2014年广东省深圳市南山区九年级上数学期末考试题【北师大】
北师大版九年级上数学期末测试卷含答案(精选)
2013-2014年度第一学期期末综合测试卷九年级 数学学校: 班级: 姓名: 得分:亲爱的同学:你好!知识就是力量,自信、细心决定成绩。
请你灵动智慧,缜密思考,细致作答,努力吧,祝你成功!说明:1、第一部分为选择题,第二部分为非选择题。
考试时间90分钟,满分100分。
2、本卷综合难度系数:简单35%,中等35%,偏难30%;3、命题人:陈显安 审核:肖志芳 初中数学教研组。
第一卷(选择题,共12小题,满分36分)一、精心选一选(本大题共10小题,每小题3分,共36分) 1、sin45°的值等于( ) A.21 B.22 C. 23 D.1 第一节 (2013连云港)为了传承和弘扬港口文化,我市将投入6000万元建设一座港口博物馆,其中“6000万”用科学记数法表示为( )A.0.6×108B.6×108C.6×107D.60×1063.(2013•包头)函数y=中,自变量x 的取值范围是( )4、(2013德阳)如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是5、如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在( ) A.△ABC 的三条中线的交点 B.△ABC 三边的中垂线的交点C. △ABC 三条高所在直线的交点D. △ABC 三条角平分线的交点第二节 (2013茂名)下列二次函数的图象,不能..通过函数23y x =的图象平移得到的是( ) A 、232y x =+ B 、23(1)y x =- C 、23(1)2y x =-+ D 、22y x =7、直角三角形两直角边的长分别为x ,y ,它的面积为3,则y 与x 之间的函数关系图大致是( )A . B. C. D.8、(2013年江西省)如图,直线y =x +a -2与双曲线y=x4交于A ,B 两点,则当线段AB 的长度取最小值时,a 的值为( ). A .0 B .1 C .2D .5第8题图 第11题图 第12题图 9、下列命题中真命题是( )A.如果m 是有理数,那么m 是整数B.4的平方根是2C.等腰梯形两底角相等D.如果四边形ABCD 是正方形,那么它是菱形10.(2013成都)一元二次方程220x x +-=的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根 11.(3分)(2013•柳州)小明在测量楼高时,先测出楼房落在地面上的影长BA 为15米(如 )12. (2011山东菏泽)如图为抛物线2y ax bx c =++的图像,A 、B 、C 为抛物线与坐标轴的交点,且OA =OC =1,则下列关系中正确的是( )A .a +b =-1B . a -b =-1C . b <2aD . ac <0第二卷(非选择题,满分64分)第三节 细心填一填(本大题共6小题,每小题3分,共18分)13、已知反比例函数xky =的图象经过点(2,5),则k= .14、抛物线y=x 2-2x+3的顶点坐标是 .15.若实数a 、b 满足|3a ﹣1|+b 2=0,则a b 的值为 .16、如图,在△ABC 中,AB=BC ,∠B=120°,AB 的垂直平分线交AC 于点D .若AC=6cm ,则AD= cm .17、定义新运算“*”.规则:a*b=a (a ≥b )或者a*b=b (a <b )如1*2=2,(-3)*2=2.若x 2+x-1=0的根为x 1、x 2,则x 1*x 2的值为: . 18、(2013•内江)如图,反比例函数(x >0)的图象经过矩形OABC 对角线的交点M ,分别于AB 、BC 交于点D 、E ,若四边形ODBE 的面积为9,则k 的值为三解答题(本大题共5小题,每小题19、20、21、22每小题9分,23题10分,共46分).19计算: 45cos 8)13()21(|4|01---+-20、我市某中学对全校学生进行文明礼仪知识测试,为了解测试结果,随机抽 取部分学生的成绩进行分析,将成绩分为三个等级:不合格、一般、优秀,并 绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题: (1)请将以上两幅统计图补充完整;(3分)(2)若“一般”和“优秀”均被视为达标成绩,则该校被抽取的学生中有 人达标;(3分)(3)若该校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?