中考数学知识点大全
中考数学知识点(完整版)
1、一元二次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。
②平行四边形不相邻的两个顶点连成的线段叫他的对角线。
③平行四边形的对边/对角相等。
④平行四边形的对角线互相平分。
菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。
③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。
②矩形的对角线相等,四个角都是直角。
③对角线相等的平行四边形是矩形。
④正方形具有平行四边形,矩形,菱形的一切性质。
⑤一组邻边相等的矩形是正方形。
多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。
二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。
中考数学知识点大集结
中考数学知识点大集结一、数与运算1.整数与有理数的概念、大小比较、相反数、绝对值、相加、相减、相乘、相除。
2.数轴的绘制和利用。
3.分数与小数的相互转换、比较大小。
4.分数的加减乘除运算。
5.小数的四舍五入、精确到一位或两位小数。
6.百分数的概念、百分数与分数、小数的相互转换、比较大小。
7.百分数的加减乘除运算。
二、代数式与方程式1.代数式的概念、合并同类项、加减乘除法则。
2.平方根与立方根的概念、简单运算。
3.一元一次方程的概念、解线性方程、列方程。
4.不等式的概念、解一元一次不等式、表示不等关系。
三、图形与几何1.基本图形的认识及性质:点、线、面、角。
2.直线的方程。
3.三角形的分类及性质:等边三角形、等腰三角形、直角三角形。
4.四边形的分类及性质:矩形、正方形、平行四边形、菱形。
5.圆的概念及性质:圆心、半径、直径、弧、弦。
6.数学常识与问题解决:计算长、体积、表面积、比例、相似、全等。
7.空间几何体的认识、面、棱、顶点、体积计算。
四、概率与统计1.概率的基本概念:事件、随机试验、样本空间、概率。
2.事件的概率及其性质:必然事件、不可能事件、互斥事件、对立事件、相互独立事件。
3.统计的基本概念:数据的收集与整理、频数、频率、频率分布表、直方图。
4.平均数的概念、算术平均数、中位数、众数、范围。
五、函数与图像1.函数的概念、函数的表示方式、函数的性质、函数图像。
2.一次函数的性质、函数图像与线段的关系、函数的应用。
3.二次函数的概念、函数值与自变量的关系、函数图像与抛物线的关系、一般式与顶点式方程。
4.一次函数与二次函数的比较、求解一次函数与二次函数的联立方程。
六、三角函数1.弧度制与角度制的互换。
2.正弦函数、余弦函数、正切函数的定义。
3.正弦定理、余弦定理的应用。
4.三角函数的应用。
以上是中考数学知识点的大集结,包括数与运算、代数式与方程式、图形与几何、概率与统计、函数与图像、三角函数等内容。
中考数学知识点总结完整版
第一讲 数与式第1课时 实数的有关概念考点一、实数的概念及分类 〔3分〕正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数〔π〕、开方开不尽的数 负无理数凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数;考点二、实数的倒数、相反数和绝对值 〔3分〕2、数轴:数轴是规定了原点、正方向、单位长度的一条直线.3、相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数. 4、绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 绝对值的问题经常分类讨论;5、倒数假设ab =1⇔ a 、b 互为倒数;假设ab =-1⇔a 、b 互为负倒数。
倒数等于本身的数是1和-1。
零没有倒数。
11a a-=考点三、平方根、算数平方根和立方根 〔3—10分〕 6、平方根①如果一个数的平方等于a ,那么这个数就叫做a 的平方根〔或二次方跟〕。
一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。
正数a 的平方根记做“a ±〞。
②算术平方根正数a 的正的平方根叫做a 的算术平方根,记作“a 〞。
正数和零的算术平方根都只有一个,零的算术平a ,2a =;注意a 的双重非负性:0≥a a ≥07、立方根如果一个数的立方等于a ,那么这个数就叫做a 的立方根〔或a 的三次方根〕。
一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。
中考数学重要知识点归纳
中考数学重要知识点归纳
一、数与式
1.整数与分数的运算
2.整式与分式的运算
3.代数式的加减乘除运算
4.矩形的面积与周长计算
二、代数式与方程
1.一元一次方程求解
2.一元二次方程求解
3.线性方程组求解
4.不等式的解集表示
三、几何
1.平面直角坐标系
2.直线与线段的性质
3.圆的性质与计算
4.三角形的性质与计算
5.平行线与角的性质
6.平面图形的对称性
四、函数
1.线性函数与线性方程的关系
2.幂函数与指数函数的计算与图像
3.函数的平移、翻折与对称
4.函数的最值与极值
五、统计与概率
1.统计数据的收集与整理
2.平均数、中位数、众数的计算
3.概率的计算与事件的排列组合
4.抽样调查的设计与分析
六、三角函数
1.直角三角形中的三角函数计算
2.任意角的三角函数计算
3.三角恒等式的证明与应用
4.根据图像判断三角函数与角度的关系
七、利益问题
1.简单利息与复利的计算
2.等额本息与等本等息的还款计算
3.百分数与比例的计算
以上是中考数学的重要知识点的归纳,考生可以根据这些知识点进行
系统地学习和总结,以提高数学考试成绩。
当然,除了掌握基础知识,考
生还需注重练习和思维能力的培养,通过多做题目、深入理解和独立思考,才能真正掌握数学知识,提升解题能力。
中考数学必背知识点(精简必背)
中考数学必背知识点(精简必背)中考数学必背知识点一、不为零的量1.分式 $\frac{A}{B}$,分母 $B\neq 0$;2.二次方程 $ax^2+bx+c=0$($a\neq 0$);3.一次函数 $y=kx+b$($k\neq 0$);4.反比例函数 $y=\frac{k}{x}$($k\neq 0$);5.二次函数 $y=ax^2+bx+c=0$($a\neq 0$)。
二、非负数1.$|a|\geq 0$;2.$a\geq 0$($a\geq 0$);3.$a^{2n}\geq 0$($n$ 为自然数)。
三、绝对值:$|a|=\begin{cases}a。
& a\geq 0\\-a。
& a<0\end{cases}$四、重要概念1.平方根与算术平方根:如果 $x^2=a$($a\geq 0$),则称 $x$ 为 $a$ 的平方根,记作:$x=\pm\sqrt{a}$,其中$x=\sqrt{a}$ 称为 $x$ 的算术平方根;2.负指数:$a^{-p}=\frac{1}{a^p}$;3.零指数:$a=1$($a\neq 0$);4.科学计数法:$a\times 10^n$($n$ 为整数,$1\leqa<10$)。
