七年级数学上册期末压轴题汇编
七年级上册期末压轴题汇编
七年级上册压轴题汇编一、线段类:1.如图,点C 为线段AB 上一点,D 为AC 的中点,点E 为线段BD 的中点 (1) 若CD =2CB ,AB =10,求BC 的长. (2) 若CE =21BC ,求ABBC .2.如图,点P 是定长线段AB 上一定点,C 点从P 点、D 点从B 点同时出发分别以每秒a 、b 厘米的速度沿直线AB 向左运动,并满足下列条件:① 关于m 、n 的单项式2m 2n a 与-3m b n 的和仍为单项式② 当C 在线段AP 上,D 在线段BP 上时,C 、D 运动到任一时刻时,总有PD =2AC (1) 直接写出:a =________,b =________ (2) 判断APAB=________,并说明理由 (3) 在C 、D 运动过程中,M 、N 分别是CD 、PB 的中点,运动t 秒时,恰好t 秒时,恰好3AC =2MN ,求此时CDAB的值3.如图1,点A 、B 分别在数轴原点O 的左右两侧,且OA =56OB ,点B 对应的数是10(1) 求A 点对应的数(2) 如图2,动点M 、N 、P 分别从原点O 、A 、B 同时出发,其中M 、N 均向右运动,速度分别为4个单位长度/秒、2个单位长度/秒,点P 向左运动,速度为5个单位长度/秒.设它们运动时间为t 秒,当点P 是MN 的中点时,求t 的值4.如图1,已知数轴上有三点A 、B 、C ,AC =2AB ,点A 对应的数是40 (1) 若AB =60,求点C 到原点的距离(2) 如图2,在(1)的条件,动点P 、Q 两点同时从C 、A 出发向右运动,同时动点R 从点A 向左(2) 运动,已知点P 的速度是点R 的速度的3倍,点Q 的速度是点R 的速度2倍少5个单位长度/秒,经过5秒,点P 、Q 之间的距离与点Q 、R 之间的距离相等,求动点Q 的速度.(3) 如图3,在(1)的条件下,O 表示原点,动点P 、T 分别从C 、O 两点同时出发向左运动,同时动点R 从点A 出发向右运动,点P 、T 、R 的速度分别为5个单位长度/秒,1个单位长度/秒、2个单位长度/秒,在运动过中,如果点M 为线段PT 的中点,点N 为线段OR 的中点,证明MNOTPR +的值不变.若其他条件不变,将R 的速度改为3个单位长度/秒,10秒后,MNOTPR +的值为________.5.点A 在数轴上对应的数为a ,点B 对应的数为b ,且a 、b 满足|a +3|+(b -2)2=0 (1) 求线段AB 的长(2) 点C 在数轴上对应的数为x ,且x 是方程2x +1=21x -5的根,在数轴上是否存在点P 使PA +PB =21BC +AB ,若存在,求出点P 对应的数,若不存在,说明理由(3) 如图,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:① PM -43BN 的值不变;②21 PM +43BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值。
七年级上册数学压轴题50道
七年级上册数学压轴题50道一、有理数运算相关压轴题1. 已知|a| = 3,b = 8,ab>0,求a b的值。
解析:因为|a| = 3,所以a=±3。
又因为ab>0,b=-8<0,所以a=3。
则a b=-3-(-8)=-3 + 8=5。
2. 计算:1 2+3 4+5 6+·s+99 100解析:1-2=-1,3 4=-1,·s,99-100=-1。
从1到100共100个数,两两一组,共100÷2 = 50组。
所以原式=(-1)×50=-50。
二、整式加减相关压轴题1. 已知A = 3x^2-2x + 1,B=5x^2-3x + 2,求2A 3B。
解析:2A=2(3x^2-2x + 1)=6x^2-4x+23B = 3(5x^2-3x + 2)=15x^2-9x+6则2A-3B=(6x^2-4x + 2)-(15x^2-9x+6)=6x^2-4x + 2-15x^2+9x 6=(6x^2-15x^2)+(9x-4x)+(2 6)=-9x^2+5x-42. 若a、b互为相反数,c、d互为倒数,m的绝对值是2,求(a +b)m^3+5m+2021cd的值。
解析:因为a、b互为相反数,所以a + b=0;因为c、d互为倒数,所以cd = 1;因为m的绝对值是2,所以m=±2。
当m = 2时,(a + b)m^3+5m+2021cd=0×2^3+5×2+2021×1=0 + 10+2021=2031当m=-2时,(a + b)m^3+5m+2021cd=0×(-2)^3+5×(-2)+2021×1=0-10 + 2021=2011三、一元一次方程相关压轴题1. 解方程:(1)/(2)<=ft[x-(1)/(2)(x 1)]=(2)/(3)(x-1)解析:先去小括号:(1)/(2)<=ft[x-(1)/(2)x+(1)/(2)]=(2)/(3)x-(2)/(3)(1)/(2)<=ft[(1)/(2)x+(1)/(2)]=(2)/(3)x-(2)/(3)再去中括号:(1)/(4)x+(1)/(4)=(2)/(3)x-(2)/(3)移项:(1)/(4)x-(2)/(3)x=-(2)/(3)-(1)/(4)通分:(3)/(12)x-(8)/(12)x=-(8)/(12)-(3)/(12)-(5)/(12)x=-(11)/(12)解得x=(11)/(5)2. 某班有学生45人,会下象棋的人数是会下围棋人数的3.5倍,两种棋都会及两种棋都不会的人数都是5人,求只会下围棋的人数。
数学七年级上册数学 压轴题 期末复习试题及答案解答
数学七年级上册数学压轴题期末复习试题及答案解答一、压轴题1.已知数轴上,点A和点B分别位于原点O两侧,AB=14,点A对应的数为a,点B对应的数为b.(1) 若b=-4,则a的值为__________.(2) 若OA=3OB,求a的值.(3) 点C为数轴上一点,对应的数为c.若O为AC的中点,OB=3BC,直接写出所有满足条件的c的值.2.如图,在数轴上的A1,A2,A3,A4,……A20,这20个点所表示的数分别是a1,a2,a3,a4,……a20.若A1A2=A2A3=……=A19A20,且a3=20,|a1﹣a4|=12.(1)线段A3A4的长度=;a2=;(2)若|a1﹣x|=a2+a4,求x的值;(3)线段MN从O点出发向右运动,当线段MN与线段A1A20开始有重叠部分到完全没有重叠部分经历了9秒.若线段MN=5,求线段MN的运动速度.3.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.4.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C为点A、B的“n节点”,且点C在数轴上表示的数为-4,求n的值;(2)若点D是数轴上点A、B的“5节点”,请你直接写出点D表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.5.如图1,线段AB的长为a.(1)尺规作图:延长线段AB到C,使BC=2AB;延长线段BA到D,使AD=AC.(先用尺规画图,再用签字笔把笔迹涂黑.)(2)在(1)的条件下,以线段AB所在的直线画数轴,以点A为原点,若点B对应的数恰好为10,请在数轴上标出点C,D两点,并直接写出C,D两点表示的有理数,若点M 是BC的中点,点N是AD的中点,请求线段MN的长.(3)在(2)的条件下,现有甲、乙两个物体在数轴上进行匀速直线运动,甲从点D处开始,在点C,D之间进行往返运动;乙从点N开始,在N,M之间进行往返运动,甲、乙同时开始运动,当乙从M点第一次回到点N时,甲、乙同时停止运动,若甲的运动速度为每秒5个单位,乙的运动速度为每秒2个单位,请求出甲和乙在运动过程中,所有相遇点对应的有理数.6.如图,数轴上点A表示的数为4-,点B表示的数为16,点P从点A出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q从点B出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t秒(t0)>.()1A,B两点间的距离等于______,线段AB的中点表示的数为______;()2用含t的代数式表示:t秒后,点P表示的数为______,点Q表示的数为______;()3求当t为何值时,1PQ AB2=?()4若点M为PA的中点,点N为PB的中点,点P在运动过程中,线段MN的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN的长.7.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF,然后将一副三角板拼接在一起,其中45角(AOB∠)的顶点与60角(COD∠)的顶点互相重合,且边OA、OC都在直线EF上.固定三角板COD不动,将三角板AOB绕点O按顺时针方向旋转一个角度α,当边OB与射线OF第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 8.已知,如图,A 、B 、C 分别为数轴上的三点,A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30,C 点在B 点左侧,C 点到A 点距离是B 点到A 点距离的4倍.(1)求出数轴上B 点对应的数及AC 的距离.(2)点P 从A 点出发,以3单位/秒的速度向终点C 运动,运动时间为t 秒. ①当P 点在AB 之间运动时,则BP = .(用含t 的代数式表示)②P 点自A 点向C 点运动过程中,何时P ,A ,B 三点中其中一个点是另外两个点的中点?求出相应的时间t .③当P 点运动到B 点时,另一点Q 以5单位/秒的速度从A 点出发,也向C 点运动,点Q 到达C 点后立即原速返回到A 点,那么Q 点在往返过程中与P 点相遇几次?直.接.写.出.相遇时P 点在数轴上对应的数9.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示); (2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度; (3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?10.如图,已知数轴上点A 表示的数为8,B 是数轴上位于点A 左侧一点,且AB=20,动点P 从A 点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒.(1)写出数轴上点B 表示的数______;点P 表示的数______(用含t 的代数式表示) (2)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P 、Q 同时出发,问多少秒时P 、Q 之间的距离恰好等于2?(3)动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速到家动,若点P 、Q 同时出发,问点P 运动多少秒时追上Q ?(4)若M 为AP 的中点,N 为BP 的中点,在点P 运动的过程中,线段MN 的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN 的长.11.已知:A 、O 、B 三点在同一条直线上,过O 点作射线OC ,使∠AOC :∠BOC =1:2,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在∠AOC 的内部.试探究∠AOM 与∠NOC 之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O 按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM 所在直线恰好平分∠BOC 时,时间t 的值为 (直接写结果). 12.已知:如图,点M 是线段AB 上一定点,12AB cm =,C 、D 两点分别从M 、B 出发以1/cm s 、2/cm s 的速度沿直线BA 向左运动,运动方向如箭头所示(C 在线段AM 上,D 在线段BM 上)()1若4AM cm =,当点C 、D 运动了2s ,此时AC =________,DM =________;(直接填空)()2当点C 、D 运动了2s ,求AC MD +的值.()3若点C 、D 运动时,总有2MD AC =,则AM =________(填空)()4在()3的条件下,N 是直线AB 上一点,且AN BN MN -=,求MN AB的值.13.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A ,B 两点同时出发到C 点,若甲的速度为8 cm/s ,乙的速度为6 cm/s ,设乙运动时间为x (s ), 甲乙两点之间距离为y (cm ). (1)当甲追上乙时,x = . (2)请用含x 的代数式表示y . 当甲追上乙前,y = ;当甲追上乙后,甲到达C 之前,y = ; 当甲到达C 之后,乙到达C 之前,y = .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.14.已知:如图,点A、B分别是∠MON的边OM、ON上两点,OC平分∠MON,在∠CON的内部取一点P(点A、P、B三点不在同一直线上),连接PA、PB.(1)探索∠APB与∠MON、∠PAO、∠PBO之间的数量关系,并证明你的结论;(2)设∠OAP=x°,∠OBP=y°,若∠APB的平分线PQ交OC于点Q,求∠OQP的度数(用含有x、y的代数式表示).15.如图①,点O为直线AB上一点,过点O作射线OC,使∠AOC=120°,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图①中的三角板OMN摆放成如图②所示的位置,使一边OM在∠BOC的内部,当OM平分∠BOC时,∠BO N= ;(直接写出结果)(2)在(1)的条件下,作线段NO的延长线OP(如图③所示),试说明射线OP是∠AOC的平分线;(3)将图①中的三角板OMN摆放成如图④所示的位置,请探究∠NOC与∠AOM之间的数量关系.(直接写出结果,不须说明理由)【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a的值为±212.(3)解:当点A在原点的右侧,点B在点C的左侧时(如图), c=-28 5.