2014秋北师大版数学八上4.3《一次函数的图象》word导学案
北师大版八年级上册4.3《一次函数的图象》教案
1.分组讨论:学生们将分成若干小组,每组讨论一个与一次函数图象相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示如何通过描点法绘制一次函数图象。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
(4)设计实际应用题目,让学生将一次函数图象应用于解决具体问题,如距离、速度等。
2.教学难点
-理解一次函数图象与系ห้องสมุดไป่ตู้之间的关系,尤其是斜率k和截距b对图象的影响。
-在实际问题中,构建一次函数模型并正确绘制其图象。
-灵活运用一次函数图象解决更复杂的问题。
举例说明:
(1)针对斜率k和截距b的影响,设计对比题目,让学生观察图象变化,加深理解。例如,给出两个一次函数,如y=2x+1和y=-2x+1,让学生分析其图象差异。
3.增强学生的数学建模素养,让学生在实际问题中,能够构建一次函数模型,利用图象分析问题,解决问题。
4.培养学生的几何直观,通过对一次函数图象的观察和分析,提高学生对平面直角坐标系中直线图形的认识和理解。
三、教学难点与重点
1.教学重点
-理解一次函数图象是一条直线,并掌握其特点。
-学会使用描点法和解析法绘制一次函数的图象。
同学们,今天我们将要学习的是《一次函数的图象》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要用图形来表示数量关系的情况?”(如温度与时间的关系)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数图象的奥秘。
(二)新课讲授(用时10分钟)
北师大版八年级数学上册:4.3《一次函数的图象》教案
北师大版八年级数学上册:4.3《一次函数的图象》教案一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4.3节的内容。
本节主要让学生了解一次函数的图象特点,学会如何绘制一次函数的图象,并能够分析一次函数图象与系数之间的关系。
通过本节的学习,为学生后续学习二次函数、指数函数等函数图象打下基础。
二. 学情分析学生在学习本节内容前,已经掌握了函数的概念、一次函数的定义和性质。
但学生对函数图象的认识不足,对如何绘制一次函数图象以及分析图象与系数之间的关系还不够清晰。
因此,在教学过程中,需要引导学生通过实践操作,加深对一次函数图象的理解。
三. 教学目标1.让学生了解一次函数图象的特点,学会绘制一次函数图象。
2.引导学生分析一次函数图象与系数之间的关系。
3.培养学生的动手操作能力和观察分析能力。
四. 教学重难点1.一次函数图象的绘制方法。
2.分析一次函数图象与系数之间的关系。
五. 教学方法采用讲解法、示范法、实践操作法、讨论法等教学方法,引导学生通过自主学习、合作交流,掌握一次函数图象的特点和绘制方法。
六. 教学准备1.准备多媒体教学设备,如投影仪、计算机等。
2.准备一次函数图象的示例图片和相关素材。
3.准备练习题和作业。
七. 教学过程1.导入(5分钟)利用投影仪展示一次函数图象的示例图片,引导学生观察并总结一次函数图象的特点。
教师简要讲解一次函数图象的绘制方法,激发学生的学习兴趣。
2.呈现(10分钟)教师通过讲解和示范,详细介绍一次函数图象的绘制方法。
引导学生动手操作,尝试绘制一次函数图象。
在绘制过程中,注意引导学生观察图象与系数之间的关系。
3.操练(10分钟)学生分组进行实践操作,绘制不同系数的一次函数图象。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师挑选几组学生的作品,进行分析讨论。
引导学生总结一次函数图象与系数之间的关系。
同时,让学生回答课后练习题,巩固所学知识。
5.拓展(10分钟)教师提出一些拓展问题,如:如何判断一次函数图象与坐标轴的交点?如何求解一次函数图象上的点?引导学生进行思考和讨论。
北师大版八年级数学上册:4.3《一次函数的图象》说课稿
北师大版八年级数学上册:4.3《一次函数的图象》说课稿一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4章第3节的内容。
本节课主要介绍了一次函数的图象特点,以及如何通过图象来分析一次函数的性质。
教材通过生动的实例,引导学生探究一次函数图象的规律,培养学生的观察能力、思考能力和实践能力。
二. 学情分析八年级的学生已经掌握了函数的基本概念,一次函数的解析式也有一定的了解。
但在实际操作中,对一次函数图象的认识和分析还相对薄弱。
因此,在教学过程中,要注重引导学生通过观察、实践来理解一次函数图象的特点,提高学生对一次函数图象的分析能力。
三. 说教学目标1.知识与技能目标:让学生掌握一次函数图象的性质,能够通过图象来分析一次函数的特点。
2.过程与方法目标:通过观察、实践,培养学生的观察能力、思考能力和实践能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队协作精神,使学生在探究过程中体验到数学的乐趣。
四. 说教学重难点1.教学重点:一次函数图象的性质及其应用。
2.教学难点:如何引导学生通过观察、实践来理解一次函数图象的特点。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组讨论法等,引导学生主动探究、积极参与。
2.教学手段:利用多媒体课件、实物模型、黑板等辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过展示实际生活中的图片,引导学生关注一次函数图象在现实生活中的应用,激发学生的学习兴趣。
2.探究一次函数图象的性质:让学生观察、分析实例,引导学生发现一次函数图象的规律,总结一次函数图象的特点。
3.小组讨论:让学生分小组讨论一次函数图象在实际问题中的应用,培养学生解决问题的能力。
4.巩固提高:通过练习题,让学生运用所学知识分析一次函数图象,提高学生的实践能力。
5.总结:对本节课的内容进行总结,强调一次函数图象的性质及其在实际问题中的应用。
七. 说板书设计板书设计要清晰、简洁,突出一次函数图象的性质。
4.3《一次函数的图象》(第2课时)说课稿
第二环节: 探究新知
1、尝试探索,体验新知.
例 作出一次函数y=2x+1的图象.
设计意图:以规范的形式呈现,一是让学生进一步熟 悉画函数图象的一般步骤,二是让学生初步感受一次 函数的图象也是一条直线.由于有了第1课时的基础, 教学中可要求学生先尝试独立地画出该一次函数的图 象,然后进行班级交流点评,明确该图象也是一条直 线,从而轻松引入两点法画一条直线的简单方法。
(D) m 0, n 0
第三环节:巩固新知
设计意图:通过设计必要的三组练习使学生对本节知 识进行巩固,分层解题、分层指导、整个习题设计的 指导思想是“低起点、多层次、高要求”。教师根据 学生的掌握情况,适当选择上述题目要求学生分层完 成,让每个学生都能获得学习的成功感和满足感。同 时习题由浅入深,一步步地加深学生对一次函数图象 及性质的认识.利用优化的习题带动优化的课堂,提高 课堂效率.
四 、 教学过程分析
一、复习引入。
二、探究新知。
教学 过程
三、巩固新知。
四、课时小结。
五、作业布置。
第一环节:复习引入
• 复习提问:(1)作函数图象有几个主要步骤?
(2)上节课中我们探究得到正比例函数图象有什 么特征?
• 设计意图:以直接复习提问的方式引入,再次明确正比例函 数图象的一些特征,为学习本节课的知识作好准备.体现了数 学中由特殊到一般的基本数学思想,这样设计的目的是为了 分散难点,突破重点,为学生自主研究做知识上的准备.
