫做函数y=f(x)的“不动区间”,若区间[1,2]为函数y=|2x﹣t|的“不动区间”,则实数t 的取值范围是[] .【解答】解:因为函数y=f(x)与y=F(x)的图象关于y轴对称,所以F(x)=f(﹣x)=|2﹣x﹣t|,因为区间[1,2]为函数y=|2x﹣t|的“不动区间”,所以函数y=|2x﹣t|和函数F(x)=|2﹣x﹣t|在[1,2]上单调性相同,因为y=2x﹣t和函数y=2﹣x﹣t的单调性相反,所以(2x﹣t)(2﹣x﹣t)≤0在[1,2]上恒成立,即1﹣t(2x+2﹣x)+t2≤0在[1,2]上恒成立,即2﹣x≤t≤2x在[1,2]上恒成立,得≤t≤2;故答案为:[]二、选择题(本大题满分20分)本大题共有4题,每题有且只有一个正确答案,考生必须在答题纸相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分13.(5分)已知α是△ABC的一个内角,则“sin”是“α=45°”的…()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【解答】解:∵α是△ABC的一个内角,∴“sin”⇒“α=45°或α=135°”,“α=45°”⇒“sin”,∴“sin”是“α=45°”的必要不充分条件.故选:B.14.(5分)下列命题中,假命题的是()A.若z为实数,则=z B.若=z,则z为实数C.若z为实数,则•z为实数D.若•z为实数,则z为实数【解答】解:对于A、若z为实数,则=z,正确;对于B、设z=a+bi(a,b∈R),则,由,可得b=﹣b,则b=0,即z 为实数,故B正确;对于C、若z为实数,则•z=|z|2为实数,故C正确;对于D、对于任意复数z,都有•z=|z|2为实数,故D错误.故选:D.15.(5分)现有8个人排成一排照相,期中甲、乙、丙三从两两不相邻的排法的种数为( )A .PB .PC .PD .P﹣P【解答】解:根据题意,分2步进行分析:①、先排出甲、乙、丙三人外的五人,将5人全排列,有P 55种排法,排好后,有6个空位可选,②、再在排列好的五人的6个空位里,任选3个,排列甲、乙、丙三人,有P 63种结果,则不同的排法数目有P 63P 55种; 故选:C .16.(5分)如图,棱长为2的正方体ABCD ﹣A 1B 1C 1D 1中,E 为CC 1的中点,点P ,Q 分别为面A 1B 1C 1D 1和线段B 1C 上动点,则△PEQ 周长的最小值为( )A .2B .C .D .【解答】解:由题意得:△PEQ 周长取最小值时,P 在B 1C 1上,在平面B 1C 1CB 上,设E 关于B 1C 的对称点为M ,关于B 1C 1的对称点为N , 连结MN ,当MN 与B 1C 1的交点为P ,MN 与B 1C 的交点点M 时, 则MN 是△PEQ 周长的最小值, EM=2,EN=,∠MEN=135°,∴MN==.∴△PEQ 周长的最小值为.故选:B .三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.(14分)如图,梯形ABCD满足AB∥CD,,BC=1,∠BAD=30°,现将梯形ABCD绕AB所在直线旋转一周,所得几何体记叙Ω(1)求Ω的体积V;(2)求Ω的表面积S.【解答】解:(1)几何体为圆柱与圆锥的组合体,圆锥和圆柱的底面半径为r=BC=1,圆锥的高为h1=,圆柱的高h2=.∴V=π×12×+π×12×=.(2)圆锥的母线长l=2.∴几何体的面积S=π×12+π×1×2+2π×1×=3π+2π.18.(14分)如图是函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<)图象的一部分,M、N是它与x轴的两个交点,C、D分别为它的最高点和最低点,E (0,1)是线段MC的中点,(1)若点M的坐标为(﹣1,0),求点C、点N和点D的坐标(2)若点M的坐标为(﹣m,0)(m>0),=,试确定函数f(x)的解析式.【解答】解:(1)设点C(a,b),由中点坐标公式得,解得a=1,b=2,∴点C(1,2),∴点N(3,0),点D(5,﹣2);(2)同样由E(0,1)是线段MC的中点,得A=2,由M(﹣m,0),得C(m,2),D(5m,﹣2);∴•=2m•6m+2×(﹣2)=12m2﹣4,又•=﹣4,∴12m2=,解得m=;由T==8m=2π,解得ω=1,∴φ=;∴函数f(x)的解析式为f(x)=2sin(x+).19.(14分)已知函数f(x)=|x|+,(m∈R,x≠0)(1)判断函数y=f(x)的奇偶性,并说明理由(2)讨论函数y=f(x)的零点个数.【解答】解:(1)当m=0时,函数f(x)=|x|﹣3,此时f(﹣x)=f(x)函数是偶函数;当m≠0时,∵f(1)=m﹣2,f(﹣1)=﹣m﹣2,∴f(﹣1)≠±f(1),函数是非奇非偶函数.(2)由f(x)=0可得x|x|﹣3x+m=0(x≠0),变为m=﹣x|x|+3x(x≠0)令g(x)=3x﹣x|x|==,作函数y=g(x)以及y=m的图象,可得:作y=g(x)的图象及直线y=m,由图象可得:当m>或m<﹣时,f(x)有1个零点.当m=或m=0或m=﹣时,f(x)有2个零点;当0<m<或﹣<m<0时,f(x)有3个零点.20.(16分)已知椭圆E:(a>b>0)的左,右焦点分别为F1,F2,且F1,F2与短轴的一个端点Q构成一个等腰直角三角形,点P()在椭圆E上,过点F2作互相垂直且与x轴不重合的两直线AB,CD分别交椭圆E于A,B,C,D且M,N分别是弦AB,CD的中点(1)求椭圆的方程(2)求证:直线MN过定点R(,0)(3)求△MNF2面积的最大值.【解答】解:(1)∵椭圆E:(a>b>0)经过点P()且F1,F2与短轴的一个顶点Q构成一个等腰直角三角形,则b=c,a2=b2+c2=2b2,∴,解得a2=2,b2=1,∴椭圆方程为;(Ⅱ)证明:设直线AB的方程为x=my+1,m≠0,则直线CD的方程为x=﹣y+1,联立,消去x得(m2+2)y2+2my﹣1=0,设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=﹣,∴x1+x2=(my1+1)+(my2+1)=m(y1+y2)+2=,由中点坐标公式得M(,﹣),方法一:将M的坐标中的m用﹣代换,得CD的中点N(,),k MN=,直线MN的方程为y+=(x﹣),即为y=(x﹣1),令x﹣1,可得x=,即有y=0,则直线MN过定点R,且为R(,0),方法二:将M的坐标中的m用﹣代换,得CD的中点N(,),则y+=(x﹣),整理得:2(m4+m2﹣2)y=(m3+2m)(3x ﹣2),∴直线MN过定点R(,0)方法三:则k MR==,则k NR==,∴k MR=k NR,∴直线MN过定点R(,0)(3)方法一:△F2MN面积为S=|F2H|•|y M﹣y N|,=(1﹣)•|﹣﹣|=||=||令m+=t(t≥2),由于2t+的导数为2﹣,且大于0,即有在[2,+∞)递增.即有S=•=•在[2,+∞)递减,∴当t=2,即m=1时,S取得最大值,为;则△MNF2面积的最大值为方法二:|MF2|==,|NF2|=,则△MNF2面积S=×|MF2|×|NF2|=,令m+=t(t≥2),则S==≤,当且仅当t=2即m=1时,△MNF2面积的最大值为.∴△MNF2面积的最大值为.21.(18分)设等差数列{a n }的公差为d 1,等差数列{b n }的公差为d 2,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…x s }表示a 1,x 2,…x s 这s 个数中最大的数 (1)若a n =2n ,b n =4n ﹣2,求c 1,c 2,c 3的值,并猜想数列c n 的通项公式(不必证明)(2)设a n =﹣n ,b n =﹣n +2,若不等式 对不小于2的一切自然数n 都成立,求λ的取值范围(3)试探究当无穷数列{c n }为等差数列时,d 1、d 2应满足的条件并证明你的结论.【解答】解:(1)由a n =2n ,b n =4n ﹣2,可得:a 1=2,a 2=4,a 3=6;b 1=2,b 2=6,b 3=10.当n=1时,c 1=max {b 1﹣a 1}=max {0}=0.当n=2时,c 2=max {b 1﹣2a 1,b 2﹣2a 2}=max {﹣2,﹣2}=﹣2.当n=3时,c 3=max {b 1﹣3a 1,b 2﹣3a 2,b 3﹣3a 3}=max {﹣4,﹣6,﹣8}=﹣4. ∴c 1=0,c 2=﹣2,c 3=﹣4,猜想数列c n =﹣2n +2.(2)当k ∈N *时,且2≤k ≤n 时,b k ﹣na k ﹣(b k ﹣1﹣na k ﹣1)=n ﹣1>0. ∴c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }=b n ﹣a n n=n (n ﹣1)+2. ∴=++…+=++…+=1﹣,由题意可得:1﹣,解得λ>,对不小于2的一切自然数n都成立,设P n=,则P n+1﹣P n=﹣=≤0,因此数列{P n}(n≥3)单调递减,而P2=P3=.∴(P n)max=P2=P3=.∴λ的取值范围是.(3)当k∈N*时,且2≤k≤n时,b k﹣na k﹣(b k﹣1﹣na k﹣1)=d2﹣nd1.下面分d1=0,d1>0,d1<0三种情况讨论.①若d1=0,则b k﹣na k﹣(b k﹣1﹣na k﹣1)=d2.于是当d2≤0时,b k﹣na k﹣(b k﹣1﹣na k﹣1)=d2≤0.则c n=b1﹣na1,c n+1=b1﹣(n+1)a1,c n+1﹣c n=﹣a1,∴数列{c n}为等差数列.当d2>0时,b k﹣na k﹣(b k﹣1﹣na k﹣1)=d2>0.则c n=b n﹣na n=b n﹣na1,c n+1=b n+1﹣(n+1)a1,c n+1﹣c n=d2﹣a1,∴数列{c n}为等差数列.②若d1>0,d2≤2d1,则d2≤nd1对于n≥2成立,此时c n=b1﹣na1,c n﹣1=b1﹣(n﹣1)a1,c n+1﹣c n=﹣a1,∴数列{c n}为等差数列.若d1>0,d2>2d1,则d2≥3d1,c1=b1﹣a1,c2=b2﹣2a2,c3=b3﹣3a3.于是2c2﹣(c1+c3)=2d1≠0,∴数列{c n}不为等差数列.若2d1<d2<3d1时,c1=b1﹣a1,c2=b2﹣2a2,c3=b3﹣3a3.于是2c2﹣(c1+c3)=2(d2﹣2d1)≠0,∴数列{c n}不为等差数列.③若d1<0,则必存在s∈N*,使得当n≥s时,n>,此时可得:d2>nd1.即d2﹣nd1>0.此时c n=b n﹣na n=b1+(n﹣1)d2﹣[a1+(n﹣1)d1]•n,c n+1=b1+nd2﹣(a1+nd1)(n+1),﹣c n=﹣2nd1+d2﹣a1,与正整数n有关.∴c n+1∴数列{c n}不是等差数列.综上可得:若数列{c n}是等差数列,则d1>0,且d2≤2d1或d1=0.。
2018上海高考数学真题与答案
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1. (4分)(2018?上海)行列式° 1的值为18 .2 5【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式°】=4X 5-2X1=18.2 5故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2. (4分)(2018?上海)双曲线匚-y2=1的渐近线方程为.【考点】KC双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.2 °【解答】解:•双曲线]「—1的a=2, b=1,焦点在x轴上2 2 ,而双曲线-^7;- -1的渐近线方程为y=±—芷a2 b3 a2双曲线/二1的渐近线方程为y=±y X■ £故答案为:y=± —【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3(4分)(2018?上海)在(1+x)7的二项展开式中,x2项的系数为21 (结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;40:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x) 4 5 6展开式的通项公式为T r+1='〔?乂,令r=2,得展开式中x2的系数为c2=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4. (4 分)(2018?上海)设常数a€ R,函数f (x)=1og2 (x+a).若f (x)的反函数的图象经过点(3, 1),则a= 7 .【考点】4R反函数.【专题】11 :计算题;33 :函数思想;40:定义法;51 :函数的性质及应用.