当点A在原点的右侧,点B在点C的右侧时(如图), c=-8.当点A在原点的左侧,点B在点C的右侧时,图略,c=28 5.当点A在原点的左侧,点B在点C的左侧时,图略,c=8.综上,点c的值为:±8,±28 5.【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.2.(1)4,16;(2)x=﹣28或x=52;(3)线段MN的运动速度为9单位长度/秒.【解析】【分析】(1)由A1A2=A2A3=……=A19A20结合|a1﹣a4|=12可求出A3A4的值,再由a3=20可求出a2=16;(2)由(1)可得出a1=12,a2=16,a4=24,结合|a1﹣x|=a2+a4可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(3)由(1)可得出A1A20=19A3A4=76,设线段MN的运动速度为v单位/秒,根据路程=速度×时间(类似火车过桥问题),即可得出关于v的一元一次方程,解之即可得出结论.【详解】解:(1)∵A1A2=A2A3=……=A19A20,|a1﹣a4|=12,∴3A3A4=12,∴A3A4=4.又∵a3=20,∴a2=a3﹣4=16.故答案为:4;16.(2)由(1)可得:a1=12,a2=16,a4=24,∴a2+a4=40.又∵|a1﹣x|=a2+a4,∴|12﹣x|=40,∴12﹣x=40或12﹣x=﹣40,解得:x=﹣28或x=52.(3)根据题意可得:A1A20=19A3A4=76.设线段MN的运动速度为v单位/秒,依题意,得:9v=76+5,解得:v=9.答:线段MN的运动速度为9单位长度/秒.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离以及规律性:图形的变化类,解题的关键是:(1)由相邻线段长度相等求出线段A3A4的长度及a2的值;(2)由(1)的结论,找出关于x的含绝对值符号的一元一次方程;(3)找准等量关系,正确列出一元一次方程.3.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4. 【解析】 【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可; (3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°; (2)∠AOE ﹣∠BOF 的值是定值 由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°, ∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°; (3)根据题意得∠BOF =(3t+14)°, ∴3314202t t +=+, 解得4t =. 故答案为4. 【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键. 4.(1)n= 8;(2)-2.5或2.5;(3)n=4或n=12. 【解析】 【分析】(1)根据“n 节点”的概念解答;(2)设点D 表示的数为x ,根据“5节点”的定义列出方程分情况,并解答;(3)需要分类讨论:①当点E 在BA 延长线上时,②当点E 在线段AB 上时,③当点E 在AB延长线上时,根据BE=12AE,先求点E表示的数,再根据AC+BC=n,列方程可得结论.【详解】(1)∵A表示的数为-2,B表示的数为2,点C在数轴上表示的数为-4,∴AC=2,BC=6,∴n=AC+BC=2+6=8.(2)如图所示:∵点D是数轴上点A、B的“5节点”,∴AC+BC=5,∵AB=4,∴C在点A的左侧或在点A的右侧,设点D表示的数为x,则AC+BC=5,∴-2-x+2-x=5或x-2+x-(-2)=5,x=-2.5或2.5,∴点D表示的数为2.5或-2.5;故答案为-2.5或2.5;(3)分三种情况:①当点E在BA延长线上时,∵不能满足BE=12 AE,∴该情况不符合题意,舍去;②当点E在线段AB上时,可以满足BE=12AE,如下图,n=AE+BE=AB=4;③当点E在AB延长线上时,∵BE=12 AE,∴BE=AB=4,∴点E表示的数为6,∴n=AE+BE=8+4=12,综上所述:n=4或n=12.【点睛】本题考查数轴,一元一次方程的应用,解题的关键是掌握“n节点”的概念和运算法则,找出题中的等量关系,列出方程并解答,难度一般.5.(1)详见解析;(2)35;(3)﹣5、15、1123、﹣767.【解析】【分析】(1)根据尺规作图的方法按要求做出即可;(2)根据中点的定义及线段长度的计算求出;(3)认真分析甲、乙物体运行的轨迹来判断它们相遇的可能性,分情况建立一元一次方程来计算相遇的时间,然后计算出位置.【详解】解:(1)如图所示;(2)根据(1)所作图的条件,如果以点A为原点,若点B对应的数恰好为10,则有点C对应的数为30,点D对应的数为﹣30,MN=|20﹣(﹣15)|=35(3)设乙从M点第一次回到点N时所用时间为t,则t=223522MN⨯==35(秒)那么甲在总的时间t内所运动的长度为s=5t=5×35=175可见,在乙运动的时间内,甲在C,D之间运动的情况为175÷60=2……55,也就是说甲在C,D之间运动一个来回还多出55长度单位.①设甲乙第一次相遇时的时间为t1,有5t1=2t1+15,t1=5(秒)而﹣30+5×5=﹣5,﹣15+2×5=﹣5这时甲和乙所对应的有理数为﹣5.②设甲乙第二次相遇时的时间经过的时间t2,有5t2+2t2=25+30+5+10,t2=10(秒)此时甲的位置:﹣15×5+60+30=15,乙的位置15×2﹣15=15这时甲和乙所对应的有理数为15.③设甲乙第三次相遇时的时间经过的时间t3,有5t3﹣2t3=20,t3=203(秒)此时甲的位置:30﹣(5×203﹣15)=1123,乙的位置:20﹣(2×203﹣5)=1123这时甲和乙所对应的有理数为112 3④从时间和甲运行的轨迹来看,他们可能第四次相遇.设第四次相遇时经过的时间为t4,有5t4﹣1123﹣30﹣15+2t4=1123,t4=91621(秒)此时甲的位置:5×91621﹣45﹣1123=﹣767,乙的位置:1123﹣2×91621=﹣767这时甲和乙所对应的有理数为﹣767. 四次相遇所用时间为:5+10+203+91621=3137(秒),剩余运行时间为:35﹣3137=347(秒)当时间为35秒时,乙回到N 点停止,甲在剩余的时间运行距离为5×347=5257⨯=1767. 位置在﹣767+1767=10,无法再和乙相遇,故所有相遇点对应的有理数为﹣5、15、1123、﹣767.【点睛】本题考查数轴作图及线段长度计算的基础知识,重要的是两个点在数轴上做复杂运动时的运动轨迹和相遇的位置,具有比较大的难度.正确分析出可能相遇的情况并建立一元一次方程是解题的关键.6.(1)20,6;(2)43t -+,162t -;(3)t 2=或6时;(4)不变,10,理由见解析. 【解析】 【分析】(1)由数轴上两点距离先求得A ,B 两点间的距离,由中点公式可求线段AB 的中点表示的数;(2)点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,向右为正,所以-4+3t ;Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,向左为负,16-2t.(3)由题意,1PQ AB 2=表示出线段长度,可列方程求t 的值; (4)由线段中点的性质可求MN 的值不变. 【详解】解:()1点A 表示的数为4-,点B 表示的数为16,A ∴,B 两点间的距离等于41620--=,线段AB 的中点表示的数为41662-+= 故答案为20,6()2点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动,∴点P 表示的数为:43t -+,点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动,∴点Q 表示的数为:162t -,故答案为43t -+,162t -()13PQ AB 2=()43t 162t 10∴-+--=t 2∴=或6答:t 2=或6时,1PQ AB 2=()4线段MN 的长度不会变化,点M 为PA 的中点,点N 为PB 的中点,1PM PA 2∴=,1PN PB 2= ()1MN PM PN PA PB 2∴=-=- 1MN AB 102∴== 【点睛】本题考查了一元一次方程的应用,数轴上两点之间的距离,找到正确的等量关系列出方程是本题的关键.7.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠. 【解析】 【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论. 【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°, ∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出; 故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=. 因为OB 平分EOD ∠,所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-. 因为BOC 2AOD ∠∠=, 所以()135α2120α-=-. 解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-. 因为BOC 2AOD ∠∠=, 所以()135α2α120-=-.解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=. 【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键. 8.(1)30,120(2)①30﹣3t②5或20③﹣15或﹣4834【解析】 【分析】(1)根据A 点对应的数为60,B 点在A 点的左侧,AB =30求出B 点对应的数;根据AC =4AB 求出AC 的距离;(2)①当P 点在AB 之间运动时,根据路程=速度×时间求出AP =3t ,根据BP =AB ﹣AP 求解;②分P 点是A 、B 两个点的中点;B 点是A 、P 两个点的中点两种情况讨论即可; ③根据P 、Q 两点的运动速度与方向可知Q 点在往返过程中与P 点相遇2次.设Q 点在往返过程中经过x 秒与P 点相遇.第一次相遇是点Q 从A 点出发,向C 点运动的途中.根据AQ ﹣BP =AB 列出方程;第二次相遇是点Q 到达C 点后返回到A 点的途中.根据CQ+BP =BC 列出方程,进而求出P 点在数轴上对应的数. 【详解】(1)∵A 点对应的数为60,B 点在A 点的左侧,并且与A 点的距离为30, ∴B 点对应的数为60﹣30=30;∵C 点到A 点距离是B 点到A 点距离的4倍, ∴AC=4AB =4×30=120; (2)①当P 点在AB 之间运动时, ∵AP=3t ,∴BP=AB ﹣AP =30﹣3t . 故答案为30﹣3t ;②当P点是A、B两个点的中点时,AP=12AB=15,∴3t=15,解得t=5;当B点是A、P两个点的中点时,AP=2AB=60,∴3t=60,解得t=20.故所求时间t的值为5或20;③相遇2次.设Q点在往返过程中经过x秒与P点相遇.第一次相遇是点Q从A点出发,向C点运动的途中.∵AQ﹣BP=AB,∴5x﹣3x=30,解得x=15,此时P点在数轴上对应的数是:60﹣5×15=﹣15;第二次相遇是点Q到达C点后返回到A点的途中.∵CQ+BP=BC,∴5(x﹣24)+3x=90,解得x=1054,此时P点在数轴上对应的数是:30﹣3×1054=﹣4834.综上,相遇时P点在数轴上对应的数为﹣15或﹣4834.【点睛】本题考查了一元一次方程的应用,行程问题相等关系的应用,线段中点的定义,进行分类讨论是解题的关键.9.(1)-20,10-5t;(2)线段MN的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B点表示的数为10-30;点P表示的数为10-5t;(2)分类讨论:①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差易求出MN.(3) 分①点P、Q相遇之前,②点P、Q相遇之后,根据P、Q之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A表示的数为10,B在A点左边,AB=30,∴数轴上点B表示的数为10-30=-20;∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数为10-5t;故答案为-20,10-5t;(2)线段MN的长度不发生变化,都等于15.理由如下:①当点P在点A、B两点之间运动时,∵M为线段AP的中点,N为线段BP的中点,∴MN=MP+NP=AP+BP=(AP+BP)=AB=15;②当点P运动到点B的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.10.(1)-12,8-5t;(2)94或114;(3)10;(4)MN的长度不变,值为10.【解析】【分析】(1)根据已知可得B点表示的数为8﹣20;点P表示的数为8﹣5t;(2)运动时间为t秒,分点P、Q相遇前相距2,相遇后相距2两种情况列方程进行求解即可;(3)设点P运动x秒时追上Q,根据P、Q之间相距20,列方程求解即可;(4)分①当点P在点A、B两点之间运动时,②当点P运动到点B的左侧时,利用中点的定义和线段的和差求出MN的长即可.【详解】(1)∵点A表示的数为8,B在A点左边,AB=20,∴点B表示的数是8﹣20=﹣12,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒,∴点P表示的数是8﹣5t,故答案为﹣12,8﹣5t;(2)若点P、Q同时出发,设t秒时P、Q之间的距离恰好等于2;分两种情况:①点P、Q相遇之前,由题意得3t+2+5t=20,解得t=94;②点P、Q相遇之后,由题意得3t﹣2+5t=20,解得t=11 4,答:若点P、Q同时出发,94或114秒时P、Q之间的距离恰好等于2;(3)如图,设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=20,解得:x=10,∴点P运动10秒时追上点Q;(4)线段MN的长度不发生变化,都等于10;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=10,②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=10,∴线段MN的长度不发生变化,其值为10.