抗菌

合集下载

抗菌测试检测标准

抗菌测试检测标准

抗菌测试检测标准
抗菌测试是评价物质抑制或杀灭细菌或其他微生物能力的方法。

下面是常见的抗菌测试方法和相关的标准:
1. 纸片扩散法(Disk diffusion method):根据CLSI(Clinical and Laboratory Standards Institute)标准进行抗菌活性测试。


标准包括了对不同细菌株和药物的测试方法和结果解读标准。

2. 最小抑菌浓度法(Minimum Inhibitory Concentration, MIC):根据CLSI或欧洲常用测试方法(EUCAST,European Committee on Antimicrobial Susceptibility Testing)进行细菌的
药敏性测试。

该测试可以确定药物对细菌的最低有效抑制浓度。

3. K-B法(Kirby-Bauer method):也是一种常用的纸片扩散法,测定细菌对抗生素的药敏感性。

除了上述各种抗菌测试方法外,还有许多其他的标准和指南可供参考,例如:
- 美国药典(USP,United States Pharmacopeia)中的相关方法
规范。

- 欧洲抗菌药物开发委员会(EUCAST)的药敏性测试指南。

- 中国药典(ChP,Chinese Pharmacopoeia)中的抗菌药物相关标准。

这些标准和指南提供了在实验室中进行抗菌测试的具体步骤和结果的解释。

根据不同的应用领域和目的,选择合适的标准进行抗菌测试非常重要。

抗菌产品的发展历程

抗菌产品的发展历程

抗菌产品的发展历程
抗菌产品从诞生到现在,经历了一个长期的发展过程。

以下是抗菌产品的发展历程:
1. 古代:在古代,人们对抗菌的理念尚未形成,但他们已经开始使用一些天然的抗菌物质。

例如,埃及人用大蒜和洋葱来治疗感染。

古希腊人使用柏树提取物来抵御某些疾病。

2. 19世纪:随着对微生物研究的深入,人们开始意识到了抗
菌的重要性。

在19世纪,化学家发现了一些抗菌物质,例如
酚类物质和高锑酸盐。

这些发现为后来的抗菌研究奠定了基础。

3. 20世纪初:随着对细菌的深入认识,人们开始寻找更有效
的抗菌产品。

首先是发现了磺胺类药物,这些药物能够有效地杀死细菌。

接着,青霉素的发现更加彻底地改变了抗菌领域。

青霉素是第一个广泛使用的抗菌药物,被认为是一次革命性的突破。

4. 20世纪中期:抗菌产品的发展进入了一个新的阶段。

人们
开始研究和开发合成抗菌化合物。

在这个时期,许多抗生素被合成出来,用于治疗疾病。

同时,也开始研究和发展其他类型的抗菌产品,例如抗菌洗手液和消毒剂。

5. 21世纪:随着科技的进步,抗菌产品的研究和开发越来越
多样化。

除了传统的抗生素外,人们还发展出了各种抗菌剂,如抗菌纤维、抗菌涂层等。

此外,一些新技术,如纳米技术和生物技术,也被应用于抗菌产品的研究和制造中。

总的来说,抗菌产品经历了从天然材料的使用到化学合成药物,再到现在的多元化发展。

随着科学技术的不断进步,相信抗菌产品将会在未来拥有更广阔的发展前景。

自然界抗菌结构

自然界抗菌结构

自然界抗菌结构
自然界中许多生物体都有抗菌结构,这些结构可以帮助它们抵御细菌、真菌等微生物的侵袭。

以下是一些常见的抗菌结构:
1. 植物表面的毛状物质:许多植物表面都有毛状物质,如茶叶中的茶毛、草本植物的花药等,这些毛状物质可以捕捉细菌并阻止它们进入植物内部。

2. 皮肤和黏膜表面的分泌物:人类和其他动物的皮肤和黏膜表面都会分泌一些抗菌分子,如抗菌肽和蛋白质等,可以杀死或抑制微生物的生长。

3. 昆虫和动物的外壳:昆虫和其他动物的外壳表面通常都有微小的结构和化学成分,可以防止微生物的侵袭。

4. 蜂蜜:蜂蜜中含有氢氧化物酶等多种成分,可以杀死细菌和真菌。

这些抗菌结构都具有天然、有效的抗菌作用,对于人类和其他生物体的健康具有重要的意义。

抗菌剂 使用方法

抗菌剂 使用方法

抗菌剂使用方法抗菌剂是一种用于抑制或杀灭细菌生长的化学物质。

它们广泛应用于医疗、农业和家庭等领域,以预防和治疗细菌感染疾病。

抗菌剂的使用方法与具体的药物类型有关,以下是一些常见的抗菌剂的使用方法。

首先,最常见的一类抗菌剂是口服抗生素,它们用于治疗细菌感染疾病,如扁桃体炎、尿路感染和呼吸道感染等。

口服抗生素通常以片剂或胶囊剂的形式出售,使用时应遵循医生的建议。

一般来说,口服抗生素应在饭后服用,其药效能更好地吸收。

同时,服药时要遵循给药剂量和服用频率,不要提前停药或随意调整剂量,以免影响疗效。

其次,还有一类常用的抗菌剂是外用抗生素,常见的有消毒药、抗菌药膏和抗菌喷雾剂等。

消毒药用于除菌或杀灭细菌的外部使用,如酒精消毒液、双氧水和碘酒等。

使用消毒药时,应先用清水将伤口冲洗干净,然后用棉球蘸取消毒药涂抹于伤口表面。

抗菌药膏主要用于皮肤感染和创伤感染等疾病的局部治疗,使用时应将药膏涂抹于患处并轻轻按摩,每天2-3次。

抗菌喷雾剂适用于口腔和咽喉感染,使用时应按照说明书上的指示喷洒于患处。

除了口服和外用抗菌剂,还有一些特殊用途的抗菌剂需要注意。

例如,抗菌眼药水和滴耳液主要用于眼部和耳部感染的治疗。

在使用抗菌眼药水时,先用清水冲洗眼部,然后滴入适量的眼药水,闭眼稍作按摩,保持眼药液在眼球上1-2 分钟。

而滴耳液则需要用温水清洗耳道,然后用滴管将适量的药液滴入耳中,闭眼让液体均匀分布在耳道内。

此外,对于长期或复杂的疾病,如对付广谱细菌感染、耐药菌感染和复杂的手术感染,医生可能会选择静脉注射抗生素来保证其疗效。

这种使用方法需要在医生的指导下进行,注射前需要对药液进行蘸湿性消毒,然后将针头插入静脉位置,缓慢地注射药液。

值得注意的是,抗菌剂的使用必须遵循医嘱,并且要按照医生的剂量和频率使用。

如果感到不适或出现副作用,应立即停止使用并咨询医生。

此外,不要滥用抗菌剂,尤其是药物存储期限过期或不再需要使用时,不要随意使用或乱扔,要妥善处理。

抗菌测试检测标准

抗菌测试检测标准

抗菌测试检测标准摘要:1.抗菌测试的背景和意义2.抗菌测试的主要方法3.我国对抗菌测试的标准要求4.抗菌测试在实际应用中的重要性5.未来抗菌测试的发展趋势正文:抗菌测试是在医学、卫生、日用品、建筑材料等领域中广泛应用的一种检测技术。