【分析】由反函数的性质得函数f (x)=1og2 (x+a)的图象经过点(1, 3),由此能求出a.【解答】解:•常数a€ R,函数f (x)=1og2 (x+a).f (x)的反函数的图象经过点(3, 1),•••函数f (x)=1og2 (x+a)的图象经过点(1, 3),••• Iog2 (1+a)=3,解得a=7.故答案为:7.4(4分)(2018?上海)已知复数z满足(1+i)z=1 - 7i (i是虚数单位),则|z| =5 .【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1 - 7i,则|Z|= • 4 ■-故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6. (4分)(2018?上海)记等差数列{a n}的前n项和为S,若a3=0, a e+a7=14, 贝U S7= 14 .【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;40:定义法;54 :等差数列与等比数列. 【分析】利用等差数列通项公式列出方程组,求出a1=- 4, d=2,由此能求出S7. 【解答】解:•••等差数列{a n}的前n项和为S n, a3=0, a e+a7=14,If ai+2d=0a 严d二14L 1 1解得a1= - 4, d=2,3=7屛i=- 28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题. 7且a v0,由此能求出a的值.【解答】解::a { - 2,- 1, 1, 1, 2, 3},7(5 分)(2018?上海)已知a€ {- 2,- 1,-二,y , 1, 2 , 3},若幕函数f (x)=X a为奇函数,且在(0, +X)上递减,则a= - 1 .【考点】4U:幕函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幕函数f (x)=x a为奇函数,且在(0, +7 上递减,得到a是奇数,幕函数f (x) =x"为奇函数,且在(0, +x)上递减,二a是奇数,且a v0,--a=— 1.故答案为:-1.【点评】本题考查实数值的求法,考查幕函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8. (5分)(2018?上海)在平面直角坐标系中,已知点A (- 1, 0)、B( 2, 0),i ■】耳 * ■E、F是y轴上的两个动点,且|卩|=2,贝U 的最小值为-3 .【考点】90:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E (0, a), F (0, b),从而得出| a-b| =2, 即卩a=b+2,或并可求得- • •,将a=b+2带入上式即可求出2'- - 1F的最小值,b=a+2,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E (0, a), F (0, b);I-:;••• a=b+2,或b=a+2;且厂门・..「—,:;-.-..;当a=b+2时,…丨,—I | :;v b2+2b - 2的最小值为二:;;•••垃•甬的最小值为-3,同理求出b=a+2时,瓦•祈的最小值为-3.故答案为:-3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9. (5分)(2018?上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是丄(结果用最简分数表示).【考点】CB古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;51 :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2 克砝码两个,从中随机选取三个,3个数中含有1个2; 2个2,没有2, 3种情况,所有的事件总数为:C ;=10,这三个砝码的总质量为9克的事件只有:5, 3,1或5, 2,2两个,所以:这三个砝码的总质量为9克的概率是:吕士,10 5故答案为:丄.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10. (5分)(2018?上海)设等比数列{a n}的通项公式为a n=q nr (n € N*),前n 项和为S n .若'II —,则q= 3 .nr w a n-+l 2【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 : 点列、递归数列与数学归纳法.【分析】禾I」用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{a n}的通项公式为a =q n一1(n€ N*),可得a1=1,H因为: ------ -- ,所以数列的公比不是1,n-^^a n+l 戈;-,a n+i =q n . 口1-Q1 n1-q2网+2卩典+2口亦a 2pq解得:2^q =a i 2pq , 由于:2p+q =36pq ,所以:a 2=36, 由于a >0, 故:a=6.可得1 ■ l-q inn ----- L g (1_Q)Q=H IT严8 L-<1 =1 a a-1 2 可得q=3. 故答案为:3.【点评】本题考查数列的极限的运算法则的应用, 等比数列求和以及等比数列的 简单性质的应用,是基本知识的考查.11. (5分)(2018?上海)已知常数a >0,函数f (x )= ”2s fax£), Q (q ,卡)•若 2p+q =36pq ,则 a= 6 .【考点】3A :函数的图象与图象的变换.的图象经过点P (p ,【专题】 35 :转化思想;51 :函数的性质及应用. 直接利用函数的关系式,利用恒等变换求出相应的 a 值.的图象经过点P (p ,—),Q (q ,丄).【分析】2p +ap 2 Q +aq故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12. (5 分)(2018?上海)已知实数 x i 、X 2、y i 、y 2满足:x i 2+y i 2=1, X 22+y 22=1, x i X 2+y i y 2丄,贝U : |一'的最大值为.】+.「;.【考点】7F :基本不等式及其应用;IT :点到直线的距离公式. 【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设 A (x i , y i ), B (X 2, y 2), 0A = (x i , y i ), 0& = (X 2, y 2),由圆的方程即有/ AOB=60,即三角形OAB 为等边三角形,到直线x+y - i=0的距离d i 与d 2之和,显然A , B 在第三象限,AB 所在直线与直线x+y=i 平行, 可设 AB : x+y+t=0, (t > 0),和向量数量积的定义、坐标表示,可得三角形 OAB 为等边三角形,AB=i , I 蛊]+ ¥厂11 + II 七+ y厂11的几何意义为点A , B 两点到直线x+y -仁0的距离d i与d 2之和,由两平行线的距离可得所求最大值. 【解答】解:设 A (X i , y i ), B (X 2, y 2),'-■= (X i , y i ), L..j = (X 2, y 2),由 x i 2+y i 2=i ,2 2X 22+y 22=i , x i x 2+y i y 2〒,可得A , B 两点在圆x 2+y 2=i 上,1七4坯11近B 两点由圆心O 到直线AB 的距离且-?>=i x i x cos /AB=1,的几何意义为点A ,故答案为:一 7+ :;.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点 与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确 选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13. (5分)(2018?上海)设P 是椭圆 44 =1上的动点,贝u P 到该椭圆的两个 焦点的距离之和为()A. 2 :?B. 2 二C. 2 仃D. 4. ■: 【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程. 【分析】判断椭圆长轴(焦点坐标)所在的轴,求出 a,接利用椭圆的定义,转 化求解即可.2 2|【解答】解:椭圆%+^厂=1的焦点坐标在x 轴,a 卫,5 J2 2P 是椭圆1 I - =1上的动点,由椭圆的定义可知:贝U P 到该椭圆的两个焦点的5 3 距离之和为2a=2.・. 故选:C.【点评】本题考查椭圆的简单性质的应用, 椭圆的定义的应用,是基本知识的考 查.即有两平行线的距离为1:=::>V2 2I| +1 Jtg+yg-l |~?2雹的最大值为:■:+ ■;,14. (5 分)(2018?上海)已知a€ R,贝1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;40:定义法;5L :简易逻辑.土”?“a1 或a v 0”a故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识, 考查运算求解能力,考查函数与方程思想,是基础题.15. (5分)(2018?上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A. 4B. 8C. 12D. 16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;50 :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1 - A1ABB,D1- A1AFF满足题意,而C1,E1,C,D,E,和D1 一样,有2X6=12,当A1ACC为底面矩形,有2个满足题意,当A i AEE为底面矩形,有2个满足题意,【分析】aT? “a1 或a v0”,由此能求出结果.解:a€ R,贝U “a 1”?“厂Ia“a 1 "是a故有12+2+2=16故选:D.Di Ci【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16. (5分)(2018?上海)设D是含数1的有限实数集,f (x)是定义在D上的函数,若f (x)的图象绕原点逆时针旋转一后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A. . ;B.二C. —D. 0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转丄个单位后与下一个点会重合.6我们可以通过代入和赋值的方法当f (1) = ^ —,0时,此时得到的圆心角为—,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数5 6的定义就是要求一个x只能对应一个y,因此只有当x=L,此时旋转一,此时2 &满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17. (14分)(2018?上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且/ AOB=90 ,M为线段AB的中点,如图•求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF: 棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4 能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)v圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4, I 圆锥的体积V二〕一…■- L •- ■'1I3~.(2)v PO=4, OA, OB 是底面半径,且/ AOB=90 ,M为线段AB的中点,•••以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P (0, 0, 4), A (2, 0, 0), B (0, 2, 0),M (1,1, 0), O (0, 0, 0),PH= (1,1,—4), 0B= (0, 2, 0),设异面直线PM与OB所成的角为9,os .6•••异面直线PM与0B所成的角的为【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18. (14分)(2018?