(3分) 解:21如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD=60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据: 3≈1.732)解:22、某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量W (台),销售单价x (元)满足W=-2x+80,设销售这种台灯每天的利润为y (元). (1)求y 与x 之间的函数关系式;(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应 将销售单价定位为多少元? 解:23、(2008年深圳)如图9,在平面直角坐标系中,二次函数)0(2>++=a c bx ax y 的图象的顶点为D 点,与y 轴交于C 点,与x 轴交于A 、B 两点, A 点在原点的左侧,B 点的坐标为(3,0),OB =OC ,tan ∠ACO =31.(1)求这个二次函数的表达式.(2)经过C 、D 两点的直线,与x 轴交于点E ,在该抛物线上是否存在这样的点F ,使以点A 、C 、E 、F 为顶点的四边形为平行四边形?若存在,请求出点F 的坐标;若不存在,请说明理由.(3)如图10,若点G (2,y )是该抛物线上一点,点P 是直线AG 下方的抛物线上一动点,当点P 运动到什么位置时,△APG 的面积最大?求出此时P 点的坐标和△APG 的最大面积.2013-2014年度第一学期期末综合测试卷九年级 数学 参考答案分.13、10 14、(1,2) 15、1 16、2 17、251+- 18、3三、解答题(本大题共5小题,每小题19、20、21、22每小题9分,23题10分,共46分).19解:原式=421212=3+--+--。
北师大版九年级上册数学期末考试试卷带答案
北师大版九年级上册数学期末考试试题一、单选题1.一元二次方程x(x-3)=4的解是()A.1B.4C.-1或4D.1或-42.一个由5个相同的正方体组成的立体图形,如图所示,则这个立体图形的左视图是A.B.C.D.3.如图,在直角坐标系中,△OAB的顶点为O(0,0),A(4,3),B(3,0).以点O为位似中心,在第三象限内作与△OAB的位似比为13的位似图形△OCD,则点C坐标A.(﹣1,﹣1)B.(﹣43,﹣1)C.(﹣1,﹣43)D.(﹣2,﹣1)4.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cosA的值是()A.45B.35C.54D.435.如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC =9,则BF的长为()A.4B.C.4.5D.56.如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是()A .﹣3<x <2B .x <﹣3或x >2C .﹣3<x <0或x >2D .0<x <27.如图,在直角三角形ABC 中,90ACB ∠=︒,3AC =,4BC =,点M 是边AB 上一点(不与点A ,B 重合),作ME AC ⊥于点E ,MF BC ⊥于点F ,若点P 是EF 的中点,则CP 的最小值是()A .1.2B .1.5C .2.4D .2.58.反比例函数4y x =和6y x =在第一象限的图象如图所示,点A 在函数6y x=图象上,点B 在函数4y x=图象上,AB ∥y 轴,点C 是y 轴上的一个动点,则△ABC 的面积为()A .1B .2C .3D .49.如图,正方形ABCD 的边长为2,E 为对角线AC 上一动点,90EDP ∠=︒,DE DP =,当点E 从点A 运动到点C 的过程中,EPC ∆的周长的最小值为()A .222B .42C .324D .22310.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,设该公司5、6两月的营业额的月平均增长率为x .根据题意列方程,则下列方程正确的是A .22500(1)9100x +=B .22500(1%)9100x +=C .22500(1)2500(1)9100x x +++=D .225002500(1)2500(1)9100x x ++++=11.如图,某次课外实践活动中,小红在地面点B 处利用标杆FC 测量一旗杆ED 的高度.