五、重要公式一)幂的运算性质1.同底数幂的乘法法则:$a^m\timesa^n=a^{m+n}$($a\neq 0$,$m$,$n$ 都是正数);2.幂的乘方法则:$(a^m)^n=a^{mn}$($m$,$n$ 都是正数);3.积的乘方法则:$(ab)^n=a^n\times b^n$($n$ 为正整数);4.同底数幂的除法法则:$\frac{a^m}{a^n}=a^{m-n}$($a\neq 0$,$m$,$n$ 都是正数,且 $m>n$)。
二)整式的运算1.平方差公式:$(a+b)(a-b)=a^2-b^2$;2.完全平方公式:$(a\pm b)^2=a^2\pm 2ab+b^2$。
初三数学笔记整理大全
初三数学笔记整理大全
1. 数与代数:
整数:整数的性质,运算规则(加、减、乘、除),绝对值,数轴表示。
分数和小数:分数的性质,运算规则,小数与分数的转换。
一元一次方程和一元二次方程:解法步骤,根的判别式,韦达定理。
不等式:不等式的性质,解不等式的方法,不等式组的解法。
2. 几何与图形:
直线与平面图形:直线的性质,平行线和垂直线的性质,三角形(等腰三角形,直角三角形,等边三角形)的性质和定理,四边形(平行四边形,矩形,菱形,正方形)的性质和定理。
圆:圆的基本概念,圆的性质,弧长和扇形面积的计算,圆周角和圆心角的关系。
立体几何:长方体、正方体、圆柱、圆锥、球的表面积和体积计算。
3. 数据分析与概率:
数据的收集、整理和描述:频数分布表,频率分布直方图,平均数,中位数,众数,极差,方差和标准差。
概率:概率的定义,等可能事件的概率计算,互斥事件和独立事件的概率。
4. 实用工具与方法:
平面直角坐标系:坐标系的基本概念,点的坐标表示,直线的斜率和截距,两点间的距
离公式。
一次函数和二次函数:函数的概念,一次函数和二次函数的解析式,图像和性质,函数的应用问题。
解析几何初步:直线和圆的方程,直线与直线、直线与圆、圆与圆的位置关系。
5. 思维训练与综合应用:
数学模型:建立数学模型解决实际问题,如行程问题,工程问题,利润问题等。
推理与证明:逻辑推理,数学归纳法,演绎推理,反证法等。
综合题型解析:针对中考常见的综合题型进行解析和练习。
中考数学必考知识点归纳整理
中考数学必考知识点归纳整理一、整数与有理数1.整数的概念及性质:整数的定义、相反数、绝对值、大小比较等。
2.有理数的概念及性质:有理数的定义、分数与小数的关系等。
3.整数与有理数的四则运算:加法、减法、乘法、除法的运算法则和性质。
4.整数与有理数的混合运算:根据题目要求进行整数与有理数的混合运算。
二、代数式与方程式1.代数式的概念及性质:代数式的定义、项、系数、次数等。
2.代数式的运算:加法、减法、乘法、除法、乘方等运算法则。
3.一元一次方程及其应用:方程的定义、基本性质、解方程的方法及应用。
4.一元一次不等式及其应用:不等式的定义、基本性质、解不等式的方法及应用。
三、平面图形与尺规作图1.平面图形的基本概念与性质:点、线、面的定义及性质。
2.四边形的性质:平行四边形、矩形、正方形、菱形、长方形的性质与判定等。
3.三角形的性质:等边三角形、等腰三角形、直角三角形的性质与判定等。
4.尺规作图:已知条件作图、已知作图求解等。
四、数据与统计1.数据的收集与整理:问卷调查、实验等方式收集数据,并对数据进行整理与分类。
2.数据的表示与分析:数据的图表表示,如条形图、折线图等,以及对数据的分析与解读。
3.统计相关性与预测:根据数据的相关性进行预测与判断。
五、几何变换1.平移、旋转、翻转的概念与性质:几何图形进行平移、旋转、翻转时的性质与规律。
2.平移、旋转、翻转的判定与作图:根据题目要求判断是否满足平移、旋转、翻转的条件,并进行作图。
六、函数与图像1.函数的概念与性质:函数的定义、自变量、因变量、函数值等。
2.函数的表示与性质:函数的图像、函数的单调性、函数的奇偶性等。
3.函数的运算:函数的加减乘除、函数的复合等运算法则。
4.函数的应用:函数的实际问题应用,如函数的最值、函数的变化规律等。
七、比例与相似1.比例的概念与性质:比例的定义、比例的性质、比例的性质与判定等。
2.比例的运算:比例的加减乘除、比例的复合等运算法则。
初三数学知识点归纳大全
初三数学知识点归纳大全数学是一门基础学科,对于初中生来说,掌握数学知识是十分重要的。
下面是初三数学知识点的归纳大全,包括了初三数学的各个方面。
1.数与代数-整数与有理数:整数的性质,有理数的概念与性质,有理数的四则运算。
-平方根与立方根:平方根的概念与性质,立方根的概念与性质。
-百分数:百分数的概念与性质,百分数的转化。
-代数式与多项式:代数式的概念与性质,多项式的展开与因式分解。
2.函数-函数的概念:自变量与因变量,函数的图像与性质。
-一次函数:一次函数的表达式与性质,一次函数的图像与应用。
-二次函数:二次函数的表达式与性质,二次函数的图像与应用。
-指数函数:指数函数的概念与性质,指数函数的图像与应用。
3.几何-基本概念与性质:点、线、面等基本概念与性质,平行线与垂直线等特殊性质。
-三角形:三角形的分类与性质,三角形的面积与周长计算。
-四边形:四边形的分类与性质,四边形的面积与周长计算。
-圆与圆的应用:圆的性质与计算,圆的应用问题解决。
4.概率与统计-概率的基本概念:概率的概念与性质,事件的概念,条件概率与乘法定理。
-统计与数据分析:数据的收集与整理,频率分布表与直方图,平均数与中位数的计算。
5.质量与容积-质量的测量:质量的基本单位,常见质量单位的换算。
-容积的测量:容积的概念与性质,常见容积单位的换算。
6.长度与时间-长度的测量:长度的基本单位,常见长度单位的换算。
-时间的测量:时间的基本单位,常见时间单位的换算。
7.初中数学思想方法-反证法:通过反设法证明命题的方法。
-数学归纳法:通过证明基本情况成立,并证明对于任意情况命题成立的方法。
-分类讨论法:通过将问题分为几种情况进行讨论与推导的方法。
以上是初三数学知识点的归纳大全,初三数学的内容论述涵盖了数与代数、函数、几何、概率与统计、质量与容积、长度与时间以及数学思想方法等方面。
通过系统地学习和掌握这些数学知识点,可以帮助初三学生提高数学水平,为高中数学学习打下坚实的基础。
初中数学中考知识点总结归纳完整版
初中数学中考知识点总结归纳完整版一、数的基本运算1.整数的加减乘除运算及应用2.分数的加减乘除运算及应用3.小数的加减乘除运算及应用二、数的性质与计算1.数的整除关系与最大公约数、最小公倍数2.约分与通分3.数的相反数、绝对值及其性质三、代数式与方程式1.字母代数式与值的计算2.解方程与方程的应用3.利用代数式解决实际问题的能力四、平面图形的认识与计算1.平面图形的名称与性质2.几何体的名称与性质3.平移、旋转、对称变换的认识与应用五、分析与统计1.折线图与旋转对称图形2.数据的收集与整理3.数据的分析与应用六、空间与三维图形1.几何体与其中特殊点的认识2.几何体间的位置关系及刻画3.解决空间问题的应用能力七、比例、百分数与利率1.比例与比例的应用2.百分数与百分数的应用3.利率与利率的应用总结:初中数学中考要求学生掌握数的基本运算、数的性质与计算、代数式与方程式、平面图形的认识与计算、分析与统计、空间与三维图形、比例、百分数与利率等知识点。
在数的基本运算方面,要熟练掌握整数、分数和小数的四则运算及其应用;在数的性质与计算方面,要理解数的整除关系,掌握最大公约数和最小公倍数的求解方法;在代数式与方程式方面,要能够理解字母代数式的含义,掌握解方程和利用代数式解决实际问题的能力;在平面图形的认识与计算方面,要了解各种平面图形的名称和性质,掌握平移、旋转和对称变换的应用;在分析与统计方面,要能够收集和整理数据,分析并应用数据解决问题;在空间与三维图形方面,要熟悉几何体的名称和性质,掌握解决空间问题的应用能力;在比例、百分数与利率方面,要理解比例和百分数的概念,能够应用比例和百分数解决问题。
