浙江省宁波市海曙区2015届中考数学模拟试题(含解析)

合集下载

2015浙江宁波中考数学解析试卷

2015浙江宁波中考数学解析试卷

2015年浙江省宁波市中考数学试卷(满分150分,考试时间120分钟)一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1. (2015浙江宁波,1,4分)13-的绝对值为( ) A. 13 B.3 C. 13- D. -3【答案】A2. (2015浙江宁波,2,4分)下列计算正确的是( )A.235()a a =B. 2a - a = 2C. 2(2)4a a =D.34a a a ⋅=【答案】D3. (2015浙江宁波,3,4分)2015年中国高端装备制造业销售收入将超 6万亿元.其中6万亿元用科学记数法可表示为( )A.0.6×1O 13元B.60×1O 11元C.6×1012元D.6×1O 13元 【答案】C4. (2015浙江宁波,4,4分)在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家的粽子作调查,以决定最终向哪家店采购.下面的统计量中最值得关注的是( )A. 方差B. 平均数C. 中位数D. 众数 【答案】D5. (2015浙江宁波,5,4分)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是( )【答案】A6. (2015浙江宁波,6,4分)如图,直线a ∥b ,直线c 分别与a ,b 相交,∠1= 50°,则∠2的度数为( )A.150°B.130°C.100°D.50°【答案】B7. (2015浙江宁波,7,4分)如图,□ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE ≌△CDF ,则添加的条件不能为( )A. BE = DFB. BF = DEC. AE = CFD.∠1= ∠2【答案】C8. (2015浙江宁波,8,4分)如图,⊙O 为△ABC 的外接圆,∠A = 72°,则∠BCO 的度数为( )A.15°B.18°C.20°D.28°【答案】B9. (2015浙江宁波,9,4分) 如图,用一个半径为 30cm ,面积为 300πcm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r 为( )A.5cmB.10cmC.20cmD.5πcm【答案】B10. (2015浙江宁波,10,4分)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第 1 次操作,折痕DE 到BC 的距离记为 h 1;还原纸片后,再将 △ADE 沿着过AD 中点D 1的直线折叠,使点A 落在 DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为 h 2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为h 2015.若h l = 1,则h 2015的值为( )A .201521 B .201421 C .2015211-D .2014212-【答案】D11. (2015浙江宁波,11,4分)二次函数2(4)4y a x =--(a ≠0)的图象在2 <x <3这一段位于x 轴的下方,在6 <x <7这一段位于x 轴的上方,则 a 的值为( ) A. 1 B. -1 C.2 D.-2 【答案】A12. (2015浙江宁波,12,4分)如图,小明家的住房平面图呈长方形,被分割成 3个正方形和 2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为( )A. ①②B. ②③C. ①③D. ①②③【答案】A二、填空题(每小题4分,共24 分)13. (2015浙江宁波,13,4分)实数8的立方根是 . 【答案】214. (2015浙江宁波,14,4分)分解因式:29x -= .【答案】(x- 3)(x + 3)15. (2015浙江宁波,15,4分)命题“对角线相等的四边形是矩形”是 命题. (填“真”或“假”) 【答案】假16. (2015浙江宁波,16,4分)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼的C 处测得旗杆底端B 的俯角为 45°,测得旗杆顶端A 的仰角为30°,若旗杆与教学楼的距离为9m ,则旗杆AB 的高度是 m.(结果保留根号)【答案】9+17. (2015浙江宁波,17,4分)如图,在矩形ABCD 中,AB = 8,AD = 12,过A ,D 两点的⊙O 与BC 边相切于点E . 则 ⊙O 的半径为.【答案】25418. (2015浙江宁波,18,4分)如图,已知点A ,C 在反比例函数ay x=(a > 0)的图象上,点B ,D 在反比例函数b y x=(b <0)的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB = 3,CD = 2,AB 与CD 的距离为5,则a -b 的值是.【答案】6三、解答题(本大题有 8小题,共78分)19. (2015浙江宁波,19,6分)解一元一次不等式组122113x x +>-⎧⎪-⎨≤⎪⎩,并把解在数轴上表示出来.【答案】解:122113x x +>-⎧⎪⎨-≤⎪⎩①② 由①得x >-3, 由②得x ≤2.∴原不等式组的解为 -3<x ≤2.20. (2015浙江宁波,20,8分)一个不透明的布袋里装有2个白球,1 个黑球和若干个红球,它们除颜色外其余都相同. 从中任意摸出1个球,是白球的概率为12. (1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回...,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率. 【答案】解:(1)由题意得,1242÷= ∴布袋里共有 4个球. ∵4-2-1 =1∴布袋里有 1个红球.(2)∴任意摸出 2个球刚好都是白球的概率是1.621. (2015浙江宁波,21,8分)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数; (2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少? 【答案】解:(1)10÷25%= 40; (2)补全条形统计图; 40×30% = 12 40-10-15-12=3(3)15121200()904040⨯-=. 答:估计全校最喜爱篮球的人数比最喜爱足球的人数多90人.22. (2015浙江宁波,22,10分)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共 6600棵,若A 花木数量是B 花木数量的2倍少600 棵. (1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40 棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务? 【答案】解:(1)设B 花木的数量是x 棵,则A 花木的数量是(2x -600)棵, 根据题意得x +(2x -600)=6600, 解得x =2400, 2x-600= 4200答:A 花木的数量是4200棵,B 花木的数量是2400棵.(2)设安排y 人种植A 花木,则安排(26-y )人种植B 花木,根据题意得420024006040(26)y y =-,解得y =14,经检验,y=14是原方程的根,且符合题意. 26-y = 12 .答:安排14人种植A 花木,12人种植B 花木,才能确保同时完成各自的任务.23. (2015浙江宁波,23,10分)已知抛物线2()()y x m x m =---,其中 m 是常数. (1)求证:不论 m 为何值,该抛物线与 x 轴一定有两个公共点; (2)若该抛物线的对称轴为直线5.2x =①求该抛物线的函数解析式;②该抛物线沿y 轴向上平移多少个单位长度后,得到的抛物线与 x 轴只有一个公共点. 【答案】解:(1)证明:∵2()()()(1)y x m x m x m x m =---=--- 由y =0得1x m =,21x m =+,∵m ≠m +1,∴抛物线与x 轴一定有两个交点(m ,0),(m +1,0). (2)①∵2()(1)(21)(1)y x m x m x m x m m =---=-+++ ∴抛物线的对称轴为直线(21)522m x -+=-=,解得m =2, 抛物线的函数解析式为256y x x =-+.②∵225156()24y x x x =-+=--,∴该抛物线沿y 轴向上平移14个单位长度后,得到的抛物线与x 轴只有一个公共点.24. (2015浙江宁波,24,10分)在边长为 1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为 b ,则格点多边形的面积可表示为1S ma nb =+-,其中m ,n 为常数.(1)在下面的方格纸中各画出一个面积为 6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定 m ,n 的值. 【答案】解:(1)(2)三角形:a =4,b =6,S =6;平行四边形:a =3,b =8,S =6; 菱形:a =5,b =4,S =6;任选两组数据代入 S =ma +nb -1,解得m =1,12n =.25. (2015浙江宁波,25,12分)如图1,点P 为∠MON 的平分线上一点,以 P 为顶点的角的两边分别与射线 OM ,ON 交于A ,B 两点,如果∠APB 绕点 P 旋转时始终满足2OA OB OP ⋅=,我们就把∠APB 叫做∠MON 的智慧角.(第25题图)(1)如图2,已知 ∠MON = 90°,点P 为∠MON 的平分线上一点,以P 为顶点的角的两边分别与射线OM ,ON 交于A ,B 两点,且∠APB =135°. 求证:∠APB 是∠MON 的智慧角.(2)如图1,已知∠MON =α(0°<α<90°),OP = 2. 若∠APB 是∠MON 的智慧角,连结AB ,用含α的式子分别表示∠APB 的度数和△AOB 的面积. (3)如图3,C 是函数3(0)y x x=>图象上的一个动点,过C 的直线CD 分别交x 轴和y 轴于A ,B 两点,且满足BC =2CA ,请求出∠AOB 的智慧角∠APB 的顶点P 的坐标. 【答案】解:(1)证明:∵∠MON =90°,P 是∠MON 平分线上一点,∴∠AOP =∠BOP =12∠MON =45°. ∵∠AOP +∠OAP +∠APO =180°, ∴∠OAP +∠APO = 135°.∵∠APB =135,∴∠APO +∠OPB =135°, ∴∠OAP =∠OPB , ∴△AOP ∽△POB , ∴OA OP OP OB=,∴2OP OA OB =⋅,∴∠A PB 是∠MON 的智慧角.(2)∵∠A PB 是∠MON 的智慧角, ∴2OA OB OP ⋅=,∴.OA OPOP OB= ∵P 为∠MON 平分线上一点, ∴∠AOP =∠BOP =1.2α∴△AOP ∽△POB ,∴∠OAP =∠OPB ,∴∠APB =∠OPB +∠OP A = ∠OAP +∠OP A =180°-12α, 即∠APB =180°-12α. 过A 作AH ⊥OB 于H , ∴2111sin sin .222AOB S OB AH OB OA OP αα∆=⋅=⋅=⋅ ∵OP = 2, ∴2sin .AOB S α∆=(3)设点C(a ,b ),则ab =3, 过点C 作CH ⊥OA ,垂足为点H , i )当点B 在y 轴的正半轴上时,当点A 在x 轴的负半轴上时,BC =2CA 不可能; 当点A 在x 轴的正半轴上时, ∵ BC =2CA ,∴13CA AB =, ∵CH ∥OB ,∴△ACH ∽△ABO ,∴13CH AH CA OB OA AB ===, ∴OB =3b , OA =32a.∴39273222a ab OA OB b ⋅=⋅==. ∵∠APB 是∠AOB 的智慧角,∴OP ===∵∠AOB =90°,OP 平分∠AOB ,∴点P 的坐标为). ii )当点B 在y 轴的负半轴上时,∵BC = 2CA ,∴AB = CA . ∵∠AOB =∠AHC =90°,又∵∠BAO =∠CAH ,∴△ACH ≌△ABO ,∴OB =CH =b ,OA =AH =12a ,∴13.22OA OB a b ⋅=⋅=∵∠APB 是∠AOB 的智慧角,∴OP ===, ∵∠AOB =90°,OP 平分∠AOB ,∴点P 的坐标为∴点P 的坐标为)或26. (2015浙江宁波,26,14分)如图,在平面直角坐标系中,点 M 是第一象限内一点,过M 的直线分别交x 轴,y 轴的正半轴于A ,B 两点,且M 是AB 的中点. 以OM 为直径的⊙P 分别交x 轴,y 轴于C ,D 两点,交直线AB 于点E (位于点M 右下方),连结DE 交OM 于点K .(1)若点 M 的坐标为(3,4), ①求A ,B 两点的坐标; ②求ME 的长.(2)若3OKMK=,求∠OBA 的度数. (3)设 tan ∠OBA =x (0 <x <1),OKy MK=,直接写出 y 关于 x 的函数解析式.(第26题图)【答案】解:(1)①连结DM ,MC , ∵OM 为直径,∴∠MDO =∠MCO =90°. ∵∠AOB = 90°,∴MD ∥OA , MC ∥OB . ∵M 是AB 中点,∴D 是OB 中点,C 是OA 中点.∵M (3, 4) ,∴OB =2MC =8,OA =2MD =6,∴B (0, 8), A (6, 0).②在Rt △AOB 中,OA =6,OB =8,∴AB = 10. ∵M 为 AB 中点,∴BM =12AB = 5.∵∠BOM =∠BED ,又∵∠OBM =∠EBD ,∴△OBM ∽△EBD , ∴.BMBOBD BE = ∴846.45BO BDBE BM ⋅⨯===,∴ME=BE -BM ,∴ME = 6.4-5 =1.4.(2)连结DP , ∵3OKMK =,∴OK =3MK ,OM =4MK ,∴PK =MK .∵OP = PM , BD =DO ,∴DP 为△BOM 的中位线,∴DP ∥BM . ∴∠PDK =∠MEK . 又∵∠PKD =∠MKE , ∴△DPK ≌△EMK , ∴DK =KE .∵OM 为直径,∴OM ⊥D E ,∴cos ∠DPK =PKPD .∵DP =PM =2PK ,∴cos ∠DPK =12,∴∠DPK =60° , ∴∠DOM = 30°. ∵在Rt △AOB 中,M 为 AB 中点,∴BM =MO ,∴∠OBA =∠DOM ,∴∠OBA = 30°.(3)y 关于x 的解析式为221y x =-.下列解答过程仅供参考:连结OE ,∵OM 为直径,∴∠MEO =90°.∵tan ∠OBA =x ,设BE =1,∴在Rt △OBE 中,OE =BE ×tan ∠OBA =x , 设B M=OM =m ,∴ME =BE -BM =1-m . ∴在Rt △OME 中,222(1)m x m -+=, ∴212x m +=,∴ME = 1-m =212x -,DP =12BM =12m=214x +.∵△DPK ∽△EMK , ∴222211412(1)2x PK DP xx KM ME x ++===--, ∴2222212(1)3.2(1)2(1)MP PK MK x x x MK MK x x +++--===--∵P 为 MO 的中点, ∴2223.1OM MP x MK MK x -==- ∴2222(3)(1)2.11OK OM MK x x y MK MK x x ----====--y 关于x 的函数解析式为22.1y x =-。