它可以用于检测物品或材料是否具有抗菌性能,为产品研发、生产、质量控制等提供科学依据。

目前,抗菌测试的主要方法有抑菌圈法、滤膜法、琼脂平板法等。

抑菌圈法是通过测定测试物质在平板培养基上形成的抑菌圈的大小来判断其抗菌活性。

滤膜法则是将测试物质涂布在滤膜上,通过测定滤膜对细菌的阻拦效果来评价其抗菌性能。

琼脂平板法则是将测试物质加入培养基中,观察细菌在含有测试物质的培养基上的生长情况,从而判断其抗菌效果。

我国对抗菌测试的标准要求非常严格,我国相关标准规定了各种测试方法的实验步骤、评价指标、实验条件等,确保了测试结果的科学性和准确性。

同时,我国还积极参与国际标准的制定,为国际抗菌测试领域的发展做出贡献。

抗菌测试在实际应用中具有重要意义。

例如,在医疗卫生领域,抗菌药物的合理使用对于治疗感染性疾病至关重要。

在日用品领域,抗菌性能是许多产品的重要卖点,如抗菌毛巾、抗菌餐具等。

在建筑材料领域,抗菌性能可以有效防止建筑物内部的细菌滋生,提高居住者的生活质量。

未来,随着科技的发展,抗菌测试将更加精确、快速、便捷。

例如,基于生物传感技术的抗菌测试方法已经取得了突破性进展,有望在不久的将来投入实际应用。

此外,随着大数据和人工智能技术的发展,抗菌测试的数据处理和分析也将更加智能化。

总之,抗菌测试作为一项重要的检测技术,在各个领域具有广泛的应用前景。

抗菌作用机制

抗菌作用机制

抗菌作用机制一、概述抗菌作用是指某一物质或方法对抑制或杀灭病原微生物的能力。

不同物质或方法具有不同的抗菌作用机制,下面将从多个角度来探讨抗菌作用的机制。

二、物理抗菌作用机制1. 温度不同微生物对温度的适应能力不同,抑菌或灭菌的温度范围也不同。

通常,高温可造成微生物的变性和破坏,从而达到抗菌的效果。

2. 光照紫外线具有一定的杀菌作用,可以破坏细菌和病毒的核酸,影响其生物活性。

蓝光也有一定的抗菌作用,可以通过激发一氧化氮的产生来杀死细菌。

三、化学抗菌作用机制1. 破坏细胞膜一些物质可以与微生物的细胞膜相互作用,引起其破坏。

例如,表面活性剂可以破坏细菌膜的脂质层,导致细菌死亡。

2. 干扰代谢通路一些物质可以通过干扰微生物的代谢通路来达到抗菌的效果。

例如,抗生素可以抑制细菌的蛋白质合成或核酸合成,从而杀灭细菌。

3. 抑制酶活性一些物质可以与微生物的酶相互作用,抑制其活性。

例如,银离子可以与细菌的酶相互作用,阻断其正常的生物化学反应,从而达到抗菌的效果。

四、生物学抗菌作用机制1. 免疫系统人体免疫系统是最重要的抗菌机制之一。

白细胞、抗体和补体等免疫细胞和分子可以识别和破坏入侵的微生物,从而保护身体免受感染。

2. 相互作用一些微生物可以通过与其他微生物相互作用,发挥抗菌的效果。

例如,某些细菌可以分泌抑菌物质,抑制其他细菌的生长。

3. 竞争微生物之间存在资源的竞争,这也是一种抗菌机制。

一些微生物可以通过竞争资源,如营养物质或空间,来抑制其他微生物的生长。

五、结论抗菌作用具有多种机制,包括物理、化学和生物学的作用。

不同机制的抗菌方法可以相互协同作用,提高抗菌的效果。

进一步研究抗菌作用的机制,有助于开发新的抗菌剂和方法,应对微生物感染的挑战。

名词解释 抗菌药物

名词解释 抗菌药物

名词解释抗菌药物
抗菌药物是一类用于治疗细菌感染的药物。

它们的作用是抑制或杀死细菌,从而减轻或消除感染症状。

抗菌药物通常分为两大类:抗生素和抗菌药(包括抗真菌药和抗病毒药)。

1.抗生素:主要用于治疗细菌感染。

抗生素可以通过不同的机制
抑制或杀死细菌,例如阻碍细菌细胞壁的合成、影响细菌蛋白
质合成、阻止细菌核酸合成等。

例子包括青霉素、头孢菌素、
四环素等。

2.抗真菌药:用于治疗真菌感染。

真菌感染可能涉及皮肤、黏膜、
内脏器官等部位。

抗真菌药物可以通过干扰真菌细胞膜、核酸
或蛋白质的合成来抑制真菌的生长。

举例包括伊曲康唑、氟康
唑等。

3.抗病毒药:用于治疗病毒感染。

与抗菌药物不同,抗病毒药物
通常是通过干扰病毒的复制和生命周期来发挥作用。

例子包括
阿司匹林、奎贝特、奥司他韦等。

抗菌药物在医学领域中扮演着关键的角色,对于控制和治疗细菌、真菌和病毒感染至关重要。

然而,滥用抗菌药物可能导致耐药性的发展,因此在使用这类药物时需要谨慎,按照医生的建议使用,以确保最大程度地减少抗药性的风险。

抗菌谱的概念

抗菌谱的概念

抗菌谱的概念
抗菌谱是指一种抗生素或抗菌药物对不同类型细菌或病原体的作用范围和效力。

抗菌谱可以描述该药物对特定细菌的敏感性、耐药性以及抑菌能力。

抗菌谱通常通过实验室进行测定,利用不同的方法来评估抗菌药物对多种细菌的效果。

一种抗生素的抗菌谱可以分为广谱和窄谱。

- 广谱抗菌谱:能够有效抑制多种不同类型的细菌,包括革兰
氏阴性菌和革兰氏阳性菌。

这些药物通常用于治疗广谱细菌感染,但可能导致细菌耐药性的发展。

- 窄谱抗菌谱:只对特定类型的细菌或病原体有效。

这些药物
通常用于治疗已知的感染源或特定病原体引起的感染。

抗菌谱的了解对于选择适当的抗生素治疗感染非常重要。

医生必须根据患者的病情和病原体的类型来选择最有效的抗菌药物。

同时,了解抗菌谱也有助于预防细菌耐药性的发展。

纳米抗菌的原理

纳米抗菌的原理

纳米抗菌的原理
纳米抗菌技术是指利用纳米材料对抗微生物的能力,以抑制或杀灭细菌、病毒或真菌等微生物的生长与繁殖。

其原理主要包括以下几点:
1. 纳米材料表面效应:由于纳米材料的特殊性质,如比表面积大、表面能高等,使得纳米材料与微生物接触面积增大,从而增强与微生物的相互作用。

纳米材料表面的化学反应、物理吸附等效应,可破坏和干扰微生物的细胞壁、细胞膜和
DNA/RNA等结构,导致微生物失去正常功能,从而实现抗菌
效果。

2. 离子释放效应:一些纳米材料在接触水分时可发生离子释放,如银离子、铜离子等,这些离子对多种微生物具有杀菌作用。

离子的存在破坏了微生物的细胞膜和细胞壁,抑制了微生物的酶活性和蛋白质合成等生物过程,导致微生物死亡。

3. 抗菌纳米材料的结构特性:纳米材料常常具有特殊的结构特性,如纳米孔隙、纳米纤维等。

这些结构可以吸附、捕获微生物,限制其生长与传播。

此外,纳米材料的局部电荷分布特性也可能对微生物产生吸引力或排斥作用,从而实现抗菌效果。

总结起来,纳米材料的抗菌原理主要包括通过纳米材料的表面效应与微生物相互作用、纳米材料离子释放杀菌效果以及纳米材料的特殊结构特性来干扰微生物的正常生长与繁殖。

这些原理的综合作用,使得纳米材料成为一种有效的抗菌技术,广泛应用于医疗、食品安全、环境卫生等领域。

中国抗菌标准

中国抗菌标准

中国抗菌标准随着现代科技的不断发展,抗菌标准越来越成为人们关注的话题。

在这个背景下,中国也于近年发布了自己的抗菌标准,成为全球范围内抗菌技术的重要推动者。

下面,本文将围绕中国抗菌标准进行详细介绍。

第一步:了解抗菌标准的基本概念和意义抗菌标准是指在某些特定的场所、产品和材料上,通过采用特殊的材料、表面处理或添加抗菌剂等方式,抑制细菌生长和繁殖的能力,从而保持环境和产品的卫生和洁净。

