大学物理综合练习(三)参考答案

合集下载

大学物理综合练习(三)

大学物理综合练习(三)

《大学物理》综合练习(三)——气体动理论与热力学班级学号: 姓 名: 日 期: 一、选择题(把正确答案的序号填入括号内)1.若气体分子的速率分布曲线如图所示, 其中a 、b 两部分面积相等,则图中0v 为 (A)最概然速率p v v =0; (B)平均速率v v =0; (C)方均根速率20v v =;(D)速率大于和小于0v 的分子数各占一半。

2.一定质量的理想气体,从状态),(V p A 然速率之比Ap Bp v v /为(A)2; (B)3; (C)1; (D)π/2。

[ ]3.如图所示的两条曲线分别表示在相同温度下,氢气和氧气分子的速率分布曲线,则氧分子和氢分子最概然速率之比22/pH po v v 为 (A)2/1; (B)4/1; (C)8/1; (D)1。

[ ]4.容器中装有温度为273K 、压强为1atm 的氧气,假设容器的绝对温度加倍,因此分子被分离为原子,试问氧原子的方均根速率为氧分子的方均根速率的多少倍? (A)2; (B)1; (C)2/1; (D)2。

[ ]5.一容器内盛有一摩尔的氢气和一摩尔的氦气,其混合后的稳恒温度为127℃,则混合气体的算术平均速率为 (A))12(54+ππR; (B))12(5200+πR;f (v )p o 2 p H 22(C)πR15200; (D) π310400R。

[ ]6.气体的温度升高时,麦克斯韦速率分布函数曲线的变化是 (A)曲线下的面积增大,最概然速率增大; (B)曲线下的面积不变,最概然速率增大; (C)曲线下的面积减小,最概然速率增大; (D)曲线下的面积不变,最概然速率减小。

[ ]7.一容器装着一定量的某种气体,下述几种说法哪一种对? (A) 容器内各部分压强相等,这状态一定是平衡态; (B) 容器内各部分温度相等,这状态一定是平衡态;(C) 容器内各部分压强相等,且各部分密度也相同,这状态一定是平衡态。

[ ]8.图中表示在不同条件下理想气体的体积密度ρ随压强变化的五种曲线,试问哪个图准确地描述了等温条件下一定质量的气体的密度随压强的变化?[ ]9.理想气体作一循环过程acba ,其中ba 为等压过程,acb 为半圆弧, a c p p 2=。

中南大学2020年《大学物理Ⅲ》期末试题及答案

中南大学2020年《大学物理Ⅲ》期末试题及答案

---○---○------○---○---……… 评卷密封线…………… 密封线内不要答题,密封线外不准填写考生信息,违者考试成绩按0分处理…………… 评卷密封………线 ………中南大学考试试卷2019 ~2020 学年一学期 大学物理 Ⅲ 课程 时间110分钟72学时,4.5学分,闭卷,总分100分,占总评成绩70 %一、选择题(共24分,每小题3分)1.日常自来水管内径为d =0.0254m ,已知:水在一标准大气压下,20℃时的粘滞系数η=1.0310-⨯Pa s ⋅,水的密度取33/100.1m kg ⨯=ρ,管内平均流速s m v /1062-⨯=时,流体将作 (A )湍流 (B )层流(C )既作层流,也作湍流 (D )不能稳定流动 [ ]2.波长为500nm 的单色光垂直照射到宽度为0.25mm 的单缝上,单缝后面放置一凸透镜,在凸透镜的焦平面上放置一屏幕,用以观察衍射条纹。

今测得屏幕上中央条纹一侧第三个暗条纹和另一侧第三个暗条纹之间的距离为12mm ,则凸透镜的焦距为(A )2m (B )1m (C )0.5 m (D )0.2m [ ]3.理想气体绝热地向真空膨胀,其温度和熵变为 (A )二者均减少(B )二者均不变(C )温度不变,熵增加(D )温度降低,熵增加 [ ]4.图中MN 为某理想气体的绝热曲线,ABC 是任意过程,箭头方向表示过程进行的方向,ABC 过程结束后气体的温度和吸收的热量为(A )温度升高,吸热为正 (B )温度升高,吸热为负(C )温度降低,吸热为正 (D )温度降低,吸热为负 [ ]5.静电场的环路定理0=⋅⎰ll d E,说明了静电场的哪些性质(1) 电力线不是闭合曲线 (2) 库仑力是保守力 (3) 静电场是有源场 (4) 静电场是保守场(A) (1)(3) (B) (2)(3) (C)) (2)(4) (D) (1)(4) [ ] 6.半径为R 的半圆形线圈,通有电流I ,处于匀强磁场B 中,当线圈平面与磁场方向平行(如图所示)时,线圈的磁矩和它所受磁力矩的大小分别是(A ) 2,222IB R I R ππ (B ) IB R I R 22,ππ(C ) 0,22I R π (D ) 0,2I R π [ ]7.用X 射线照射物质时,可以观察到康普顿效应,即在偏离入射光的各个方向上观察到散射光,这种散射光中 [ ](A )只包含有与入射光波长相同的成分(B )既有与入射光波长相同的成分,也有波长变长的成分,波长的变化只与散射方向有关,与散射物质无关。

大学物理(川大物三)答案

大学物理(川大物三)答案

答案振动(一)一、选择题BCBDA二、填空题1.解:φ2-φ1 = φ3-φ2=2π/3旋转矢量图见图 振动曲线见图2. )212/5cos(1022π-⨯=-t x (SI)3. 0,9.4 cm/s4. x 1曲线见图x 2曲线见图5. 0.1m ,rad/s,63ππ三、计算题1. 解:(1) m 2A ATπω==v ,∴周期m2 4.2s A T π==v(2) 2222m m 4.510m/s a A Aω-===⨯v(3) 当0x =时,从振幅矢量图可知,初相2πϕ=m 1.5r a d /sAω==v ∴振动函数为2210cos(1.5)m 2x t π-=⨯+TT1T 5ω x12T 1212. 解:弹簧劲度系数 260 2.010N /m 0.3F k x===⨯ 静止时弹簧伸长量为 0249.80.196m 2.010m g x k⨯===⨯(1) 设向下为正方向,则 0ϕ= (若设向上为正方向,则 ϕπ=);0.1mA =7.07r a d /sω== 振动函数为 0.1cos(7.07)m x t =(2) 物体在平衡位置上方5cm (即0.05m ),此时弹簧的净伸长为 00.050.1960.050.146m l x =-=-=弹簧对物体的拉力 2000.14629.2N F kl ==⨯=(3) 5cm 是振幅之半,物体从平衡位置到振幅之半所需最短时间是112T ,2T πω=∴10.074s 126t T πω===3.解:(1) 容器中每滴入一油滴的前后,水平方向动量值不变,而且在容器回到O 点滴入下一油滴前, 水平方向动量的大小与刚滴入上一油滴后的瞬间后的相同。