浙江宁波海曙区中考一模考试卷数学考试卷(解析版)(初三)中考模拟.doc

浙江宁波海曙区中考一模考试卷数学考试卷(解析版)(初三)中考模拟.doc

浙江宁波海曙区中考一模考试卷数学考试卷(解析版)(初三)中考模拟姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】A. 2016B. ﹣2016C. ±2016D.【答案】A【解析】试题分析:﹣2016的绝对值是|﹣2016|=2016,故选:A.考点:实数的性质【题文】下列各式中,属于最简二次根式的是()A. B. C. D.【答案】D【解析】试题分析:被开方数含分母,不属于最简二次根式,A错误;=2,不属于最简二次根式,B错误;=2,不属于最简二次根式,C错误;属于最简二次根式,D正确;故选:D.考点:最简二次根式的概念【题文】人工智能AlphaGo因在人机大战中大胜韩国围棋手李世石九段而声名显赫.它具有自我对弈学习能力,决战前已做了两千万局的训练(等同于一个人近千年的训练量).此处“两千万”用科学记数法表示为()A.0.2×107 B.2×107 C.0.2×108 D.2×108【答案】B【解析】试题分析:将“两千万”用科学记数法表示为:2×107,故选:B考点:科学记数法的表示方法【题文】下列运算正确的是()A、a3+a3=a6B、a2a2=a4C.(2a)4=2a4 D、a6÷a3=a2【答案】B【解析】试题分析:A.a3+a3=2 a3,故原题计算错误;B.a2a2=a4故原题计算准确;C.(2a)4=16a4,故原题计算错误;D. a6÷a3=a3故原题计算错误;考点:同底数幂的乘法、同底数幂的除法、积的乘方【题文】已知三角形的两边长分别为3,4,则第三边长的取值范围在数轴上表示正确的是()【答案】B【解析】试题分析:已知三角形的两边长分别为3,4,则第三边长的取值范围为4﹣3<x<4+3,即1<x<7,表示在数轴上为:故选B考点:数轴上表示不等式的解集【题文】下表为宁波市2016年4月上旬10天的日最低气温情况,则这10天中日最低气温的中位数和众数分别是()温度(℃) 11 13 14 15 16天数 1 5 2 1 1A.14℃,14℃ B.14℃,13℃C.13℃,13℃ D.13℃,14℃【答案】C【解析】试题分析:∵13出现了5次,它的次数最多,∴众数为13.∵共10天天气,∴根据表格数据可以知道中位数=(13+13)÷2=13,即中位数为13.故选C.考点:中位数和众数【题文】如图,将长方体表面展开,下列选项中错误的是()【答案】C【解析】试题分析:A、是长方体平面展开图,不符合题意;B、是长方体平面展开图,不符合题意;C、有两个面重合,不是长方体平面展开图,不符合题意;D、是长方体平面展开图,不符合题意.故选:C.考点:长方体的展开图【题文】如图,在6×6的正方形网格中,连结两格点A,B,线段AB与网格线的交点为M、N,则AM:MN :NB为()A.3:5:4 B.1:3:2 C.1:4:2 D.3:6:5【答案】B【解析】试题分析:过A点作AE⊥BE,交于点E,连接MC、ND、BE,∵是一个正方形,∴MC∥ND∥BE,∴AM:MN:NB=AC:CD:DE=1:3:2,∴AM:MN:NB=1:3:2.故选:B.考点:平行线分线段成比例定理【题文】如图,△ABC中,BA=BC,BD是三角形的角平分线,DE∥BC交AB于E,下列结论:①∠1=∠3;②DE=AB ;③S△ADE=S△ABC.正确的有()A.0个 B.1个 C.2个 D.3个【答案】D【解析】试题分析:∵BA=BC,BD平分∠ABC,∴∠1=∠2,BD⊥AC,且AD=CD,∵DE∥BC,∴∠2=∠3,△ADE∽△ACB,∴∠1=∠3,故①正确;,即DE=BC,故②正确;由△ADE∽△ACB,且=可得=()2=,即S△ADE=S△ABC,故③正确;故选:D.考点:等腰三角形的性质、平行线的性质及相似三角形的判定与性质【题文】定义:将一个图形L沿某个方向平移一段距离后,该图形在平面上留下的痕迹称之为图形L在该方向的拖影.如图,四边形ABB′A′是线段AB水平向右平移得到的拖影.则将下面四个图形水平向右平移适当距离,其拖影是五边形的是()【答案】A【解析】试题分析:只有三角形的拖影是五边形,故选A考点:平移变换的作图【题文】如图,半径为1cm的⊙O中,AB为⊙O内接正九边形的一边,点C、D分别在优弧与劣弧上.则下列结论:①S扇形AOB=πcm2;②;③∠ACB=20°;④∠ADB=140°.错误的有()A.0个 B.1个 C.2个 D.3个【答案】B【解析】试题分析:∵AB为⊙O内接正九边形的一边,∴∠AOB==40°,∴S扇形AOB==π(cm2),的长==π(cm);∠ACB=∠AOB=20°;∴①②③正确;∠ADB=180°﹣20°=160°;∴④错误;错误的有1个,故选:B.考点:正九边形的性质、扇形面积公式和弧长公式、圆周角定理以及圆内接四边形的性质【题文】如图,平面直角坐标系中,平行四边形OABC的顶点C(3,4),边OA落在x正半轴上,P为线段AC上一点,过点P分别作DE∥OC,FG∥OA交平行四边形各边如图.若反比例函数的图象经过点D,四边形BCFG的面积为8,则k的值为()A.16 B.20 C.24 D.28【答案】B【解析】试题分析:由图可得,S▱ABCD,又∵S△FCP=S△DCP且S△AEP=S△AGP,∴S▱OEPF=S▱BGPD,∵四边形BCFG的面积为8,∴S▱CDEO=S▱BCFG=8,又∵点C的纵坐标是4,则▱CDOE的高是4,∴OE=CD=,∴点D的横坐标是5,即点D的坐标是(5,4),∴4=,解得k=20,故选B.考点:反比例函数系数k的几何意义、平行四边形的性质【题文】x的值为时,分式无意义.【答案】-1【解析】试题分析:由分式无意义,得x+1=0,解得x=﹣1,故答案为:﹣1.考点:分式有意义的条件【题文】正五边形的一个内角的度数是_________【答案】108°【解析】试题分析:∵正多边形的内角和公式为:(n﹣2)×180°,∴正五边形的内角和是:(5﹣2)×180°=540°,则每个内角是:540÷5=108°.考点:多边形的内角和计算公式【题文】如图,P(12,a)在反比例函数图象上,PH⊥x轴于H,则tan∠POH的值为_________ .【答案】【解析】试题分析:∵P(12,a)在反比例函数图象上,∴a==5,∵PH⊥x轴于H,∴PH=5,OH=12,∴tan∠POH=,故答案为:.考点:反比例函数图象上点的坐标特征,锐角三角函数的定义及运用【题文】如图,已知△ABC是一个水平放置圆锥的主视图,AB=AC=5cm,,则圆锥的侧面积为 cm2.【答案】15π【解析】试题分析:圆锥底面圆的半径=5×=3(cm),所以此圆锥的侧面积=2π35=15π(cm2).故答案为15π.考点:圆锥的计算【题文】如图,矩形ABCD中,AD=6,CD=6+,E为AD上一点,且AE=2,点F,H分别在边AB,CD上,四边形EFGH为矩形,点G在矩形ABCD的内部,则当△BGC为直角三角形时,AF的值是.【答案】2或4【解析】试题分析:如图过点G作MN⊥AB垂足为M,交CD于N,作GK⊥BC于K.∵四边形EFGH是矩形,∴GH=EF,GH∥EF,∠A=90°,∴∠DNM+∠NMA=90°,∴∠AMN=∠DNM=90°,∵CD∥AB,∴∠NHG=∠AFE,在△HNG和△FAE中,,∴△HNG≌△FAE,∴AE=NG=2,ED=GM=4,∵四边形NGKC、四边形GMBK都是矩形,∴CK=GN=2,BK=MG=4,当∠CGB=90°时,∵△CGK∽△GBK,∴,∴GK=MB=CN=2,∴DN=AM=AB﹣MB=6,∴四边形AMND是正方形,设AF=x,则FM=6﹣x,∵△AEF∽△MFG,∴l∵抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,∴,得,∵抛物线y=2x2+bx+c经过A(m﹣1,n)和B(m+3,n),∴该抛物线的对称轴为:直线x==,∴b=﹣4(m+1),∴=2m2+4m+1,∴y=2x2+bx+c=2x2﹣4(m+1)x+2m2+4m+1,∴n=2×(m﹣1)2﹣4(m+1)(m﹣1)+2m2+4m+1=7,即AM=BN=7,∵A(m﹣1,n),B(m+3,n),∴AB=(m+3)﹣(m﹣1)=4,∴四边形AMNB的周长为是:AM+MN+NB+BA=7+4+7+4=22,故答案为:22.y=2x2+bx+c=,∵抛物线y=2x2+bx+c与直线y=﹣1只有一个公共点,∴,得,∵抛物线y=2x2+bx+c经过A(m﹣1,n)和B(m+3,n),∴该抛物线的对称轴为:直线x==,∴b=﹣4(m+1),∴=2m2+4m+1,∴y=2x2+bx+c=2x2﹣4(m+1)x+2m2+4m+1,∴n=2×(m﹣1)2﹣4(m+1)(m﹣1)+2m2+4m+1=7,即AM=BN=7,∵A(m﹣1,n),B(m+3,n),∴AB=(m+3)﹣(m﹣1)=4,∴四边形AMNB的周长为是:AM+MN+NB+BA=7+4+7+4=22,故答案为:22.考点:二次函数的性质【题文】先化简,后求值:,其中x=3.【答案】【解析】试题分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可试题解析:原式===,当x=3时,原式=.考点:分式的化简求值【题文】已知关于x的方程x2﹣5x+3a+3=0(1)若a=1,请你解这个方程;(2)若方程有两个不相等的实数根,求a的取值范围.【答案】(1)x1=2,x2=3(2)a<【解析】试题分析:(1)把a=1代入原方程,然后利用因式分解法解方程即可;(2)根据方程两个不相等的实数根,得到根的判别式△>0,列出a的不等式即可.试题解析:(1)当a=1时,x2﹣5x+6=0,(x﹣2)(x﹣3)=0,∴x1=2,x2=3;(2)∵方程有两个不相等的实数根,∴△=(﹣5)2﹣4(3a+3)>0,解得a<.考点:根的判别式【题文】在一个箱子里放有1个白球和2个红球,它们除颜色外其余都相同.(1)判断下列甲乙两人的说法,认为对的在后面括号内答“√”,错的打“×”.甲:“从箱子里摸出一个球是白球或者红球”这一事件是必然事件;乙:从箱子里摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球;(2)小明说:从箱子里摸出一个球,不放回,再摸出一个球,则“摸出的球中有白球”这一事件的概率为,你认同吗?请画树状图或列表计算说明.【答案】(1)√;×;(2)不认同;【解析】试题分析:(1)由必然事件与随机事件的定义,即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与摸出的球中有白球的情况,再利用概率公式即可求得答案.试题解析:摸出一个球,记下颜色后放回,搅匀,这样连续操作三次,其中必有一次摸到的是白球.×故答案为:√;×;(2)不认同.画树状图得:∵共有6种等可能的结果,摸出的球中有白球的有2种情况,∴P(摸出的球中有白球)=.故不认同.考点:列表法或树状图法求概率【题文】李克强总理连续三年把“全民阅读”写入《政府工作报告》,足以说明阅读的重要性.某校为了解学生最喜爱的书籍的类型,随机抽取了部分学生进行调查,并绘制了如下的条形统计图(部分信息未给出).已知,这些学生中有15%的人喜欢漫画,喜欢小说名著的人数是喜欢童话的,请完成下列问题:(1)求本次抽取的学生人数;(2)喜欢小说名著、喜欢童话故事的学生各有多少人?并补全条形统计图;(3)全校共有2100名学生,请估计最喜欢“小说名著”的人数有多少?【答案】(1)60人(2)喜欢小说名著和童话故事的人数是:60﹣9﹣12=36(人),喜欢小说的人数是:36×=15(人),喜欢童话的人数是:36×=21(人),(3)525人【解析】试题分析:(1)根据漫画的人数和所占的百分比即可求出总人数;(2)先求出喜欢小说名著和童话故事的总人数,再根据喜欢小说名著的人数是喜欢童话的,分别求出喜欢小说的人数和喜欢童话的人数,从而补全统计图;(3)用全校的总人数乘以最喜欢“小说名著”的人数所占的百分比,即可得出答案.试题解析:(1)根据题意得:9÷15%=60(人).答:本次抽取的学生人数是60人;(2)喜欢小说名著和童话故事的人数是:60﹣9﹣12=36(人),喜欢小说的人数是:36×=15(人),喜欢童话的人数是:36×=21(人),补图如下:(3)根据题意得:2100×=525(人).答:最喜欢“小说名著”的人数有525人.考点:条形统计图【题文】如图,⊙O中,点A为中点,BD为直径,过A作AP∥BC交DB的延长线于点P.(1)求证:PA是⊙O的切线;(2)若,AB=6,求sin∠ABD的值.【答案】(1)AP是⊙O的切线(2)【解析】试题分析:(1)根据垂径定理得出AO⊥BC,进而根据平行线的性质得出AP⊥AO,即可证得结论;(2)根据垂径定理得出BE=2,在RT△ABE中,利用锐角三角函数关系得出sin∠BAO=,再根据等腰三角形的性质得出∠ABD=∠BAO,即可求得求sin∠ABD=sin∠BAO=.试题解析:(1)证明:连结AO,交BC于点E.∵点A是的中点∴AO⊥BC,又∵AP∥BC,∴AP⊥AO,∴AP是⊙O的切线;(2)解:∵AO⊥BC,,∴,又∵AB=6∴sin∠BAO=,∵OA=OB∴∠ABD=∠BAO,∴ sin∠ABD=sin∠BAO=.考点:切线的判定,垂径定理的应用,等腰三角形的性质以及锐角三角函数关系【题文】张师傅驾车从甲地去乙地,途中在加油站加了一次油,加油时,车载电脑显示还能行驶50千米.假设加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.(1)求张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式;(2)求出a的值;(3)求张师傅途中加油多少升?【答案】(1)y=﹣8t+28(2)a=3(3)46【解析】试题分析:(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)首先求出y=0时,t的值,进而得出a的值;(3)根据汽车的耗油量以及剩余油量和加油量之间关系得出等式求出答案.试题解析:(1)设加油前函数解析式为y=kt+b(k≠0),把(0,28)和(1,20)代入,得,解得:,故张师傅加油前油箱剩余油量y(升)与行驶时间t(小时)之间的关系式为:y=﹣8t+28;(2)当y=0时,﹣8t+28=0,解得:t=,故a=﹣=3;(3)设途中加油x升,则28+x﹣34=8×,解得:x=46,答:张师傅途中加油46升.考点:一次函数的应用【题文】定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=;②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是;(整点指横坐标、纵坐标都为整数的点)(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是;;.【答案】(1)(2)(5,3),(3,5)(3);;【解析】试题分析:(1)利用准矩形的定义和勾股定理计算,再根据准矩形的特点和整点的特点求出即可;(2)先利用正方形的性质判断出△ABE≌△BCF,即可;(2)分三种情况分别计算,用到梯形面积公式,对角线面积公式,对角线互相垂直的四边形的面积计算方法.试题解析:(1)①∵∠ABC=90,∴BD=,故答案为,②∵A(0,3),B(5,0),∴AB==6,设点P(m,n),A(0,0),∴OP==6,∵m,n都为整数,∴点P(3,5)或(5,3);故答案为P(3,5)或(5,3);(2)∵四边形ABCD是正方形,∴AB=BC∠A=∠ABC=90°,∴∠EAF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(3);;∵∠ABC=90°,∠BAC=60°,AB=2,∴BC=2,AC=4,准矩形ABCD中,BD=AC=4,①当AC=AD时,如图1,作DE⊥AB,∴AE=BE AB=1,∴DE=,∴S准矩形ABCD=S△ADE+S梯形BCDE =DE×AE+(BC+DE)×BE=×+(2+)×1=+;②当AC=CD时,如图2,作DF⊥BC,∴BD=CD,∴BF=CF=BC=,∴DF=,l∴∠ABG=60°,∴∠CBG=30°在Rt△BHG中,BG=2,∠BGH=30°,∴BH=1,在Rt△BHM中,BH=1,∠CBH=30°,∴BM=,HM=,∴CM=,在Rt△DHB中,BH=1,BD=4,∴DH=,∴DM=DH﹣MH=﹣,∴S准矩形ABCD=S△DCF+S四边形AMCD=BM×AB+AC×DM=××2+×4×(﹣)=2;故答案为;;.考点:四边形综合题,主要考查了新定义,勾股定理,梯形面积公式,对角线面积公式,三角形面积公式【题文】如图,平面直角坐标系中,O为菱形ABCD的对称中心,已知C(2,0),D(0,﹣1),N为线段CD上一点(不与C、D重合).(1)求以C为顶点,且经过点D的抛物线解析式;(2)设N关于BD的对称点为N1,N关于BC的对称点为N2,求证:△N1BN2∽△ABC;(3)求(2)中N1N2的最小值;(4)过点N作y轴的平行线交(1)中的抛物线于点P,点Q为直线AB上的一个动点,且∠PQA=∠BAC,求当PQ最小时点Q坐标.【答案】(1)y=﹣(x﹣2)2(2)△ABC∽△N1BN2(3)(4)【解析】试题分析:(1)用待定系数法求,即可;(2)由对称的特点得出∠N1BN2=2∠DBC结合菱形的性质即可;(3)先判定出,当BN⊥CD时,BN最短,再利用△ABC∽△N1BN2得到比例式,求解,即可;(4)先建立PE=m2﹣m+2函数解析式,根据抛物线的特点确定出最小值.试题解析:(1)由已知,设抛物线解析式为y=a(x﹣2)2把D(0,﹣1)代入,得a=﹣∴y=﹣(x﹣2)2(2)如图1,连结BN.∵N1,N2是N的对称点∴BN1=BN2=BN,∠N1BD=∠NBD,∠NBC=∠N2BC∴∠N1BN2=2∠DBC∵四边形ABCD是菱形∴AB=BC,∠ABC=2∠DBC∴∠ABC=∠N1BN2,∴△ABC∽△N1BN2(3)∵点N是CD上的动点,∴点到直线的距离,垂线段最短,∴当BN⊥CD时,BN最短.∵C(2,0),D(0,﹣1)∴C D=,∴BNmin=,∴BN1min=BNmin=,∵△ABC∽△N1BN2∴,N1N2min=,(4)如图2,过点P作PE⊥x轴,交AB于点E.∵∠PQA=∠BAC∴PQ1∥AC∵菱形ABCD中,C(2,0),D(0,﹣1)∴A(﹣2,0),B(0,1)∴lAB:Y=x+1不妨设P(m,﹣(m﹣2)2),则E(m, m+1)∴PE=m2﹣m+2∴当m=1时,此时,PQ1最小,最小值为=,∴PQ1=PQ2=.考点:二次函数综合题,涉及到菱形的性质,待定系数法求解析式,相似三角形的性质和判定,对称的特点。

浙江宁波中考数学真题测试卷有答案

浙江宁波中考数学真题测试卷有答案
(2)若 =3,求∠ OBA 的度数.
(3)设 tan∠ OBA=x ( 0< x< 1), =y ,直接写出 y 关于 x 的函数解析式.
参考答案
一、选择题 ( 每小题 4 分 )
1. A
解答:因为一个负数的绝对值是它的相反数,所以
1
的绝对值是
1 ,故选择
A

3
3
点评:本题考查了绝对值的运算,解题的关键是知道绝对值的运算规律.