上海)设常数a€ R,函数f (x) =asin2>+2coSx.(1)若f (x)为偶函数,求a的值;(2)若f (弓T =胚+1,求方程f (x) =1-厲在区间[-n, n上的解.【考点】GP两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1): f (x) =asin2x+2cos2x,• f ( —x) =—asin2x+2cos2x,= pJ*o5 |2|n p| OB1届・26则cos9二9 =arccarccos6••• f (x )为偶函数, ••• f (- x ) =f (x ),•••- asin2x+2coEx=asin2x^2cos 2x , • 2as in 2x=0, • a=0; (2)T f () = :-+1 ,4• asi 』^+2cos 2 (工)=a+仁岛+1 ,2 4 • a=:,• f (x ) =_ _;sin2X +2CO E X = ;sin2x+cos2x+ 仁2sin (2x^—) +1,&T f (x ) =1 -^2,19. (14分)(2018?上海)某群体的人均通勤时间,是指单日内该群体中成员从 居住地到工作地的平均用时•某地上班族 S 中的成员仅以自驾或公交方式通 勤.分析显示:当S 中x% (0v x v 100)的成员自驾时,自驾群体的人均通勤时 间为而公交群体的人均通勤时间不受 x 影响,恒为40分钟,试根据上述分析结果回 答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤• sin (2x+丄)=-厶―” 2+2k n 或 2x+一=■6 -• 2x+—=65兀 …x=- 24n +k n 或x= 或x= 244 n+2kn k€ Z,n +k n, k € Z ,或x=-或x=- 112E24【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题. f (x )? 0<x<30. .(单位:分钟),+1=1-血, • 2sin (时间?(2) 求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性, 并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用. 【分析】(1)由题意知求出f (x )> 40时x 的取值范围即可;(2)分段求出g (x )的解析式,判断g (x )的单调性,再说明其实际意义. 【解答】解;(1)由题意知,当30V X V 100时,即 x 2- 65x+900>0, 解得x v 20或x >45,•I x €( 45, 100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间; (2) 当 0v x < 30 时,g (x ) =30?x%+40 (1 - x%) =40 - 当 30V x v 100 时,40——也10当0v x v 32.5时,g (x )单调递减; 当32.5V x v 100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的; 有大于32.5%的人自驾时,人均通勤时间是递增的; 当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决 问题的能力.20. (16分)(2018?上海)设常数t > 2 .在平面直角坐标系xOy 中,已知点F (2, 0),直线I : x=t ,曲线r y 2=8x (0< x < t , y >0). l 与x 轴交于点A 、与r 交于f (x ) =2x+ 1800 -90>40,g (x ) = (2x+二-2-90)碎心 1-x%0)=-r 13 10x+58 ;点B. P、Q 分别是曲线r与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3, |FQ=2,线段0Q的中点在直线FP上,求△ AQP的面积;(3)设t=8 ,是否存在以FP、FQ为邻边的矩形FPEQ使得点E在r上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得| BF ;方法二:根据抛物线的定义,即可求得|BF| ;(2)根据抛物线的性质,求得Q点坐标,即可求得0D的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得厶AQP的面积;(3)设P及E点坐标,根据直线k PF?k Fc=- 1,求得直线QF的方程,求得Q点坐标,根据习+冠=75,求得E点坐标,贝则(彎尸)2=8 (「+6),即可求得P 4y 8点坐标.【解答】解:(1)方法一:由题意可知:设B (t,2 :■:t),则|BF制(1 边严+3t=t+2,••• | BF| =t+2;方法二:由题意可知:设 B (t, 2 :■:t),由抛物线的性质可知:| BF =t甘=t+2,「. |BF=t+2;(2) F (2, 0), |FQ=2, t=3,则|FA=1,,二Q (3,血),设OQ 的中点D,D (),k QF=~VI,则直线PF方程:y=-體(x-2),联立,整理得:3x2- 20x+12=0,• △ AQP 的面积 x^:;x根据「+円;',则E (k+6,•存在以FP 、FQ 为邻边的矩形FPEQ 使得点E 在r 上,且P (2,毁5).5 5【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计 算能力,属于中档题.21. (18分)(2018?上海)给定无穷数列{a n },若无穷数列{b n }满足:对任意n€ N *,都有|b n — a n | < 1,则称{b n }与®}接近”(1)设{a n }是首项为1,公比为寺的等比数列,b n =&+1+1, n € N *,判断数列{b n }解得:,x=6 (舍去),(3)存在,设P (罟,y ),2E (凹—,m ),贝U k pF =yT-2,k FQ 」——8y直线QF 方程为y= 1才/ ~sT(x — 2), ••• y o=■ - ■ ~~8y~,Q( 8, ),)2=8 ( ——+6),解得:y 2丄■是否与{&}接近,并说明理由;(2)设数列{a n}的前四项为:a i=1, a2=2, a3=4, a4=8, {b n}是一个与{a n}接近的数列,记集合M={x| x=b i,i=1,2,3,4},求M中元素的个数m;(3)已知{a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近,且在b2 - b i,b3 - b2,…,b20i - b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义接近”即可判断;(2)由新定义可得a n - K b n< a n+1,求得b i,i=1,2,3, 4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得a n,讨论公差d >0, d=0,- 2v d v 0, d< -2,结合新定义接近”推理和运算,即可得到所求范围.【解答】解:(1)数列{b n}与{刘接近.理由:計匕数列,可得a n=则| b n - a n| =| v 1, n € N ,可得数列{b n}与{a n}接近;(2){b n}是一个与{a n}接近的数列,可得a n - 1 w b n w a n+1,数列{a n}的前四项为:a1=1, a2=2, a3=4, a4=8,可得b1€ [0, 2] , b2€[ 1 , 3] , b3€ [3, 5] , b4€ [7, 9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=b i, i=1, 2, 3, 4},M中元素的个数m=3或4;(3){a n}是公差为d的等差数列,若存在数列{b n}满足:{b n}与{a n}接近, 可得a n=a1+ (n - 1) d,①若 d >0,取b n=a n,可得b n+1 - b n=a n+1 - a n=d>0,则b2 - b1, b3 - b2,…,b201 - b200中有200个正数,符合题意;②若d=0,取b n=a i -—,则|b n- a n|=|a i-丄-a i| —v 1, n€ N*,n n n可得b n+1 - bn^ —> 0 ,n n+1则b2 —b i, b3 —b2,…,b20i —b2oo中有200个正数,符合题意;③若—2v d v 0,可令b2n-1=a2n- 1 —1,b2n=a2n+1 ,则b2n —b2n- 1 =a2n+1 —( a2n- 1 —1) =2+d > 0,则b2 —b1,b3 —b2,…,b201 —b200中恰有100个正数,符合题意;④若d< —2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n — 1 w b n w a n+1,a n+1 — 1 W b n+1 w a n+1+1,可得b n+1 —b n w a n+1+1—(a n —1) =2+d w 0,b2 —b1,b3 —b2,…,b201 —b200中无正数,不符合题意.综上可得,d的范围是(-2,+x).【点评】本题考查新定义接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.。
2018年上海中学高考数学模拟试卷和答案(5月份)
2018年上海中学高考数学模拟试卷(5月份)一、填空题1.(3分)抛物线x2=2y的准线方程是.2.(3分)设集合A={x|log2018x<1},B={x|x<3},则A∩B=.3.(3分)不等式<1的解集为.4.(3分)命题A:x<1,命题A的一个必要条件为下面的命题(填“p”或“q”)命题p:x<0;命题q:x<25.(3分)复数8+6i(i为虚数单位)的平方根为.6.(3分)已知点A(1,2)、B(﹣1,0)、C(3,﹣1),则△ABC的面积为.7.(3分)(2+x)n的展开式中第3项与第6项的二项式系数相等,则(2+x)n的展开式中倒数第4项的系数为.8.(3分)cos(2α﹣β)=﹣,sin(α﹣2β)=,且α,β∈(0,),则cos(α+β)=.9.(3分)f(x+1)=x2,x<﹣1,则f﹣1(x+1)=(f﹣1(x)为f(x)的反函数).10.(3分)在△ABC中,角A,B,C所对的边分别为a,b,c,若a,b,c成等差数列,在B的取值范围是(角用弧度表示)11.(3分)四面体P﹣ABC中,P A=AB=5,PB=AC=6,PC=BC=7,则P A与BC所成的角为.12.(3分)古埃及数学中有一个独特现象:除用一个单独的符号表示以外,其他分数都要写成若干个单位分数和的形式.例如=+,可以这样来理解:假定有两个面包,要平均分给5个人,每人不够,每人余,再将这分成5份,每人得,这样每人分得+.形如(n=5,7,9,11,…)的分数的分解:=+,=+,=+,…,按此规律,则(1)=.(2)=.(n=5,7,9,11,…)二、选择题13.(3分)若α是第二象限的角,则的终边所在位置不可能是()A.第一象限B.第二象限C.第三象限D.笫象限14.(3分)已知α,β表示两个不同的平面,m为平面α内的一条直线,则“α⊥β”是“m ⊥β”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件15.(3分)现有4种不同颜色对如图所示的四个部分进行涂色,要求有公共边界的两块不能用同一种颜色,则不同的涂色方法共有()A.24种B.30种C.36种D.48种16.(3分)某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.2D.三、解答题17.如图,在长方体ABCD﹣A1B1C1D1中,AB=2,AD=1,A1A=1,(1)求证:直线BC1∥平面D1AC;(2)求直线BC1到平面D1AC的距离.18.已知两个向量=(1+log2x,log2x),=(log2x,1)(1)若⊥,求实数x的值;(2)求函数f(x)=•,x∈[,2]的值域.19.已知数列{a n}满足a1=1,|a n+1﹣a n|=p n,n∈N*.(Ⅰ)若{a n}是递增数列,且a1,2a2,3a3成等差数列,求p的值;(Ⅱ)若p=,且{a2n﹣1}是递增数列,{a2n}是递减数列,求数列{a n}的通项公式.20.如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cos A=,cos C=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?21.已知函数f(x)=x2+ax+b(a,b∈R).