随着人们对健康和卫生要求的提高,抗菌标准正逐渐被广泛应用于医疗、餐饮、家居、交通运输等领域,可以有效预防细菌病毒的传播,保证人们的身体健康和生活质量。

第二步:了解中国抗菌标准的主要内容中国抗菌标准是指在材料、产品和建筑场所(如医院、餐厅、办公室等)表面经过处理或添加抗菌剂等方式,能够达到抑制99%以上病菌、霉菌和其他微生物生长的能力。

其主要内容包括以下三个方面:1、抗菌剂:指在产品和材料表面加工时使用的抗菌剂,一般为无毒无害的天然或人工材料,如纳米银、二氧化钛、氧化锌等。

2、抗菌性能评价标准:对各类加工后的材料和产品进行评价,确定产品的抗菌性能指标,通常包括抗菌效果、抗菌持久性、安全性等。

3、适用范围和应用要求:规定各种抗菌技术的适用范围和应用要求,确保抗菌技术的合理应用和有效性。

第三步:了解中国抗菌标准的实施效果和前景发展抗菌技术具有重要的现实意义和发展前景。

在中国,随着人们健康水平的提高和生活水平的不断提升,抗菌技术将会得到越来越广泛的应用。

而中国抗菌标准的制定和实施,将会对保障人们的健康和安全发挥着不可替代的作用。

总之,中国抗菌标准是中国抗菌技术发展的重要里程碑,它将促进中国抗菌技术的不断创新,为保障人们的健康安全奠定坚实的基础。

我国还需要不断加强对于抗菌标准的研究和实践,进一步加强各领域抗菌技术的应用,才能更好地满足人民的健康需求。

抗菌活性的名词解释药理学原理

抗菌活性的名词解释药理学原理

抗菌活性的名词解释药理学原理抗菌活性是指一种物质对抗菌微生物(如细菌、真菌等)具有抑制或杀灭作用的能力。

在临床医学和药学研究领域,抗菌活性被广泛关注和研究,其药理学原理包含多个方面。

药物的抗菌活性主要基于以下几个方面的原理:1. 抗菌药物的靶点作用抗菌药物通过与靶点作用来实现对微生物的抗菌作用。

靶点可以是微生物的细胞壁、细胞膜、细胞核酸、蛋白质合成酶等。

抗菌药物与靶点结合后,会干扰微生物正常的生理功能,从而产生抑制或杀灭微生物的效果。

2. 破坏微生物细胞壁细菌细胞壁是其生存的关键结构,而抗菌药物中的某些成分可以破坏细菌细胞壁,使细菌无法维持原有的稳态,最终导致细菌死亡。

例如,β-内酰胺类抗生素通过抑制细菌的细胞壁合成酶来阻断细菌细胞壁的构建,从而展现其抗菌活性。

3. 干扰微生物代谢一些抗菌药物会通过干扰微生物的生物合成途径和代谢途径来发挥抗菌作用。

比如,氨基糖甙类抗生素能够与细菌核糖体结合,干扰蛋白质合成的进程,从而抑制细菌生长和复制。

4. 影响微生物DNA/RNA合成和修复DNA和RNA是微生物生命活动所必需的核酸分子,而一些抗菌药物可以干扰微生物的DNA/RNA合成和修复过程。

例如,喹诺酮类抗生素可通过与靶标DNA 酶结合,阻碍微生物DNA的合成和修复,最终导致微生物死亡。

5. 干扰微生物细胞膜的功能和完整性微生物细胞膜是由脂质双层构成的,对细菌、真菌等来说,细胞膜的完整性是其生存和功能维持的关键。

而一些抗菌药物可以改变细菌细胞膜的结构和功能,导致细胞膜的损伤和破坏,从而导致微生物死亡。

6. 干扰微生物细胞内酶和代谢物的正常活动一些抗菌药物可以与微生物细胞内的酶和代谢物发生相互作用,阻碍其正常的代谢活动。

这些抗菌药物可以抑制微生物内生酶的活性,或者与特定酶结合形成稳定复合物,导致微生物内的代谢途径受到干扰,从而影响微生物的正常生长和繁殖。

总而言之,抗菌活性的产生是通过干扰微生物正常生理活动的多种机制实现的。

中国7a抗菌标准

中国7a抗菌标准

中国7a抗菌标准中国7A抗菌标准是一种针对抗菌产品的性能和质量的标准。

该标准涵盖了抗菌性能要求、安全性要求、微生物指标要求、耐久性要求、舒适性要求和环保性要求等方面。

下面是对这些要求的详细介绍。

1.抗菌性能要求中国7A抗菌标准对抗菌产品的抗菌性能提出了明确的要求。

标准规定,抗菌产品必须具有杀灭或抑制常见细菌和真菌的能力。

这些常见的细菌和真菌包括大肠杆菌、金黄色葡萄球菌、肺炎克雷伯菌、白色念珠菌等。

抗菌产品的抗菌率应不低于90%,并且在正常使用条件下应能保持良好的抗菌效果。

2.安全性要求中国7A抗菌标准对抗菌产品的安全性也提出了严格的要求。

标准规定,抗菌产品不应含有对人体健康有害的物质,如甲醛、铅、汞等重金属化合物。

此外,抗菌产品还应经过一系列安全性测试,如皮肤刺激性测试、皮肤致敏性测试等,以确保在使用过程中不会对人体产生不良影响。

3.微生物指标要求中国7A抗菌标准对抗菌产品的微生物指标进行了规定。

标准要求,抗菌产品应对常见的细菌和真菌具有杀灭或抑制作用,同时不应产生耐药性。

此外,抗菌产品的微生物指标还应包括菌落总数、大肠杆菌、金黄色葡萄球菌、肺炎克雷伯菌等指标,以确保产品符合卫生要求。

4.耐久性要求中国7A抗菌标准对抗菌产品的耐久性也提出了要求。

标准规定,抗菌产品应能在正常使用条件下保持其性能不变。

具体来说,抗菌产品的耐久性应不低于传统同类产品的水平。

5.舒适性要求中国7A抗菌标准还对抗菌产品的舒适性提出了要求。

标准规定,抗菌产品的设计应符合人体工程学原理,使用起来应舒适、方便。

此外,抗菌产品的质地、手感等也应符合一般消费者的需求。

6.环保性要求中国7A抗菌标准对抗菌产品的环保性也进行了规定。

标准要求,抗菌产品的生产过程应符合环保要求,如采用环保材料制造、生产过程中产生的废弃物应符合国家排放标准等。

此外,抗菌产品的包装也应采用可回收利用的材料,减少对环境的负面影响。

总之,中国7A抗菌标准对抗菌产品的性能和质量提出了明确的要求,涵盖了抗菌性能、安全性、微生物指标、耐久性、舒适性和环保性等方面。

关于抗菌的文案

关于抗菌的文案

关于抗菌的文案:
标题:抗菌之力,守护生命
正文:
在当今充满挑战的时代,抗菌力量正成为我们守护生命的一道坚不可摧的防线。

抗菌不仅仅是对抗细菌和病毒的决心,更是对健康和安全的呵护。

1. 无微不至的守护
抗菌力量如同一位默默守护的卫士,无微不至地阻隔、清除潜在的威胁。

从家居生活到医疗环境,抗菌力量在每一个角落都发挥着关键作用,为我们创造一个洁净、安全的空间。

2. 医疗保健的关键环节
在医疗保健领域,抗菌技术正在不断演进。

新一代的抗菌材料、药物和技术为医护人员提供了更多工具,使他们能够更有效地治疗疾病,保护患者的生命。

3. 日常生活中的应用
抗菌力量也渗透到我们日常的生活。

从抗菌洗手液到抗菌涂层的家居用品,我们能够轻松地将抗菌的力量融入到日常的生活中,保持健康的同时,享受更多的安心。

4. 为未来打造更安全的环境
随着科技的发展,我们对抗菌力量的认识将更加深入。

未来,抗菌技术将在食品安全、空气净化等方面继续发挥作用,为我们打造更加安全、健康的生活环境。

结语:
抗菌,不仅仅是一项科技,更是一种责任。

通过抗菌的力量,我们能够共同建设一个更加健康、清洁的未来。

让我们携手并肩,共同努力,守护生命,创造更美好的明天。

灭菌、抗菌的区分

灭菌、抗菌的区分

2006年实施的《消毒产品卷标说明书管理规范》明确规定:
灭菌是指杀灭或清除传播媒介上一切微生物的处理;
消毒是指杀灭或清除传播媒介上病原微生物,使其达到无害化的处理;
抗菌是指采用化学或物理方法杀灭细菌或妨碍细菌生长繁殖及其活性的过程;抑菌是指采用化学或物理方法抑制或妨碍细菌生长繁殖及其活性的过程。