中考数学所有知识点
中考数学所有知识点一、代数与函数1. 实数- 实数的性质与分类- 实数的运算法则2. 代数式与方程式- 代数式的加减乘除运算- 一元一次方程与一元一次不等式- 二元一次方程组的解法- 一元二次方程的解法- 绝对值不等式3. 函数- 函数与自变量的关系- 函数的图像、定义域与值域- 线性函数- 平方函数- 反比例函数- 根据函数和实际问题求解二、图形和空间几何1. 图形的性质- 点、线、线段、角的性质与分类- 平行线与垂直线的判定- 三角形的性质与分类- 四边形的性质与分类2. 平面图形- 直角坐标系与平面直角坐标- 各种平面图形的性质和特点- 三角形的面积计算- 相似三角形与三角形的比例关系3. 空间几何- 空间几何中的点、线、面等基本概念- 空间几何中的距离计算- 空间几何中的立体图形的性质和计算- 空间几何中的投影计算三、数据和概率统计1. 数据的处理- 数据的收集、整理和呈现- 数据的中心趋势与离散程度- 数据的分组与频率分布- 数据的统计图表绘制2. 概率与统计- 随机事件与概率的概念- 事件的排列与组合- 事件的概率计算- 实际问题中的统计与概率计算四、函数与图像的应用1. 函数的最值与极值- 函数的最大值与最小值- 函数图像的顶点与最值的关系2. 函数与图像的画法- 函数的图像和特点- 函数与实际问题的关系3. 函数的增减性与导数- 函数增减性的判定与应用- 函数导数的概念与计算- 函数与导数的应用五、几何证明题1. 平面几何证明- 几何命题的证明- 平行线的性质与证明- 三角形的性质与证明- 四边形的性质与证明2. 空间几何证明- 空间几何命题的证明- 空间几何图形的投影证明- 空间几何图形的平行关系的证明- 空间几何图形的垂直关系的证明综上所述,中考数学涵盖了代数与函数、图形和空间几何、数据和概率统计、函数与图像的应用以及几何证明题等各个知识点。
掌握了这些知识点,就能够在中考中熟练运用数学的方法进行解题,取得良好的成绩。
中考数学知识点归纳总结
中考数学知识点归纳总结一、数与代数1. 有理数- 有理数的定义- 有理数的分类(正数、负数、整数、分数)- 有理数的运算(加、减、乘、除、乘方、开方)2. 整数- 整数的性质- 整数的四则运算- 整数的比较和排序3. 分数与小数- 分数的基本性质- 分数与小数的互化- 分数的四则运算4. 代数表达式- 单项式与多项式- 代数式的加减运算- 代数式的乘除运算5. 方程与不等式- 一元一次方程的解法- 二元一次方程组的解法(代入法、消元法)- 不等式的性质和解集表示- 一元一次不等式及其解集6. 函数- 函数的概念- 线性函数和二次函数的图像及性质- 函数的基本运算(函数的和、差、积、商)二、几何1. 平面几何- 点、线、面的基本性质- 角的定义和分类(邻角、对角、同位角等)- 三角形的性质(等边、等腰、直角三角形)- 四边形的性质(矩形、菱形、正方形、平行四边形、梯形) - 圆的基本性质和圆的有关计算2. 立体几何- 立体图形的基本概念(体积、表面积)- 常见立体图形的性质(长方体、正方体、圆柱、圆锥、球)3. 图形的变换- 平移、旋转、轴对称、中心对称- 相似图形和全等图形的性质三、统计与概率1. 统计- 数据的收集和整理- 频数和频率- 统计图表的绘制和解读(条形图、折线图、饼图)2. 概率- 随机事件的概率- 计算简单事件的概率- 用树状图解决概率问题四、解题技巧与策略1. 解题方法- 列方程解应用题- 利用图形解决几何问题- 分类讨论法2. 考试策略- 时间管理- 题目审题- 检查与复核五、重要公式与定理- 面积公式(三角形、四边形、圆、梯形等)- 体积公式(长方体、正方体、圆柱、圆锥、球)- 勾股定理及其应用- 相似三角形定理- 圆周角定理- 百分比和利润计算以上是中考数学的主要知识点归纳总结。
在实际应用中,学生应根据具体的教学大纲和考试要求,对每个知识点进行深入学习和练习,以确保在考试中能够熟练运用。
中考数学重要知识点归纳大全
中考数学重要知识点归纳大全
一、数与代数
1.自然数、整数、有理数、实数的概念及性质。
2.数字计算的初步技能,包括整数的加减乘除、分数的加减乘除、百分数的运算等。
3.基本的代数运算,包括代数表达式的计算、方程的求解、分式的运算等。
4.代数式的展开与因式分解。
5.利用等式解决问题。
二、几何与图形
1.平面内角的概念,直线与平面的位置关系。
2.常见图形的性质,如正方形、长方形、三角形、梯形等。
3.常见多面体和圆柱体的性质。
4.直线与曲线的位置关系。
5.平行线与平行四边形的性质。
6.相似与全等的判断。
7.平行线与平面的位置关系。
三、函数与方程
1.函数的概念与性质。
2.函数的图像和函数关系的表示。
3.线性函数的性质与图像。
4.二次函数的性质与图像。
5.函数的运算与复合函数。
6.一元一次方程与一元一次不等式。
7.二次方程及一元二次不等式的解法。
8.一元一次方程组的解法。
四、数据与概率
1.数据的收集和整理。
2.数据的统计和描述。
3.常见统计图表的制作与分析。
4.概率的概念与性质。
5.事件的概念与计算。
6.排列与组合的计算。
7.概率的计算与应用。
五、实际问题
1.实际问题中的数学模型建立。
2.实际问题解决中的数学计算与推理。
3.实际问题中的解释和表达能力。
初三数学知识点总结
初三数学知识点总结一、整数1. 整数的概念与表示:正整数、负整数、零,绝对值,相反数,数轴。
2. 整数的加法与减法:同号相加减、异号相加减、绝对值。
3. 整数的乘法与除法:同号得正、异号得负,绝对值。
4. 整数的混合运算:加减乘除综合运算。
二、有理数1. 有理数的概念与表示:整数、分数。
2. 有理数的加法与减法:同分母、异分母。
3. 有理数的乘法与除法:分数相乘、相除。
4. 有理数的混合运算:加减乘除综合运算。
三、代数式1. 代数式的概念与表示:字母、数与字母的组合,常量项与同类项,系数与指数。
2. 代数式的运算:同类项相加减,化简。
3. 代数式的应用:代入数值,解方程。
四、方程与不等式1. 一元一次方程:定义与解法,两个方程的关系。
2. 一元一次不等式:定义与解法,两个不等式的关系。
3. 两个一元一次方程或不等式的应用:实际问题的建立与解答。
五、图形1. 图形的基本概念:平面图形、立体图形,多边形的命名与性质。
2. 平面图形的面积与周长:矩形、正方形、三角形、梯形、圆,面积和周长的计算。
3. 空间图形的体积与表面积:长方体、正方体、棱柱、棱锥、棱台、球,体积和表面积的计算。
六、数与式的比较1. 用比较运算符表示数与式的大小关系:大于、小于、等于、不等于。
2. 用绝对值表示数与式的大小关系:定义与应用。
七、百分数1. 百分数的概念与表示:百分数、百分数的转化。
2. 百分数的应用:百分数与分数的关系,百分数的增加、减少、乘法运算。
八、函数1. 函数的概念与表示:自变量与函数值,函数的定义域、值域与对应关系,函数的图象。
2. 函数的运算:函数的加法、减法、数乘、倍数函数。
3. 函数的图象与平移:函数图象的平移与翻折,函数图象的性质。
九、统计与概率1. 统计表的表示与应用:频数表、频率表、频率分布直方图。
2. 统计量的计算:众数、平均数、中位数、极差。
3. 简单概率的计算:事件的概率、样本空间与事件的关系,简单事件的计算。
中考数学知识点复习总复习资料大全(精华版)
中考数学总复习资料大全第一章实数★重点★实数的有关概念及性质,实数的运算☆内容提要☆一、重要概念1.数的分类及概念数系表:整数正整数0有理数实数(有限或无限循环性数)分数正无理数负整数正分数负分数无理数(无限不循环小数)说明:“分类”的原则:1)相称(不重、不漏)2)有标准负无理数正数实数0负数整数有理数分数无理数整数有理数分数无理数2.非负数:正实数与零的统称。
