制冷原理与设备
制冷原理及设备吴业正
制冷原理及设备吴业正在制冷技术的发展历程中,制冷原理及其相关设备起着至关重要的作用。
制冷技术广泛应用于各个领域,例如家用空调、冷库、冷链物流等。
本文将介绍制冷原理及其常见设备,帮助读者更好地理解和应用这一技术。
一、制冷原理1. 蒸发冷却原理:制冷循环中最基本的原理之一。
液体在吸热蒸发时会带走周围的热量,使环境温度下降。
蒸发冷却原理被广泛应用于冰箱、空调等设备中。
2. 压缩冷却原理:制冷设备常见的工作原理之一。
通过压缩气体使其温度升高,然后将热量排出,使环境温度降低。
这种原理常见于空调、冷冻设备等。
3. 热泵原理:这是一种将热能从低温热源转移到高温热源的原理。
通过热泵设备,可以将低温环境中的热量转移到高温环境中,实现环境温度调节。
二、制冷设备1. 压缩机:是制冷设备中的核心部件,主要用于压缩制冷剂,使其温度和压力升高。
常见的压缩机有往复式压缩机和螺杆式压缩机。
2. 冷凝器:用于将高温高压的制冷剂放出的热量散发出去,使制冷剂转变为高温高压液体。
3. 蒸发器:用于吸收热量使制冷剂蒸发,实现冷却效果。
蒸发器有多种类型,例如板式蒸发器、管壳式蒸发器等。
4. 膨胀阀:调节制冷剂在蒸发器和冷凝器之间的流量,控制制冷剂的蒸发过程,实现温度调节。
5. 冷媒:制冷设备中的介质,用于传递热能。
常见的制冷剂包括氟利昂、氨、丁烷等。
6. 风扇和冷却塔:用于排出热量,使环境温度下降,保持设备正常运行。
三、应用领域1. 家用空调:家庭生活中最常见的制冷设备之一。
通过制冷循环过程,调节室内温度,提供舒适的居住环境。
2. 商用冷库:用于冷藏和冷冻各种物资,例如食品、药品等。
通过控制温度和湿度,延长物品的保鲜期。
3. 冷链物流:保持货物在冷藏状态下运输,确保货物质量和安全。
冷链物流广泛用于食品、医药等行业。
4. 工业冷却:在工业生产过程中,对设备和物料的温度进行控制,以确保生产过程的稳定性和质量。
5. 航空航天:在航空航天领域,制冷技术用于航空器和航天器的温度控制和环境调节。
制冷原理及设备
力系数)也只与热源的温度Tg,Ta和Tc有关;而
与工质的性质无关。
② Tg越高(驱动热源的品位越高)、Ta与Tc
越接, c 则越大;反之,越小。
W
c
Q0 W
Ta
1 / Tc
1
c
Ta
1 / Tc
1 (1 Ta
/ Tg )
制冷系数和热力系数只能用于评价相同温源的同
制冷原理及设备
主编:吴业正
西安交通大学出版社
绪论
制冷技术是为适应人们对低温的需要发展起来的。 (1)制冷 制冷:作为一门科学是指用人工的方法在一定时间 和一定
空间内将某物体冷却,使其温度降低到环境温度以下,并 保持这个低温。
制冷就是从物体中取出热量,将其排放 到环境介质中,以产生低于环境温度的 过程。(伴有能量补偿)
液体汽化制冷 蒸汽压缩式制冷 蒸汽吸收式制冷 蒸汽喷射式制冷 吸附制冷
热电制冷 涡流管制冷 空气膨胀制冷
液体汽化制冷
物质有三种集态:气态、液态、固态。物质集态的改 变称为相变。相变过程中,由于物质分子重新排列和 分子热运动速度的改变,会吸收或放出热量,这种热 量称作潜热。
物质发生从质密态到质稀态的相变时,将吸收潜热; 反之,当它发生由质稀态向质密态的相变时,放出潜 热。
11
损失;
⑥在各设备的连接管道中制冷剂不发生 0
h4=h5
h1
状态变化;
蒸汽压图缩制 2-4冷理理论论循循环环p
⑦制冷剂的冷凝温度等于冷却介质温度,
蒸发温度等于被冷却介质的温度。
没有传热温差。
h2 h h图
p
pk
34
p0
45
制冷设备的原理
制冷设备的原理制冷设备是我们日常生活中常见的电器,如冰箱、空调、冷柜等。
这些设备能够将周围的热量吸收进去,使内部温度下降,从而达到冷却的效果。
那么,制冷设备的原理是什么呢?1. 蒸发冷却原理制冷设备中普遍采用的原理是蒸发冷却。
蒸发冷却是指液体吸收热量时从液体状态转变为气体状态,从而完成能量转移。
具体来说,制冷设备通过压缩机将制冷剂压缩成高压气体,然后通过冷凝器使其冷却并变回液体。
接着,制冷剂进入蒸发器,此时压力下降,使液体制冷剂蒸发成气体。
在蒸发的过程中,液体制冷剂吸收周围热源的热量,导致周围温度下降,从而实现制冷效果。
2. 压缩循环原理制冷设备中常用的压缩机循环原理是应用最广泛的制冷原理。
该原理通过反复循环制冷剂在高温和低温之间的相变过程,达到制冷效果。
具体过程如下:首先,制冷剂处于低温状态,通过蒸发器吸收热量变为气体。