依此,设容器第一次过O 点油滴滴入前的速度为v ,刚滴入第个油滴后的速度为v ′,则有 v v '+=)(nm M M ① 3分系统机械能守恒 2202121v M kl = ② 2分22)(2121v '+=nm M kx③ 2分由①、②、③、解出0)/(l nm M M x +=2分(2) 时间间隔( t n +1-t n )应等于第n 滴油滴入容器后振动系统周期T n 的一半.k nm M T t t t n n n n /)(211+==-=∆+π 3分4.解:由旋转矢量图和 |v A | = |v B | 可知 T /2 = 4秒, ∴ T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分 (1) 以AB 的中点为坐标原点,x 轴指向右方.t = 0时, 5-=x cm φcos A =t = 2 s时, 5=x cm φφωsin )2cos(A A -=+= 由上二式解得 tg φ = 1因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分 25c o s/==φx A cm 1分∴ 振动方程 )434c o s (10252π-π⨯=-t x (SI) 1分 (2)速率 )434s i n (41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点221093.3)43sin(10425d d --⨯=π-⨯π-==tx v m/s 1分5*.解:令θ 为杆和竖直线之间的夹角.运动方程为:θθθθc o s s i n s i n 21/d d 222kL MgL t J --= 3分θ 很小时,sin θ ≈θ ,cos θ ≈1所以:0/d d )21(222=++tJ kL MgL θθ 2分上式中231ML J =是杆绕其一端的转动惯量,所以0/d d 31)21(22=++tML Lk Mg θθ可知杆作角谐振动,并得到 )2/()2(3ML kL Mg +=ω2分)2(322/2kL Mg ML T +π=π=ω 1分振动(二)一、选择题ADDBB二、填空题 1.T /8,3T /8 2.222/2T mA π3.动能曲线见图 势能曲线见图 机械能曲线见图4.0.02 5.0三、计算题1.解:设小球的质量为m ,则弹簧的劲度系数 0/l mg k =.选平衡位置为原点,向下为正方向.小球在x 处时,根据牛顿第二定律得T220d /d )(t x m x l k mg =+- 将 0/l mg k = 代入整理后得0//d d 022=+l gx t x∴ 此振动为简谐振动,其角频率为. 3分 π===1.958.28/0l g ω 2分设振动表达式为 )c o s (φω+=t A x由题意: t = 0时,x 0 = A=2102-⨯m ,v 0 = 0,解得 φ = 0 1分∴ )1.9c o s (1022t x π⨯=- 2分2.解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F解得F = kx 02分 由题意,t = 0时v0 = 0;x = x 0 则 02020)/(x x A =+=ωv 2分又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k =∴ 444.0)/4(22=π==A T m kA F N 1分 (2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分 221007.121-⨯==vm E K J 2分2222)/4(2121x T m kxE p π=== 4.44³10-4J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分 ∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kAE J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分∴ 21007.1)25/24(-⨯==E E K J , 41044.425/-⨯==E E p J 1分3.解:(1) 选地心为x 坐标原点,向上为x 轴正方向.质量为m 的物体在地球内部距地心为x 处受到的地心引力为232/)3/4(/x m x G x G M m F ρπ-=-=3/4x Gm ρπ-= 3分由牛顿第二定律得 xm x Gm =π-3/4ρ, 03/4=π+x G xρ 1分 令 3/420ρωG π=, 则 020=+x x ω. 显然物体作简谐振动. 2分(2) 2/10)/3(4/32/2ρρωG G T π=ππ=π=已知 G = 6.67³10-11 N ²m 2²kg -2,ρ = 5.5³103 kg/m 3代入上式 T = 5.07³103 s 2分 物体从地面落到地心的时间 t = T /4 = 1.27³103 s 2分4.解:选平板位于正最大位移处时开始计时,平板的振动方程为 t A x π=4c o s (SI)t A xπ4c o s π162-= (SI) 1分 (1) 对物体有 x m N mg =- ① 1分 t A mg xm mg N ππ+=-=4cos 162 (SI) ②物对板的压力为 t A mg N F ππ--=-=4cos 162 (SI)t ππ--=4c o s 28.16.192 ③ 2分 (2) 物体脱离平板时必须N = 0,由②式得 1分 04c o s 162=ππ+t A mg (SI) Aq t 2164cos π-=π 1分若能脱离必须 14cos ≤πt (SI) 即221021.6)16/(-⨯=π≥g A m 2分5.解:依合振动的振幅及初相公式可得 φ∆++=c o s 2212221A A A A A 22210)4143cos(65265-⨯π-π⨯⨯⨯++=m21081.7-⨯= m 2分)4/c o s (6)4/3c o s (5)4/s i n (6)4/3s i n (5a r c t g π+ππ+π=φ = 84.8°=1.48 rad 2分则所求的合成振动方程为 )48.110cos(1081.72+⨯=-t x (SI) 1分波动(一)一、选择题CBDCD 二、填空题1.φλ+π-/2Lλk L ± ( k = 1,2,3,…) λ)12(21+±k L ( k = 0, 1,2,…)2.1cos x y A t u ωϕ⎡+⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦3. ]4/)/(cos[11π+-=u L t A y ω;uL L )(21+ω4. ]2)2(2cos[π-+-π=ux t uA y λ]2)2(2c o s [π+-π=t uA y P λ5.0.2cos m 22p y t ππ⎛⎫=-⎪⎝⎭三、计算题1. 解:反射波在x 点引起的振动相位为 π+π--+π-=+21)55(4x t t φωπ-π+π+=10214x t 3分反射波表达式为)10214cos(01.0π-π+π+=x t y (SI) 2分或 )214c o s (01.0π+π+=x t y (SI)2.解: λxu t A y -π=2c o s = -0.01 m 1分1.0,2d d ===t x ty v 0)2s i n (2=-ππ-=λλxut uA 2分22d d ty a =)2c o s ()2(2λλxut uA -ππ-= = 6.17³103m/s 22分3.解:用旋转矢量解此题,如图可得A为代表P 点振动的旋转矢量. 210)cos sin 3(21-⨯-=t t y P ωω210)]cos()21cos(3(21-⨯π++π-=t t ωω)3/4c o s (1012π+⨯=-t ω (SI). 3分波的表达式为:]2/234c o s [1012λλω-π-π+⨯=-x t y )312c o s (1012π+π-⨯=-λωxt (SI) 2分4.解:从y -x 波形图中可知 40m,A λ==由振幅矢量图可知 ,2P Q πϕϕπ=-=)由20m/s u =可得 2s,rad/s T uλωπ==∴=0.2cos()m20.2cos()mP Q y t y t ππππ∴=-=+5.解:(1) 由y -x 曲线可知160m λ=。

大学物理C-练习三静电场答案

大学物理C-练习三静电场答案

练 习 三 静电场一、填空题1.点电荷q 1、q 2、q 3 和q 4 在真空中的分布如图所示.图中S 为闭合曲面,则通过该闭合曲面的电场强度通量sE dS ⎰r r g Ñ=____120()q q ε+________,式中的E r是点电荷___q 1、q 2、 q 3、q 4____在闭合曲面上任一点产生的场强的矢量和.2.在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为_______203Q a πε______3.一半径为R 的均匀带电圆环,电荷线密度为λ. 设无穷远处为电势零点,则圆环中心O 点的电势U =_______2λε________. 4.一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =_______04Q Rπε_______.5.在点电荷q 的电场中,把一个-×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功×10-5 J ,则该点电荷q =_____ -2×10-7C___________.(真空介电常量0=×10-12 C2·N -1·m -2 )6.一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能We =_____04Qq rπε____________.7. 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q的点电荷.线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,3q •SA q • 1q •2q •1q • 1q •则电场力所作的_______06q Rπε______________。

大学物理习题答案03刚体运动学

大学物理习题答案03刚体运动学

⼤学物理习题答案03刚体运动学⼤学物理练习题三⼀、选择题1.⼀⼒学系统由两个质点组成,它们之间只有引⼒作⽤。

若两质点所受外⼒的⽮量和为零,则此系统(A) 动量、机械能以及对⼀轴的⾓动量都守恒。

(B) 动量、机械能守恒,但⾓动量是否守恒不能断定。

(C) 动量守恒,但机械能和⾓动量守恒与否不能断定。

(D) 动量和⾓动量守恒,但机械能是否守恒不能断定。

[ C ]解:系统=0合外F,内⼒是引⼒(保守内⼒)。

(1)021 F F,=0合外F ,动量守恒。

(2)2211r F r F A =合。

21F F,但21r r时0A 外,因此E不⼀定守恒。

(3)21F F,2211d F d F M =合。

两⼒对定点的⼒臂21d d 时,0 合外M,故L 不⼀定守恒。

2. 如图所⽰,有⼀个⼩物体,置于⼀个光滑的⽔平桌⾯上,有⼀绳其⼀端连结此物体,另⼀端穿过桌⾯中⼼的⼩孔,该物体原以⾓速度ω在距孔为R 的圆周上转动,今将绳从⼩孔往下拉。

则物体 (A) 动能不变,动量改变。

(B) 动量不变,动能改变。

(C) ⾓动量不变,动量不变。

(D) ⾓动量改变,动量改变。

(E)⾓动量不变,动能、动量都改变。

[ E ]解:合外⼒(拉⼒)对圆⼼的⼒矩为零,⾓动量O Rrmv L 守恒。

r 减⼩,v 增⼤。

因此p 、E k 均变化(m不变)。

3. 有两个半径相同,质量相等的细圆环A 和B 。

A 环的质量分布均匀,B 环的质量分布不均匀。

它们对通过环⼼并与环⾯垂直的轴的转动惯量分别为J A 和J B ,则(A)A J >B J (B) A J < B J(C) A J =B J (D) 不能确定A J 、B J 哪个⼤。

[ C ]解:2222mR dm R dm R dm r J, J 与m 的分布⽆关。

另问:如果是椭圆环,J 与质量分布有关吗?(是)4. 光滑的⽔平桌⾯上,有⼀长为2L 、质量为m 的匀质细杆,可绕过其中点且垂直于杆的竖直光滑固定轴O ⾃由转动,其转动惯量为31mL 2,起初杆静⽌。

(2021年整理)大学物理练习册习题及答案3

(2021年整理)大学物理练习册习题及答案3

大学物理练习册习题及答案3编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(大学物理练习册习题及答案3)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为大学物理练习册习题及答案3的全部内容。