(1)若b=1,且f(x)在[﹣2,2]上存在零点,求实数a的取值范围;(2)若对任意a∈[﹣1,1],存在x∈[﹣2,3]使f(x)>0,求实数b的取值范围;(3)若存在实数a,使得当x∈[0,b]时,1≤f(x)≤10恒成立,求实数b的最大值.2018年上海中学高考数学模拟试卷(5月份)参考答案与试题解析一、填空题1.【解答】解:因为抛物线的标准方程为:x2=2y,焦点在y轴上;所以:2p=2,即p=1,所以:=,所以准线方程y=﹣.故答案为:y=﹣.2.【解答】解:A={x|0<x<2018};∴A∩B=(0,3).故答案为:(0,3).3.【解答】解:原不等式等价于,即x(x﹣1)>0,所以不等式的解集为(1,+∞)∪(﹣∞,0);故答案为:(1,+∞)∪(﹣∞,0)4.【解答】解:命题A:x<1,命题A的一个必要条件为:{x|x<1}是所求的集合的子集.故答案为:q.5.【解答】解:设复数8+6i(i为虚数单位)的平方根为a+bi,则(a+bi)2=8+6i,即a2+2abi﹣b2=8+6i,则,即,得或,即平方根为3+i或﹣3﹣i,故答案为:±(3+i)6.【解答】解:A(1,2)、B(﹣1,0)、C(3,﹣1),∴=(﹣2,﹣2),=(2,﹣3),∴•=﹣4+6=2,||=2,||=,cos A===,sin A==,∴△ABC的面积为S=×2××=5.故答案为:5.7.【解答】解:由,得n=7.∴(2+x)n=(2+x)7,(2+x)7的展开式中倒数第4项为.∴展开式中倒数第4项的系数为280.故答案为:280.8.【解答】解:∵α,β∈(0,),∴2α﹣β∈(﹣,π),α﹣2β∈(﹣π,),又cos(2α﹣β)=﹣,∴2α﹣β∈(,π),∴sin(2α﹣β)=.sin(α﹣2β)=,∴α﹣2β∈(0,),∴cos(α﹣2β)=.∴cos(α+β)=cos[(2α﹣β)﹣(α﹣2β)]=cos(2α﹣β)cos(α﹣2β)+sin(2α﹣β)sin(α﹣2β)=.故答案为:.9.【解答】解:令x+1=t<0,则x=t﹣1∴f(t)=(t﹣1)2(t<0),∴f(x)=(x﹣1)2(x<0)∴x﹣1=﹣,x=1﹣,(f(x)>0)∴f﹣1(x)=1﹣,(x>0)∴f﹣1(x+1)=1﹣,(x>﹣1)10.【解答】解:由a,b,c成等差数列,得到2b=a+c,即b=,则cos B===≥,∵B∈(0,π),且余弦在(0,π)上为减函数,∴角B的范围是:0<B≤.故答案为:(0,].11.【解答】解:如图,分别取PB,AB,AC的中点E,F,G,连接AE,CE,EF,FG,EG,则EF∥P A,FG∥BC,∠EFG(或其补角)为P A与BC所成的角.∵P A=AB=5,PB=6,可得AE=4,∵PC=BC=7,PB=6,可得CE=.在△CAE中,得cos∠CAE==,则.在△EFG中,GF=,EF=,GE2=19,∴cos∠EFG=.∴P A与BC所成的角为arccos.故答案为:arccos.12.【解答】解:(1)假定有两个面包,要平均分给11个人,每人不够,每人分则余,再将这分成11份,每人得,这样每人分得+.故=+;(2)假定有两个面包,要平均分给n(n=5,7,9,11,…)个人,每人不够,每人分则余,再将这分成n份,每人得,这样每人分得+.故=+;故答案为:+,+二、选择题13.【解答】解:∵α是第二象限角,∴90°+k•360°<α<180°+k•360°,k∈Z.则30°+k•120°<<60°+k•120°,k∈Z.当k=0时,30°<<60°,α为第一象限角;当k=1时,150°<<180°,α为第二象限角;当k=2时,270°<<300°,α为第四象限角.由上可知,的终边所在位置不可能是第三象限角.故选:C.14.【解答】解:由平面与平面垂直的判定定理知如果m为平面α内的一条直线,且m⊥β,则α⊥β,反之,α⊥β时,若m平行于α和β的交线,则m∥β,所以不一定能得到m ⊥β,所以“α⊥β”是“m⊥β”的必要不充分条件.故选:B.15.【解答】解:根据题意,设需要涂色的四个部分依次分①、②、③、④,对于区域①,有4种颜色可选,有4种涂色方法,对于区域②,与区域①相邻,有3种颜色可选,有3种涂色方法,对于区域③,与区域①②相邻,有2种颜色可选,有2种涂色方法,对于区域④,与区域②③相邻,有2种颜色可选,有2种涂色方法,则不同的涂色方法有4×3×2×2=48种;故选:D.16.【解答】解:由主视图和侧视图可知棱锥的高h=2,结合侧视图和俯视图可知三棱锥的底面ABC为直角三角形,BC=1,AB=2,AB⊥BC,∴三棱锥的体积V==,故选:A.三、解答题17.【解答】解:(1)因为ABCD﹣A1B1C1D1为长方体,故AB∥C1D1,AB=C1D1,故ABC1D1为平行四边形,故BC1∥AD1,显然B不在平面D1AC上,故直线BC1平行于平面DA1C;(2)直线BC1到平面D1AC的距离即为点B到平面D1AC的距离(设为h)以△ABC为底面的三棱锥D1﹣ABC的体积V,可得V=而△AD 1C中,AC=D1C=,故=所以以△AD1C为底面的三棱锥B﹣﹣AD1C的体积V=,即直线BC1到平面D1AC的距离为.18.【解答】解:(1)=(1+log2x,log2x),=(log2x,1),若⊥,则(1+log2x)•log2x+log2x=0,可得log2x=0或log2x=﹣2,解得x=1或x=;(2)函数f(x)=•=(1+log2x)•log2x+log2x=(log2x)2+2log2x,令t=log2x,由x∈[,2],可得t∈[﹣2,1],即有函数y=t2+2t=(t+1)2﹣1,当t=﹣1时,函数取得最小值﹣1;当t=1时,函数取得最大值3.则函数f(x)的值域为[﹣1,3].19.【解答】解:(Ⅰ)∵数列{a n}是递增数列,∴a n+1﹣a n>0,则|a n+1﹣a n|=p n化为:a n+1﹣a n=p n,分别令n=1,2可得,a2﹣a1=p,,即a2=1+p,,∵a1,2a2,3a3成等差数列,∴4a2=a1+3a3,即4(1+p)=1+3(p2+p+1),化简得3p2﹣p=0,解得或0,当p=0时,数列a n为常数数列,不符合数列{a n}是递增数列,∴;(2)由题意可得,|a n+1﹣a n|=,则|a2n﹣a2n﹣1|=,|a2n+2﹣a2n+1|=,∵数列{a2n﹣1}是递增数列,且{a2n}是递减数列,∴a2n+1﹣a2n﹣1>0,且a2n+2﹣a2n<0,则﹣(a2n+2﹣a2n)>0,两不等式相加得a2n+1﹣a2n﹣1﹣(a2n+2﹣a2n)>0,即a2n+1﹣a2n+2>a2n﹣1﹣a2n,又∵|a2n﹣a2n﹣1|=>|a2n+2﹣a2n+1|=,∴a2n﹣a2n﹣1>0,即,同理可得:a2n+3﹣a2n+2>a2n+1﹣a2n,即|a2n+3﹣a2n+2|<|a2n+1﹣a2n|,则a2n+1﹣a2n=当数列{a n}的项数为偶数时,令n=2m(m∈N*),,,,…,,这2m﹣1个等式相加可得,==,则;当数列{a n}的项数为奇数时,令n=2m+1(m∈N*),,,…,,这2m个等式相加可得,…﹣…+=﹣=,则,且当m=0时a1=1符合,故,综上得,.20.【解答】解:(1)在△ABC中,因为cos A=,cos C=,所以sin A=,sin C=,从而sin B=sin[π﹣(A+C)]=sin(A+C)=sin A cos C+cos A sin C==由正弦定理,得AB===1040m.答:索道AB的长为1040m.(2)假设乙出发t分钟后,甲、乙两游客距离为d,此时,甲行走了(100+50t)m,乙距离A处130tm,所以由余弦定理得d2=(100+50t)2+(130t)2﹣2×130t×(100+50t)×=200(37t2﹣70t+50)=200[37(t﹣)2+],因0≤t≤,即0≤t≤8,答:当t=min时,甲、乙两游客距离最短.(3)由正弦定理,得BC===500m,乙从B出发时,甲已经走了50×(2+8+1)=550m,还需走710m才能到达C.设乙步行的速度为vm/min,由题意得﹣3≤≤3,解得,答:为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在[]范围内.21.【解答】解:(1)当b=1时,f(x)=x2+ax+1,∵f(x)在[﹣2,2]上存在零点,∴f(﹣2)f(2)≤0或即(5﹣2a)(5+2a)≤0,或,解得a≥或a≤﹣,或﹣≤a≤﹣2或2≤a≤,即a的取值范围为(﹣∞,﹣2]∪[2,+∞);(2)∵x∈[﹣2,3],函数f(x)=x2+ax+b开口向上,∴f(x)max=max{f(﹣2),f(3)},∵f(﹣2)=4﹣2a+b,f(3)=9﹣3a+b,∴f(3)﹣f(2)=9﹣3a+b﹣4+a=5﹣a>0,∴f(x)max=f(3)=9﹣3a+b,∵对任意a∈[﹣1,1],存在x∈[﹣2,3]使f(x)>0,∴9﹣3a+b>0对a∈[﹣1,1]恒成立,∴b>3a﹣9,∵a∈[﹣1,1],∴3a﹣9≤3﹣9=﹣6,∴b>﹣6;(3)f(x)=x2+ax+b的对称轴为x=.①若a≥0,则≤0,∴f(x)在[0,b)上单调递增,∴.由b2+ab+b≤10,得≥a≥0,解不等式组,得1≤b≤.②若0<<,即﹣b<a<0时,f(x)在[0,]上单调递减,在(﹣,b]单调递增,∴.∴,即,得1<b<10.③若0<<b,即﹣2b<a<﹣b<0时,f(x)在[0,]单调递减,在(,b]单调递增,∴,即,则1<b≤10.④若≥b,即a≤﹣2b时,f(x)在[0,b)上单调递减,∴,∴,即,则b∈∅.综上,b的取值范围是[1,10],b的最大值为10.。
2018上海高考数学试卷含答案
2018上海一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.行列式的值为 .2.双曲线x 24-y 2=1的渐近线方程为 . 3.在(1+x )7的二项展开式中,x 2项的系数为 (结果用数值表示).4.设常数a ∈R ,函数f (x )=1og 2(x +a ).若f (x )的反函数的图象经过点(3,1),则a = .5.已知复数z 满足(1+i)z =1-7i(i 是虚数单位),则|z |= .6.记等差数列{a n }的前n 项和为S n ,若a 3=0,a 6+a 7=14,则S 7= .7.已知α∈{-2,-1,-12,12,1,2,3},若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α= .8.在平面直角坐标系中,已知点A (-1,0)、B (2,0),E 、F 是y 轴上的两个动点,且|EF →|=2,则AE →·BF →的最小值为 .9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示).10.设等比数列{a n }的通项公式为a n =q n -1(n ∈N *),前n 项和为S n .若1lim +∞→n n n a S =12,则q = . 11.已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P (p ,65),Q (q ,-15).若2p +q =36pq ,则a = . 12.已知实数x 1、x 2、y 1、y 2满足:x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12,则22|x 1+y 1-1|+22|x 2+y 2-1|的最大值为 .二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆x 25+y 23=1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A .2 2 B .2 3 C .2 5 D .4 214.已知a ∈R ,则“a >1”是“1a<1”的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA 1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA 1为底面矩形的一边,则这样的阳马的个数是( )A .4B .8C .12D .1616.设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( )A . 3B .32C .33D .0三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤. 17.已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA 、OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.18.设常数a ∈R ,函数f (x )=a sin2x +2cos 2x .(1)若f (x )为偶函数,求a 的值;(2)若f (π4)=3+1,求方程f (x )=1-2在区间[-π,π]上的解.19.