然后,经过压缩机被压缩成高压气体。
随后,高压气体进入冷凝器,在冷凝器内与外界环境交换热量,变为液体。
最后,通过膨胀阀降低压力,使液体制冷剂进入蒸发器,再次吸收周围的热量,实现制冷目的。
3. 吸收式制冷原理除了压缩循环原理,制冷设备中还有一种常见的制冷原理是吸收式制冷原理。
吸收式制冷原理主要应用于一些大型冷藏库、工业冷却设备等。
该原理利用吸收剂对制冷剂的吸附和解吸附过程来实现制冷效果。
具体来说,制冷设备中的吸收器中装填有吸收剂,当吸收剂与制冷剂接触时,吸附剂会吸附制冷剂成为溶液。
然后,通过加热的方式将制冷剂从溶液中解吸出来,获得纯净的制冷剂。
进而制冷剂在蒸发器中蒸发,吸收周围的热量,实现制冷效果。
制冷剂在蒸发后又重新进入吸收器,与吸收剂再次接触,不断循环,达到制冷效果。
综上所述,制冷设备的原理主要包括蒸发冷却原理、压缩循环原理和吸收式制冷原理。
通过这些原理,制冷设备能够吸收周围的热量,使内部温度下降,从而实现制冷效果。
这些原理的应用使得制冷设备在日常生活中发挥着重要的作用,为我们带来了舒适和便利。
制冷与空调设备原理及维修
制冷与空调设备原理及维修概述制冷与空调设备在现代生活中起着至关重要的作用。
它们可以为我们提供舒适的室内环境,无论是在炎热的夏天还是寒冷的冬天。
本文将介绍制冷与空调设备的原理以及常见的维修方法。
制冷原理制冷原理基于热力学中的气体压缩和膨胀的原理。
主要包括以下几个步骤:1.压缩:制冷循环的第一个步骤是将制冷剂气体通过压缩机进行压缩。
压缩机将气体压缩成高压高温状态,使其能够释放更多的热量。
2.冷凝:压缩后的气体通过冷凝器,与外界的空气接触,通过放热使气体冷却。
冷凝过程中,气体凝结为液体,并释放出冷气。
3.膨胀:冷凝后的液体通过膨胀阀进入蒸发器。
在蒸发器中,液体制冷剂快速蒸发为气体,吸收周围物体的热量,从而使周围温度降低。
4.蒸发:气体制冷剂进入蒸发器后,继续吸收热量,并循环进行压缩、冷凝、膨胀和蒸发,从而不断提供冷气。
空调设备原理空调设备在制冷原理的基础上,增加了空气循环和湿度控制的功能。
空调设备主要包括以下几个部分:1.风机:空调设备中的风机起到循环空气的作用。
风机将室内的热空气吸入,并通过蒸发器使其降温后再排出。
2.冷凝器:空调设备中的冷凝器用于冷却热空气,并将其转化为凉爽的空气。
冷凝器中的制冷剂吸收热空气中的热量,并通过压缩和膨胀来完成冷却。
3.湿度控制:空调设备可以通过冷凝器中的制冷剂调节室内空气的湿度。
湿度控制器可以根据设定的湿度值增加或减少制冷剂的循环量,从而调节空气中的湿度。
维修方法当制冷与空调设备出现故障时,我们可以采取一些维修方法进行修复。
以下是一些常见的维修方法:1.清洁空调设备:经常清洁空调设备可以防止灰尘和污垢堆积,影响其正常运行。
可以使用软刷或吹风机去除风机、冷凝器和蒸发器上的灰尘。
2.检查制冷剂:如果空调设备不能提供足够的冷气,可能是由于制冷剂泄漏导致的。
可以使用制冷剂压力表检查制冷剂的压力,如果压力低于正常范围,可能需要重新充注制冷剂。
3.检查电源和电线:如果空调设备无法启动,可能是由于电源故障或电线连接松动导致的。
制冷原理与设备
1.2 单级蒸气压缩式制冷理论循环
一点: 一点:
气相区 液相区 两相区
临界点C 临界点
三区: 三区:
液相区、 液相区、 两相区、 两相区、 气相区。 气相区。
五态: 五态:
过冷液状态、 过冷液状态、 饱和液状态、 饱和液状态、 湿蒸气状态、 湿蒸气状态、 饱和蒸气状态、 饱和蒸气状态、 过热蒸气状态。 过热蒸气状态。
蒸气压缩式制冷循环系统图
1.1 单级蒸气压缩式制冷循环的基本工作原理
1.1.2 制冷循环过程
制冷剂蒸气压缩、冷凝成液体, 制冷剂蒸气压缩、冷凝成液体,放出热量
1.1 单级蒸气压缩式制冷循环的基本工作原理
1.1.2 制冷循环过程
冷凝后的制冷剂流经节流元件进入蒸发器。从入口端的高压pk降低到 低压p0,从高温tk降低到t0,并出现少量液体汽化变为蒸气。
1.2 单级蒸气压缩式制冷理论循环 1.2.1 理论循环的假设条件和压焓图
1.理论循环的假设条件 理论循环的假设条件
压缩过程为等熵过程; 压缩过程为等熵过程; 冷凝和蒸发是与冷、热源换热; 冷凝和蒸发是与冷、热源换热; 出蒸发器的为饱和蒸气,出冷凝器的为饱和液体; 出蒸发器的为饱和蒸气,出冷凝器的为饱和液体; 制冷剂流动过程中没有流动阻力损失; 制冷剂流动过程中没有流动阻力损失; 节流过程中与外界没有热量交换。 节流过程中与外界没有热量交换。