习题及参考答案第2章 质点动力学参考答案一 思考题2—1如图,滑轮绳子质量忽略不计,忽略一切摩擦力,物体A 的质量m A 大于物体B 的质量m B ,在A 、B 运动过程中弹簧秤的读数是(A )()12m m g + (B )()12m m g - (C )12122m m g m m ⎛⎫ ⎪+⎝⎭ (D )12124m m gm m ⎛⎫⎪+⎝⎭2—2用水平压力F 把一个物体压着靠在竖直的墙面上保持静止,当F 逐渐增大时,物体所受的静摩擦力f(A )恒为零 (B )不为零,但保持不变(C )随成F 正比增大 (D )开始随F 增大,达到某一值后,就保持不变2-3如图,物体A 、B 的质量分别为M 、m ,两物体间摩擦系数为m ,接触面为竖直面,为使B 不下滑,则需要A 的加速度为(A )a g μ≥ (B )a g μ≥ (C )a g ≥ (D )M ma g M +≥2-4质量分别为m 和M 的滑块A 和B ,叠放在光滑的水平面上,如图,A 、B 间的静摩擦系数为m s ,滑动摩擦系数为m k ,系统原先处于静止状态,今将水平力F 作用于B 上,要使A 、B 间不轰生相对滑动,应有(A )s F mg μ≤ (B )(1)s F m M mg μ≤+(C )()s F m M mg μ≤+ (D )s m M F mgM μ+≤AmBB m A 思考题2-1图思考题2-3图思考题2—4图m(a )(b )Bm mm 21m 21思考题2-7图2—5 在光滑的水平面上,放有两个相互接触的物体A 和B ,质量分别为m 1和m 2,且m 1〉 m 2。

大学物理自测题3(含答案)

大学物理自测题3(含答案)

大学物理自测题 3一、选择题:(共30分)1.一火箭的固有长度为L,相对于地面作匀速直线运动的速率为v1,火箭上有一个人从火箭的后端向火箭前端上的一个靶子发射一颗相对于火箭的速率为v2的子弹.在火箭上测得子弹从射出到击中靶的时间间隔是()(A)Lv1+v2. (B)L v2.(C)Lv2-v1. (D)Lv11-(v1/c)2.(c表示真空中的光速)2.宇宙飞船相对于地面以速率v作匀速直线飞行,某一时刻飞船头部的宇航员向飞船尾部发出一个光信号,经过Δt(飞船上的钟)时间后,被尾部的接收器收到,则由此可知飞船的固有长度为()(A)cΔt. (B)vΔt.(C)cΔt1-(v/c)2. (D)cΔt1-(v/c)2.(c表示真空中的光速)3.有一直尺固定在K′系中,它与Ox′轴的夹角θ′=45°,如果K′系以速度u沿Ox方向相对于K系运动,K系中观察者测得该尺与Ox轴的夹角()(A)大于45°.(B)小于45°.(C)等于45°.(D)当K′系沿Ox正方向运动时大于45°,而当K′系沿Ox负方向运动时小于45°.4.(1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其他惯性系中的观察者来说,它们是否同时发生?(2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其他惯性系中是否同时发生?关于上述两个问题的正确答案是()(A)(1)同时,(2)不同时. (B)(1)不同时,(2)同时.(C)(1)同时,(2)同时. (D)(1)不同时,(2)不同时.5.根据相对论力学,动能为1/4 MeV的电子,其运动速度约等于()(A)0.1c. (B)0.5c.(C)0.75c. (D)0.85c.(c表示真空中的光速,电子静能m0c2=0.5 MeV)6.在狭义相对论中,下列说法中哪些是正确的?()(1)一切运动物体相对于观察者的速度都不能大于真空中的光速.(2)质量、长度、时间的测量结果都是随物体与观察者的相对运动状态而改变的.(3)在一惯性系中发生于同一时刻,不同地点的两个事件在其他一切惯性系中也是同时发生的.(4)惯性系中的观察者观察一个与他作匀速相对运动的时钟时,会看到这时钟比与他相对静止的相同的时钟走得慢些.(A)(1),(3),(4). (B)(1),(2),(4).(C)(1),(2),(3). (D)(2),(3),(4).7.一宇宙飞船相对地球以0.8c (c 表示真空中的光速)的速度飞行.一光脉冲从船尾传到船头,飞船上的观察者测得飞船长为90 m ,地球上的观察者测得光脉冲从船尾发出和到达船头两个事件的空间间隔为( )(A)90 m. (B)54 m.(C)270 m. (D)150 m.8.一个电子运动速率v =0.99c ,它的动能是(电子的静止能量为0.51 MeV)( )(A)3.5 MeV. (B)4.0 MeV .(C)3.1 MeV . (D)2.5 MeV .9.某核电站年发电量为100亿千瓦时,它等于36×1015 J 的能量,如果这是由核材料的全部静止能转化产生的,则需要消耗的核材料的质量为( )(A)0.4 kg. (B)0.8 kg.(C)12×107 kg. (D)(1/12)×107 kg.10.在参考系S 中,有两个静止质量都是m 0的粒子A 和B ,分别以速度v 沿同一直线相向运动,相碰后合在一起成为一个粒子,则其静止质量M 0的值为( )(A)2m 0. (B)2m 01-(v /c )2. (C)m 021-(v /c )2. (D) 2m 01-(v/c)2. (c 表示真空中的光速)二、填空题:(共30分)1.以速度v 相对地球作匀速直线运动的恒星所发射的光子,其相对于地球的速度大小为________.2.已知惯性系S ′相对于惯性系S 系以0.5c 的匀速率沿x 轴的负方向运动,若从S ′系的坐标原点O ′沿x 轴正方向发出一光波,则S 系中测得此光波的波速率为________.3.π+介子是不稳定的粒子,在它自己的参考系中测得平均寿命是2.6×10-8s ,如果它相对实验室以0.8c (c 为真空中的光速)的速度运动,那么实验室坐标系中测得的π+介子的寿命是________s.4.两个惯性系中的观察者O 和O′以0.6c (c 表示真空中的光速)的相对速度互相接近.如果O 测得两者的初始距离是20 m ,则O′测得两者经过时间Δt =________s 后相遇.5.(1)在速率v =________情况下粒子的动量等于非相对论动量的两倍;(2)在速率v =________情况下粒子的动能等于它的静止能量.6.设电子静止质量为m 0,将一个电子从静止加速到速率为0.6c (c 为真空中的光速),需做功________.7.观察者甲以4c /5的速度(c 为真空中的光速)相对于静止的观察者乙运动,若甲携带一长度为l ,截面积为S ,质量为m 的棒,这根棒安放在运动方向上,则(1)甲测得此棒的密度为________;(2)乙测得此棒的密度为________.8.一电子以0.99c 的速率运动(电子静止质量9.11×10-31 kg),则电子的总能量是________J ,电子的经典力学的动能与相对论动能之比是________.三、计算题:(共35分)1.观测者甲和乙分别静止于两个惯性参考系K 和K ′中,甲测得在同一地点发生的两个事件的时间间隔为4 s ,而乙测得这两个事件的时间间隔为5 s ,求:(1)K ′相对于K 的运动速度;(2)乙测得这两个事件发生的地点的距离.2.一艘宇宙飞船的船身固有长度为L0=90 m,相对于地面以v=0.8c(c为真空中的光速)的匀速度在一观测站的上空飞过.(1)观测站测得飞船的船身通过观测站的时间间隔是多少?(2)宇航员测得船身通过观测站的时间间隔是多少?题3.3.1图3.观察者甲和乙分别静止于两个惯性系K和K′(K′系相对于K系作平行于x轴的匀速运动)中,甲测得在x轴上两点发生的两个事件的空间间隔和时间间隔分别为500 m和2×10-7 s,而乙测得这两个事件是同时发生的.问:K′系相对于K系以多大速率运动?4.如题3.3.1图所示,一发射台向东西两侧距离均为L0的两个接收站E与W发射信号.今有一飞机以匀速v沿发射台与两接收站的连线由西向东飞行,试问在飞机上测得两接收站接收到发射台同一信号的时间间隔是多少?5.某一宇宙射线中的介子的动能E k=7M0c2,其中M0是介子的静止质量.试求在实验室中观察到它的寿命是它的固有寿命的多少倍.6.要使电子的速度从v1=1.2×108 m/s增加到v2=2.4×108 m/s,必须对它做多少功?(电子静止质量m0=9.11×10-31 kg)7.观察者甲以0.8c的速度(c为真空中光速)相对于静止的观察者乙运动,若甲携带一质量为1 kg的物体,则(1)甲测得此物体的总能量为多少?(2)乙测得此物体的总能量为多少?四、回答问题:(共5分)对于下列一些物理量:位移、质量、时间、速度、动能,试问:(1)其中哪些物理量在经典物理和相对论中有不同的表达式?(2)哪些是经典物理中的不变量(即相对于伽利略变换不变)?(3)哪些是相对论中的不变量(即相对于洛伦兹变换不变)?答案:一、选择题1. (B)以火箭为参照系,不考虑火箭相对地面的速度,则故选2. (A)以飞船为参照系,不考虑飞船相对地面的速度,则故选3.(A)由洛伦兹变换:,;已知>,,得到>,得>故选4.(A)由洛伦兹变换:,,,知,⑵同,同,不变,则同⑵同,不同,不变,则不同故选5. (C),相对论动能为得故选6. (B)⑴⑵⑷正确,⑶中,不同,则不同故选7. (C)故选8. (C)相对论力学中的动能故选9. (A)静止能量为,已知,,得故选10.(D)碰撞前后动量守恒:,由此得碰后合成粒子的速度,得又碰撞前后中总能量守恒:,得故选二.填空题1.解:光速不变原理2.解:光速不变原理3.解:设实验室为系,介子为系,平均寿命为原时,4.解:由公式,已知,,代入得5.;解:⑴相对论动量公式:,得⑵相对论动能公式:;相对论动能公式:时,且,得出6.解:由功能关系得,需做功为,,得7.;解:⑴棒相对于甲是静止的。