5.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是(

A.
B.
C.
D.
6.如图,直线 a∥ b,直线 c 分别与 a, b 相交,∠ 1=50 °,则∠ 2 的度数为(

A 150 ° .
B 130 ° .
C 100 ° .
D 50° .
7.如图, ? ABCD 中,E,F 是对角线 BD 上的两点, 如果添加一个条件, 使△ ABE ≌△ CDF ,
菱形)、菱形;
(2)利用( 1)中的格点多边形确定 m, n 的值.
25.如图 1,点 P 为∠ MON 的平分线上一点,以 P 为顶点的角的两边分别与射线 OM ,ON 交于 A ,B 两点,如果∠ APB 绕点 P 旋转时始终满足 OA?OB=OP 2,我们就把∠ APB 叫做 ∠MON 的智慧角. (1)如图 2,已知∠ MON=9°0 ,点 P 为∠ MON 的平分线上一点,以 P 为顶点的角的两边 分别与射线 OM ,ON 交于 A ,B 两点,且∠ APB=135° .求证: ∠ APB 是∠ MON 的智慧角. (2)如图 1,已知∠ MONα= ( 0°< α< 90°), OP=2.若∠ APB 是∠ MON 的智慧角,连结 AB ,用含 α的式子分别表示∠ APB 的度数和 △AOB 的面积.

宁波市海曙区2015届中考数学模拟试卷含答案解析

宁波市海曙区2015届中考数学模拟试卷含答案解析

2015年浙江省宁波市海曙区中考数学模拟试卷一、选择题1 . ﹣2的相反数是()A.﹣B.﹣2 C.D.22=2,2.统计甲乙两人各10次射击的成绩发现,两人10次射击的平均成绩一样高,方差分别为S甲2=5,则两人这10次射击成绩比较稳定的是()S乙A.甲B.乙C.两者一样稳定 D.无法判断3.下列方程有实数根的有()①x2+x+4=0;②x2+4x+4=0;③x2+4x﹣2=0.A.0个B.1个C.2个D.3个4.下列各式计算正确的是()A.(a2)3=a6B.(π﹣1)0=0 C.a﹣1=﹣a(a≠0)D.(﹣2a)2=4a5.如图由7个大小相同的正方体摆成的立体图形,它的俯视图是()A.B.C.D.6.一把大遮阳伞伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2.5米,底面半径为2米,则伞面的面积是()A .平方米 B .5π平方米 C .10π平方米 D .π平方米7.本月某一周每天的最高气温统计如下表所示,则最高气温的众数与中位数(单位:℃)分别是( )A .29,29B .29,30C .30,29.5D .30,308.下列命题是假命题的是( )A .三角形的中线平分三角形的面积B .三角形的角平分线交点到三角形各边距离相等C .三角形的高线至少有两条在三角形内部D .三角形外心是三边垂直平分线的交点9.如图,平面直角坐标系中,已知P (6,8),M 为OP 中点,以P 为圆心,6为半径作⊙P ,则下列判断正确的有( )①点O 在⊙P 外;②点M 在⊙P 上;③x 轴与⊙P 相离;④y 轴与⊙P 相切.A .1个B .2个C .3个D .4个10.已知点M 为某封闭图形边界上一定点,动点P 从点M 出发,沿其边界顺时针匀速运动一周.设点P 运动的时间为x ,线段MP 的长为y .表示y 与x 的函数关系的图象大致如图所示,则该封闭图形可能是( )A. B.C.D.11.如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断正确的是()A.乙>丙>甲B.丙>乙>甲C.甲>丙>乙D.无法判断12.已知P是反比例函数y=(x>0)图象上一点,点B的坐标为(5,0),A是y轴正半轴上一点,且AP⊥BP,AP:BP=1:3,那么四边形AOBP的面积为()A.16 B.20 C.24 D.28二、填空题13.﹣27的立方根是.14.如图,△ABC中,∠BAC=40°,∠B=60°,且AP∥BC,则∠1的度数为.15.半径为5cm的圆中,圆心角为72°的扇形面积为cm2.16.今年宁波市体育中考已确定抽测项目为篮球,实心球,50米跑.A、B两人随机从这三项中选择一项作为测试项目,他们都选中篮球的概率为.17.如图,已知线段AE=10,点P是线段AE上的动点,以AP长为边长作菱形PMNQ,已知该菱形的一个锐角∠MPQ=60°,且对角线NP⊥AE,△PED是以PE为底的等腰三角形,则△PND的面积的最大值是.18.如图,矩形ABCD中,E为BC上一点,F为CD上一点,已知∠AEF=90°,∠AFE=30°,△ECF 的外接圆切AD于H,则sin∠DAF=.三、解答题(第19题6分,第20、21题每题8分,第22、23、24题每题10分,第25题12分,第26题14分,共78分)19.先化简,再求值:﹣,其中x=3.20.(1)如图,▱ABCD中,E、F、G、H为各边中点,请用三种不同的方法,通过适当连线,找出▱ABCD的对称中心P.(2)圆内接正五边形是否中心对称图形(填“是”或“否”)21.某市交通部门为了有力制止酒驾行为拟制了一份“克服酒驾几种方式”的调查问卷,并在该市司机中进行了抽样调查.调查问卷如表:现整理调查问卷并制作了统计图:根据上述信息,解答下列问题:(1)本次抽样调查的样本容量是多少?(2)补全条形图,并计算B选项所对应扇形圆心角的度数;(3)若该市有30000名司机,估计支持D选项的司机大约有多少人?22.如图,一次函数y=kx+b图象与反比例函数y=的图象交于点A、B,与x轴交于点C.(1)求一次函数y=kx+b与反比例函数y=的解析式.(2)求点C坐标.(3)平面上的点D与点O、C、A构成平行四边形,请直接写出满足条件的D点坐标.23.如图,AB为⊙O直径,C为圆上一点,AC=2,BC=4,E为直径AB上一动点(不与点A、B 重合),CE延长线交⊙O于D,PC⊥CD交DB延长线于点P.(1)求证:△ABC∽△DPC;(2)当CD⊥AB时,求CP的长;(3)CP长是否存在最大值?若存在,求出CP的最大值;若不存在,说明理由.24.某超市开设了自助收银区,实施自助收银,以节省顾客的排队时间.某日上午10点,超市值班经理发现在自助收银区已经有80人在等待自助收银,此时仍有顾客不断前来排队等候.在自助收银区,假设顾客按固定的速度增加,每个收银口自助收银的速度也是固定的,其中每分钟新增排队人数为3人,每分钟每个收银口自助收银2人.(1)若10点后收银的前a分钟只开放4个收银口,10点后排队等候收银的人数y(人)与收银时间x(分钟)的关系如图所示.①求a值;②求超市在10点20分时,自助收银区排队等候收银的顾客人数.(2)超市有承诺:顾客排队不超过10分钟,即要在10点10分内让所有排队的顾客都能完成自助收银,以便后来的顾客能随到随收.请帮助值班经理计算一下10点后至少需要同时开放几个收银口?25.若以三角形的一边为边向形外作正三角形,以这边所对两个顶点为端点的线段称这个三角形的奇异线.如图1,以△ABC的边BC为边,向外作正△BCD,则AD是△ABC的一条奇异线.(1)如图2,CD,AE都是△ABC的奇异线,求证:CD=AE;(2)如图3,△ABC内接于⊙O,BD是它的奇异线,且点D在⊙O上,①直接写出∠ABC=度.②若AB=2,BC=3,求奇异线BD的长.(3)若图1△ABC中,∠BAC=30°,AB=,AC=,求△ABC的奇异线AD的长.26.如图,开口向下的抛物线y=a(x﹣2)2+k,交x轴于点A、B(点A在点B左侧),交y轴正半轴于点C,顶点为P,过顶点P,作x轴,y轴的垂线,垂足分别为M,N.(1)直接写出,当PMON为正方形时,k=,当S△PCM=3时,k=.(2)若a=﹣1,△PCM为等腰三角形,求k的值.(3)若△PCM中,∠CPM=45°,tan∠CMP=,求抛物线解析式.(4)在(3)的情况下,设PC交x轴于E,若点D为线段PE上一动点(不与P点重合),BD交△PMD的外接圆于点Q.求PQ的最小值.2015年浙江省宁波市海曙区中考数学模拟试卷参考答案与试题解析一、选择题﹣2的相反数是()A.﹣B.﹣2 C.D.2【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.【解答】解:﹣2的相反数是2,故选:D.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2=2,2.统计甲乙两人各10次射击的成绩发现,两人10次射击的平均成绩一样高,方差分别为S甲2=5,则两人这10次射击成绩比较稳定的是()S乙A.甲B.乙C.两者一样稳定 D.无法判断【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【解答】解:∵2<5,∴甲成绩比较稳定,故选:A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.下列方程有实数根的有()①x2+x+4=0;②x2+4x+4=0;③x2+4x﹣2=0.A.0个B.1个C.2个D.3个【考点】根的判别式.【分析】计算各选项中方程的根的判别式△的符号后,判断根的情况.【解答】解:①、方程x2+x+4=0的△=b2﹣4ac=1﹣16=﹣15<0,∴没有实数根;②、方程x2+4x+4=0的△=b2﹣4ac=16﹣16=0,∴方程有实数根;③、方程x2+4x﹣2=0的△=b2﹣4ac=16+8=24>0,∴有实数根.故选C.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.下列各式计算正确的是()A.(a2)3=a6B.(π﹣1)0=0 C.a﹣1=﹣a(a≠0)D.(﹣2a)2=4a【考点】幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据幂的乘方、零指数幂和负指数幂计算即可.【解答】解:A、(a2)3=a6,正确;B、(π﹣1)0=1,错误;C、a﹣1=(a≠0),错误;D、(﹣2a)2=4a2,错误;故选A.【点评】此题考查幂的乘方、零指数幂和负指数幂,关键是根据法则进行计算.5.如图由7个大小相同的正方体摆成的立体图形,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从正面看易得此几何体呈“十”字形.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.一把大遮阳伞伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2.5米,底面半径为2米,则伞面的面积是()A.平方米B.5π平方米C.10π平方米D.π平方米【考点】圆锥的计算.【分析】根据圆锥的侧面展开图是扇形可知,求得圆锥的底面周长就是圆锥的弧长,利用圆锥的面积计算方法求得圆锥的侧面积即可.【解答】解:圆锥的底面周长=2πr=2π×2=4π,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的侧面积=lr=×4π×2.5=5π,故选B.【点评】本题考查了圆锥的侧面积的计算,解题的关键是正确的理解圆锥的底面周长等于圆锥的侧面展开扇形的面积.7.本月某一周每天的最高气温统计如下表所示,则最高气温的众数与中位数(单位:℃)分别是()A.29,29 B.29,30 C.30,29.5 D.30,30【考点】众数;中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:图表中的数据按从小到大排列,数据30出现了三次最多为众数;30处在第4位为中位数.所以本题这组数据的众数是30,中位数是30.故选D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.众数是一组数据中出现次数最多的数据.8.下列命题是假命题的是()A.三角形的中线平分三角形的面积B.三角形的角平分线交点到三角形各边距离相等C.三角形的高线至少有两条在三角形内部D.三角形外心是三边垂直平分线的交点【考点】命题与定理.【分析】利用三角形的中线、角平分线及高的性质和三角形外心的定义逐一判断后即可确定正确的选项.【解答】解:A、三角形的中线平分三角形的面积,正确,是真命题;B、三角形的角平分线交点到三角形各边距离相等,正确,是真命题;C、直角三角形有两条高是三角形的边,所以三角形的高线至少有两条在三角形内部的说法错误,是假命题;D、三角形外心是三边垂直平分线的交点,正确,是真命题,故选:C.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.解题的关键是了解三角形的中线、角平分线及高的性质和三角形外心的定义,难度不大.9.如图,平面直角坐标系中,已知P(6,8),M为OP中点,以P为圆心,6为半径作⊙P,则下列判断正确的有()①点O在⊙P外;②点M在⊙P上;③x轴与⊙P相离;④y轴与⊙P相切.A.1个B.2个C.3个D.4个【考点】直线与圆的位置关系;坐标与图形性质;点与圆的位置关系.【分析】过P点作PA⊥x轴于A,作PB⊥y轴于B,根据勾股定理可求OP,根据中点的定义可得PM,再根据点与圆的位置关系,直线与圆的位置关系即可求解.【解答】解:过P点作PA⊥x轴于A,作PB⊥y轴于B,∵P(6,8),∴PA=8,PB=6,在Rt△OAP中,根据勾股定理可得OP==10,∵M为OP中点,∴PM=5,∵⊙P的半径是6,∴①点O在⊙P外;②点M在⊙P内;③x轴与⊙P相离;④y轴与⊙P相切.故正确的有3个.故选:C.【点评】本题考查了直线和圆的位置关系,坐标与图形性质,点与圆的位置关系,直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了勾股定理的知识.10.已知点M为某封闭图形边界上一定点,动点P从点M出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段MP的长为y.表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是()A. B.C.D.【考点】动点问题的函数图象.【分析】根据等边三角形,等腰直角三角形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.【解答】解:A、等边三角形,点P在开始与结束的两边上直线变化,在点M的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、等腰直角三角形,点P在开始与结束的两边上直线变化,但是始边是斜边,终边是直角边,长度不相等,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠M的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,MP的长度,先变速增加至MP为直径,然后再变速减小至点P回到点M,题干图象不符合.故选:A.【点评】本题考查了动点问题函数图象,熟练掌握等边三角形,等腰直角三角形,正方形以及圆的性质,理清点P在各边时MP的长度的变化情况是解题的关键.11.如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断正确的是()A .乙>丙>甲B .丙>乙>甲C .甲>丙>乙D .无法判断【考点】相似三角形的应用.【分析】首先过点B 作BH ⊥GF 于点H ,则S 乙=AB •AC ,易证得△ABC ∽△DBE ,△GBH ∽△BCA ,可求得GF ,DB ,DE ,DF 的长,继而求得答案. 【解答】解:如图:过点B 作BH ⊥GF 于点H ,则S 乙=AB •AC , ∵AC ∥DE , ∴△ABC ∽△DBE ,∴==,∵BC=7,CE=3,∴DE=AC ,DB=AB ,∴AD=BD ﹣BA=AB ,∴S 丙=(AC+DE )•AD=AB •AC ,∵AD ∥GF ,BH ⊥GF ,AC ⊥AB , ∴BH ∥AC ,∴四边形BDFH 是矩形,∴BH=DF ,FH=BD=AB ,∴△GBH ∽△BCA ,∴==,∵GB=2,BC=7,∴GH=AB ,BH AC ,∴DF=AC ,GF=GH+FH=AB ,=(BD+GF)•DF=AB•AC,∴S甲∴甲<乙<丙.故选:B.【点评】此题考查了相似三角形的判定与性质、直角梯形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.12.已知P是反比例函数y=(x>0)图象上一点,点B的坐标为(5,0),A是y轴正半轴上一点,且AP⊥BP,AP:BP=1:3,那么四边形AOBP的面积为()A.16 B.20 C.24 D.28【考点】相似三角形的判定与性质;反比例函数系数k的几何意义.【分析】作PM⊥x轴,PN⊥y轴.则△APN∽△BPM,即可得到P纵坐标比横坐标是3:1,从而求得P的坐标,进而求得面积.【解答】解:作PM⊥x轴,PN⊥y轴.则△APN∽△BPM∴=∴P纵坐标比横坐标是3:1,设P的横坐标是x,则纵坐标是3x.3x=即:x2=4∴x=2∴P的坐标是:(2,6)∴PB方程y=﹣2x+2PA方程y=x+5∴A的坐标是(0,5)连接OP,三角形OPA面积=5,三角形OPB面积=15,∴四边形AOBP的面积为20.故选B.【点评】本题考查了反比例函数与一次函数的综合应用,关键是求得P的坐标.二、填空题13.﹣27的立方根是﹣3.【考点】立方根.【分析】根据立方根的定义求解即可.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.14.如图,△ABC中,∠BAC=40°,∠B=60°,且AP∥BC,则∠1的度数为80°.【考点】平行线的性质.【分析】根据三角形内角和定理求出∠C,根据平行线的性质得出∠1=∠C,即可得出答案.【解答】解:∵在△ABC中,∠BAC=40°,∠B=60°,∴∠C=180°﹣∠BAC﹣∠B=80°,∵AP∥BC,∴∠1=∠C=80°,故答案为:80°.【点评】本题考查了平行线的性质,三角形内角和定理的应用,能求出∠C的度数和得出∠1=∠C 是解此题的关键,注意:两直线平行,内错角相等.15.半径为5cm的圆中,圆心角为72°的扇形面积为5πcm2.【考点】扇形面积的计算.【分析】根据扇形的面积公式进行计算即可.===5π;【解答】解:S扇形故答案为5π.=是解题的关键.【点评】本题考查了扇形面积的计算,掌握扇形的面积公式S扇形16.今年宁波市体育中考已确定抽测项目为篮球,实心球,50米跑.A、B两人随机从这三项中选择一项作为测试项目,他们都选中篮球的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他们都选中篮球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,他们都选中篮球的只有1种情况,∴他们都选中篮球的概率为:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,已知线段AE=10,点P是线段AE上的动点,以AP长为边长作菱形PMNQ,已知该菱形的一个锐角∠MPQ=60°,且对角线NP⊥AE,△PED是以PE为底的等腰三角形,则△PND的面积的最大值是.【考点】菱形的性质.【专题】计算题.【分析】作DH⊥PN于H,DF⊥PE于F,连结MQ交PN于O点,如图,设PA=x,则PM=x,PE=10﹣x,根据菱形的性质得OP=ON,PN⊥MQ,∠MPO=∠MPQ=30°,在Rt△OPM中利用三角函数可求出PM=x,则PN=2PO=x,再证明四边形PFDH为矩形得DH=PF,接着根据等腰三角形的性质得PF=EF=(10﹣x),然后根据三角形面积公式得到S△PND=•x•(10﹣x),最后利用二次函数的性质求S△PND的最大值.【解答】解:作DH⊥PN于H,DF⊥PE于F,连结MQ交PN于O点,如图,设PA=x,则PM=x,PE=10﹣x,∵四边形PMNQ为菱形,∴OP=ON,PN⊥MQ,∠MPO=∠MPQ=30°,在Rt△OPM中,∵cos∠MPO=,∴PM=x•cos30°=x,∴PN=2PO=x,∵PN⊥AE,DF⊥PE,DH⊥HP,∴四边形PFDH为矩形,∴DH=PF,∵DP=DE,DF⊥PE,∴PF=EF=PE=(10﹣x),∴S△PND=•PN•DH=•x•(10﹣x)=﹣(x﹣5)2+,当x=5时,S△PND的值最大,最大值为.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了三角形面积公式和二次函数的性质.18.如图,矩形ABCD中,E为BC上一点,F为CD上一点,已知∠AEF=90°,∠AFE=30°,△ECF的外接圆切AD于H,则sin∠DAF=.【考点】切线的性质;矩形的性质.【分析】连接HO并延长交BC于P,作EG⊥AD于G,设AE=1,根据直角三角形的性质求出EF、AF,设BE=x,CE=y,证明△ABE∽△ECF,根据相似三角形的性质表示出AB、CF、DF,结合图形、根据勾股定理列出高次方程,解方程求出x、y的值,根据正弦的定义计算即可.【解答】解:连接HO并延长交BC于P,作EG⊥AD于G,设AE=1,∵∠AEF=90°,∠AFE=30°,∴EF=,AF=2,由切线长定理得,AH=AE=1,设BE=x,CE=y,∵∠B=∠C=90°,∠AEF=90°,∴△ABE∽△ECF,∴,∴AB=y,CF=x,则DF=y﹣x,∵EG∥HP∥CD,OE=OF,∴DH=HG=DG=EC=y,∵BE=x,CE=y,∴AD=BC=x+y,∴DH=x+y﹣1,则x+y﹣1=y,在Rt△ADF中,AD2+DF2=AF2,即(x+y)2+(y﹣x)2=4,,解得,,则DF=y﹣x=,∴sin∠DAF==,故答案为:.【点评】本题考查的是圆的切线的性质、矩形的性质相似三角形的判定和性质、高次方程的解法以及勾股定理的应用,正确作出辅助线、灵活运用相关的性质定理是解题的关键.三、解答题(第19题6分,第20、21题每题8分,第22、23、24题每题10分,第25题12分,第26题14分,共78分)19.先化简,再求值:﹣,其中x=3.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=﹣==﹣,当x=3时,原式=﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(1)如图,▱ABCD中,E、F、G、H为各边中点,请用三种不同的方法,通过适当连线,找出▱ABCD的对称中心P.(2)圆内接正五边形是否中心对称图形否(填“是”或“否”)【考点】作图-旋转变换;中心对称图形.【分析】(1)首先确定出图形中的对应点,然后连接对应点,找出交点即可;(2)根据中心对称图形的概念和各图形的特点即可解答.【解答】解:(1)如图所示:(2)正五边形是奇数边形,绕中心旋转180度后所得的图形与原图形不会重合.故答案为:否.【点评】此题主要考查了中心对称图形的概念.找出对称点是解题的本题的关键,任意两组对称点连线的交点即为对称中心.21.某市交通部门为了有力制止酒驾行为拟制了一份“克服酒驾几种方式”的调查问卷,并在该市司机中进行了抽样调查.调查问卷如表:现整理调查问卷并制作了统计图:根据上述信息,解答下列问题:(1)本次抽样调查的样本容量是多少?(2)补全条形图,并计算B选项所对应扇形圆心角的度数;(3)若该市有30000名司机,估计支持D选项的司机大约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据E等级的人数是69,所占的百分比是23%,据此即可求得样本容量;(2)根据百分比的意义求得A等级的人数,然后利用总人数减去其它组的人数求得B组的人数,利用360°乘以对应的比例即可求得圆心角的度数;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)本次抽样调查的样本容量是:69÷23%=300;(2)A选项的人数是:300×30%=90,B选项对应的人数是:90﹣21﹣69﹣80=40,则圆心角的度数是:360×=48°;(3)30000×=8000(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,一次函数y=kx+b图象与反比例函数y=的图象交于点A、B,与x轴交于点C.(1)求一次函数y=kx+b与反比例函数y=的解析式.(2)求点C坐标.(3)平面上的点D与点O、C、A构成平行四边形,请直接写出满足条件的D点坐标(﹣5,﹣2)或(﹣1,﹣2)或(1,2).【考点】反比例函数综合题.【专题】计算题.【分析】(1)把A坐标代入反比例解析式求出m的值,再将x=1代入反比例解析式求出y的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)对于一次函数y=kx+b,令y=0求出x的值,确定出C坐标即可;(3)如图所示,分三种情况考虑:利用平行四边形的性质确定出D坐标即可.【解答】解:(1)把A(﹣3,﹣2)代入y=得:m=6,把B横坐标x=1代入y=得:y=6,即B(1,6),把(﹣3,﹣2),(1,6)代入y=kx+b得:,解得:,∴一次函数解析式为y=2x+4;(2)对于y=2x+4,令y=0,得到x=﹣2,则C的坐标为(﹣2,0);(3)如图所示,分三种情况考虑:根据题意得:D1(﹣5,﹣2);D2(﹣1,﹣2);D3(1,2).故答案为:(﹣5,﹣2)或(﹣1,﹣2)或(1,2)【点评】此题属于反比例函数解析式,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,一次函数与坐标轴的交点,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.23.如图,AB为⊙O直径,C为圆上一点,AC=2,BC=4,E为直径AB上一动点(不与点A、B 重合),CE延长线交⊙O于D,PC⊥CD交DB延长线于点P.(1)求证:△ABC∽△DPC;(2)当CD⊥AB时,求CP的长;(3)CP长是否存在最大值?若存在,求出CP的最大值;若不存在,说明理由.【考点】圆的综合题.【分析】(1)利用圆周角定理得出∠A=∠D,∠ACB=∠DCP,进而求出即可;(2)利用勾股定理得出AB的长,进而利用三角形面积求出CE的长,进而求出CP的长;(3)利用当CD最大时,CP也就最大,CD最大时为直径,进而得出答案.【解答】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵PC⊥CD,∴∠DCP=90°,∴∠ACB=∠DCP,∵∠A=∠D,∴△ABC∽△DPC;(2)解:在Rt△ACB中,∵AB===2,且CD⊥AB,∴CE===,∴CD=2CE=,∵由(1)已证△ABC∽△DPC,∴=,∴=,解得:CP=;(3)解:存在,由(1)已证△ABC∽△DPC,且=,即CP==CD=2CD,∵当CD最大时,CP也就最大,CD最大时为直径,∴当CD=AB=2时,CP最大值=2CD=4.【点评】此题主要考查了圆的综合以及相似三角形的判定与性质和圆周角定理等知识,熟练应用相似三角形的性质是解题关键.24.某超市开设了自助收银区,实施自助收银,以节省顾客的排队时间.某日上午10点,超市值班经理发现在自助收银区已经有80人在等待自助收银,此时仍有顾客不断前来排队等候.在自助收银区,假设顾客按固定的速度增加,每个收银口自助收银的速度也是固定的,其中每分钟新增排队人数为3人,每分钟每个收银口自助收银2人.(1)若10点后收银的前a分钟只开放4个收银口,10点后排队等候收银的人数y(人)与收银时间x(分钟)的关系如图所示.①求a值;②求超市在10点20分时,自助收银区排队等候收银的顾客人数.(2)超市有承诺:顾客排队不超过10分钟,即要在10点10分内让所有排队的顾客都能完成自助收银,以便后来的顾客能随到随收.请帮助值班经理计算一下10点后至少需要同时开放几个收银口?【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)根据原有的人数﹣a分钟检票额人数+a分钟增加的人数=60建立方程求出其解就可以;(2)设当4≤x≤24时,y与x之间的函数关系式为y=kx+b,由待定系数法求出函数的解析式,再将x=20代入解析式就可以求出结论;(3)设需同时开放n个检票口,根据原来的人数+10分进站人数≤n个检票口10分钟检票人数建立不等式,求出其解即可.【解答】解:(1)由图象知,80+3a﹣4×2a=60,∴a=4;(2)设当4≤x≤24时,y与x之间的函数关系式为y=kx+b,由题意得:,解得:,∴y=﹣3x+72,当x=20时,y=﹣3×20+72=12,即超市在10点20分时,自助收银区排队等候收银的顾客人数为12人.(3)设需同时开放n个检票口,则由题意知2a×10≥80+10×3,解得:n≥,∵n为整数,∴n的最小值为6.答:至少需要同时开放6个检票口.【点评】本题考查了待定系数法求一次函数的解析式的运用,一元一次不等式的运用,解答的过程中求出函数的解析式是关键,建立一元一次不等式是重点.25.若以三角形的一边为边向形外作正三角形,以这边所对两个顶点为端点的线段称这个三角形的奇异线.如图1,以△ABC的边BC为边,向外作正△BCD,则AD是△ABC的一条奇异线.(1)如图2,CD,AE都是△ABC的奇异线,求证:CD=AE;(2)如图3,△ABC内接于⊙O,BD是它的奇异线,且点D在⊙O上,①直接写出∠ABC=120度.②若AB=2,BC=3,求奇异线BD的长.(3)若图1△ABC中,∠BAC=30°,AB=,AC=,求△ABC的奇异线AD的长.【考点】圆的综合题.。