由此我们可以发现,看似差不多的“杀菌“、“抗菌”、“消毒”,其背后的含义是完全不同的。

中国洗涤用品工业协会理事长郑舞虹。

据她介绍,判断洗手液是否真的具有杀菌消毒功效,最简单的办法就是看批文。

凡是“卫消准字“的产品,都是经过卫生部门批准,证实确有消毒灭菌功效的,其成本也相对较高,因此,针对当前预防流感的需要,她建议大家最好选择卫消准字、具有杀菌功能的洗手液。

抗菌国际标准

抗菌国际标准

抗菌国际标准
抗菌国际标准是指用于评估和认证抗菌产品和材料的国际标准。以下是一些常见的抗菌国 际标准:
1. ISO 22196:2011:该标准规定了在实验室条件下评估塑料和其他非金属表面上抗菌性 能的测定方法。该标准适用于测定抗菌剂添加到塑料和其他非金属材料表面的抗菌性能。
2. JIS Z 2801:该标准是日本工业标准,用于评估塑料和其他非金属材料表面的抗菌性能 。它采用了与ISO 22196类似的方法。
抗菌国际标准
3. ASTM E2180:该标准是美国材料和试验协会(ASTM)制定的,用于评估材料表面抗 菌性能的测定方法。它适用于塑料和其他非金属材料。
4. AATCC 100:该标准是美国纺织化学与色彩学协会(AATCC)制定的,用于评估纺织 品抗菌性能的测定方法。它适用于纺织品的抗菌性能评估。
5. EN IS采用了与ISO 22196类似的方法。
抗菌国际标准
这些标准提供了一套统一的测试方法和评估指标,用于评估和比较不同抗菌产品和材料的 抗菌性能。通过符合这些国际标准,厂商可以证明其产品具有一定的抗菌效果,并获得相关 的认证和标志。需要注意的是,不同国家和地区可能有自己的抗菌标准和认证要求,厂商在 选择标准时应根据实际情况进行选择。

抗菌药物的名词解释

抗菌药物的名词解释

抗菌药物的名词解释
抗菌药物是指能够选择性抑制或杀灭细菌、支原体、衣原体、真菌、病毒等微生物的一类药物,用于防治微生物感染。

抗生素是抗菌药物的一种,能够影响机体功能和细胞代谢活动,用于疾病的治疗、预防和诊断。

抗菌药物的不良反应包括副作用、毒性反应、后遗效应、变态反应、停药反应和特异质反应等。

药物的剂量 - 效应关系是指药理效应的强弱与其剂量大小或浓度高低呈一定关系。

最小有效量和最小有效浓度是指引起效应的最小药量或最低药物浓度,亦称阈剂量或阈浓度。

最大效应是指在一定范围内增加药物剂量或浓度,效应强度随之增加,但当效应增强到最大时,继续增加剂量或浓度,效应不再增强。

5a抗菌标准

5a抗菌标准

5a抗菌标准“5A抗菌标准”是指一种有关产品抗菌能力的标准,其中5个A分别代表了五个方面的要素,即:抗菌剂类型(Antimicrobial agent),抗菌效果(Antimicrobial effectiveness),抗菌时长(Antimicrobial duration),抗菌范围(Antimicrobial spectrum),以及抗菌安全性(Antimicrobial safety)。

下面,我们将对这五个方面进行详细的阐述。

第一个A,即抗菌剂类型,是指产品中所使用的具有抗菌性质的化合物。

常见的抗菌剂类型有银离子、氯代酚类、季铵盐类等。

产品所使用的抗菌剂类型应符合国家标准,并且不得含有有害物质。

第二个A,即抗菌效果,是指产品对细菌、真菌等微生物的杀灭能力。

抗菌效果可以通过实验室测定,在一定时间内对一定的微生物进行测试,得出杀菌率等数据。

常见的测试方法有环境表面抗菌试验、洗手液抗菌试验、织物抗菌试验等。

第三个A,即抗菌时长,是指产品能够持续多长时间的抗菌效果。

抗菌时长可以通过对产品进行一定时间的使用测试,得出其抗菌效果可持续多长时间。

产品的抗菌效果持续时间越长,其抗菌能力就越强。

第四个A,即抗菌范围,是指产品能够抗菌的微生物种类。

不同的抗菌剂具有不同的抗菌范围,在商品选择抗菌剂时,应该根据预期使用场景中所需要抗菌的细菌或真菌种类选择具有相应抗菌范围的抗菌剂。

最后一个A,即抗菌安全性,是指产品在使用中不会对人体造成危害。

抗菌化合物在一定浓度下可以对微生物起到抑制和杀灭的作用,但是对人体产生副作用的情况也有发生。

因此,选择抗菌剂时需要综合考虑其抗菌效果和安全性,尽可能选择安全性较高且符合国家标准的抗菌剂。

总之,“5A抗菌标准”旨在提高商品的抗菌效果、抗菌持续时间和安全性,这为人类的生活提供了更多的健康保障。

同时,企业也应该按照“5A抗菌标准”生产商品,为消费者的抗菌需求提供可靠的保障。

抗菌作用原理

抗菌作用原理

抗菌作用原理
以下是几种常见的抗菌作用原理:
1. 直接杀灭菌体:一些抗菌物质(如抗生素)能直接作用于细菌细胞,破坏其细胞墙、膜或其他关键结构,导致菌体死亡。

2. 抑制菌体生长:某些抗菌物质(如抑菌剂)能阻碍细菌的正常生长和繁殖,通过干扰其代谢过程、核酸合成或蛋白质合成等途径,从而遏制细菌数量的增加。

3. 改变菌体环境:一些抗菌物质(如酸性或碱性物质)能改变菌体所处的环境条件,使其难以生存或繁殖,从而发挥抗菌作用。

4. 免疫调节:免疫系统在抵抗细菌感染中起着重要作用。

某些抗菌物质(如免疫增强剂)可以增强机体的免疫功能,提高对细菌的抵抗能力。

不同的抗菌物质可能具有不同的作用机制,且细菌对抗菌物质的敏感性也会有所差异。

在应用抗菌物质时,医生通常会根据具体情况选择适当的药物和剂量,以达到最佳的治疗效果。

纳米抗菌原理

纳米抗菌原理

纳米抗菌原理纳米抗菌技术是一种利用纳米材料对抗微生物的技术,它在医疗、食品加工、环境卫生等领域有着广泛的应用。

其原理是利用纳米材料的特殊性质,如表面积效应、尺寸效应、量子尺度效应等,对微生物进行抑制和杀灭,从而达到抗菌的效果。

首先,纳米抗菌原理的核心是纳米材料的特殊性能。

纳米材料具有较大的比表面积,这使得其与微生物之间的接触面积增大,从而增强了与微生物的相互作用。

另外,纳米材料的尺寸处于纳米尺度,这使得其具有较强的穿透能力,能够更好地渗透到微生物的细胞内部,对其进行破坏。

此外,纳米材料还可以通过释放活性物质或产生局部的物理效应,如光热效应、电磁效应等,对微生物进行杀灭。

其次,纳米抗菌原理的作用机制主要有三种,物理杀菌、化学杀菌和生物杀菌。

物理杀菌是指纳米材料通过物理方式对微生物进行破坏,如通过纳米材料的表面结构对微生物进行切割或破坏细胞壁。

化学杀菌是指纳米材料通过释放活性物质,如银离子、氧化物等,对微生物进行杀灭。

生物杀菌是指利用纳米材料与微生物之间的相互作用,如阻断微生物的营养代谢、抑制微生物的生长等,从而达到抗菌的效果。

最后,纳米抗菌原理的应用前景广阔。

随着人们对健康和环境卫生的重视,纳米抗菌技术将在医疗器械、食品包装、水处理等领域得到广泛应用。

例如,利用纳米银材料对医疗器械进行抗菌处理,可以有效地预防医院感染;利用纳米二氧化钛材料对食品包装进行抗菌处理,可以延长食品的保鲜期限;利用纳米复合材料对水进行抗菌处理,可以净化水质,保障人们的饮用水安全。

