11章 数字电路

合集下载

集成电路设计基础第11章数字集成vlsi系统设计基础

集成电路设计基础第11章数字集成vlsi系统设计基础
时序逻辑电路分析
通过对时序逻辑电路的输入、输出及状态进行分析,了解其工作原理和特性。
时序逻辑电路设计
根据实际需求,选用合适的触发器和组合逻辑电路,设计出满足特定功能的时序逻辑电路。同时 需要考虑时序问题,确保电路的正确性和稳定性。
03
数字集成VLSI系统关键技术
高性能计算技术
并行处理技术
通过多核处理器、GPU加速等技术提高计算能力。
逻辑综合
将HDL代码转换为门级网表,优化电路性能并降低功 耗。
布局布线
根据电路需求和工艺要求,将门级网映射到具体的 芯片上,实现电路的物理实现。
时序分析
对布局布线后的电路进行时序分析,确保电路时序的 正确性和性能。
仿真验证与测试方法
前仿真
在电路设计阶段进行仿真验证, 检查电路功能和性能是否符合设 计要求。
THANKS
感谢观看
集成电路设计基础第11章数 字集成vlsi系统设计基础
• 数字集成VLSI系统概述 • 数字集成VLSI系统基本原理 • 数字集成VLSI系统关键技术 • 数字集成VLSI系统实现方法
• 数字集成VLSI系统应用实例 • 数字集成VLSI系统前沿研究动态
01
数字集成VLSI系统概述
定义与发展历程
柔性电子在数字集成VLSI中潜在价值
柔性电子器件
利用柔性基底和可弯曲的电 子材料制造柔性电子器件, 实现可穿戴、可折叠的数字
集成VLSI系统。
生物兼容性
柔性电子具有良好的生物兼 容性,可用于生物医学应用 中与人体紧密接触的电子设
备。
轻量化与便携性
柔性电子器件具有轻量化、 薄型化和可弯曲的特点,便 于携带和集成到各种移动设 备中。
应用领域及市场需求

第11章 数字电路综合案例

第11章 数字电路综合案例

第11章数字电路综合案例内容提要前面的章节介绍了数字电路的基本知识、基本理论、常用器件,以及数字电路分析和设计的基本方法。

本章涉及到复杂数字系统的设计。

数设计对象从译码器、计数器等这些基本逻辑功能电路到了数字钟等综合的数字逻辑系统的设计;设计方法也由采用真值表到求逻辑表达式、画出电路图的方式到通过确定总体方案,采取从局部到整体,用各种中、大规模集成电路来满足要求的数字电路系统的方式。

本章结合数字钟这一实际的案例来介绍数字电路系统的设计方法,进一步提高学生的综合能力和解决实际问题的能力。

基本教学要求1.了解中小规模集成电路的作用及实用方法。

2.了解数字钟电路的原理。

3.掌握综合数字电路系统的设计流程和设计方法。

11.1概述数字系统的设计,采用从整体到局部,再从局部到整理的设计方法。

首先对系统的目标、任务、指标要求等进行分析,确定系统的总体方案;然后把系统的总体方案分成若干功能部件,绘出系统的方框图;之后运用数字电路的分析和设计方法分别进行设计,或者是直接选用集成器件去构成功能部件;最后把这些功能部件连接组合起来,便构成了完整的数字系统,通过对电路的分析和测试修改,完善与优化整个系统。

这是传统的数字系统的设计方法,也是下面要介绍的内容。

随着计算机技术的发展,电子设计自动化EDA成为了现代电子系统设计与仿真的重要手段,对于复杂系统的设计十分有效,尤其是硬件描述语言的使用,使硬件软件化,让数字系统的设计更加方便、高效。

下面以数字钟系统设计为例,介绍综合数字电路系统的设计方法。

数字钟是一种用数字电子技术实现时、分、秒计时的装置,与传统的机械式时钟相比具准确、直观、寿命长等特点。

目前广泛用于个人家庭以及车站、码头、剧场、办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。

数字钟也是一种典型的数字电路,其中包括了组合逻辑电路和时序逻辑电路。

通过数字钟的设计进一步了解数字系统设计时用到的中小规模集成电路的使用方法,进一步学习与掌握各种组合逻辑电路与时序电路的原理与使用方法。

清华数字电路教材

清华数字电路教材

《清华数字电路教材:从基础到实践的全面指南》《数字电路与逻辑设计》是清华大学电子工程系本科生的基础教材,全书分为11章,包括逻辑代数基础、门电路、组合逻辑电路、触发器、时序逻辑电路、脉冲波形的产生与整形等章节,该书全面系统地介绍了数字电路的基本概念、逻辑设计和系统设计的方法,同时也介绍了相关的新技术和新方法,如硬件描述语言、可编程逻辑器件等。

数字电路与逻辑设计是电子工程和计算机科学的一门基础课程,它涉及到数字电路的基本概念、逻辑设计和系统设计的方法。

通过学习本课程,学生可以掌握数字电路的基本原理和设计方法,学会使用数字电路进行逻辑控制和数据处理的应用,为进一步学习计算机组成原理、微机原理与接口技术等后续课程打下基础。

清华大学出版社出版的《数字电路与逻辑设计》作为电子工程系本科生的基础教材,旨在培养学生的数字逻辑设计能力、分析问题和解决问题的能力。

该书具有以下特点:系统性:全书分为11章,按照数字电路的基本原理和应用逐步展开,从基本概念到系统设计的方法,全面介绍了数字电路的各个方面。

实用性:书中结合大量的实例和应用实例,让学生在实际操作中掌握数字电路的设计方法和技巧。

同时,书中也介绍了新技术和新方法,如硬件描述语言、可编程逻辑器件等,使教材更加实用。

通俗易懂:该书语言通俗易懂,尽量避免了枯燥的理论和数学推导,用简洁的语言描述了数字电路的基本原理和设计方法。

注重实验:书中注重实验和实践环节,通过实验帮助学生理解数字电路的基本原理和应用。

同时,实验也可以帮助学生掌握数字电路的实验技能和技巧。

总之,《数字电路与逻辑设计》是一本全面介绍数字电路基本原理和设计的教材,适用于电子工程、计算机科学、通信工程等专业的本科生使用。

通过学习本教材,学生可以掌握数字电路的基本概念、逻辑设计和系统设计的方法,为进一步学习和应用打下基础。

此外,《数字电路与逻辑设计》还配备了丰富的习题和实验内容,有助于学生巩固所学知识并提高实践能力。

数字电路课程教学大纲

数字电路课程教学大纲

数字电路课程教学大纲《数字电路》课程教学大纲课程编码:总学时:讲授/理论51学时适用专业:电子信息科学与技术先修课程:高等数学、大学物理、电路分析、模拟电子线路一、本课程地位、性质和任务《数字电路》是电子信息专业的主干课程,是一门重要的专业技术基础课。