【点睛】本题考查了数轴上的动点问题,一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.11.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可. 【详解】(1)由旋转的定义可知:旋转角=∠NOB =90°. 故答案为:90°(2)∠AOM ﹣∠NOC =30°.理由:∵∠AOC :∠BOC =1:2,∠AOC +∠BOC =180°, ∴∠AOC =60°. ∴∠NOC =60°﹣∠AON . ∵∠NOM =90°, ∴∠AOM =90°﹣∠AON ,∴∠AOM ﹣∠NOC =(90°﹣∠AON )﹣(60°﹣∠AON )=30°. (3)如图1所示:当OM 为∠BOC 的平分线时,∵OM 为∠BOC 的平分线, ∴∠BOM =∠BOC =60°, ∴t =60°÷5°=12秒.如图2所示:当OM 的反向延长为∠BOC 的平分线时,∵ON 为为∠BOC 的平分线, ∴∠BON =60°.∴旋转的角度=60°+180°=240°. ∴t =240°÷5°=48秒. 故答案为:12秒或48秒. 【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.12.(1)2AC cm =,4DM cm =;(2)6AC MD cm +=;(3)4AM =;(4)13MN AB =或1. 【解析】【详解】(1)根据题意知,CM=2cm,BD=4cm.∵AB=12cm,AM=4cm,∴BM=8cm,∴AC=AM﹣CM=2cm,DM=BM﹣BD=4cm.故答案为2,4;(2)当点C、D运动了2 s时,CM=2 cm,BD=4 cm.∵AB=12 cm,CM=2 cm,BD=4 cm,∴AC+MD=AM﹣CM+BM﹣BD=AB﹣CM﹣BD=12﹣2﹣4=6 cm;(3)根据C、D的运动速度知:BD=2MC.∵MD=2AC,∴BD+MD=2(MC+AC),即MB=2AM.∵AM+BM=AB,∴AM+2AM=AB,∴AM=13AB=4.故答案为4;(4)①当点N在线段AB上时,如图1.∵AN﹣BN=MN.又∵AN﹣AM=MN,∴BN=AM=4,∴MN=AB﹣AM﹣BN=12﹣4﹣4=4,∴MNAB=412=13;②当点N在线段AB的延长线上时,如图2.∵AN﹣BN=MN.又∵AN﹣BN=AB,∴MN=AB=12,∴MNAB=1212=1.综上所述:MNAB=13或1.【点睛】本题考查了两点间的距离,灵活运用线段的和、差、倍、分转化线段之间的数量关系是十分关键的一点.13.问题一、(1)32;(2)3-2x;2x-3;13-6x;问题一、(1)35;120;24011.【解析】【分析】问题一根据等量关系,路程=速度 时间,路程差=路程1-路程2,即可列出方程求解。
数学七年级上册数学 压轴题 期末复习试题及答案解答
数学七年级上册数学 压轴题 期末复习试题及答案解答一、压轴题1.已知长方形纸片ABCD ,点E 在边AB 上,点F 、G 在边CD 上,连接EF 、EG .将∠BEG 对折,点B 落在直线EG 上的点B ′处,得折痕EM ;将∠AEF 对折,点A 落在直线EF 上的点A ′处,得折痕EN .(1)如图1,若点F 与点G 重合,求∠MEN 的度数;(2)如图2,若点G 在点F 的右侧,且∠FEG =30°,求∠MEN 的度数; (3)若∠MEN =α,请直接用含α的式子表示∠FEG 的大小.2.如图,从左到右依次在每个小方格中填入一个数,使得其中任意三个相邻方格中所填数之和都相等. 6abx-1-2 ...(1)可求得 x =______,第 2021 个格子中的数为______; (2)若前 k 个格子中所填数之和为 2019,求 k 的值;(3)如果m ,n 为前三个格子中的任意两个数,那么所有的|m -n | 的和可以通过计算|6-a |+|6-b|+|a -b|+|a -6| +|b -6|+|b -a| 得到.若m ,n 为前8个格子中的任意两个数,求所有的|m-n|的和.3.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.4.已知:OC 平分AOB ∠,以O 为端点作射线OD ,OE 平分AOD ∠.(1)如图1,射线OD 在AOB ∠内部,BOD 82∠=︒,求COE ∠的度数. (2)若射线OD 绕点O 旋转,BOD α∠=,(α为大于AOB ∠的钝角),COE β∠=,其他条件不变,在这个过程中,探究α与β之间的数量关系是否发生变化,请补全图形并加以说明.5.如图,数轴上点A 表示的数为4-,点B 表示的数为16,点P 从点A 出发,以每秒3个单位长度的速度沿数轴向右匀速运动同时点Q 从点B 出发,以每秒2个单位长度的速度向左匀速运动.设运动时间为t 秒(t 0)>.()1A ,B 两点间的距离等于______,线段AB 的中点表示的数为______;()2用含t 的代数式表示:t 秒后,点P 表示的数为______,点Q 表示的数为______;()3求当t 为何值时,1PQ AB 2=? ()4若点M 为PA 的中点,点N 为PB 的中点,点P 在运动过程中,线段MN 的长度是否发生变化?若变化,请说明理由;若不变请直接写出线段MN 的长.6.结合数轴与绝对值的知识解决下列问题:探究:数轴上表示4和1的两点之间的距离是____,表示-3和2两点之间的距离是____;结论:一般地,数轴上表示数m 和数n 的两点之间的距离等于∣m-n ∣.直接应用:表示数a 和2的两点之间的距离等于____,表示数a 和-4的两点之间的距离等于____; 灵活应用:(1)如果∣a+1∣=3,那么a=____;(2)若数轴上表示数a 的点位于-4与2之间,则∣a-2∣+∣a+4∣=_____; (3)若∣a-2∣+∣a+4∣=10,则a =______; 实际应用:已知数轴上有A 、B 、C 三点,分别表示-24,-10,10,两只电子蚂蚁甲、乙分别从A 、C 两点同时相向而行,甲的速度为4个单位长度/秒,乙的速度为6个单位长度/秒.(1)两只电子蚂蚁分别从A 、C 两点同时相向而行,求甲、乙数轴上相遇时的点表示的数。
人教版七年级上册数学期末动点问题压轴题专题训练(含答案)
人教版七年级上册数学期末动点问题压轴题专题训练(1)则B点表示的数为;(1)______,______.(2)若动点P 、Q 分别从点A 、B 处同时向右移动,点P 的速度为(1)当点Q 到达点B 时,点P 对应的数为 ;=a b =(1)当秒时,两点在折线数轴上的和谐距离(2)当点都运动到折线段上时,(1)当动点P 在上时,把点P 到点A 的距离记为,则_______式表示);(2)当动点P 在上时,把点P 到点O 的距离记为,则_______2t =M N 、M N 、O B C --OA AP AP =OB OP OP =(3)若动点P 运动的终点是点C ,动点Q 运动的终点是点A,动点P 、Q 是否同时到达终点,请说明理由;(4)当点Q 在上时,Q 、B 两点在“折线数轴”上相距的长度与P 、O 两点在“折线数轴”上相距的长度相等时,t 的值为__________(直接写出结果).7.如图,数轴上点、、对应的数分别为、、,且、、使得与互为同类项.动点从点出发沿数轴以每秒5个单位的速度向右运动,当点运动到点之后立即以原速沿数轴向左运动,动点从点出发的同时动点从点出发沿数轴以每秒1个单位的速度向右运动.设运动的时间为秒,(1)填空:______,______,点在数轴上所表示的数为______(用含的代数式表示).(2)在整个运动过程中,与何时相遇?(3)若动点从点出发的同时动点也从点出发沿数轴向左运动,运动速度为每秒5个单位长度,是否存在非负数使得在一段时间内为定值,如果不存在,说明理由;如果存在,求出非负数.8.已知式子是关于的二次多项式,且二次项系数为,数轴上,两点所对应的数分别是和.(1)则______,______;,两点之间的距离为______;(2)有一动点从点出发第一次向左运动1个单位长度,然后在新的位置第二次向右运动2个单位长度,再在此位置第三次向左运动3个单位长度…,按照如此规律不断地左右运动,当运动到第2023次时,求点所对应的有理数;(3)若点以每秒3个单位长度的速度向左运动,同时点以每秒5个单位长度的速度向BC A B C a b c a b c 1212a b x y z --35c x y z P A P C P A Q B t =a b =Q t P Q P A M C n nQM PM +n 32(4)625M a x x x =++-+x b A B a b =a b =A B P A P A BAI(1)点A 表示的数为 ;点B 表示的数为 (1)数轴上点表示的数是 ;当点运动到(2)动点从点出发,以每秒2个单位长度的速度沿数轴向左匀速运动,B P Q B(1)a 的值为 ,b 的值为 ,(2)点P 是数轴上A 、C 两点间的一个点,当(1)线段的长为 ,点表示的数为 ;(2)若、、三个动点分别从,,三点同时出发,均沿数轴负方向运动,它们AC B P Q R A B C(1)写出数轴上点A表示的数与(1)点表示的有理数是 ,点表示的有理数是 ,点A C(1)两点之间的距离是 ;(1)点表示的数是_______;,A B B参考答案:。
七年级数学上册数学压轴题练习(Word版 含答案)
七年级数学上册数学压轴题练习(Word 版 含答案)一、压轴题1.已知M ,N 两点在数轴上所表示的数分别为m ,n ,且m ,n 满足:|m ﹣12|+(n +3)2=0(1)则m = ,n = ;(2)①情境:有一个玩具火车AB 如图所示,放置在数轴上,将火车沿数轴左右水平移动,当点A 移动到点B 时,点B 所对应的数为m ,当点B 移动到点A 时,点A 所对应的数为n .则玩具火车的长为 个单位长度:②应用:一天,小明问奶奶的年龄,奶奶说:“我若是你现在这么大,你还要40年才出生呢;你若是我现在这么大,我已是老寿星,116岁了!”小明心想:奶奶的年龄到底是多少岁呢?聪明的你能帮小明求出来吗?(3)在(2)①的条件下,当火车AB 以每秒2个单位长度的速度向右运动,同时点P 和点Q 从N 、M 出发,分别以每秒1个单位长度和3个单位长度的速度向左和向右运动.记火车AB 运动后对应的位置为A ′B ′.是否存在常数k 使得3PQ ﹣kB ′A 的值与它们的运动时间无关?若存在,请求出k 和这个定值;若不存在,请说明理由. 2.如图,数轴上点A 、B 表示的点分别为-6和3(1)若数轴上有一点P ,它到A 和点B 的距离相等,则点P 对应的数字是________(直接写出答案)(2)在上问的情况下,动点Q 从点P 出发,以3个单位长度/秒的速度在数轴上向左移动,是否存在某一个时刻,Q 点与B 点的距离等于 Q 点与A 点的距离的2倍?若存在,求出点Q 运动的时间,若不存在,说明理由.3.定义:若90αβ-=,且90180α<<,则我们称β是α的差余角.例如:若110α=,则α的差余角20β=.(1)如图1,点O 在直线AB 上,射线OE 是BOC ∠的角平分线,若COE ∠是AOC ∠的差余角,求∠BOE 的度数.(2)如图2,点O 在直线AB 上,若BOC ∠是AOE ∠的差余角,那么BOC ∠与∠BOE 有什么数量关系.(3)如图3,点O 在直线AB 上,若COE ∠是AOC ∠的差余角,且OE 与OC 在直线AB 的同侧,请你探究AOC BOCCOE∠-∠∠是否为定值?若是,请求出定值;若不是,请说明理由.4.如图,在三角形ABC 中,8AB =,16BC =,12AC =.点P 从点A 出发以2个单位长度/秒的速度沿A B C A →→→的方向运动,点Q 从点B 沿B C A →→的方向与点P 同时出发;当点P 第一次回到A 点时,点P ,Q 同时停止运动;用t (秒)表示运动时间.(1)当t 为多少时,P 是AB 的中点;(2)若点Q 的运动速度是23个单位长度/秒,是否存在t 的值,使得2BP BQ =; (3)若点Q 的运动速度是a 个单位长度/秒,当点P ,Q 是AC 边上的三等分点时,求a的值.5.已知:点O 为直线AB 上一点,90COD ∠=︒ ,射线OE 平分AOD ∠,设COE α∠=.(1)如图①所示,若25α=︒,则BOD ∠= .(2)若将COD ∠绕点O 旋转至图②的位置,试用含α的代数式表示BOD ∠的大小,并说明理由;(3)若将COD ∠绕点O 旋转至图③的位置,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .(4)若将COD ∠绕点O 旋转至图④的位置,继续探究BOD ∠和COE ∠的数量关系,则用含α的代数式表示BOD ∠的大小,即BOD ∠= .6.如图,已知150AOB ∠=,将一个直角三角形纸片(90D ∠=)的一个顶点放在点O 处,现将三角形纸片绕点O 任意转动,OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠. (1)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若30COD ∠=,则MON ∠=_______;(2)将三角形纸片绕点O 转动(三角形纸片始终保持在AOB ∠的内部),若射线OD 恰好平分MON ∠,若8MON COD ∠=∠,求COD ∠的度数;(3)将三角形纸片绕点O 从OC 与OA 重合位置逆时针转到OD 与OA 重合的位置,猜想在转动过程中COD ∠和MON ∠的数量关系?并说明理由.7.对于数轴上的,,A B C 三点,给出如下定义:若其中一个点与其他两个点的距离恰好满足2倍的数量关系,则称该点是其他两点的“倍联点”. 例如数轴上点,,A B C 所表示的数分别为1,3,4,满足2AB BC =,此时点B 是点,A C 的“倍联点”.若数轴上点M 表示3-,点N 表示6,回答下列问题:(1)数轴上点123,,D D D 分別对应0,3. 5和11,则点_________是点,M N 的“倍联点”,点N 是________这两点的“倍联点”;(2)已知动点P 在点N 的右侧,若点N 是点,P M 的倍联点,求此时点P 表示的数. 8.