1.3 单级蒸气压缩式制冷实际循环 1.3.1 单级蒸气压缩式制冷实际循环与理论循 环的区别 1.3.2 液体过冷、吸气过热及回热循环 液体过冷、 1.3.3 热交换及压力损失对制冷循环的影响 1.3.4 不凝性气体对制冷循环的影响 1.3.5 冷凝、蒸发过程传热温差对循环性能的 冷凝、 影响 1.3.6 实际制冷循环在压焓图上的表示及性能 指标
制冷原理与设备教材(PDF 136页)
3.制冷的分类
按照制冷所得到的低温范围,制冷技术划分为以 下4个领域:
普通制冷 120K以上 深度制冷 120K~20K 低温制冷 20K~0.3K 低温制冷 超低温制冷 0.3K以下 本课程主要讲普通制冷。
4.制冷技术的研究内容及理论基础
制冷技术主要研究以下三个方面: (1)研究获得低温的方法和有关的机理以及与此相应的制冷循环,并 对制冷循环进行热力学的分析和计算。(比如压缩式制冷) (2)研究制冷剂的性质,从而为制冷机提供性能满意的工作介质。 (3)研究实现制冷循环所必需的各种机械和技术设备,包括他们的工 作原理、性能分析、结构设计,以及制冷装置的流程组织、系统配 套设计。此外,还有热绝缘问题、制冷装置的自动化问题等等。
制冷与低温技术的应用领域举例 1. 空气调节
制冷和空调
的关系相互
联系又独立
图1-26 制冷与空调的关系
制冷在空调中的作用 (1)干式冷却
(2)减湿冷却
(3)减湿与干式冷却混合方式
2.人工环境
用人工方法构成各种人们所希望达到的环境条件,包 括地面的各种气候变化和高空宇宙及其它特殊的要求。
与制冷有关的人工环境试验有以下几种 (1) 低温环境试验 (2) 湿热试验 (3) 盐雾试验 (4) 多种气候试验 (5) 空间模拟试验
制冷技术的理论基础主要为热工的三大基础课程,即《工程热 力学》、《工程流体力学》、《传热学》。尤其是《工程热力 学》,学习和从事质量工作的人员应主要在这三门课程方面打好坚 实的理论基础。
5.制冷技术的发展历史
制冷技术的发展概括起来可分为两个阶段:
(1)天然冷源的应用阶段
是从古代~18世纪中期。 采水。
制冷原理与设备
热能教研室
制冷原理与设备
制冷原理与设备
制冷原理是利用热力学原理,通过吸热和排热的方式实现物体的降温。
制冷设备利用制冷剂的循环运动和相变过程,将热量从一个特定区域转移到另一个区域,从而降低后者的温度。
制冷设备通常由压缩机、冷凝器、蒸发器和节流阀等核心部件组成。
制冷原理中的压缩机起着关键的作用。
通过压缩机的作用,制冷剂在高压下变得非常热,并将此热量转移到冷凝器中。
冷凝器通常是一个管道,制冷剂在其中经历了冷却和凝结过程。
冷凝过程中,制冷剂释放出大量的热量,导致温度暴降,从而使制冷装置一侧的温度显著降低。
冷凝后的制冷剂通过节流阀进入蒸发器,此时压力骤然下降,制冷剂变成低温低压的状态,从而吸收周围的热量并蒸发。
这个过程使蒸发器内的温度急剧下降,为制冷物体提供了冷却效果。
完成蒸发后,制冷剂再次进入压缩机,循环往复,不断实现吸热和排热的循环,从而持续降低目标区域的温度。
除了核心组件外,制冷设备还需要其他辅助部件,如冷却风扇、蓄冰槽等,以提高制冷效果。
冷却风扇能够加快散热速度,使冷凝器更加高效地散热。
蓄冰槽可以储存大量冰块,通过对热量的吸收将温度降低到更低的程度。
总结来说,制冷原理是通过循环往复的制冷剂流动和相变过程,实现对目标区域温度的降低。
制冷设备的核心部件是压缩机、冷凝器、蒸发器和节流阀,通过它们的协同作用,制冷设备能
够实现快速的降温效果。
辅助部件如冷却风扇和蓄冰槽可以增强制冷效果。
制冷原理与设备
制冷原理与设备制冷:指用人工的方法在一定时间和一定空间内将某物体或流体冷却,使其温度降到环境温度以下,并保持这个低温。
制冷方法有四种:液体气化制冷、气体膨胀制冷、涡流管制冷和热电制冷。
液体气化制冷循环:由工质低压下汽化、蒸气升压、高压气液化和高压液体降压四个基本过程组成。
蒸气压缩式、吸收式、蒸气喷射式制冷都属于液体气化制冷。
以机械能或电能为补偿的:蒸气压缩式、热电制冷式制冷机以热能为补偿的:吸收式、蒸气喷射式、吸附式制冷机饱和状态:当液体处在密闭容器内时,若容器内除了液体及液体本身的蒸气外不存在任何其他气体,那么液体和蒸汽在某一压力下将达到平衡,这种状态称饱和状态。