总之,纳米抗菌技术是一种具有广泛应用前景的抗菌技术,其原理是利用纳米材料的特殊性质对微生物进行抑制和杀灭。

通过物理杀菌、化学杀菌和生物杀菌三种作用机制,纳米抗菌技术可以在医疗、食品加工、环境卫生等领域发挥重要作用,为人们的健康和生活质量提供保障。

随着纳米技术的不断发展和完善,相信纳米抗菌技术将会在未来发挥更大的作用,为人类创造更加健康、安全的生活环境。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Biosensors and Bioelectronics 24(2008)1012–1019Contents lists available at ScienceDirectBiosensors andBioelectronicsj o u r n a l h o m e p a g e :w w w.e l s e v i e r.c o m /l o c a t e /b i osQuantum dots encapsulated with amphiphilic alginate as bioprobe for fast screening anti-dengue virus agentsChung-Hao Wang 1,Yi-Shiou Hsu 1,Ching-An Peng ∗Department of Chemical Engineering,National Taiwan University,Taipei,Taiwana r t i c l e i n f o Article history:Received 16April 2008Received in revised form 1August 2008Accepted 4August 2008Available online 13August 2008Keywords:Quantum dots Dengue virusAmphiphilic alginate Drug screening Allophycocyanin Polybrenea b s t r a c tThe increasing threats of viral diseases have gained worldwide attention in recent years.Quite a few infec-tious diseases are still lacking effective prevention or treatment.The pace of developing antiviral agents could be expedited by the availability of quick and efficient drug screening platforms.In this study,quan-tum dot (QD),an emerging probe for biological imaging and medical diagnostics,was employed to form complexes with virus and used as fluorescent imaging probes for exploring potential antiviral therapeu-tics.Inorganic CdSe/ZnS QDs synthesized in organic phase were encapsulated by amphiphilic alginate to attain biocompatible water-soluble QDs via phase transfer.Virus employed for this study was dengue virus which is a notorious one in tropical and subtropical regions of the world.To construct a QD–virus imaging modality capable of providing meaningful information,preservation of viral infectivity after tagging virus with QDs is of utmost importance.In order to form colloidal complexes of QD–virus,electrostatic repulsion force generated from both negatively charged virus and QDs was neutralized by various concentrations of cationic polybrene.Results showed that BHK-21cells infected with dengue viruses incorporated with QDs exhibited bright fluorescence intracellularly within 30min.To demonstrate the potency of QD–virus complexes as bioprobes for screening antiviral agents,BHK-21cells were incubated for one hour with allo-phycocyanin purified from blue-green algae and then infected with QD–virus complexes.Based on the developed cell-based imaging assay,allophycocyanin with concentration of 125␮g/mL led to extremely weak intracellular fluorescence post-infection of QD–virus complexes for 30min.That is,the efficacy of anti-dengue viral activity of the algae extract was clearly illustrated by the inorganic–organic hybrid platform constructed in current study.©2008Elsevier B.V.All rights reserved.1.IntroductionUnlike bacteria-based infection which can be controlled by antibiotics,viruses fully relying on host cells for their replication are not so readily dealt with.The emergence and spread of viral diseases worldwide,particularly HIV/AIDS,outbreaks of severe acute respi-ratory syndrome (SARS)virus,and the scares of pandemic avian influenza virus seriously raise the concern that any virus strain has the potential evolving into a life-threatening pathogen.In this regard,developing fast and efficient screening technology has its merits of identifying potential drugs against viral diseases that still lack of effective prevention or treatment.Dengue virus is the typical one representing an important emerging mosquito borne disease∗Corresponding author at:Department of Chemical Engineering,National Taiwan University,No.1,Section 4,Roosevelt Road,Taipei 106,Taiwan,ROC.Tel.:+886233663063;fax:+886223623040.E-mail address:chinganpeng@.tw (C.-A.Peng).1These authors contributed equally to this work.worldwide.It has spread from being endemic in just 9countries in 1970to 100countries in 2002,according to the world health report (http://www.who.int/whr/2002/en ).Apparently,global population growth,urbanization,and frequent modern transportation have contributed to the increased incidence and geographic spread of dengue viruses.These diseases occur in tropical and subtropical areas of the world,where 2.5billion people are estimated at risk for dengue virus outbreaks (Gubler and Clark,1995).Each year,tens of millions of cases of dengue fever occur,particularly in Asia,Africa,South America,and Pacific.The fatality rate is about 5%and there is no vaccine available for dengue virus.Control of the primary vec-tor,Aedes aegypti ,is the only method currently employed to prevent dengue virus epidemics.The pace of exploiting antiviral agents could be expedited by the availability of quick and efficient high-throughput anti-dengue viral agent screening assays.Recently,a cell-based immunofluores-cence imaging technology has been developed to identify potential anti-dengue viral therapeutic agents (Chu and Yang,2007).They reported that inhibitors of the c-Src protein kinase hinder the assembly of dengue virions and may therefore be an effective0956-5663/$–see front matter ©2008Elsevier B.V.All rights reserved.doi:10.1016/j.bios.2008.08.009C.-H.Wang et al./Biosensors and Bioelectronics24(2008)1012–10191013therapy.It was anticipated that the new assay can be useful for identifying small molecule inhibitors of dengue virus infection and replication as well as improving understanding of dengue virus–host interaction.Although the developed assay has its mer-its,the process of screening antiviral agents was not quick enough because the Vero cell culture plate after the addition of dengue virus and then specific protein kinase inhibitor has to be incubated for3days prior to the performance of immunofluorescence stain-ing.Moreover,anti-dengue E protein monoclonal antibody and the secondary antibody conjugated withfluorescent dye FITC have to be used for labeling the cell monolayer.This is no doubt a time-consuming and expensive process.Fluorescent dye has been widely used for viral labeling experiments and improved our understand-ing of viral infection process.However,fluorophores are notorious for photobleaching and spectral overlaps,and therefore could affect thefluorescence imaging quality of dye-labeled virus since the observation time ranged from one to ten seconds before photo-bleach occurs.Obviously,a highfluorescence quantum yield and a large number offluorescent photocycles before photobleach of the dye molecule occurs are the prerequisites for successfully detecting dye-labeled viral particles.Moreover,after labeling viral particles withfluorescent dyes,the number of viruses that can infect a cell most likely will be severely diminished.In view of the drawbacks of usingfluorescent dyes(Chan and Nie,1998;Parak et al.,2005),colloidal semiconductor quantum dots(QDs)were investigated in this study to explore the potency of tagging QDs to viral particles.Thanks to excellent photostabil-ity,broad adsorption spectra,and narrow emission spectra,QDs have attracted great interests in many areas of research,from molecular and cellular biology to molecular imaging and medical diagnostics(Michalet et al.,2005and references therein).Tri-n-octylphosphine oxide(TOPO)-coated QD suspended in organic solvent wasfirst converted into water-soluble QD employing syn-thesized amphiphilic alginate plexes between QDs and dengue virus,both possessing a net negative surface charge, will be formed by colloidal clustering,facilitated by positively charged polycationic compound–polybrene.In order to test if QD–virus complexes can be harnessed as diagnostic probes for fast screening potential anti-dengue viral drug candidates,allo-phycocyanin(protein-bound pigment)purified from a blue-green microalga Spirulina platensis was used as the model agent since it has been reported to exhibit anti-EV71activities(Shih et al., 2003).Our results showed that the