运筹学04-对偶问题
运筹学(对偶问题)
x x 300 2 x x 400 x 250 x ,x 0
1 2 1 2 2 1 2
(原问题)
分析问题: 1、每种资源出售时的利润不能低于自己生产时的可 获利润; 2、定价又不能太高,要使对方能够接受。
设y1 , y2 , y3分别为三种资源收费单价,所以 有下式: y1 2 y2 50 y1 y2 y3 100 y1 , y2 , y3 0
1 2 1 2 3 1 2 3
(对偶问题)
模型对比:
数学模型: max Z 50 x 100 x
1 2
min W 300 y 400 y 250 y
1 2 1 2
3
x x 300 2 x x 400 x 250 x ,x 0
1 2 1 2 2 1 2
练习: 1. min Z 2 x1 2 x 2 4 x 3
2 x1 3 x 2 5 x 3 2 3 x1 x 2 7 x 3 3 x1 4 x 2 6 x 3 5 x1 , x 2 , x 3 0 2 .min Z 3 x1 2 x 2 3 x 3 4 x4 x1 2 x 2 3 x 3 4 x4 0 x 2 3 x 3 4 x 4 5 2 x1 3 x 2 7 x 3 4 x4 2 x 0,x 0, x 、x 无约束 2 3 4 1
矩阵形式: P maxZ CX AX b X0
D min W Yb YA C Y0
例一、 max Z 10 x1 18 x 2
P
5 x1 2 x 2 170 2 x1 3 x 2 100 x1 5 x 2 150 x1 , x 2 0
应用运筹学基础:线性规划(4)-对偶与对偶单纯形法
应⽤运筹学基础:线性规划(4)-对偶与对偶单纯形法这⼀节课讲解了线性规划的对偶问题及其性质。
引⼊对偶问题考虑⼀个线性规划问题:$$\begin{matrix}\max\limits_x & 4x_1 + 3x_2 \\ \text{s.t.} & 2x_1 + 3x_2 \le 24 \\ & 5x_1 + 2x_2 \le 26 \\ & x \ge0\end{matrix}$$ 我们可以把这个问题看作⼀个⽣产模型:⼀份产品 A 可以获利 4 单位价格,⽣产⼀份需要 2 单位原料 C 和 5 单位原料 D;⼀份产品 B 可以获利 3 单位价格,⽣产⼀份需要 3 单位原料 C 和 2 单位原料 D。
现有 24 单位原料 C,26 单位原料 D,问如何分配⽣产⽅式才能让获利最⼤。
但假如现在我们不⽣产产品,⽽是要把原料都卖掉。
设 1 单位原料 C 的价格为 $y_1$,1 单位原料 D 的价格为 $y_2$,每种原料制定怎样的价格才合理呢?⾸先,原料的价格应该不低于产出的产品价格(不然还不如⾃⼰⽣产...),所以我们有如下限制:$$2y_1 + 5y_2 \ge 4 \\ 3y_1 + 2y_2 \ge3$$ 当然也不能漫天要价(也要保护消费者利益嘛- -),所以我们制定如下⽬标函数:$$\min_y \quad 24y_1 + 26y_2$$ 合起来就是下⾯这个线性规划问题:$$\begin{matrix} \min\limits_y & 24y_1 + 26y_2 \\ \text{s.t.} & 2y_1 + 5y_2 \ge 4 \\ & 3y_1 + 2y_2 \ge 3 \\ & y \ge 0\end{matrix}$$ 这个问题就是原问题的对偶问题。
对偶问题对于⼀个线性规划问题(称为原问题,primal,记为 P) $$\begin{matrix} \max\limits_x & c^Tx \\ \text{s.t.} & Ax \le b \\ & x \ge 0\end{matrix}$$ 我们定义它的对偶问题(dual,记为 D)为 $$\begin{matrix} \min\limits_x & b^Ty \\ \text{s.t.} & A^Ty \ge c \\ & y \ge 0\end{matrix}$$ 这⾥的对偶变量 $y$,可以看作是对原问题的每个限制,都⽤⼀个变量来表⽰。
运筹学04-线性规划的对偶问题
生产计划问题