汽化潜热:液体汽化时,需要吸收热量,该热量称为汽化潜热制冷系数、热力系数(性能系数COP)热力完善度压缩机:节流阀;蒸发器;冷凝器;过冷:制冷剂液体的温度低于同一压力下饱和状态的温度称为过冷。
两者之差称为过冷度。
制冷剂液体离开冷凝器进入节流阀之间往往具有一定的过冷度。
过冷总是有利的。
过热:制冷剂液体的温度高于同一压力下饱和状态的温度称为过热。
两者之差称为过热度。
制冷剂液体在蒸发其中完全蒸发后人然要继续吸收一部分热量,这样,在他到达压缩机之前就处于过热状态。
有害过热和有效过热。
氨不宜采用过高的过热度,吸入蒸气的过热会对往复式压缩机的容积效率有所改善,所以,对氨而言,也希望有5 C左右的过热度闪发蒸气:液体节流产生的蒸气是饱和蒸气,又称闪发蒸气,以区别于加热液体后产生的饱和蒸气。
制冷★制冷:指用人工的方法在一定时间和一定空间内将某物体或流体冷却,使其温度降到环境温度以下,并保持这个低温。
◆制冷方法有四种:液体气化制冷、气体膨胀制冷、涡流管制冷和热电制冷。
★蒸汽压缩式制冷原理:蒸汽压缩式制冷属于液体汽化制冷方式。
液体汽化制冷循环由工质低压下汽化、蒸汽升压、高压气液化和高压液体江亚四个基本过程组成。
蒸汽压缩式制冷系统由压缩机、冷凝器、膨胀阀、蒸发器组成,用管道将其连成一个封闭的系统。
制冷设备与原理
制冷设备与原理制冷设备是现代生活中不可或缺的一部分。
无论是家庭使用的冰箱,还是工业上的空调系统,都需要制冷设备来实现冷却和保鲜的功能。
本文将介绍制冷设备的种类以及其背后的原理。
一、制冷设备的种类制冷设备可以分为两大类:机械制冷设备和热力学制冷设备。
1. 机械制冷设备机械制冷设备是通过机械方式来降低温度的设备。
最常见的机械制冷设备就是冰箱和空调。
冰箱通过压缩机的工作原理来实现冷却,将热量从冷藏室中排出,从而使得里面的物品保持低温状态。
空调系统则是通过压缩和膨胀的过程来调节室内温度,将热量从室内排出,实现室内降温的效果。
2. 热力学制冷设备热力学制冷设备是通过利用压缩气体的特性来实现冷却的设备。
最典型的例子是吸收式冰箱。
吸收式冰箱利用氨和水的化学反应,通过吸热和放热的过程来实现冷却效果。
这种制冷设备通常使用在没有电力供应的地方,比如露营旅行中。
二、制冷原理制冷设备的背后有着复杂且精密的工作原理。
以下将分别介绍机械制冷设备和热力学制冷设备的工作原理。
1. 机械制冷设备的原理机械制冷设备依赖于制冷剂的循环来实现冷却效果。
一般来说,制冷剂需要经历压缩、冷凝、膨胀和蒸发四个过程。
首先,制冷剂通过压缩机被压缩成高压气体,此时温度也会相应升高。
接着,经过冷凝器,高温高压的制冷剂通过散热而变成高压液体。
然后,制冷剂通过膨胀阀脱压,并且温度迅速降低。
最后,制冷剂进入蒸发器,吸收热量并变成低温蒸汽,同时将热量从被制冷物体带走,实现冷却效果。
2. 热力学制冷设备的原理热力学制冷设备利用吸收剂和制冷剂之间的化学反应来实现冷却效果。
在吸收式冰箱中,吸收剂通常是氨,而制冷剂则是水。
首先,氨和水混合在一起形成稀溶液。
在溶液加热的过程中,氨从溶液中转移到蒸发器中,释放热量。
然后,氨气经过吸收器与水重新反应生成浓溶液,并吸收热量。
这个过程需要热源的供应,通常是燃气或者太阳能。
最后,浓溶液经过换热器,传递热量给外部环境,循环进行。
三、制冷设备在生活中的应用制冷设备在日常生活中扮演着重要的角色。
制冷原理 制冷和空调设备运用与维修专业
制冷原理制冷和空调设备运用与维修专业制冷原理与空调设备运用与维修专业一、引言制冷技术是现代社会不可或缺的一项技术,广泛应用于各个领域,特别是空调设备。
空调设备的运用与维修是制冷原理的具体应用,它们之间有着密切的联系。
本文将从制冷原理的基本概念开始,介绍制冷原理的几种常见方式,然后探讨空调设备的运用和维修技术。
二、制冷原理制冷原理是通过不同的物理原理实现的,常见的有压缩式制冷、吸收式制冷和热泵制冷等几种方式。
1. 压缩式制冷:压缩式制冷是利用制冷剂在压缩机中的压缩和膨胀过程中吸热和放热的原理,实现制冷的过程。
制冷剂在蒸发器中吸热,变成低温低压气体,然后通过压缩机增压,变成高温高压气体,通过冷凝器释放热量,变成高温高压液体,最后通过节流装置降压,回到蒸发器重新开始循环。
2. 吸收式制冷:吸收式制冷是利用制冷剂在吸收剂中的溶解和析出过程中吸热和放热的原理,实现制冷的过程。
吸收式制冷主要由两个循环组成,即制冷循环和吸收循环。
制冷循环中,制冷剂在蒸发器中吸热蒸发,然后通过吸收器中的吸收剂吸收,生成溶液。