(表为:x≥0)常见的非负数有:a 2│a│(a 为一切实数)a (a≥0)性质:若干个非负数的和为0,则每个非负担数均为0。
3.倒数:①定义及表示法②性质: A.a ≠1/a (a≠±1);B.1/a 中,a≠0;C.0 <a<1 时1/a >1;a >1 时,1/a <1;D. 积为1。
4.相反数:①定义及表示法②性质: A.a ≠0 时,a≠-a;B.a 与-a 在数轴上的位置;C. 和为0, 商为-1 。
5.数轴:①定义(“三要素”)②作用: A. 直观地比较实数的大小;B. 明确体现绝对值意义;C. 建立点与实数的一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n(n 为自然数)7.绝对值:①定义(两种):代数定义:│a│= a(a ≥0) -a(a<0)几何定义:数 a 的绝对值顶的几何意义是实数 a 在数轴上所对应的点到原点的距离。
②│a│≥0, 符号“││”是“非负数”的标志; ③数 a 的绝对值只有一个; ④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
二、实数的运算1.运算法则(加、减、乘、除、乘方、开方)2.运算定律(五个—加法[ 乘法] 交换律、结合律;[ 乘法对加法的] 分配律)3.运算顺序: A. 高级运算到低级运算;B. (同级运算)从“左”到“右”(如5÷1 ×55);C.( 有括号时) 由“小”到“中”到“大”。
初三数学常考知识点
初三数学常考知识点一、实数与代数1.有理数:整数、分数、相反数、绝对值、有理数的乘方、平方根、算术平方根等。
2.实数:实数的定义、实数的分类、实数的性质、实数的运算等。
3.代数式:代数式的定义、代数式的分类、代数式的运算等。
4.一元一次方程:一元一次方程的定义、一元一次方程的解法、一元一次方程的应用等。
5.不等式:不等式的定义、不等式的性质、不等式的解法、不等式的应用等。
6.二元一次方程组:二元一次方程组的定义、二元一次方程组的解法、二元一次方程组的应用等。
7.点、线、面:点的定义、线的定义、面的定义、点、线、面的关系等。
8.平面几何基本概念:邻补角、对顶角、同位角、内错角、同旁内角、平行线、相交线、垂直、平行的性质等。
9.三角形:三角形的定义、三角形的分类、三角形的性质、三角形的判定、三角形的计算等。
10.四边形:四边形的定义、四边形的分类、四边形的性质、四边形的判定、四边形的计算等。
11.圆:圆的定义、圆的性质、圆的方程、圆的计算、扇形、弧、弦等。
12.空间几何:长方体、正方体、球、棱柱、棱锥等空间几何图形的性质、计算和应用。
13.一次函数:一次函数的定义、一次函数的图像、一次函数的性质、一次函数的应用等。
14.二次函数:二次函数的定义、二次函数的图像、二次函数的性质、二次函数的应用等。
15.反比例函数:反比例函数的定义、反比例函数的图像、反比例函数的性质、反比例函数的应用等。
16.函数图像:函数图像的性质、函数图像的变换、函数图像的分析等。
四、统计与概率1.统计:统计的基本概念、统计的运算、数据的收集与处理、图表的制作等。
2.概率:概率的基本概念、概率的计算、概率的应用等。
五、解决问题的方法1.方程思想:列方程、求解方程、检验解等。
2.函数思想:建立函数关系、求解函数问题等。
3.几何思想:利用几何性质、定理解决问题等。
4.数形结合思想:利用数形结合的方法解决问题等。
以上是初三数学常考的知识点,希望对你有所帮助。
中考数学知识点总结(完整版)
中考数学知识点总结(完整版)中考数学知识点总结一、整数及其运算1. 整数的概念:包括正整数、负整数和零。
2. 整数的比较:根据绝对值的大小进行比较,绝对值越大的整数越小。
3. 整数的加法和减法:- 同号相加,取相同符号,数值相加;- 异号相加,取绝对值较大的符号,数值取较大的减去较小的;- 整数减法可以转换为加法运算。
二、分数及其运算1. 分数的概念:由分子和分母组成,表示部分与整体的比例关系。
2. 分数的比较:可以先通分,再比较分子的大小。
3. 分数的加法和减法:- 分母相同,分子相加或相减;- 分母不同,先通分,再进行加减运算。
4. 分数的乘法和除法:- 分子相乘,分母相乘;- 除法转换为乘法,将除数倒数乘以被除数。
三、代数式及其运算1. 代数式的概念:由数字、字母和算符组成,可表示一个或多个数的和、差、积、商。
2. 代数式的加法和减法:将同类项相加或相减,并合并同类项。
3. 代数式的乘法:使用分配律,将每一项与其他项相乘。
4. 代数式的除法:将除法转换为乘法,将除数的倒数乘以被除数。
四、方程与方程组1. 方程的概念:由等号连接的两个代数式构成,表示两个量相等的关系。
2. 解一元一次方程:通过逆运算,使得未知数单独在一边,求出未知数的值。
3. 解一元一次不等式:通过运算规则,求出不等式的解集。
4. 方程组的概念:由多个方程组成,表示多个变量之间的关系。
5. 解二元一次方程组:通过消元法或代入法,求出方程组的解。
五、几何图形与计算1. 平面图形:包括点、线、线段、射线、角、三角形、四边形等。
2. 空间图形:包括立体图形如球体、长方体、正方体等。
3. 相似与全等:相似图形的对应边比值相等,全等图形各边和角相等。
4. 长度、面积、体积的计算公式:根据几何图形的特点,计算对应的量。
六、统计与概率1. 统计图表的读取与分析:理解直方图、折线图、饼图等的含义。
2. 平均数的计算:包括算术平均数、加权平均数等。
学科数学中考知识点总结
学科数学中考知识点总结一、数与代数1. 自然数、整数、有理数、实数和复数的相关概念。
2. 整式的概念,整式的加减乘除以及相关性质。
3. 一元一次方程与一元一次方程组,包括解法、实际问题和应用。
4. 一元一次不等式及其解法。
5. 一元二次方程及其解法,根与系数之间的关系。
6. 实系数多项式的相关概念,多项式的运算、根、系数与项数的关系。
7. 多项式整式的除法,多项式的因式分解以及分解方法。
8. 分式及其相关概念,分式的乘除法、分式方程及其解法。
9. 分式不等式及其解法。
10. 实数的大小比较及实数的绝对值。
11. 实数的实数平方根、实数立方根及其运算。
12. 复数及其相关概念,复数的加减乘除。
13. 多项式与一元一次方程的联系。
二、平面几何与空间几何1. 几何图形的基本性质,例如,各种三角形的性质、四边形的性质等。
2. 圆及其相关概念,圆的面积、周长与圆内接正多边形的面积的计算。
3. 直角坐标系,坐标的概念,点的坐标,距离的计算。
4. 直线和曲线的方程以及它们的相关性质。
5. 多边形的面积和周长的计算。
6. 三角形的面积,三角形的高、中线、角平分线等的相关概念及应用。
7. 直角三角形的三边关系及其应用。
8. 三角形的三边角关系及其证明。
9. 三角形的外心、内心、重心和垂心的相关概念及应用。
10. 圆锥曲线的相关概念,如椭圆、双曲线等。
11. 空间图形的相关概念和性质,如球体、柱体、锥体等的表面积和体积计算。
三、函数与图像1. 函数及相关概念,函数的自变量、因变量、定义域、值域和图像。
2. 一次函数的概念及相关性质,一次函数的表示形式和性质。
3. 一次函数的图像,一次函数的斜率、截距及其应用。
4. 一次函数的应用,如利润、成本、收入等问题的建立和求解。
5. 二次函数及其图像,二次函数的导数、顶点、对称轴及相关性质。