问题情境,给学生足 思维受阻的地 多角度例题 直观呈现教学素材,
够时间亲自动脑去想、 方,教师通过 变式,培养 图文并茂,从而更好
动手去画、动口去说, 层层铺垫,给 学生思维的 地激发学生的学习兴
北师大版八年级数学上册:4.3《一次函数的图象》教学设计2
北师大版八年级数学上册:4.3《一次函数的图象》教学设计2一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4章第3节的内容。
本节内容是在学生已经掌握了函数的概念、一次函数的定义和性质的基础上进行的,主要让学生了解一次函数的图象特点,学会如何利用图象解决实际问题。
教材通过实例引入一次函数的图象,使学生在直观上感受一次函数图象的形状,从而引出一次函数图象的性质。
二. 学情分析八年级的学生已经具备了一定的函数基础知识,对一次函数的概念和性质有一定的了解。
但学生在学习过程中,可能对一次函数图象的直观理解不够,对如何利用图象解决实际问题还不够熟练。
因此,在教学过程中,教师需要注重引导学生从直观图形中发现规律,培养学生的观察能力和归纳能力。
三. 教学目标1.让学生掌握一次函数的图象特点,能熟练地画出一次函数的图象。
2.让学生学会如何利用一次函数的图象解决实际问题。
3.培养学生的观察能力、归纳能力和解决问题的能力。
四. 教学重难点1.一次函数图象的形状和特点。
2.如何利用一次函数图象解决实际问题。
五. 教学方法1.采用直观教学法,通过展示实例和图形,让学生直观地感受一次函数图象的特点。
2.采用归纳教学法,引导学生从实例中发现规律,归纳出一次函数图象的性质。
3.采用实践教学法,让学生通过动手操作,加深对一次函数图象的理解。
六. 教学准备1.准备相关的实例和图形,用于展示一次函数图象的特点。
2.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,引导学生思考如何用数学方法来解决这些问题。
例如,某商品的售价与销售量之间存在某种关系,如何表示这种关系?2.呈现(10分钟)展示一次函数的图象实例,让学生观察并描述一次函数图象的形状和特点。
引导学生发现一次函数图象是一条直线,且斜率为正时,图象从左下到右上倾斜;斜率为负时,图象从左上到右下倾斜。
3.操练(10分钟)让学生动手画出一次函数的图象,体会一次函数图象的性质。
北师大版八年级数学上册:4.3《一次函数的图象》教学设计
北师大版八年级数学上册:4.3《一次函数的图象》教学设计一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4.3节的内容,本节课主要让学生了解一次函数的图象特征,学会如何绘制一次函数的图象,并能够分析一次函数图象与系数的关系。
教材通过具体的例子引导学生探究一次函数图象的性质,为学生提供丰富的操作、思考、交流的活动机会,从而提高他们的数学素养。
二. 学情分析学生在七年级已经学习了直线、射线、线段等基础知识,对图形的性质有一定的了解。
但他们对一次函数图象的认识还比较模糊,需要通过具体的活动和实例来加深理解。
此外,学生需要进一步掌握如何利用函数图象解决实际问题,提高他们的应用能力。
三. 教学目标1.理解一次函数图象的性质,能够绘制一次函数的图象。
2.学会分析一次函数图象与系数的关系。
3.培养学生的观察能力、操作能力、思考能力及合作交流能力。
4.提高学生解决实际问题的能力。
四. 教学重难点1.一次函数图象的性质。
2.一次函数图象与系数的关系。
3.利用一次函数图象解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生探究一次函数图象的性质。
2.利用数形结合法,让学生直观地理解一次函数图象与系数的关系。
3.采用实例分析法,培养学生解决实际问题的能力。
4.小组讨论,提高学生的合作交流能力。
六. 教学准备1.准备相关的一次函数图象素材,用于引导学生观察和分析。
2.准备一次函数图象的软件工具,如GeoGebra等,让学生实际操作。
3.准备一些实际问题,让学生尝试解决。
七. 教学过程1.导入(5分钟)利用一个实际问题,如“某商店进行打折活动,原价100元的商品打8折后售价是多少?”引导学生思考如何用数学知识解决这个问题。
2.呈现(10分钟)呈现一次函数的图象,让学生观察并描述图象的性质。
引导学生发现一次函数图象是一条直线,且具有斜率和截距等特征。
3.操练(10分钟)让学生利用软件工具,如GeoGebra,自己绘制一次函数的图象,并观察图象与系数的关系。
北师大版八年级数学上册:4.3 一次函数的图象 教学设计
一次函数的图像(2) 教学设计一、【教学目标】知识与技能:能画出一次函数的图像,根据图像和函数的表达式探索并掌握一次函数的主要性质,能够利用一次函数的图像及其性质解决相关问题。
过程与方法:让学生经历知识的探索过程,通过全面的观察和比较,积累数学方法和活动经验,发展合情推理能力,清晰地表达自己的想法,同时让学生体验数形结合和分类讨论的数学思想。
情感态度:在与他人合作和交流过程中,能对他人所提的问题进行反思,初步形成评价与反思的意识。
敢于发表自己的想法,勇于质疑,敢于创新,养成独立思考、合作交流等学习习惯,形成严谨求实的科学态度。
二、【教学重难点】重点:熟练画出一次函数的图像,探索一次函数的主要性质难点:从“数”和“形”两方面探索一次函数函数的主要性质三、【学情分析】函数是研究现实世界变化规律的一个重要数学模型,学生在前一课时中,学习了正比例函数,初步了解画函数图像的一般步骤,探索过正比例函数的图像性质,为学习探索一次函数的图像和性质积累了一定的活动经验和方法感悟,学生可以通过类比探索正比例函数的图像与性质的方法探索一次函数的图像与性质,同时为后续探究反比例函数、二次函数的图像与性质做好知识上和方法上的铺垫。
四、【教学内容分析】《一次函数的图像2》是北师大版初中数学八年级上册第四章的内容,是教材中的一个承上启下的教学内容。
它是在学生学习正比例的图像与性质、学会了画正比例函数的图像以及了解当0k >和0k <时函数图象的特点,有了初步认识的基础上进一步学习一次函数的图像与性质,为后续反比例函数以及二次函数的学习作了铺垫。
五、【教学媒体】PPT 课件、微课六、【教法】讲练结合法、问题教学法七、【学法】小组合作交流法、自主探究法、观察发现法八、【教学过程分析】本节课设计了一下几个教学环节:第一环节:美丽直线,忆特点第二环节:极算APP,析误点第三环节:重点难点,细节读第四环节:应用能力,巧提高第五环节:微课助手,解疑点第六环节:活学活用,灵提升第七环节:课堂小结,全解析第八环节:分层作业,齐发展第九环节:美丽直线,再欣赏(一)第一环节:美丽直线,慢欣赏1、多媒体播放古诗《美丽的直线》:如果你是坐标轴,我便是那一直线;今生有缘在平面,直穿象限两头伸。
八年级数学上册 4.3 一次函数的图象教案 (新版)北师大版
第四章一次函数4.3.一次函数的图象(一)一、教学目标1、理解函数图象的概念。
2、经历作图过程,初步了解作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
4、能较熟练作出一次函数的图象。
二、能力目标1、已知解析式作函数的图象,培养学生数形结合的意识和能力。
2、在探究活动中发展学生的合作意识和能力。
三、情感目标1、经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。
2、加强新旧知识的联系,促进学生新的认知结构的建构。
四、教学重点1、能熟练地作出一次函数的图象。
2、归纳作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
五、教学过程1、新课导入上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们研究一下一次函数的图象及性质。
2、讲授新课(1)函数图象的概念把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
假设在代数表达式y=2x中,自变量x取1时,对应的因变量y=2,则我们可在直角坐标系内描出表示(1,2)的点,再给x的另一个值,对应又一个y,又可知道直角坐标系内描出另一个点,所有这些点组成的图形叫该函数y=2x的图象,由此看来,函数图象是满足函数表达式的所有点的集合。
(2)作一次函数的图象例1:作出一次函数y=2x+1的图象解:列表:连线:把这些点依次连接起来,得到y=2x+1的图象(如图6-4),它是一条直线。
小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:(1)列表;(2)描点;(3)连线。