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解.pdf

大学物理课后习题答案(上下册全)武汉大学出版社 习题3详解.pdf

3-1 有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J ,开始时转台以匀角速度ω0转动,此时有一质量为m 的人站在转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 [ ] A.2ωmR J J + B. 02)(ωR m J J+ C.02ωmR JD. 0ω 答案:A3-2 如题3-2图所示,圆盘绕O 轴转动。

若同时射来两颗质量相同,速度大小相同,方向相反并在一直线上运动的子弹,子弹射入圆盘后均留在盘内,则子弹射入后圆盘的角速度ω将:[ ]A. 增大.B. 不变.C. 减小.D. 无法判断. 题3-2 图 答案: C3-3 芭蕾舞演员可绕过脚尖的铅直轴旋转,当她伸长两手时的转动惯量为J 0,角速度为ω0,当她突然收臂使转动惯量减小为J 0 / 2时,其角速度应为:[ ] A. 2ω0 . B. ω0 . C. 4ω0 . D. ω 0/2. 答案:A3-4 如题3-4图所示,一个小物体,位于光滑的水平桌面上,与一绳的一端相连结,绳的另一端穿过桌面中心的小孔O . 该物体原以角速度ω 在半径为R 的圆周上绕O 旋转,今将绳从小孔缓慢往下拉.则物体:[ ]A. 动量不变,动能改变; 题3-4图B. 角动量不变,动量不变;C. 角动量改变,动量改变;D. 角动量不变,动能、动量都改变。

答案:D3-5 在XOY 平面内的三个质点,质量分别为m 1 = 1kg, m 2 = 2kg,和 m 3 = 3kg,位置坐标(以米为单位)分别为m 1 (-3,-2)、m 2 (-2,1)和m 3 (1,2),则这三个质点构成的质点组对Z 轴的转动惯量J z = .答案: 38kg ·m 23-6 如题3-6图所示,一匀质木球固结在一细棒下端,且可绕水平光滑固定轴O 转动,今有一子弹沿着与水平面成一角度的方向击中木球并嵌于其中,则在此击中过程中,木球、子弹、细棒系统对o 轴的 守恒。

大学物理C练习三静电场答案

大学物理C练习三静电场答案

练 习 三 静电场一、填空题1.点电荷q 1、q 2、q 3 和q 4 在真空中的分布如图所示.图中S为闭合曲面,则通过该闭合曲面的电场强度通量s E dS ⎰=____120()q q ε+________,式中的E 是点电荷___q 1、q 2、 q 3、q 4____在闭合曲面上任一点产生的场强的矢量和.2.在边长为a 的正方体中心处放置一电荷为Q 的点电荷,则正方体顶角处的电场强度的大小为_______203Qa πε______3.一半径为R 的均匀带电圆环,电荷线密度为λ. 设无穷远处为电势零点,则圆环中心O 点的电势U =_______02λε________. 4.一半径为R 的均匀带电导体球壳,带电荷为Q .球壳内、外均为真空.设无限远处为电势零点,则壳内各点电势U =_______04QR πε_______.5.在点电荷q 的电场中,把一个-1.0×10-9 C 的电荷,从无限远处(设无限远处电势为零)移到离该点电荷距离 0.1 m 处,克服电场力作功1.8×10-5 J ,则该点电荷q =_____ -2×10-7 C___________.(真空介电常量0=8.85×10-12 C2·N -1·m -2 )6.一电荷为Q 的点电荷固定在空间某点上,将另一电荷为q 的点电荷放在与Q 相距r 处.若设两点电荷相距无限远时电势能为零,则此时的电势能We =_____04Qqr πε____________.7. 图示BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电荷为+q 的点电荷,O 点有一电荷为-q的点电荷.线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所作的_______06qR πε______________。

二、选择题1. 如图所示,任一闭合曲面S 内有一点电荷q ,O 为S 面上任一点,若将q 由闭合曲面内的P 点移到T 点,且OP =OT ,那么 ( D ) (A) 穿过S 面的电通量改变,O 点的场强大小不变;(B) 穿过S 面的电通量改变,O 点的场强大小改变;(C) 穿过S 面的电通量不变,O 点的场强大小改变; (D) 穿过S 面的电通量不变,O 点的场强大小不变。

大学物理综合练习答案

大学物理综合练习答案
解:当物体滑至前端到达 台面 滑道 x时摩擦力可表示为 x L S m xg i (0 x L) f L mg i ( x L) 则全过程摩擦力的功为: S L m L A f f dl xg dx mg dx mg ( S ) L 2 0 L 动能定理:

t
dr t2 t i dt dV V i 2j 2m dt 0m 2j
V
2t 3 t t2 t3 dr i 2 j dt r i 2 tj i 2 tj 6m 3 0 0 2m
a dV / dt V dV / dx
3.飞轮作加速运动时,轮边缘上一点的运动方程为S=0.1t3(SI),飞轮 半径为2m.当此点的速率V= 30m/s时,其切向加速度为a 6m/s2 , 2 dS t 法向加速度为an= 450m/s2 V 。 V 0.3t 2 dV
d负电荷负电荷在点电荷q的电场中选取以q为中心半径为r的球面上一点p处作电势零点则与点电荷q距离为r的两块面积均为s的金属平板a和b彼此平行放置板间距离为dd远小于板的线度设a板带电量q精选课件12两块面积均为s的金属平板a和b彼此平行放置板间距离为dd远小于板的线度设a板带电量q一无限大均匀带电平面a其附近放一与它平行的有一定厚度的无限大平面导体板b已知a上的电荷面密度为则在导体板b的两个表面1和2上的感应电荷面密度为
作用在质点上的力对原点的力矩 M
( r P ) 即: k 或L r P r mV 12k Kg m2 s1 。 r F 3k N m
Y

大学物理作业(三)答案

大学物理作业(三)答案

班级___ ___学号____ ____姓名____ _____成绩______________ 一、填空题1. 一旋转齿轮的角加速度β=4at 3-3bt 2 ,式中a 、b 均为恒量,若齿轮具有初角速度为ω0,则任意时刻t的角速度 ,转过的角度为 .2. 质量为m ,半径为R 的均质圆盘,平放在水平桌面上,它与桌面的滑动摩擦系数为μ,试问圆盘绕中心轴转动所受摩擦力矩为 。

3. 一长为L 质量为m 的均质细杆,两端附着质量分别为m 1和m 2的小球,且m 1>m 2 ,两小球直径d 1 、d 2都远小于L ,此杆可绕通过中心并垂直于细杆的轴在竖直平面内转动,则它对该轴的转动惯量为 , 若将它由水平位置自静止释放,则它在开始时刻的角加速度为多大: 。