2015宁波中考数学试卷(含答案)

2015宁波中考数学试卷(含答案)

市2015年初中毕业生学业考试数 学 试 题满分150分,考试时间120分钟,不得使用计算器一、选择题(每小题4分,共48分) 1. 31-的绝对值是 A.31 B. 3 C. 31- D. -3 2. 下列计算正确的是A. 532)(a a =B. 22=-a aC. a a 4)2(2= D. 43a a a =⋅3. 2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学计数法可表示为A. 0.6×1013元B. 60×1011元C. 6×1012元D. 6×1013元4. 在端午节道来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购。

下面的统计量中,最值得关注的是A. 方差B. 平均数C. 中位数D. 众数5. 如图是由五个相同的小立方块搭成的几何体,则它的俯视图是6. 如图,直线a ∥b ,直线c 分别与a ,b 相交,∠1=50°,则∠2的度数为A. 150°B. 130°C. 100°D. 50°7. 如图,□ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE ≌△CDF ,则添加的条件不能为A. BE=DFB. BF=DEC. AE=CFD. ∠1=∠28. 如图,⊙O 为△ABC 的外接圆,∠A=72°,则∠BCO 的度数为A. 15°B. 18°C. 20°D. 28°9. 如图,用一个半径为30cm ,面积为π300cm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r 为A. 5cmB. 10cmC. 20cmD. π5cm10. 如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为1h ;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h ,若,则2015h 的值为 A. 201521 B. 201421C. 2015211- D. 2014212-11. 二次函数)0(4)4(2≠--=a x a y 的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,则a 的值为A. 1B. -1C. 2D. -212. 如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形。

2015宁波中考数学模拟试题

2015宁波中考数学模拟试题

2015宁波中考数学模拟冲刺试题A 卷2015.6(共100分) 一、选择题:(每小题3分,共30分) 1.13-的相反数是( ) A .13B .3C .13-D . -32.下列计算中,正确的是( )A. 248a a a =÷B. 532)(a a = C. 3|3|-=- D. 4)4(2-=--3.如图所示,在下面四种正多边形中,用同一种图形不能平面镶嵌的是( )4.如图所示,对a 、b 、c 三种物体的重量判断正确的是( )A. c a <B. b a <C. c a >D. c b <5.如图所示,梯子跟地面的夹角为∠A ,关于∠A 的三角函数值与梯子的倾斜程度之间,叙述正确的是( )A. sinA 的值越小,梯子越陡B. cosA 的值越小,梯子越陡C. tanA 的值越小,梯子越陡D. 陡缓程度与∠A 的三角函数值无关6.右图(1)是由白色纸板拼成的立体图形,将此立体图形中的两面涂上颜色,如右图(2)所示,下图(3)的四个图形中( )是图(2)的展开图。

(3)7.吸烟有害健康.据中央电视台2012年5月30日报道,全世界每因吸烟引起的疾病致死的人数大约为600万,数据600万用科学记数法表示为( )A .0.6×107B .6×106C .60×105D .6×1058.某村办工厂今年前5个月生产某种产品的总量c (件)关于时间t (月)的图象如图所示,则该厂对这种产品来说( )A. 1月至3月每月生产总量逐月增加,4、5两月生产总量逐月减少B. 1月至3月每月生产总量逐月增加,4、5月生产总量与3月持平C. 1月至3月每月生产总量逐月增加,4、5两月均停止生产D. 1月至3月每月生产总量不变,4、5两月均停止生产 9.在△ABC 中,∠C =90°,sin A =54,BC =6,则△ABC 的周长为( ) . A .18 B .237C .19D .21 10.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m ,先到终点的人原地 休息.已知甲先出发2s .在跑步过程中,甲、乙两人的距离y (m )与乙出发的时间t (s )之间的关系如图所示,给出以下结论:①a =8;②b =92;③c =123.其中正确的是( )A .①②③B .仅有①②C .仅有①③D .仅有②③ 二、填空题:(每小题4分,共16分)1.函数xx y 2-=中,自变量x 的取值范围是 。

浙江省宁波市2015年中考数学真题试题(含扫描答案)

浙江省宁波市2015年中考数学真题试题(含扫描答案)

宁波市2015年初中毕业生学业考试数 学 试 题满分150分,考试时间120分钟,不得使用计算器一、选择题(每小题4分,共48分) 1. 31-的绝对值是 A. 31 B. 3 C. 31- D. -32. 下列计算正确的是A. 532)(a a = B. 22=-a a C. a a 4)2(2= D. 43a a a =⋅3. 2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学计数法可表示为A. 0.6×1013元 B. 60×1011元 C. 6×1012元 D. 6×1013元4. 在端午节道来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购。

下面的统计量中,最值得关注的是 A. 方差 B. 平均数 C. 中位数 D. 众数 5. 如图是由五个相同的小立方块搭成的几何体,则它的俯视图是6. 如图,直线a ∥b ,直线c 分别与a ,b 相交,∠1=50°,则∠2的度数为A. 150°B. 130°C. 100°D. 50°7. 如图,□ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE ≌△CDF ,则添加的条件不能为A. BE=DFB. BF=DEC. AE=CFD. ∠1=∠28. 如图,⊙O 为△ABC 的外接圆,∠A=72°,则∠BCO 的度数为9. 如图,用一个半径为30cm ,面积为π300cm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r 为A. 5cmB. 10cmC. 20cmD. π5cm10. 如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第1次操作,折痕DE 到BC 的距离记为1h ;还原纸片后,再将△ADE 沿着过AD 中点D 1的直线折叠,使点A 落在DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为2h ;按上述方法不断操作下去,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为2015h ,若,则2015h 的值为 A.201521 B.201421 C. 2015211-D. 2014212-11. 二次函数)0(4)4(2≠--=a x a y 的图象在2<x <3这一段位于x 轴的下方,在6<x <7这一段位于x 轴的上方,则a 的值为A. 1B. -1C. 2D. -212. 如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形。