做一做(1)作出一次函数y=-2x+5的图象,(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。
列表:描点:以表中各组对应值作为点的坐标,在直角坐标第内描出相应的点。
北师大版八年级数学上册:4.3《一次函数的图象》教学设计2
北师大版八年级数学上册:4.3《一次函数的图象》教学设计2一. 教材分析《一次函数的图象》是北师大版八年级数学上册第4.3节的内容,本节课主要让学生掌握一次函数的图象特点,学会利用图象解决一些实际问题。
教材通过引入直线来表示函数关系,使学生对函数有更直观的认识。
学生通过观察、分析、归纳一次函数图象的性质,进一步理解函数与自变量、因变量之间的关系。
二. 学情分析八年级的学生已经学习了函数的概念、一次函数和正比例函数,对函数有一定的认识。
但学生在理解函数图象方面可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的认知基础,引导学生通过观察、实践、探究来加深对一次函数图象的理解。
三. 教学目标1.知识与技能:让学生掌握一次函数的图象特点,学会利用图象解决一些实际问题。
2.过程与方法:通过观察、分析、归纳一次函数图象的性质,培养学生的观察能力、分析能力及归纳能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生合作交流、积极探究的精神。
四. 教学重难点1.重点:一次函数的图象特点及性质。
2.难点:如何运用一次函数图象解决实际问题。
五. 教学方法1.情境教学法:通过生活中的实例引入一次函数图象,让学生感受到数学与生活的联系。
2.启发式教学法:引导学生观察、分析、归纳一次函数图象的性质,激发学生的思维。
3.合作学习法:学生进行小组讨论,培养学生的团队协作能力。
六. 教学准备1.准备一些实际问题,用于导入和巩固环节。
2.制作一次函数图象的PPT,用于展示和讲解。
3.准备一些练习题,用于课后巩固。
七. 教学过程1.导入(5分钟)利用生活中的实例,如身高与年龄的关系,引出一次函数图象的概念。
让学生观察身高与年龄的对应关系,体会一次函数图象的直观性。
2.呈现(10分钟)通过PPT展示一次函数图象,引导学生观察、分析一次函数图象的性质。
如:斜率、截距、图象的形状等。
同时,讲解一次函数图象与实际问题的联系。
八年级数学上册 4.3 一次函数的图像教 精品导学案1 北师大版
一次函数的图像学科课题 4.3一次函数的图像授课教师教学目标了解一次函数的图象是一条直线,能熟练作出一次函数的图象.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.重点初步了解作函数图象的一般步骤:列表、描点、连线.德育目标通过有趣的图形的研究,激发学生对数学学习的好奇心与求知欲,能积极参与数学学习活动。
难点理解一次函数的代数表达式与图象之间的一一对应关系.一、复习回顾1、一般地,如果在一个变化过程中有两个变量x和y,并且对于变量x的,变量y 都有唯一的值与它对应,那么我们称是的函数。
2、表示函数的方法一般有:、和。
3、若两个变量x、y之间的对应关系可以表示成的形式,则称y是x的一次函数。
特别地,当b=0时,称y是x的。
教学过程课堂笔记二、互动导学1.创设情境引入课题一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?右面的图象能表示上面问题中的S 与t 的关系吗?我们说,上面的图象是函数 的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况正比例函数的图象。
2.画正比例函数的图象把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph ).例1 作出正比例函数y=2x 的图象. 解:①列表: x … -2 -1 0 1 2 … y=2x……②描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.③连线:把这些点依次连结起来,得到y=2x 的图象. 3.归纳 总结Ot (分) S (米)80 1作一个函数的图象需要三个步骤:。
三、深化探索1.做一做(1)作出正比例函数y=-3x的图象.x …-2 -1 0 1 2 …y=-3x ……(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-3x.2.议一议(1)满足关系式y=-3x的x,y所对应的点(x,y)都在正比例函数y=-3x 的图象上吗?(2)正比例函数y=-3x的图象上的点(x,y)都满足关系式y=-3x吗?(3)正比例函数y=kx的图象有什么特点?3.归纳总结正比例函数的代数表达式与图象是,正比例函数y=kx的图象是一条,以后可以称正比例函数y=kx的图象为。
北师版八年级上册数学4.3《一次函数的图象》教案
《一次函数的图象(1)》教学设计一、教材内容分析函数是研究现实世界变化规律的一个重要模型,他一直是初中阶段数学学习的一个重要内容。
本节课在教材设计上一是让学生经历描点画图过程,归纳并掌握所有正比例函数的图像都是直线这一共性,二是让学生在画图比较中认识正比例函数的增减性与K的关系,以及增减性所对应的图像特征,教材通过一个例题和一个“做一做”活动,让学生亲身感受正比例函数图像是一条直线,同时在通过一个“议一议”活动让学生思考图像上的点和满足函数关系的点之间的对应关系,进一步明确了正比例函数的图象是直线,这样实际上让学生感受到正比例函数的表达式和图像是完全对等的,既为后续学习一般的一次函数、二元一次方程组等知识打下基础,同时也是力图尽早发展学生的数形结合意识,明晰了占比例函数是过原点的直线之后,再通过一个做一做巩固正比例函数的图像,进而讨论K对函数图像的影响。
这样安排体现了一种重要的思考问题、研究问题、解决问题的方法,即当我们思考研究一个较为复杂的问题时,先从它的简单情形开始。
二、学情分析本节课是在学习了函数的定义和表示方法之后的一节研究函数图象的起始课,学生对于函数的图象的概念还比较模糊,针对学生的这种情况,我采取的是先研究怎么画函数图象,然后再给出函数图象的定义,这样便于学生对图象有更加深入的理解。
三、教学目标1.经历作函数图像的过程,初步了解作函数图象的一般步骤.2. 掌握正比例函数的图象的性质,发展数形结合的意识和能力..四、教学重点、难点确定1.教学重点:理解配方法,会用配方法解简单的数字系数的一元二次方程。
2.教学难点:准确地对一元二次方程进行配方,关键是掌握完全平方式的结构特征。
五、教学方法分析本节课堂教学的过程着重关注了两个方面的情况:一是关注学生对画函数图象的自主探究与合作交流的过程,发展学生思维能力。
二是关注学生形成用已有知识与经验探索解决问题的一般性方法,渗透转化思想,建立探索数学一般规律和数学建模的意识。
八年级数学上册 4.3 一次函数的图象(一)导学案(新版)北师大版
2、新课
(1)首先我们来研究一次函数的特例——正 比例函数有关性质。
请在同一坐标系内作出正比例函数y= x,y=x,y=3x,y=-2x的图象。
如图:
3、议一议
(1)正比例函数y=kx的图象有什么特点?()
(2)你作正比例函数y=kx的图象时描了几个点?()
(2)直线y=-x与y=-x+6的位置关系如何?
(3)直线y=2x+6与y=-x+6的位置关系如何?
பைடு நூலகம்检查
讨论
小组合作讨论预习中出现的问题,不能解决的提交全班讨论完成。定向自学中发现的新问题提交小组讨论解决发现的问题,处理的结果
展示
反馈
小组展示(自选)定向自学的内容
中考
链接
1、正比例函数的图象一定经过的点的坐标为________ _______.
(4)在正比例函数y=kx的图象中,当k>0时,y的值随x值的增大而;当k<0时,y的值随x值的增大而。
5、做一做
在同一直角坐标系内作出一次函数y=2x+6,y=-x,y=-x+6,y=5x的图象。
一次函数y=kx+b的图象的特点:分析:在函 数y=2x+6中,k>0,y的值随x值的增大而增大;在函数y=-x+6中,y的值随x值的增大 而减小。
由上可知,一次函数y=kx+b中,y的值随x的变化而变化的情况跟函数的图象的性质相同。对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两个坐标轴相交。在作一次函数的图象时,也需要描两个点。一般选取(0,b),()比较简单。
6、想一想
(1)x从0开始逐渐增大时,y=2x+6和y=5x哪一个值先达到20?这说明了什么?