《数字电路》与《模拟电子线路》一起,为理解现代电路结构、通信电子线路等硬件电路结构打下良好的基础。

通过本课程的学习,使使学生熟练掌握数字电路的基础理论知识,理解基本数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法,具有运用数字逻辑电路初步解决数字逻辑问题的能力。

同时也为以后专业课程的学习以及从事数字电子技术领域的工作打下扎实的理论基础。

二、课程教学的基本要求本课程是电信专业的一门重要的专业基础课程,通过本课程的学习,使学生熟悉数字电路的基础理论知识,理解基本数字逻辑电路的工作原理,掌握数字逻辑电路的基本分析和设计方法,具有应用数字逻辑电路,初步解决数字逻辑问题的能力。

三、课程学时分配、教学要求及主要内容(一) 课程学时分配一览表章节主要内容总学时学时分配讲授讨论习题实验其他第1章数制与码制 4 2 第2章逻辑代数基础 6 6 第3章门电路 6 6 第4章组合逻辑电路8 8第5章触发器 6 6第6章时序逻辑电路10 8第10章脉冲波形的产生与整形 4 4第11章数/模、模/数转换电路 4 4(二) 课程教学要求及主要内容第1章数制与码制教学目的和要求:本章介绍数制的概念、各种常用数制数的表示以及它们之间的转换;介绍真值与机器数、原码、反码、补码的概念,要求掌握三种码之间的转换、三种码进行数值运算时各自的优缺点以及运算方法;介绍信息编码的意义,掌握二进制码、循环码、标准ASCII码,认识循环码作为计数表示的优点、键盘各按键的ASCII码值。

教学重点和难点:带符号定点小数、整数的加减运算、ASCII码。

教学内容:1.1 概述(理解、熟练掌握)1.2 几种常见的数制(理解)1.3 不同数制间的转换(理解、熟练掌握)1.4 二进制算术运算(理解、熟练掌握)1.5 几种常见的编码:循环码、格雷码、BCD码、ASCII码(理解)第2章逻辑代数基础教学目的和要求:本章是本课程的基础和重点章节,逻辑代数是分析和设计数字电路的数学工具,本章主要介绍逻辑代数的公式、定理及逻辑函数的化简方法,要求掌握常用进制及其转换,基本和常用逻辑运算,逻辑代数的公式、定理,逻辑函数的公式、图形化简法,逻辑函数的各种表示方法及相互之间的转换。

电工学2第11章组合逻辑电路

电工学2第11章组合逻辑电路

分析 逻辑图 设计 功能
已知函数的逻辑图如图所示, 例 : 已知函数的逻辑图如图所示,试求它的逻辑 函数式。 函数式。 从输入端A、 解: 从输入端 、 B开始逐个写出每 开始逐个写出每 个图形符号输出端 的逻辑式,即得: 的逻辑式,即得:
Y = A+ B+ A+ B
Y = A + B + A + B = ( A + B)( A + B) = ( A + B)( A + B)
第11章 组合逻辑电路 11章
脉 冲 信 号 模拟信号:在时间上和 数值上连续的信号。
u
数字信号:在时间上和 数值上不连续的(即离 散的)信号。
u t
数字信号波形(正脉冲) 数字信号波形(正脉冲)
t
模拟信号波形
对模拟信号进行传输、 对模拟信号进行传输、 处理的电子线路称为 模拟电路。 模拟电路。
对数字信号进行传输、 对数字信号进行传输、 处理的电子线路称为 数字电路。 数字电路。
数字电路的分类
按半导体类型可分为: a、按半导体类型可分为: 双极型电路和单极型电路 按半导体类型可分为 b、按电路的集成度可分为: 按电路的集成度可分为: 按电路的集成度可分为 SSI(Small Scale Integrated )电路 数十器件 片) 电路(数十器件 电路 数十器件/片 MSI(Medium Scale Integrated)电路 数百器件 片) 电路(数百器件 电路 数百器件/片 LSI(Large Scale Integrated )电路 数千器件 片) 电路(数千器件 电路 数千器件/片 VLSI (Very Large Scale Integrated )电路 数万器件 片) 电路(数万器件 电路 数万器件/片 ASIC(Application Specific Integrated Circuit,专用集成电路) CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件 ) FPGA(Filed Programmable Gate Array,现场可编程门阵列 ) IP核(Intellectual Property,知识产权) 硬件设计包 SoC(System on a Chip,单片电子系统) CPLD/FPGA—可编程专用IC,或可编程ASIC。 EDA(Electronic Design Automation,电子设计自动化)

数字电路逻辑基本知识

数字电路逻辑基本知识
电路的设计维修维护灵活方便随着集成电路技术的高速发展数字逻辑电路的集成度越来越高集成电路块的功能随着小规模集成电路ssi中规模集成电路msi大规模集成电路lsi超大规模集成电路vlsi的发展也从元件级器件级部件级板卡级上升到系统级
数字逻辑
主 讲:代 媛 电 话:87092338
数字逻辑
用数字信号完成对数字量进行算术运算和逻辑运 算的电路称为数字电路,或数字系统。由于它具有逻 辑运算和逻辑处理功能,所以又称数字逻辑电路。现 代的数字电路是由半导体工艺制成的若干数字集成器 件构造而成。逻辑门是数字逻辑电路的基本单元。存 储器是用来存储二值数据的数字电路。
17
1.1 进位计数制
可见,数码处于不同的位置,代表的数值是不同的。这 里102、101、100、 10-1、10-2 称为权或位权,即十进制数中 各位的权是基数 10 的幂,各位数码的值等于该数码与权的 乘积。
因此, 435.86 4 102 4 101 5100 8 101 6 102
数字集成器件所用的材料以硅材料为主,在高速电路中 ,也使用化合物半导体材料,例如砷化镓等。
5
数字逻辑
逻辑门是数字电路中一种重要的逻辑单元电路 。 TTL逻辑门电路问世较早,其工艺经过不断改进,至今 仍为主要的基本逻辑器件之一。随着CMOS工艺的发展 ,TTL的主导地位受到了动摇,有被CMOS器件所取代的 趋势。
令小数部分 (a2 21 a3 22 am 2m1) F1
34
则上式可写成
1.2 数制转换
2( N )10 a1 F1
现代计算机通常都是标准的数字系统,数字系统 内部处理的是离散元素,并且采用称为信号的物理量 表示,一般为电压和电流,因而现实社会中的各种信 息在数字系统内部呈现出不同的形式 。