intensity of green QD images within BHK-21cells was decreased along with the dosage increase of allophycocyanin up to125␮g/mL provided one hour prior to the addition of QD–virus complexes.It was clearly illustrated that allo-phycocyanin possesses anti-dengue viral activity and this can be determined within half an hour after target cells incubated with dengue viruses incorporated with amphiphilic alginate coated QD in the presence of50␮g/mL polybrene.2.Materials and methods2.1.Synthesis of CdSe/ZnS QDsTo prepare semiconductor CdSe/ZnS QDs,a mixture of25.7mg of cadmium oxide(CdO,Sigma,USA),3.88g of Tri-n-octylphosphine oxide(TOPO,Sigma),and2.41g of hexadecylamine(HDA,Acros, Belgium)was heated to300–320◦C under a dry nitrogen atmo-sphere.After the formation of a CdO–HDA complex as indicated by the change of color from reddish to colorless,the temperature of the solution was cooled down to260◦C and waited for injection.A stock solution with31.58mg of selenium powder(Se,Sigma–Aldrich) dissolved in5mL of tri-n-butylphosphine(TBP,Showa,Japan)was quickly injected into the solution under rigorous stirring to nucleate CdSe nanocrystals.After injection,the core solution was grown at 260◦C for approximately5s when the color of the mixture turned from colorless to slightly red.The temperature was then cooled to200◦C for shell growth.The shell solution containing379.4mg zinc stearate(J.T.Baker,Netherlands)and12.8mg sulfur powder (S,Sigma)dissolved in5mL of TBP was heated to110◦C for30min and then cooled to room temperature for injection.The shell solu-tion was added dropwise into the core solution under stirring over a period of15min.After addition of shell solution,the core-shell solution was cooled down to120◦C to anneal for2h.The core-shell solution was cooled to room temperature afterwards.The CdSe/ZnS nanocrystals were precipitated by anhydrous methanol (Tedia,USA)and then stored in chloroform(Tedia)for further use.2.2.Preparation of amphiphilic alginate surfactantSodium alginate solution(Sigma)mixed with2wt.%sodium periodate(Acros)in a dark,cold chamber(4◦C)for24h.Exclu-sion of light was essential for the prevention of side reaction. To obtain oxidized2,3-dialdehydic alginate,the reaction mixture was extensively dialyzed against distilled water and subsequently freeze-dried.Two milligrams of octylamine(Acros)dissolved in8mL methanol was reacted with0.276mg2,3-dialdehydic alginate dissolved in10mL phosphate buffer saline(PBS)solu-tion containing0.1g sodium cyanoborohydride(NaCNBH3,Acros). The reductive amination proceeded for12h with rigorous stir-ring at room temperature.The reaction mixture was dialyzed and subsequently freeze-dried to obtain the amphiphilic alginate surfactant.2.3.Encapsulation of QDs with amphiphilic alginate0.4mg of CdSe/ZnS suspended in5mL of chloroform was added with2mg of alginate surfactant.The mixture was sonicated in a bath for10min,and then the chloroform was removed by a rotary evaporator(Eyela,Japan)at room temperature.At the end of the operation,the mixture was resuspended with PBS solution andfil-tered through a0.22-m syringefilter(Millipore,USA)to remove aggregates.Thefiltrate was freeze-dried to obtain the amphiphilic alginate coated quantum dots in the powder form.2.4.Particle size analysisQDs encapsulated by amphiphilic alginate(AA-QDs)were thor-oughly dispersed in aqueous solution by a sonicator(200W,40kHz; Branson Ultrasonics Corporation,CT,USA)for10min and then passed through a0.22-␮m syringefilter to collect non-aggregated AA-QDs which were analyzed for mean particle size and size distri-bution by the dynamic light scattering(Zetasizer Nano ZS,Malvern Instruments,UK)equipped with a diode-pumped solid-state laser operating at633nm wavelength as a light source.The particle size distribution and the average particle diameter were obtained from the correlation function by a regularization method included in the data analysis software package(Dispersion Technology Software 5.02,Malvern Instruments,UK).2.5.Zeta potential measurementThe surface electric charge of AA-QDs,dengue virus,and QD–virus complexes was measured separately by the zeta potentiometer(Zetasizer Nano-ZS,Malvern Instruments,UK)via determining the electrophoretic mobility.The electrophoretic mobility is obtained by harnessing microelectrophoresis technique1014 C.-H.Wang et al./Biosensors and Bioelectronics 24(2008)1012–1019on the sample to measure the velocity of the particles using laser Doppler velocimetry.The isoelectric point (p I )of allophycocyanin was determined to be the pH at which it carries no net electric charge (i.e.,zeta potential equals to zero).2.6.Absorption and photoluminescence spectra of AA-QDsA UV–vis spectrophotometer (Jasco Model V-570,Japan)and a photoluminescence spectrophotometer (Jasco Model FP-6000,Japan)were used to characterize AA-QDs.UV–vis absorption spec-trum of QDs was scanned in the wavelength range of 300–700nm.The photoluminescence of the particles was measured in the wave-length range of 400–700nm.The spectra were obtained with the data pitch at 5nm and the scanning speed of 500nm per min.All samples were placed in quartz cuvettes (1-cm path length)and the optical measurements were carried out using PBS as the reference forAA-QDs.Fig. 1.(a)Schematic drawing of CdSe/ZnS quantum dots encapsulated by amphiphilic alginate surfactant;(b)particle size distribution of AA-QDs by dynamic light scattering.After sonication,the distribution was narrowed down to the range between 18.1and 28.7nm with a mean diameter of 23.1nm.2.7.Transmission electron microscopy (TEM)analysisTEM specimens were made by evaporating one drop of quantum dots/virus complexes solution on carbon-coated copper grids.TEM micrographs were taken by a transmission electron microscope (JEM-1230,JOEL,Tokyo,Japan)operating at 100kV.Phospho-tungstic acid (Sigma)was used as the negative stain reagent.2.8.BHK-21cells and dengue virusesBHK-21cells were maintained at 37◦C in Dulbecco’s modified Eagle’s medium (DMEM;HyClone,UT,USA),supplemented with 10%fetal bovine serum (FBS;HyClone).Dengue virus serotype-2strain PL046was propagated in mosquito C6/36cell line maintained at 30o C in DMEM,supplemented with 10%FBS,Fig.2.(a)Photoluminescence and UV–vis spectra of AA-QDs.UV–vis absorption spectrum of AA-QDs was detected in the range of 300–700nm.The photolumi-nescence of AA-QDs was measured in the range of 400–700nm with an excitation wavelength of 390nm.The photoluminescence with the emission wavelength peaked at 534nm indicating bright green fluorescence of AA-QDs in aqueous solu-tion shown in the inset photograph;(b)TEM image of the QD–virus complexes formed in the cationic polybrene solution.The light-color particles with the size around 40–50nm are dengue virus (indicated by arrow).The dark-color particles tagged on the viral particles (indicated by arrowhead)are AA-QDs (about 10–15nm).(For interpretation of the references to color in this figure legend,the reader is referred to the web version of the article.)C.-H.Wang et al./Biosensors and Bioelectronics24(2008)1012–10191015Fig.3.Photomicrographical images of BHK-21cells exposed separately to AA-QDs with and without polybrene for various periods of time.(a)–(c)Images of BHK-21cells incubated with QDs without polybrene for30,60,and120min,respectively.QD was not detected intracellularly underfluorescent confocal microscopy until120min post-incubation;(d)–(f)images of BHK-21cells incubated with QDs in the presence of10␮g/mL polybrene.QD was not detected intracellularly underfluorescent confocal microscopy until60min post-incubation.(g)–(i)Images of BHK-21cells incubated with QDs in the presence of50␮g/mL polybrene.QD was clearly detected intracellularly underfluorescent confocal microscopy after30min post-incubation.The normalizedfluorescence intensities per selected cell area of(b)–(i)based on thefluorescence intensity per selected cell area of(a)are1.02,1.06,0.94,2.55,3.65,1.70,3.93,and5.20,respectively.Scale bar=25␮m.1016 C.