八年级数学上册 4.3 一次函数的图象教案 (新版)北师大版
第四章一次函数4.3.一次函数的图象(一)一、教学目标1、理解函数图象的概念。
2、经历作图过程,初步了解作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
4、能较熟练作出一次函数的图象。
二、能力目标1、已知解析式作函数的图象,培养学生数形结合的意识和能力。
2、在探究活动中发展学生的合作意识和能力。
三、情感目标1、经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。
2、加强新旧知识的联系,促进学生新的认知结构的建构。
四、教学重点1、能熟练地作出一次函数的图象。
2、归纳作函数图象的一般步骤。
3、理解一次函数的代数表达式与图象之间的对应关系。
五、教学过程1、新课导入上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们研究一下一次函数的图象及性质。
2、讲授新课(1)函数图象的概念把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。
假设在代数表达式y=2x中,自变量x取1时,对应的因变量y=2,则我们可在直角坐标系内描出表示(1,2)的点,再给x的另一个值,对应又一个y,又可知道直角坐标系内描出另一个点,所有这些点组成的图形叫该函数y=2x的图象,由此看来,函数图象是满足函数表达式的所有点的集合。
(2)作一次函数的图象例1:作出一次函数y=2x+1的图象解:列表:连线:把这些点依次连接起来,得到y=2x+1的图象(如图6-4),它是一条直线。
小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:(1)列表;(2)描点;(3)连线。
做一做(1)作出一次函数y=-2x+5的图象,(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。
列表:描点:以表中各组对应值作为点的坐标,在直角坐标第内描出相应的点。
【最新北师大版精选】北师大初中数学八上《4.3一次函数的图象》word教案 (2).doc
6.3.1 一次函数的图象教学设计1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.过程与方法1.经历函数图象的作图过程,初步了解作函数图象的一般步骤.2.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.情感、态度与价值观1.经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力.2.在探究活动中发展学生的合作意识和探究能力.三、教学重点1.熟练地作一次函数的图象.2.理解、归纳作函数图象的一般步骤:列表、描点、连线.3.理解一次函数的代数表达式与图象之间的一一对应关系.四、教学难点理解一次函数的代数表达式与图象之间的一一对应关系.五、教法学法1、教学方法讲、议、练相结合。
2、课前准备教具:教材、多媒体课件。
学具:教材、铅笔、直尺、练习本。
六、教学过程第一环节:创设情境引入课题内容:一天,小明以80米/分的速度去上学,离家5分钟后,小明的父亲发现小明的语文书未带,立即以120米/分的速度去追小明,请问小明离家的距离S(米)与小明父亲出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?S=80t+400(t≥0)下面的图象能表示上面问题中的S与t的关系吗?我们说,上面的图象是函数S=80t+400(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象。
意图:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的学习欲望.第二环节:画一次函数的图象内容:首先我们来学习什么是函数的图象?把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).例1 请作出一次函数y=2x+1的图象.x …-2 -1 0 1 2 …y=2x+1 …-3 -1 1 3 5 …Ot(分)S(米)8004005描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连结起来,得到y=2x+1的图象.由例1我们发现:作一个函数的图象需要三个步骤:列表,描点,连线.意图:通过本环节的学习,让学生明确作一个函数图象的一般步骤,能做出一个函数的图象,同时感悟一次函数图象是一条直线.效果:学生通过学习,掌握了作一个函数图象的一般方法,能作出一个函数的图象,同时感悟到一次函数图象是一条直线.第三环节:动手操作,深化探索内容:做一做(1)作出一次函数y=-2x+5的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-2x+5.请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.(1)满足关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?明晰由上面的讨论我们知道:一次函数的代数表达式与图象是一一对应的,即满足一次函数的代数表达式的x,y所对应的点(x,y)都在一次函数的图象上;一次函数的图象上的点(x,y)都满足一次函数的代数表达式.一次函数y=kx+b的图象是一条直线,以后可以称一次函数y=kx+b的图象为直线y=kx+b.议一议既然我们得出一次函数y=kx+b的图象是一条直线.那么在画一次函数图象时有没有什么简单的方法呢?因为“两点确定一条直线”,所以画一次函数图象时可以只描出两个点就可以了.例2 作出y=-x+2的图象.y=-x-2的图象.意图:做一做“作出一次函数y=-2x+5的图象”,意在让学生进一步熟悉如何作一个函数的图象,同时要求学生在作这个函数的图象时,尽量准确,为后面研究函数与图象的对应关系和得出一次函数的图象是一条直线作好铺垫和准备.在得出一次函数的图象是一条直线后,设计例2,则是让学生明确,以后作一次函数图象,只要描出两个点了就可以,在这里应让学生学会书写过程.关于直线的倾斜程度与k的绝对值的关系,在第二课时研究.效果:学生通过作出一次函数的图象,明确了作函数图象的一般方法.在探究函数与图象的对应关系中加深了理解,并能很快地作出一次函数的图象.第四环节:巩固练习,深化理解内容:练习1:在同一直角坐标系中分别作出y=12x与y=-3x+9的图象.由上面的图象,你发现了什么?提示:由上面的图象我们发现,正比例函数的图象是一条经过原点的直线,一次函数y=kx+b 的图象是一条经过(0,b)的直线.当b大于0时,直线与y轴交于正半轴,当b小于0时,直线与y轴交于负半轴.练习2:如果y+3与x-2成正比例,且x=1时,y=1.(1)写出y与x之间的函数关系式;(2)画出函数的图象;(3)求当x=0时,y的值和y=0时,x的值.意图:这里的两个练习题,一是让学生熟练一次函数图象的作法,二是明确正比例函数和一次函数图象的一般特征.练习2中的第(3)小题渗透了求函数图象与坐标轴的交点的方法.同时让学生明确b的正负决定直线与y轴交点的位置.效果:学生通过练习,进一步熟练了一次函数图象的作法,对正比例函数和一次函数图象的一般特征有了清楚的认识.第五环节:课时小结内容:本节课我们通过对一次函数图象的研究,掌握了以下内容:(1)函数与图象之间是一一对应的关系;(2)正比例函数的图象是一条经过原点的直线,一次函数y=kx+b的图象是一条经过(0,b)的直线.(3)作一次函数图象时,只取两个点,就能很快作出.意图:让学生在回忆的过程中,进一步加深对一次函数图象的理解,同时对本节所学知识有一个总结性的认识.效果:学生通过对本节学习的回顾和小结,对所学知识更清楚,抓住了重点,明确了关键.第六环节:拓展探究在前面所提出的问题中:(1)小明的父亲用多少时间可追上小明?(2)如果这个问题至小明父亲追上小明止,你能写t的准确的取值范围吗?请写出来;(3)请画出这个函数的图象;(4)若用S1(米)表示小明父亲离家的距离,请写出S1(米)与t(分)之间的函数关系式;在(2)的条件下,作出这个函数图象.答案:(1)10分钟,(2)0≤t≤10,(3)作出的图象是一条线段,(4)S1=120t(0≤t≤10),作出的图象也是一条线段.意图:对学有余力的学生,能进一步提高,让他们的学习活动深入下去,同时为以后学习一次函数图象的应用奠定基础.效果:学生通过对上面问题的探究,对一次函数图象的认识更深入.第七环节:作业布置习题6.3 1,2,3.七、板书设计。