吸收循环中,通过加热溶液,使吸收剂析出制冷剂,然后通过冷凝器放热,使制冷剂变成高温高压液体,最后通过节流装置降压,回到蒸发器重新开始循环。
3. 热泵制冷:热泵制冷是利用热力学原理,通过能量的转换实现制冷的过程。
热泵制冷主要由蒸发器、压缩机、冷凝器和膨胀阀组成。
制冷剂在蒸发器中吸热蒸发,然后通过压缩机增压,变成高温高压气体,通过冷凝器放热,变成高温高压液体,最后通过膨胀阀降压,回到蒸发器重新开始循环。
三、空调设备的运用空调设备是制冷技术在生活中的具体应用,它能够调节室内温度、湿度和空气流通,为人们提供舒适的室内环境。
1. 空调设备的种类:空调设备根据制冷原理和应用场景的不同,分为中央空调和家用空调两大类。
中央空调主要应用于大型建筑物和办公场所,由空调主机和空调末端组成;家用空调主要应用于家庭和小型商业场所,常见的有窗式空调、挂式空调和中央空调。
制冷原理及设备
空调设备
• 在车辆和建筑物内用于 改善空气质量和温度
• 常用制冷剂包括R-22、 R-410A和R-404A等
冷冻设备
• 用于冻结食品和医药等 物品,常见于餐饮业和
• 制常药用业制冷剂包括氨和二 氧化碳等
冷冻技术应用领域
1
食品加工
食品加工行业需要大规模的冷冻技术,以冷冻或冷藏肉类、蛋类、奶制品等
3
新方法和新科技
科技进步将推动制冷技术的创新和发展。例如,磁性制冷、医用降温等新技术的 出现将为未来的制冷技术提供更多的方法。
制冷循环流程
1 蒸发器
液态冷媒进入蒸发器时,它吸收周围环境的 热量,并转化为蒸气。
2 压缩机
蒸发器的蒸汽通过压缩机压缩为高温、高压 气体。
3 冷凝器
高温气体通过冷凝器时,散发热量并冷却为 液态冷媒。
4 节流阀
液态冷媒通过节流阀时,压力降低,温度下 降,再次转化为蒸汽形态。
常见的制冷设备
冷藏设备
• 用于冷藏食品或医药品, 常见于超市或药房
能效比
能源效率等级和评估标准指导选择制冷设备ห้องสมุดไป่ตู้关键因素。
定期维护
设备一旦安装使用,就需要定期维护,以确保其正常运行、扩大使用寿命以及减少维护次数。
节能环保的制冷技术
低温摄氏度制冷
按摩行业利用恒温提供服务,采 用低温摄氏度制冷,也能保存和 娱乐身体和心灵。
高温工作液制冷
高温工作液加热传统制冷环境使 温室气体比含水量比其他液体更 高,可以有效地减缓对全球变暖 的影响。
2
医疗保健
在制药和保健领域,冷冻技术被广泛应用于制药、血液储存等领域
3
制冷原理及相关设备
制冷原理及相关设备一、制冷原理制冷原理是通过一系列的物理过程,将热量从低温环境中吸收,然后传递到高温环境中,从而实现将物体的温度降低的过程。
制冷原理的基础是热力学第二定律,即熵的增加原理。
1. 压缩式制冷系统压缩式制冷系统是目前应用最广泛的制冷方式。
它由四个主要组件组成:压缩机、冷凝器、膨胀阀和蒸发器。
•压缩机:将低温低压的制冷剂气体吸入,经过压缩使其温度和压力升高,然后将高温高压的气体排出。
•冷凝器:将高温高压的制冷剂气体放入冷凝器,通过流体或空气传热的方式,使其冷却并转化为高压液体。
•膨胀阀:控制高压液体制冷剂流量的阀门,将高压液体制冷剂通过膨胀阀放到低温低压区域,使其蒸发。
•蒸发器:将低温低压的制冷剂液体蒸发为制冷剂气体,吸收周围环境的热量,从而使环境温度下降。
2. 蒸发冷却原理蒸发冷却原理是利用液体蒸发时吸热的特性,通过蒸发剂的蒸发过程将周围环境的热量吸收,从而实现降低温度的目的。
蒸发冷却主要应用于一些小型空间或个人使用的冷却设备,如家用空调、冷风扇等。
二、相关设备1. 空调空调是一种常见的制冷设备,主要通过压缩式制冷系统实现室内温度的控制。
空调由室内机和室外机两部分组成。
•室内机:包括蒸发器和风扇,通过蒸发器吸收室内热量并通过风扇对室内空气进行循环,从而降低室内温度。
•室外机:包括压缩机和冷凝器,通过压缩机将室内吸入的制冷剂气体压缩成高温高压的气体,然后放入冷凝器冷却并转化为高压液体。
2. 制冷冰箱制冷冰箱利用压缩式制冷系统实现食物和饮料的冷藏和冷冻。
它包括一个压缩机、冷凝器、膨胀阀和蒸发器,工作原理与空调类似。
•压缩机将低温低压的制冷剂气体吸入并压缩成高温高压的气体。
•高温高压的气体进入冷凝器,通过传热的方式将热量散发到周围环境。
•高压液体进入膨胀阀膨胀为低温低压的制冷剂,进入蒸发器。
•制冷剂在蒸发器中吸收食物和饮料的热量,使其冷藏和冷冻。
3. 制冷车载冰箱制冷车载冰箱是一种特殊的冰箱,用于在车辆中保持食物和饮料的冷藏和冷冻。
制冷专业必备的知识