6. 二次函数与一元二次方程的关系,二次函数的最值及相关应用。
7. 二次函数与实际问题的应用。
2024年中考数学必背知识点
2024年中考数学必背知识点(考前复习)一、整数运算1.整数的概念及表示法2.整数的四则运算规则3.整数的加法和减法性质4.整数的乘法和除法性质5.正数、负数和零的概念及性质6.整数的乘方运算二、比例与比例应用1.倍数和约数的概念及性质2.比例的概念和性质3.比例的化简和扩大4.比例的倒数和反比例5.速度与时间的关系6.相似三角形的性质与判定三、图形的认识与运动1.图形的分类和性质2.直线、线段和射线的概念3.角度的概念和性质4.平行线和垂直线的性质5.三角形和四边形的性质6.圆、直线和角的关系四、分数与分数运算1.分数的概念及表示法2.分数的基本性质与运算规则3.分数的整数和因数分解4.分数的比较和化简5.分数的加法和减法6.分数的乘法和除法五、代数与方程1.代数式的概念和运算规则2.字母代数式的化简和展开3.代数式的加法和减法运算4.代数式的乘法和除法运算5.一元一次方程的概念和解法6.平均数和代数均值不等式六、空间几何体1.空间几何体的概念与分类2.空间几何体的性质与判定3.空间几何体的表面积计算4.空间几何体的体积计算5.空间几何体的折叠和展开6.空间几何图形的投影和相似七、统计与概率1.统计图形的概念和绘制2.统计数据的集中趋势和离散程度3.简单事件和复杂事件的概念4.概率的概念和计算5.独立事件和互斥事件6.相对频率和概率的近似计算八、函数与方程1.函数的概念和性质2.函数的增减性和奇偶性判断3.一次函数和二次函数的性质4.图像的平移、翻转和缩放5.方法、方程和不等式的解法6.函数的复合和反函数以上是2024年中考数学必背知识点,希望对你的考前复习有所帮助。
记得多做题多练习,相信你一定能取得好成绩!祝你成功!。
初三数学知识点汇总
初三数学知识点汇总
初三数学知识点汇总如下:
1. 整数与有理数:整数的加减乘除,有理数的加减乘除以及应用问题
2. 分数:分数的加减乘除,约分和分数的应用
3. 百分数:百分数的转换与运算,百分数在实际生活中的应用
4. 比例与比例关系:比例的定义,比例的性质,比例的四种倍数关系,比例在实际生活中的应用
5. 相似与全等:图形的相似与全等的判断条件,相似与全等图形的性
质与性质的应用
6. 勾股定理与三角形的面积:勾股定理的应用,三角形面积的计算
7. 空间几何体:长方体、正方体、棱柱、棱锥、棱台等空间几何体的
表面积和体积的计算
8. 平面直角坐标系:平面直角坐标系的性质与应用,点的坐标的计算
与应用
9. 线性方程与一元一次方程:解一元一次方程,应用解决问题
10. 图形的性质:多边形的性质,角的性质,三角形的性质以及应用
11. 统计与概率:频数表、频率表、统计图表的制作与分析,概率的
计算与应用。
以上是初三数学的一些重要知识点汇总,希望对你有帮助。
初三数学知识点大全
初三数学知识点大全一、代数知识1. 整数与有理数- 整数的加法、减法、乘法、除法- 有理数的概念及其运算- 绝对值与相反数2. 代数表达式- 单项式与多项式- 合并同类项- 因式分解3. 一元一次方程与不等式- 方程的解法- 解不等式的基本原理- 实际问题的建模与求解4. 二元一次方程组- 代入法与消元法- 三元一次方程组的解法5. 函数的基本概念- 函数的定义与表示- 常见函数:一次函数、二次函数、反比例函数 - 函数的性质与图象二、几何知识1. 平面几何- 点、线、面的基本性质- 角的概念与分类- 三角形的性质与分类- 四边形的性质与计算2. 圆的基本性质- 圆的定义与性质- 圆周角与圆心角的关系- 弧长与扇形面积的计算3. 空间几何- 空间图形的基本概念- 立体图形的表面积与体积计算- 棱柱、棱锥、圆柱、圆锥的结构特征4. 相似与全等- 全等三角形的判定与性质- 相似三角形的判定与性质- 相似多边形与相似比5. 解析几何初步- 坐标系的建立与应用- 直线与曲线的方程- 点、线、面间的距离与角度计算三、概率与统计1. 统计的基本概念- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率的初步认识- 随机事件的概率- 概率的计算方法- 条件概率与独立事件3. 随机变量与分布- 离散型随机变量及其分布- 连续型随机变量及其分布- 期望值与方差的概念四、数列与数学归纳法1. 等差数列与等比数列- 数列的概念与表示- 等差数列的通项公式与求和公式 - 等比数列的通项公式与求和公式2. 数学归纳法- 数学归纳法的原理- 证明方法与步骤- 应用数学归纳法解决实际问题五、数论基础1. 质数与合数- 质数的定义与性质- 质数的分布与筛法2. 最大公约数与最小公倍数- 最大公约数的求法- 最小公倍数的求法3. 整数的性质- 整数的分解与因式分解- 整数的奇偶性六、解题技巧与策略1. 逻辑推理与证明- 演绎推理与归纳推理- 证明的基本方法2. 解题策略- 分析法与综合法- 归纳法与反证法3. 应试技巧- 时间管理与题目顺序- 常见错误分析与应对结语:初三数学的学习不仅要求掌握基础知识点,还要求能够灵活运用这些知识解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学知识点大全════════目录═════════一、实数 (1)二、代数式 (3)三、方程 (7)四、不等式 (9)五、函数 (10)六、统计与概率 (14)七、线段、角 (16)八、相交线、平行线 (16)九、三角形 (17)十、四边形 (20)十一、图形的变换 (23)十二、圆 (26)数与代数一、实数(一)实数的分类正整数整数 零有理数 负整数 有限小数或循环小数 正分数 实数 分数负分数正无理数无理数 无限不循环小数负无理数注意: (1)实数还可按正数,零,负数分类.(2)整数还可分为奇数,偶数.零是偶数,偶数一般用2n (n 为整数)表示;奇数一般用2n -1或2n +1(n 为整数)表示.(3)正数和零统称为非负数. (二)相关概念1.有理数、无理数、实数(1)有理数:能够写成分数形式nm(m 、n 是整数,n ≠0)的数叫做有理数. (2)无理数:无限不循环小数叫做无理数. (3)实数:有理数、无理数统称为实数. 2.数轴规定了原点、正方向和单位长度的直线叫做数轴.一般规定从原点向右方向为正方向. 注意:数轴上的点和实数一一对应. 3.绝对值数轴上表示一个数的点与原点的距离叫做这个数的绝对值,数a 的绝对值记作a .正数和零的绝对值是它的本身,负数的绝对值是它的相反数.即:⎪⎩⎪⎨⎧<-=>=. , , )0()0(0)0(a a a a a a 4.相反数符号不同、绝对值相同的两个数互为相反数,零的相反数是零.注意:如果a 与b 互为相反数,则有0=+b a 或b a -=,反之亦成立. 5.倒数乘积为1的两个数互为倒数.注意: (1)如果a 与b 互为倒数,则有1=ab ,反之亦成立. (2)倒数等于本身的数是1和-1. (3)零没有倒数. 6.科学记数法把一个数记成a ×10n的形式,其中:n a ,101<≤是整数,这种记数法称为科学记数法.(三)实数的运算 1.实数加、减法法则(1)同号两数相加,取相同的符号,并把绝对值相加.(2)异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(3)一个数与0相加,仍得这个数. (4)实数加法运算律 交换律:a +b =b +a 结合律:(a +b )+c =a +(b +c )(5)减去一个数,等于加上这个数的相反数. 2.