【最新北师大版精选】北师大初中数学八上《4.3一次函数的图象》word教案 (6).doc
4.3 一次函数的图象一、教学内容的本质、地位和作用分析函数是中学阶段学习的重要内容,初中阶段函数概念的发展需要形象化的支持。
初中数学课程标准规定的几种具体函数中,一次函数是最基本的,它的表达式准确地反映了变量间的对应关系,而它的图象则是直观生动地描述了这种对应关系,是研究函数性质的重要工具。
本节课,将揭开函数图象的“面纱”,学习描点法画正比例函数图象,并通过图象探索正比例函数的性质,这使学生对函数有了从“数”到“形”、从“形”到“数”两方面的理解,从而步入了一个“数形结合”的新天地。
对一次函数的研究过程也为学习反比例函数、二次函数及更复杂的函数提供了一种行之有效的方法。
本节课是将函数形象化的“开篇之课”。
二、教学目标分析课标对本节内容的相关要求是:理解正比例函数,能画出一次函数的图象,根据一次函数的图象和表达式y=kx+b(k≠0)探索并理解k>0和k<0时图象的变化情况。
根据课标、本节内容的容量及学生学习状况制定了本节课的教学目标:知识技能:1、了解函数图象的定义.2、能画出正比例函数图象,掌握正比例函数及其图象的性质。
数学思考:在观察、比较、归纳的数学活动中,体会数形结合、由特殊到一般的数学思想。
问题解决:初步学会研究函数的一般方法,初步培养学生利用图象研究函数性质的能力。
情感态度:积极参加数学活动,敢于发表自己的想法,养成独立思考、合作交流的学习习惯。
教学重点: 正比例函数的图象及性质教学难点: 利用图象探索正比例函数的性质三、教学问题诊断在七年级学生已学习了求代数式的值、探索规律、从表格中获取信息及图象表示变量之间的关系等知识,八年级学习了直角坐标系、一次函数的概念,这种已有的认知结构,是本节课学习的前提和基础。
学生对画函数图象以及利用图象探索函数性质还是第一次接触比较陌生。
在教学过程中,从学生现状出发,在学习新知识的过程中可能会遇到以下几个困难:1、从函数表达式的“数”的转换为图象的“形”的困难。
北师大初中数学八上《4.3一次函数的图象》word教案 (11)
4.3.1一次函数的图象教学目标:1.了解一次函数的图象是一条直线,能熟练作出一次函数的图象.2.经历函数图象的作图过程,初步了解作函数图象的一般步骤:列表、描点、连线.3.已知函数的代数表达式作函数的图象,培养学生数形结合的意识和能力.教学重、难点重点:初步了解作函数图象的一般步骤:列表、描点、连线.难点:理解一次函数的代数表达式与图象之间的一一对应关系.教法及学法指导:本节课我运用多媒体演示教学手段,力求直观,高效,使本节课有趣、形象、事半功倍.在教学中注重培养学生的画图能力,主要是培养学生的看图、识图能力,培养思维能力.指导学生根据概念的直观表象,归纳出概念的性质,运用类比、归纳、数形结合等方法,培养学生分析问题、解决问题的能力.对于学生我采用自主探究、合作交流式教学,学生通过一些不同的问题,讨论、归纳,在与老师之间的交流中学习知识,体验学习的快乐,让学生更有机会体验自己与他人的想法,从而掌握知识.课前准备:多媒体课件,三角板等教具准备.教学过程:一、创设情境,引入新课师:我们已经认识了一次函数和正比例函数,现在老师这里有一题要考考同学们,请看题:(课件演示)一天,小明以80米/分的速度去上学,请问小明离家的距离S(米)与小明出发的时间t(分)之间的函数关系式是怎样的?它是一次函数吗?它是正比例函数吗?(t≥0)生:S=80t,是一次函数也是正比例函数.师:很好!下面的图象能表示上面问题中的S与t的关系吗?生:能.师:我们说,上面的图象是函数S=80t(t≥0)的图象,这就是我们今天要学习的主要内容:一次函数的图象的特殊情况即正比例函数的图象.教师板书课题4.3一次函数的图象(1)设计意图:通过学生比较熟悉的生活情景,让学生在写函数关系式和认识图象的过程中,初步感受函数与图象的联系,激发其学习的欲望.效果:学生通过对上述情景的分析,初步感受到函数与图象的联系,激发了学生的求知欲望,感受图象的价值.二、合作交流,探究新知探究一:函数图象的定义:自学课本83页并能用自己的语言归纳函数图象概念.师:什么叫做函数的图象呢?你能用语言叙述吗?生:把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象.学生边说,老师边板书“函数的图象”的概念并附属说明如一次函数2y x =,当1=x 时,对应2=y .则我们可在直角坐标系内描出点(1,2),再给x 另一值,对应又一个y .又可在直角坐标系内描出一个点来,所有这些点组成的图形叫2y x =的图象. 由此可知道:函数的图象是满足函数表达式所有的点的集合师:下面我们就通过具体的例子来真切的认识认识正比例函数图象的“真面目.”探究二:正比例函数图象的画法例1 请作出正比例函数y=2x 的图象.解:1.列表:(2)列表后教师追问学生列表的目的是什么,让学生明确列表是为了找自变量x 与因变量y 对应值.2.描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.(-2,-4) (-1,-2) (0,0) (1,2) (2,4)说明:描点要注意x 的值作为横坐标,y 的值作为纵坐标.3.连线:把这些点依次连结起来,得到y=2x 的图象.说明:连线要注意按x 的值从小到大的顺序连接.并由学生完成作图.师:正比例函数图象的形状是什么?生:是一条直线.师:由例1我们发现作一个函数的图象需要哪些步骤?(小组内合作交流体会,教师巡视课堂,随时点拨,诱导学生的思维朝向“教学目标”.) 师:请小组代表发言说自己小组的感受.(学生边说老师边板书)三大步:列表,描点,连线.师:如何列表?x 如何取值?生:在函数关系式y =2x 中,x 的取值范围是全体实数(包括正数、负数和0),为了方便画图,应用整数.设计意图:通过本环节的学习,让学生明确作一个函数图象的一般步骤,能做出一个函数的图象,同时感悟正比例函数图象是一条直线.三、动手操作,深化探究做一做(1)作出正比例函数y =-3x 的图象.(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y =-3x .(学生独立画图,教师巡视并及时纠正学生画图中的错误,比如将直线画成线段)设计意图:做一做“作出正比例函数y=-3x 的图象”,意在让学生进一步熟悉如何作一 个正比例函数的图象,同时要求学生在作这个函数的图象时,尽量准确,为后面研究函数与2.描点 3.连线图象的对应关系和得出一次函数的图象是一条直线作好铺垫和准备.师:请同学们以小组为单位,讨论下面的问题,把得出的结论写出来.(1)满足关系式y =-3x 的x ,y 所对应的点(x ,y )都在正比例函数y =-3x 的图象上吗?(2)正比例函数y =-3x 的图象上的点(x ,y )都满足关系式y =-3x 吗?(3)正比例函数y=kx 的图象有什么特点?由学生讨论上面的问题.生1:满足关系式的x ,y 所对应(),x y 都在图像上.例如:满足关系式2x =,6y =-即(2,-6)就在图像上.满足关系式1x =-,3y =即(-1,3)也在图像上等等. 生2:图像上的点都满足关系式,例如:图像上的点(-2,6)即当x =-2时y =6就满足关系式,图像上的点(1,-3)即x=1,y =-3也满足关系式,等等.师:大家有什么发现?生3:图像与关系式是对应的.生4:正比例函数的关系式与它的图像是对应的. 师:大家说得非常正确.师生共同概括:由上面的讨论我们知道:正比例函数的代数表达式与图象是一一对应的,即满足正比例函数的代数表达式的x ,y 所对应的点(x ,y )都在正比例函数的图象上;正比例函数的图象上的点(x ,y )都满足正比例函数的代数表达式.正比例函数y=kx 的图象是一条直线,以后可以称正比例函数y=kx 的图象为直线y=kx .设计意图:教师对每位答案正确的学生都给予积极的评价和鼓励,进一步调动学生的积极性.通过三个问题的思考与解决,明确正比例函数的图象是一条直线,建立正比例函数的代数表达式与图象之间的“一一对应”关系,培养了学生小组“合作探究”的能力和“数形结合”的意识这就突破了难点.议一议师:既然我们得出正比例函数y=kx 的图象是一条直线.那么在画正比例函数图象时有没有什么简单的方法呢?生:因为“两点确定一条直线 ”,所以画正比例函数y=kx 的图象时可以只描出两个点就可以了.因为正比例函数的图象是一条过原点(0,0)的直线,所以只需再确定一个点就可以了,通常过(0,0),(1,k)作直线.师:好!下面我们就用两点法作出函数图象.例2 在同一直角坐标系内作出y=x,y=3x,y=-12x,y=-4x的图象.解:1.列表2.描点:过点(0,0)和(1,1)作直线,则这条直线就是y=x的图象.过点(0,0)和(1,3)作直线,则这条直线就是y=3x的图象.过点(0,0)和(1,-12)作直线,则这条直线就是y=-12x的图象.