如图①,已知线段30cm AB =,4cm CD =,线段CD 在线段AB 上运动,E 、F分别是AC 、BD 的中点.(1)若8cm AC ,则EF =______cm ;(2)当线段CD 在线段AB 上运动时,试判断EF 的长度是否发生变化?如果不变请求出EF 的长度,如果变化,请说明理由;(3)我们发现角的很多规律和线段一样,如图②已知COD ∠在AOB ∠内部转动,OE 、OF 分别平分AOC ∠和BOD ∠,则EOF ∠、AOB ∠和COD ∠有何数量关系,请直接写出结果不需证明.9.(1)如图1,在直线AB 上,点P 在A 、B 两点之间,点M 为线段PB 的中点,点N 为线段AP 的中点,若AB n =,且使关于x 的方程()46n x n -=-无解. ①求线段AB 的长;②线段MN 的长与点P 在线段AB 上的位置有关吗?请说明理由; (2)如图2,点C 为线段AB 的中点,点P 在线段CB 的延长线上,试说明PA PBPC+的值不变.10.综合与探究问题背景数学活动课上,老师将一副三角尺按图(1)所示位置摆放,分别作出∠AOC ,∠BOD 的平分线OM 、ON ,然后提出如下问题:求出∠MON 的度数. 特例探究“兴趣小组”的同学决定从特例入手探究老师提出的问题,他们将三角尺分别按图2、图3所示的方式摆放,OM 和ON 仍然是∠AOC 和∠BOD 的角平分线.其中,按图2方式摆放时,可以看成是ON 、OD 、OB 在同一直线上.按图3方式摆放时,∠AOC 和∠BOD 相等.(1)请你帮助“兴趣小组”进行计算:图2中∠MON 的度数为 °.图3中∠MON 的度数为 °. 发现感悟解决完图2,图3所示问题后,“兴趣小组”又对图1所示问题进行了讨论: 小明:由于图1中∠AOC 和∠BOD 的和为90°,所以我们容易得到∠MOC 和∠NOD 的和,这样就能求出∠MON 的度数.小华:设∠BOD 为x °,我们就能用含x 的式子分别表示出∠NOD 和∠MOC 度数,这样也能求出∠MON 的度数.(2)请你根据他们的谈话内容,求出图1中∠MON 的度数. 类比拓展受到“兴趣小组”的启发,“智慧小组”将三角尺按图4所示方式摆放,分别作出∠AOC 、∠BOD 的平分线OM 、ON ,他们认为也能求出∠MON 的度数.(3)你同意“智慧小组”的看法吗?若同意,求出∠MON 的度数;若不同意,请说明理由.11.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由; (2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值12.一般地,n 个相同的因数a 相乘......a a a ⋅,记为n a , 如322228⨯⨯==,此时,3叫做以2为底8的对数,记为2log 8 (即2log 83=) .一般地,若(0na b a =>且1,0)a b ≠>, 则n 叫做以a 为底b 的对数, 记为log a b (即log a b n =) .如4381=, 则4叫做以3为底81的对数, 记为3log 81 (即3log 814=) .(1)计算下列各对数的值:2log 4= ;2log 16= ;2log 64= . (2)观察(1)中三数4、16、64之间满足怎样的关系式,222log 4,log 16,log 64之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?(4) 根据幂的运算法则:n m n m a a a +=以及对数的含义说明上述结论.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)m =12,n =﹣3;(2)①5;②应64岁;(3)k =6,15 【解析】 【分析】(1)由非负性可求m ,n 的值;(2)①由题意可得3AB =m ﹣n ,即可求解;②由题意列出方程组,即可求解; (3)用参数t 分别表示出PQ ,B 'A 的长度,进而用参数t 表示出3PQ ﹣kB ′A ,即可求解. 【详解】解:(1)∵|m ﹣12|+(n +3)2=0, ∴m ﹣12=0,n +3=0, ∴m =12,n =﹣3; 故答案为:12,﹣3;(2)①由题意得:3AB =m ﹣n , ∴AB =3m n-=5, ∴玩具火车的长为:5个单位长度, 故答案为:5;②能帮小明求出来,设小明今年x 岁,奶奶今年y 岁, 根据题意可得方程组为:40116y x x y x y-=+⎧⎨-=-⎩ ,解得:1264x y =⎧⎨=⎩ ,答:奶奶今年64岁;(3)由题意可得PQ =(12+3t )﹣(﹣3﹣t )=15+4t ,B 'A =5+2t ,∵3PQ ﹣kB ′A =3(15+4t )﹣k (5+2t )=45﹣5k +(12﹣2k )t ,且3PQ ﹣kB ′A 的值与它们的运动时间无关, ∴12﹣2k =0, ∴k =6∴3PQ ﹣kB ′A =45﹣30=15 【点睛】本题主要考查数轴上的动点问题,关键是用代数式表示数轴上两点之间的距离,体现了数形结合思想和方程思想.2.(1)-1.5;(2)存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒. 【解析】 【分析】(1)根据同一数轴上两点的距离公式可得结论;(2)分两种情况:当点Q 在A 的左侧或在A 的右侧时,根据Q 点与B 点的距离等于Q 点与A 点的距离的2倍可得结论; 【详解】解:(1)数轴上点A 表示的数为-6;点B 表示的数为3; ∴AB=9;∵P 到A 和点B 的距离相等, ∴点P 对应的数字为-1.5.(2)由题意得:设Q 点运动得时间为t ,则QB=4.5+3t ,QA=4.53t - 分两种情况:①点Q 在A 的左边时,4.5+3t=2()4.53t -, t=0.5,②点Q 在A 的右边时,4.5+3t=2()3 4.5t -, t=4.5,综上,存在这样的时刻,点Q 运动的时间为0.5秒或4.5秒. 【点睛】本题考查了数轴、一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分情况进行讨论.3.(1)30°;(2)BOC ∠+∠BOE =90°;(3)为定值2,理由见解析 【解析】 【分析】(1)根据差余角的定义,结合角平分线的性质可得∠BOE 的度数; (2)根据差余角的定义得到BOC ∠和AOE ∠的关系,(3)分当OE 在OC 左侧时,当OE 在OC 右侧时,根据差余角的定义得到COE ∠和AOC ∠的关系,再结合余角和补角的概念求出AOC BOCCOE∠-∠∠的值.【详解】解:(1)如图,∵COE ∠是AOC ∠的差余角 ∴AOC ∠-COE ∠=90°, 即AOC ∠=COE ∠+90°, 又∵OE 是BOC ∠的角平分线,∴∠BOE =COE ∠,则COE ∠+90°+COE ∠+COE ∠=180°, 解得COE ∠=30°;(2)∵BOC ∠是AOE ∠的差余角, ∴AOE ∠-BOC ∠=90°,∵AOE ∠=AOC ∠+COE ∠,BOC ∠=∠BOE +COE ∠, ∴AOC ∠-∠BOE =90°, ∵AOC ∠=180°-BOC ∠, ∴180°-BOC ∠-∠BOE =90°, ∴BOC ∠+∠BOE =90°; (3)当OE 在OC 左侧时, ∵COE ∠是AOC ∠的差余角, ∴AOC ∠-COE ∠=90°, ∴∠AOE =∠BOE=90°, 则AOC BOCCOE∠-∠∠=90COE BOCCOE ∠+︒-∠∠=COE COE COE ∠+∠∠=2;当OE 在OC 右侧时, 过点O 作OF ⊥AB ,∵COE ∠是AOC ∠的差余角, ∴AOC ∠=90°+COE ∠, 又∵AOC ∠=90°+COF ∠, ∴COE ∠=COF ∠, ∴AOC BOCCOE∠-∠∠=90COE BOCCOE∠+︒-∠∠=9090COE COFCOE∠+︒-︒+∠∠=COE COF COE ∠+∠∠=COE COE COE ∠+∠∠=2.综上:AOC BOCCOE∠-∠∠为定值2.【点睛】本题属于新概念题,考查了余角、补角的知识,仔细观察图形理解两个角的差余角关系、互补关系是解题的关键. 4.(1)2;(2)存在,t=125;(3)54或127【解析】 【分析】(1)根据AB 的长度和点P 的运动速度可以求得;(2)根据题意可得:当2BP BQ =时,点P 在AB 上,点Q 在BC 上,据此列出方程求解即可;(3)分两种情况:P 为接近点A 的三等分点,P 为接近点C 的三等分点,分别根据点的位置列出方程解得即可. 【详解】解:(1)∵8AB =,点P 的运动速度为2个单位长度/秒, ∴当P 为AB 中点时,42=2÷(秒);(2)由题意可得:当2BP BQ =时, P ,Q 分别在AB ,BC 上, ∵点Q 的运动速度为23个单位长度/秒, ∴点Q 只能在BC 上运动,∴BP=8-2t ,BQ=23t , 则8-2t=2×23t , 解得t=125, 当点P 运动到BC 和AC 上时,不存在2BP BQ =; (3)当点P 为靠近点A 的三等分点时,如图,AB+BC+CP=8+16+8=32, 此时t=32÷2=16, ∵BC+CQ=16+4=20, ∴a=20÷16=54, 当点P 为靠近点C 的三等分点时,如图, AB+BC+CP=8+16+4=28, 此时t=28÷2=14, ∵BC+CQ=16+8=24, ∴a=24÷14=127.综上:a 的值为54或127. 【点睛】本题考查了一元一次方程的应用—几何问题,在点的运动过程中根据线段关系列出方程进行求解,需要一定的想象能力和计算能力,难度中等.5.(1)50;(2)2BOD α∠=;(3)2α;(4)3602α︒- 【解析】 【分析】(1)根据“∠COD=90°,∠COE=25°”求出∠DOE 的度数,再结合角平分线求出∠AOD 的度数,即可得出答案;(2)重复(1)中步骤,将∠COE 的度数代替成α计算即可得出答案;(3)根据图得出∠DOE=∠COD-∠COE=90°-α,结合角平分线的性质以及平角的性质计算即可得出答案;(4)根据图得出∠DOE=∠COE-∠COD=α-90°,结合角平分线的性质以及平角的性质计算即可得出答案.【详解】解:(1)∵∠COD=90°,∠COE=25°∴∠DOE=∠COD-∠COE=65°又OE 平分∠AOD∴∠AOD=2∠DOE=130°∴∠BOD=180°-∠AOD=50°(2)∵∠COD=90°,∠COE=α∴∠DOE=∠COD-∠COE=90°-α 又OE 平分∠AOD∴∠AOD=2∠DOE=180°-2?α∴∠BOD=180°-∠AOD=2α (3)∵∠COD=90°,∠COE=α∴∠DOE=∠COD-∠COE=90°-α 又OE 平分∠AOD∴∠AOD=2∠DOE=180°-2?α∴∠BOD=180°-∠AOD=2α (4)∵∠COD=90°,∠COE=α∴∠DOE=∠COE-∠COD=α-90° 又OE 平分∠AOD∴∠AOD=2∠DOE=2?α-180°∴∠BOD=180°-∠AOD=360°-2α 【点睛】本题考查的是求角度,难度适中,涉及到了角平分线以及平角的性质需要熟练掌握.6.(1)90︒;(2)COD=10∠︒;(3)1752MON COD ∠=∠+︒,证明见解析 【解析】【分析】(1)利用角平分线定义得出12AOM MOC AOC x ∠=∠=∠=,12BON DON BOD y ∠=∠=∠=,再利用∠AOB 的和差关系进行列方程即可求解; (2)利用8MON COD ∠=∠,表达出∠AOC 、∠BOD ,利用∠AOB 的和差关系进行列方程即可求解; (3)画出图形后利用角的和差关系进行计算求解即可.【详解】解:(1)∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠.∴OM 平分∠AOC, ON 平分∠BOD∴设11,22AOM MOC AOC x BON DON BOD y ∠=∠=∠=∠=∠=∠= ∴2,2AOC x BOD y ∠=∠=,30MON MOC COD DON x y ∠=∠+∠+∠=+︒+ ∵2302150AOB AOC BOD COD x y ∠=∠+∠+∠=+︒+=︒∴60x y +=︒∴3090MON x y ∠=+︒+=︒故答案为: 90︒(2)∵8MON COD ∠=∠∴设=,8COD a MON a ∠∠=∵射线OD 恰好平方MON ∠∴14,2DOM DON MON a ∠=∠=∠= ∴43,COM DOM COD a a a ∠=∠-∠=-= ∵OM 平分斜边OC 与OA 的夹角,ON 平分BOD ∠.∴OM 平分∠AOC, ON 平分∠BOD∴113,422AOM MOC AOC a BON DON BOD a ∠=∠=∠=∠=∠=∠= ∴6,8AOC a BOD a ∠=∠= ∵68150AOB AOC BOD COD a a a ∠=∠+∠+∠=++=︒∴=10a ︒∴COD=10∠︒(3) 1752MON AOC ∠=∠+︒,证明如下: 当OC 与OA 重合时,设∠COD=x,则150150BOD AOB COD COD x ∠=∠-∠=︒-∠=︒-∵ON 平分∠BOD ∴117522DON BOD x ∠=∠=︒- ∴MON COD DON ∠=∠+∠ 1752x x =+︒- 1752x =︒+ ∴1752MON COD ∠=︒+∠当OC 在OA 的左侧时设∠AOD=a ,∠AOC=b,则∠BOD=∠AOB -∠AOD=150°-a ,∠COD=∠AOD+∠AOC=a+b ∵ON 平分∠BOD∴117522DON BOD a ∠=∠=︒- ∵OM 平分∠AOC∴1122AOM COM AOC b ∠=∠=∠= ∴∠MON=∠MOA+∠AOD+∠DON117522b a a =++︒- 117522b a =++︒ 1752COD =∠+︒当OD 与OA 重合时∵ON 平分∠AOB∴1752AON AOB ∠=∠=︒ ∵OM 平分∠AOC∴12MON AOC ∠=∠ ∴MON MOD AON ∠=∠+∠ 1752AOC =∠+︒ 综上所述 1752MON AOC ∠=∠+︒ 【点睛】本题考查了角平分线的动态问题,掌握角平分线的性质是解题的关键.7.(1)1D ;2D ,3D (2)点P 表示的数为24或212. 【解析】【分析】(1)分别计算D 1,D 2,D 3三点与M,N 的距离,再根据新定义的概念得到答案; (2)设点P 表示的数为x ,分以下情况列方程求解:①2NP NM =;②2NP NM =.