总结词
生产计划问题是线性规划对偶问题的另一个重要应用,主要研究如何安排生产 计划,以满足市场需求并实现利润最大化。
详细描述
在生产过程中,企业需要合理安排生产计划,以最小化生产成本并最大化利润。 通过线性规划对偶问题,可以确定最优的生产计划,使得生产过程中的资源得 到充分利用,同时满足市场需求。
对偶理论的发展趋势与未来研究方向
1 2 3
混合整数对偶
随着混合整数规划问题的日益增多,对偶理论在 处理这类问题中的研究将更加深入。
大数据优化
随着大数据技术的不断发展,如何利用对偶理论 进行大规模优化问题的求解将成为一个重要研究 方向。
人工智能与优化
人工智能和机器学习方法为优化问题提供了新的 思路,与对偶理论的结合将有助于开发更高效的 算法。
THANKS
感谢观看
线性规划问题的数学模型
目标函数
通常是一个线性函数,表示要优化的目标。
约束条件
通常是一组线性等式或不等式,表示决策变 量所受到的限制。
可行解集合
满足所有约束条件的解的集合,称为可行解 集合。
02
对偶问题概念
对偶问题的定义
线性规划的对偶问题是通过将原问题 的约束条件和目标函数进行转换,形 成与原问题等价的新问题。
对偶理论与实际问题的结合
01
02
03
供应链管理
在供应链优化问题中,对 偶理论可以用于协调供应 商和零售商之间的利益, 实现整体最优。
金融风险管理
在金融领域,对偶理论可 以用于评估和管理投资组 合的风险,提高投资效益。
交通调度
在交通调度问题中,对偶 理论可以用于优化车辆路 径和调度计划,提高运输 效率。
运筹学对偶问题的直观描述
运筹学对偶问题的直观描述
运筹学中的对偶问题是指原始线性规划问题和对应的对偶线性规划问题之间的关系。
直观描述对偶问题可以从几个方面来理解。
首先,可以从成本和效益的角度来理解。
原始线性规划问题通常涉及最小化成本或者最大化利润,而对偶线性规划问题则涉及最大化成本或者最小化利润。
这种对偶关系可以被解释为在资源有限的情况下,通过最小化成本来实现最大化效益,或者通过最大化效益来实现最小化成本。
其次,可以从约束条件的角度来理解。
原始线性规划问题的约束条件对应着对偶线性规划问题的变量,而对偶线性规划问题的约束条件对应着原始线性规划问题的变量。
这种对偶关系可以被理解为在资源分配和利用的过程中,对约束条件和变量之间的转换和对应关系。
另外,可以从几何图形的角度来理解。
原始线性规划问题的最优解和对偶线性规划问题的最优解之间存在着一种对偶关系,即原始问题的最优解和对偶问题的最优解分别对应着凸集的两个相对的极值点,它们之间的距离可以被理解为对偶问题的最优值和原始问
题的最优值之间的关系。
总的来说,对偶问题在运筹学中具有重要的意义,它不仅可以帮助我们理解原始问题和对偶问题之间的关系,还可以为我们寻找最优解提供了一种新的视角和方法。
通过对偶问题的研究和理解,我们可以更好地解决实际生产和管理中的复杂问题。
运筹学 ( 对偶问题及性质)
设A、B、C、D设备的机时价分别为y1、y2、y3、y4,则新的 线性规划数学模型为:
min 12 y1 8 y2 16 y3 12 y4
2 y1 y2 4 y3 0 y4 2
s.t 2 y1 2 y2 0 y3 4 y4 3
Y≤0
对偶性质
性质2 (弱对偶性) 设X 0 Y 0和
的可行解,则必有
分别是问题(LP)和(DP)
CX 0 Y 0b
n
m
即: c j x j yibi
j1
i1
推论1: 原问题任一可行解的目标函数值是其对偶问题目标函数 值的下界;反之,对偶问题任意可行解的目标函数值是其原问题 目标函数值的上界。
n
yˆi 0 aij xˆ j bi j 1 n
aij xˆ j bi yˆi 0
j 1
对偶性质
例2.4
已知线性规划
max z 3 x1 4 x2 x3
2xx1 122xx2
x3 2x
10 3 16
x
jபைடு நூலகம்
0,
j
1,2,3
3
x1 x1
x2 4x2
7x3 6x3
3 5
x1 , x2 , x3 0
解:首先将原问题变形为对称形式
max Z 2x1 3 x2 4 x3
2 x 3 x2 5 x3 2