过点(0,0)和(1,-4)作直线,则这条直线就是y=-4x的图象.3.连线.设计意图:做一做“作出这几个正比例函数的图象”,意在让学生进一步熟悉如何作一个正比例函数的图象,同时要求学生通过这几个函数的图象,分析正比例函数图象的性质,以及k的绝对值大小与直线倾斜程度的关系.效果:学生通过作出正比例函数的图象,明确了作函数图象的一般方法.在探究函数与图象的对应关系中加深了理解,并能很快地作出正比例函数的图象.议一议师:请大家先独思考立,再互相交流得出结论.上述四个函数中,随着x的增大,y的值分别如何变化?(教师走进学生中间,对学生进行鼓励. 对于学生说的不透、不清的问题进行及时引导.学生四个人一组进行讨论交流,将自己确定的结论自己写在练习本上.不能确定的结论同组进行讨论.)讨论结束,各小组交流得到的结论:生1:y=x , y=3x的图象从左向右是上升的,由此我想k>0时,y的值随x的增大而增大.生2:y= -0.5x, y=-4x的图象从左向右是下降的,由此我想k<0时,y的值随x的增大而减小.师:同学们分析的很好,通过上面的讨论你认为正比例函数y=kx图象有何特点?(在表扬学生的观察力同时,鼓励学生大胆发言,并留给学生一点思考时间.)生3:我发现当k>0时,函数图象位于第一、三象限内.如y=x ,y=3x的图象.生4:(抢答)当k<0时,函数图象位于第二、四象限内.如y= -0.5x, y=-4x的图象.生5:正比例函数y=kx的图象是经过原点(0,0)的一条直线.师:大家都很有见解,从不同的角度,分析了正比例函数的图像和性质.师生总结出结论:在正比例函数y=kx中,当k>0时,图象在第一、三象限,y的值随着x值的增大而增大(即从左向右观察图象时,直线是向上倾斜的);当k<0时, 图象在第二、四象限,y的值随着x值的增大而减小 (即从左向右观察图象时,直线是向下倾斜的).(教师用多媒体展现正比例函数图象的性质.)设计意图:通过观察正比例函数图象,归纳概括正比例函数图象特征,探索正比例函数的主要性质.这样的设计能够调动学生学习的积极性,增强学生对知识的理解,同时也培养了学生的观察、归纳能力和合作交流能力.)请你进一步思考:(1)正比例函数y=x和y=3x中,随着x值的增大y的值都增加了,其中哪一个增加得更快?你能说明其中的道理吗?(2)正比例函数y=-12x和y=-4x中,随着x值的增大y的值都减小了,其中哪一个减小得更快?你是如何判断的?生1:正比例函数y=x,当x增加1时y增加1,而y=3x中,当x增加1时y增加3,所以y=3x 增加得更快.生2:正比例函数y=-12x,当x增加1时y减少12,而y=-4x中,当x增加1时y减少4,所以y=-4x减少得更快.师生结合图像总结得出:k越大,直线越靠近y轴.四、巩固练习,深化理解1.在同一直角坐标系中分别作出y=13x与y=-3x的图象.设计意图:让学生熟练正比例函数图象的作法.2.下列哪一些点在函数y=-5x的图象上?(1,5)、(-1,5)、(0.5,-2.5)、(-5,1)提示:逐个带入关系式试一下就可以发现(-1,5)(0.5,-2.5)这个点满足关系式,所以它在函数图象上.设计意图:通过这个题可以进一步印证“函数关系式和函数图象”的“一 一对应”关 系,给学生留下较深的印象.师生归纳:满足一次函数表达式的一组x 、y 所对应的点的坐标(x 、y )就在函数图象上,函数图象上的点的坐标都会满足一次函数表达式.3.对于函数x y 3-=的两个确定的值1x 、2x 来说,当21x x <时,对应的函数值1y 与2y 的关系是( )A. 21y y <B. 21y y =C. 21y y >D. 无法确定设计意图:是明确正比例函数图象的性质,要注意自变量的取值范围.效果:学生通过练习,进一步熟练了正比例函数图象的作法,对正比例函数和正比例函数图象的一般特征有了清楚的认识.五、课时小结,回归系统师:本节课我们通过对正比例函数图象的研究的学习,你有哪些收获?还有那些迷惑? 大家回忆一下本节课所学的内容(可以借助于板书对本节课所学的进行“梳理”).生1:函数与图象之间是一一对应的关系;生2:正比例函数的图象是一条经过原点的直线;生3:作正比例函数图象时,只取原点外的另一个点,就能很快作出.生4:k >0时,函数图象位于第一、三象限内,y 的值随着x 值的增大而增大(即从左向右观察图象时,直线是向上倾斜的);当k <0时, 图象在第二、四象限, y 的值随着x 值的增大而减小 (即从左向右观察图象时,直线是向下倾斜的).设计意图:让学生在回忆的过程中,进一步加深对正比例函数图象的理解,同时对本节所学知识有一个总结性的认识.效果:学生通过对本节学习的回顾和小结,对所学知识更清楚,抓住了重点,明确了关键.六、课堂检测,矫正评价1.正比例函数5y x =-的图象位于 象限,y 随着x 的增大而 .2.已知函数y=kx 的函数值随x 的增大而增大,则函数的图象经过( )A .第一、二象限B .第一、三象限C .第二、三象限D .第二、四象限3.写出一个具体的y 随x 的增大而减小的一次函数解析式____4.画出下列正比例函数图象.(1)y=4x; (2) y=-13 x.七、布置作业,巩固知识必做题:课本P85 第2题.选做题:课本P85 第4题.设计意图:作业分层,让能力不同的每个学生都能各有所得.板书设计教学设计反思成功之处:本节内容是学生利用数形结合的思想去研究正比例函数的图象,对函数与图象的对应关系有点陌生.在教学过程中我通过提供学生熟悉的生活素材作情景,激发了学生的学习兴趣,对函数与图象的对应关系让学生动手去实践,去发现,对正比例函数的图象是一条直线应让学生自己得出.在得出结论之后,让学生能运用“两点确定一条直线”,很快作出正比例函数的图象.培养了学生“数形结合”的意识,发展了合作探究和总结概括的能力.在巩固练习活动中,鼓励学生积极思考,提高学生解决实际问题的能力.不足之处:由于本节课容量今后应加强细节的设计和全面考虑.学生的讨论与合作学习还需加强,讨论问题还不够深入,多数时间还是以个别回答为主,不会的没有足够的耐心去“等待花开”,虽然个别回答非常精彩,但仍需注意“让每一个学生都得到发展”.。
北师大初中数学八上《43一次函数的图象》word教案(4)
6.5.2 一次函数图象的应用教学设计1.进一步训练学生的识图能力,能通过函数图象获取信息,解决简单的实际问题;●过程与方法目标:1.在函数图象信息获取过程中,进一步培养学生的数形结合意识,发展形象思维;2.在解决实际问题过程中,进一步发展学生的分析问题、解决问题的能力和数学应用意识.●情感与态度目标:1.在现实问题的解决中,使学生初步认识数学与人类生活的密切联系,从而培养学生学习数学的兴趣.三、教学重点一次函数图象的应用四、教学难点从函数图象中正确读取信息五、教法学法1.教学方法:“问题情境—建立模型—应用与拓展”2.课前准备:教具:教材,课件,电脑学具:教材,练习本,铅笔,直尺六、教学过程:第一环节:情境引入内容:一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(2)试求降价前y与x之间的关系意图:通过与上一课时相似的问题,回顾旧知,导入新知学习。
效果:由于问题与上一课时问题相近,学生很快明确并解决了问题。
第二环节:问题解决内容1:例1小聪和小慧去某风景区游览,约好在“飞瀑”见面,上午7:00小聪乘电动汽车从“古刹”出发,沿景区公路去“飞瀑”,车速为36km/h,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26km/h.分析:解:设经过t 时,小聪与小慧离“古刹”的路程分别为S 1、S 2,由题意得:S 1=36t , S 2=26t+10将这两个函数解析式画在同一个直角坐标系上,观察图象,得⑴两条直线S 1=36t , S 2=26t+10的交点坐标为(1,36)这说明当小聪追上小慧时,S 1=S 2=36 km ,即离“古刹”36km ,已超过35km ,也就是说,他们已经过了“草甸” ⑵当小聪到达“飞瀑”时,即S 1=45km ,此时S 2=42.5km .所以小慧离“飞瀑”还有45-42.5=2.5(km )意图:培养学生的识图能力和探究能力,调动学生学习的自主意识.通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决这个问题.在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.内容2:深入探究例 2 我边防局接到情报,近海处有一可疑船只A 正向公海方向行驶.边防局迅速派出快艇B 追赶(如图),下图中l 1,l 2分别表示两船相对于海岸的距离s (海里)与追赶时间t (分)之间的关系.