实数乘法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘.0与任何数相乘都得0.(2)几个不等于0的数相乘,积的符号由负因数的个数决定.当负因数有奇数个时,积为负;当负因数有偶数个时,积为正.(3)几个数相乘,有一个因数为0,积就为0. (4)乘法运算律交换律:a ×b =b ×a 结合律:(a ×b )×c =a ×(b ×c ) 分配律:(a +b )×c =a ×c +b ×c 3.实数除法法则(1)除以一个不等于0的数,等于乘这个数的倒数. (2)两个不等于0的数相除,同号得正,异号得负,并把绝对值相除.0除以任何一个不等于0的数,都得0. 4.实数的乘方法则(1)实数的乘方运算是利用实数的乘法运算进行的.即an 个a a a a n⋅⋅= 求相同因数的积的运算叫乘方,乘方运算的结果叫做幂.(2)正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数. 5.数的开方(1)平方根、算术平方根:如果a x =2(a ≥0),那么x 就叫做a 的平方根(也称二次方根).一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.正数a 的平方根,记作:a ±.正数a 的平方根a 叫做a 的算术平方根.正数和零的算术平方根都只有一个.零的算术平方根是零.⎩⎨⎧<-≥==.,)0()0(2a a a a a a注意:a 的“双重非负性” :⎩⎨⎧≥≥.,00a a求一个数的平方根的运算叫做开平方.(2)立方根:如果a x =3,那么x 就叫做a 的立方根.一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:33a a -=-,这说明三次根号内的负号可以移到根号外面. 求一个数的立方根的运算叫做开立方.正数的立方根是正数;负数的立方根是负数;0的立方根是0.6.实数的混合运算实数的运算顺序:先乘方,再乘除,最后加减,如果有括号,先进行括号内的运算. 7.实数的大小比较数形结合法:在数轴上表示的两个数右边的数总比左边的数大. 正数都大于0,负数都小于0,正数大于负数.绝对值法:该方法常用于两负数间的大小比较,即两负实数,绝对值大的反而小. 平方法:当被比较的两数中含有无理数时,可先分别将这两数平方,再比较大小. 作差法:⎭⎬⎫<-≥-00b a b a ⎩⎨⎧<≥ba ba 二、代数式(一)整式1.整式的有关概念用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式.单独一个数或一个字母也是单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数就是这个多项式的次数.单项式和多项式统称整式. 2.同类项、合并同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项. 把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变. 3.去括号法则括号前面是“+” ,把括号和它前面的“+”号去掉,括号里各项的符号都不改变. 括号前面是“-” ,把括号和它前面的“-”号去掉,括号里各项的符号都要改变. 4.整式的加减法进行整式的加减运算时,如果有括号先去括号,再合并同类项. 5.整式的乘法(1)单项式的乘法法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘的运算法则:单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加.(3)多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项. (4)乘法公式:①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-; ★③ ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式. (5)幂的运算法则同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加. 即:nm nmaa a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.即:()mn nma a =(n m ,都是正整数).积的乘方法则:积的乘方,把积的每一个因式分别乘方,再把所得的幂相乘.即:()nn nb a ab =(n 为正整数).同底数幂的除法法则:同底数幂相除,底数不变,指数相减.即:nm n m aa a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p,0(1≠=-为正整数). (二)因式分解 1.因式分解的概念把一个多项式写成几个整式的积的形式,叫做多项式的因式分解,也叫做把这个多项式分解因式. 注意:(1)因式分解的结果必须是几个整式的积的形式.例如:()c b a c b a ++=++222,不是因式分解.(2)因式分解和整式乘法是互逆变形.例如:(a +b )(a -b )a 2-b 2.2.因式分解的常用方法 (1)提公因式法 (2)运用公式法平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-.★(3)十字相乘法:x 2+(a +b )x +ab =(x +a )(x +b ) 3.因式分解的一般步骤 因式分解的步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:可以尝试运用公式法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止. (三)分式1.分式及其相关概念分式的概念:一般地,如果A 、B 表示两个整式,且B 中含有字母,那么代数式BA叫做分式.分式和整式统称为有理式.注意: (1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别; (2)当分子等于零而分母不等于零时,分式的值才是零. 2.分式的性质(1)分式的基本性质:分式的分子和分母都乘(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:CB C A C B C A B A ÷÷=⨯⨯=(其中C 是不等于零的整式). (2)分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如:BAB A B A B A --=--=--=. (3)约分和通分把一个分式的分子和分母分别除以它们的公因式,叫做分式的约分.一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.分子与分母没有公因式的分式,叫做最简分式. 把几个异分母的分式变形成同分母的分式,叫做分式的通分,变形后的分母叫做这几个分式的公分母. 几个分式中各分母系数(都是整数)的最小公倍数与所有字母的最高次幂的积叫做这几个分式最简公分母.3.分式的运算法则(1)分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:acb ac a b ±=±; ②异分母的分式相加减,先通分,再加减.用式子表示是:adacbd d c a b +=±.