【详解】解:(1)D 1M=3,D 1N=6,2D 1M=D 1N ,故D 1符合题意;D 2M=6.5,D 2N=2.5,故D 2不符合题意;D 3M=14,D 3N=5,故D 3不符合题意;因此点D 1是点,M N 的“倍联点”.又2D 2N= D 3N ,∴点N 是D 2,D 3的“倍联点”.故答案为:D 1;D 2,D 3.(2)设点P 表示的数为x ,第一种情况:当2NP NM =时,则62[6(3)]x -=⨯--,解得24x =.第二种情况:当2NP NM =时,则2(6)6(3)x -=--, 解得:212x =. 综上所述,点P 表示的数为24或212. 【点睛】本题考查了数轴及数轴上两点的距离、动点问题,认真理解新定义的概念是解题的关键.8.(1)17cm EF =;(2)EF 的长度不变,17cm EF =;(3)()12EOF AOB COD ∠=∠+∠. 【解析】【分析】 (1)根据已知条件求出BD=18cm ,再利用E 、F 分别是AC 、BD 的中点,分别求出AE 、BF 的长度,即可得到EF ;(2)根据中点得到12EC AC =,12DF DB =,由EF EC CD DF =++推导得出EF=()12AB CD +,将AB 、CD 的值代入即可求出结果; (3)由OE 、OF 分别平分AOC ∠和BOD ∠得到12COE AOC ∠=∠, 12DOF BOD ∠=∠,即可列得EOF COE COD DOF ∠=∠+∠+∠,通过推导得出()12EOF AOB COD ∠=∠+∠. 【详解】(1)∵30cm AB =,4cm CD =,8cm AC ,∴308418BD AB AC CD =--=--=cm ,∵E 、F 分别是AC 、BD 的中点, ∴142AE AC ==cm , 192BF BD ==cm , ∴304917EF AB AE BF =--=--=cm ,故17cm EF =;(2)EF 的长度不变. 17cm EF =∵E 、F 分别是AC 、BD 的中点,∴12EC AC =,12DF DB = ∴EF EC CD DF =++1122AC CD BD =++ 1()2AC BD CD =++ ()12AB CD CD =-+ ()117cm 2AB CD =+= (3)∵OE 、OF 分别平分AOC ∠和BOD ∠, ∴12COE AOC ∠=∠, 12DOF BOD ∠=∠, ∴EOF COE COD DOF ∠=∠+∠+∠,1122AOC COD BOD =∠+∠+∠, 1()2AOC BOD COD =∠+∠+∠, 1()2AOB COD COD =∠-∠+∠, ()12AOB COD =∠+∠, ∴()12EOF AOB COD ∠=∠+∠. 【点睛】 此题考查线段的和差、角的和差计算,解题中会看图形,根据图中线段或角的大小关系得到和差关系,由此即可正确解题.9.(1)①AB=4;②线段MN 的长与点P 在线段AB 上的位置无关,理由见解析; (2)见解析.【解析】【分析】(1)由关于x 的方程()46n x n -=-无解.可得4n -=0,从而可求得n 的值; (2)根据线段中点的定义可知PN=12AP ,PM=12PB ,从而得到MN=12(PA+PB )=12AB ,于是可求;(3)设AB=a ,BP=b .先表示PB+PA 的长,然后再表示PC 的长,最后代入计算即可.【详解】解:(1)①∵关于x 的方程()46n x n -=-无解.∴4n -=0,解得:n=4.故AB=4.②线段MN 的长与点P 在线段AB 上的位置无关,理由如下:∵M 为线段PB 的中点,∴PM= 12PB . 同理:PN= 12AP .. ∴MN=PN+PM=12(PB+AP )= 12AB= 12×4=2. ∴线段MN 的长与点P 在线段AB 上的位置无关.(2)设AB=a ,BP=b ,则PA+PB=a+b+b=a+2b .∵C 是AB 的中点,1122BC AB a ∴== 12PC PB BC a b ∴=+=+ 2212PA PB a b PC a b ++∴==+, 所以PA PB PC+的值不变. 【点睛】 本题主要考查的是中点的有关计算,掌握线段中点的定义是解题的关键.10.(1)135,135;(2)∠MON =135°;(3)同意,∠MON =(90°﹣12x °)+x °+(45°﹣12x °)=135°. 【解析】【分析】(1)由题意可得,∠MON =12×90°+90°,∠MON =12∠AOC +12∠BOD +∠COD ,即可得出答案;(2)根据“OM 和ON 是∠AOC 和∠BOD 的角平分线”可求出∠MOC +∠NOD ,又∠MON =(∠MOC +∠NOD )+∠COD ,即可得出答案;(3)设∠BOC =x °,则∠AOC =180°﹣x °,∠BOD =90°﹣x °,进而求出∠MOC 和∠BON ,又∠MON =∠MOC +∠BOC +∠BON ,即可得出答案.【详解】解:(1)图2中∠MON=12×90°+90°=135°;图3中∠MON=1 2∠AOC+12∠BOD+∠COD=12(∠AOC+∠BOD)+90°=1290°+90°=135°;故答案为:135,135;(2)∵∠COD=90°,∴∠AOC+∠BOD=180°﹣∠COD=90°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC+∠NOD=12∠AOC+12∠BOD=12(∠AOC+∠BOD)=45°,∴∠MON=(∠MOC+∠NOD)+∠COD=45°+90°=135°;(3)同意,设∠BOC=x°,则∠AOC=180°﹣x°,∠BOD=90°﹣x°,∵OM和ON是∠AOC和∠BOD的角平分线,∴∠MOC=12∠AOC=12(180°﹣x°)=90°﹣12x°,∠BON=12∠BOD=12(90°﹣x°)=45°﹣12x°,∴∠MON=∠MOC+∠BOC+∠BON=(90°﹣12x°)+x°+(45°﹣12x°)=135°.【点睛】本题考查的是对角度关系及运算的灵活运用和掌握,此类问题的练习有利于学生更好的对角进行理解.11.(1)存在满足条件的点P,对应的数为﹣92和72;(2)正确的结论是:PM﹣34BN的值不变,且值为2.5.【解析】【分析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB =5. 解方程2x +1=12x ﹣5得x =﹣4. 所以BC =2﹣(﹣4)=6.所以. 设存在点P 满足条件,且点P 在数轴上对应的数为a ,①当点P 在点a 的左侧时,a <﹣3,PA =﹣3﹣a ,PB =2﹣a ,所以AP +PB =﹣2a ﹣1=8,解得a =﹣,﹣<﹣3满足条件;②当点P 在线段AB 上时,﹣3≤a ≤2,PA =a ﹣(﹣3)=a +3,PB =2﹣a ,所以PA +PB =a +3+2﹣a =5≠8,不满足条件;③当点P 在点B 的右侧时,a >2,PA =a ﹣(﹣3)=a +3,PB =a ﹣2.,所以PA +PB =a +3+a ﹣2=2a +1=8,解得:a =,>2,所以,存在满足条件的点P ,对应的数为﹣和.(2)设P 点所表示的数为n ,∴PA =n +3,PB =n ﹣2.∵PA 的中点为M ,∴PM =12PA =.N 为PB 的三等分点且靠近于P 点,∴BN =PB =×(n ﹣2).∴PM ﹣34BN =﹣34××(n ﹣2), =(不变).②12PM +34BN =+34××(n ﹣2)=34n ﹣(随P 点的变化而变化). ∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.12.(1)2,4,6;(2)4×16=64,222log 4+log 16log 64=;(3)log m+log log a a a n mn =;(4)见解析【解析】【分析】(1)根据对数的定义求解可得;(2)观察三个数字及对应的结果,找出规律;(3)将找出的规律写成一般形式;(4)设log m=x a ,log a n y =,利用n m n m a a a +=转化可推导.【详解】(1)∵224=,4 216=,6264= ∴2log 4=2,2log 16=4,2log 64=6(2)4、16、64的规律为:4×16=64∵2+4=6,∴2log 4+2log 16=2log 64(3)根据(2)得出的规律,我们一般化,为:log m+log log a a a n mn =(4)设log m=x a ,log a n y =则x a m =,y a n =∴x y x y a a mn a +==∴log mn=x+y a∴log mn=log m+log n a a a ,得证【点睛】本题考查指数运算的逆运算,解题关键是快速学习题干告知的运算法则,找出相应规律.。
最新七年级上册数学压轴题(Word版 含解析)
最新七年级上册数学压轴题(Word版含解析)最新七年级上册数学压轴题(Word版含解析)一、堆放仪器箱问题我们需要研究如何堆放仪器箱,使得每层仪器箱的个数与层数之间满足一定的关系。
已知每层堆放仪器箱的个数an=n²−32n+247,其中n为整数且1⩽n<16.1) 当n=2时,an=187,则a5=5²−32×5+247=162,a6=6²−32×6+247=181.2) 第n层比第(n+1)层多堆放的仪器箱个数为an−a(n+1)=(n+1)−(n+1)²+32(n+1)−247.3) 假设每个仪器箱重54牛顿,每个仪器箱能承受的最大压力为160牛顿,并且堆放时每个仪器箱承受的压力是均匀的。
若仅堆放第1、2两层,每个仪器箱承受的平均压力为(2×54)/(2×160)=0.675.在确保仪器箱不被损坏的情况下,最多可以堆放4层。
因为当堆放第5层时,每个仪器箱承受的压力将超过160XXX,可能会被损坏。
二、数轴问题考虑数轴上点A、B、C的位置关系以及它们的数值。
1) a=-2,b=4,c=2.2) 点A与点C不能重合。
3) 设t秒后,点A到原点的距离为3t,点B到原点的距离为2t,点C到原点的距离为c。
则AB=-t,BC=t+2,因此AB=-3t/3,BC=(t+2)/3.4) 3AB-BC的值不随着时间t的变化而改变。
因为3AB-BC=-3t-2,是一个关于t的一次函数,其斜率为-3,即不随着t 的变化而改变。
三、求a、b、c问题已知b是最小的正整数,且a、b、c满足c-5+a+b=0.1) 根据条件可得a=-b+c+5,因此a、b、c不唯一。
2) x(1/x+1/x^2+5)=(x+1+2x^2)/x,化简过程如下:x(1/x+1/x^2+5)=(x+1)/x+2=(x+2x^2)/x。
3) 在条件a=-b+c+5和b=4下,设点A、B、C的坐标分别为a、4、c,点P的坐标为x。
七年级上册数学 压轴题 期末复习试题及答案解答
七年级上册数学 压轴题 期末复习试题及答案解答一、压轴题1.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC .①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).2.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______;(3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.3.阅读理解:如图①,若线段AB 在数轴上,A 、B 两点表示的数分别为a 和b (b a >),则线段AB 的长(点A 到点B 的距离)可表示为AB=b a -.请用上面材料中的知识解答下面的问题:如图②,一个点从数轴的原点开始,先向左移动2cm到达P点,再向右移动7cm到达Q点,用1个单位长度表示1cm.(1)请你在图②的数轴上表示出P,Q两点的位置;(2)若将图②中的点P向左移动x cm,点Q向右移动3x cm,则移动后点P、点Q表示的数分别为多少?并求此时线段PQ的长.(用含x的代数式表示);(3)若P、Q两点分别从第⑴问标出的位置开始,分别以每秒2个单位和1个单位的速度同时向数轴的正方向运动,设运动时间为t(秒),当t为多少时PQ=2cm?4.已知∠AOB=110°,∠COD=40°,OE平分∠AOC,OF平分∠BOD.(1)如图1,当OB、OC重合时,求∠AOE﹣∠BOF的值;(2)如图2,当∠COD从图1所示位置绕点O以每秒3°的速度顺时针旋转t秒(0<t<10),在旋转过程中∠AOE﹣∠BOF的值是否会因t的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF=14°时,t=秒.5.如图1,已知面积为12的长方形ABCD,一边AB在数轴上。
七年级数学(上)期末压轴题汇编——数轴类