2015浙江宁波中考数学解析试卷讲解

2015浙江宁波中考数学解析试卷讲解

2015年浙江省宁波市中考数学试卷(满分150分,考试时间120分钟)一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1. (2015浙江宁波,1,4分)13-的绝对值为( ) A. 13 B.3 C. 13- D. -3【答案】A2. (2015浙江宁波,2,4分)下列计算正确的是( )A.235()a a =B. 2a - a = 2C. 2(2)4a a =D.34a a a ⋅=【答案】D3. (2015浙江宁波,3,4分)2015年中国高端装备制造业销售收入将超 6万亿元.其中6万亿元用科学记数法可表示为( )A.0.6×1O 13元B.60×1O 11元C.6×1012元D.6×1O 13元 【答案】C4. (2015浙江宁波,4,4分)在端午节到来之前,学校食堂推荐了A ,B ,C 三家粽子专卖店,对全校师生爱吃哪家的粽子作调查,以决定最终向哪家店采购.下面的统计量中最值得关注的是( )A. 方差B. 平均数C. 中位数D. 众数 【答案】D5. (2015浙江宁波,5,4分)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是( )【答案】A6. (2015浙江宁波,6,4分)如图,直线a ∥b ,直线c 分别与a ,b 相交,∠1= 50°,则∠2的度数为( )A.150°B.130°C.100°D.50°【答案】B7. (2015浙江宁波,7,4分)如图,□ABCD 中,E ,F 是对角线BD 上的两点,如果添加一个条件,使△ABE ≌△CDF ,则添加的条件不能为( )A. BE = DFB. BF = DEC. AE = CFD.∠1= ∠2【答案】C8. (2015浙江宁波,8,4分)如图,⊙O 为△ABC 的外接圆,∠A = 72°,则∠BCO 的度数为( )A.15°B.18°C.20°D.28°【答案】B9. (2015浙江宁波,9,4分) 如图,用一个半径为 30cm ,面积为 300πcm 2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r 为( )A.5cmB.10cmC.20cmD.5πcm【答案】B10. (2015浙江宁波,10,4分)如图,将△ABC 沿着过AB 中点D 的直线折叠,使点A 落在BC 边上的A 1处,称为第 1 次操作,折痕DE 到BC 的距离记为 h 1;还原纸片后,再将 △ADE 沿着过AD 中点D 1的直线折叠,使点A 落在 DE 边上的A 2处,称为第2次操作,折痕D 1E 1到BC 的距离记为 h 2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D 2014E 2014到BC 的距离记为h 2015.若h l = 1,则h 2015的值为( )A .201521 B .201421 C .2015211-D .2014212-【答案】D11. (2015浙江宁波,11,4分)二次函数2(4)4y a x =--(a ≠0)的图象在2 <x <3这一段位于x 轴的下方,在6 <x <7这一段位于x 轴的上方,则 a 的值为( ) A. 1 B. -1 C.2 D.-2 【答案】A12. (2015浙江宁波,12,4分)如图,小明家的住房平面图呈长方形,被分割成 3个正方形和 2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为( )A. ①②B. ②③C. ①③D. ①②③【答案】A二、填空题(每小题4分,共24 分)13. (2015浙江宁波,13,4分)实数8的立方根是 . 【答案】214. (2015浙江宁波,14,4分)分解因式:29x -= .【答案】(x- 3)(x + 3)15. (2015浙江宁波,15,4分)命题“对角线相等的四边形是矩形”是 命题. (填“真”或“假”) 【答案】假16. (2015浙江宁波,16,4分)如图,在数学活动课中,小敏为了测量校园内旗杆AB 的高度,站在教学楼的C 处测得旗杆底端B 的俯角为 45°,测得旗杆顶端A 的仰角为30°,若旗杆与教学楼的距离为9m ,则旗杆AB 的高度是 m.(结果保留根号)【答案】9+17. (2015浙江宁波,17,4分)如图,在矩形ABCD 中,AB = 8,AD = 12,过A ,D 两点的⊙O 与BC 边相切于点E . 则 ⊙O 的半径为.【答案】25418. (2015浙江宁波,18,4分)如图,已知点A ,C 在反比例函数ay x=(a > 0)的图象上,点B ,D 在反比例函数b y x=(b <0)的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB = 3,CD = 2,AB 与CD 的距离为5,则a -b 的值是.【答案】6三、解答题(本大题有 8小题,共78分)19. (2015浙江宁波,19,6分)解一元一次不等式组122113x x +>-⎧⎪-⎨≤⎪⎩,并把解在数轴上表示出来.【答案】解:122113x x +>-⎧⎪⎨-≤⎪⎩①② 由①得x >-3, 由②得x ≤2.∴原不等式组的解为 -3<x ≤2.20. (2015浙江宁波,20,8分)一个不透明的布袋里装有2个白球,1 个黑球和若干个红球,它们除颜色外其余都相同. 从中任意摸出1个球,是白球的概率为12. (1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回...,再摸出1个球,请用列表或画树状图等方法求出两次摸到的球都是白球的概率. 【答案】解:(1)由题意得,1242÷= ∴布袋里共有 4个球. ∵4-2-1 =1∴布袋里有 1个红球.(2)∴任意摸出 2个球刚好都是白球的概率是1.621. (2015浙江宁波,21,8分)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目.为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数; (2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少? 【答案】解:(1)10÷25%= 40; (2)补全条形统计图; 40×30% = 12 40-10-15-12=3(3)15121200()904040⨯-=. 答:估计全校最喜爱篮球的人数比最喜爱足球的人数多90人.22. (2015浙江宁波,22,10分)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A ,B 两种花木共 6600棵,若A 花木数量是B 花木数量的2倍少600 棵. (1)A ,B 两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A 花木60棵或B 花木40 棵,应分别安排多少人种植A 花木和B 花木,才能确保同时完成各自的任务? 【答案】解:(1)设B 花木的数量是x 棵,则A 花木的数量是(2x -600)棵, 根据题意得x +(2x -600)=6600, 解得x =2400, 2x-600= 4200答:A 花木的数量是4200棵,B 花木的数量是2400棵.(2)设安排y 人种植A 花木,则安排(26-y )人种植B 花木,根据题意得420024006040(26)y y =-,解得y =14,经检验,y=14是原方程的根,且符合题意. 26-y = 12 .答:安排14人种植A 花木,12人种植B 花木,才能确保同时完成各自的任务.23. (2015浙江宁波,23,10分)已知抛物线2()()y x m x m =---,其中 m 是常数. (1)求证:不论 m 为何值,该抛物线与 x 轴一定有两个公共点; (2)若该抛物线的对称轴为直线5.2x =①求该抛物线的函数解析式;②该抛物线沿y 轴向上平移多少个单位长度后,得到的抛物线与 x 轴只有一个公共点. 【答案】解:(1)证明:∵2()()()(1)y x m x m x m x m =---=--- 由y =0得1x m =,21x m =+,∵m ≠m +1,∴抛物线与x 轴一定有两个交点(m ,0),(m +1,0). (2)①∵2()(1)(21)(1)y x m x m x m x m m =---=-+++ ∴抛物线的对称轴为直线(21)522m x -+=-=,解得m =2, 抛物线的函数解析式为256y x x =-+.②∵225156()24y x x x =-+=--,∴该抛物线沿y 轴向上平移14个单位长度后,得到的抛物线与x 轴只有一个公共点.24. (2015浙江宁波,24,10分)在边长为 1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a ,边界上的格点数为 b ,则格点多边形的面积可表示为1S ma nb =+-,其中m ,n 为常数.(1)在下面的方格纸中各画出一个面积为 6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定 m ,n 的值. 【答案】解:(1)(2)三角形:a =4,b =6,S =6;平行四边形:a =3,b =8,S =6; 菱形:a =5,b =4,S =6;任选两组数据代入 S =ma +nb -1,解得m =1,12n =.25. (2015浙江宁波,25,12分)如图1,点P 为∠MON 的平分线上一点,以 P 为顶点的角的两边分别与射线 OM ,ON 交于A ,B 两点,如果∠APB 绕点 P 旋转时始终满足2OA OB OP ⋅=,我们就把∠APB 叫做∠MON 的智慧角.(第25题图)(1)如图2,已知 ∠MON = 90°,点P 为∠MON 的平分线上一点,以P 为顶点的角的两边分别与射线OM ,ON 交于A ,B 两点,且∠APB =135°. 求证:∠APB 是∠MON 的智慧角.(2)如图1,已知∠MON =α(0°<α<90°),OP = 2. 若∠APB 是∠MON 的智慧角,连结AB ,用含α的式子分别表示∠APB 的度数和△AOB 的面积. (3)如图3,C 是函数3(0)y x x=>图象上的一个动点,过C 的直线CD 分别交x 轴和y 轴于A ,B 两点,且满足BC =2CA ,请求出∠AOB 的智慧角∠APB 的顶点P 的坐标. 【答案】解:(1)证明:∵∠MON =90°,P 是∠MON 平分线上一点,∴∠AOP =∠BOP =12∠MON =45°. ∵∠AOP +∠OAP +∠APO =180°, ∴∠OAP +∠APO = 135°.∵∠APB =135,∴∠APO +∠OPB =135°, ∴∠OAP =∠OPB , ∴△AOP ∽△POB , ∴OA OP OP OB=,∴2OP OA OB =⋅,∴∠A PB 是∠MON 的智慧角.(2)∵∠A PB 是∠MON 的智慧角, ∴2OA OB OP ⋅=,∴.OA OPOP OB= ∵P 为∠MON 平分线上一点, ∴∠AOP =∠BOP =1.2α∴△AOP ∽△POB ,∴∠OAP =∠OPB ,∴∠APB =∠OPB +∠OP A = ∠OAP +∠OP A =180°-12α, 即∠APB =180°-12α. 过A 作AH ⊥OB 于H , ∴2111sin sin .222AOB S OB AH OB OA OP αα∆=⋅=⋅=⋅ ∵OP = 2, ∴2sin .AOB S α∆=(3)设点C(a ,b ),则ab =3, 过点C 作CH ⊥OA ,垂足为点H , i )当点B 在y 轴的正半轴上时,当点A 在x 轴的负半轴上时,BC =2CA 不可能; 当点A 在x 轴的正半轴上时, ∵ BC =2CA ,∴13CA AB =, ∵CH ∥OB ,∴△ACH ∽△ABO ,∴13CH AH CA OB OA AB ===, ∴OB =3b , OA =32a.∴39273222a ab OA OB b ⋅=⋅==. ∵∠APB 是∠AOB 的智慧角,∴OP ===∵∠AOB =90°,OP 平分∠AOB ,∴点P 的坐标为). ii )当点B 在y 轴的负半轴上时,∵BC = 2CA ,∴AB = CA . ∵∠AOB =∠AHC =90°,又∵∠BAO =∠CAH ,∴△ACH ≌△ABO ,∴OB =CH =b ,OA =AH =12a ,∴13.22OA OB a b ⋅=⋅=∵∠APB 是∠AOB 的智慧角,∴OP ===, ∵∠AOB =90°,OP 平分∠AOB ,∴点P 的坐标为∴点P 的坐标为)或26. (2015浙江宁波,26,14分)如图,在平面直角坐标系中,点 M 是第一象限内一点,过M 的直线分别交x 轴,y 轴的正半轴于A ,B 两点,且M 是AB 的中点. 以OM 为直径的⊙P 分别交x 轴,y 轴于C ,D 两点,交直线AB 于点E (位于点M 右下方),连结DE 交OM 于点K .(1)若点 M 的坐标为(3,4), ①求A ,B 两点的坐标; ②求ME 的长.(2)若3OKMK=,求∠OBA 的度数. (3)设 tan ∠OBA =x (0 <x <1),OKy MK=,直接写出 y 关于 x 的函数解析式.(第26题图)【答案】解:(1)①连结DM ,MC , ∵OM 为直径,∴∠MDO =∠MCO =90°. ∵∠AOB = 90°,∴MD ∥OA , MC ∥OB . ∵M 是AB 中点,∴D 是OB 中点,C 是OA 中点.∵M (3, 4) ,∴OB =2MC =8,OA =2MD =6,∴B (0, 8), A (6, 0).②在Rt △AOB 中,OA =6,OB =8,∴AB = 10. ∵M 为 AB 中点,∴BM =12AB = 5.∵∠BOM =∠BED ,又∵∠OBM =∠EBD ,∴△OBM ∽△EBD , ∴.BMBOBD BE = ∴846.45BO BDBE BM ⋅⨯===,∴ME=BE -BM ,∴ME = 6.4-5 =1.4.(2)连结DP , ∵3OKMK =,∴OK =3MK ,OM =4MK ,∴PK =MK .∵OP = PM , BD =DO ,∴DP 为△BOM 的中位线,∴DP ∥BM . ∴∠PDK =∠MEK . 又∵∠PKD =∠MKE , ∴△DPK ≌△EMK , ∴DK =KE .∵OM 为直径,∴OM ⊥D E ,∴cos ∠DPK =PKPD .∵DP =PM =2PK ,∴cos ∠DPK =12,∴∠DPK =60° , ∴∠DOM = 30°. ∵在Rt △AOB 中,M 为 AB 中点,∴BM =MO ,∴∠OBA =∠DOM ,∴∠OBA = 30°.(3)y 关于x 的解析式为221y x =-.下列解答过程仅供参考:连结OE ,∵OM 为直径,∴∠MEO =90°.∵tan ∠OBA =x ,设BE =1,∴在Rt △OBE 中,OE =BE ×tan ∠OBA =x , 设B M=OM =m ,∴ME =BE -BM =1-m . ∴在Rt △OME 中,222(1)m x m -+=, ∴212x m +=,∴ME = 1-m =212x -,DP =12BM =12m=214x +.∵△DPK ∽△EMK , ∴222211412(1)2x PK DP xx KM ME x ++===--, ∴2222212(1)3.2(1)2(1)MP PK MK x x x MK MK x x +++--===--∵P 为 MO 的中点, ∴2223.1OM MP x MK MK x -==- ∴2222(3)(1)2.11OK OM MK x x y MK MK x x ----====--y 关于x 的函数解析式为22.1y x =-。

2015年浙江省中考模拟数学试卷(2)【含答案】

2015年浙江省中考模拟数学试卷(2)【含答案】
(1)判断点D ,是否线段AB的“邻近点”(填“是”或“否”);
(2)若点H(m,n)在一次函数 的图象上,且是线段AB的“邻近点”,求m的取值范围.
(3)若一次函数 的图象上至少存在一个邻近点,直接写出b的取值范围.
26.已知二次函数y=-x2+4x+5图像交x轴于点A、B,交y轴于点C,点D是该函数图像上一点,且点D的横坐标为4,连BD,点P是AB上一动点(不与点A重合),过P作PQ⊥AB交射线AD于点Q,以PQ为一边在PQ的右侧作正方形PQMN.设点P的坐标为(t,0).
16.在一次中学生田径运动会上,参加男子跳高的14名运动员成绩如表所示:
则这些运动员成绩的中位数是_▲_____.
17.如图,在正方形ABCD中,对角线AC,BD交于点O,∠ACB的平分线CE交BO于点E,过点B作BF⊥CE,垂足为F,交AC于点G,则 =▲.
18.如图,已知动点C在函数 的图象上,CE⊥x轴于点E,CD⊥y轴于点D,延长EC至点G,延长DC至点F,使DE∥GF.直线GF分别交x轴y轴于点A,B.当S阴影部分的面积= S△BGD的面积时,则S1+S2= _____▲___.
(1)求点B,C,D的坐标及射线AD的解析式;
(2)在AB上是否存在点P,使⊿OCM为等腰三角形?若存在,求正方形PQMN的边长;若不存在,请说明理由;
(3)设正方形PQMN与⊿ABD重叠部分面积 为s,求s与t的函数关系式.
2105年中考模拟数学试卷
一、选择题(本题有12小题,每题4分,共48分)
1. 的倒数是(▲)
A. B. C. D.
2.2014年舟山市的GDP总量为人民币1022亿元,人均1.45万美元.其中1022亿元用科学计数法表示为(▲)