数字电路的基础知识

数字电路的基础知识

数字电路的基础知识数字电路是电子电路的一种,它使用离散的电压和电流信号来处理和存储数字信息。

数字电路由逻辑门、触发器和寄存器等基本逻辑单元组成。

逻辑门是数字电路的基础构建模块,常见的逻辑门包括与门、或门、非门和异或门等。

它们根据输入信号的真值表来决定输出信号的逻辑运算结果。

触发器是一种存储器件,用于存储和传输二进制数据。

最常见的触发器是D触发器,它具有一个数据输入端和一个时钟输入端,通过时钟上升沿或下降沿来传输数据。

触发器还可以用来实现计数器和状态机等功能。

寄存器是一种具有多个存储单元的存储器件,用于存储多位二进制数据。

寄存器通常由多个触发器级联构成,可以在时钟信号的控制下进行数据的并行或串行传输。

数字电路的设计和分析常常使用布尔代数和逻辑表达式。

布尔代数是一种数学系统,用于表示和操作逻辑关系。

逻辑表达式使用布尔运算符(如与、或、非)和变量(如A、B、C)来描述逻辑关系,进而用于设计和分析数字电路的功能和性能。

在数字电路中,信号一般使用二进制编码。

常用的二进制编码方式有二进制码、格雷码和BCD码等。

二进制码是最常见的编码方式,将每个数位上的值表示为0或1。

格雷码是一种特殊的二进制编码,相邻的编码只有一个比特位的差异,用于避免由于数字信号传输引起的误差。

BCD码是二进制编码的十进制形式,用于表示和处理十进制数字。

数字电路在计算机、通信、控制系统等领域有广泛的应用,例如计算机的中央处理器、内存和输入输出接口等都是基于数字电路的设计实现。

希望这些基础知识能够帮助你对数字电路有更好的理解。

数字电子技术习题答案

数字电子技术习题答案

习题答案第一章数制和码制1.数字信号和模拟信号各有什么特点?答:模拟信号——量值的大小随时间变化是连续的。

数字信号——量值的大小随时间变化是离散的、突变的(存在一个最小数量单位△)。

2.在数字系统中为什么要采用二进制?它有何优点?答:简单、状态数少,可以用二极管、三极管的开关状态来对应二进制的两个数。

3.二进制:0、1;四进制:0、1、2、3;八进制:0、1、2、3、4、5、6、7;十六进制:0、1、2、3、4、5、6、7、8、9、A、B、C、D、E、F。

4.(30.25)10=( 11110.01)2=( 1E.4)16。

(3AB6)16=( 0011101010110110)2=(35266)8。

(136.27)10=( 10001000.0100)2=( 88.4)16。

5.B E6.ABCD7.(432.B7)16=( 010*********. 10110111)2=(2062. 556)8。

8.二进制数的1和0代表一个事物的两种不同逻辑状态。

9.在二进制数的前面增加一位符号位。

符号位为0表示正数;符号位为1表示负数。

这种表示法称为原码。

10.正数的反码与原码相同,负数的反码即为它的正数原码连同符号位按位取反。

11.正数的补码与原码相同,负数的补码即为它的反码在最低位加1形成。

12.在二进制数的前面增加一位符号位。

符号位为0表示正数;符号位为1表示负数。

正数的反码、补码与原码相同,负数的反码即为它的正数原码连同符号位按位取反。

负数的补码即为它的反码在最低位加1形成。

补码再补是原码。

13.A:(+1011)2的反码、补码与原码均相同:01011;B: (-1101)2的原码为11101,反码为10010,补码为10011.14.A: (111011)2 的符号位为1,该数为负数,反码为100100,补码为100101. B: (001010)2 的符号位为0,该数为正,故反码、补码与原码均相同:001010.15.两个用补码表示的二进制数相加时,和的符号位是将两个加数的符号位和来自最高有效数字位的进位相加,舍弃产生的进位得到的结果就是和的符号。