制冷专业必备的知识制冷专业是一个涉及制冷技术和制冷设备的学科领域。
在这个领域中,掌握一些必备的知识对于从事制冷工作的人员来说是非常重要的。
本文将从制冷原理、制冷循环、制冷剂以及制冷设备四个方面介绍制冷专业必备的知识。
一、制冷原理制冷原理是制冷专业的基础知识,它涉及到物质的热力学性质和热传导规律。
制冷原理的核心是利用物质的相变过程来吸收或释放热量,实现温度的降低。
常用的制冷原理有蒸发制冷、吸收制冷和压缩制冷等。
了解这些原理可以帮助制冷工程师选择合适的制冷循环和制冷设备,从而提高制冷系统的效率和性能。
二、制冷循环制冷循环是制冷系统中的核心部分,它包括蒸发器、压缩机、冷凝器和节流装置等组成。
蒸发器是制冷循环中的热交换器,通过蒸发剂与外部的低温介质进行热交换,从而吸收热量。
压缩机是制冷循环中的能量转换装置,它将低温低压的蒸发剂压缩成高温高压的气体,提高其温度和压力。
冷凝器是制冷循环中的热交换器,通过冷却剂与外部的高温介质进行热交换,从而释放热量。
节流装置是制冷循环中的控制装置,通过减小蒸发剂的流量和压力,使其进入蒸发器时呈现饱和状态,从而实现制冷效果。
三、制冷剂制冷剂是制冷系统中的工质,它起到传递热量和实现温度降低的作用。
常用的制冷剂有氨、氟利昂、丙烷等。
制冷剂的选择要考虑到其物理性质、环境影响和安全性等因素。
制冷剂的物理性质包括饱和蒸汽温度、气化热、比容等,这些性质直接影响到制冷系统的性能和效率。
制冷剂的环境影响主要涉及到其对臭氧层的破坏和温室效应,因此要选择对环境影响较小的制冷剂。
制冷剂的安全性包括其毒性、燃烧性和爆炸性等,要选择对人身安全和设备安全影响较小的制冷剂。
四、制冷设备制冷设备是制冷专业中的实体部分,它包括冷库、冷藏车、冷冻机组、空调设备等。
冷库是用于存储冷冻或冷藏食品的设备,它通过制冷循环实现温度的控制和保持。
冷藏车是一种用于运输冷藏货物的专用车辆,它通常配备有制冷机组,可以保持货物在一定的温度范围内。
制冷原理与制冷设备
制冷原理与制冷设备制冷是一种将热能从一个空间移动到另一个空间的过程,使得被冷却的空间温度下降,其基本原理是通过热量的传递和排除,将空间中的热能转移出去。
在现代社会中,制冷设备广泛应用于家庭、商业、工业等各个领域,为人们提供了舒适的生活和工作环境。
本文将介绍制冷的基本原理以及常见的制冷设备。
一、制冷原理1. 蒸发冷却原理蒸发冷却是一种常见的制冷原理,它利用液体在蒸发过程中吸热的特性来降低空间的温度。
当液体处于低压环境下,其分子将从液态转化为气态,吸收周围的热量。
这个过程中,液体的温度将下降,从而使得周围的空气或物体的温度也随之下降。
通过控制蒸发的速率和循环系统的设计,可以实现对空间温度的制冷效果。
2. 压缩机制冷原理压缩机制冷是一种常用的制冷原理,它主要通过物质的压缩和膨胀来实现制冷效果。
在这个过程中,制冷剂经过压缩机被压缩成高压气体,然后通过冷凝器释放热量,使制冷剂转化为液体。
接着,制冷剂通过膨胀阀进入蒸发器,在蒸发的过程中吸收热量,从而降低空间的温度。
二、常见的制冷设备空调是一种广泛应用于家庭和商业场所的制冷设备。
它通过利用压缩机制冷原理将热量转移到室外,使得室内的空气温度下降。
空调设备由室内机和室外机组成,室内机通过冷凝器释放热量,室外机通过蒸发器吸收热量,实现制冷效果。
现代空调设备还具备除湿和净化空气的功能,提供了更加舒适的室内环境。
2. 冰箱冰箱是一种常见的家用制冷设备,它主要通过蒸发冷却原理来实现制冷效果。
冰箱内部有一个蒸发器,冷冻剂在其中蒸发吸热,使得冰箱内部的温度下降。
通过调节压缩机的工作状态和控制器的温度设定,可以实现冷藏和冷冻功能,保持食物的新鲜和品质。
3. 制冷车制冷车是一种用于运输食品、医药等易受温度影响的物品的专用车辆。
它通常配备有制冷设备和保温材料,可以在运输过程中保持物品的低温状态。
制冷车主要通过压缩机制冷原理来实现制冷效果,将车内的热量排出,实现对物品温度的控制。
4. 工业制冷设备工业制冷设备广泛应用于化工、制药、电子等领域。
制冷原理与设备PDF
主编李晓东电子制作齐向阳完整的蒸汽压缩式制冷系统中除压缩机、冷凝器、膨胀阀和蒸发器四个主件外为了保证系统正常、经济和安全的运行还需设置一定数量的其它辅助设备。
辅助设备的种类很多按照它们的作用基本上可以分为两大类1维持制冷循环正常工作的设备如两级压缩的中间冷却器等2改善运行指标及运行条件的设备如油分离器、集油器、氨液分离器、空气分离器以及各种贮液桶或器等。