七年级上学期期末压轴题汇编——数轴类1.阅读材料:小兰在学习数轴时发现:若点M、N表示的数分别为−1、3,则线段MN的长度可以这样计算:|−1−3|=4或|3−(−1)|=4,那么当点M、N表示的数分别为m、n时,线段MN的长度可以表示为|m−n|或|n−m|.请你参考小兰的发现,解决下面的问题.在数轴上,点A、B、C分别表示数a、b、c.给出如下定义:若|a−b|=2|a−c|,则称点B为点A、C的双倍绝对点.(1)如图1,a=−1.①若c=2,点D、E、F在数轴上分别表示数−3、5、7,在这三个点中,点是点A、C的双倍绝对点;②若|a−c|=2,则b=;(2)若a=3,|b−c|=5,B为点A、C的双倍绝对点,则c的最小值为;(3)线段PQ在数轴上,点P、Q分别表示数−4、−2,a=3,|a−c|=2,线段PQ与点A、C同时沿数轴正方向移动,点A、C的速度是每秒1个单位长度,线段PQ的速度是每秒3个单位长度.设移动的时间为t(t>0),当线段PQ上存在点A、C的双倍绝对点时,求t的取值范围.2.“幸福是奋斗出来的”,在数轴上,若C到A的距离刚好是3,则C点叫做A的“幸福点”,若C到A、B的距离之和为6,则C叫做A、B的“幸福中心”(1)如图1,点A表示的数为−1,则A的幸福点C所表示的数应该是;(2)如图2,M、N为数轴上两点,点M所表示的数为4,点N所表示的数为−2,点C就是M、N的幸福中心,则C所表示的数可以是(填一个即可);(3)如图3,A、B、P为数轴上三点,点A所表示的数为−1,点B所表示的数为4,点P所表示的数为8,现有一只电子蚂蚁从点P出发,以2个单位每秒的速度向左运动,当经过多少秒时,电子蚂蚁是A 和B的幸福中心?3.对于数轴上的点A ,B ,C ,D ,点M ,N 分别是线段AB ,CD 的中点,若()2e MN AB CD =+,则将e 的值称为线段AB ,CD 的相对离散度.特别地,当点M ,N 重合时,规定0e =.设数轴上点O 表示的数为0,点T 表示的数为2.(1)若数轴上点E ,F ,G ,H 表示的数分别是3−,1−,3,5,则线段EF ,OT 的相对离散度是 ,线段FG ,EH 的相对离散度是 ;(2)设数轴上点O 右侧的点S 表示的数是s ,若线段OS ,OT 的相对离散度为12e =,求s 的值; (3)数轴上点P ,Q 都在点O 的右侧(其中点P ,Q 不重合),点R 是线段PQ 的中点,设线段OP ,OT 的相对离散度为1e ,线段OQ ,OT 的相对离散度为2e ,当12e e =时,直接写出点R 所表示的数r 的取值范围.4.在数轴上,点A 表示的数为1,点B 表示的数为3.对于数轴上的图形M ,给出如下定义:P 为图形M 上任意一点,Q 为线段AB 上任意一点,如果线段PQ 的长度有最小值,那么称这个最小值为图形M 关于线段AB 的极小距离,记作d 1(M ,AB );如果线段PQ 的长度有最大值,那么称这个最大值为图形M 关于线段AB 的极大距离,记作d 2(M ,AB ).例如:点K 表示的数为4,则d 1(点K ,线段AB )=1,d 2(点K ,线段AB )=3.已知点O 为数轴原点,点C ,D 为数轴上的动点.(1)1d (点O ,线段)AB = ,2d (点O ,线段)AB = ;(2)若点C ,D 表示的数分别为m ,2m +,1d (线段CD ,线段)2AB =.求m 的值;(3)点C 从原点出发,以每秒2个单位长度沿x 轴正方向匀速运动;点D 从表示数2−的点出发,第1秒以每秒2个单位长度沿x 轴正方向匀速运动,第2秒以每秒4个单位长度沿x 轴负方向匀速运动,第3秒以每秒6个单位长度沿x 轴正方向匀速运动,第4秒以每秒8个单位长度沿x 轴负方向匀速运动,⋯,按此规律运动,C ,D 两点同时出发,设运动的时间为t 秒,若2d (线段CD ,线段)AB 小于或等于6,直接写出t 的取值范围.(t 可以等于0)5.点M,N是数轴上的两点(点M在点N的左侧),当数轴上的点P满足PM=2PN时,称点P为线段MN的“和谐点”.已知,点O,A,B在数轴上表示的数分别为0,a,b,回答下面的问题:(1)当a=−1,b=5时,求线段AB的“和谐点”所表示的数;(2)当b=a+6且a<0时,如果O,A,B三个点中恰有一个点为其余两个点组成的线段的“和谐点”,直接写出此时a的值.6.对于数轴上的点M,线段AB,给出如下定义:P为线段AB上任意一点,如果M,P两点间的距离有最小值,那么称这个最小值为点M,线段AB的“近距”,记作d1(点M,线段AB);如果M,P两点间的距离有最大值,那么称这个最大值为点M,线段AB的“远距”,记作d2(点M,线段AB).特别的,若点M与点P重合,则M,P两点间的距离为0.已知点A表示的数为−2,点B表示的数为3.例如,如图,若点C表示的数为5,则d1(点C,线段AB)=2,d2(点C,线段AB)=7.(1)若点D表示的数为−3,则d1(点D,线段AB)=,d2(点D,线段AB)=;(2)若点E表示的数为x,点F表示的数为x+1.d2(点F,线段AB)是d1(点E,线段AB)的3倍.求x的值.7.在数轴上,表示数0的点记作点O.点A,B是该数轴上不重合的两点,点B关于点A的联动点定义如下:若射线AB上存在一点C,满足线段AB+AC=2AO,则称点C是点B关于点A的联动点.如图是点B关于点A的联动点的示意图.当点C与点A重合时,规定AC=0.(1)当点A表示的数为1时,①点B表示的数为1.5,则其关于点A的联动点C表示的数为;②若点B与O重合,则其关于点A的联动点C表示的数为;③若点B关于点A存在联动点,则点B表示的数x的取值范围是.(2)当点A表示的数为a时,点B关于点A的联动点为C,点B表示的数为1−,点C表示的数为1,则a的取值范围是.8.A ,B 两点在数轴上的位置如图所示,其中点A 对应的有理数为−6,点B 对应的有理数为4.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴正方向运动,设运动时间为t 秒(t >0).(1)当t =1时,AP 的长为 ,点P 表示的有理数为 ;(2)当15PB AB =时,求t 的值.9.对数轴上的点P进行如下操作:将点P沿数轴水平方向,以每秒m个单位长度的速度,向右平移n 秒,得到点P'.称这样的操作为点P的“m速移”,点P'称为点P的“m速移”点.(1)当m=1,n=3时,①如果点A表示的数为−5,那么点A的“m速移”点A'表示的数为;②点B的“m速移”点B'表示的数为4,那么点B表示的数为;③数轴上的点M表示的数为1,如果CM=2C'M,那么点C表示的数为;(2)数轴上E,F两点间的距离为2,且点E在点F的左侧,点E,F通过“2速移”分别向右平移t1,t2秒,得到点E',F',如果E'F'=2EF,请直接用等式表示t1,t2的数量关系.10.如图1,点C把线段AB分成两条线段AC和BC,如果AC=2BC时,则称点C是线段AB的内二倍分割点;如图2,如果BC=2AC时,则称点C是线段BA的内二倍分割点.−、2、1、0,则点C是线段AB的内二倍分割例如:如图3,数轴上,点A、B、C、D分别表示数1点;点D是线段BA内二倍分割点.−,点N所表示的数为7.MN的内二倍分割(1)如图4,M、N为数轴上两点,点M所表示的数为2点表示的数是;NM的内二倍分割点表示的数是.(2)如图5,数轴上,点A所表示的数为30−,点B所表示的数为20.点P从点B出发,以2个单位每秒的速度沿数轴向左运动,设运动时间为(0)t t>秒.①线段BP的长为;(用含t的式子表示)②求当t为何值时,P、A、B三个点中恰有一个点为其余两点的内二倍分割点.11.数学课上李老师说:咱们一起来玩儿一个找原点的游戏吧!(1)如图1,在数轴上标有A,B两点,已知A,B两点所表示的数互为相反数.①如果点A所表示的数是−5,那么点B所表示的数是;②在图1中标出原点O的位置;(2)图2是小慧所画的数轴,数轴上标出的点中任意相邻两点间的距离都相等.根据小慧提供的信息,标出隐藏的原点O的位置,写出此时点C所表示的数是;(3)如图3,数轴上标出若干个点,其中点A,B,C,D所表示的数分别为a,b,c,d.①用a,c表示线段AC的长为;②如果数轴上标出的若干个点中每相邻两点相距1个单位(如BC=1),且d−2a=10.判断此时数轴上的原点是A,B,C,D中的哪一点,并说明理由.12.对于数轴上给定的两点M,N(M在N的左侧),若数轴上存在点P,使得MP+2NP=k,则称点P 为点M,N的“k和点”.例如,如图1,点M,N表示的数分别为0,2,点P表示的数为1,因为MP +2NP=3,所以点P是点M,N的“3和点”.(1)如图2,已知点A表示的数为−2,点B表示的数为2.①若点C在线段AB上,且点C是点A,B的“5和点”,则点C表示的数为;②若点D是点A,B的“k和点”,且AD=2BD,则k的值为;(2)数轴上点E表示的数为a,点F在点E的右侧,EF=4,点T是点E,F的“6和点”,请求出点T 表示的数t的值(用含a的代数式表示).13.对于数轴上的A ,B ,C 三点,给出如下定义:若其中一个点到另外两个点的距离恰好满足n (n 是大于1的整数)倍的数量关系,则称该点是另外两个点的“n 倍和谐点”.例如:数轴上点A ,B ,C 所表示的数分别为1,2,4,此时点B 是点A ,C 的“2倍和谐点”;(1)若点A 表示数是1−,点C 表示的数是5,点1B ,2B ,3B ,依次表示4−,12,7各数,其中是点A ,C 的“3倍和谐点”的是 ;(2)点A 表示的数是20−,点C 表示的数是40,点Q 是数轴上一个动点.①若点Q 是点A ,C 的“4倍和谐点”,求此时点Q 表示的数;②若点Q 在点A 的右侧,且点Q 是点A ,C 的“n 倍和谐点”,用含有n 的式子直接写出此时点Q 所表示的数.14.阅读下面材料,回答问题.已知点A,B在数轴上分别表示有理数a,b.A,B两点之间的距离表示AB.(一)当A,B两点中有一点在原点时,不妨设点A在原点,如图1,AB=OB=|b|−|a|=b−a=|a−b|.(二)当A,B两点都不在原点时,①如图2,点A,B都在原点的右边,AB=OB−OA=|b|−|a|=b−a=|a−b|.②如图3,点A,B都在原点的左边,AB=OB−OA=|b|−|a|=−b−(−a)=a−b=|a−b|.③如图4,点A,B在原点的两边,AB=OA+OB=|a|+|b|=a+(−b)=a−b=|a−b|.综上,数轴A,B两点的距离AB=|a−b|.利用上述结论,回答以下几个问题:(1)数轴上点A表示的数是1,点B表示的数是x,且点B与点A在原点的同侧,AB=3,则x=.(2)数轴上点A到原点的距离是1,点B表示的数绝对值是3,则AB=.(3)若点A、B在数轴上表示的数分别是−4、2,设P在数轴上表示的数是x,当|PA|+|PB|=8时,直接写x的值.15.已知,点O 是数轴的原点,点A 、点B 是数轴上不重合的两个点,且点A 在点B 的左边,点M 是线段AB 的中点.在上述条件下,解决问题:(1)如果点A 表示的数是4,点B 表示的数是6,那么点M 表示的数是 ;(2)如果点A 表示的数是3−,点M 表示的数是2,那么点B 表示的数是 ;(3)如果点A 表示的数是a ,点B 表示的数是b ,那么点M 表示的数是 ;(用含a ,b 的代数式表示)温馨提示:如图,设点M 表示的数是x ,那么线段AM x a =−,线段BM b x =−.由于点M 是线段AB 的中点,所以AM BM =.因此得到关于x 的方程:x a b x −=−.你能解出这个方程吗?(4)如果点A 表示的数是2−,点C 表示的数是3,点B 是线段OC 上的一点,点M 表示的数为m ,则m 的取值范围是 ;(5)如果点E 表示的数是1,点F 表示的数是x ,点A 从点E 出发,以每分钟1个单位长度的速度向右运动,点B 从点F 出发,以每分钟3个单位长度的速度向右运动,设运动时间为(0)t t >. ①当5x =时,如果6EM =,那么t 的值是 ;②当3t 时,如果9EM ,求x 的取值范围.。
七年级数学(上)期末压轴题汇编——定义新运算类
1.小兵喜欢研究数学问题,在学习一元一次方程后,他给出一个新定义:若x是关于x的一元一次方程ax+b=0(a≠0)的解,y0是关于y的方程的所有解的其中一个解,且x,y满足x 0+y=100,则称关于y的方程为关于x的一元一次方程的“友好方程”.例如:一元一次方程3x−2x−99=0的解是x0=99,方程y2+1=2的所有解是y=1或y=−1,当y=1时,x+y=100,所以y2+1=2为一元一次方程3x−2x−99=0的“友好方程”.(1)已知关于y的方程:①2y−2=4,②|y|=2,以上哪个方程是一元一次方程3x−2x−102=0的“友好方程”?请直接写出正确的序号是.(2)若关于y的方程|2y−2|+3=5是关于x的一元一次方程2213x ax a−−=+的“友好方程”,请求出a的值.(3)如关于y的方程(1)2|49|45m ym y m n−−+=+是关于x的一元一次方程4554mx n m+=的“友好方程”,请直接写出m nn+的值.2.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明,但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:53116⨯+⎯⎯⎯→28÷⎯⎯→24÷⎯⎯→22÷⎯⎯→21÷⎯⎯→.如果自然数m 经过7步运算可得到1,则所有符合条件的m 的值为 .3.(2021.1月期末理工附25)我们把a cb d称为二阶行列式,且a cad bcb d=−.如:121(4)3210 34=⨯−−⨯=−−.(1)计算:2135=−;4235=−;(2)小明观察(1)中两个行列式的结构特点及结果,归纳总结,猜想:若行列式中的某一行(列)的所有数都乘以同一个数k,等于用数k乘以此行列式.即ka kc a c ka c a kc a ckb d kb kd kb d b kd b d====,你认为小明的猜想正确吗?若正确请说明理由,若错误请举出反例.(3)若1k≠,且113232x x x xk k++=,求x的值.4.阅读材料:我们定义:如果两个实数的差等于这两个实数的商,那么这两个实数就叫做“差商等数对”. 即:如果a −b =a ÷b ,那么a 与b 就叫做“差商等数对”,记为(a ,b ).例如:4−2=4÷2;993322−=÷; 11()(1)()(1)22−−−=−÷−; 则称数对(4,2),(92,3),(12−,1−)是“差商等数对”. 根据上述材料,解决下列问题:(1)下列数对中,“差商等数对”是 (填序号);①(8.1−,9−),②(12,12)③(-3,-6) (2)如果(x ,4)是“差商等数对”,请求出x 的值;(3)如果(m ,n )是“差商等数对”,那么m =______________(用含n 的代数式表示).5.如图,某校的“图书码”共有7位数字,它是由6位数字代码和校验码构成,其结构分别代表“种类代码、出版社代码、书序代码和校验码”.其中校验码是用来校验图书码中前6位数字代码的正确性,它的编制是按照特定的算法得来的.以上图为例,其算法为:步骤1:计算前6位数字中偶数位数字的和a,即a=9+1+3=13;步骤2:计算前6位数字中奇数位数字的和b,即b=6+0+2=8;步骤3:计算3a与b的和c,即c=3⨯13+8=47;步骤4:取大于或等于c且为10的整数倍的最小数d,即d=50;步骤5:计算d与c的差就是校验码X,即X=50−47=3.请解答下列问题:(1)《数学故事》的图书码为978753Y,则“步骤3”中的c的值为,校验码Y的值为.(2)如图①,某图书码中的一位数字被墨水污染了,设这位数字为m,你能用只含有m的代数式表示上述步骤中的d吗?从而求出m的值吗?写出你的思考过程.(3)如图②,某图书码中被墨水污染的两个数字的差是4,这两个数字从左到右分别是多少?请直接写出结果.6.观察下列等式,探究其中的规律并回答问题:1+8=32,1+8+16=52,1+8+16+24=72,1+8+16+24+32=k2,⋯,(1)第4个等式中正整数k的值是;(2)第5个等式是:;(3)第n个等式是:.(其中n是正整数)7.我们规定:若关于x 的一元一次方程a +x =b (a ≠0)的解为x b a =,则称该方程为“商解方程”.例如:24x +=的解为2x =且422=,则方程24x +=是“商解方程”.