《数字电子技术》详细目录

《数字电子技术》详细目录

《数字电子技术》目录第1章数制与编码1.1 数字电路基础知识1.1.1 模拟信号与数字信号1.1.2 数字电路的特点1.2 数制1.2.1 十进制数1.2.2 二进制数1.2.3 八进制数1.2.4 十六进制数1.3 数制转换1.3.1 二进制数与八进制数的相互转换1.3.2 二进制数与十六进制数的相互转换1.3.3 十进制数与任意进制数的相互转换1.4 二进制编码1.4.1 加权二进制码1.4.2 不加权的二进制码1.4.3 字母数字码1.4.4 补码1.5带符号二进制数的加减运算1.5.1 加法运算1.5.2 减法运算第2章逻辑门2.1 基本逻辑门2.1.1 与门2.1.2 或门2.1.3 非门2.2 复合逻辑门2.2.1 与非门2.2.2 或非门2.2.3 异或门2.2.4 同或门2.3 其它逻辑门2.3.1 集电极开路逻辑门2.3.2 集电极开路逻辑门的应用2.3.3 三态逻辑门2.4 集成电路逻辑门2.4.1 概述2.4.2 TTL集成电路逻辑门2.4.3 CMOS集成电路逻辑门2.4.4 集成逻辑门的性能参数2.4.5 TTL与CMOS集成电路的接口*第3章逻辑代数基础3.1 概述3.1.1 逻辑函数的基本概念3.1.2 逻辑函数的表示方法3.2 逻辑代数的运算规则3.2.1 逻辑代数的基本定律3.2.2 逻辑代数的基本公式3.2.3 摩根定理3.2.4 逻辑代数的规则3.3 逻辑函数的代数化简法3.3.1 并项化简法3.3.2 吸收化简法3.3.3 配项化简法3.3.4 消去冗余项法3.4 逻辑函数的标准形式3.4.1 最小项与最大项3.4.2 标准与或表达式3.4.3 标准或与表达式3.4.4 两种标准形式的相互转换3.4.5 逻辑函数表达式与真值表的相互转换3.5 逻辑函数的卡诺图化简法3.5.1 卡诺图3.5.2 与或表达式的卡诺图表示3.5.3 与或表达式的卡诺图化简3.5.4 或与表达式的卡诺图化简3.5.5 含无关项逻辑函数的卡诺图化简3.5.6 多输出逻辑函数的化简*第4章组合逻辑电路4.1 组合逻辑电路的分析4.1.1 组合逻辑电路的定义4.1.2 组合逻辑电路的分析步骤4.1.3 组合逻辑电路的分析举例4.2 组合逻辑电路的设计4.2.1 组合逻辑电路的一般设计步骤4.2.2 组合逻辑电路的设计举例4.3 编码器4.3.1 编码器的概念4.3.2 二进制编码器4.3.3 二-十进制编码器4.3.4 编码器应用举例4.4 译码器4.4.1 译码器的概念4.4.2 二进制译码器4.4.3 二-十进制译码器4.4.4 用译码器实现逻辑函数4.4.5 显示译码器4.4.6 译码器应用举例4.5 数据选择器与数据分配器4.5.1 数据选择器4.5.2 用数据选择器实现逻辑函数4.5.3 数据分配器4.5.4 数据选择器应用举例4.6 加法器4.6.1 半加器4.6.2 全加器4.6.3 多位加法器4.6.4 加法器应用举例4.6.5 加法器构成减法运算电路*4.7 比较器4.7.1 1位数值比较器4.7.2 集成数值比较器4.7.3 集成数值比较器应用举例4.8 码组转换电路4.8.1 BCD码之间的相互转换4.8.2 BCD码与二进制码之间的相互转换4.8.3 格雷码与二进制码之间的相互转换4.9 组合逻辑电路的竞争与冒险4.9.1 冒险现象的识别4.9.2 消除冒险现象的方法第5章触发器5.1 RS触发器5.1.1 基本RS触发器5.1.2 钟控RS触发器5.1.3 RS触发器应用举例5.2 D触发器5.2.1 电平触发D触发器5.2.2 边沿D触发器5.3 JK触发器5.3.1 主从JK触发器5.3.2 边沿JK触发器5.4 不同类型触发器的相互转换5.4.1 概述5.4.2 D触发器转换为JK、T和T'触发器5.4.3 JK触发器转换为D触发器第6章寄存器与计数器6.1 寄存器与移位寄存器6.1.1 寄存器6.1.2 移位寄存器6.1.3移位寄存器应用举例6.2 异步N进制计数器6.2.1 异步n位二进制计数器6.2.2 异步非二进制计数器6.3 同步N进制计数器6.3.1 同步n位二进制计数器6.3.2 同步非二进制计数器6.4 集成计数器6.4.1 集成同步二进制计数器6.4.2 集成同步非二进制计数器6.4.3 集成异步二进制计数器6.4.4 集成异步非二进制计数器6.4.5 集成计数器的扩展6.4.6 集成计数器应用举例第7章时序逻辑电路的分析与设计7.1 概述7.1.1 时序逻辑电路的定义7.1.2 时序逻辑电路的结构7.1.3 时序逻辑电路的分类7.2 时序逻辑电路的分析7.2.1时序逻辑电路的分析步骤7.2.2 同步时序逻辑电路分析举例7.2.3 异步时序逻辑电路分析举例7.3 同步时序逻辑电路的设计7.3.1 同步时序逻辑电路的基本设计步骤7.3.2 同步时序逻辑电路设计举例第8章存储器与可编程器件8.1 存储器概述8.1.1 存储器的分类8.1.2 存储器的相关概念8.1.3 存储器的性能指标8.2 RAM8.2.1 RAM分类与结构8.2.2 SRAM8.2.3 DRAM8.3 ROM8.3.1 ROM分类与结构8.3.2 掩膜ROM8.3.3 可编程ROM8.3.4 可编程ROM的应用8.4 快闪存储器(Flash Memory)8.4.1 快闪存储器的电路结构8.4.2 闪存与其它存储器的比较8.5 存储器的扩展8.5.1 存储器的位扩展法8.5.2 存储器的字扩展法8.6 可编程阵列逻辑8.6.1 PAL的电路结构8.6.2 PAL器件举例8.6.3 PAL器件的应用8.7 通用阵列逻辑8.7.1 GAL的性能特点8.7.2 GAL的电路结构8.7.3 OLMC8.7.4 GAL器件的编程与开发8.8 CPLD、FPGA和在系统编程技术8.8.1 数字可编程器件的发展概况8.8.2数字可编程器件的编程语言8.8.3数字可编程器件的应用实例第9章D/A转换器和A/D转换器9.1 概述9.2 D/A转换器9.2.1 D/A转换器的电路结构9.2.2 二进制权电阻网络D/A转换器9.2.3 倒T型电阻网络D/A转换器9.2.4 D/A转换器的主要技术参数9.2.5 集成D/A转换器及应用举例9.3 A/D转换器9.3.1 A/D转换的一般步骤9.3.2 A/D转换器的种类9.3.3 A/D转换器的主要技术参数9.3.4 集成A/D转换器及应用举例第10章脉冲波形的产生与整形电路10.1 概述10.2 多谐振荡器10.2.1 门电路构成的多谐振荡器10.2.2 采用石英晶体的多谐振荡器10.3 单稳态触发器10.3.1 门电路构成的单稳态触发器10.3.2 集成单稳态触发器10.3.3 单稳态触发器的应用10.4 施密特触发器10.4.1 概述10.4.2 施密特触发器的应用10.5 555定时器及其应用10.5.1 电路组成及工作原理10.5.2 555定时器构成施密特触发器10.5.3 555定时器构成单稳态触发器10.5.4 555定时器构成多谐振荡器第11章数字集成电路简介11.1 TTL门电路11.1.1 TTL与非门电路11.1.2 TTL或非门电路11.1.3 TTL与或非门电路11.1.4 集电极开路门电路与三态门电路11.1.5 肖特基TTL与非门电路11.2 CMOS门电路11.2.1 概述11.2.2 CMOS非门电路11.2.3 CMOS与非门电路11.2.4 CMOS或非门电路11.2.5 CMOS门电路的构成规则11.3 数字集成电路的使用。