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中x %(0<x <100)的成员自驾时,自驾群体的人均通勤时间为f (x )=⎩⎪⎨⎪⎧30, 0<x ≤30,2x +1 800x -90, 30<x <100(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性,并说明其实际意义.20.设常数t >2.在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =t ,曲线Γ:y 2=8x (0≤x ≤t ,y ≥0).l 与x 轴交于点A 、与Γ交于点B 、P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设t =3,|FQ |=2,线段OQ 的中点在直线FP 上,求△AQP 的面积;(3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.21.给定无穷数列{a n },若无穷数列{b n }满足:对任意n ∈N *,都有|b n -a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为1,公比为12的等比数列,b n =a n +1+1,n ∈N *,判断数列{b n }是否与{a n }接近,并说明理由;(2)设数列{a n }的前四项为:a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M ={x |x =b i ,i =1,2,3,4},求M 中元素的个数m ;(3)已知{a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近,且在b 2-b 1,b 3-b 2,…,b 201-b 200中至少有100个为正数,求d 的取值范围.2018上海答案解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.行列式的值为 18 . 【解答】行列式=4×5-2×1=18.故答案为:18. 【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.双曲线x 24-y 2=1的渐近线方程为 . 【解答】因双曲线x 24-y 2=1的a =2,b =1,焦点在x 轴上,而双曲线x 2a 2-y 2b2=1的渐近线方程为y =±b a x ,故双曲线x 24-y 2=1的渐近线方程为y =±12x ,故答案为:y =±12x 【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.在(1+x )7的二项展开式中,x 2项的系数为 21 (结果用数值表示).【解答】解:二项式(1+x )7展开式的通项公式为T r +1=•x r ,令r =2,得展开式中x 2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.4.设常数a ∈R ,函数f (x )=1og 2(x +a ).若f (x )的反函数的图象经过点(3,1),则a = 7 .【解答】因常数a ∈R ,函数f (x )=1og 2(x +a ).f (x )的反函数的图象经过点(3,1),故函数f (x )=1og 2(x +a )的图象经过点(1,3),故log 2(1+a )=3,解得a =7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.已知复数z 满足(1+i)z =1-7i(i 是虚数单位),则|z|= 5 .【解答】由(1+i)z =1-7i ,得z =-3-4i ,则|z |=5.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)记等差数列{a n }的前n 项和为S n ,若a 3=0,a 6+a 7=14,则S 7= 14 .【解答】因等差数列{a n }的前n 项和为S n ,a 3=0,a 6+a 7=14,故, 解得a 1=-4,d =2,故S 7=7a 1+21d =-28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.已知α∈{-2,-1,-12,12,1,2,3},若幂函数f (x )=x α为奇函数,且在(0,+∞)上递减,则α= -1 .【解答】因α∈{-2,-1,-12,12,1,2,3},幂函数f (x )=x α为奇函数,且在(0,+∞)上递减, 故a 是奇数,且a <0,故a =-1.故答案为:-1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.在平面直角坐标系中,已知点A (-1,0)、B (2,0),E 、F 是y 轴上的两个动点,且|EF →|=2,则AE →·BF →的最小值为 -3 .【解答】解:根据题意,设E (0,a ),F (0,b );故|EF →|=|a -b |=2;故a =b +2,或b =a +2;且AE→=(1,a ),BF →=(-2,b );故AE →·BF →=-2+ab ;当a =b +2时,AE →·BF →=-2+(b +2)b =b 2+2b -2;因b 2+2b -2的最小值为-3;故AE →·BF →的最小值为-3,同理求出b =a +2时,AE →·BF→的最小值为-3.故答案为:-3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是 (结果用最简分数表示).【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10, 这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=15,故答案为:15. 【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.设等比数列{a n }的通项公式为a n =q n -1(n ∈N *),前n 项和为S n .若1lim +∞→n n n a S =12,则q = 3 . 【解答】等比数列{a n }的通项公式为a n =q n -1(n ∈N*),可得a 1=1,因为1lim +∞→n n n a S =12,所以数列的公比不是1,S n =a 1(1-q n )1-q,a n +1=q n .可得===1q -1=12,可得q =3.故答案为:3. 【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.已知常数a >0,函数f (x )=2x 2x +ax 的图象经过点P (p ,65),Q (q ,-15).若2p +q =36pq ,则a = 6 . 【解答】因为f (x )=2x 2x +ax =11+ax 2x ,且其图象经过点P ,Q ,则f (p )=11+ap 2p =65,即ap 2p =-16①, f (q )=11+aq 2q =-15,即aq 2q =-6②,①×②得a 2pq 2p +q =1,则2p +q =a 2pq =36pq ,所以a 2=36,解得a =±6,因为a >0,所以a =6.【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.已知实数x 1、x 2、y 1、y 2满足:x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12,则22|x 1+y 1-1|+22|x 2+y 2-1|的最大值为 .【解答】设A (x 1,y 1),B (x 2,y 2),OA →=(x 1,y 1),OB →=(x 2,y 2),由x 12+y 12=1,x 22+y 22=1,x 1x 2+y 1y 2=12,可得A ,B 两点在圆x 2+y 2=1上,且OA →·OB →=1×1×cos ∠AOB =12,即有∠AOB =60°,即三角形OAB 为等边三角形,AB =1,22|x 1+y 1-1|+22|x 2+y 2-1|的几何意义为点A ,B 两点到直线x +y -1=0的距离d 1与d 2之和,显然A ,B 在第三象限,AB 所在直线与直线x +y =1平行,可设AB :x +y +t =0(t >0),由圆心O 到直线AB 的距离d =22t ,可得22-12t =1,解得t =62,即有两平行线的距离为22(1+62)=12(2+3),即22|x 1+y 1-1|+22|x 2+y 2-1|的最大值为2+3,故答案为:2+3.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.设P 是椭圆x 25+y 23=1上的动点,则P 到该椭圆的两个焦点的距离之和为( ) A .2 2 B .2 3 C .2 5 D .4 2【解答】椭圆x 25+y 23=1的焦点坐标在x 轴,a =5,P 是椭圆x 25+y 23=1上的动点,由椭圆的定义可知:则P 到该椭圆的两个焦点的距离之和为2a =25.故选:C .【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.已知a ∈R ,则“a >1”是“1a<1”的( ) A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件【解答】a ∈R ,则“a >1”⇒“1a <1”,“1a <1”⇒“a >1或a <0”,故“a >1”是“1a<1”的充分非必要条件.故选:A .【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA 1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA 1为底面矩形的一边,则这样的阳马的个数是( )A .4B .8C .12D .16【解答】根据正六边形的性质,则D 1-A 1ABB 1,D 1-A 1AFF 1满足题意,而C 1,E 1,C ,D ,E ,和D 1一样,有2×4=8,当A 1ACC 1为底面矩形,有4个满足题意,当A 1AEE 1为底面矩形,有4个满足题意,故有8+4+4=16,故选:D .【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.设D 是含数1的有限实数集,f (x )是定义在D 上的函数,若f (x )的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,f (1)的可能取值只能是( ) A . 3 B .32 C .33 D .0【解答】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转π6个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)=3,33,0时,此时得到的圆心角为π3,π6,0,然而此时x =0或者x =1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当x =32,此时旋转π6,此时满足一个x 只会对应一个y ,因此答案就选:B .【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.已知圆锥的顶点为P ,底面圆心为O ,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO =4,OA 、OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,如图.求异面直线PM 与OB 所成的角的大小.【解答】(1)因圆锥的顶点为P ,底面圆心为O ,半径为2,圆锥的母线长为4,故圆锥的体积V =13×π×r 2×h =13×π×22×23=833π. (2)因PO =4,OA ,OB 是底面半径,且∠AOB =90°,M 为线段AB 的中点,故以O 为原点,OA 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,P (0,0,4),A (2,0,0),B (0,2,0),M (1,1,0),O (0,0,0),PM →=(1,1,-4),OB →=(0,2,0),设异面直线PM 与OB 所成的角为θ,则cos θ==26.故θ=arccos 26.故异面直线PM 与OB 所成的角的为arccos 26.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)设常数a ∈R ,函数f (x )=a sin2x +2cos 2x .