根据图象回答下列问题:解:观察图象,得当t =0时,B 距海岸0海里,即S =0,故l 1表示B 到海岸的距离与追赶时间之间的关系;解:从0增加到10时,l 2的纵坐标增加了2,而l 1的纵坐标增加了5,即10分内,A 行驶了2海里,B 行驶了5海里,所以B 的速度快.解:可以看出,当t =15时,l 1上对应点在l 2上对应点的下方,解:如图l 1 ,l 2相交于点P .因此,如果一直追下去,那么B 一定能追上A .解:从图中可以看出,l 1与l 1交点P 的纵坐标小于12,这说明在A 逃入公海前,我边防快艇B 能够追上A .意图:培养学生良好的识图能力,进一步体会数与形的关系,建立良好的知识联系.海 岸 公 海 A B说明:学生在教师的引导下,逐步形成了良好的识图能力.第三环节:反馈练习内容:观察甲、乙两图,解答下列问题1.填空:两图中的()图比较符合传统寓言故事《龟免赛跑》中所描述的情节.2.根据1中所填答案的图象填写下表:项目主人公(龟或兔)到达时间(分)最快速度(米/分)平均速度(米/分)红线绿线3.根据1中所填答案的图象求:(1)龟免赛跑过程中的函数关系式(要注明各函数的自变量的取值范围);4.请你根据另一幅图表,充分发挥你的想象,自编一则新的“龟免赛跑”的寓言故事,要求如下:(1)用简洁明快的语言概括大意,不能超过200字;(2)图表中能确定的数值,在故事叙述中不得少于3个,且要分别涉及时间、路和速度这三个量.意图:旨在检测学生的识图能力,可根据学生情况和上课情况适当调整。
北师大八年级上4.3一次函数的图像(1) 教案新部编本
教师学科教案[ 20 – 20 学年度第__学期]任教学科:_____________任教年级:_____________任教老师:_____________xx市实验学校课题:一次函数的图像(第一课时)● 教学目标:知识与技能目标:⑴理解正比例函数及正比例的意义;⑵根据正比例的意义判定两个变量之间是否成正比例关系;⑶识别正比例函数,根据已知条件求正比例函数的解析式或比例系数。
过程与方法目标 :⑴通过现实生活中的具体事例引入正比例关系通过画图像的操作实践,体验“描点法”;⑵经历利用正比例函数图像直观分析正比例函数基本性质的过程,体会数形结合的思想方法和研究函数的方法 情感与态度目标积极参与数学活动,对其产生好奇心和求知欲.形成合作交流、独立思考的学习习惯. ● 重点:理解正比例和正比例函数的意义 ● 难点:判定两个变量之间是否存在正比例的关系 ● 教学流程: 一、 课前回顾 1. 在下列函数24(1)3(2)2(3)(4)25y x y x y y x x =-===-; ; ; ;是一次函数的是 (2)(4) ,是正比例函数的是 (2) .2、函数的表示法:①图象法、 ②列表法、③解析式法(关系式法) 三种方法可以相互转化二、 情境引入探究1:什么是函数的图象?把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象(graph).试在平面直角坐标系中画出点M(4,3)请作出正比例函数y=2x的图象.分析:函数图象上的点一般来说有无数多个,要把每个点都作出来得到函数图象很困难,甚至是不可能的.所以我们常作出函数图象上的一部分点,然后用光滑的线把这些点连接起来得到函数的图象.请同学们想一想,怎么才能得到图象上的一部分点呢?为此,我们首先要取一些自变量x的值,求出对应的函数值y,那么以(x,y)为坐标的点就是函数图象上的点.为了表达方便,我们可以列表来表示x和y的对应关系.解:列表: 取自变量的一些值,求出对应的函数值,填入表中.x …-2 -1 0 1 2 …y=2x …-4 -2 0 2 4 …描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点.连线:把这些点依次连结起来,得到y=2x的图象.总结:作一个函数的图象需要三个步骤:列表,描点,连线.这种画函数图象的方法叫做描点法.练习1:画出一次函数y=2x的图象⑴先列表:⑵再描点连线做一做(1)作出一次函数y=-3x的图象.(2) 在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否都满足关系y=-3x.满足(1)列表(2)描点连线( 1 ) 满足关系式y=-3x的x,y所对应的点(x,y)是否都在它的图象上? 是( 2 ) 正比例函数y=-3x的图象上的点(x,y)都满足它的关系式吗? 满足( 3 ) 正比例函数y=kx的图象有什么特点?一条直线总结:正比例函数y=kx的图象是一条经过原点的直线。
北师大版初中数学八年级上册4.3一次函数的图象word教案(3)
6.5.1 一次函数图象的应用教学设计1.能通过函数图象获取信息,解决简单的实际问题;2.在解决问题过程中,初步体会方程与函数的关系,建立各种知识的联系。
过程与方法:1.通过对函数图象的观察与分析,培养学生数形结合的意识,发展形象思维;2.通过具体问题的解决,培养学生的数学应用能力;3.引导学生从事观察、操作、交流、归纳等探索活动,使学生初步形成多样的学习方式.情感与态度:1.在具体的案例中,培养学生良好的环保意识和对生活的热爱等.三、教学重点一次函数图象的应用.四、教学难点正确地根据图象获取信息,并解决现实生活中的有关问题.五、课前准备多媒体课件六、 教学过程第一环节 复习引入内容:在前几节课里,我们通过从生活中的实际问题情景出发,分别学习了一次函数,一次函数的图象,一次函数图象的性质,从中对一次函数在现实生活中的广泛应用有了一定的了解.怎样应用一次函数的图象和性质来解决现实生活中的实际问题,是我们这节课的主要内容.首先,想一想一次函数具有什么性质?在一次函数y kx b =+中当0k >时,y 随x 的增大而增大,当0b >时,直线交y 轴于正半轴,必过一、二、三象限;当0b <时,直线交y 轴于负半轴,必过一、三、四象限.当0<k 时,y 随x 的增大而减小,当0b >时,直线交y 轴于正半轴,必过一、二、四象限;当0b <时,直线交y 轴于负半轴,必过二、三、四象限.意图:在前面的学习中我们已得到一次函数的图象是一条直线,并且讨论了k 、b 的正负对图象的影响.通过对上节课学习内容的回顾,为进一步研究一次函数图象和性质的应用做好铺垫.效果:学生通过知识回顾,再次明确一次函数图象和性质,为学习本节课在知识上作好准备.说明:如果学生一次函数的图象和性质掌握较好,也可以直接从下一环节(第二环节)开始,进入本课题的学习.第二环节 初步探究·200 100020 t (天) S (户) 0 内容:由于持续高温和连日无雨,某水库的蓄水量随着时间的增加而减少.干旱持续时间t (天)与蓄水量V (万米3)的关系如下图所示,回答下列问题:(1)干旱持续10天后,蓄水量为多少?连续干旱23天后呢?(2)蓄水量小于400万米3时,将发生严重干旱警报.干旱多少天后将发出严重干旱警报?(3)按照这个规律,预计持续干旱多少天水库将干涸?(根据图象回答问题,有困难的可以互相交流.)答案:(1)求干旱持续10天时的蓄水量,也就是求t等于10时所对应的V 的值.当10t =时,V 约为1000万米3.同理可知当t 为23天时,V约为750万米3.(2)当蓄水量小于400万米3时,将发出严重干旱警报,也就是当V 等于400万米3时,求所对应的t 的值.当V 等于400万米3时,所对应的t 的值约为40天.(3)水库干涸也就是V 为0,所以求函数图象与横轴交点的横坐标即为所求.当V 为0时,所对应的t 的值约为60天.意图:通过生动的现实情景引入一次函数图象的应用,目的是培养学生的识图能力. 效果:本题插图中干涸的河床势必给学生一个很强的视觉刺激,从而渗透环保教育. 说明:在具体的教学活动中,教师应注意学生对以上问题的掌握情况:如果学生掌握得好,进入下面的练习;如果学生掌握得不好,则可以再引导学生多练习一道类似的习题(见分层教学第1题).第三环节 反馈练习:内容:当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性.当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后全校师生都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示. 根据图象回答下列问题:(1)活动开始当天,全校有多少户家庭参加了该活动?(2)全校师生共有多少户?该活动持续了几天?(3)你知道平均每天增加了多少户?(4)活动第几天时,参加该活动的家庭数达到800户?(5)写出参加活动的家庭数S 与活动时间t 之间的函数关系式答案:(1)200户;(2)全校师生共有1000户,该活动持续了20天;(3)平均每天增加了40户;(4)第15天时,参加该活动的家庭数达到800户;(5)40200S t =+ .意图:通过创设情境,让学生进一步认识到一次函数图象的应用,倡导节约用水.同时,通过练习以检验学生对已学内容是否掌握.