2015年浙江省宁波市中考数学试卷及解析

2015年浙江省宁波市中考数学试卷及解析

2015年浙江省宁波市中考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2015•宁波)﹣的绝对值为()A.B.3 C.﹣D.﹣32.(4分)(2015•宁波)下列计算正确的是()A.(a2)3=a5B.2a﹣a=2 C.(2a)2=4a D.a•a3=a43.(4分)(2015•宁波)2015年中国高端装备制造业销售收入将超6万亿元,其中6万亿元用科学记数法可表示为()A.0.6×1013元B.60×1011元C.6×1012元D.6×1013元4.(4分)(2015•宁波)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数5.(4分)(2015•宁波)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.6.(4分)(2015•宁波)如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A.150°B.130°C.100°D.50°7.(4分)(2015•宁波)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()8.(4分)(2015•宁波)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()9.(4分)(2015•宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()10.(4分)(2015•宁波)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A2处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015,到BC的距离记为h2015.若h1=1,则h2015的值为()﹣﹣11.(4分)(2015•宁波)二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,12.(4分)(2015•宁波)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A .①②B.②③C.①③D.①②③二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2015•宁波)实数8的立方根是.14.(4分)(2015•岳阳)分解因式:x2﹣9= .15.(4分)(2015•宁波)命题“对角线相等的四边形是矩形”是命题(填“真”或“假”).16.(4分)(2015•宁波)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)17.(4分)(2015•宁波)如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E,则⊙O的半径为.18.(4分)(2015•宁波)如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是.三、解答题(共8小题,满分78分)19.(6分)(2015•宁波)解一元一次不等式组,并把解在数轴上表示出来.20.(8分)(2015•宁波)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.(8分)(2015•宁波)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?22.(10分)(2015•宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?23.(10分)(2015•宁波)已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.24.(10分)(2015•宁波)在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.25.(12分)(2015•宁波)如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的智慧角.(1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB是∠MON的智慧角.(2)如图1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,连结AB,用含α的式子分别表示∠APB的度数和△AOB的面积.(3)如图3,C是函数y=(x>0)图象上的一个动点,过C的直线CD分别交x轴和y轴于A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.26.(14分)(2015•宁波)如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交x 轴,y轴的正半轴于A,B两点,且M是AB的中点.以OM为直径的⊙P分别交x轴,y轴于C,D两点,交直线AB于点E(位于点M右下方),连结DE交OM于点K.(1)若点M的坐标为(3,4),①求A,B两点的坐标;②求ME的长.(2)若=3,求∠OBA的度数.(3)设tan∠OBA=x(0<x<1),=y,直接写出y关于x的函数解析式.2015年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)(2015•宁波)﹣的绝对值为()解:﹣的绝对值等于3.(4分)(2015•宁波)2015年中国高端装备制造业销售收入将超6万亿元,其中6万亿元用科学记数4.(4分)(2015•宁波)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱))5.(4分)(2015•宁波)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是(6.(4分)(2015•宁波)如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()7.(4分)(2015•宁波)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为(),8.(4分)(2015•宁波)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()析:性质和三角形内角和定理计算∠BCO的度数.∴∠BCO=(180°﹣∠BOC)=×(180°﹣144°)=18°.9.(4分)(2015•宁波)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()Rl=30010.(4分)(2015•宁波)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A2处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015,到BC的距离记为h2015.若h1=1,则h2015的值为()﹣﹣,﹣,﹣﹣,﹣11.(4分)(2015•宁波)二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,12.(4分)(2015•宁波)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()二、填空题(共6小题,每小题4分,满分24分)13.(4分)(2015•宁波)实数8的立方根是 2 .14.(4分)(2015•岳阳)分解因式:x2﹣9= (x+3)(x﹣3).考点:因式分解-运用公式法.分析:本题中两个平方项的符号相反,直接运用平方差公式分解因式.解答:解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).点评:主要考查平方差公式分解因式,熟记能用平方差公式分解因式的多项式的特征,即“两项、异号、平方形式”是避免错用平方差公式的有效方法.15.(4分)(2015•宁波)命题“对角线相等的四边形是矩形”是假命题(填“真”或“假”).考点:命题与定理.分析:举出反例即可得到该命题是假命题.解答:解:∵等腰梯形的对角线也相等,∴“对角线相等的四边形是矩形”是假命题,故答案为:假;点评:本题考查了命题与定理的知识,解题的关键是知道如何判断一个命题的真假,是假命题时找到反例即可.16.(4分)(2015•宁波)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是3+9 m(结果保留根号)考点:解直角三角形的应用-仰角俯角问题.分析:根据在Rt△ACD中,tan∠ACD=,求出AD的值,再根据在Rt△BCD中,tan∠BCD=,求出BD的值,最后根据AB=AD+BD,即可求出答案.解答:解:在Rt△ACD中,∵tan∠ACD=,∴tan30°=,∴=,∴AD=3m,+9+917.(4分)(2015•宁波)如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E,则⊙O的半径为 6.25 .继而求得答案.∴AF=AD=×12=6,18.(4分)(2015•宁波)如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y=(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是 6 .考点:反比例函数系数k的几何意义.分析:利用反比例函数k的几何意义,结合相关线段的长度来求a﹣b的值.解答:解:如图,由题意知:a﹣b=2•OE,a﹣b=3•OF,又∵OE+OF=5,∴OE=3,OF=2,∴a﹣b=6.故答案是:6.点评:本题考查了反比例函数图象上点的坐标特征.此题借助于方程组来求得相关系数的.三、解答题(共8小题,满分78分)19.(6分)(2015•宁波)解一元一次不等式组,并把解在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.20.(8分)(2015•宁波)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.=21.(8分)(2015•宁波)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?(3)用样本估计总体即可确定最喜爱篮球的人数比最喜爱足球的人数多多少.(3)全校最喜爱篮球的人数比最喜爱足球的人数多1200×=90人.22.(10分)(2015•宁波)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?=23.(10分)(2015•宁波)已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.=﹣=,个单位长度后,得到的抛物线与24.(10分)(2015•宁波)在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.解得:25.(12分)(2015•宁波)如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的智慧角.(1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB是∠MON的智慧角.(2)如图1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,连结AB,用含α的式子分别表示∠APB的度数和△AOB的面积.(3)如图3,C是函数y=(x>0)图象上的一个动点,过C的直线CD分别交x轴和y轴于A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.点:BOP=,得出对应边成比例得出α积公式得出:S△AOB=OB•AH,即可得出S△AOB=2sinα;轴的正半轴上时;先求出=,求出OB=②当点B在y轴的负半轴上时;由题意得出:AB=CA,由AAS证明△ACH≌△ABO,得出OB=CH=b,OA=AH=a,得出OA•OB=,求出OP,即可得出点P的坐标.BOP=∴,BOP=ααOB OP=,,∴OA•OB=•3b==,==,OA=AH=a∴OA•OB=a•b=,==,﹣,,或(,﹣26.(14分)(2015•宁波)如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交x 轴,y轴的正半轴于A,B两点,且M是AB的中点.以OM为直径的⊙P分别交x轴,y轴于C,D两点,交直线AB于点E(位于点M右下方),连结DE交OM于点K.(1)若点M的坐标为(3,4),①求A,B两点的坐标;②求ME的长.(2)若=3,求∠OBA的度数.(3)设tan∠OBA=x(0<x<1),=y,直接写出y关于x的函数解析式.由DPK==DP=PM=PK=.由,则有=t OE=•,则OBA==﹣.=,==10AB=5=,=,∴BE=,﹣5==3=,(3)y关于x的函数解析式为y=.DP=PM=﹣t==,可得ME=tt]= OE=•BE=BM+ME=(y+1)t+t=,=﹣整理得:y=.。