-H.Wang et al./Biosensors and Bioelectronics24(2008)1012–1019penicillin(200U/mL)and streptomycin(100␮g/mL).Dengue virus-containing supernatant wasfirst centrifuged at10,000rpm,and then ultracentrifuged at100,000×g at4◦C for3h to purify dengue virions.The titer of the virus was evaluated using BHK21cells by the plaque assay(Liu et al.,1997).2.9.Inhibition of QD–virus infection by algae extractsAA-QDs suspended in1mL DMEM medium were added into1mL dengue virus-containing medium with multiplic-ity of infection(MOI)of0.1,0.5,and 1.0,respectively.After gentle shaking of the mixed media,polybrene(1,5-dimethyl-1,5-diazaundecamethylene polymethobromide,MW=5000–10,000, Sigma–Aldrich)stock solution was pipetted into the mixture to reach afinal concentration of10and50␮g/mL,respectively.Then, the mixed solution was incubated at4◦C for1h to prevent dengue virus from losing infectivity.After the process of incorporating virus with AA-QDs,5×104BHK-21cells in the exponential growth phase were replaced with the QD–virus-containing medium.After treat-ing BHK-21cells with the QD–virus complexes for various periods of time(30,60,and120min),the cell culture dish was washed with PBS three times and observed under Spectral Confocal and Multiphoton System(Leica TCS SP5,Wetzlar,Germany)with the settings of objective lens63×,pinhole1.0,smart gain380mV,andFig.4.Photomicrographical images of BHK-21cells exposed separately to QD–virus complexes of different MOIs with10␮g/mL polybrene for various periods of time.(a)–(c) Images of BHK-21cells incubated with QD–virus complexes of MOI being0.1for30,60,and120min,respectively;(d)–(f)images of BHK-21cells incubated with QD–virus complexes of MOI being0.5for30,60,and120min,respectively;(g)six sequential z-section images of selected infected cells were taken by a confocal microscope,which revealing the QD–virus complexes were indeed internalized into BHK-21cells rather than absorbed on cell surface.The normalizedfluorescence intensities per selected cell area of(b)–(f)based on thefluorescence intensity per selected cell area of(a)are1.00,1.33,1.19,2.56,and3.54,respectively.Scale bar=25␮m.C.-H.Wang et al./Biosensors and Bioelectronics24(2008)1012–10191017405-nm laser ND3.Thefluorescence intensity of QDs revealed within the observed BHK-21cells was quantitatively analyzed by the MetaMorph®imaging software(Version7.5,Molecular Devices, USA).In order to test if QD–virus complexes can be harnessed as diag-nostic probes for fast screening potential anti-dengue therapeutic agents.Allophycocyanin(Far East Bio-Tec Co.,Taipei,Taiwan)with concentration of6.25,31.25,and125␮g/mL was used to treat BHK-21cells for one hour,and then rinsed away by PBS solution for three times.After allophycocyanin treatment,QD–virus complexes were added separately for30,60,and120min to examine the efficacy of drug screen assay proposed in this study.3.Results and discussion3.1.QDs encapsulated with amphiphilic alginateColloidal nanocrystal QDs consisting of an inorganic core/shell structure(e.g.,CdSe/ZnS)surrounded by a layer of organic ligands (i.e.,TOPO)can be converted into hydrophilic nanoparticles by sev-eral approaches(Bruchez et al.,1998;Chan and Nie,1998;Dubertret et al.,2002;Mulder et al.,2006;Pinaud et al.,2004;Zhelev et al., 2006).The commonly used strategy is based on the exchange of the original organic layer with hydrophilic ligands,however the physical properties(i.e.,quantum yield)are usually deteriorated through such surface modification.In this study,we demonstrated thefirst time that amphiphilic alginate can encapsulate CdSe/ZnS by intercalating alginate surfactant’s hydrophobic pendant moi-eties(i.e.,octyl chains)into the hydrophobic surfactant layer(i.e., TOPO)on the QD surface,thereby resulting in the phase transfer of hydrophobic QDs from organic solvents to aqueous solution via hydrophilic backbone(i.e.,alginate).The schematic drawing of the water-soluble CdSe/ZnS QDs encapsulated with amphiphilic algi-nate is shown in Fig.1(a).The average size of water-soluble QDs encapsulated by alginate surfactants was determined to be23.1nm in the range of18.1–28.7nm shown in Fig.1(b).As long as the num-ber of pendant groups is sufficiently high,the linkage of amphiphilic alginate to the QD surface could be very stable and thereby lead to the physical properties of QD intact.The absorption and emis-sion spectra of QD encapsulated with amphiphilic alginate given in Fig.2(a)reveal higher absorbance between525and550nm and strong photoluminescence with the emission wavelength peaked at534nm after excited by UV-light.The inset image in Fig.2(a) illustrates the bright green color of AA-QD in aqueous solution. To demonstrate the formation of QD–virus complexes via colloidal clustering of negatively charged QD and dengue virus in cationic polybrene solution,TEM image of QD–virus complexes was taken and showed in Fig.2(b).In the image,the light-color particles with the size around40–50nm are dengue virus,and the dark-color par-ticles tagged on the surface of viral particles are AA-QDs(about 10–15nm).3.2.Cell–QD interactionFig.3showed the photomicrographical images of BHK-21cells incubated with AA-QDs at various time periods.In Fig.3(a)–(b), when the AA-QDs(zeta potential measurement of−7.18mV)added in cell culture dish without polybrene respectively for30and 60min,AA-QDs were not detected underfluorescent microscopy after remained AA-QDs was washed off with PBS.This is due to electrical repulsion between alginate macromolecule and cell sur-face which are both negatively charged.However,after120min co-culture of AA-QDs and cells without the addition of poly-brene,green dots representing QDs were able to be pinpointed within cellular domain(Fig.3(c)).It is surmised that,given a longer incubation time(i.e.,120min),sufficient amount of pro-teins(ingredients from fetal bovine serum)adsorbed onto the surface of negatively charged AA-QDs triggered nonspecific cell binding and ensuing endocytosis.While,in Fig.3(d)–(f),AA-QDs were started to be detected in the intracellular space60min post-incubation,in the presence of10␮g/mL polybrene.This is probably because the electrostatic neutralization effect of poly-cationic polybrene led to nonspecific adsorption of negatively charged AA-QDs on negatively charged cell membrane.It is noteworthy that polybrene is a cationic polymer and has been reported to act by neutralizing negative charges on the surface of cells and virions to promote virus attachment and enhance viral transduction rate(Kwon and Peng,2002).Once the con-centration of polybrene increased to50␮g/mL,AA-QDs were able to enter the cell ports within a short period of timeandFig.5.Photomicrographical images of BHK-21cells exposed to QD–virus complexes with50␮g/mL polybrene at30,60,and120min,respectively.The normalizedfluorescence intensities per selected cell area of(b)and(c)based on thefluorescence intensity per selected cell area of(a)are1.23and2.73,respectively.MOI=0.5and scale bar=25␮m.1018 C.