(1)若f (x )为偶函数,求a 的值;(2)若f (π4)=3+1,求方程f (x )=1-2在区间[-π,π]上的解. 【解答】(1)因f (x )=a sin2x +2cos 2x ,故f (-x )=-a sin2x +2cos 2x ,因f (x )为偶函数,故f (-x )=f (x ),故-a sin2x +2cos 2x =a sin2x +2cos 2x ,故2a sin2x =0,故a =0;(2)因f (π4)=3+1,故a sin π2+2cos 2(π4)=a +1=3+1,故a =3,故f (x )=3sin2x +2cos 2x =3sin2x +cos2x +1=2sin(2x +π6)+1,因f (x )=1-2,故2sin(2x +π6)+1=1-2,故sin(2x +π6)=-22,故2x +π6=-π4+2k π,或2x +π6=5π4+2k π,k ∈Z ,故x =-524π+k π,或x =1324π+k π,k ∈Z ,因x ∈[-π,π],故x =1324π或x =1924π或x =-524π或x =-1124π. 【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S 中的成员仅以自驾或公交方式通勤.分析显示:当S 中x %(0<x <100)的成员自驾时,自驾群体的人均通勤时间为f (x )=⎩⎪⎨⎪⎧30, 0<x ≤30,2x +1 800x -90, 30<x <100(单位:分钟),而公交群体的人均通勤时间不受x 影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x 在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S 的人均通勤时间g (x )的表达式;讨论g (x )的单调性,并说明其实际意义.【解答】(1)由题意知,当30<x <100时,f (x )=2x +-90>40,即x 2-65x +900>0, 解得x <20或x >45,故x ∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x ≤30时,g (x )=30•x %+40(1-x %)=40-x 10;当30<x <100时,g (x )=(2x +-90)•x %+40(1-x %)=-x +58;故g (x )=;当0<x <32.5时,g (x )单调递减;当32.5<x <100时,g (x )单调递增;说明该地上班族S 中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.设常数t >2.在平面直角坐标系xOy 中,已知点F (2,0),直线l :x =t ,曲线Γ:y 2=8x (0≤x ≤t ,y ≥0).l 与x 轴交于点A 、与Γ交于点B 、P 、Q 分别是曲线Γ与线段AB 上的动点.(1)用t 表示点B 到点F 的距离;(2)设t =3,|FQ |=2,线段OQ 的中点在直线FP 上,求△AQP 的面积;(3)设t =8,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由.【解答】(1)方法一:由题意可知:设B (t ,22t ),则|BF |=t +2,故|BF |=t +2; 方法二:由题意可知:设B (t ,22t ),由抛物线的性质可知:|BF |=t +p 2=t +2,故|BF |=t +2; (2)F (2,0),|FQ |=2,t =3,则|F A |=1,故|AQ |=3,故Q (3,3),设OQ 的中点D ,D (32,22), k QF =-3,则直线PF 方程:y =-3(x -2),代入联立y 2=8x ,整理得:3x 2-20x +12=0,解得:x =23,x =6(舍去),故△AQ P 的面积S =12×3×73=736; (3)存在,设P (18y 2,y ),E (18m 2,m ),则k PF =16-82y y ,k FQ =y y 8-162,直线QF 方程为y =y y 8-162(x -2),故y Q =y y 43-482,Q (8,y y 43-482),根据FP →+FQ →=FE →,则E (18y 2+6,y y 4482+),故(yy 4482+)2=8(18y 2+6),解得:y 2=165,故存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上,且P (25,455).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.给定无穷数列{a n },若无穷数列{b n }满足:对任意n ∈N *,都有|b n -a n |≤1,则称{b n }与{a n }“接近”.(1)设{a n }是首项为1,公比为12的等比数列,b n =a n +1+1,n ∈N *,判断数列{b n }是否与{a n }接近,并说明理由;(2)设数列{a n }的前四项为:a 1=1,a 2=2,a 3=4,a 4=8,{b n }是一个与{a n }接近的数列,记集合M ={x |x =b i ,i =1,2,3,4},求M 中元素的个数m ;(3)已知{a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近,且在b 2-b 1,b 3-b 2,…,b 201-b 200中至少有100个为正数,求d 的取值范围.【解答】(1)数列{b n }与{a n }接近.理由:{a n }是首项为1,公比为12的等比数列,可得a n =12n -1,b n =a n +1+1=12n +1,则|b n -a n |=|12n +1-12n -1|=1-12n <1,n ∈N *,可得数列{b n }与{a n }接近; (2){b n }是一个与{a n }接近的数列,可得a n -1≤b n ≤a n +1,数列{a n }的前四项为:a 1=1,a 2=2,a 3=4,a 4=8,可得b 1∈[0,2],b 2∈[1,3],b 3∈[3,5],b 4∈[7,9],可能b 1与b 2相等,b 2与b 3相等,但b 1与b 3不相等,b 4与b 3不相等,集合M ={x |x =b i ,i =1,2,3,4},M 中元素的个数m =3或4;(3){a n }是公差为d 的等差数列,若存在数列{b n }满足:{b n }与{a n }接近,可得a n =a 1+(n -1)d , ①若d >0,取b n =a n ,可得b n +1-b n =a n +1-a n =d >0,则b 2-b 1,b 3-b 2,…,b 201-b 200中有200个正数,符合题意;②若d =0,取b n =a 1-1n ,则|b n -a n |=|a 1-1n -a 1|=1n <1,n ∈N *,可得b n +1-b n =1n -1n +1>0,则b 2-b 1,b 3-b 2,…,b 201-b 200中有200个正数,符合题意;③若-2<d <0,可令b 2n -1=a 2n -1-1,b 2n =a 2n +1,则b 2n -b 2n -1=a 2n +1-(a 2n -1-1)=2+d >0,则b2-b1,b3-b2,…,b201-b200中恰有100个正数,符合题意;④若d≤-2,若存在数列{b n}满足:{b n}与{a n}接近,即为a n-1≤b n≤a n+1,a n+1-1≤b n+1≤a n++1,可得b n+1-b n≤a n+1+1-(a n-1)=2+d≤0,b2-b1,b3-b2,…,b201-b200中无正数,不符1合题意.综上可得,d的范围是(-2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.。
2018上海高考数学真题及答案解析
2018年上海市高考数学试卷参考答案与试题解析一、填空题(本大题共有12题,满分54分,第1~6题每题4分,第7~12题每题5分)考生应在答题纸的相应位置直接填写结果.1.(4分)(2018•上海)行列式的值为18 .【考点】OM:二阶行列式的定义.【专题】11 :计算题;49 :综合法;5R :矩阵和变换.【分析】直接利用行列式的定义,计算求解即可.【解答】解:行列式=4×5﹣2×1=18.故答案为:18.【点评】本题考查行列式的定义,运算法则的应用,是基本知识的考查.2.(4分)(2018•上海)双曲线﹣y2=1的渐近线方程为±.【考点】KC:双曲线的性质.【专题】11 :计算题.【分析】先确定双曲线的焦点所在坐标轴,再确定双曲线的实轴长和虚轴长,最后确定双曲线的渐近线方程.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±【点评】本题考察了双曲线的标准方程,双曲线的几何意义,特别是双曲线的渐近线方程,解题时要注意先定位,再定量的解题思想3.(4分)(2018•上海)在(1+x)7的二项展开式中,x2项的系数为21 (结果用数值表示).【考点】DA:二项式定理.【专题】38 :对应思想;4O:定义法;5P :二项式定理.【分析】利用二项式展开式的通项公式求得展开式中x2的系数.【解答】解:二项式(1+x)7展开式的通项公式为=•x r,Tr+1令r=2,得展开式中x2的系数为=21.故答案为:21.【点评】本题考查了二项展开式的通项公式的应用问题,是基础题.(x+a).若f(x)的4.(4分)(2018•上海)设常数a∈R,函数f(x)=1og2反函数的图象经过点(3,1),则a= 7 .【考点】4R:反函数.【专题】11 :计算题;33 :函数思想;4O:定义法;51 :函数的性质及应用.(x+a)的图象经过点(1,3),由【分析】由反函数的性质得函数f(x)=1og2此能求出a.(x+a).【解答】解:∵常数a∈R,函数f(x)=1og2f(x)的反函数的图象经过点(3,1),(x+a)的图象经过点(1,3),∴函数f(x)=1og2(1+a)=3,∴log2解得a=7.故答案为:7.【点评】本题考查实数值的求法,考查函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.5.(4分)(2018•上海)已知复数z满足(1+i)z=1﹣7i(i是虚数单位),则|z|= 5 .【考点】A8:复数的模.【专题】38 :对应思想;4A :数学模型法;5N :数系的扩充和复数.【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简,再由复数求模公式计算得答案.【解答】解:由(1+i)z=1﹣7i,得,则|z|=.故答案为:5.【点评】本题考查了复数代数形式的乘除运算,考查了复数模的求法,是基础题.6.(4分)(2018•上海)记等差数列{an }的前n项和为Sn,若a3=0,a6+a7=14,则S7= 14 .【考点】85:等差数列的前n项和.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式列出方程组,求出a1=﹣4,d=2,由此能求出S7.【解答】解:∵等差数列{an }的前n项和为Sn,a3=0,a6+a7=14,∴,解得a1=﹣4,d=2,∴S7=7a1+=﹣28+42=14.故答案为:14.【点评】本题考查等差数列的前7项和的求法,考查等差数列的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.7.(5分)(2018•上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1 .【考点】4U:幂函数的概念、解析式、定义域、值域.【专题】11 :计算题;34 :方程思想;4O:定义法;51 :函数的性质及应用.【分析】由幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,得到a是奇数,且a<0,由此能求出a的值.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.【点评】本题考查实数值的求法,考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.8.(5分)(2018•上海)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3 .【考点】9O:平面向量数量积的性质及其运算.【专题】11 :计算题;35 :转化思想;41 :向量法;5A :平面向量及应用.【分析】据题意可设E(0,a),F(0,b),从而得出|a﹣b|=2,即a=b+2,或b=a+2,并可求得,将a=b+2带入上式即可求出的最小值,同理将b=a+2带入,也可求出的最小值.