2015年浙江省宁波市中考数学试卷

2015年浙江省宁波市中考数学试卷

2015年浙江省宁波市中考数学试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)的绝对值为()A.B.3C.D.﹣32.(4分)下列计算正确的是()A.(a2)3=a5B.2a﹣a=2C.(2a)2=4a D.a•a3=a4 3.(4分)2015年中国高端装备制造业销售收入将超6万亿元,其中6万亿元用科学记数法可表示为()A.0.6×1013元B.60×1011元C.6×1012元D.6×1013元4.(4分)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数5.(4分)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.6.(4分)如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A.150°B.130°C.100°D.50°7.(4分)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠28.(4分)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°9.(4分)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm10.(4分)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD 中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC 的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015.若h1=1,则h2015的值为()A.B.C.1D.211.(4分)二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A.1B.﹣1C.2D.﹣212.(4分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A.①②B.②③C.①③D.①②③二、填空题(共6小题,每小题4分,满分24分)13.(4分)实数8的立方根是.14.(4分)分解因式:x2﹣9=.15.(4分)命题“对角线相等的四边形是矩形”是命题(填“真”或“假”).16.(4分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C 处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是m(结果保留根号)17.(4分)如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E,则⊙O的半径为.18.(4分)如图,已知点A,C在反比例函数y(a>0)的图象上,点B,D在反比例函数y(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是.三、解答题(共8小题,满分78分)19.(6分)解一元一次不等式组>,并把解在数轴上表示出来.20.(8分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.(8分)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?22.(10分)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?23.(10分)已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.24.(10分)在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.25.(12分)如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的智慧角.(1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB是∠MON 的智慧角.(2)如图1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,连结AB,用含α的式子分别表示∠APB的度数和△AOB的面积.(3)如图3,C是函数y(x>0)图象上的一个动点,过C的直线CD分别交x轴和y轴于A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.26.(14分)如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交x 轴,y轴的正半轴于A,B两点,且M是AB的中点.以OM为直径的⊙P分别交x轴,y轴于C,D两点,交直线AB于点E(位于点M右下方),连结DE交OM于点K.(1)若点M的坐标为(3,4),①求A,B两点的坐标;②求ME的长.(2)若3,求∠OBA的度数.(3)设tan∠OBA=x(0<x<1),y,直接写出y关于x的函数解析式.2015年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)1.(4分)的绝对值为()A.B.3C.D.﹣3【解答】解:的绝对值等于,故选:A.2.(4分)下列计算正确的是()A.(a2)3=a5B.2a﹣a=2C.(2a)2=4a D.a•a3=a4【解答】解:A、(a2)3=a6,故错误;B、2a﹣a=a,故错误;C、(2a)2=4a2,故错误;D、正确;故选:D.3.(4分)2015年中国高端装备制造业销售收入将超6万亿元,其中6万亿元用科学记数法可表示为()A.0.6×1013元B.60×1011元C.6×1012元D.6×1013元【解答】解:将6万亿用科学记数法表示为:6×1012.故选:C.4.(4分)在端午节到来之前,学校食堂推荐了A,B,C三家粽子专卖店,对全校师生爱吃哪家店的粽子作调查,以决定最终向哪家店采购,下面的统计量中最值得关注的是()A.方差B.平均数C.中位数D.众数【解答】解:由于众数是数据中出现次数最多的数,故学校食堂最值得关注的应该是统计调查数据的众数.故选:D.5.(4分)如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.【解答】解:从上面看易得上面一层有3个正方形,下面中间有一个正方形.故选:A.6.(4分)如图,直线a∥b,直线c分别与a,b相交,∠1=50°,则∠2的度数为()A.150°B.130°C.100°D.50°【解答】解:如图所示,∵a∥b,∠1=50°,∴∠3=∠1=50°,∵∠2+∠3=180°,∴∠2=130°.故选:B.7.(4分)如图,▱ABCD中,E,F是对角线BD上的两点,如果添加一个条件,使△ABE ≌△CDF,则添加的条件不能为()A.BE=DF B.BF=DE C.AE=CF D.∠1=∠2【解答】解:A、当BE=FD,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;C、当AE=CF无法得出△ABE≌△CDF,故此选项符合题意;B、当BF=ED,∴BE=DF,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中,∴△ABE≌△CDF(SAS),故此选项错误;D、当∠1=∠2,∵平行四边形ABCD中,∴AB=CD,∠ABE=∠CDF,在△ABE和△CDF中∠∠,∴△ABE≌△CDF(ASA),故此选项错误;故选:C.8.(4分)如图,⊙O为△ABC的外接圆,∠A=72°,则∠BCO的度数为()A.15°B.18°C.20°D.28°【解答】解:连结OB,如图,∠BOC=2∠A=2×72°=144°,∵OB=OC,∴∠CBO=∠BCO,∴∠BCO(180°﹣∠BOC)(180°﹣144°)=18°.故选:B.9.(4分)如图,用一个半径为30cm,面积为300πcm2的扇形铁皮,制作一个无底的圆锥(不计损耗),则圆锥的底面半径r为()A.5cm B.10cm C.20cm D.5πcm【解答】解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=30,由Rl=300π得l=20π;由2πr=l得r=10cm;故选:B.10.(4分)如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD 中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015.若h1=1,则h2015的值为()A.B.C.1D.2【解答】解:连接AA1,由折叠的性质可得:AA1⊥DE,DA=DA1,又∵D是AB中点,∴DA=DB,∴DB=DA1,∴∠BA1D=∠B,∴∠ADA1=2∠B,又∵∠ADA1=2∠ADE,∴∠ADE=∠B,∴DE∥BC,∴AA1⊥BC,∴AA1=2,∴h1=2﹣1=1,同理,h2=2,h3=22,…∴经过第n次操作后得到的折痕D n﹣1E n﹣1到BC的距离h n=2,∴h2015=2,故选:D.11.(4分)二次函数y=a(x﹣4)2﹣4(a≠0)的图象在2<x<3这一段位于x轴的下方,在6<x<7这一段位于x轴的上方,则a的值为()A.1B.﹣1C.2D.﹣2【解答】解:∵抛物线y=a(x﹣4)2﹣4(a≠0)的对称轴为直线x=4,而抛物线在6<x<7这一段位于x轴的上方,∴抛物线在1<x<2这一段位于x轴的上方,∵抛物线在2<x<3这一段位于x轴的下方,∴抛物线过点(2,0),把(2,0)代入y=a(x﹣4)2﹣4(a≠0)得4a﹣4=0,解得a=1.故选:A.12.(4分)如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形.若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为()A.①②B.②③C.①③D.①②③【解答】解:如图1,,设图形①的长和宽分别是a、c,图形②的边长是b,图形③的边长是d,原来大长方形的周长是l,则l=2(a+2b+c),根据图示,可得(1)﹣(2),可得:a﹣b=b﹣c,∴2b=a+c,∴l=2(a+2b+c)=2×2(a+c)=4(a+c),或l=2(a+2b+c)=2×4b=8b,∴2(a+c),4b,∵图形①的周长是2(a+c),图形②的周长是4b,的值一定,∴图形①②的周长是定值,不用测量就能知道,图形③的周长不用测量无法知道.∴分割后不用测量就能知道周长的图形的标号为①②.故选:A.二、填空题(共6小题,每小题4分,满分24分)13.(4分)实数8的立方根是2.【解答】解:∵23=8,∴8的立方根是2.故答案为:2.14.(4分)分解因式:x2﹣9=(x+3)(x﹣3).【解答】解:x2﹣9=(x+3)(x﹣3).故答案为:(x+3)(x﹣3).15.(4分)命题“对角线相等的四边形是矩形”是假命题(填“真”或“假”).【解答】解:∵等腰梯形的对角线也相等,∴“对角线相等的四边形是矩形”是假命题,故答案为:假;16.(4分)如图,在数学活动课中,小敏为了测量校园内旗杆AB的高度.站在教学楼的C 处测得旗杆底端B的俯角为45°,测得旗杆顶端A的仰角为30°.若旗杆与教学楼的距离为9m,则旗杆AB的高度是39m(结果保留根号)【解答】解:在Rt△ACD中,∵tan∠ACD,∴tan30°,∴,∴AD=3m,在Rt△BCD中,∵∠BCD=45°,∴BD=CD=9m,∴AB=AD+BD=39(m).故答案为:39.17.(4分)如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E,则⊙O的半径为 6.25.【解答】解:连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴EF=CD=AB=8,OF⊥AD,∴AF AD12=6,设⊙O的半径为x,则OF=EF﹣OE=8﹣x,在Rt△OAF中,OF2+AF2=OA2,则(8﹣x)2+36=x2,解得:x=6.25,∴⊙O的半径为:6.25.故答案为:6.25.18.(4分)如图,已知点A,C在反比例函数y(a>0)的图象上,点B,D在反比例函数y(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB与CD的距离为5,则a﹣b的值是6.【解答】解:如图,设CD交y轴于E,AB交y轴于F.连接OD、OC.由题意知:DE•OE=﹣b,CE•OE=a,∴a﹣b=OE(DE+CE)=OE•CD=2OE,同法:a﹣b=3•OF,∴2OE=3OF,∴OE:OF=3:2,又∵OE+OF=5,∴OE=3,OF=2,∴a﹣b=6.故答案是:6.三、解答题(共8小题,满分78分)19.(6分)解一元一次不等式组>,并把解在数轴上表示出来.【解答】解:>①②由①得,x>﹣3,由②得,x≤2,故此不等式组的解集为:﹣3<x≤2.在数轴上表示为:20.(8分)一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白).21.(8分)某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).(1)求本次被调查的学生人数;(2)补全条形统计图;(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?【解答】解:(1)观察条形统计图与扇形统计图知:喜欢跳绳的有10人,占25%,故总人数有10÷25%=40人;(2)喜欢足球的有40×30%=12人,喜欢跑步的有40﹣10﹣15﹣12=3人,故条形统计图补充为:(3)全校最喜爱篮球的人数比最喜爱足球的人数多120090人.22.(10分)宁波火车站北广场将于2015年底投入使用,计划在广场内种植A,B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵(1)A,B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【解答】解:(1)设B花木数量为x棵,则A花木数量是(2x﹣600)棵,由题意得:x+2x﹣600=6600,解得:x=2400,2x﹣600=4200,答:B花木数量为2400棵,则A花木数量是4200棵;(2)设安排a人种植A花木,由题意得:,解得:a=14,经检验:a=14是原分式方程的解,26﹣a=26﹣14=12,答:安排14人种植A花木,12人种植B花木.23.(10分)已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.【解答】(1)证明:y=(x﹣m)2﹣(x﹣m)=x2﹣(2m+1)x+m2+m,∵△=(2m+1)2﹣4(m2+m)=1>0,∴不论m为何值,该抛物线与x轴一定有两个公共点;(2)解:①∵x,∴m=2,∴抛物线解析式为y=x2﹣5x+6;②设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,∵抛物线y=x2﹣5x+6+k与x轴只有一个公共点,∴△=52﹣4(6+k)=0,∴k,即把该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点.24.(10分)在边长为1的小正方形组成的方格纸中,若多边形的各顶点都在方格纸的格点(横竖格子线的交错点)上,这样的多边形称为格点多边形.记格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数.(1)在下面的方格中各画出一个面积为6的格点多边形,依次为三角形、平行四边形(非菱形)、菱形;(2)利用(1)中的格点多边形确定m,n的值.【解答】解:(1)如图所示:;(2)∵格点多边形内的格点数为a,边界上的格点数为b,则格点多边形的面积可表示为S=ma+nb﹣1,其中m,n为常数,∴三角形:S=3m+8n﹣1=6,平行四边形:S=3m+8n﹣1=6,菱形:S=5m+4n﹣1=6,则,解得:.25.(12分)如图1,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA•OB=OP2,我们就把∠APB叫做∠MON的智慧角.(1)如图2,已知∠MON=90°,点P为∠MON的平分线上一点,以P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°.求证:∠APB是∠MON 的智慧角.(2)如图1,已知∠MON=α(0°<α<90°),OP=2.若∠APB是∠MON的智慧角,连结AB,用含α的式子分别表示∠APB的度数和△AOB的面积.(3)如图3,C是函数y(x>0)图象上的一个动点,过C的直线CD分别交x轴和y轴于A,B两点,且满足BC=2CA,请求出∠AOB的智慧角∠APB的顶点P的坐标.【解答】(1)证明:∵∠MON=90°,P为∠MON的平分线上一点,∴∠AOP=∠BOP∠MON=45°,∵∠AOP+∠OAP+∠APO=180°,∴∠OAP+∠APO=135°,∵∠APB=135°,∴∠APO+∠OPB=135°,∴∠OAP=∠OPB,∴△AOP∽△POB,∴,∴OP2=OA•OB,∴∠APB是∠MON的智慧角;(2)解:∵∠APB是∠MON的智慧角,∴OA•OB=OP2,∴,∵P为∠MON的平分线上一点,∴∠AOP=∠BOPα,∴△AOP∽△POB,∴∠OAP=∠OPB,∴∠APB=∠OPB+∠OP A=∠OAP+∠OP A=180°α,即∠APB=180°α;过点A作AH⊥OB于H,连接AB;如图1所示:则S△AOB OB•AH OB•OA sinα OP2•sinα,∵OP=2,∴S△AOB=2sinα;(3)设点C(a,b),则ab=3,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;当点A在x轴的负半轴上时,如图2所示:BC=2CA不可能;当点A在x轴的正半轴上时,如图3所示:∵BC=2CA,∴,∵CH∥OB,∴△ACH∽△ABO,∴,∴OB=3b,OA,∴OA•OB•3b,∵∠APB是∠AOB的智慧角,∴OP,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:(,);②当点B在y轴的负半轴上时,如图4所示:∵BC=2CA,∴AB=CA,在△ACH和△ABO中,∠∠,∴△ACH≌△ABO(AAS),∴OB=CH=b,OA=AH a,∴OA•OB a•b,∵∠APB是∠AOB的智慧角,∴OP,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:(,);综上所述:点P的坐标为:(,),或(,).26.(14分)如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交x 轴,y轴的正半轴于A,B两点,且M是AB的中点.以OM为直径的⊙P分别交x轴,y轴于C,D两点,交直线AB于点E(位于点M右下方),连结DE交OM于点K.(1)若点M的坐标为(3,4),①求A,B两点的坐标;②求ME的长.(2)若3,求∠OBA的度数.(3)设tan∠OBA=x(0<x<1),y,直接写出y关于x的函数解析式.【解答】解:(1)①连接DM、MC,如图1.∵OM是⊙P的直径,∴∠MDO=∠MCO=90°.∵∠AOB=90°,∴四边形OCMD是矩形,∴MD∥OA,MC∥OB,∴,.∵点M是AB的中点,即BM=AM,∴BD=DO,AC=OC.∵点M的坐标为(3,4),∴OB=2OD=8,OA=2OC=6,∴点B的坐标为(0,8),点A的坐标为(6,0);②在Rt△AOB中,OA=6,OB=8,∴AB10.∴BM AB=5.∵∠OBM=∠EBD,∠BOM=∠BED,∴△OBM∽△EBD,∴,∴,∴BE,∴ME=BE﹣BM5;(2)连接DP、PE,如图2.∵3,∴OK=3MK,∴OM=4MK,PM=2MK,∴PK=MK.∵OD=BD,OP=MP,∴DP∥BM,∴∠PDK=∠MEK,∠DPK=∠EMK.在△DPK和△EMK中,∠∠,∴△DPK≌△EMK,∴DK=EK.∵PD=PE,∴PK⊥DE,∴cos∠DPK,∴∠DPK=60°,∴∠DOM=30°.∵∠AOB=90°,AM=BM,∴OM=BM,∴∠OBA=∠DOM=30°;(3)y关于x的函数解析式为y.提示:连接PD、OE,如图3.设MK=t,则有OK=yt,OM=(y+1)t,BM=OM=(y+1)t,DP=PM,PK t.由DP∥BM可得△DKP∽△EKM,则有,可得ME t.∵OM是⊙P的直径,∴∠OEM=90°,∴OE2=OM2﹣ME2=[(y+1)t]2﹣[t]2•(y2﹣2y),即OE•,BE=BM+ME=(y+1)t t,∴x=tan∠OBA,∴x21,整理得:y.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙江省宁波市海曙区2015届中考数学模拟试题一、选择题1 . ﹣2的相反数是()A.﹣B.﹣2 C.D.22.统计甲乙两人各10次射击的成绩发现,两人10次射击的平均成绩一样高,方差分别为S甲2=2,S乙2=5,则两人这10次射击成绩比较稳定的是()A.甲B.乙C.两者一样稳定 D.无法判断3.下列方程有实数根的有()①x2+x+4=0;②x2+4x+4=0;③x2+4x﹣2=0.A.0个B.1个C.2个D.3个4.下列各式计算正确的是()A.(a2)3=a6B.(π﹣1)0=0 C.a﹣1=﹣a(a≠0)D.(﹣2a)2=4a5.如图由7个大小相同的正方体摆成的立体图形,它的俯视图是()A.B.C.D.6.一把大遮阳伞伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2.5米,底面半径为2米,则伞面的面积是()A.平方米B.5π平方米C.10π平方米D.π平方米7.本月某一周每天的最高气温统计如下表所示,则最高气温的众数与中位数(单位:℃)分别是()最高气温(℃)28 29 30 31天数(天) 1 1 3 2A.29,29 B.29,30 C.30,29.5 D.30,308.下列命题是假命题的是()A.三角形的中线平分三角形的面积B.三角形的角平分线交点到三角形各边距离相等C.三角形的高线至少有两条在三角形内部D.三角形外心是三边垂直平分线的交点9.如图,平面直角坐标系中,已知P(6,8),M为OP中点,以P为圆心,6为半径作⊙P,则下列判断正确的有()①点O在⊙P外;②点M在⊙P上;③x轴与⊙P相离;④y轴与⊙P相切.A.1个B.2个C.3个D.4个10.已知点M为某封闭图形边界上一定点,动点P从点M出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段MP的长为y.表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是()A. B.C.D.11.如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断正确的是()A.乙>丙>甲B.丙>乙>甲C.甲>丙>乙D.无法判断12.已知P是反比例函数y=(x>0)图象上一点,点B的坐标为(5,0),A是y轴正半轴上一点,且AP⊥BP,AP:BP=1:3,那么四边形AOBP的面积为()A.16 B.20 C.24 D.28二、填空题13.﹣27的立方根是.14.如图,△ABC中,∠BAC=40°,∠B=60°,且AP∥BC,则∠1的度数为.15.半径为5cm的圆中,圆心角为72°的扇形面积为cm2.16.今年宁波市体育中考已确定抽测项目为篮球,实心球,50米跑.A、B两人随机从这三项中选择一项作为测试项目,他们都选中篮球的概率为.17.如图,已知线段AE=10,点P是线段AE上的动点,以AP长为边长作菱形PMNQ,已知该菱形的一个锐角∠MPQ=60°,且对角线NP⊥AE,△PED是以PE为底的等腰三角形,则△PND的面积的最大值是.18.