3
x1
x2
7x3
3
x1 4 x2 6 x3
运筹学笔记4、5-特殊线性规划(整数规划、对偶问题)
每个线性规划问题都有一个与之对应的对偶问题。
简单考虑如下的生产分配问题我们有下面的对偶问题:该问题的任意一个可行解对应的目标函数值都不小于原问题的目标函数值,但是两个问题的最优目标函数值(有限)相同。
一般而言:1、每个对偶变量对应原问题的一个约束条件2、原问题是等式约束则对偶变量无不等式约束(非负约束)3、原问题是不等式约束则对偶变量有不等式约束4、原问题变量和对偶问题约束条件同样具有如上规律任何原问题和对偶问题之间都存在下述相互关系:弱对偶性:原对偶问题任何可行解的目标值都是另一问题最优目标值的界(推论:原对偶问题目标值相等的一对可行解是各自的最优解)强对偶性:原对偶问题只要有一个有最优解,另一个就有最优解,并且最优目标值相等互为对偶的线性规划问题解之间关系有如下四种:原问题与对偶问题之间存在互补松弛性:一般形式的线性规划互补松弛定理:经济学中有所谓影子价格的概念:如果增加某些约束条件的数值,原问题的最优目标值应该增加,增加单位约束使得原问题最优值的增加量为该约束条件的影子价格。
影子价格可以由对偶线性规划问题清楚地描述:对偶单纯形法:当线性规划问题中地某个约束条件或价值变量中含有参数时,原问题称之为参数线性规划,它有如下的处理方法:1)固定λ的数值解线性规划问题2)确定保持当前最优基不变的λ的区间3)确定λ在上述区间附近的最优基,回2)如以下问题:在实际问题中,许多变量以及它们的约束条件往往是离散的,或者说限定在整数域上,这便引入了整数线性规划的概念。
具体而言,整数线性规划包含纯整数线性规划(所有变量是整数变量)、混合整数线性规划(同时包含整数和非整数变量)、0-1型整数线性规划(变量等于0或1)去除整数规划的整数约束后的问题称为其松弛问题。
一般情况,原问题的解并不一定是其松弛问题的最优解附近的整数解,例如:通常的解决办法是在松弛问题的基础上出发,不断地引入整数的约束条件,从而求出整数规划的解。
运筹学对偶问题
在运筹学中,对偶问题是一个与原问题相对应的问题。
以线性规划问题为例,每一个线性规划问题必然有与之相伴而生的另一个线性规划问题,即任何一个求maxz的LP1都有一个求minw的LP2。
将LP1称为“原问题”,记为P;将LP2称为“对偶问题”,记为D。
对偶问题的经济学解释——影子价格又称影子利率,用线性规则方法计算出来的反映资源最优使用效果的价格。
用微积分描述资源的影子价格,即当资源增加一个数量而得到目标函数新的最大值时,目标函数最大值的增量与资源的增量的比值,就是目标函数对约束条件(即资源)的一阶偏导数。
用线性规划方法求解资源最优利用时,即在解决如何使有限资源的总产出最大的过程中,得出相应的极小值,其解就是对偶解,极小值作为对资源的经济评价,表现为影子价格。
运筹学04对偶理论
对偶问题的提出
第1页
§1 对偶问题的实际意义
背景1 最优化问题的两个侧面:
周长给定, 求面积最大
面积给定, 求周长最小
容积给定, 求表面积最小
表面积给定, 求容积最大
资源给定, 求挣钱最多
收益给定, 求用资源最少
对偶问题
第2页
背景2 出租机器还是搞生产?卖产品还是卖资源?
第29页
线性规第划五及节单纯型法
对偶单纯形法
第30页
§5 对偶单纯形法
检验数全部非正的基本解叫正则解。对偶单纯形法从正则解开始。
Step1. 从一个正则解 x(1) 开始;
Step2. 若所有 bi 0 ,则 x(1)是最优解,停止;否则转入下一步;
Step3. 选择出基变量 max bi , bi 0 br ,
n
n
则 aij x j bi ; 若 aij x j bi ,
; jm1
则 aij yi c j
jm1
若 aij yi c j ,
i 1
i 1
则 yi 0, 则 x j 0,
第18页
§3 对偶的基本性质
max z cx Ax b x0
min b' y
A' y c' y0
x1, x2 0
产品价格 2 3
第3页
清华紫光集团想租用北航的设备,那么出什么价格时北航才肯出租设备呢?