4. 质量为m ,半径为r 的均质圆盘,绕通过其中心且与盘垂直的固定轴以角速度ω匀速转动,则对其转轴来说,它的动量为____________,角动量为__________.三、计算题:1. 固定在一起的两个同轴均匀圆柱体可绕其光滑的水平对称轴OO ’转动,设大小圆柱的半径分别为R 和r ,质量分别为M 和m ,绕在两柱体上的细绳分别与物体m 1和物体m 2 相连,m 1和m 2则挂在圆柱体的两侧,如图所示,设R =0.20m ,r =0.10m ,m =4kg ,M =10kg ,m 1=m 2=2kg ,求柱体转动时的角加速度及两侧绳中的张力. 解:设1a ,2a 和β分别为1m ,2m 和柱体的加速度及角加速度,方向如图(如图b).题2-26(a)图 题2-26(b)图(1) 1m ,2m 和柱体的运动方程如下:2222a m g m T =- ①1111a m T g m =- ②12T R T r I α''-= ③rRO ’Om 2m 1式中 112221,,,T T T T a r a R αα''==== 而 222121mr MR I += 由上式求得122212222220.220.129.811100.2040.1020.2020.10226.13rad s Rm rm gI m R m r β--=++⨯-⨯=⨯⨯⨯+⨯⨯+⨯+⨯=⋅(2)由①式 22220.10 6.1329.820.8T m r m g α=+=⨯⨯+⨯=N 由②式11129.820.2. 6.1317.1T m g m R α=-=⨯-⨯⨯=N2. 计算题3-13图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50kg ,2m =200 kg,M =15 kg, r =0.1 m解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有a m T g m 222=- ① a m T 11= ②对滑轮运用转动定律,有α)21(212Mr r T r T =- ③又, αr a = ④联立以上4个方程,得 2212s m 6.721520058.92002-⋅=++⨯=++=M m m g m a题3-13(a)图 题3-13(b)图3. 如图质量为M ,长为L 的均匀直杆可绕O 轴在竖直平面内无摩擦地转动,开始时杆处于自由下垂位置,一质量为m 的弹性小球水平飞来与杆下端发生完全弹性碰撞,若M >3m ,且碰撞后,杆上摆的最大角度为θ=30,则求:(A)小球的初速度v 0,(B)碰撞过程中杆给小球的冲量. (教材)解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可列式:mvl I l mv +=ω0 ①2220212121mv I mv +=ω ② 上两式中231Ml I =,碰撞过程极为短暂,可认为棒没有显著的角位移;碰撞后,棒从竖直位置上摆到最大角度o30=θ,按机械能守恒定律可列式:)30cos 1(2212︒-=lMg I ω ③ 由③式得 2121)231(3)30cos 1(⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡︒-=l g I Mgl ω 由①式 mlI v v ω-=0 ④ 由②式 mI v v 2202ω-= ⑤所以 22001)(2ωωmv ml I v -=-求得glmM m m Ml ml I l v +-=+=+=31232(6)311(2)1(220ωω(2)相碰时小球受到的冲量为 ⎰-=∆=0d mv mv mv t F由①式求得 ωωMl l I mv mv t F 31d 0-=-=-=⎰gl M 6)32(6--=负号说明所受冲量的方向与初速度方向相反.m v MOL。