-H.Wang et al./Biosensors and Bioelectronics24(2008)1012–1019expressed greenfluorescence in BHK-21cells after30min of treat-ment.3.3.Effect of polybrene on infectivity of QD–virusThe QDs encapsulated with amphiphilic alignate surfactants were employed to form colloidal clusters with dengue viruses(zeta potential measurement of−6.04mV)in the presence of cationic polybrene.To determine the suitable viral concentration for the development of quick and efficient cell-basedfluorescent imaging drug screening platform,various MOIs(multiplicity of infection) were employed ranging from0.1to1.Our results showed that QD–virus complexes with a net positive charge(zeta potential measurement of+2.84mV)were internalized into BHK-21cells by receptor-mediated endocytosis,and can be detected in cellu-lar milieu.As shown in Fig.4(a)–(f),greenfluorescent intensity expressed within BHK-21cells due to the entrance of QD–virus was augmented in proportion to the increment of MOI(from0.1to0.5). To confirm the QD–virus complexes were indeed internalized into BHK-21cells rather than absorbed on cell surface,a series of pho-tomicrographs taken by a confocal microscope along the z-axis of selected infected cells are shown in Fig.4(g).The greenfluores-cence was further enhanced when the concentration of polybrene increased from10to50␮g/mL with MOI maintained at0.5(shown in Fig.5(a)–(c)).Since preservation of viral infectivity after tag-ging virus with QDs is of utmost importance for QD–virus imaging modality offering meaningful information,plaque forming assays were performed with BHK-21cells treated with intact dengue viruses and QD–virus complexes.The result(data not shown)indi-cated the number of plaque forming units numerated from the cells infected with QD–virus complexes was only slightly lower than the control group(i.e.,dengue viruses without QDs tagging). This implies that dengue viral infectivity was retained using the method of incorporation virus with QDs in polycationic solution. This is consistent with the previous report indicating the infec-tivity of incompetent retrovirus as a viral gene delivery vehicle decreases slightly when mixed with QD in polycationic solution (You et al.,2006).In contrast to viruses covalently labeled withflu-orescent dyes,the method developed in this study seems to be a superior one.In the case of adeno-associated virus(AAV),which is a relatively small virus(∼25nm in diameter),it has been shown that for a dye-to-particle ratio higher than two,the infectious titer was severely affected,namely the number of viruses which were able to infect a cell was lowered(Seisenberger et al.,2001).ItFig.6.Photomicrographical images of BHK-21cells treated with and without allophycocyanin for one hour,then exposed to QD–virus complexes with50␮g/mL polybrene for various periods of time.(a)–(d)Images of BHK-21cells incubated with QD–virus complexes for30min,after cells pre-treated with allophycocyanin of0,6.25,31.25,and 125␮g/mL,respectively;(e)–(h)images of BHK-21cells incubated with QD–virus complexes for60min,after cells pre-treated with allophycocyanin of0,6.25,31.25,and 125␮g/mL,respectively.The normalizedfluorescence intensities per selected cell area of(b)–(h)based on thefluorescence intensity per selected cell area of(a)are0.72, 0.66,0.54,2.92,1.02,0.66,and0.52,respectively.MOI=0.5and scale bar=25␮m.C.-H.Wang et al./Biosensors and Bioelectronics24(2008)1012–10191019should be noted that the cell shape of Fig.5(b)turned into large ones after BHK-21cells were infected with QD–virus complexes for60min.The situation gets even worse for cells treated with QD–virus complexes up to120min(see Fig.5(c)).We speculate such cell morphological changes were caused by the viral dam-age of cell machinery(e.g.,cytoskeleton),thereby leading to cell lysis.In addition to the microscopy-basedfluorescence technique, biochemical methods are also available to analyze the biology of the virus(Girod et al.,1999).In many of these methods,viral gene expression is determined after a certain long incubation time. Moreover,most of the methods are very time consuming and a large amount of viruses has to be used.In view of the need of poly-brene for neutralizing electrostatic repulsion force between both negatively charged dengue virus and amphiphilic alginate coated QD,it is conjectured that having QDs capped by positively charged water-soluble ligands(or polymers)to directly form complexes with viruses without the aid of polybrene probably is a feasible and much simple method.3.4.Antiviral activity of allophycocyaninAccording to the results shown in Fig.5,it is reasonable to speculate that,if any potential compound has anti-dengue viral feature,the intensity of greenfluorescence emitted from QD–virus complexes internalized in cells should be drastically diminished.In order to test if QD–virus complexes can be har-nessed as diagnostic probes for fast screening potential anti-dengue drugs,allophycocyanin was selected as the model compound for exploring the efficacy of QD–virus imaging modality for screen-ing anti-dengue viral therapeutic agents.Allophycocyanin has been reported to neutralize EV71-induced cytopathic effect in both human rhabdomyosarcoma cells and African green monkey kid-ney cells.Antiviral activity was more efficient in cultures treated with allophycocyanin before viral infection compared with that in the cultures treated after infection(Shih et al.,2003).As shown in Fig.6(a)–(d),the intensity of green images within BHK-21cells was decreased along with the dosage increase of allophycocyanin provided one hour prior to the addition of QD–virus complexes which were constructed in the presence of50␮g/mL polybrene. It should be noted that cells incubated with QD–virus complexes for only30min can give a fairly clearfluorescent intensity decrease with the concentration of allophyscocyanin up to125␮g/mL.For cells treated with allophycocyanin higher or equal to31.25␮g/mL for one hour then challenged with QD–virus complexes for60min, the diminish of greenfluorescence is even astonishing prominent. Compared to other anti-viral agent screening assays,the cell-based QD–virus imaging modality exploited in this study indeed has fast and efficient features for screening antiviral therapeutics.Since, the p I value of allophycocyanin was measured around4.5,a net negative charge of allophycocyanin will be revealed in the cell cul-ture medium.Such negatively charged allophycocyanin might be associated with positively charged QD–virus complexes if free allo-phycocyanin remained in the culture medium.However,in our study,BHK-21cells were only treated with allophycocyanin for1h and washed three times with PBS solution.There is no concern of allophycocyanin interference on the interaction between QD–virus complexes and cells.4.ConclusionTo construct QD–virus imaging modality capable of providing meaningful information,preservation of viral infectivity after tag-ging virus with QDs is of utmost importance.In this study,we demonstrate the infectivity of QD–virus formed via colloidal clus-tering in the presence of polycationic polybrene remained intact to be internalized by cells susceptible to dengue virus.The efficacy of anti-dengue viral activity of an algal extract was clearly illustrated by the constructed inorganic–organic hybrid platform in a quick and efficient manner.AcknowledgementsThe authors thank Dr.Huan-Yao Lei(Institute of Basic Medi-cal Sciences,National Cheng Kung University,Tainan,Taiwan)for providing dengue virus and its related information.ReferencesBruchez,M.J.,Moronne,M.,Gin,P.,Weiss,S.,Alivisatos,A.P.,1998.Science281, 2013–2016.Chan,W.C.W.,Nie,S.M.,1998.Science281,2016–2018.Chu,J.J.H.,Yang,P.L.,2007.PNAS104,3520–3525.Dubertret,B.,Skourides,P.,Norris,D.J.,Noireaux,V.,Brivanlou,A.H.,Libchaber,A., 2002.Science298,1759–1762.Girod,A.,Ried,M.,Wobus,C.,Lahm,H.,Leike,K.,Kleinschmidt,J.,Deleage,G.,Hallek, M.,1999.Nat.Med.9,1052–1056.Gubler,D.J.,Clark,G.G.,1995.Emerg.Infect.Dis.1,55–57.Kwon,Y.J.,Peng,C.-A.,2002.Biotech.Bioeng.77,668–677.Liu,H.S.,Lin,Y.L.,Chen,C.C.,1997.Acta Virol.41,317–324.Michalet,X.,Pinaud,F.F.,Bentolila,L.A.,Tsay,J.M.,Doose,S.,Li,J.J.,Sundaresan,G., Wu,A.M.,Gambhir,S.S.,Weiss,S.,2005.Science307,538–544.Mulder,W.J.M.,Koole,R.,Brandwijk,R.J.,Storm,G.,Chin,P.T.K.,Strijkers,G.J.,Donega,C.D.,Nicolay,K.,Griffioen,A.W.,2006.Nano Lett.6,1–6.Parak,W.J.,Pellegrino,T.,Plank,C.,2005.Nanotechnology16,R9–25.Pinaud,F.,King,D.,Moore,H.-P.,Weiss,S.,2004.J.Am.Chem.Soc.126,6115–6123. Seisenberger,G.,Ried,M.U.,Endreb,T.,Buning,H.,Hallek,M.,Brauchle,C.,2001.Science294,1929–1932.Shih,S.R.,Tsai,K.N.,Li,Y.S.,Chueh,C.C.,Chan,E.C.,2003.J.Med.Virol.70,119–125. You,J.O.,Liu,Y.S.,Liu,Y.C.,Joo,K.I.,Peng,C.A.,2006.Int.J.Nanomed.1,59–64. Zhelev,Z.,Ohba,H.,Bakalova,R.,2006.J.Am.Chem.Soc.128,6324–6325.。

相关文档
最新文档