设备 A, B, C 的每工时的出租价为 y1, y2, y3 ,为能租到设备,租金不能低于产品 所得的利润,即应有
2 y1 4 y2 2, 2 y1 5 y3 3,
并且希望租金越低越好,其线性模型为
运筹学第四章习题答案
即:4y1+6y2=﹣8 ① 又由于原问题的最优解X1*>0,X2*<0是松约束,故对偶问题的 约束必为紧约束,即对偶问题的前两个约束必为等式:
y1+y2=﹣2 y1+ky2=﹣2 ∴由①②解得y1*=﹣2 Y*=(﹣2,0)
② ③ y2*=0,即对偶问题的最优解为
将y1*,y2*的值代入③式得k=﹣1
(2)max z=4x1-2x2+3x3-x4
X1+x2+2x3+x4≤7
2x1-x2+2x3-x4=﹣2
s、t
X1-2x2+x4≥﹣3
X1、x3≥0 x2、x4无符号约束
解:其对偶问题为:
Min w=7y1-2y2-3y3
y1+2y2+y3≥4
y1-y2-2y3=﹣2
s、t
2y1+2y2≥3
y1-y2+y3=﹣1
y1≥0 y2无符号约束 y3≤0
4、已知线性规划问题:
Max z=x1+2x2+3x3+4x4
x1+2x2+2x3+3x4≤20
s、t
2x1+x2+3x3+2x4≤20
xj≥0 j=1、2、3、4
其对偶问题最优解为y1=1.2 y2=0.2,由对偶理论直接求出原问题的 最优解。
解:将Y*=(1.2,0.2)代入对偶问题的约束条件:
1、写出下列线性规划问题的对偶问题。
(1)min z=x1+x2+2x3
X1+2x2+3x3≥2
2x1+x2-x3≤4
s.t
3x1+2x2பைடு நூலகம்4x3≤6
运筹学对偶问题
例:写出下列问题的对偶问题
min Z 3x1 2x2 3x3 4x4 s.t. x1 2x2 3x3 4x4 3 x2 3x3 4x4 5 2x1 3x2 7x3 4x4 2 x1 0, x2, x3为自由变量, x4 0,
解:
那么它的对偶问题就是“在另外一些条件下, 使工作的消耗(浪费、成本等)尽可能的小”。
实际上是一个问题的两个方面。
例:某产品计划问题的
线性规划数学模型为
假设生产部门根据市场变化,
max F 2x1 x2 s.t. 3x1 5x2 15 (原料的约束) 5x1 2x2 10 (设备的约束) x1, x2 0
min W 20 y1 10 y2 5 y3 s.t.
3y1 4 y2 y3 4 2 y1 3y2 y3 5 2 y1 3y2 y3 5 y1 0, y2 0, y3为自由变量
合并
minW 20 y1 10 y2 5 y3 s.t. 3y1 4 y2 y3 4 2 y1 3y2 y3 5 2 y1 3y2 y3 5 y1 0, y2 0, y3为自由变量
min W 15 y1 10 y2
这样,就得到另一个线性规划模型:
minW 15y1 10y2 s.t. 3y1 5y2 2 5y1 2 y2 1 y1 0, y2 0
当原问题的约束条件的符号不完全相同时,也存在 对偶问题,这种对偶问题称为非对称对偶问题。
例
max Z 4x1 5x2 s.t.