小红眼睛点A 与标杆顶端点F ,旗杆顶端点E 在同一直线上,点B ,C ,D 也在同一条直线上.已知小红眼睛到地面距离 1.6AB =米,标杆高 3.8FC =米,且1BC =米,7CD =米,则旗杆ED 的高度为()A .15.4米B .17米C .17.6米D .19.2米12.若0ab >,则一次函数y ax b =-与反比例函数aby x=在同一坐标系数中的大致图象是A .B .C .D .二、填空题13.一元二次方程220x x -+=的解是______.14.一个反比例函数的图象过点A(-3,2),则这个反比例函数的表达式是_____.15.如图,Rt △ABC 中,∠ACD=90°,直线EF BD ∥,交AB 于点E ,交AC 于点G ,交AD 于点F .若S △AEG=13S 四边形EBCG ,则CF AD=_________.16.如图,在ABC 中,D ,E 分别是边AB ,AC 的中点.若ADE 的面积为12.则四边形DBCE 的面积为_______.三、解答题17.解方程(1)2230x x --=(公式法);(2)23740x x -+=(配方法);(3)22(2)(23)x x -=+(因式分解法);(4)2(1)22x x -=-(适当的方法).18.现有5个质地、大小完全相同的小球上分别标有数字–1,–2,1,2,3.先将标有数字–2,1,3的小球放在第一个不透明的盒子里,再将其余小球放在第二个不透明的盒子里.现分别从两个盒子里各随机取出一个小球.(1)请利用列表或画树状图的方法表示取出的两个小球上数字之和所有可能的结果;(2)求取出的两个小球上的数字之和等于0的概率.19.如图,在平面直角坐标系中,已知OA=12厘米,OB=6厘米.点P 从点O 开始沿OA 边向点A 以1厘米/秒的速度移动;点Q 从点B 开始沿BO 边向点O 以1厘米/秒的速度移动.如果P 、Q 同时出发,用t (秒)表示移动的时间(0≤t≤6),那么,当t 为何值时,△POQ 与△AOB 相似?20.如图,△ABC 是等边三角形,点D 在AC 上,连接BD 并延长,与∠ACF 的角平分线交于点E .(1)求证:△ABD ∽△CED ;(2)若AB=8,AD=2CD ,求CE 的长.21.如图,已知反比例函数y 1=1k x与一次函数y 2=k 2x+b 的图象交于点A (1,8)、B (﹣4,m ).(1)求一次函数和反比例函数的表达式;(2)求△AOB 的面积;(3)若y 1<y 2,直接写出x 的取值范围.22.如图,在菱形ABCD ,对角线AC,与BD 交于点O,过点C 作BD 的平行线,过点D 作AC 的平行线,两直线交于点E,(1)求证:四边形OCED 是矩形;(2)若CE=1,菱形ABCD的周长为ABCD 的面积.23.如图,反比例函数ky x(k≠0)的图象经过点A (1,2)和B (2,n ),(1)以原点O 为位似中心画出△A1B1O ,使11AB A B =12;(2)在y 轴上是否存在点P ,使得PA+PB 的值最小?若存在,求出P 的坐标;若不存在,请说明理由.24.某品牌童装平均每天可售出40件,每件盈利40元.为了迎接“元旦”,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽量减少库存.经市场调查发现:如果每件童装降价1元,那么平均每天就可多售出4件.要想平均每天销售这种童装盈利2400元,那么每件童装应降价多少元?25.如图,在正方形ABCD 中,点G 是对角线上一点,CG 的延长线交AB 于点E ,交DA 的延长线于点F ,连接AG .(1)求证:AG =CG ;(2)求证:△AEG ∽△FAG ;(3)若GE•GF =9,求CG 的长.参考答案1.C 2.A 3.B 4.B 5.A 6.C 7.A 8.A 9.A 10.D 11.D 12.C13.120,2x x ==【分析】利用因式分解法解一元二次方程即可得.【详解】解:220x x -+=,(2)0x x -+=,0,20x x =-+=,则120,2x x ==,故答案为:120,2x x ==.【点睛】本题考查了解一元二次方程,熟练掌握因式分解法解一元二次方程是解题关键.14.6y x=-【分析】根据反比例函数的意义待定系数法求解析式.