电工电子技术基础知识点详解11-1--思政引例

电工电子技术基础知识点详解11-1--思政引例

第11章触发器和时序逻辑电路思政引例非学无以广才,非志无以成学——诸葛亮毒肿瘤治疗的机械触发器触发器(Flip-Flop,FF)是一种应用在数字电路上具有记忆功能的时序逻辑组件,可记录二进制数字“0”和“1”。

触发器工作是要处理输入信号、输出信号和时钟频率之间相互影响,要在时钟脉冲信号来到时才会被“触发”而动作,“触发器”名称由此而来。

触发器是构成时序逻辑电路以及各种数字系统基本逻辑单元,是由逻辑门电路组合而成,其结构大多由RS触发器派生而来。

近年来,随着脉冲技术迅速发展,触发器广泛应用于数字信号的产生、变换、存储等方面。

由触发器构成寄存器和计数器等时序逻辑器件,在通信、雷达、电子计算机、遥控、遥测等各个领域都发挥着极其重要的作用。

数字逻辑电路分为两大类:一类是组合逻辑电路,即电路中任一时刻的输出信号仅取决于该时刻电路输入信号,而与电路的原状态无关。

另一类是时序逻辑电路,即电路在任一时刻的输出信号不仅取决于该时刻电路的输入信号,而且还决定于电路原来的状态。

也就是说,时序逻辑电路具有记忆功能,这是时序逻辑电路与组合逻辑电路的本质区别。

在数字系统中,需要保存一些数据和运算结果,因此需要具有记忆功能电路,例如,计数器、寄存器电路。

触发器作为基本单元构成时序逻辑电路,时序逻辑电路具有记忆功能。

本章从构成时序逻辑电路基本单元电路---触发器结构出发,介绍几种常用触发器工作原理、逻辑功能及其动作特点。

通过举例分析寄存器、计数器电路的工作原理及逻辑功能介绍时序逻辑电路分析方法。

最后,简介计数器芯片功能和应用。

注意理解RS触发器、K触发器和D触发器逻辑符号和逻辑功能,弄清触发器在什么条件下改变状态(翻转)以及在什么时刻翻转。

了解数码寄存器和移位寄存器及二进制计数器和二一十进制计数器的工作原理。

数字电路最基本的电路单元

数字电路最基本的电路单元

数字电路最基本的电路单元数字电路是由数字信号处理的电路系统,是现代电子设备的重要组成部分。

在数字电路中,最基本的电路单元是逻辑门。

逻辑门是一种用于处理逻辑运算的电路,能够实现逻辑与、逻辑或、逻辑非等操作。

常见的逻辑门有与门、或门、非门、异或门等。

与门是实现逻辑与运算的基本电路单元。

当输入的所有信号都为高电平时,输出才为高电平;否则输出为低电平。

逻辑与操作符表示为“∧”。

与门的逻辑符号是一个带有两个输入端和一个输出端的符号。

或门是实现逻辑或运算的基本电路单元。

当输入的信号中有一个或多个为高电平时,输出就为高电平;只有当所有输入信号为低电平时,输出才为低电平。

逻辑或操作符表示为“∨”。

或门的逻辑符号是一个带有两个输入端和一个输出端的符号。

非门是实现逻辑非运算的基本电路单元。

非门的作用是将输入信号取反,即高电平变为低电平,低电平变为高电平。

逻辑非操作符表示为“¬”。

非门的逻辑符号是一个带有一个输入端和一个输出端的符号。

异或门是实现异或运算的基本电路单元。

异或运算是指当输入信号相同时输出为低电平,当输入信号不同时输出为高电平。

异或操作符表示为“⊕”。

异或门的逻辑符号是一个带有两个输入端和一个输出端的符号。

除了这些基本的逻辑门外,数字电路中还有许多其他类型的逻辑门,如与非门、或非门、异或非门等。

这些逻辑门可以通过组合和连接来实现各种复杂的逻辑运算,从而构建出功能更加强大的数字电路系统。

数字电路中的逻辑门不仅可以用于实现逻辑运算,还可以用于存储信息和控制信号的传输。

例如,通过连接多个逻辑门可以构建出各种类型的寄存器、计数器、存储器等功能单元,实现数字信号的存储和处理。

逻辑门还可以用于控制数字电路系统的各种操作,如时序控制、数据传输、信号调制等。

总的来说,数字电路中的逻辑门是实现数字信号处理的基本电路单元,是构建数字电路系统的基础。

通过学习和理解各种逻辑门的工作原理和应用方法,可以更好地设计和实现数字电路系统,提高电子设备的性能和功能。

数字电路 题库(2011.3.13)(1)

数字电路 题库(2011.3.13)(1)

数字电子技术试题汇编成都理工大学工程技术学院电子技术基础教研室第一章数制一、填空题1、(00101101)2 = ( )10 = ( )8421BCD。

2、(127)D=( )B=( )O =( )H=( )8421BCD3、(37) 10= ( ) 2 = ( )8 = ( )164、(101001)8421BCD = ( )D = ( )B5、(107)16= ( ) 2 = ( )8 = ( ) 8421BCD6、(467)8= ( )10 = ( )8421BCD。

7、(11011011.110)2=()10=()168、(216)10=()2421BCD9、-36=()原=()反=()补10、(1997)10= ()余3BCD= ()8421BCD11、格雷码属于可靠性编码,是一种错误最小化的编码方式,它能非常有效的减少过渡噪声,它特点是任意两个相邻的代码中有_______位二进制数位不同。