3x1 2x2 20
4x1 3x2 10
x1 x2 5
x1
运筹学第4章 单纯形法的对偶问题
管理运筹学
3
§1 线性规划的对偶问题
如果我们把求目标函数最大值的线性规划问题看成原问题,则把求目标函数最小值的线 性规划问题看成对偶问题。下面来研究这两个问题在数学模型上的关系。
1 求目标函数最大值的线性规划问题中有n 个变量 m个约束条件,它的约束条件都是小于 等于不等式。而其对偶则是求目标函数为最小值的线性规划问题,有m个变量n个约束条件, 其约束条件都为大于等于不等式。
5x1 3x2 x3 200
管理运筹学
10
§1 线性规划的对偶问题
通过上面的一些变换,我们得到了一个和原线性规划等价的线性规划 问题:
max z 3x1 4x2 6x3
s.t. 2x1 3x2 6x3 440,
6x1 4x2 x3 100, 5x1 3x2 x3 200 5x1 3x2 x3 200 x1, x2 , x3 0
进一步,我们可以令y3
y
' 3
y
'' 3
,这时当
y
' 3
y
'' 3
时,y
0,当
y
' 3
y
'' 3
时, y3 0 。这也就是说,尽管
y
' 3
,
y
'' 3
0,
但 y3 的取值可以为正,可以为0,
可以为负,即 y3 没有非负限制。
这样我们把原规划的对偶问题化为
min f 440 y1 100 y2 200 y3
这样第二个约束条件也就符合要求。对于第三个约束条件,我们可以 用小于等于和大于等于两个约束条件来替代它。即有
运筹学-对偶问题
对偶问题的应用场景
资源分配问题
在资源有限的情况下,如何合理分配资源以达到 最优目标。
运输问题
如何制定运输计划,使得运输成本最低且满足运 输需求。
生产计划问题
如何制定生产计划,使得生产成本最低且满足市 场需求。
投资组合优化问题
如何选择投资组合,使得投资收益最大且风险最 小。
02
对偶问题在运筹学中的重要性
对偶问题的理论完善与深化
对偶理论的数学基础
进一步深入研究对偶理论的数学基础,包括对偶映射、对偶函 数、对偶不等式等,为解决对偶问题提供更坚实的理论基础。
对偶问题的转化与求解
研究如何将复杂的对偶问题转化为更容易求解的形式,或 者设计有效的求解方法,以提高对偶问题的求解效率。
对偶理论与实际应用的结合
在对偶理论不断完善的基础上,进一步探索如何将其应用于实际问题 中,以解决实际问题的优化问题,提高决策的科学性和效率。
在整数规划中,对偶问题通常 是指将原问题的约束条件或目 标函数进行一些变换,使得原 问题与对偶问题在结构上存在 一定的对称性。
对偶问题的性质
02
01
03
对偶问题的最优解与原问题的最优解具有密切关系。
在线性规划中,如果原问题是最大化问题,则对偶问 题是最小化问题,反之亦然。
在整数规划中,对偶问题的约束条件和目标函数通常 与原问题存在一定的对称性。
02 求解步骤
03 1. 定义原问题和对偶问题。
04
2. 利用状态转移方程和最优子结构性质,求解对偶问 题。
05 3. 利用对偶问题的解,求解原问题。
博弈论中的对偶策略
1. 定义博弈中的策略空间和支付 函数。
求解步骤
2. 构造对偶问题。
运筹学线性规划的对偶问题
3 x1 + 4 x 2 36
s .t .
5 9
x x
1 1
+ +
4x2 8x2
40 76
x1 , x 2 0
min = 36y1 +40y2 +76y3
3y1 +5y2 +9y3 32 s.t. 4y1 +4y2 +8y3 30
y1, y2, y3 0
x2* = x3* = x4* = 0 因y1 ,y2 0,原问题的两个约束条件应取等式,故有
x1* + 3x5* = 4 2x1* + x5* = 3 求解后得 x1* = 1,x5* = 1 故原问题的最优解为 X* = (1,0,0,0,1)T 最优值为 ω* = 5
§5 对偶问题的经济解释(影子价格)
2 y1 + 2 y2 + 6 y3 3 y1, y2, y3 0
证明: 设 X 是原问题任一可行解,Y(0)是对偶问题的可行解, 根据弱对偶性定理,有
C X≤Y(0)b 因为C X(0)=Y(0)b,故CX≤C X(0),即X(0)是原问题的最优 解。 设Y为对偶问题的任一可行解,同理有
Yb ≥Y(0)b 即Y(0)是对偶问题的最优解。
5.对偶定理 有一对对偶的线性规划问题,若其中有一个有最优解,则另
证明: 原问题
对偶问题
max z =CX
min ω =Yb
AX+ Xs =b
YA-Ys=C
X, Xs ≥0
Y, Ys≥0
z =(YA-Ys)X=YAX-YsX
ω =Y(AX+Xs)=YAX+YXs
运筹学线性规划的对偶问题
例5 已知线性规划问题 minω = 2x1 + 3x2 + 5x3 + 2x4 + 3x5 x1 + x2 + 2x3 + x4 + 3x5 ≥ 4 2x1 - x2 + 3x3 + x4 + x5 ≥ 3 xj ≥ 0,j = 1,2,3,4,5
已知其对偶问题的最优解为y1* = 4/5, y2* = 3/5;z = 5。试用对偶理论找 出原问题的最优解.