如图,矩形ABCD中,E为BC上一点,F为CD上一点,已知∠AEF=90°,∠AFE=30°,△ECF 的外接圆切AD于H,则sin∠DAF=.三、解答题(第19题6分,第20、21题每题8分,第22、23、24题每题10分,第25题12分,第26题14分,共78分)19.先化简,再求值:﹣,其中x=3.20.(1)如图,▱ABCD中,E、F、G、H为各边中点,请用三种不同的方法,通过适当连线,找出▱ABCD 的对称中心P.(2)圆内接正五边形是否中心对称图形(填“是”或“否”)21.某市交通部门为了有力制止酒驾行为拟制了一份“克服酒驾几种方式”的调查问卷,并在该市司机中进行了抽样调查.调查问卷如表:克服酒驾﹣﹣你认为哪种方式最好?(单选)A、加强宣传,增强意识.B、在汽车上张贴“请勿酒驾”字样.C、司机上岗前签“拒接酒驾”保证书.D、加大检查力度,严惩酒驾行为.E、查出酒驾追究整个家庭责任.现整理调查问卷并制作了统计图:根据上述信息,解答下列问题:(1)本次抽样调查的样本容量是多少?(2)补全条形图,并计算B选项所对应扇形圆心角的度数;(3)若该市有30000名司机,估计支持D选项的司机大约有多少人?22.如图,一次函数y=kx+b图象与反比例函数y=的图象交于点A、B,与x轴交于点C.(1)求一次函数y=kx+b与反比例函数y=的解析式.(2)求点C坐标.(3)平面上的点D与点O、C、A构成平行四边形,请直接写出满足条件的D点坐标.23.如图,AB为⊙O直径,C为圆上一点,AC=2,BC=4,E为直径AB上一动点(不与点A、B重合),CE延长线交⊙O于D,PC⊥CD交DB延长线于点P.(1)求证:△ABC∽△DPC;(2)当CD⊥AB时,求CP的长;(3)CP长是否存在最大值?若存在,求出CP的最大值;若不存在,说明理由.24.某超市开设了自助收银区,实施自助收银,以节省顾客的排队时间.某日上午10点,超市值班经理发现在自助收银区已经有80人在等待自助收银,此时仍有顾客不断前来排队等候.在自助收银区,假设顾客按固定的速度增加,每个收银口自助收银的速度也是固定的,其中每分钟新增排队人数为3人,每分钟每个收银口自助收银2人.(1)若10点后收银的前a分钟只开放4个收银口,10点后排队等候收银的人数y(人)与收银时间x(分钟)的关系如图所示.①求a值;②求超市在10点20分时,自助收银区排队等候收银的顾客人数.(2)超市有承诺:顾客排队不超过10分钟,即要在10点10分内让所有排队的顾客都能完成自助收银,以便后来的顾客能随到随收.请帮助值班经理计算一下10点后至少需要同时开放几个收银口?25.若以三角形的一边为边向形外作正三角形,以这边所对两个顶点为端点的线段称这个三角形的奇异线.如图1,以△ABC的边BC为边,向外作正△BCD,则AD是△ABC的一条奇异线.(1)如图2,CD,AE都是△ABC的奇异线,求证:CD=AE;(2)如图3,△ABC内接于⊙O,BD是它的奇异线,且点D在⊙O上,①直接写出∠ABC=度.②若AB=2,BC=3,求奇异线BD的长.(3)若图1△ABC中,∠BAC=30°,AB=,AC=,求△ABC的奇异线AD的长.26.如图,开口向下的抛物线y=a(x﹣2)2+k,交x轴于点A、B(点A在点B左侧),交y轴正半轴于点C,顶点为P,过顶点P,作x轴,y轴的垂线,垂足分别为M,N.(1)直接写出,当PMON为正方形时,k= ,当S△PCM=3时,k= .(2)若a=﹣1,△PCM为等腰三角形,求k的值.(3)若△PCM中,∠CPM=45°,tan∠CMP=,求抛物线解析式.(4)在(3)的情况下,设PC交x轴于E,若点D为线段PE上一动点(不与P点重合),BD交△PMD 的外接圆于点Q.求PQ的最小值.2015年浙江省宁波市海曙区中考数学模拟试卷参考答案与试题解析一、选择题﹣2的相反数是()A.﹣B.﹣2 C.D.2【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数叫做互为相反数即可得到答案.【解答】解:﹣2的相反数是2,故选:D.【点评】此题主要考查了相反数,关键是掌握相反数的定义.2.统计甲乙两人各10次射击的成绩发现,两人10次射击的平均成绩一样高,方差分别为S甲2=2,S乙2=5,则两人这10次射击成绩比较稳定的是()A.甲B.乙C.两者一样稳定 D.无法判断【考点】方差.【分析】根据方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定可得答案.【解答】解:∵2<5,∴甲成绩比较稳定,故选:A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.3.下列方程有实数根的有()①x2+x+4=0;②x2+4x+4=0;③x2+4x﹣2=0.A.0个B.1个C.2个D.3个【考点】根的判别式.【分析】计算各选项中方程的根的判别式△的符号后,判断根的情况.【解答】解:①、方程x2+x+4=0的△=b2﹣4ac=1﹣16=﹣15<0,∴没有实数根;②、方程x2+4x+4=0的△=b2﹣4ac=16﹣16=0,∴方程有实数根;③、方程x2+4x﹣2=0的△=b2﹣4ac=16+8=24>0,∴有实数根.故选C.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.下列各式计算正确的是()A.(a2)3=a6B.(π﹣1)0=0 C.a﹣1=﹣a(a≠0)D.(﹣2a)2=4a【考点】幂的乘方与积的乘方;零指数幂;负整数指数幂.【分析】根据幂的乘方、零指数幂和负指数幂计算即可.【解答】解:A、(a2)3=a6,正确;B、(π﹣1)0=1,错误;C、a﹣1=(a≠0),错误;D、(﹣2a)2=4a2,错误;故选A.【点评】此题考查幂的乘方、零指数幂和负指数幂,关键是根据法则进行计算.5.如图由7个大小相同的正方体摆成的立体图形,它的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从正面看易得此几何体呈“十”字形.故选D.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.6.一把大遮阳伞伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2.5米,底面半径为2米,则伞面的面积是()A.平方米B.5π平方米C.10π平方米D.π平方米【考点】圆锥的计算.【分析】根据圆锥的侧面展开图是扇形可知,求得圆锥的底面周长就是圆锥的弧长,利用圆锥的面积计算方法求得圆锥的侧面积即可.【解答】解:圆锥的底面周长=2πr=2π×2=4π,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的侧面积=lr=×4π×2.5=5π,故选B.【点评】本题考查了圆锥的侧面积的计算,解题的关键是正确的理解圆锥的底面周长等于圆锥的侧面展开扇形的面积.7.本月某一周每天的最高气温统计如下表所示,则最高气温的众数与中位数(单位:℃)分别是()最高气温(℃)28 29 30 31天数(天) 1 1 3 2A.29,29 B.29,30 C.30,29.5 D.30,30【考点】众数;中位数.【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:图表中的数据按从小到大排列,数据30出现了三次最多为众数;30处在第4位为中位数.所以本题这组数据的众数是30,中位数是30.故选D.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求;如果是偶数个则找中间两位数的平均数.众数是一组数据中出现次数最多的数据.8.下列命题是假命题的是()A.三角形的中线平分三角形的面积B.三角形的角平分线交点到三角形各边距离相等C.三角形的高线至少有两条在三角形内部D.三角形外心是三边垂直平分线的交点【考点】命题与定理.【分析】利用三角形的中线、角平分线及高的性质和三角形外心的定义逐一判断后即可确定正确的选项.【解答】解:A、三角形的中线平分三角形的面积,正确,是真命题;B、三角形的角平分线交点到三角形各边距离相等,正确,是真命题;C、直角三角形有两条高是三角形的边,所以三角形的高线至少有两条在三角形内部的说法错误,是假命题;D、三角形外心是三边垂直平分线的交点,正确,是真命题,故选:C.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.解题的关键是了解三角形的中线、角平分线及高的性质和三角形外心的定义,难度不大.9.如图,平面直角坐标系中,已知P(6,8),M为OP中点,以P为圆心,6为半径作⊙P,则下列判断正确的有()①点O在⊙P外;②点M在⊙P上;③x轴与⊙P相离;④y轴与⊙P相切.A.1个B.2个C.3个D.4个【考点】直线与圆的位置关系;坐标与图形性质;点与圆的位置关系.【分析】过P点作PA⊥x轴于A,作PB⊥y轴于B,根据勾股定理可求OP,根据中点的定义可得PM,再根据点与圆的位置关系,直线与圆的位置关系即可求解.【解答】解:过P点作PA⊥x轴于A,作PB⊥y轴于B,∵P(6,8),∴PA=8,PB=6,在Rt△OAP中,根据勾股定理可得OP==10,∵M为OP中点,∴PM=5,∵⊙P的半径是6,∴①点O在⊙P外;②点M在⊙P内;③x轴与⊙P相离;④y轴与⊙P相切.故正确的有3个.故选:C.【点评】本题考查了直线和圆的位置关系,坐标与图形性质,点与圆的位置关系,直线和圆的位置关系:设⊙O的半径为r,圆心O到直线l的距离为d,则直线l和⊙O相交⇔d<r;直线l和⊙O相切⇔d=r;直线l和⊙O相离⇔d>r.也考查了勾股定理的知识.10.已知点M为某封闭图形边界上一定点,动点P从点M出发,沿其边界顺时针匀速运动一周.设点P运动的时间为x,线段MP的长为y.表示y与x的函数关系的图象大致如图所示,则该封闭图形可能是()A. B.C.D.【考点】动点问题的函数图象.【分析】根据等边三角形,等腰直角三角形,正方形,圆的性质,分析得到y随x的增大的变化关系,然后选择答案即可.【解答】解:A、等边三角形,点P在开始与结束的两边上直线变化,在点M的对边上时,设等边三角形的边长为a,则y=(a<x<2a),符合题干图象;B、等腰直角三角形,点P在开始与结束的两边上直线变化,但是始边是斜边,终边是直角边,长度不相等,题干图象不符合;C、正方形,点P在开始与结束的两边上直线变化,在另两边上,先变速增加至∠M的对角顶点,再变速减小至另一顶点,题干图象不符合;D、圆,MP的长度,先变速增加至MP为直径,然后再变速减小至点P回到点M,题干图象不符合.故选:A.【点评】本题考查了动点问题函数图象,熟练掌握等边三角形,等腰直角三角形,正方形以及圆的性质,理清点P在各边时MP的长度的变化情况是解题的关键.11.如图,将一张三角形纸片沿虚线剪成甲、乙、丙三块,其中甲、丙为梯形,乙为三角形.根据图中标示的边长数据,比较甲、乙、丙的面积大小,下列判断正确的是()A.乙>丙>甲B.丙>乙>甲C.甲>丙>乙D.无法判断【考点】相似三角形的应用.【分析】首先过点B作BH⊥GF于点H,则S乙=AB•AC,易证得△ABC∽△DBE,△GBH∽△BCA,可求得GF,DB,DE,DF的长,继而求得答案.【解答】解:如图:过点B作BH⊥GF于点H,则S乙=AB•AC,∵AC∥DE,∴△ABC∽△DBE,∴==,∵BC=7,CE=3,∴DE=AC,DB=AB,∴AD=BD﹣BA=AB,∴S丙=(AC+DE)•AD=AB•AC,∵AD∥GF,BH⊥GF,AC⊥AB,∴BH∥AC,∴四边形BDFH是矩形,∴BH=DF,FH=BD=AB,∴△GBH∽△BCA,∴==,∵GB=2,BC=7,∴GH=AB,BH AC,∴DF=AC,GF=GH+FH=AB,∴S甲=(BD+GF)•DF=AB•AC,∴甲<乙<丙.故选:B.【点评】此题考查了相似三角形的判定与性质、直角梯形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.12.已知P是反比例函数y=(x>0)图象上一点,点B的坐标为(5,0),A是y轴正半轴上一点,且AP⊥BP,AP:BP=1:3,那么四边形AOBP的面积为()A.16 B.20 C.24 D.28【考点】相似三角形的判定与性质;反比例函数系数k的几何意义.【分析】作PM⊥x轴,PN⊥y轴.则△APN∽△BPM,即可得到P纵坐标比横坐标是3:1,从而求得P的坐标,进而求得面积.【解答】解:作PM⊥x轴,PN⊥y轴.则△APN∽△BPM∴=∴P纵坐标比横坐标是3:1,设P的横坐标是x,则纵坐标是3x.3x=即:x2=4∴x=2∴P的坐标是:(2,6)∴PB方程y=﹣2x+2PA方程y=x+5∴A的坐标是(0,5)连接OP,三角形OPA面积=5,三角形OPB面积=15,∴四边形AOBP的面积为20.故选B.【点评】本题考查了反比例函数与一次函数的综合应用,关键是求得P的坐标.二、填空题13.﹣27的立方根是﹣3 .【考点】立方根.【分析】根据立方根的定义求解即可.【解答】解:∵(﹣3)3=﹣27,∴=﹣3故答案为:﹣3.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.14.如图,△ABC中,∠BAC=40°,∠B=60°,且AP∥BC,则∠1的度数为80°.【考点】平行线的性质.【分析】根据三角形内角和定理求出∠C,根据平行线的性质得出∠1=∠C,即可得出答案.【解答】解:∵在△ABC中,∠BAC=40°,∠B=60°,∴∠C=180°﹣∠BAC﹣∠B=80°,∵AP∥BC,∴∠1=∠C=80°,故答案为:80°.【点评】本题考查了平行线的性质,三角形内角和定理的应用,能求出∠C的度数和得出∠1=∠C是解此题的关键,注意:两直线平行,内错角相等.15.半径为5cm的圆中,圆心角为72°的扇形面积为5πcm2.【考点】扇形面积的计算.【分析】根据扇形的面积公式进行计算即可.【解答】解:S扇形===5π;故答案为5π.【点评】本题考查了扇形面积的计算,掌握扇形的面积公式S扇形=是解题的关键.16.今年宁波市体育中考已确定抽测项目为篮球,实心球,50米跑.A、B两人随机从这三项中选择一项作为测试项目,他们都选中篮球的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与他们都选中篮球的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有9种等可能的结果,他们都选中篮球的只有1种情况,∴他们都选中篮球的概率为:.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.17.如图,已知线段AE=10,点P是线段AE上的动点,以AP长为边长作菱形PMNQ,已知该菱形的一个锐角∠MPQ=60°,且对角线NP⊥AE,△PED是以PE为底的等腰三角形,则△PND的面积的最大值是.【考点】菱形的性质.【专题】计算题.【分析】作DH⊥PN于H,DF⊥PE于F,连结MQ交PN于O点,如图,设PA=x,则PM=x,PE=10﹣x,根据菱形的性质得OP=ON,PN⊥MQ,∠MPO=∠MPQ=30°,在Rt△OPM中利用三角函数可求出PM=x,则PN=2PO=x,再证明四边形PFDH为矩形得DH=PF,接着根据等腰三角形的性质得PF=EF=(10﹣x),然后根据三角形面积公式得到S△PND=•x•(10﹣x),最后利用二次函数的性质求S△PND 的最大值.【解答】解:作DH⊥PN于H,DF⊥PE于F,连结MQ交PN于O点,如图,设PA=x,则PM=x,PE=10﹣x,∵四边形PMNQ为菱形,∴OP=ON,PN⊥MQ,∠MPO=∠MPQ=30°,在Rt△OPM中,∵cos∠MPO=,∴PM=x•cos30°=x,∴PN=2PO=x,∵PN⊥AE,DF⊥PE,DH⊥HP,∴四边形PFDH为矩形,∴DH=PF,∵DP=DE,DF⊥PE,∴PF=EF=PE=(10﹣x),∴S△PND=•PN•DH=•x•(10﹣x)=﹣(x﹣5)2+,当x=5时,S△PND的值最大,最大值为.故答案为.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了三角形面积公式和二次函数的性质.18.如图,矩形ABCD中,E为BC上一点,F为CD上一点,已知∠AEF=90°,∠AFE=30°,△ECF的外接圆切AD于H,则sin∠DAF=.【考点】切线的性质;矩形的性质.【分析】连接HO并延长交BC于P,作EG⊥AD于G,设AE=1,根据直角三角形的性质求出EF、AF,设BE=x,CE=y,证明△ABE∽△ECF,根据相似三角形的性质表示出AB、CF、DF,结合图形、根据勾股定理列出高次方程,解方程求出x、y的值,根据正弦的定义计算即可.【解答】解:连接HO并延长交BC于P,作EG⊥AD于G,设AE=1,∵∠AEF=90°,∠AFE=30°,∴EF=,AF=2,由切线长定理得,AH=AE=1,设BE=x,CE=y,∵∠B=∠C=90°,∠AEF=90°,∴△ABE∽△ECF,∴,∴AB=y,CF=x,则DF=y﹣x,∵EG∥HP∥CD,OE=OF,∴DH=HG=DG=EC=y,∵BE=x,CE=y,∴AD=BC=x+y,∴DH=x+y﹣1,则x+y﹣1=y,在Rt△ADF中,AD2+DF2=AF2,即(x+y)2+(y﹣x)2=4,,解得,,则DF=y﹣x=,∴sin∠DAF==,故答案为:.【点评】本题考查的是圆的切线的性质、矩形的性质相似三角形的判定和性质、高次方程的解法以及勾股定理的应用,正确作出辅助线、灵活运用相关的性质定理是解题的关键.三、解答题(第19题6分,第20、21题每题8分,第22、23、24题每题10分,第25题12分,第26题14分,共78分)19.先化简,再求值:﹣,其中x=3.【考点】分式的化简求值.【分析】先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.【解答】解:原式=﹣==﹣,当x=3时,原式=﹣.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(1)如图,▱ABCD中,E、F、G、H为各边中点,请用三种不同的方法,通过适当连线,找出▱ABCD 的对称中心P.(2)圆内接正五边形是否中心对称图形否(填“是”或“否”)【考点】作图-旋转变换;中心对称图形.【分析】(1)首先确定出图形中的对应点,然后连接对应点,找出交点即可;(2)根据中心对称图形的概念和各图形的特点即可解答.【解答】解:(1)如图所示:(2)正五边形是奇数边形,绕中心旋转180度后所得的图形与原图形不会重合.故答案为:否.【点评】此题主要考查了中心对称图形的概念.找出对称点是解题的本题的关键,任意两组对称点连线的交点即为对称中心.21.某市交通部门为了有力制止酒驾行为拟制了一份“克服酒驾几种方式”的调查问卷,并在该市司机中进行了抽样调查.调查问卷如表:克服酒驾﹣﹣你认为哪种方式最好?(单选)A、加强宣传,增强意识.B、在汽车上张贴“请勿酒驾”字样.C、司机上岗前签“拒接酒驾”保证书.D、加大检查力度,严惩酒驾行为.E、查出酒驾追究整个家庭责任.现整理调查问卷并制作了统计图:根据上述信息,解答下列问题:(1)本次抽样调查的样本容量是多少?(2)补全条形图,并计算B选项所对应扇形圆心角的度数;(3)若该市有30000名司机,估计支持D选项的司机大约有多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据E等级的人数是69,所占的百分比是23%,据此即可求得样本容量;(2)根据百分比的意义求得A等级的人数,然后利用总人数减去其它组的人数求得B组的人数,利用360°乘以对应的比例即可求得圆心角的度数;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)本次抽样调查的样本容量是:69÷23%=300;(2)A选项的人数是:300×30%=90,B选项对应的人数是:90﹣21﹣69﹣80=40,则圆心角的度数是:360×=48°;(3)30000×=8000(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,一次函数y=kx+b图象与反比例函数y=的图象交于点A、B,与x轴交于点C.(1)求一次函数y=kx+b与反比例函数y=的解析式.(2)求点C坐标.(3)平面上的点D与点O、C、A构成平行四边形,请直接写出满足条件的D点坐标(﹣5,﹣2)或(﹣1,﹣2)或(1,2).【考点】反比例函数综合题.【专题】计算题.【分析】(1)把A坐标代入反比例解析式求出m的值,再将x=1代入反比例解析式求出y的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)对于一次函数y=kx+b,令y=0求出x的值,确定出C坐标即可;(3)如图所示,分三种情况考虑:利用平行四边形的性质确定出D坐标即可.【解答】解:(1)把A(﹣3,﹣2)代入y=得:m=6,把B横坐标x=1代入y=得:y=6,即B(1,6),把(﹣3,﹣2),(1,6)代入y=kx+b得:,解得:,∴一次函数解析式为y=2x+4;(2)对于y=2x+4,令y=0,得到x=﹣2,则C的坐标为(﹣2,0);(3)如图所示,分三种情况考虑:根据题意得:D1(﹣5,﹣2);D2(﹣1,﹣2);D3(1,2).故答案为:(﹣5,﹣2)或(﹣1,﹣2)或(1,2)【点评】此题属于反比例函数解析式,涉及的知识有:待定系数法确定函数解析式,坐标与图形性质,一次函数与坐标轴的交点,以及平行四边形的性质,熟练掌握待定系数法是解本题的关键.23.如图,AB为⊙O直径,C为圆上一点,AC=2,BC=4,E为直径AB上一动点(不与点A、B重合),CE延长线交⊙O于D,PC⊥CD交DB延长线于点P.(1)求证:△ABC∽△DPC;(2)当CD⊥AB时,求CP的长;(3)CP长是否存在最大值?若存在,求出CP的最大值;若不存在,说明理由.【考点】圆的综合题.【分析】(1)利用圆周角定理得出∠A=∠D,∠ACB=∠DCP,进而求出即可;(2)利用勾股定理得出AB的长,进而利用三角形面积求出CE的长,进而求出CP的长;(3)利用当CD最大时,CP也就最大,CD最大时为直径,进而得出答案.【解答】(1)证明:∵AB为⊙O的直径,∴∠ACB=90°,∵PC⊥CD,∴∠DCP=90°,∴∠ACB=∠DCP,∵∠A=∠D,∴△ABC∽△DPC;(2)解:在Rt△ACB中,∵AB===2,且CD⊥AB,∴CE===,∴CD=2CE=,∵由(1)已证△ABC∽△DPC,∴=,∴=,解得:CP=;(3)解:存在,由(1)已证△ABC∽△DPC,且=,即CP==CD=2CD,∵当CD最大时,CP也就最大,CD最大时为直径,∴当CD=AB=2时,CP最大值=2CD=4.【点评】此题主要考查了圆的综合以及相似三角形的判定与性质和圆周角定理等知识,熟练应用相似三角形的性质是解题关键.24.某超市开设了自助收银区,实施自助收银,以节省顾客的排队时间.某日上午10点,超市值班经理发现在自助收银区已经有80人在等待自助收银,此时仍有顾客不断前来排队等候.在自助收银区,假设顾客按固定的速度增加,每个收银口自助收银的速度也是固定的,其中每分钟新增排队人数为3人,每分钟每个收银口自助收银2人.(1)若10点后收银的前a分钟只开放4个收银口,10点后排队等候收银的人数y(人)与收银时间x(分钟)的关系如图所示.①求a值;②求超市在10点20分时,自助收银区排队等候收银的顾客人数.(2)超市有承诺:顾客排队不超过10分钟,即要在10点10分内让所有排队的顾客都能完成自助收银,以便后来的顾客能随到随收.请帮助值班经理计算一下10点后至少需要同时开放几个收银口?【考点】一次函数的应用;一元一次不等式的应用.【分析】(1)根据原有的人数﹣a分钟检票额人数+a分钟增加的人数=60建立方程求出其解就可以;(2)设当4≤x≤24时,y与x之间的函数关系式为y=kx+b,由待定系数法求出函数的解析式,再将x=20代入解析式就可以求出结论;(3)设需同时开放n个检票口,根据原来的人数+10分进站人数≤n个检票口10分钟检票人数建立不等式,求出其解即可.【解答】解:(1)由图象知,80+3a﹣4×2a=60,∴a=4;(2)设当4≤x≤24时,y与x之间的函数关系式为y=kx+b,由题意得:,。

相关文档
最新文档