12、数字信号的特点是在_______上和_______上都是断续变化的,其高电平和低电平常用_______和_______来表示。

13、传输一个字节的信息,低七位为数据,最高位为奇校验码,其值应为__101101014、欲对100个对象进行二进制编码,则至少需要()位二进制数。

15、一位二进制数只有2个数,四位二进制数有个数;为计64个数,需要位二进制数。

二、选择器1、用8421码表示的十进制数45,可以写成()。

A.45 B. [101101]BCD C. [01000101]BCD D. [101101]22、数值[375]10与下列哪个数相等()。

A.[111011101]2 B. [567]8 C. [11101110]BCD D. [1F5]163、八位二进制数能表示十进制数的最大值是()。

A.255; B. 248; C. 192; D. 256。

4、在下列一组数中,数值相等的数是()。

数字电路基础(全部)pdf

数字电路基础(全部)pdf

2
0010 0101 0011 0010
3
0011 0110 0010 0011
4
0100 0111 0110 0100
5
0101 1000 0111 1011
6
0110 1001 0101 1100
7
0111 1010 0100 1101
8
1000 1011 1100 1110
9
1001 1100 1101 1111
(3)对组成数字电路的元器件的精度要求不高, 只要在工作时能够可靠地区分0和1两种状态即可。
2、数字电路的分类
(1)按集成度分类:数字电路可分为小规模(SSI,每 片数十器件)、中规模(MSI,每片数百器件)、大规模 (LSI,每片数千器件)和超大规模(VLSI,每片器件数 目大于1万)数字集成电路。集成电路从应用的角度又可 分为通用型和专用型两大类型。
Y=AB
功能表
开关 A 开关 B 灯 Y
断开 断开

断开 闭合

闭合 断开

闭合 闭合

实现与逻辑的电路 称为与门。与门的 逻辑符号:
将开关接通记作1,断开记作0; 灯亮记作1,灯灭记作0。可以作 出如下表格来描述与逻辑关系:
A BY
0
00 真
0
10 值
1
00 表
1
11
这种把所有可能的条件组合及其对应 结果一一列出来的表格叫做真值表。
1.1 数字电路概述
1.1.1 数字信号与数字电路 1.1.2 数字电路的特点与分类
退出
1.1.1 数字信号与数字电路
模拟信号:在时间上和 数值上连续的信号。
u
数字信号:在时间上和 数值上不连续的(即离 散的)信号。

数字电路数字逻辑

数字电路数字逻辑

数字电路数字逻辑
数字电路是一种用来处理数字信号的电子电路,也称为数字系统或数字逻辑电路。

它是现代电子设备的基础,如计算机、通信设备和各种控制系统等。

数字电路以二值数字逻辑为基础,其工作信号是离散的数字信号,反映在电路上就是低电平和高电平两种状态(即0和1两个逻辑值)。

数字电路中的基本单元是逻辑门,它实现基本的逻辑运算,如与、或、非等。

逻辑门由半导体工艺制成的数字集成器件构造而成,常见的有与门、或门、非门、异或门等。

存储器是用来存储二进制数据的数字电路,它对数据的存储和读取都是以二进制的形式进行的。

从整体上看,数字电路可以分为组合逻辑电路和时序逻辑电路两大类。

组合逻辑电路的输出信号只与当时的输入信号有关,而与电路以前的状态无关,它不具有记忆功能。

而时序逻辑电路则具有记忆功能,其输出信号不仅和当时的输入信号有关,而且与电路以前的状态有关。

常见的时序逻辑电路有触发器和寄存器等。

数字电路的发展与模拟电路一样经历了由电子管、半导体分立器件到集成电路等几个时代。

现代的数字电路由半导体工艺制成的若干数字集成器件构造而成,具有体积小、功耗低、可靠性高、速度快、功能强等特点。

总的来说,数字电路是数字系统的基础,它的设计和应用涉及到计算机科学、电子工程、通信工程等多个领域。

数字集成电路——电路、系统与设计

数字集成电路——电路、系统与设计

数字集成电路——电路、系统与设计目录第一部分基本单元第1章引论1.1 历史回顾1.2 数字集成电路设计中的问题1.3 数字设计的质量评价1.4 小结1.5 进一步探讨第2章制造工艺2.1 引言2.2 CMOS集成电路的制造2.3 设计规则——设计者和工艺工程师之间的桥梁2.4 集成电路封装2.5 综述:工艺技术的发展趋势2.6 小结2.7 进一步探讨设计方法插入说明A——IC版图第3章器件3.1 引言3.2 二极管3.3 MOS(FET)晶体管3.4 关于工艺偏差3.5 综述:工艺尺寸缩小3.6 小结3.7 进一步探讨设计方法插入说明B——电路模拟第4章导线4.1 引言4.2 简介4.3 互连参数——电容、电阻和电感4.4 导线模型4.5 导线的SPICE模型4.6 小结4.7 进一步探讨第二部分电路设计第5章CMOS反相器5.1 引言5.2 静态CMOS反相器——直观综述5.3 CMOS反相器稳定性的评估——静态特性5.4 CMOS反相器的性能——动态特性5.5 功耗、能量和能量延时5.6 综述:工艺尺寸缩小及其对反相器衡量指标的影响5.7 小结本文由整理提供5.8 进一步探讨第6章CMOS组合逻辑门的设计6.1 引言6.2 静态CMOS设计6.3 动态CMOS设计6.4 设计综述6.5 小结6.6 进一步探讨设计方法插入说明C——如何模拟复杂的逻辑电路设计方法插入说明D——复合门的版图技术第7章时序逻辑电路设计7.1 引言7.2 静态锁存器和寄存器7.3 动态锁存器和寄存器7.4 其他寄存器类型7.5 流水线:优化时序电路的一种方法7.6 非双稳时序电路7.7 综述:时钟策略的选择7.8 小结7.9 进一步探讨第三部分系统设计第8章数字IC的实现策略8.1 引言8.2 从定制到半定制以及结构化阵列的设计方法8.3 定制电路设计8.4 以单元为基础的设计方法8.5 以阵列为基础的实现方法8.6 综述:未来的实现平台8.7 小结8.8 进一步探讨设计方法插入说明E——逻辑单元和时序单元的特性描述设计方法插入说明F——设计综合第9章互连问题9.1 引言9.2 电容寄生效应9.3 电阻寄生效应9.4 电感寄生效应9.5 高级互连技术9.6 综述:片上网络9.7 小结9.8 进一步探讨第10章数字电路中的时序问题10.1 引言10.2 数字系统的时序分类本文由整理提供10.3 同步设计——一个深入的考察10.4 自定时电路设计10.5 同步器和判断器10.6 采用锁相环进行时钟综合和同步10.7 综述:未来方向和展望10.8 小结10.9 进一步探讨设计方法插入说明G——设计验证第11章设计运算功能块11.1 引言11.2 数字处理器结构中的数据通路11.3 加法器11.4 乘法器11.5 移位器11.6 其他运算器11.7 数据通路结构中对功耗和速度的综合考虑11.8 综述:设计中的综合考虑11.9 小结11.10进一步探讨第12章存储器和阵列结构设计12.1 引言12.2 存储器内核12.3 存储器外围电路12.4 存储器的可靠性及成品率12.5 存储器中的功耗12.6 存储器设计的实例研究12.7 综述:半导体存储器的发展趋势与进展12.8 小结12.9 进一步探讨设计方法插入说明H——制造电路的验证和测试本文由整理提供。