请回答下列问题: (1)判断3 4.5x +=是不是“商解方程”; (2)若关于x 的一元一次方程是42(3)x m +=− “商解方程”,求m 的值.8.我们规定:若有理数a ,b 满足a +b =ab ,则称a ,b 互为“等和积数”,其中a 叫做b 的“等和积数”, b 也叫a 的“等和积数”.例如:因为1(1)122+−=−,11(1)22⨯−=−,所以11(1)(1)22+−=⨯−,则12与1−互为“等和积数”. 请根据上述规定解答下列问题:(1)有理数2的“等和积数”是 ;(2)有理数1 (填“有”或“没有” ) “等和积数”;(3)若m 的“等和积数”是25,n 的“等和积数”是37,求34m n +的值.9. 将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?10.【概念学习】规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方.例如2÷2÷2,记作2③,读作“2的圈3次方”;再例如(−3)÷(−3)÷(−3)÷(−3),记作(−3)④,读作“−3的圈4次方”;一般地,把(0n aa a a a a ÷÷÷⋯÷≠个,n 为大于等于2的整数)记作a ,读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:7=③ ;1()4−=⑤ ; (2)关于除方,下列说法错误的是 ;A .任何非零数的圈2次方都等于1;B .对于任何大于等于2的整数c ,11=;.89C =⑨⑧;D .负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数;【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢? 除方21111222222()2222→=÷÷÷=⨯⨯⨯=→④乘方幂的形式 (1)仿照上面的算式,将下列运算结果直接写成幂的形式:(5)−=⑥ ;1()2=⑨ ; (2)将一个非零有理数a 的圈n 次方写成幂的形式为 ;(3)将?11()()(m a a⋅为大于等于2的整数)写成幂的形式为 .11.阅读材料:如果x是一个有理数,我们把不超过x的最大整数记作[x].例如,[3.2]=3,[5]=5,[−2.1]=−3.那么,x=[x]+a,其中0a<1.例如,3.2=[3.2]+0.2,5=[5]+0,−2.1=[−2.1]+0.9.请你解决下列问题:(1)[4.8]=,[−6.5]=;(2)如果[x]=3,那么x的取值范围是;(3)如果[5x−2]=3x+1,那么x的值是;(4)如果x=[x]+a,其中0a<1,且4a=[x]+1,求x的值.11。
七年级上册数学压轴题汇编经典及答案
七年级上册数学压轴题汇编经典及答案一、选择题1. 若 a = 3,b = 2,则 a + b 的值是()A. 1B. 1C. 5D. 52. 若 a = 5,b = 2,则 a b 的值是()A. 3B. 3C. 7D. 73. 若 a = 4,b = 3,则a × b 的值是()A. 12B. 12C. 7D. 74. 若 a = 6,b = 2,则a ÷ b 的值是()A. 3B. 3C. 4D. 45. 若 a = 5,b = 3,则 a + b 的值是()A. 8B. 2C. 2D. 86. 若 a = 4,b = 6,则 a b 的值是()A. 10B. 10C. 2D. 27. 若 a = 7,b = 2,则a × b 的值是()A. 14B. 14C. 9D. 98. 若 a = 8,b = 4,则a ÷ b 的值是()A. 2B. 2C. 3D. 39. 若 a = 9,b = 1,则 a + b 的值是()A. 10B. 10C. 8D. 810. 若 a = 10,b = 5,则 a b 的值是()A. 15B. 15C. 5D. 5二、填空题11. 若 a = 2,b = 3,则 a + b 的值是_________。
12. 若 a = 4,b = 1,则 a b 的值是_________。
13. 若 a = 6,b = 2,则a × b 的值是_________。
14. 若 a = 8,b = 3,则a ÷ b 的值是_________。
15. 若 a = 10,b = 4,则 a + b 的值是_________。
16. 若 a = 12,b = 2,则 a b 的值是_________。
17. 若 a = 14,b = 3,则a × b 的值是_________。
18. 若 a = 16,b = 4,则a ÷ b 的值是_________。
七年级上册数学压轴题汇编经典及答案
七年级上册数学压轴题汇编经典及答案个性化教学辅导教案为24,第二次输出的结果为12,,则第2022次输出的结果为某为偶数输入某某为奇数(第11题)某+31某2输出12、数学学科中有许多奇妙而有趣的现象,很多秘密等待我们去探索,比如,对于每一个大于100的3的倍数,求这个数每一个数位的数字的立方和,将所得的和重复上述操作,这样一直继续下去,结果最终得到一个固定不变的数R,它会掉入一个数字“陷阱”,那么最终掉入“陷阱”的这个固定不变的数R=____________13、两个同样大小的正方体积木,每个正方体上相对两个面上写的数字之和都等于3,现将两个这样的正方体重叠放置(如图),且看得见的五个面上的数如图所示,问看不见的七个面上所写的数之和是54二、选择题1、下列说法不正确的有(①1是绝对值最小的数)1②3a-2的相反数是-3a+2⑤34某3是7次单项式C.3个323第13题图③5R2的系数是5④一个有理数不是整数就是分数A.1个B.2个D.4个2、当某2时,整式p某q某1的值等于2002,那么当某2时,整式p某3q某1的值为(A、2001B、-2001)C、2000D、-2000)D.5.35≤某≤5.45)3、已知有理数某的近似值是5.4,则某的取值范围是(A.5.35<某<5.4422B.5.35<某≤5.44C.5.35≤某<5.454、某+a某-2y+7-(b某-2某+9y-1)的值与某的取值无关,则a+b的值为(A.-1;B.1;C.-2D.25、若0<m<1,m、m、2A.m<m2<;B.m2<m<;mm6、下面的说法中,正确的个数是①若a+b=0,则|a|=|b|1m的大小关系是()D.C.1<m<m2;m12<m<mm()②若|a|=a,则a>0乐恩教育教学设计方案③若|a|=|b|,则a=bA.1个B.2个④若a为有理数,则a=aC.3个D.4个)7、有理数a,b满足a>0,b<0,|a|<|b|,则a,b,-a,-b的大小顺序是(A.-a<b<a<-bB.b<-a<a<-bC.-a<-b<b<aD.b<-a<-b<a8、在数轴上A点和B点所表示的数分别为2和1,若使A点表示的数是B点表示的数的3倍,则应将点A()A.向左移动5个单位长度B.向右移动5个单位长度C.向右移动4个单位长度D.向左移动1个单位长度或向右移动5个单位长度9、对近似数0.08万,下面的说法正确的是A.精确到0.01,有三个有效数字C.精确到百位,有一个有效数字B.精确到0.01,有两个有效数字D.精确到百位,有两个有效数字10、a,互为相反数,n互为倒数,的算术平方根为2,100a99bmnbk2若bm,k则的值为A.-4A.-1或-5B.4B.1或5C.-96)D.-1或5C.1或-5D.10411、若a3,b2,且ab<0,则ab的值等于(12、观察下列各式:112123012312323412331343452343计算:3某(1某2+2某3+3某4++99某100)=A.97某98某99B.98某99某100C.99某100某101D.100某101某102二、解答题1、课堂上李老师给出了一道整式求值的题目,李老师把要求的整式(7a3-6a3b+3a2b)-(-3a3-6a3b+3a2b+10a3-3)写完后,让王红同学顺便给出一组a、b的值,老师自己说答案,当王红说完:“a=65,b=-2005”后,李老师不假思索,立刻就说出答案“3”.同学们莫名其妙,觉得不可思议,但李老师用坚定的口吻说:“这个答案准确无误”,亲爱的同学你相信吗?你能说出其中的道理吗?乐恩教育教学设计方案2、数学生活实践如果今天是星期天,你知道再这2100天是星期几吗?大家都知道,一个星期有7天,要解决这个问题,我们只需知道2100被7除的余数是多少,假设余数是1,因为今天是星期天,那么再过这么多天就是星期一;假设余数是2,那么再过这么多天就是星期二;假设余数是3,那么再过这么多天就是星期三因此,我们就用下面的实践来解决这个问题。
人教版七年级数学上册期末动点问题压轴题专题练习-带答案
人教版七年级数学上册期末动点问题压轴题专题练习-带答案学校:___________班级:___________姓名:___________考号:___________1.如图:在数轴上点A表示数a,点B表示数b,点C表示数c,b是最大的负整数,且a,c满足︱a+3︱+︱c-5 ︱=0(1)a=,b=,c=.(2)如果点P表示的数为x,当P点到B、C两点的距离之和为8时,x=(3)点A,B,C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B 和点C分别以每秒2个单位长度和3个单位长度的速度向右运动,假设秒钟过后,若点A与点B之间的距离表示为AB,点B与点C之间的距离表示为BC,则AB=,BC=.(用含t的代数式表示)(4)3BC-AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值。
2.已知点A在数轴上对应的数为a,点B对应的数为b,且|a+4|+(b-3)2=0.(1)则a=,b=;并将这两个数在数轴上所对应的点A,B表示出来;(2)数轴上在B点右边有一点C到A、B两点的距离和为11,若点C的数轴上所对应的数为x,求x的值;(3)若点A,点B同时沿数轴向正方向运动,点A运动的速度为2单位/秒,点B运动的速度为1单位/秒,若|AB|=4,求运动时间t的值.3.已知数轴上有A,B两点,分别代表-40,20,两只电子蚂蚁甲、乙分别从A,B两点同时出发,其中甲以1个单位长度/秒的速度向右运动,到达点B处时运动停止.乙以4个单位长度/秒的速度向左运动.(1)A,B两点间的距离为个单位长度;乙到达A点时一共运动了秒.(2)甲、乙在数轴上运动,经过多少秒相遇?(3)多少秒时,甲、乙相距10个单位长度?(4)若乙到达A点后立刻掉头并保持速度不变,则甲到达B点前,甲、乙还能在数轴上相遇吗?若能,求出相遇点所对应的数;若不能,请说明理由.4.如图,在数轴上点A表示数a,点B表示数b,点C表示数c,b是最小的正整数,且a、c满足|a+2|+(c−6)2=0.(1)a=,b=,c=;(2)若将数轴折叠,使得点A与点C重合,则数轴上折痕所表示的数为,点B与数表示的点重合,原点与数表示的点重合;(3)动点P、Q同时从原点出发,点P向负半轴运动,点Q向正半轴运动,点Q的速度是点P 速度的3倍,2秒钟后,点P到达点A.①点P的速度是每秒▲ 个单位长度,点Q的速度是每秒▲ 个单位长度;②经过几秒钟,点P与点Q相距12个单位长度.5.如图,一个点从数轴上的原点开始,先向右移动3个单位长度,可以看到终点表示的数是-2.已知点A,B是数轴上的点,完成下列各题.(1)若点A表示数-2,将A点向右移动5个单位长度,那么终点B表示的数是,此时A,B两点间的距离是.(2)若点A表示数3,将A点向左移动6个单位长度,再向右移动5个单位长度后到达点B;此时A,B两点间的距离是.(3)若A点表示的数为m,将A点向右移动n个单位长度,再向左移动t个单位长度后到达终点B6.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b−3|=0;(1)点A表示的数为;点B表示的数为;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动:同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒)①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=②试探究:甲,乙两小球到原点的距离可能相等吗?若不能,请说明理由.若能,请直接写出甲,乙两小球到原点的距离相等时经历的时间.7.如图,已知点A、B、C是数轴上三点,O为原点.点C对应的数为3,BC=2,AB=6.(1)则点A对应的数是、点B对应的数是;(2)动点P、Q分别同时从A、C出发,分别以每秒8个单位和4个单位的速度沿数轴正方向运动.M在线段AP上,且AM=MP,N在线段CQ上,且CN=14CQ,设运动时间为t(t>0).①求点M、N对应的数(用含t的式子表示);②猜想MQ的长度是否与t无关为定值,若为定值请求出该定值,若不为定值请说明理由;③探究t为何值时,OM=2BN.8.数轴上点A表示的有理数为20,点B表示的有理数为﹣10,点P从点A出发以每秒5个单位长度的速度在数轴上往左运动,到达点B后立即返回,返回过程中的速度是每秒2个单位长度,运动至点A停止,设运动时间为t(单位:秒).(1)当t=5时,点P表示的有理数为.(2)在点P往左运动的过程中,点P表示的有理数为(用含t的代数式表示).(3)当点P与原点距离5个单位长度时,t的值为.9.如图,A、B分别为数轴上的两点,A点对应的数为−20,B点对应的数为100.(1)请写出与A、B两点距离相等的点M所对应的数;(2)现有一只电子蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电子蚂蚁在数轴上的C点相遇,你知道C点对应的数是多少吗?(3)若当电子蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另一只电子蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,请问:当它们运动多少时间时,两只蚂蚁间的距离为20个单位长度?10.在数轴上,如果A点表示的数记为a,点B表示的数记为b,则A、B两点间的距离可以记作|a-b|或|b-a|,我们把数轴上两点的距离,用两点的大写字母表示,如:点A与点B之间的距离表示为AB.如图,在数轴上,点A,O,B表示的数为-10,0,12.(1)直接写出结果,OA=,AB=.(2)设点P在数轴上对应的数为x.①若点P为线段AB的中点,则x=.②若点P为线段AB上的一个动点,则|x+10|+|x-12|的化简结果是.(3)动点M从A出发,以每秒2个单位的速度沿数轴在A,B之间向右运动,同时动点N从B 出发,以每秒4个单位的速度沿数轴在A,B之间往返运动,当点M运动到B时,M和N两点停止运动.设运动时间为t秒,是否存在t值,使得OM=ON?若存在,请直接写出t值;若不存在,请说明理由.11.如图.数轴上A.B两点对应的有理数分别为-10和20.点P从点O出发.以每秒1个单位长度的速度沿数轴正方向运动,点Q同时从点A出发,以每秒2个单位长度的速发沿数轴正方向运动.设运动时间为t秒。