效果:通过练习,学生会运用一次函数的图象去分析现实生活中的问题,同时渗透环保意识,珍惜水资源.说明:在具体的教学活动中,教师应观察学生的表现,对知识是否掌握,如果学生掌握得好,进入下一个环节;如果学生掌握得不好,则可以再引导,以达到“过手”的目的.(视其情况,可以选用分层教学第2题)第四环节 深入探究内容:1.看图填空(1)当0y =时,______x =;(2)直线对应的函数表达式是________________.答案:(1)观察图象可知当0y =时,2x =-;(2)直线过(-2,0)和(0,1)设表达式为y kx b =+,得20k b -+=① 1b = ②把②代入①得 0.5k =∴直线对应的函数表达式是0.51y x =+2.议一议一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?(请大家根据刚做的练习来进行解答.)答案: 一元一次方程0.510x +=的解为2x =-,一次函数0.51y x =+包括许多点.因此0.510x +=是0.51y x =+的特殊情况.当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解.函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解.意图:通过本题让学生认识到一次函数与一元一次方程的联系,从“数”的角度看,当一次函数0.51y x =+的函数值为0时,相应的自变量的值即为方程0.510x +=的解;从“形”的角度看,函数0.51y x =+与x 轴交点的横坐标即为方程0.510x +=的解.效果:通过练习,学生明晰了函数与方程的关系,能用函数关系解决方程问题,同时也能用方程的观点来看待函数.第五环节 反馈练习内容:全国每年都有大量土地被沙漠吞没,改造沙漠,保护土地资源已经成为一项十分紧迫的任务,某地区现有土地面积100万千米2,沙漠面积200万千米2,土地沙漠化的变化情况如下图所示.· 200 100020 t (天) S (户)0 (1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将增加多少万千米2?(2)如果该地区沙漠的面积继续按此趋势扩大,那么从现在开始,第几年底后,该地区将丧失土地资源?(3)如果从现在开始采取植树造林措施,每年改造4万千米2沙漠,那么到第几年底,该地区的沙漠面积能减少到176万千米2.解:(1)如果不采取任何措施,那么到第5年底,该地区沙漠面积将新增加10万千米2.(2)从图象可知,每年的土地面积减少2万千米2,现有土地面积100万千米2,100÷2=50,故从现在开始,第50年底后,该地区将丧失土地资源.(3)如果从现在开始采取植树造林等措施,每年改造4万千米2沙漠,每年沙化2万千米2,实际每年改造面积2万千米2,由于(200176)212-÷=,故到第12年底,该地区的沙漠面积能减少到176万千米2.意图:通过土地沙漠化的问题进一步培养学生的识图能力,让学生能从图象中获取信息,建立相关的代数式,从而求解较复杂的问题;同时,通过土地沙漠化的问题情景引导学生关注自己身边的生存环境.效果:通过对较复杂的问题的探究,培养了学生分析问题和解决问题的能力,并渗透德育教育. 第六环节 探究升级 内容:(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(6)若每户每天节约用水0.1吨,那么活动第20天可节约多少吨水?(7)写出活动开展的第t 天节约的水量Y 与天数t 的函数关系.答案:(6)第20天可节约100吨水;(7)420Y t =+.意图:通过问题的层层深入,引导学生的思维向纵深发展,进一步巩固用函数的思想解决生活中的问题.效果:学生通过合作交流,解决问题,在教师的引导下,逐步加深了对一次函数图象和性质的运用.说明:视学生的掌握情况,对学有余力的同学可以给出这个问题的第(8)问.(见分层教学第3题)第七环节 课堂小结内容:本节课主要应掌握以下内容:1.能通过函数图象获取信息.2.能利用函数图象解决简单的实际问题.3.初步体会方程与函数的关系.意图:引导学生自己小结本节课的知识要点及数学方法,使这节课知识系统化,感性认识上升为理性认识.效果:学生畅所欲言,相互进行补充,从小结中感知了一次函数的图象在生活中的应用.·200100020 t/天S/户 0 说明:教师视其情况,可以选择展示一些前面小节中用过的实际问题与一次函数图象的实例的图片,让学生体会到数学与生活的联系,激发学生的学习热情.第八环节 布置作业内容:1. 课外探究在生活中,你还遇到过哪些可以用一次函数关系来表示的实际问题?选择你感兴趣的问题,编制一道数学题与同学交流.2.课外作业 习题5.6分层教学1.某种摩托车的油箱最多可储油10升,加满油后,油箱中的剩余油量y (升)与摩托车行驶路程x (千米)之间的关系如图所示.根据图象回答下列问题:(1)一箱汽油可供摩托车行驶多少千米?(2)摩托车每行驶100千米消耗多少升汽油?(3)油箱中的剩余油量小于1升时,摩托车将自动报警,行驶多少千米后,摩托车将自动报警?分析:(1)函数图象与x 轴交点的横坐标即为摩托车行驶的最长路程.(2)x 从0增加到100时,y 从10开始减少,减少的数量即为消耗的数量.(3)当y 小于1时,摩托车将自动报警.答案:(1)观察图象,得当0y =时,500x =因此一箱汽油可供摩托车行驶500千米.(2)x 从0增加到100时,y 从10减少到8,减少了2,因此摩托车每行驶100千米消耗2升汽油.(3)当1y =时,450x =因此行驶了450千米后,摩托车将自动报警.2.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程.盒内钱数y (元)与存钱月数x 之间的函数关系如图所示.观察图象回答下列问题:(1)盒内原来有多少元?2个月后盒内有多少元?(2)该同学经过几个月能存够200元?(3)该同学至少存几个月存款才能超过140元?解:(1)40,80. (2)当200y =时,8x =,所以该同学经过8个月能存够200元.(3)观察图象可知,该同学经过5个月能超过140元.3.(续前一问题)当得知周边地区的干旱情况后,育才学校的小明意识到节约用水的重要性,当天在班上倡议节约用水,得到全班同学乃至全校师生的积极响应.从宣传活动开始,假设每天参加该活动的家庭数增加数量相同,最后都参加了活动,并且参加该活动的家庭数S (户)与宣传时间t (天)的函数关系如图所示.根据图象回答下列问题:(8)写出活动开展到第5天时,全校师生共节约多少吨水?答案:(8)第5天时,全校师生共节约160吨水.意图:学生知识上有一定的分层,可更好地调动不同学生的学习热情.教师可根据学生的掌握情况,适当选择上述题目要求学生分层完成.效果:通过分层练习,调动了不同学生的学习热情,教师应留给学生充分的时间思考,在独立思考的基础上,鼓励学生相互讨论,得出结果. 一次函数图象的应用(一)一、做一做 (保留性板书) (暂时性板书)四、课堂练习 五、课后作业(有关水库蓄水量与干旱时间的问题) 二、练一练(小明的倡议活动) 三、议一议: 一元一次方程0.510x +=与一次函数0.51y x =+有什么联系?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《4.3 一次函数的图象-------正比例函数的图象》学案 姓名
学习目标:了解正比例函数y=kx 的图象的特点,会作正比例函数的图象,理解正比例函数及其图象的有关性质,进一步培养学生数形结合的意识和能力。
3.归纳:正比例函数y=kx 的图象是 。
三、拓展延伸(提高)
1、在同一坐标系内画出y=x,y=3x
3、下列哪些点在正比例函数y=-5x 的图象上( ) A.(1,5) B.(-1,5) C.(0.5,-2.5) D.(-5,1)
4、若点A(2,m)在y=2x 图象上,则m= 。
四、观察图象、探究正比例函数的性质
五、收获盘点(升华)
1.画函数图象的步骤: ;
2.正比例函数的图象
(1)过( )、( )点的 ; (2)当k >0时,图象在 象限;
y 随着x 的增大而 ; ,y 增加的越快; (3)当k <
0时,图象在 象限;
y随着x的增大而;,y减小的越快。
六、当堂检测(达标)
1、写出图中直线l所表示的变量x,y之间的关系式,
y随着x的增大而。
2.下列点A(-1,3),B(-1,-3),C(-π,-3π),D(-3,-1),在第1题函数图象上的有。
(填字母)
3.点A(1,y
1)和点B(2,y
2
)都在第1题的函数图象上,则y
1
与y
2
的大小关系
是 .
4.如图所示,你认为下列结论中正确的是()
A.k1 <k2<k3
B.k2<k1<k3
C.k3<k1<k2
D.k1<k3<k2。