试用对偶理论证明上述线性规划问题无最优解。
证: 首先看到该问题存在可行解,例如X = (0,0,0) 而上述问题的对偶问题为
minω = 2y1 + y2 -y1 - 2y2 ≥ 1 y1 + y2 ≥ 1 y1 - y2 ≥ 0 y1 ,y2 ≥ 0
由第一约束条件可知对偶问题无可行解,因而无最优解。由此 原问题也无最优解。
0 0
无约束
m个
约束条件
=
约束条件右端项 目标函数变量的系数
对偶问题(或原问题) 目标函数 min
n个
约束条件
=
m个
0 0
变量
无约束
目标函数变量的系数
约束条件右端项
原问题中的价值向量与对偶问题中的资源向量对换(上下对换) 原问题: X在C和A的右边;
xj yi
y1 y2 ┇ ym
对偶关系 maxZ
x1 x2 ┅ xn
a11 a12 ┅ a1n a21 a22 ┅ a2n ┇┇ ┇ am1 am2 ┅ amn ≥≥┅≥ c1 c2 ┅ cm
原关 minω 系
≤
运筹学04-对偶问题
目标函数
Max Z= 40x1 +50x2 x1 + 2x2 30 3x1 + 2x2 60 2x2 24 x1,x2 0
约束条件
s.t
如果因为某种原因,不愿意自己生产,而希望通 过将现有资源承接对外加工(或出售)来获得收 益,那么应如何确定各资源的使用价格?
两个原则 1. 所得不得低于生产 的获利 2. 要使对方能够接受
Max Z=CX s.t. AX+XS=b X, XS ≥0
n m XS
X
m Y
A
YS
I
= b
Min W=Yb s.t. ATY-YS=C W, WS ≥0
n
YSX=0 YXS=0
AT
-I
= C
m
n
原始问题的变量
原始问题的松弛变量
x1
xj
xn
xn+1 xn+i xn+m
y1
yi ym
ym+1
ym+j
Max W’ = -30y1- 60y2 - 24y3 +0(y4 + y5 )-M (y6 + y7 ) s.t y1+3y2 + 0y3 – y4 + y6 = 40 2y1+2y2 + 2y3 – y5 + y7 = 50 y1 , y2 , y3 , y4 , y5 0
C CB -M -M -Z yB y6 y7 b 40 50 -90M -30 y1 1 2 -30 +3M -60 y2 3 2 -60 +5M -24 y3 0 2 -24 +2M 0 y4 -1 0 -M 0 y5 0 -1 -M -M y6 1 0 0 -M y7 0 1 0 40/3 25 θ
《运筹学》第四章对偶问题
设X,Y分别为(P1)与(D1)的任意可行解,则当
CX = Yb
时, X, Y分别是(P1)与(D1)的最优解。
性质4无界性 互为对偶的两个线性规划问题,若其中一个问题的解无界, 则另一个问题无可行解。
性质5 对偶定理 互为对偶的两个线性规划问题,若其中一个问题有最优解,
资源 产品
Ⅰ
Ⅱ
拥有量
设备 A
2
2
12
设备 B
1
2
8
原材料 A
4
/
16
原材料 B
/
4
12
2.资源最低售价模型
设 企业生产甲产品为X1件, 乙产品为X2件,则
max z 2x1 3x2
设第i种资源价格为yi,( i=1, 2, 3) 则有
2x1 2x2 12
y1
x1 2x2 8
4 x1
X*= (4, 6, 4, 0, 0)T
( D1):min w=8y1+12y2+36y3 ( Ds):min w=8y1+12y2+36y3
y1
+3y3 ≥ 3
y1 +3y3 -y4 = 3
s.t.
2y2+4y3 ≥ 5
y1 , y2, y3 ≥ 0
s.t.