七年级上册数学压轴题及答案
七年级上册数学压轴题及答案一、整数综合运用题1.小明拿到了一张信用卡账单,上面显示他本月的消费为-300元。
请问这代表小明本月的消费是盈余还是亏损?为什么?参考答案:小明本月的消费是亏损。
因为数值前面有负号,表示消费的金额是负数,也就是亏损的金额。
2.小红有一只视频播放器,已经用了3年了。
前两年,她每天平均用播放器看2个小时的视频。
第三年,她每天平均用播放器看3个小时的视频。
请问她三年内一共看了多少小时的视频?参考答案:前两年看视频的总小时数为2小时/天 × 365天/年 × 2年 = 1460小时。
第三年看视频的小时数为3小时/天 × 365天 = 1095小时。
所以她三年内一共看了1460小时 + 1095小时 = 2555小时的视频。
3.小李和小王一起搬家,他们搬了15箱东西。
小李搬了8箱,小王搬的箱数是小李的箱数的3倍减去2箱。
请问小王搬了多少箱?参考答案:设小王搬的箱数为x,则8箱 = 3x - 2。
通过移项可得 3x = 8箱 + 2,即3x = 10。
两边同时除以3,可得 x = 10/3 = 3.33。
所以小王搬了约3.33箱的东西。
二、平面图形相关题目1.一个正方形的边长为12厘米。
请问这个正方形的周长和面积分别是多少?参考答案:正方形的周长就是四条边的长度之和,即12厘米 × 4 = 48厘米。
正方形的面积就是边长的平方,即12厘米 × 12厘米 = 144平方厘米。
2.一个矩形的长是8厘米,宽是5厘米。
请问这个矩形的周长和面积分别是多少?参考答案:矩形的周长就是两倍的长加两倍的宽,即(8厘米 + 5厘米) × 2 = 26厘米。
矩形的面积就是长乘以宽,即8厘米 × 5厘米 = 40平方厘米。
3.一个圆的半径是6厘米。
请问这个圆的周长和面积分别是多少?(取3.14)参考答案:圆的周长就是半径乘以2再乘以π(π取3.14),即6厘米 × 2 × 3.14 = 37.68厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学上册期末压轴题汇编一、线段类:1.(本题8分)如图,点C为线段AB上一点,D为AC的中点,点E为线段BD的中点(1) 若CD=2CB,AB=10,求BC的长(2) 若CE=BC,求2.(本题12分)如图,点P是定长线段AB上一定点,C点从P点、D点从B点同时出发分别以每秒a、b 厘米的速度沿直线AB向左运动,并满足下列条件:①关于m、n的单项式2m2n a与-3m b n的和仍为单项式②当C在线段AP上,D在线段BP上时,C、D运动到任一时刻时,总有PD=2AC(1) 直接写出:a=________,b=________(2) 判断=________,并说明理由(3) 在C、D运动过程中,M、N分别是CD、PB的中点,运动t秒时,恰好t秒时,恰好3AC=2MN,求此时的值3.(本题8分)如图1,点A、B分别在数轴原点O的左右两侧,且OA=OB,点B对应的数是10(1) 求A点对应的数(2) 如图2,动点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为4个单位长度/秒、2个单位长度/秒,点P向左运动,速度为5个单位长度/秒.设它们运动时间为t秒,当点P是MN 的中点时,求t的值4.(本题12分)如图1,已知数轴上有三点A、B、C,AC=2AB,点A对应的数是40(1) 若AB=60,求点C到原点的距离(2) 如图2,在(1)的条件,动点P、Q两点同时从C、A出发向右运动,同时动点R从点A向左(2) 运动,已知点P的速度是点R的速度的3倍,点Q的速度是点R的速度2倍少5个单位长度/秒,经过5秒,点P、Q之间的距离与点Q、R之间的距离相等,求动点Q的速度(3) 如图3,在(1)的条件下,O表示原点,动点P、T分别从C、O两点同时出发向左运动,同时动点R从点A出发向右运动,点P、T、R的速度分别为5个单位长度/秒,1个单位长度/秒、2个单位长度/秒,在运动过中,如果点M为线段PT的中点,点N为线段OR的中点,证明的值不变.若其他条件不变,将R的速度改为3个单位长度/秒,10秒后,的值为________5.点A在数轴上对应的数为a,点B对应的数为b,且a、b满足|a+3|+(b-2)2=0(1) 求线段AB的长(2) 点C在数轴上对应的数为x,且x是方程2x+1=x-5的根,在数轴上是否存在点P使PA+PB=BC+AB,若存在,求出点P对应的数,若不存在,说明理由(3) 如图,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM-BN的值不变;②PM+BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值6.(12分)已知数轴上顺次有A、B、C三点,分别表示数a、b、c,并且满足,b与c互为相反数。
两只电子小蜗牛甲、乙分别从A,C两点同时相向而行,甲的速度为2个单位/秒,乙的速度为3个单位/秒.(1)求A、B、C三点分别表示的数,并在数轴上表示A、B、C三点;(2)运动多少秒时,甲、乙到点B的距离相等?(3)设点P在数轴上表示的数为x,且点P满足,若甲运动到点P时立即调头返回,问甲、乙还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由.7.(本题10分)如图1,已知点A、C、F、E、B为直线l上的点,且AB=12,CE=6,F为AE的中点(1) 如图1,若CF=2,则BE=________,若BE=mCF,则m=________(2) 当点E沿直线l移动到图2位置时,(1)中BE与CF的数量关系是否仍然成立?请说明理由(3) 如图3,在(2)的条件下,在线段BE上有一点D,BD=7,且DF=3DE,则AF=________8、(本题12分)如图1,点A、B分别在数轴原点O的左右两侧,且OA+50=OB,点B对应数是90.(1)求A点对应的数;(2)如图2点M、N、P分别从原点O、A、B同时出发,其中M、N均向右运动,速度分别为2个单位长度/秒,7个单位长度/秒,点P向左运动,速度为8个单位长度/秒,设它们运动时t秒,问t为何值时,点M、N之间的距离等于点P、M之间的距离;(3)如图3,将(2)中的三动点M、N、P的运动方向改为与原来相反的方向,其余条件不变,设Q为线段MN的中点,为线段OP的中点,求22RQ-28RO-5PN的值。
9.(本题12分)如图,若点A在数轴上对应的数为a,点B在数轴上对应的数为b,且a、b满足|a+20|+(b-10)2=0(1) 求线段AB的长(2) 点C在数轴上对应的数为x,且x是方程2x-1=x+2的解,若电子蚂蚁M、N、P分别从A、B、C 三点同时出发向右运动,速度分别为5、1、3个单位每秒,是否存在这样的时刻使得MN=5NP?若存在,求出运动时间;若不存在,请说明理由(3) 若P是A左侧的一点,PA的中点为M,PB的中点为N,当P在A点左侧运动时,有两个结论:①PM +PN的值不变;②PN-PM的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值10.如图,C为线段AB延长线上一点,D为线段BC上一点,CD=2BD,E为线段AC上一点,CE=2AE(1) 若AB=18,BC=21,求DE的长(2) 若AB=a,求DE的长(用含a的代数式表示)(3) 若图中所有线段的长度之和是线段AD长度的7倍,则AD/AC的值为_______11、(1) 已知数轴上A、B两点分别表示-3、5,则AB=________,数轴上M、N两点分别表示数m、n,则MN=________(2) 如图,E、F为线段AB的三等分点,P为直线AB上一动点(P不与E、F、A重合),在点P运动过程中,PE、PF、PA有何数量关系?请写出结论并说明理由(3) 已知如图,数轴上AB=10,M、N两点分别表示数m、n,且n-m=2,求出MANB的最小值并说明理由(M、N不与A、B重合)12、(本题满分12分)已知线段AB=m,CD=n,线段CD在直线AB上运动(A在B左侧,C在D左侧)(1)若,求线段AB、CD的长;(2)M、N分别为线段AC、BD的中点,则MN的长与CD的位置是否有关?请以BC<CD为例说明;(3)在(1)的条件下,当CD到某一时刻时,D点与B点重合,P是线段AB延长线上任意一点,下列两个结论:①是定值;②是定值,请选择正确的一个并加以证明。
13.如图1,已知数轴上有三点A、B、C,AB=AC,点C对应的数是200(1) 若BC=300,求点A对应的数(2) 如图2,在(1)的条件下,动点P、Q分别从A、C两点同时出发向左运动,同时动点R从A点出发向右运动,点P、Q、R的速度分别为10单位长度每秒、5单位长度每秒、2单位长度每秒,点M为线段PR的中点,点N为线段RQ的中点,多少秒时恰好满足MR=4RN(不考虑点R与点Q相遇之后的情形)(3) 如图3,在(1)的条件下,若点E、D对应的数分别为-800、0,动点P、Q分别从E、D两点同时出发向左运动,点P、Q的速度分别为10单位长度每秒、5单位长度每秒,点M为线段PQ的中点,点Q在从是点D运动到点A的过程中,QC-AM的值是否发生变化?若不变,求其值;若不变,请说明理由二、角、角平分线类:1.(本题10分)如图,一直角三角板COD的直角(∠COD=90°)顶点O落在直线AB上,射线OE平分∠AOD (1) 如图,若∠AOC=20°,则∠BOD=_________,∠COE=_________(直接写出结果)(2) 求(3) 若∠COE=n∠AOC,则∠AOC=_________(直接写出结果,结果用含n的式子表示)2、(本题10分)如图,在同一平面内,OA⊥OB于O,射线OM平分∠AOB,从点O引射线OC,射线ON平分∠BOC(1) 若∠BOC=30°,请你补全图形,再计算∠MON的度数(2) 若OA与OB不垂直,∠AOB=α,∠BOC=β(0<β<α<90°),其它条件不变,请你画出大致图形,并直接写出MON的度数(3) 结合上面的计算,观察并继续思考:在同一平面内,∠AOB=α,∠BOC=β,OM平分∠AOB,ON平分∠BOC,你发现∠MON与∠AOC有怎样的数量关系?请你直接写出来3、(本题6分)如图,O为直线AB上一点,∠DOC=90°,OE平分∠AOC,OF平分∠BOC(1) 图中与∠COF互余的角有____________,与∠COF互补的角有____________(2) 如果∠EOD=∠AOE,∠EOD的度数为________度4.(本题8分)如图1,已知∠AOC=2∠BOC,∠AOB与∠BOC互补(1) 求∠AOB的度数(2) 经过点O在∠AOC内部作射线OD,OE、OF分别为∠AOD和∠BOC的平分线,当OD绕点O在∠AOC内部转动时,请写出∠AOB、∠COD和∠EOF之间的等量关系,并说明理由(3) 如图,P在BO的延长线上,若∠POD=50°,将∠AOC绕点O顺时针旋转,使AC与直线OB相交,在旋转的过程中,那么∠AOD-∠BOC的值是否发生变化?请说明理由的直角顶点放在点O处,边OM在射线OB上,另一边ON在直线AB的下方,绕点O顺时针旋转△MON,其中旋转的角度为α(0<α<360°)(1) 将图1中的直角△MON旋转至图2的位置,使得ON落在射线OB上,此时α为_______度(2) 将图1中的直角△MON旋转至图3的位置,使得ON在∠AOC的内部,试探究∠AOM与∠NOC之间满足什么样的等量关系,并说明理由(3) 若直角△MON绕点O按每秒5°的速度顺时针旋转,当直角△MON的直角边ON所在直线恰好平分∠AOC 时,求此时直角△MON绕点O的运动时间t的值6、(本题6分)如图,直线SN与直线WE相交于点O,射线ON表示正北方向,射线OE表示正东方向.已知射线OB的方向是南偏东m°,射线OC的方向是北偏东n°(1) 当m°+n°=90°时①若m=50,则射线OC的方向是________②图中与∠BOE互余的角有__________________________与∠BOE互补的角有__________________________(2) 若射线OA是∠BON的角平分线,且|m-40|+(n-30)2=0,求∠AOC的度数的直角顶点放在点O处,一边ON在射线OA上,另一边OM与OC都在直线AB的上方(1) 将图1中的三角板绕点O以每秒3°的速度沿顺时针方向旋转一周,如图2,经过t秒后,OM恰好平分∠BOC①求t的值②此时ON是否平分∠AOC?请说明理由(2) 在(1)问的基础上,若三角板在转动的同时,射线OC也绕O点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC平分∠MON?请说明理由(3) 在(2)问的基础上,经过多长时间OC平分∠MOB?请画图并说明理由8、已知D为直线AB上的一点,∠COE是直角,OF平分∠AOE(1) 如图1,若∠COF=34°,则∠BOE=________;若∠COF=m°,则∠BOE=________;∠BOE与∠COF 的数量关系为________________________(2) 在图2中,若∠COF=75,在∠BOE的内部是否存在一条射线OD,使得2∠BOD与∠AOF的和等于∠BOE与∠BOD的差的三分之一?若存在,请求出∠BOD的度数;若不存在,请说明理由(3) 当射线OE绕点O顺时针旋转到如图3的位置时,(1)中∠BOE和∠COF的数量关系是否仍然成立?请说明理由,若不成立,求出∠BOE与∠COF的数量关系9、(本题12分)如图1,已知∠AOC=m°,∠BOC=n°且m、n满足等式|3m-420|+(2n-40)2=0,射线OP 从OB处绕点O以4度/秒的速度逆时针旋转(1) 试求∠AOB的度数(2) 如图1,当射线OP从OB处绕点O开始逆时针旋转,同时射线OQ从OA处以1度/秒的速度绕点0顺时针旋转,当它们旋转多少秒时,使得∠POQ=10°?(3) 如图2,若射线OD为∠AOC的平分线,当射线OP从OB处绕点O开始逆时针旋转,同时射线OT从射线OD处以x度/秒的速度绕点O顺时针旋转,使得这两条射线重合于射线OE处(OE在∠DOC的内部)时,且,试求x10、 (本题10分)如图1,已知∠AOC=2∠BOC,∠AOC的余角比∠BOC小30°。