(2)分式的乘除法则:分式乘分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:ac bd c d a b =⨯;adbcd c a b c d a b =⨯=÷ (3)分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:n n na b a b =⎪⎭⎫⎝⎛(n 为整数).分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的.(四)二次根式 1.二次根式的概念(1)一般地,式子)0(≥a a 叫做二次根式,a 叫被开方数,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式.(2)最简二次根式若二次根式满足:①被开方数中不含能开得尽方的因数或因式;②被开方数中不含分母;③分母中不含有根号.这样化简后得到的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而ba ,()2b a +,248ab ,x 1,8,31就不是最简二次根式. (3)同类二次根式经过化简后,被开方数相同的二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.2.二次根式的性质(1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a(3))0,0(≥≥⋅=b a b a ab . (4))0,0(>≥=b a ba b a . 3.二次根式的运算二次根式的加减法法则:二次根式相加减,先化简每个二次根式,然后合并同类二次根式. 二次根式的乘法法则:两个二次根式相乘,被开方数相乘,根指数不变.即:abb a =⋅(0,0≥≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则:两个二次根式相除,被开方数相除,根指数不变,即:baba =(0,0>≥b a ). 三、方程(一)一元一次方程 1.一元一次方程的概念含有未知数的等式叫方程.只含有一个未知数(元),并且未知数的次数都是1(次),像这样的整式方程叫一元一次方程.能使方程两边的值相等的未知数的值,叫方程的解.求方程的解的过程叫做解方程.方程0=+b ax (x 为未知数,0≠a )叫做一元一次方程的标准形式.2.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式. (2)等式的两边都乘(或除以)同一个不等于0的数,所得结果仍是等式. 3.一元一次方程的解法(1)去分母:在方程的两边都乘以各分母的最小公倍数; (2)去括号:先去小括号,再去中括号,最后去大括号;(3)移项:把含有未知数的项都移到方程的一边,其它项都移到方程的另一边(记住移项要变号); (4)合并同类项:把方程化成b ax =的形式;(5)系数化为1:在方程两边都除以未知数的系数a (当0≠a 时),得到方程的解ab x =. 4.用一元一次方程解决问题列方程解决问题的步骤:设、列、解、验、答. (二)一元二次方程 1.一元二次方程的概念只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.其一般形式是ax 2+bx +c =0(a ≠0).注意:由一元二次方程的定义可知,只有同时满足以下三个条件:①是整式方程;②含有一个未知数;③未知数的最高次数是2.这样的方程才是一元二次方程,不满足其中任何一条的方程都不是一元二次方程.2.一元二次方程的解法 直接开平方法:直接通过求平方根来解一元二次方程的方法叫做直接开平方法.直接开平方法适用于解形如k h x =+2)((h 、k 为常数,k ≥0)的一元二次方程..配方法:把一个一元二次方程变形为(x +h )2=k (h 、k 为常数)的形式,当k ≥0时,运用直接开平方法求出方程的解,这种解一元二次方程的方法叫做配方法.用配方法解一元二次方程02=++c bx ax 的一般步骤: (1)二次项系数化为1:方程两边都除以二次项系数;(2)移项:使方程左边为二次项和一次项,右边为常数项;(3)配方:方程两边都加上一次项系数一半的平方,把原方程化为(x +h )2=k 的形式; (4)当k ≥0时,用直接开平方法解变形后的方程. 公式法:一元二次方程02=++c bx ax (a ≠0)的求根公式:)04(2422≥--±-=ac b aac b b x .用公式法解一元二次方程的一般步骤:(1)把方程化为一般形式,确定c b a ,,的值; (2)求出ac b 42-的值;(3)若042≥-ac b ,则把c b a ,,及ac b 42-的值代入一元二次方程的求根公式. 因式分解法:用因式分解法解一元二次方程的一般步骤: (1)将方程的右边化为零;(2)将方程的左边分解为两个一次因式的乘积; (3)令每个因式分别为零,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 3.一元二次方程根的判别式一元二次方程根的判别式的概念:一元二次方程02=++c bx ax 是否有实数根,完全取决于ac b 42-的符号,因此,我们就把ac b 42-叫做一元二次方程02=++c bx ax 的根的判别式,通常用“∆”来表示,即∆=ac b 42-. 注意:要使用判别式,必须先将方程化为一般形式,以便确定c b a ,,;一元二次方程根的情况与判别式 ∆ 的关系:∆>0⇔方程有两个不相等的实数根; ∆=0⇔方程有两个相等的实数根; ∆<0⇔方程没有实数根; ∆≥0⇔方程有两个实数根. ★4.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个根是21,x x ,那么a b x x -=+21,ac x x =21. 5.用一元二次方程解决问题.(三)分式方程1.分式方程的相关概念分母中含有未知数的方程叫分式方程.解分式方程有可能产生增根是分式方程的一个特点,因为在利用“去分母” ,把分式方程转化为整式方程时,方程两边都乘以含有未知数的整式,而这个整式的值有可能是零,这种变形不满足方程的两边不能乘0的约束条件,所以就产生了不满足原方程的根,称为“增根” .检验出增根要舍去.2.分式方程的解法解分式方程的思想是将“分式方程”转化为“整式方程” . 其步骤是: (1)去分母,方程两边都乘以最简公分母; (2)解所得的整式方程;(3)验根:将所得的根代入最简公分母,若等于0就是增根,应该舍去;若不等于0就是原方程的根. (四)二元一次方程组1.二元一次方程组的相关概念含有两个未知数,并且所含未知项的次数都是1的整式方程叫做二元一次方程,它的一般形式是()0,00≠≠=++b a c by ax .适合二元一次方程的一对未知数的值叫做二元一次方程的一个解.把含有两个未知数的两个一次方程联立在一起就组成了一个二元一次方程组.如⎩⎨⎧=+=-5201y x x 就是二元一次方程组.二元一次方程组中两个方程的公共解叫做二元一次方程组的解. 2.二元一次方程组的解法(1)代入消元法,简称代入法 (2)加减消元法,简称加减法 注意:(1)任何一个二元一次方程有无数解;(2)二元一次方程组的解有唯一解、无数解、无解三种情况.★3.三元一次方程组把含有三个未知数的三个一次方程联立在一起,就组成了一个三元一次方程组,其解法是:三元一次方程组−−→−消元二元一次方程组. 4.用方程组解决问题四、不等式(一)不等式的相关概念1.不等式的概念用不等号表示不等关系的式子,叫做不等式. 2.