数字电路教案

数字电路教案

教案
授课专业:计算机网络技术
授课时间:
任课教师:
授课时间教案编写时间
教案
第1次课学时2
教案
第2次课学时2
教案
第3次课学时2
教案
第4次课学
时2
教案
第5次课学时2
教案
第6次课学时2
教案
第7次课学时2
教案
第8次课学时2
教案
第9次课学时2
教案
第10次课学
时2
教案
第11次课学时2
教案
第12次课学时2
教案
第13次课学时2
教案
第14次课学时2
教案
第15次课学时2
教案
第16次课
学时2
教案
第17次课学时2
教案
第18次课学时2
教案
第19次课学时2
教案
第20次课学时
2
教学方法:课堂讲授
教具及其他教学材料:多媒体课件
新课讲解:
主从触发器
1. 主从RS触发器
1)逻辑符号及构成:主触发器+从触发器
2)功能:
CP=0:主触发器接收输入信号,从触发器保持。

CP=0 1 状态变化(似是下降沿触发)
CP=1:从触发器接收主触发器信号产生相应的翻转,主触发器保持。

2. 主从JK触发器
逻辑符号及构成:
功能:
表达:
3. 主从触发器的一次翻转现象
教案
第21次课学时2
教案
第21次课学时2
教案
第22次课学时2
教案
第23次课学时2
教案
第24次课学时2
教案
第25次课学时2。

第11章脉冲数字电路

第11章脉冲数字电路
1脉冲数字电路的基本概念
十进制数化成二进制数:可以采用除2取余数,即将十进制数 连续用2除,直至商为0。每次的余数即为二进制数码,且最初得 到的余数为最低位有效数,最后得到的为最高位有效数。
上一页
返回
11. 2晶体管的开关特性
11. 2. 1二极管的开关特性
二极管在正向电压作用下导通,在反向电压作用下截止,这 相当于开关的闭合和断开。可见,二极管具有开关特性。 尽管二极管具有开关特性,但它并不是理想的开关。理想开 关要求在闭合时,电阻为零,开关两端的电压降也为零;开关在断 开时,电阻为无穷大,开关两端的电压等于电源电压。而二极管 在正向导通时,有正向电压降存在(硅管约为0. 7 V,锗管约为0. 3 V );且二极管在反向截止时,反向电阻虽然很大,但并不是无穷大, 仍能通过一个很小的反向饱和电流。所以二极管开关只能近似于 理想开关。但较之机械开关,二极管开关具有动作时间短、使用 频率高、无触点等优点。因此,在数字电路中,经常用二极管作 开关器件。
上一页
下一页
返回
11. 1脉冲数字电路的基本概念
4.脉冲宽度tw 脉冲宽度指脉冲信号所持续的时间,即脉冲信号从脉冲前沿0. 5 Um 处到脉冲后沿0. 5 Um处所用的时间。 5.脉冲间隔tg 从上一个脉冲后沿0. 5 Um处到下一个脉冲前沿0. 5 Um处所用 的时间。脉冲间隔也称为脉冲休止期。
上一页
返回
11. 3基本逻辑电路
11. 3. 1“与”门电路(AND电路)
当决定某一事件的条件全部具备时,该事件才能发生。这种 因果关系称为“与”逻辑关系能够实现“与”逻辑关系的电路称 为“与”门电路。 具有“与”逻辑关系的照明电路如图11 -9所示,开关A与B串 联。当开关A与B同时接通时(条件),灯泡F发亮(结果);只要有一个 开关不接通,灯泡就不会发亮。 利用二极管的钳位作用,可以构成“与”门电路,如图11一 10所示。它有2个输入端(也可以有多个)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用:加法计数器
JK触发器
CP
0
J K
X X
Qn Qn+1
X 0 1 0 Qn 0 1 0
0
0 1 1
0
1 0 1
1
0 1 0
0
1 K·Q S1 = J ·Q
1J
C1 1K
1
0
J CP K
(b)国标符号
带直接清零端和直接预置端的主从JK触发器:
Q Q Q Q
Q SD SD J CP
数字电路的特点:
数字电路只有“0”、“1”两种状态,基本单位 较简单。
集成度高、体积小、功耗低。
抗干扰能力强、精度高。 数字信息可长期储存。
11-2 逻辑门电路
所谓门就是一种开关,它能按照一定的条件 去控制信号的通过或不通过。
门电路的输入和输出之间存在一定的逻辑关系 (因果关系),所以门电路又称为逻辑门电路。 基本逻辑关系为“与”、“或”、“非”三种。 对应的门电路称为与门、或门和非门电路。
S
R
(2)R=1,S=0
Qn+1=1,Qn+1=0
触发器为1态
(3)R=0,S=0 R=1,S=1
(4) R=1,S=1
Qn+1=1,Qn+1=1
触发器状态不确定!当R和S同时向1 跳变时,下一个状态不能确定。 Qn+1=Q,Qn+1=Q
基本RS触发器状态表 输入 R S 0 1 1 0 输出 Q Q 1 0 0 1 不确定 保持 使触发器为0态 (触发器置0),
0
1 1
1
1 0
0 1
Q=1&1=0
0
Q=0&0=1
(2)当R=1, S=0时, C门输出为0, D门输出为1。 假设触发器的初始状态为0(Q=0,Q=1),则 触发器现在输出为Q=0,Q=1;(保持原状) 假设触发器的初始状态为1(Q=1,Q=0),则 触发器现在输出为Q=0,Q=1;(翻转)
0
1
0
1
小结: 输入R是低电平
置0端(复位端)
输入S是低电平 使触发器为1态 (触发器置1),
置1端(置位端)
RS触发器的应用:键盘按键消抖
练习一
已知某基本RS触发器的两个输入如图所示,试画出相 应的Q的状态,设Q的初态为0。
Q Q
RD
B
&
&
A
SD
t
S
R
t
二、同步RS触发器
触发器只有在同步信号到达时才按输入信号改变 状态。该同步信号叫做时钟脉冲(或时钟信号),简 称时钟,用CP表示。 受时钟信号控制的触发器称为钟控触发器。
0 1
10
四、复合逻辑门电路 1. 与非门
A B C A B C
“与非” 门逻辑状态表
1
&
Y
A
0 0 0 0 1 1 1 1
B
0 0 1 1 0 0 1 1
C
0 1 0 1 0 1 0 1
Y
1 1 1 1 1 1 1 0
“与”门 &
“非”门
Y
“与非”门
逻辑表达式:
Y=A B C
有“0”出“1”,全“1”出“0”
A
L 0 0 1 1
B
0 1 0 1
L
0 1 1 1
逻辑表达式:
L=A+
B
“或”逻辑关系是指当决定某事件的条件之 一具备时,该事件就发生。
2. 二极管或门电路 VA VB R VL
输入输出电平对应表 (忽略二极管压降)
输入 输出 VA/V VB/V VL/V 0 0 0 0 5 5 5 0 5 5 5 5
第11章 数字电路
11-1 概述
11-2 逻辑门电路
11-3 触发器
11-4 计数器
案例
出租车自动计价器设计
设计要求
• 设计一个出租车计价器。 • 该计价器的计费系统:行程 3公里内,且等待 累计时间2分钟内,起步费为10元;3公里外以 每公里1.6元计费,等待累计时间2分钟外以每 分钟以1.5元计费。 • 并能显示行驶公里数、等待累计时间、总费用 。
1 0 0 1
Q=0&1=1
1
0
1
Q=0
2.当CP=1 时,C、D门均开启。 (1)当R=0, S=1时, C门输出为1, D门输出为0。 假设触发器的初始状态为0(Q=0,Q=1),则 触发器现在输出为Q=1,Q=0;(触发器翻转) 假设触发器的初始状态为1(Q=1,Q=0),则 触发器现在输出为Q=1,Q=0;(保持原状)
FF1: R1 = K·Q S1 = J ·Q 输入端: J 、K 输出端: Q 、Q 时钟脉冲:CP ,且FF1与FF2时钟脉冲反向
时钟脉冲:CP ,且FF1与FF2时钟脉冲反向 CP=1时,FF1输入门开启,FF2输入门关闭 JK触发器保持原状态不变
CP=0时,FF1输入门关闭,FF2输入门开启 JK触发器翻转
+ 220V
R
A
状态表
L
A
0 1
L
1 0
-
逻辑表达式:L =
A
“非”逻辑关系是否定或相反的意思。
2. 双极晶体管非门电路
+12V
RC A
输入输出电平对应表
VA VL 1 0 (三极管截止) (三极管饱和) 0 1
R1
R2 -UB
T
L
特点: 1则0, 0则1
非逻辑— 逻辑反
非门表示符号: A
1
L
L A
主要技术指标