大学物理习题及答案3

大学物理习题及答案3

一 选择题 (共69分)1. (本题 3分)(4468) 一定量某理想气体按pV 2=恒量的规律膨胀,则膨胀后理想气体的温度 (A) 将升高. (B) 将降低.(C) 不变. (D)升高还是降低,不能确定. [ ]2. (本题 3分)(4552) 若室内生起炉子后温度从15℃升高到27℃,而室内气压不变,则此时室内的分子数减少了(A)0.500. (B) 400.(C) 900. (D) 2100. [ ]3. (本题 3分)(4304) 两个相同的容器,一个盛氢气,一个盛氦气(均视为刚性分子理想气体),开始时它们的压强和温度都相等,现将6 J 热量传给氦气,使之升高到一定温度.若使氢气也升高同样温度,则应向氢气传递热量 (A) 12 J . (B) 10 J .(C) 6 J . (D) 5 J . [ ]4. (本题 3分)(4014) 温度、压强相同的氦气和氧气,它们分子的平均动能ε和平均平动动能w 有如下关系:(A) ε和w 都相等. (B) ε相等,而w 不相等. (C) w 相等,而ε不相等.(D) ε和w 都不相等. [ ]5. (本题 3分)(4651) 下列各式中哪一式表示气体分子的平均平动动能?(式中M 为气体的质量,m 为气体分子质量,N 为气体分子总数目,n 为气体分子数密度,N A 为阿伏加得罗常量)(A) pV M m23. (B)pV M M mol 23. (C) npV 23. (D) pV N MM A 23mol . [ ]6. (本题 3分)(5335) 若在某个过程中,一定量的理想气体的内能E随压强p 的变化关系为一直线(其延长线过E -p 图的原点),则该过程为(A) 等温过程. (B) 等压过程.(C) 等体过程. (D) 绝热过程. []p7. (本题 3分)(4665) 假定氧气的热力学渭度提高一倍,氧分子全部离解为氧原子,则这些氧原子的平均速率是原来氧分子平均速率的 (A) 4倍. (B) 2倍.(C) 2倍. (D) 21倍. [ ]下列各图所示的速率分布曲线,哪一图中的两条曲线能是同一温度下氮气和氦气的分子速率分布曲线?[]vv(B(A(D(C9. (本题 3分)(5603)已知分子总数为N,它们的速率分布函数为f(v),则速率分布在v1~v2区间内的分子的平均速率为(A) ∫21d)(vvvvv f.(B) ∫21d)(vvvvv f/∫21d)(vvvvf.(C) ∫21d)(vvvvv fN.(D) ∫21d)(vvvvv f/N.[]10. (本题 3分)(4133)关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是(A) (1)、(2)、(3).(B) (1)、(2)、(4).(C)(2)、(4).(D)(1)、(4).[]11. (本题 3分)(4674)置于容器内的气体,如果气体内各处压强相等,或气体内各处温度相同,则这两种情况下气体的状态(A) 一定都是平衡态.(B) 不一定都是平衡态.(C) 前者一定是平衡态,后者一定不是平衡态.(D) 后者一定是平衡态,前者一定不是平衡态.[]理想气体向真空作绝热膨胀.(A) 膨胀后,温度不变,压强减小. (B) 膨胀后,温度降低,压强减小. (C) 膨胀后,温度升高,压强减小.(D) 膨胀后,温度不变,压强不变. [ ]13. (本题 3分)(4579) 对于理想气体系统来说,在下列过程中,哪个过程系统所吸收的热量、内能的增量和对外作的功三者均为负值?(A) 等体降压过程. (B) 等温膨胀过程.(C) 绝热膨胀过程. (D) 等压压缩过程. [ ]14. (本题 3分)(4679) 一物质系统从外界吸收一定的热量,则 (A) 系统的温度一定升高. (B) 系统的温度一定降低.(C) 系统的温度一定保持不变. (D) 系统的温度可能升高,也可能降低或保持不变.[ ]15. (本题 3分)(4310) 一定量的理想气体,其状态改变在p -T 图上沿着一条直线从平衡态a 到平衡态b (如图).(A) 这是一个膨胀过程.(B) 这是一个等体过程.(C) 这是一个压缩过程.(D) 数据不足,不能判断这是那种过程. []1216. (本题 3分)(4122) 如果卡诺热机的循环曲线所包围的面积从图中的abcda 增大为da c b a ′′,那么循环abcda 与da c b a ′′所作的净功和热机效率变化情况是:(A) 净功增大,效率提高.(B) 净功增大,效率降低.(C) 净功和效率都不变.(D) 净功增大,效率不变. [ ]c ′d T 2ab b ′c T 1Op两个卡诺热机的循环曲线如图所示,一个工作在温度为T 1 与T 3的两个热源之间,另一个工作在温度为T 2 与T 3的两个热源之间,已知这两个循环曲线所包围的面积相等.由此可知:(A ) 两个热机的效率一定相等.(B ) 两个热机从高温热源所吸收的热量一定相等.(C ) 两个热机向低温热源所放出的热量一定相等.(D ) 两个热机吸收的热量与放出的热量(绝对值)的差值一定相等. [ ]T 1 T 2T 3 T 3V p O18. (本题 3分)(5342) 一定量的理想气体,起始温度为T ,体积为V 0.后经历绝热过程,体积变为2 V 0.再经过等压过程,温度回升到起始温度.最后再经过等温过程,回到起始状态.则在此循环过程中(A) 气体从外界净吸的热量为负值. (B) 气体对外界净作的功为正值. (C) 气体从外界净吸的热量为正值.(D) 气体内能减少. [ ]19. (本题 3分)(4125) 有人设计一台卡诺热机(可逆的).每循环一次可从 400 K 的高温热源吸热1800 J ,向 300 K 的低温热源放热 800 J .同时对外作功1000 J ,这样的设计是 (A) 可以的,符合热力学第一定律. (B) 可以的,符合热力学第二定律. (C) 不行的,卡诺循环所作的功不能大于向低温热源放出的热量.(D) 不行的,这个热机的效率超过理论值. [ ]20. (本题 3分)(5074) 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是: (A) S 1 > S 2. (B) S 1 = S 2.(C) S 1 < S 2. (D) 无法确定. [ ]21. (本题 3分)(4135) 根据热力学第二定律可知:(A) 功可以全部转换为热,但热不能全部转换为功.(B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 (C) 不可逆过程就是不能向相反方向进行的过程.(D) 一切自发过程都是不可逆的. [ ]设有以下一些过程:(1) 两种不同气体在等温下互相混合.(2) 理想气体在定体下降温.(3) 液体在等温下汽化.(4) 理想气体在等温下压缩.(5) 理想气体绝热自由膨胀.在这些过程中,使系统的熵增加的过程是:(A) (1)、(2)、(3). (B) (2)、(3)、(4).(C) (3)、(4)、(5). (D) (1)、(3)、(5). []23. (本题 3分)(4340)气缸中有一定量的氮气(视为刚性分子理想气体),经过绝热压缩,使其压强变为原来的2倍,问气体分子的平均速率变为原来的几倍?(A) 22/5.(B) 22/7.(C) 21/5.(D) 21/7.[]二填空题 (共77分)24. (本题 3分)(4153)下面给出理想气体的几种状态变化的关系,指出它们各表示什么过程.(1) p d V= (M / M mol)R d T表示____________________过程.(2) V d p= (M / M mol)R d T表示____________________过程.(3) p d V+V d p= 0 表示____________________过程.25. (本题 4分)(4307)分子物理学是研究________________________________________________ __________的学科.它应用的基本方法是_________________方法.26. (本题 5分)(4016)三个容器内分别贮有1 mol氦(He)、 1 mol氢(H2)和1 mol氨(NH3)(均视为刚性分子的理想气体).若它们的温度都升高1 K,则三种气体的内能的增加值分别为:(普适气体常量R=8.31 J·mol−1·K−1)氦:△E=___________________;氢:△E=___________________;氨:△E=____________________.1 mol 氧气(视为刚性双原子分子的理想气体)贮于一氧气瓶中,温度为27℃,这瓶氧气的内能为________________J ;分子的平均平动动能为____________J;分子的平均总动能为_____________________J.(摩尔气体常量 R = 8.31 J ·mol -1·K -1 玻尔兹曼常量 k = 1.38×10-23J·K -1)28. (本题 3分)(5061) 分子热运动自由度为i 的一定量刚性分子理想气体,当其体积为V 、压强为p 时,其内能E =______________________.29. (本题 3分)(4655) 有两瓶气体,一瓶是氦气,另一瓶是氢气(均视为刚性分子理想气体),若它们的压强、体积、温度均相同,则氢气的内能是氦气的________倍.30. (本题 3分)(4283) 当理想气体处于平衡态时,若气体分子速率分布函数为f (v ),则分子速率处于最概然速率v p 至∞范围内的概率△N / N =________________.31. (本题 4分)(4459) 已知f (v )为麦克斯韦速率分布函数,N 为总分子数,则(1) 速率v > 100 m ·s -1的分子数占总分子数的百分比的表达式为_________; (2) 速率v > 100 m ·s -1的分子数的表达式为__________________.32. (本题 5分)(4037) 已知f (v )为麦克斯韦速率分布函数,v p 为分子的最概然速率.则()∫p f v v v 0d表示___________________________________________;速率v >v p 的分子的平均速率表达式为______________________.33. (本题 3分)(4082) 在p −V 图上(1) 系统的某一平衡态用_____________来表示; (2) 系统的某一平衡过程用________________来表示; (3) 系统的某一平衡循环过程用__________________来表示;一定量的理想气体处于热动平衡状态时,此热力学系统的不随时间变化的三个宏观量是__________________________________,而随时间不断变化的微观量是____________________________________________________________________.35. (本题 3分)(4578) 如图所示,已知图中画不同斜线的两部分的面积分别为S 1和S 2,那么(1) 如果气体的膨胀过程为a ─1─b ,则气体对外做功W =________; (2) 如果气体进行a ─2─b ─1─a 的循环过程,则它对外做功W =_______________.36. (本题 5分)(4676)设在某一过程中,系统由状态A 变为状态B ,如果__________________________________________________________________________________________________________________________,则该过程称为可逆过程;如果_____________________________________________________________________则该过程称为不可逆过程.37. (本题 3分)(4147) 同一种理想气体的定压摩尔热容C p 大于定体摩尔热容C V ,其原因是_______________________________________________________.38. (本题 3分)(4688) 刚性双原子分子的理想气体在等压下膨胀所作的功为W ,则传递给气体的热量为__________.39. (本题 5分)(4472) 一定量理想气体,从A 状态 (2p 1,V 1)经历如图所示的直线过程变到B 状态(2p 1,V 2),则AB 过程中系统作功W =_________;内能改变∆E =_________.p 112气体经历如图所示的一个循环过程,在这个循环中,外界传给气体的净热量是___________.23)41. (本题 5分)(4137)热力学第二定律的克劳修斯叙述是:___________________________________;开尔文叙述是________________________________________________________.42. (本题 3分)(4141)从统计的意义来解释, 不可逆过程实质上是一个________________________ __________________________的转变过程, 一切实际过程都向着_____________ _____________________________的方向进行.43. (本题 4分)(4713)给定的理想气体(比热容比γ为已知),从标准状态(p0、V、T)开始,作绝热膨胀,体积增大到三倍,膨胀后的温度T=____________,压强p=__________.三计算题 (共78分)44. (本题10分)(4070)容积为20.0 L(升)的瓶子以速率v=200 m·s−1匀速运动,瓶子中充有质量为100g的氦气.设瓶子突然停止,且气体的全部定向运动动能都变为气体分子热运动的动能,瓶子与外界没有热量交换,求热平衡后氦气的温度、压强、内能及氦气分子的平均动能各增加多少?(摩尔气体常量R=8.31 J·mol-1·K−1,玻尔兹曼常量k=1.38×10-23 J·K−1)45. (本题10分)(4155)有1 mol刚性多原子分子的理想气体,原来的压强为1.0 atm,温度为27℃,若经过一绝热过程,使其压强增加到16 atm.试求:(1) 气体内能的增量;(2) 在该过程中气体所作的功;(3) 终态时,气体的分子数密度.( 1 atm= 1.013×105 Pa,玻尔兹曼常量k=1.38×10-23 J·K-1,普适气体常量R=8.31 J·mol-1·K-1 )一定量的某种理想气体,开始时处于压强、体积、温度分别为p0=1.2×106Pa,V0=8.31×10-3m3,T0 =300 K的初态,后经过一等体过程,温度升高到T1 =450 K,再经过一等温过程,压强降到p = p0的末态.已知该理想气体的等压摩尔热容与等体摩尔热容之比Cp / CV=5/3.求:(1) 该理想气体的等压摩尔热容Cp 和等体摩尔热容CV.(2) 气体从始态变到末态的全过程中从外界吸收的热量.(普适气体常量R = 8.31 J·mol-1·K-1)47. (本题10分)(4587)一定量的理想气体,由状态a经b到达c.(如图,abc为一直线)求此过程中(1) 气体对外作的功;(2) 气体内能的增量;(3) 气体吸收的热量.(1 atm=1.013×105 Pa)48. (本题 5分)(4591)一卡诺循环的热机,高温热源温度是 400 K.每一循环从此热源吸进 100 J 热量并向一低温热源放出80 J热量.求:(1) 低温热源温度;(2) 这循环的热机效率.49. (本题10分)(4097)1 mol理想气体在T1 = 400 K的高温热源与T2 = 300 K的低温热源间作卡诺循环(可逆的),在400 K的等温线上起始体积为V1= 0.001 m3,终止体积为V2 = 0.005 m3,试求此气体在每一循环中(1) 从高温热源吸收的热量Q1(2) 气体所作的净功W(3) 气体传给低温热源的热量Q250. (本题 5分)(4703)以氢(视为刚性分子的理想气体)为工作物质进行卡诺循环,如果在绝热膨胀时末态的压强p2是初态压强p1的一半,求循环的效率.1 mol双原子分子理想气体作如图的可逆循环过程,其中1-2为直线,2-3为绝热线,3-1为等温线.已知T2 =2T1,V3=8V1试求:(1) 各过程的功,内能增量和传递的热量;(用T1和已知常量表示)(2) 此循环的效率η.(注:循环效率η=W/Q1,W为整个循环过程中气体对外所作净功,Q1为循环过程中气体吸收的热量)p12352. (本题10分)(4118)一定量的理想气体经历如图所示的循环过程,A→B和C→D是等压过程,B→C和D→A是绝热过程.已知:TC = 300 K,TB= 400K.试求:此循环的效率.(提示:循环效率的定义式η=1-Q2 /Q1,Q1为循环中气体吸收的热量,Q2为循环中气体放出的热量)A BCDO Vp一选择题 (共69分)1. (本题 3分)(4468)(B)2. (本题 3分)(4552)(B)3. (本题 3分)(4304)(B)4. (本题 3分)(4014)(C)5. (本题 3分)(4651)(A)6. (本题 3分)(5335)(C)7. (本题 3分)(4665)(B)8. (本题 3分)(4559)(B)9. (本题 3分)(5603)(B)10. (本题 3分)(4133)(D)11. (本题 3分)(4674)(B)12. (本题 3分)(4146)(A)13. (本题 3分)(4579)(D)14. (本题 3分)(4679)(D)15. (本题 3分)(4310)(C)16. (本题 3分)(4122)(D)17. (本题 3分)(4121)(D)18. (本题 3分)(5342)(A)(D)20. (本题 3分)(5074) (B)21. (本题 3分)(4135) (D)22. (本题 3分)(5073) (D)23. (本题 3分)(4340) (D)二 填空题 (共77分)24. (本题 3分)(4153) 等压 1分 等体 1分 等温 1分25. (本题 4分)(4307) 物质热现象和热运动规律 2分统计 2分26. (本题 5分)(4016) 12.5 J 2分20.8 J 2分24.9 J 1分27. (本题 5分)(4017) 6.23×10 32分6.21×10 − 212分1.035×10 − 21 1分28. (本题 3分)(5061) ipV 213分29. (本题 3分)(4655) 5 / 3 3分30. (本题 3分)(4283)∫∞pf v v v d )( 3分31. (本题 4分)(4459) (1) ∫∞100d )(v v f 2分 (2)∫∞100d )(v v Nf 2分速率区间0 ~ v p 的分子数占总分子数的百分率; 3分∫∫∞∞=ppf f v v vv v v v v d )(d )( 2分33. (本题 3分)(4082) 一个点。