不等式的解集能使不等式成立的未知数的值叫做不等式的解.一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集. 求不等式解集的过程叫做解不等式. (二)不等式的性质不等式的性质1:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.不等式的性质2:不等式的两边都乘 (或除以)同一个正数,不等号的方向不变.不等式两边都乘 (或除以)同一个负数,不等号的方向改变.(三)一元一次不等式的概念及解法1.一元一次不等式的概念一般的,只含有一个未知数,并且未知数的最高次数是1,系数不等于0的不等式叫做一元一次不等式.2.一元一次不等式的解法步骤①去分母;②去括号;③移项;④合并同类项;⑤将x 项的系数化为1. (四)一元一次不等式组1.一元一次不等式组的相关概念把几个含有同一个未知数的一次不等式联立在一起,就组成了一个一元一次不等式组. 不等式组中所有不等式的解集的公共部分叫做这个不等式组的解集. 2.一元一次不等式组的解法步骤:①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.注意:求不等式组公共解的一般规律:同大取大,同小取小,一大一小中间找,大大小小无法找. 3.用不等式解决问题.五、函数(一)平面直角坐标系 1.物体位置的确定 2.平面直角坐标系(1)平面直角坐标系的有关概念平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系,水平方向的数轴称为x 轴或横轴,竖直方向的数轴称为y 轴或纵轴,它们统称为坐标轴,公共原点O 称为坐标原点.(2)不同位置的点的坐标的特征各象限内点的坐标有如下特征(如右图所示): 两条坐标轴夹角平分线上的点的坐标的特征:点P (x ,y )在第一、三象限的夹角平分线上⇔x 与y 相等.点P (x ,y )在第二、四象限的夹角平分线上⇔x 与y 互为相反数. 和坐标轴平行的直线上点的坐标的特点:位于平行于x 轴的直线上的各点的纵坐标相同;位于平行于y 轴的直线上的各点的横坐标相同. 关于x 轴、y 轴或原点对称的点的坐标特征:点P 与点'P 关于x 轴对称⇔横坐标相等,纵坐标互为相反数. 点P 与点''P 关于y 轴对称⇔纵坐标相等,横坐标互为相反数. 点P 与点'''P 关于原点对称⇔横、纵坐标均互为相反数. 或者说点P (x ,y )与点P ’(x ,-y )关于x 轴对称; 点P (x ,y )与点P ’(-x ,y )关于y 轴对称; 点P (x ,y )与点P ’(-x ,-y )关于原点对称. (3)点到坐标轴及原点的距离点(),P x y 到坐标轴及原点的距离(如图): ①点P (x ,y )到x 轴的距离等于|y |; ②点P (x ,y )到y 轴的距离等于|x |; ③点P (x ,y )到原点的距离等于22y x +.(二)函数 1.常量与变量在某一变化过程中,数值保持不变的量叫做常量,可以取不同数值的量叫做变量. 2.函数的概念一般地,在某一变化过程中有两个变量x 与y ,如果对于变量x 的每一个值,y 都有唯一的值与它对应,那么就称y 是x 的函数,x 是自变量.使函数有意义的自变量的取值的全体,叫做函数的自变量的取值范围. 注:(1)在平面直角坐标系中,以函数的自变量的值为横坐标、相应的函数值为纵坐标的点所组成的图形叫做这个函数的图像.(2)画函数图像的一般步骤:列表、描点、连线. 3.函数的三种表示法 (1)解析法;(2)列表法;(3)图像法. 4.一次函数(1)正比例函数和一次函数的概念一般的,形如b kx y +=(b k ,是常数,0≠k )的函数叫做一次函数.特别的,当b =0时,kx y =(k 为常数,0≠k ).叫做x 的正比例函数.(2)一次函数的图像和性质 一次函数的图像及画法:所有一次函数的图像都是一条直线.一次函数b kx y +=的图像,也称作直线b kx y +=.画一次函数的图像只须找两个点.一次函数的性质:一般的,一次函数b kx y +=有下列性质:①当k >0时,y 随x 的增大而增大;②当0<k 时,y 随x 的增大而减小. 正比例函数的性质:①当k >0时,图像经过第一、三象限,y 随x 的增大而增大;②当k <0时,图像经过第二、四象限,y 随x 的增大而减小. 直线y =kx +b 与y =kx 的位置关系(3)待定系数法:先写出含有未知系数的函数表达式,再根据条件求出这些未知系数的值,从而确定函数表达式.(4)用一次函数解决问题 (5)一次函数与二元一次方程一般地,一次函数y =kx +b 的图像上任意一点的坐标都是二元一次方程kx -y +b =0的解;以二元一次方程kx -y +b =0的解为坐标的点都在一次函数y =kx +b 的图像上.如果两个一次函数的图像有一个交点,那么交点的坐标就是相应的二元一次方程组的解. 用一次函数的图像求二元一次方程组的解的方法称为二元一次方程组的图像解法. 5.反比例函数 (1)反比例函数的概念一般的,形如)0(≠=k k xky 是常数,的函数叫做反比例函数.反比例函数的解析式也可以写成1-=kx y 的形式.自变量x 的取值范围是0≠x 的一切实数,函数y 的取值范围也是一切非零实数.(2)反比例函数的图像和性质反比例函数)0(≠=k xky k 的符号k>0 k<0图像性质当k >0时,函数图像的两个 分支分别在第一、第三象限.在 每个象限内,y 随x 的增大而减 小当k <0时,函数图像的两个分 支分别在第二、第四象限.在每 个象限内,y 随x 的增大而增大①描述函数值的增减情况时,必须指出“在每个象限内”.②反比例函数图像的位置和函数的增减性,都是由比例系数k 的符号决定的. ★(3)反比例函数中比例系数的几何意义如图,过反比例函数)0(≠=k xky 图像上任一点 P 作x 轴、y 轴的垂线PM 、PN ,则所得的矩形PMON 的面积xy x y PN PM S =⋅=⋅=.xky =, k xy =∴. k S =∴.即过双曲线上任意一点作x 轴、y 轴的垂线,所得的矩形面积为k .6.二次函数(1)二次函数的概念一般的,形如)0,,,(2≠++=a c b a c bx ax y 是常数的函数称为二次函数,其中x 是自变量,y 是x 的函数.二次函数常用的表达式为:(1)一般式:c bx ax y ++=2(0≠a ).(2)顶点式:k h x a y ++=2)((0≠a ),其中ab ac k a b h 44,22-==. ★(3)交点式y =a (x -x 1)(x -x 2),其中x 1.x 2为抛物线与x 轴的两个交点的横坐标.(2)二次函数的图像二次函数的图像的画法:常用描点法二次函数的图像都是抛物线,对称轴与抛物线的交点叫做抛物线的顶点. 当a >0时,抛物线的开口向上,顶点是抛物线的最低点. 当a <0时抛物线的开口向下,顶点是抛物线的最高点.二次函数y =ax 2+k 、y =a (x +h )2.、y =a (x +h )2+k 的图像与y =ax 2的图像的位置关系.a a 注意:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当ax 2-=时,ab ac y 442-=最值.如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当abx 2-=时,a b ac y 442-=最值;若不在此范围内,则需考虑函数在21x x x ≤≤范围内的增减性,其y 的最值为当x =x 1,或x =x 2时的函数值.。