在制冷系统中还配有用以调节、控制与保证安全运行所需的器件、仪表和连接管道的附件等。
概述10.1 制冷系统流程框图10.1.1 热泵型冷水机组热泵型冷水机组又称为冷暖型冷水机组多用于风冷式机组和小型空调机组冷暖型机组可在夏季向空调系统提供冷冻水源而在冬季可向空调系统提供空调热水水源或直接向室内提供冷风和热风。
制冷回路流程制热回路流程1风扇2翅片式换热器3套管式换热器4水泵5膨胀阀6视镜7干燥过滤器8贮液罐9气液分离器10压缩机11四通换向阀12单向阀1 13单向阀2 14单向阀3 15单向阀4 16低压接口17高压接口热泵型风冷式冷水机组原理图10.1.2 小型冷库水冷式小型氟利昂冷库制冷系统流程图1蒸发器2分液头3热力膨胀阀4低压表5压力控制器6压缩机7高压表8油分离器9热气冲霜管10截止阀11冷却塔12冷却水泵13冷却水量调节阀14冷凝器15干燥过滤器16回热器17电磁阀分液头使制冷剂均匀地分配到蒸发器的各路管组中。
压力控制器压缩机工作时的安全保护控制装置。
油分离器把润滑油分离出来并返回到曲轴箱去。
热气冲霜管定期加热蒸发器而除霜。
冷却塔利用空气使冷却水降温循环使用节约用水。
冷却水泵冷却水循环的输送设备干燥过滤器除去冷凝器中的水份和杂质防止膨胀阀冰堵或堵塞。
回热器过冷液体制冷剂提高低压蒸汽温度消除压缩机的液击。
电磁阀压缩机停机后自动切断输液管路起保护压缩机的作用。
10.1.2 小型冷库10.2 中间冷却器10.2.1中间冷却器的作用中间冷却器是用以冷却两个压缩级之间被压缩的气体或蒸气的设备。
制冷原理和设备
理论循环旳性能指标及其计算
3.理论比功 制冷压缩机按等熵压缩时每压缩输送1kg制冷剂蒸气 所消耗旳功,称为理论比功,用w0表达。 w0=h2-h1 式中 w0理论比功(kJ/kg); h2压缩机排气状态制冷剂旳比焓值(kJ/kg) h1压缩机吸气状态制冷剂旳比焓值(kJ/kg)
15
工作温度/℃
冷凝温度tk 蒸发温度t0 过冷温度tsc
制冷剂
R717
R12
R22
40
50
40
20
30(8)
30
40
50
40
吸气温度tsh
15
0(15)
15
冷凝温度tk
40
50
40
蒸发温度t0
5(0)
10
5
过冷温度tsc
40
50
40
吸气温度tsh
10(5)
15
15
容积式制冷压缩机及机组旳名义工况
机组上常见部件:
5. 排气止逆阀
装在排气管,停机时帮助压缩机迅速停止转动和预防倒转.
6. 安全阀
装在容器或管路上,预防压力过高.
7. 截止阀,蝶阀,球阀 起关断作用.
8. 调整阀 起调整阀旳开度作用.
制冷常见单位
美国冷吨(1RT=3516W) HP(匹) ℃(摄氏) F(华氏)从华氏度变成摄氏度只要减去32,乘以5
工况种类
❖原 则 工 况
空调工况
工作温度/℃
制冷剂
R717
R12
R22
工况种类
冷凝温度tk 蒸发温度t0 过冷温度tsc
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
容积比的值通常取0.33~0.5之间,即qvtg:qvtd=1:3~1:2。在长江
以南地区宜取大些。 合理的容积比的选择还应结合考虑其他经济指标。配组双级压缩
机的容积比可以有较大的选择余地。如果采用单机双级压缩机,
则它的容积比是既定的,容积比的值通常只有0.33和0.5两种。
确定循环的各状态点的参数,计算出相应的制冷系数。
④绘制 =f(tm)曲线,找到制冷系数最大值 max,由该点对应的中间温度
tm
3.3 双级蒸气压缩式制冷循环的热力计算及运行特性分析
(2)既定压缩机时中间压力的确定
已经选定压缩机好,此时高、低压级的容积比已确定,即值一
定,这时可采用容积比插入法求出中间压力
第3章 双级蒸气压缩式和复叠式制冷循环
3.2.6 二级节流中间不完全冷却循环
图3-5 二级节流中间不完全冷却制冷循环
第3章 双级蒸气压缩式和复叠式制冷循环
3.2.7 氨泵供液的双级压缩制冷循环
图3-6 氨泵供液的一级节流中间完全冷却制冷循环
第3章 双级蒸气压缩式和复叠式制冷循环
第3章 双级蒸气压缩式和复叠式制冷循环
①比例中项公式法
按压力的比例中项确定中间压力
pm po pk
式中Pm ,Po和Pk分别为中间压力、蒸发压力和冷凝压力,单 位MPa
3.3 双蒸气压缩式制冷循环的热力计算及运行特性分析
②拉塞经验公式法
对于两级氨制冷循环,拉赛(A.Rasi)提出了较为简单的最佳中 间温度计算式:
tm=0.4tk+ 0.6to+3 式中,tm , tk和to分别表示中间温度,冷凝温度和蒸发温度,单
2)盘管中的高压制冷剂液体不与中间冷却器中的制冷剂相接触,减少了润滑油 进入蒸发器的机会,可提高热交换设备的换热效果。
3)蒸发器和中间冷却器分别供液,便于操作控制,有利于制冷系统的安全运行
3.3 双级蒸气压缩式制冷循环的热力计算及运行特性分析
3.3.1 制冷剂与循环形式的选择
双级压缩制冷循环通常应使用中温制冷剂。目前广泛使用的制 冷剂是R717、R22和R502。R717常采用一级节流中间完全冷 却形式,R22、R502常采用一级节流中间不完全冷却形式。
对采用回热循环有利的R12、R502等制冷剂,就采用中间不完 全冷却的循环形式;对采用回热循环形式不利的制冷剂(如 R717),则应采用中间完全冷却的循环形式。
3.3 双级蒸气压缩式制冷循环的热力计算及运行特性分析
3.3.2 循环工作参数的确定
1.容积比的选择
qvtg qmg vg g qvtd qmd vd d
位均为℃。 上式不只适用于氨,在-40~40℃温度范围内,对于R12也能
得到满意的结果。
3.3 双级蒸气压缩式制冷循环的热力计算及运行特性分析
2)图解法
①根据确定的蒸发压力p0和冷凝压力pk, ②在pm(tm)值的上下,按一定间隔选取若干个中间温度tm值。 ③根据给定的工况和选取的各个中间温度tm分别画出双级缩循环的lgp-h图,
qvtg高压级理论输气量(m3/s); qvtd低压级理论输气量(m3/s); qmg高压级制冷剂的质量流量(kg/s); qmd低压级制冷剂的质量流量(kg/s); vg高压级吸气比体积(m3/kg); vd低压级吸气比体积(m3/kg); g高压级输气系数; d低压级输气系数
3.3 双级蒸气压缩式制冷循环的热力计算及运行特性分析
3.1.2 采用多级蒸气压缩制冷循环的必要性
(1)降低压缩机的排气温度 (2)降低压力比 (3)减少节流损失
第3章 双级蒸气压缩式和复叠式制冷循环
3.2.1 双级蒸气压缩式制冷循环基本类型
1.一级节流、中间完全冷却的两级压缩制冷循环 2.一级节流、中间不完全冷却的两级压缩制冷循环 3.两级节流、中间完全冷却的两级压缩制冷循环
3.3 双级蒸气压缩式制冷循环的热力计算及运行特性分析
3.3.3 制冷循环的热力计算
单位质量制冷量为: q0=h1-h8
低压级的理论比功为: w0d=h2-h1
第3章 双级蒸气压缩式和复叠式制冷循环
3.2.8 双级蒸气压缩式制冷循环的比较分析
(1)中间不完全冷却循环的制冷系数要比中间完全冷却循环的制 冷系数小
(2)在相同的冷却条件下,一级节流循环要比二级节流循环的制 冷系数小
1)一级节流可依靠高压制冷剂本身的压力供液到较远的用冷场所,适用于大型 制冷装置。
图3-2 一级节流中间不完全冷却制冷循环
第3章 双级蒸气压缩式和复叠式制冷循环
第3章 双级蒸气压缩式和复叠式制冷循环
3.2.4 一级节流中间不冷却循环
图3-3 一级节流中间不冷却制冷循环
第3章 双级蒸气压缩式和复叠式制冷循环
3.2.5 二级节流中间完全冷却循环
图3-4 二级节流中间完全冷却制冷循环
制冷原理与设备课件下载-样章.ppt
制冷原理与设备
第3章 双级蒸气压缩式和复叠式制冷循环
主编
李晓东
第3章 双级蒸气压缩式和复叠式制冷循环
3.1 采用多级蒸气压缩式制冷循环的原因 3.1.1 单级蒸气压缩式制冷循环的局限性
1.实际吸气容积减少,制冷量降低,节流损失增加,制冷系数下降。 2.压缩机的排气温度上升。 3.压缩机运行时的压力比增大,容积效率下降。
4.两级节流、中间不完全冷却的两级压缩制冷循环
5.两级节流、具有中温蒸发器的中间完全冷却两级压缩制冷循环
第3章 双级蒸气压缩式和复叠式制冷循环
3.2.2 一级节流中间完全冷却循环
图3-1 一级节流中间完全冷却制冷循环
第3章 双级蒸气压缩式和复叠式制冷循环
第3章 双级蒸气压缩式和复叠式制冷循环
3.2.3 一级节流中间不完全冷却循环
3.3 双级蒸气压缩式制冷循环的热力计算及运行特性分析
2.中间压力与中间温度的确定 (1)选配压缩机时中间压力的确定
选配压缩机时,中间压力pm的选择,可以根据制冷系数最大 这一原则去选取,这一中间压力pm又称最佳中间压力。确定 最佳中间压力pm常用的方法有公式法和图解法。
1)公式法
常用的公式法有比例中项公式法和拉塞经验公式法两种