大学物理综合练习题及答案

大学物理综合练习题及答案

⼤学物理综合练习题及答案综合练习题AII⼀、单项选择题(从每⼩题给出的四个备选答案中,选出⼀个正确答案,并将其号码填在题⼲后的括号内,每⼩题2分,共计20分)。

1、关于⾼斯定理,下⾯说法正确的是:()A. ⾼斯⾯内不包围电荷,则⾯上各点的电场强度E 处处为零;B. ⾼斯⾯上各点的E 与⾯内电荷有关,与⾯外的电荷⽆关;C. 穿过⾼斯⾯的电通量,仅与⾯内电荷有关;D. 穿过⾼斯⾯的电通量为零,则⾯上各点的E 必为零。

2、真空中有两块互相平⾏的⽆限⼤均匀带电平板,其中⼀块的电荷⾯密度为+σ,另⼀块的电荷⾯密度为-σ,两板间的电场强度⼤⼩为:()A. 0;B. 023εσ;C. 0εσ;D. 02εσ。

3、图1所⽰,P 点在半圆中⼼处,载流导线旁P 点的磁感应强度B 的⼤⼩为:() A. µ0I(r r 2141+π); B. µ0I(r r2121+π); C. µ0I(r r 4141+π); D. µ0I(r r 4121+π) 。

4、⼀带电粒⼦以速率V 垂直射⼊某匀强磁场B 后,运动轨迹是圆,周期为T 。

若以速率2V 垂直射⼊,则周期为:() A. T/2; B. 2T ; C. T ; D. 4T 。

5、根据洛仑兹⼒的特点指出下列叙述错误的为:() A. 洛仑兹⼒与运动电荷的速度相垂直; B. 洛仑兹⼒不对运动电荷做功; C. 洛仑兹⼒始终与磁感应强度相垂直;D. 洛仑兹⼒不改变运动电荷的动量。

6、在杨⽒双缝⼲涉实验中,两条狭缝相距2mm ,离屏300cm ,⽤600nm 光照射时,⼲涉条纹的相邻明纹间距为:()A. 4.5mm ;B. 0.9mm ;C. 3.12mm ;D. 4.15mm 。

7、若⽩光垂直⼊射到光栅上,则第⼀级光谱中偏离中⼼最远的光是:()A. 蓝光;B. 黄光;C. 红光;D. 紫光。

8、⼀束光是⾃然光和线偏振光的混合光,让它垂直通过⼀偏振⽚。

大学物理练习题答案完美生活答案 03流体力学

大学物理练习题答案完美生活答案 03流体力学

v2
=
s1v1 s2
=
5 × 4 × 10−4 8 × 10−4
=
2.5 m s
由伯努利方程有
10m
P1
+
1 2
ρ v12
+
ρ
gh1= P2
+
1 2
ρ v22
+
ρ
gh2
v1 = 5.0 m s, v2 = 2.5 m s, h1 = 10m, h2 = 0, ρ = 103 kg m3 , g = 9.8m / s p2 = 2.6 × 105 Pa 2.圆形水管的某一点 A,水的流速为 2.0 米/秒,压强为 3.0×105Pa。沿水管的另一点 B,比 A 点低 20 米,A 点水管半径是 B 点水管半径的 1.41 倍,忽略水的粘滞力,求 B 点的水流速度和压强。(重力加速度
图 5.一粗细 U 型玻璃管,右端半径 R=1.5mm,左端半径 r=0.50mm,将 U
型管注入适量水(两边管内水面离管口有一段距离),已知接触角为 0,已知重力加速度 g = 9.8m / s2 ,
水密度 ρ = 1000kg / m3 。问:
(1)那端液面高,液面是凸还是凹?
(2)两边水面的高度差? 解:(1)左端高 ……2 分
g = 9.8m / s2 )
5.某小朋友在吹肥皂泡的娱乐中,恰好吹成一个直径为 2.00cm 的肥皂泡,若在此环境下,肥皂液的
表面张力系数为 0.025N/m,则此时肥皂泡内外压强差为 10.0 Pa。
二、选择题
1.水管的某一点 A,水的流速为 1.0 米/秒,计示压强为 3.0×105Pa。沿水管的另一点 B,比 A 点低 20
2

大学物理习题集答案3-4

大学物理习题集答案3-4

说明:字母为黑体者表示矢量一、选择题1.关于静电场中某点电势值的正负,下列说法中正确的是: [ C ] (A) 电势值的正负取决于置于该点的试验电荷的正负;(B) 电势值的正负取决于电场力对试验电荷作功的正负;(C) 电势值的正负取决于电势零点的选取;(D) 电势值的正负取决于产生电场的电荷的正负。

2. 真空中一半径为R 的球面均匀带电Q ,在球心O 处有一带电量为q 的点电荷,如图所示。

设无穷远处为电势零点,则在球内离球心O 距离为r 的P 点处电势为: [ B ] (A)rq 04πε (B))(410RQ r q +πε (C)r Q q 04πε+ (D))(410RqQ r q -+πε 3. 在带电量为-Q 的点电荷A 的静电场中,将另一带电量为q 的点电荷B 从a 点移到b 点,a 、b 两点距离点电荷A 的距离分别为r 1和r 2,如图所示。

则在电荷移动过程中电场力做的功为 [ C ] (A))11(4210r r Q --πε; (B) )11(4210r r qQ -πε; (C))11(4210r r qQ --πε; (D) )(4120r r qQ--πε。

4.以下说法中正确的是[ A ] (A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强; (C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动; (E) 场强处处相同的电场中,各点的电位也处处相同.二、填空题1.电量分别为q 1, q 2, q 3的三个点电荷位于一圆的直径上, 两个在圆周上,一个在圆心.如图所示. 设无穷远处为电势零点,圆半径为R ,则b 点处的电势U = )(2310241q q q R++πε .2.如图所示,在场强为E 的均匀电场中,A 、B 两点间距离为d ,AB 连线方向与E 的夹角为. 从A 点经任意路径到BPRO qrQA1r a2r Q-• •• q 1 q 2 q 3RObEABdα点的场强线积分l E d ⎰⋅AB= αcos Ed .3.如图所示, BCD 是以O 点为圆心,以R 为半径的半圆弧,在A 点有一电量为q 的点电荷,O 点有一电量为+q 的点 电荷. 线段BA = R .现将一单位正电荷从B 点沿半圆弧轨道BCD 移到D 点,则电场力所作的功为 Rq 06πε-.三、计算题1.电量q 均匀分布在长为l 2的细杆上,求: (1)在杆延长线上与杆较近端距为a 处的电势; (2)在杆中垂线上与杆距为a 处的电势。

大学物理(西南交大)作业参考答案3

大学物理(西南交大)作业参考答案3

NO.3 角动量和刚体定轴转动班级 姓名 学号 成绩一、选择1.体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是 [ C ] (A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定.2.如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 [ C ] (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB .参考:2A Mgr Mr J β=+,BMgrJβ= 3.如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小[ B ] (A) 为41mg cos θ. (B) 为21mg tg θ(C) 为mg sin θ. (D) 不能唯一确定.4.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 [ C ] (A) 只有机械能守恒. (B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒.5.一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω [ C ] (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 参考:角动量守恒 ,而J 变大,故ω 变小。

6.已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的轨道角动量为:[ A ](A )m GMR ; (B )R GMm ;(C )Mm RG ; (D )R GMm 2。