2y2+4y3 -y5 = 5
y1 , y2 , y3 , y4 , y5 ≥ 0
大连海事大学交通运输管理学院
2.4.1 对偶问题的提出 2.4.2 原问题与对偶问题 2.4.3 对偶问题的性质 2.4.4 对偶变量的经济含义 2.4.5 对偶单纯形法
某工厂在计划期内要安排生产Ⅰ、Ⅱ两种产品,已知生产单位
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对偶关系对应表
原问题 目标函数类型 目标函数系数 Max 目标函数系数 对偶问题 Min 右边项系数
与右边项的对应关系
变量数与约束数 的对应关系 原问题变量类型与 对偶问题约束类型 的对应关系 原问题约束类型与
右边项系数
变量数n 约束数m
目标函数系数
约束数 n 变量数m
0 变量 0
无限制
约束
Min s.t W 7 y1 9 y2 3 y1 4 y 2 5 2 y1 y2 6 y , y 0 1 2
例4:求线性规划问 题的对偶规划
Max s.t
Z 5 x1 6 x2 3 x1 2 x2 7 4 x1 x2 9 x , x 0 1 2
令
Min s.t
y1 y1 y1
则上式化为
Max s.t Z 5 x1 6 x2 3 x1 2 x2 7 4 x1 x2 9 x , x 0 1 2
Z 7 y1 9 y2 3 y1 4 y2 5 2 y1 y2 6 y 无限制, y 0 2 1
解:由原问题的结构可知不是对称型对偶问题, 可先化为对称型,再求其对偶规划。
Max Z 5 x1 6 x2 3 x1 2 x2 7 3 x 2 x 7 1 2 4 x1 x2 9 x1 , x2 0 Max Z 5 x1 6 x2 3 x1 2 x2 7 3 x 2 x 7 1 2 4 x1 x2 9 x1 , x2 0
目标函数
Max Z= 40x1 +50x2 x1 + 2x2 30 3x1 + 2x2 60 2x2 24 x1,x2 0
约束条件
s.t
如果因为某种原因,不愿意自己生产,而希望通 过将现有资源承接对外加工来获得收益,那么应 如何确定各资源的使用价格?
两个原则 1. 所得不得低于生产 的获利 2. 要使对方能够接受
x1
xj
xn
xn+1 xn+i xn+m
y1
yi ym
ym+1
ym+j
yn+m
对偶问题的变量
对偶问题的松弛变量
xjym+j=0
yixn+i=0
(i=1,2,…Biblioteka m; j=1,2,…,n)在一对变量中,其中一个大于0,另一个一定等于0
4.3 对偶问题的解
Max Z CX 0 X s X * 为原问 ˆ 设原问题为 AX IX s b 令 X * 题的一 X s.t s 最优解 X, Xs 0
第四章 线性规划的对偶理论
4.1 4.2 4.3 4.4 4.5
对偶问题 对偶问题的基本性质 对偶问题的解 影子价格 对偶单纯形法
4.1 对偶问题
(1) 对偶问题的提出
例1、生产组织与计划问题 A 煤 劳动力 仓库 单位利润 1 3 0 40 B 2 2 2 50 可用资源 30 60 24
A, B各生产多少, 可获最大利润?