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.【点评】考查根据点的坐标求两点间的距离,根据点的坐标求向量的坐标,以及向量坐标的数量积运算,二次函数求最值的公式.9.(5分)(2018•上海)有编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,则这三个砝码的总质量为9克的概率是(结果用最简分数表示).【考点】CB:古典概型及其概率计算公式.【专题】11 :计算题;34 :方程思想;49 :综合法;5I :概率与统计.【分析】求出所有事件的总数,求出三个砝码的总质量为9克的事件总数,然后求解概率即可.【解答】解:编号互不相同的五个砝码,其中5克、3克、1克砝码各一个,2克砝码两个,从中随机选取三个,3个数中含有1个2;2个2,没有2,3种情况,所有的事件总数为:=10,这三个砝码的总质量为9克的事件只有:5,3,1或5,2,2两个,所以:这三个砝码的总质量为9克的概率是:=,故答案为:.【点评】本题考查古典概型的概率的求法,是基本知识的考查.10.(5分)(2018•上海)设等比数列{an }的通项公式为an=q n﹣1(n∈N*),前n项和为Sn.若=,则q= 3 .【考点】8J:数列的极限.【专题】11 :计算题;34 :方程思想;35 :转化思想;49 :综合法;55 :点列、递归数列与数学归纳法.【分析】利用等比数列的通项公式求出首项,通过数列的极限,列出方程,求解公比即可.【解答】解:等比数列{an }的通项公式为a=q n﹣1(n∈N*),可得a1=1,因为=,所以数列的公比不是1,=q n.,an+1可得====,可得q=3.故答案为:3.【点评】本题考查数列的极限的运算法则的应用,等比数列求和以及等比数列的简单性质的应用,是基本知识的考查.11.(5分)(2018•上海)已知常数a>0,函数f(x)=的图象经过点P (p,),Q(q,).若2p+q=36pq,则a= 6 .【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用.【分析】直接利用函数的关系式,利用恒等变换求出相应的a值.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:6【点评】本题考查的知识要点:函数的性质的应用,代数式的变换问题的应用.12.(5分)(2018•上海)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x 1x2+y1y2=,则+的最大值为+.【考点】7F:基本不等式及其应用;IT:点到直线的距离公式.【专题】35 :转化思想;48 :分析法;59 :不等式的解法及应用.【分析】设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由圆的方程和向量数量积的定义、坐标表示,可得三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,由两平行线的距离可得所求最大值.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然A,B在第三象限,AB所在直线与直线x+y=1平行,可设AB:x+y+t=0,(t>0),由圆心O到直线AB的距离d=,可得2=1,解得t=,即有两平行线的距离为=,即+的最大值为+,故答案为:+.【点评】本题考查向量数量积的坐标表示和定义,以及圆的方程和运用,考查点与圆的位置关系,运用点到直线的距离公式是解题的关键,属于难题.二、选择题(本大题共有4题,满分20分,每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.(5分)(2018•上海)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2B.2C.2D.4【考点】K4:椭圆的性质.【专题】11 :计算题;49 :综合法;5D :圆锥曲线的定义、性质与方程.【分析】判断椭圆长轴(焦点坐标)所在的轴,求出a,接利用椭圆的定义,转化求解即可.【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.【点评】本题考查椭圆的简单性质的应用,椭圆的定义的应用,是基本知识的考查.14.(5分)(2018•上海)已知a∈R,则“a>1”是“<1”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考点】29:充分条件、必要条件、充要条件.【专题】11 :计算题;34 :方程思想;4O:定义法;5L :简易逻辑.【分析】“a>1”⇒“”,“”⇒“a>1或a<0”,由此能求出结果.【解答】解:a∈R,则“a>1”⇒“”,“”⇒“a>1或a<0”,∴“a>1”是“”的充分非必要条件.故选:A.【点评】本题考查充分条件、必要条件的判断,考查不等式的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15.(5分)(2018•上海)《九章算术》中,称底面为矩形而有一侧棱垂直于底面的四棱锥为阳马,设AA1是正六棱柱的一条侧棱,如图,若阳马以该正六棱柱的顶点为顶点、以AA1为底面矩形的一边,则这样的阳马的个数是()A.4 B.8 C.12 D.16【考点】D8:排列、组合的实际应用.【专题】11 :计算题;38 :对应思想;4R:转化法;5O :排列组合.【分析】根据新定义和正六边形的性质可得答案.【解答】解:根据正六边形的性质,则D1﹣A1ABB1,D1﹣A1AFF1满足题意,而C1,E 1,C,D,E,和D1一样,有2×6=12,当A1ACC1为底面矩形,有2个满足题意,当A1AEE1为底面矩形,有2个满足题意,故有12+2+2=16故选:D.【点评】本题考查了新定义,以及排除组合的问题,考查了棱柱的特征,属于中档题.16.(5分)(2018•上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()A.B. C. D.0【考点】3A:函数的图象与图象的变换.【专题】35 :转化思想;51 :函数的性质及应用;56 :三角函数的求值.【分析】直接利用定义函数的应用求出结果.【解答】解:由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f(1)=,,0时,此时得到的圆心角为,,0,然而此时x=0或者x=1时,都有2个y与之对应,而我们知道函数的定义就是要求一个x只能对应一个y,因此只有当x=,此时旋转,此时满足一个x只会对应一个y,因此答案就选:B.故选:B.【点评】本题考查的知识要点:定义性函数的应用.三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.(14分)(2018•上海)已知圆锥的顶点为P,底面圆心为O,半径为2.(1)设圆锥的母线长为4,求圆锥的体积;(2)设PO=4,OA、OB是底面半径,且∠AOB=90°,M为线段AB的中点,如图.求异面直线PM与OB所成的角的大小.【考点】LM:异面直线及其所成的角;L5:旋转体(圆柱、圆锥、圆台);LF:棱柱、棱锥、棱台的体积.【专题】11 :计算题;31 :数形结合;41 :向量法;5F :空间位置关系与距离;5G :空间角.【分析】(1)由圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4能求出圆锥的体积.(2)以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,利用向量法能求出异面直线PM与OB所成的角.【解答】解:(1)∵圆锥的顶点为P,底面圆心为O,半径为2,圆锥的母线长为4,∴圆锥的体积V===.(2)∵PO=4,OA,OB是底面半径,且∠AOB=90°,M为线段AB的中点,∴以O为原点,OA为x轴,OB为y轴,OP为z轴,建立空间直角坐标系,P(0,0,4),A(2,0,0),B(0,2,0),M(1,1,0),O(0,0,0),=(1,1,﹣4),=(0,2,0),设异面直线PM与OB所成的角为θ,则cosθ===.∴θ=arccos.∴异面直线PM与OB所成的角的为arccos.【点评】本题考查圆锥的体积的求法,考查异面直线所成角的正切值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.18.(14分)(2018•上海)设常数a∈R,函数f(x)=asin2x+2cos2x.(1)若f(x)为偶函数,求a的值;(2)若f()=+1,求方程f(x)=1﹣在区间[﹣π,π]上的解.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】11 :计算题;38 :对应思想;4R:转化法;58 :解三角形.【分析】(1)根据函数的奇偶性和三角形的函数的性质即可求出,(2)先求出a的值,再根据三角形函数的性质即可求出.【解答】解:(1)∵f(x)=asin2x+2cos2x,∴f(﹣x)=﹣asin2x+2cos2x,∵f(x)为偶函数,∴f(﹣x)=f(x),∴﹣asin2x+2cos2x=asin2x+2cos2x,∴2asin2x=0,∴a=0;(2)∵f()=+1,∴asin+2cos2()=a+1=+1,∴a=,∴f(x)=sin2x+2cos2x=sin2x+cos2x+1=2sin(2x+)+1,∵f(x)=1﹣,∴2sin(2x+)+1=1﹣,∴sin(2x+)=﹣,∴2x+=﹣+2kπ,或2x+=π+2kπ,k∈Z,∴x=﹣π+kπ,或x=π+kπ,k∈Z,∵x∈[﹣π,π],∴x=或x=或x=﹣或x=﹣【点评】本题考查了三角函数的化简和求值,以及三角函数的性质,属于基础题.19.(14分)(2018•上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【考点】5B:分段函数的应用.【专题】12 :应用题;33 :函数思想;4C :分类法;51 :函数的性质及应用.【分析】(1)由题意知求出f(x)>40时x的取值范围即可;(2)分段求出g(x)的解析式,判断g(x)的单调性,再说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.【点评】本题考查了分段函数的应用问题,也考查了分类讨论与分析问题、解决问题的能力.20.(16分)(2018•上海)设常数t>2.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线Γ:y2=8x(0≤x≤t,y≥0).l与x轴交于点A、与Γ交于点B.P、Q分别是曲线Γ与线段AB上的动点.(1)用t表示点B到点F的距离;(2)设t=3,|FQ|=2,线段OQ的中点在直线FP上,求△AQP的面积;(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上?若存在,求点P的坐标;若不存在,说明理由.【考点】KN:直线与抛物线的位置关系.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】(1)方法一:设B点坐标,根据两点之间的距离公式,即可求得|BF|;方法二:根据抛物线的定义,即可求得|BF|;(2)根据抛物线的性质,求得Q点坐标,即可求得OD的中点坐标,即可求得直线PF的方程,代入抛物线方程,即可求得P点坐标,即可求得△AQP的面积;(3)设P及E点坐标,根据直线kPF •kFQ=﹣1,求得直线QF的方程,求得Q点坐标,根据+=,求得E点坐标,则()2=8(+6),即可求得P点坐标.【解答】解:(1)方法一:由题意可知:设B(t,2t),则|BF|==t+2,∴|BF|=t+2;方法二:由题意可知:设B(t,2t),由抛物线的性质可知:|BF|=t+=t+2,∴|BF|=t+2;(2)F(2,0),|FQ|=2,t=3,则|FA|=1,∴|AQ|=,∴Q(3,),设OQ的中点D,D(,),kQF==﹣,则直线PF方程:y=﹣(x﹣2),联立,整理得:3x2﹣20x+12=0,解得:x=,x=6(舍去),∴△AQP的面积S=××=;(3)存在,设P(,y),E(,m),则kPF ==,kFQ=,直线QF方程为y=(x﹣2),∴yQ=(8﹣2)=,Q(8,),根据+=,则E(+6,),∴()2=8(+6),解得:y2=,∴存在以FP、FQ为邻边的矩形FPEQ,使得点E在Γ上,且P(,).【点评】本题考查抛物线的性质,直线与抛物线的位置关系,考查转化思想,计算能力,属于中档题.21.(18分)(2018•上海)给定无穷数列{an },若无穷数列{bn}满足:对任意n∈N*,都有|bn ﹣an|≤1,则称{bn}与{an}“接近”.