大学物理综合试题及答案

大学物理综合试题及答案

大学物理综合试题及答案一、选择题(每题2分,共20分)1. 光在真空中的传播速度是多少?A. 300,000 km/sB. 299,792 km/sC. 299,792 km/hD. 300,000 km/h答案:B2. 根据牛顿第三定律,作用力和反作用力的关系是?A. 作用力大于反作用力B. 作用力小于反作用力C. 作用力等于反作用力D. 作用力和反作用力方向相反答案:C3. 以下哪个选项不是电磁波?A. 无线电波B. 微波C. 红外线D. 声波答案:D4. 根据热力学第一定律,能量守恒定律可以表示为?A. ΔU = Q + WB. ΔU = Q - WC. ΔU = W - QD. ΔU = Q + P答案:A5. 以下哪个选项是描述电荷守恒定律的?A. 电荷可以被创造或消灭B. 电荷可以被转移C. 电荷总量在封闭系统中保持不变D. 电荷在任何情况下都保持不变答案:C6. 根据欧姆定律,电流I、电压V和电阻R之间的关系是?A. I = V/RB. I = V * RC. V = I * RD. V = I / R答案:A7. 以下哪个选项是描述波长、频率和波速关系的公式?A. c = λfB. c = λ / fC. f = c / λD. f = λ * c答案:A8. 根据麦克斯韦方程组,以下哪个选项描述了电磁场的产生?A. 高斯定律B. 法拉第电磁感应定律C. 安培定律D. 洛伦兹力定律答案:B9. 以下哪个选项是描述光的干涉现象的条件?A. 两束光的频率相同B. 两束光的相位相同C. 两束光的波长相同D. 两束光的振幅相同答案:A10. 以下哪个选项是描述量子力学中波函数的?A. 波函数是粒子的概率密度B. 波函数是粒子的动量C. 波函数是粒子的能量D. 波函数是粒子的质量答案:A二、填空题(每题2分,共20分)1. 根据库仑定律,两个点电荷之间的力与它们的电荷量之积成正比,与它们之间的距离的平方成______。

大学物理综合练习(三)参考答案

大学物理综合练习(三)参考答案

=
V22 a2
V12
V2 V1
= V1 V2
< 1,即温度降低。
6.(1) a → b 等温膨胀过程吸热, b → c 等容过程放热。
(2) Vc
= V2 , Tc
=
T1
V1 V2
γ
−1
(3)η = 1 − Q2
= 1 − Qbc
= 1−
M M mol
CV (T1 − TC )
=1−
1

1


V1 V2
γ −1
Q1
Qab
M M mol
RT1
ln V2 V1
γ −1
ln V2 V1
7.致冷系数 W卡
=
Q2 A
=
T2 T1 − T2
=
273 − 5 22
=
268 22
= 12.2
∴Q2 = AW卡 = 1000 ×12.18 = 1.22 ×10 4 J (从室外吸收的热量) 传给室内的热量 Q1 = Q2 + A = (1.22 + 0.1) ×10 4 = 1.32 ×104 J 8.对 ABO 过程,外界做功 A1 = Q1 = −30 J ; 对 ODC 过程,对外做功 A2 = Q2 = 70 J ; Q Q1 = QBO + QOA , Q2 = QOD + QCO ∴ Q1 + Q2 = QBD + QCA , QBD = Q1 + Q2 − QCA = 140 J 9. 0° C 水至100° C 水:设想该过程为一个可逆的等压过程
=
i 2
(
p
2V2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

程;
10.
RT
ln
V2 V1
−b −b
+
a
1 V2

1 V1


11. ∆S
=
p1V1 ln 1 、 ∆S = 0 。 T2
三、计算题
1.(1) v
=
v0 时有 Nf
(v0 ) =
kv0
=
a
,∴ k
=
a v0
。由归一化条件
1 2
a
v0
+
av0
=
N
得 a
=
2N 3v0

∫ (2) ∆N =
2v0 1 .5v0
Nf (v) d v
=
a 2
v0

∆N
=
N 3

∫ ∫ ∫ (3) v =

vf (v) d v =
0
v0 0
v
a Nv0
vd v +
2v0
v
v0
a N
dv
=
11v02 a 6N
,∴ v
=
11 9
v0

2. 证明:
f
(v) =


E1 = E2 。又 1 、 2 在绝热线上, Q = 0 。根据 绝热 B 2 Q = A + ∆E ,而1→ 2 过程中系统对外做功不为
零,所以 E1 ≠ E2 ,即∆E ≠ 0 ,因此绝热线和等
V
温线不能相交于两点。
(2)用热力学第二定律证明
如上图作1 A→ 2 B→ 1循环,此过程对外作有用功(所围面积),但该循环只在等温
=
i 2
(
p
2V2

p1V1 ) +
1 2
( p2V2

p1V1) +
1 2
(
p1V
2

p2V1 )
=
i
+ 2
1
(
p
2V2

p1V1) +
1 2
p1V1

V2 V1

p2 p1

Q V2 V1
=
p2 p1
,∴ Q
=
i
+ 2
1
(
p
2V2
《大学物理》综合练习(三)参考答案
一、选择题
1. D;2.A;3.B;4.A;5.B;6.B;7.C;8.A;9.C;10.B;11.E; 12.D;13.A;14.A、B、D;15.B、C。
二、填充题
1. v p 、 v 、
v 2 ; 2.1 :1、 5 : 3 ; 3.
k T 、正比、 2πd 2 p
∫ ∫ ∫ SB − S A =
B(d Q) p = AT
B1 AT

M M mol
Cp
dT

=
T2 MC dT
T1
T
= MC ln T2 = 1× 4.18 × ln 373 = 1.30 kJ/K
T1
273
100° C 水至100° C 水蒸汽:设想该过程为一个可逆的等温过程
过程中吸热,而没有其它影响,即违反热力学第二定律,因此绝热线和等温线不能相
交于两点。
5.(1)Q V = a ,∴ p = a 2 ,系统对外界做功为
p
V2
∫ ∫ A =
V2 p dV =
V1
V2 V1
a2 V2
dV
=
a
2

1 V1
−1 V2

2
a2
(2) T2 T1
=
p2V2 p1V1
m 2πk
T

3
/
2
e

mv2 2kT
⋅ v2
=
4 π

v vp

2

e

v vp
2

1 vp
f (v p ) =
4 π v pe
,其中 v p
=
2k T m
。在 v p
~
vp
+
∆v 区间内的分子数为
1
∆N
=
Nf
(v p )∆v
=
4N ⋅ ∆v π vpe
=1−
1

1


V1 V2
γ −1
Q1
Qab
M M mol
RT1
ln V2 V1
γ −1
ln V2 V1
7.致冷系数 W卡
=
Q2 A
=
T2 T1 − T2
=
273 − 5 22
=
268 22
= 12.2
∴Q2 = AW卡 = 1000 ×12.18 = 1.22 ×10 4 J (从室外吸收的热量) 传给室内的热量 Q1 = Q2 + A = (1.22 + 0.1) ×10 4 = 1.32 ×104 J 8.对 ABO 过程,外界做功 A1 = Q1 = −30 J ; 对 ODC 过程,对外做功 A2 = Q2 = 70 J ; Q Q1 = QBO + QOA , Q2 = QOD + QCO ∴ Q1 + Q2 = QBD + QCA , QBD = Q1 + Q2 − QCA = 140 J 9. 0° C 水至100° C 水:设想该过程为一个可逆的等压过程
=
V22 a2
V12
V2 V1
= V1 V2
< 1,即温度降低。
6.(1) a → b 等温膨胀过程吸热, b → c 等容过程放热。
(2) Vc
= V2 , Tc
=
T1
V1 V2
γ
−1
(3)η = 1 − Q2
= 1 − Qbc
= 1−
M M mol
CV (T1 − TC )
=
4N ⋅ ∆v πe
m ,∴ ∆N ∝ 2kT
1 。
T
3.(1) ∆E
=
E2
− E1
=
i 2
R (T2
− T1 ) =
i 2
(
p2V2

p1V1 )
(2)
A
=
1 2
(V2
−V1 )( p1
+
p2
)
(3) Q
=
∆E
+
A
=
ቤተ መጻሕፍቲ ባይዱ
i 2
( p2V2

p1V1 )
+
1 2
(V2
− V1 )( p1+ p2 )
16π d 2 p 、 km T
平方根成反比; 4.4、4; 5.Ⅱ、v0 、N (1 − A) ; 6.(1)单位体积中速率在v → v + d v
区间内的分子数,(2)速率小于 v1 的分子数,(3)速率大于 v0 的所有分子的平均速率; 7.(1)等压,(2)等容,(3)等温,(4)等容; 8.29% 、 71% ; 9.绝热过程、等压过
∫ SC − S B =
C (d Q)T BT
= Mλ = 1× 2253 = 6.04 kJ/K
T
373
∆S AC = SC − S A = (SC − S B ) + (S B − S A ) = 7.34 kJ/K
3

p1V1 ) =
i
+1 2
R(T2
− T1 )
C = Q = i + 1 R , i = 5 ,∴C = 3R
T2 −T 1 2
p
4.(1)用热力学第一定律证明
1
反证法:如图,设等温线 A 与绝热线 B 相交于1、
等温 A
2 两点,由于1、 2 在等温线上,内能相等
相关文档
最新文档