s.t
s.t
为其对偶问题,其中yi (i=1,2,…,m) 称为对偶变量。 上述对偶问题称为对称型对偶问题。 原问题简记为(P),对偶问题简记为(D)
原始问题 Max Z=CX s.t. AX≤b X ≥0
Max C Min m A
对偶问题 Min W=Yb s.t. YAT≥C Y ≥0
bT
AT m ≥ CT
40
2y1 + 2 y2 + 2y3 50
(2) 对偶问题的形式
定义 设原线性规划问题为
Max Z c1 x1 c2 x2 cn xn a11x1 a12 x2 a1n xn b1 a21x1 a22 x2 a2 n xn b2 a x a x a x b mn n m m1 1 m 2 2 x j 0 j 1,2,, n
则 Y CB B 1
Min W Yb 为对偶问题 YA C s.t Y 0
CB b B-1b CBB-1b XB I 0 CN XN B-1N
的一最优解
C CB CB Z XB XB
0 XS B-1 -CBB-1
CN-CBB-1N
Min W = 30y1+ 60y2 + 24y3 例1 Max Z=40X1+ 50X2 X1+2X2 30 y1 y1+3y2 + 0y3 40 3X1+2X2 60 y2 s.t 2y1+2y2 + 2y3 50 s.t y3 2X2 24 y1 , y2 , y3 0 X1 , X2 0 Max W’ = -30y1- 60y2 24y3 y1+3y2 + 0y3 – y4 = 40 2y1+2y2 + 2y3 – y5 = 50 s.t y1 , y2 , y3 , y4 , y5 0
=
对偶问题变量类型
的对应关系
约束
=
0 变量 0
无限制
4.2 对偶问题的基本性质
定理1 对偶问题的对偶就是原问题
Max Z=CX s.t. AX ≤b X ≥0 对偶的定义
Min W=Yb s.t. YA ≥C Y≥0
Min Z’=-CX s.t. -AX≥-b X ≥0
Max W’=-Yb s.t. -YA≤-C Y≥0 对偶的定义
s.t
s.t
上式已为对称型对偶问题,故可写出它的对偶规划
Min s.t Z 7 y1 7 y1 9 y2 3 y1 3 y1 4 y2 5 2 y1 2 y1 y2 6 y , y, y 0 1 1 2
Max W’ = -30y1- 60y2 - 24y3 +0(y4 + y5 )-M (y6 + y7 ) s.t y1+3y2 + 0y3 – y4 + y6 = 40 2y1+2y2 + 2y3 – y5 + y7 = 50 y1 , y2 , y3 , y4 , y5 0
C CB -M -M Z yB y6 y7 b 40 50 -90M -30 y1 1 2 -30 +3M -60 y2 3 2 -60 +5M -24 y3 0 2 -24 +2M M 0 y4 -1 0 0 y5 0 -1 M -M y6 1 0 0 -M y7 0 1 0 40/3 25 θ
通过使用所有资源对外加工所获得的收益
W = 30y1 + 60 y2 + 24y3
根据原则2 ,对方能够接受的价格显然是越低越好,因此 此问题可归结为以下数学模型:
目标函数 Min W = 30y1 + 60 y2 + 24y3 y1 + 3y2 约束条件 s.t y1 , y 2 , y3 0 原线性规划问题称为原问题,此问题为对偶问题, y1 , y2 , y3 称为影子价格
定理2 (弱对偶定理) , y 分别为(P), (D)的可行解,则有C X y b X 证明:由A X b, y 0
有 yA X y b
由 yA C, X 0 有 y A X C X
所以 C X y A X yb
推论1、(P), (D)都有可行解,则必都有最优解。 推论2、(P)有可行解, 但无有限最优解,则(D)无可 行解。 定理3、 X , y 分别为(P), (D)的可行解,且 C X = y b , 则它们是(P), (D) 的最优解。
一对对偶问题的关系,有且仅有下列三种:
1. 都有最优解,且目标函数最优值相等;
2. 两个都无可行解;
3. 一个问题无界,则另一问题无可行解。
定理5 若 X , Y分别为(P) , Y b AX 0
(D)的可行解,则X , Y为 最优解的充要条件是 证: (必要性) 原问题
Max s.t Z CX AX X s b X , X s 0
≤ b
n
n
例2:求线性规划问 题的对偶规划
Max s.t
Z 5 x1 6 x2 3 x1 2 x2 7 4 x1 x2 9 x , x 0 1 2
解:由原问题的结构可知为对称型对偶问题
Min W 7 y1 9 y2 3 y1 4 y2 5 s.t 2 y1 y2 6 y , y 0 1 2
CX YAX Yb
所以原问题的目标函数值有上界,即可找到有限 最优解;对偶问题有下界,也存在有限最优解。
(2) 当X*为原问题的一个最优解,B为相应的最优基,通 过引入松弛变量Xs,将问题(P)转化为标准型
Max Z CX 0 X s AX IX s b s.t X , X s 0
例3:求线性规划问 题的对偶规划
Max s.t
Z 5 x1 6 x2 3 x1 2 x2 7 4 x1 x2 9 x , x 0 1 2
解:由原问题的结构可知不是对称型对偶问题, 可先化为对称型,再求其对偶规划。
Max s.t Z 5 x1 6 x2 3 x1 2 x2 7 4 x1 x2 9 x , x 0 1 2
YA C X 0 成立
对偶问题 Min W Yb YA Ys c s.t Y , Ys 0
同时
AX X s b
X s b AX
YA Ys C Ys YA C YAX Ys X CX