①计价范围:0~999.9元 计价分辨率: 0.1元


②计程范围:0~99公里 计程分辨率:
③计时范围:0~59分 计时分辨率:
1公里

系统组成
加法器 译码器 显示器
FPGA
时钟信号
等待信号 公里脉冲
计费/复位
分频器
计费
译码 显示
计时 控制器
计程
它由外部输入模块、FPGA模块、显示模块三部分组成。
电路结构和逻辑符号
(a) 电路结构 钟控RS触发器的动作特点:
(b) 图形符号
① 时钟电平控制。在CP = 1期间接收输入信号, CP = 0时触 发器的状态保持不变。
② 存在约束条件。
1 0
1
1.当CP=0 时,C、D门输出 1
此时,R、S输入端无论是0或1, 都不影响A、B门的输出状态, 此时C、D门被关闭。
(1) 具有两个稳态(1或0),可以存储二进制信息(保持);
(2) 有一对互补的输出(Q 和 Q); (3) 不同的触发信号可以将触发器设置成“0”或“1”状态。
(4) 输出状态不仅与现在的输入状态有关,还与过去的输入状态 有关。
一、基本RS触发器
电路结构和逻辑符号
由两个与非门的输入端、输 出端交叉连接构成。(反馈)
1 0 1
1
0
0 1
Q=0&1=1
0
1
Q=0&0=1
(4)当R=1, S=1时, C门输出为0, D门输出为0。 假设触发器的初始状态为0(Q=0,Q=1),则 触发器现在输出状态不确定。
同步RS 触发器状态表
输入 触发器的初始状态
CP=1后的触发器的状态
同步RS 触发器波形图
三、JK触发器
0V=逻辑0, 5V=逻辑1 此电路实现“或”逻辑关系
L=A+ B
或逻辑运算规则 — 逻辑加
0+0=0 1+0=1 0+1=1 1+1=1
或逻辑真值表
A 0 B 0 L 0
0
1
1
0
1
1
或门符号:
1
1
1
A B
≥1
L
特点:有“1”出“1”, 全“0”出 “0”
三、非逻辑和非门电路
1. “非”逻辑关系
例:A为输入信号,B为控制信号,根据输 入波形画出输出波形。
A B A
&
A Y1 B
>1
Y2
B
Y1 Y2
11-3 触发器
触发器是一种记忆元件,能够记住和保持以前的状态。
它有两个稳定输出状态:0态 和 1态,故又称为双稳态触发器。
主要内容:
(1) 分析两种功能的触发器:RS,JK;
触发器的特点:
L= A•B = AB
与逻辑运算规则 — 逻辑乘
0 • 0=0 0 • 1=0
与逻辑真值表 A B L
0
0 1
0
1 0 1
0
0 0 1
1 • 0=0
1 • 1=1
与门符号: A B & L
1
特点:有“0”出“0”, 全“1”出 “1”
二、或逻辑和或门电路
1. “或”逻辑关系
A +
220V B
状态表
0 11 1 1 0 0 1
0
Q=1&1=0
Q=0&1=1
(3)当R=0, S=0时, C门输出为1, D门输出为1。 假设触发器的初始状态为0(Q=0,Q=1),则 触发器现在输出为Q=0,Q=1;(保持原状) 假设触发器的初始状态为1(Q=1,Q=0),则 触发器现在输出为Q=1,Q=0;(保持原状)
Q Q
互补输出端: Q=0、Q=1的状态称“0”态, Q=1、Q=0的状态称“1”态。
Q Q
B
&
&
A
S
R
S (a) 逻辑图
R (b)
S
R 逻辑符号
相关文档
最新文档