(1)设{an }是首项为1,公比为的等比数列,bn=an+1+1,n∈N*,判断数列{bn}是否与{an}接近,并说明理由;(2)设数列{an }的前四项为:a1=1,a2=2,a3=4,a4=8,{bn}是一个与{an}接近的数列,记集合M={x|x=bi,i=1,2,3,4},求M中元素的个数m;(3)已知{an }是公差为d的等差数列,若存在数列{bn}满足:{bn}与{an}接近,且在b2﹣b1,b3﹣b2,…,b201﹣b200中至少有100个为正数,求d的取值范围.【考点】8M:等差数列与等比数列的综合.【专题】34 :方程思想;48 :分析法;54 :等差数列与等比数列.【分析】(1)运用等比数列的通项公式和新定义“接近”,即可判断;(2)由新定义可得an ﹣1≤bn≤an+1,求得bi,i=1,2,3,4的范围,即可得到所求个数;(3)运用等差数列的通项公式可得an,讨论公差d>0,d=0,﹣2<d<0,d≤﹣2,结合新定义“接近”,推理和运算,即可得到所求范围.【解答】解:(1)数列{bn }与{an}接近.理由:{an}是首项为1,公比为的等比数列,可得an =,bn=an+1+1=+1,则|bn ﹣an|=|+1﹣|=1﹣<1,n∈N*,可得数列{bn }与{an}接近;(2){bn }是一个与{an}接近的数列,可得an ﹣1≤bn≤an+1,数列{an }的前四项为:a1=1,a2=2,a3=4,a4=8,可得b1∈[0,2],b2∈[1,3],b3∈[3,5],b4∈[7,9],可能b1与b2相等,b2与b3相等,但b1与b3不相等,b4与b3不相等,集合M={x|x=bi,i=1,2,3,4},M中元素的个数m=3或4;(3){an }是公差为d的等差数列,若存在数列{bn}满足:{bn}与{an}接近,可得an =a1+(n﹣1)d,①若d>0,取bn =an,可得bn+1﹣bn=an+1﹣an=d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;②若d=0,取bn =a1﹣,则|bn﹣an|=|a1﹣﹣a1|=<1,n∈N*,可得bn+1﹣bn=﹣>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中有200个正数,符合题意;③若﹣2<d<0,可令b2n﹣1=a2n﹣1﹣1,b2n=a2n+1,则b2n ﹣b2n﹣1=a2n+1﹣(a2n﹣1﹣1)=2+d>0,则b2﹣b1,b3﹣b2,…,b201﹣b200中恰有100个正数,符合题意;④若d≤﹣2,若存在数列{bn }满足:{bn}与{an}接近,即为an ﹣1≤bn≤an+1,an+1﹣1≤bn+1≤an+1+1,可得bn+1﹣bn≤an+1+1﹣(an﹣1)=2+d≤0,b 2﹣b1,b3﹣b2,…,b201﹣b200中无正数,不符合题意.综上可得,d的范围是(﹣2,+∞).【点评】本题考查新定义“接近”的理解和运用,考查等差数列和等比数列的定义和通项公式的运用,考查分类讨论思想方法,以及运算能力和推理能力,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年高考数学模拟卷2018.05一. 填空题 1. 若(1)3lim42n a n n →∞+-=+,则常数a =2. 椭圆224312x y +=的焦距为3. 若复数z 满足(34)43i z i -=+,则z z ⋅=4. 如图,正四棱锥P-ABCD 中所有棱长均相等,则侧棱与 底面所成角的大小为5. 已知函数()y f x =和函数2log (1)y x =+的图像关于直 线0x y -=对称,则函数()y f x =的解析式为6. 满足sin 30cos 1x x =的实数x 的取值集合是 7. 某学生参加2门选修课的考试.假设该学生第一门、第二门课程取得A 的概率依次为45、35,且不同课程是否取得A 相互独立.则该生只取得一门课程A 的概率为 8. 若z 为复数,则方程2z z =的解集为 9. 已知4024012341(32)x a a x a x a x +=++++,若数列1a 、2a 、…、k a (141,)k k ≤≤∈N 是一个单调递增数列,则k 的最大值为10.有一圆锥,底面和顶点均在一个半径为5的球面上,且圆锥底面经过球面上直线距离为6 的两点,则该圆锥体积的最小值为11. 若点P 在△ABC 的边界和内部运动,且AP x AB y AC =+.另有0a ≥,0b ≥,且恒有1ax by +≤,则以a 、b 为坐标的点所形成的平面区域的面积为12. 在投票评选活动中,经常采用简单多数原则或积分原则. 简单多数原则指n 个评委对k 个候选人进行一次表决,各自 选出认为最佳的人选,按每个候选人所得票数不同决定不同 名次;积分原则指每个评委先对k 个候选人排定顺序,第一 名得k 分,第二名得1k -分…,依此类推,最后一名得1分, 每个候选人最后的积分多少决定各自名次. 右表是33个评委 对A 、B 、C 、D 四名候选人做出的选择,则按不同原则评选, 名次不相同的候选人是(,)P a b二. 选择题13. 下列对函数3()3x f x x =+性质判断正确的是( ) A. ()f x 是奇函数 B. ()f x 是偶函数 C. ()f x 是增函数 D. ()f x 是减函数14. 已知α:区间[,]a b 内恰含两个整数. 则以下结论正确的是( ) A. “1b a -≥”是α成立的充分条件 B. “1b a -≥”是α成立的必要条件 C. “2b a -≤”是α成立的充分条件 D. “2b a -≤”是α成立的必要条件15. 若实数a 、b 、c 同时满足:① 22a b >;② 1ac a c +<+;③ log b a c >. 则a 、b 、c 的大小关系是( )A. b a c >>B. c b a >>C. c a b >>D. a b c >>16. 如果一个几何体绕着一条直线旋转θ角与原几何体重合,其中0180θ︒︒<≤,称该直线 为该几何体的一条旋转轴. 正四面体的不同旋转轴有( )条 A. 3 B. 4 C. 6 D. 7三. 解答题17. 如图,P A ⊥平面ABCD ,四边形ABCD 为矩形,1PA AB ==,2AD =,点F 是PB 的中点,点E 在边BC 上移动. (1)求三棱锥E -P AD 的体积;(2)证明:无论点E 在边BC 的何处,都有AF ⊥PE .18. 已知函数1()log 1axf x x+=-(0,1)a a >≠. (1)判断并证明函数()f x 的奇偶性;(2)若2(1)(2)0f t t f t --+-<,求实数的取值范围.t19. 如图,直径为1的圆O 中,作一关于圆心对称、邻边互相垂直的十字形,其中AB BE <,设AOB θ∠=.(1)将十字形的面积S 表示为θ的函数;(2)求十字形的面积S 的最大值,并求相应θ的值.20. 已知曲线:(,)0F x y Γ=,对坐标平面上任意一点(,)P x y ,定义[](,)F P F x y =. 若两点P 、Q ,满足[][]0F P F Q ⋅>,称点P 、Q 在曲线Γ同侧;若[][]0F P F Q ⋅<,称点P 、Q 在曲线Γ两侧.(1)直线l 过原点,线段AB 上所有点都在直线l 同侧,其中(1,1)A -、(2,3)B ,求直线l 的倾斜角的取值范围;(2)已知曲线22(,)(345)40F x y x y x y =+-⋅--=,O 为坐标原点,求点集{|[][]0}S P F P F O =⋅>的面积;(3)记到点(0,1)与到x 轴距离和为5的点的轨迹为曲线C ,曲线22:(,)0F x y x y y a Γ=+--=,若曲线C 上总存在两点M 、N 在曲线Γ两侧,求曲线C 的方程与实数a 的取值范围.21. 已知数列{}n a ,11a =,{}n a 的前n 项和为n S . (1)若12n n a a +-=,n ∈*N ,求证:22111111n n n n a a a a -+-++>+,其中3n ≥,n ∈*N ; (2)若对任意n ∈*N 均有131n n a a +=-,求{}n S 的通项公式; (3)若对任意n ∈*N 均有11n n n a a a +=+,求证:234n n S S -<.参考答案一.填空题1. 32. 23. 14.4π 5. 21,xy x R =-∈6. {|,}3x x k k Z =+∈ππ7.11258. 9. 17 10. 3π 11. 1 12. A 、C二.选择题 13.C14.B15.D16.D三.解答题 17、(1)1133P ADE ADE V PA S -∆=⋅⋅= …… 6分(2)只需证明AF PBC ⊥面因为PA ABCD ⊥面,故PA BC ⊥,又BC AB ⊥, 故BC AB ⊥面P ,所以BC AF ⊥;……10分 PAB ∆中,PA AB =,点F 是PB 的中点,故AF PB ⊥……12分 所以,AF PBC ⊥面,故无论点E 在边BC 的何处,都有AF PE ⊥.……14分(用向量证明类似评分)18. 【解】(1)10(1,1)1xD x+>⇒=--关于原点对称; …… 2分任意取(1,1)x ∈-,11()log log ()11aa x xf x f x x x-+-==-=-+-, 故函数()f x 是奇函数.…… 6分(2)因为(1,1)x ∈-时,12111x x x+=-+--单调递增 故1a >时,()f x 单调递增;01a <<时,()f x 单调递减.…… 8分因为()f x 是奇函数,故22(1)(2)0(1)(2)f t t f t f t t f t --+-<⇔--<- ……10分当1a >时,21121t t t -<--<-<得t ∈;……12分当01a <<时,21211tt t -<-<--<得2)t ∈;……14分19.(1)由题意,sin,cos 22AB BE θθ==,又AB BE <,故(0,)2πθ∈ ……3分故22sincos sin ,(0,)2222S θθθπ=-θ∈ ……7分(2) 21cos 12sincos sin sin )222222S θθθ-θ=-=θ-=θ+ϕ- ……10分其中1arctan 2ϕ=,当arctan 2θ=时,max 12S =.……14分20. (1)显然直线l 斜率存在,设方程为(,)0y kx F x y kx y =⇒=-= 则3[][](1)(23)012F A F B k k k ⋅=--->⇒-<< ……2分 故倾斜角的范围是33[0,arctan )(,)24π⋃π……4分(2)因为[]0[](345)0F O F P x y <⇒=+-< 故2234504x y x y +-<⎧⎨+<⎩,点集S 为圆224x y +=在直线3450x y +-=下方内部.……6分设直线和圆的交点为A 、B ,则O 到AB 的距离为1,故23AOB π∠=故所求面积为221418222323ππ⋅⋅+=……9分(3)设曲线C 上的动点为(,)x y ,||5y =, 化简得曲线C 的方程为28(3)(03)x y y =-≤≤和212(2)(20)x y y =+-≤≤,其轨迹为两段抛物线弧……12分【方法一】2222110()24x y y a x y a +--=⇒+-=+而曲线C 上的点到1(0,)2的距离的范围是5[2,……14分故562422a <⇒<< (16)分【方法二】当03y ≤≤时,2(,)924[6,24]F x y y y a a a =-+-∈--; 当20y -≤≤时,2(,)1124[6,24]F x y y y a a a =++-∈--; ……14分 故若有[][]0F M F N ⋅<,则(6)(24)0624a a a --<⇒<<. ……16分 21.(1) {}n a 为等差数列,21n a n =-……2分于是,22111111111125232321n n n n a a a a n n n n -+-++>+⇔+>+-+-+ 224242448443(25)(23)(23)(21)n n n n n n n n n n --⇔>⇔--<---+-+成立故原不等式成立.……4分(2) 1111313()22n n n n a a a a ++=-⇒-=-,11122a -=所以12n a ⎧⎫-⎨⎬⎩⎭是首项为12,公比为3的等比数列.……7分故1312n n a -+=,……8分131312()224n n n n S n --+=+=.……10分(3) 111111n n n n na a a a a ++=⇒=++, 即1n a ⎧⎫⎨⎬⎩⎭是首项为1,公差为1的等差数列, 故11n n n a a n=⇒=. 记2111122n n n T S S n n n=-=+++++. ……14分 由(1)知,11112112n k n k n n+≤++-++……16分故11111313()12221242(1)4n n T n n n n n n =+++≤+=-<++++. ……18分2018高考数学模拟卷201805双向细目表。