【详解】解:∵反比例函数的图象过点A(-3,2),∴6k =-∴这个反比例函数的表达式是6y x=-故答案为:6y x=-15.12【详解】解:∵EF BD∥∴∠AEG=∠ABC ,∠AGE=∠ACB ,∴△AEG ∽△ABC ,且S △AEG=13S 四边形EBCG∴S △AEG :S △ABC=1:4,∴AG :AC=1:2,又EF BD∥∴∠AGF=∠ACD ,∠AFG=∠ADC ,∴△AGF ∽△ACD ,且相似比为1:2,∴S △AFG :S △ACD=1:4,∴S △AFG=13S 四边形FDCGS △AFG=14S △ADC ∵AF :AD=GF :CD=AG :AC=1:2∵∠ACD=90°∴AF=CF=DF∴CF :AD=1:2.故答案为:1216.32【分析】先根据三角形中位线定理得出1//,2DE BC DE BC =,再根据相似三角形的判定与性质得出2()ADE ABC S DE S BC= ,从而可得ABC 的面积,由此即可得出答案.【详解】 点D ,E 分别是边AB ,AC 的中点1//,2DE BC DE BC ∴=ADE ABC∴ 21(4ADE ABC S DE S BC ∴==△△,即4ABCADES S =△△又12ADES =1422ABCS ∴=⨯= 则四边形DBCE 的面积为13222ABC ADE S S -=-= 故答案为:32.17.(1)123,1x x ==-(2)124,13x x ==(3)121,53x x =-=-(4)123,1x x ==【分析】(1)利用公式法求解即可;(2)利用配方法求解即可;(3)利用因式分解法求解即可;(4)利用因式分解法求解即可.(1)解:∵2230x x --=,∴1a =,2b =-,3c =-,∴()()22=42413160b ac ∆-=--⨯⨯-=>,∴242x ±==,∴13x =,21x =-;(2)解:∵23740x x -+=,∴2374x x -=-,∴27433x x -=-,∴22277473636x x ⎛⎫⎛⎫-+=-+ ⎪ ⎪⎝⎭⎝⎭,∴271636x ⎛⎫-= ⎪⎝⎭,∴7166x -=±,∴143x =,21x =;(3)解:∵22(2)(23)x x -=+∴22(2)(23)0x x -+-=,∴()(223)2230x x x x -++---=,∴()()3150x x ++=,∴113x =-,25x =-;(4)解:∵2(1)22x x -=-,∴()2(1)210x x --=-,∴()(12)10x x ---=,∴13x =,21x =.18.(1)详见解析;(2)13【分析】(1)首先根据题意列出表格,由表格即可求得取出的两个小球上数字之和所有等可能的结果;(2)首先根据(1)中的表格,求得取出的两个小球上的数字之和等于0的情况,然后利用概率公式即可求得答案.【详解】解:(1)列表得:-12-2-30103325则共有6种结果,且它们的可能性相同;(2)∵取出的两个小球上的数字之和等于0的有:(1,-1),(-2,2),∴两个小球上的数字之和等于0的概率为:2163=.19.当t=4或t=2时,△POQ 与△AOB 相似.【详解】试题分析:根据题意可知:OQ=6-t ,OP=t ,然后分OQ OP OB OA =和OQ OP OA OB=两种情况分别求出t 的值.试题解析:解:①若△POQ ∽△AOB 时,=,即=,整理得:12﹣2t=t ,解得:t=4.②若△POQ ∽△BOA 时,=,即=,整理得:6﹣t=2t ,解得:t=2.∵0≤t≤6,∴t=4和t=2均符合题意,∴当t=4或t=2时,△POQ 与△AOB 相似.20.(1)见解析;(2)CE=4【分析】(1)根据等边三角形的性质得到60A ACB ∠=∠=︒,则120ACF ∠=︒,根据角平分线的性质,得到60ACE ∠=︒,即可求证;(2)利用相似三角形的性质得到CD CE AD AB=,即可求解.【详解】(1)证明:∵△ABC 是等边三角形,∴∠BAC=∠ACB=60°,∠ACF=120°;∵CE 平分∠ACF ,∴∠ACE=60°;∴∠BAC=∠ACE ;又∵∠ADB=∠CDE ,∴△ABD ∽△CED ;(2)解:∵△ABD ∽△CED ,∴CD CE AD AB=,∵AD=2DC ,AB=8;∴1842CD CE AB AD =⨯=⨯=21.(1)18y x =,y 2=2x+6,过程见解析;(2)15,过程见解析;(3)﹣4<x <0或x >1,过程见解析.【分析】(1)利用待定系数法即可求得结论;(2)设直线AB 与x 轴交于点D ,与y 轴交于点C ,利用直线AB 解析式求得点C ,D 的坐标,用△AOC ,△OCD 和△OBD 的面积之和表示△AOB 的面积即可;(3)利用图象即可确定出x 的取值范围.(1)解:点A (1,8)在反比例函数11ky x =上,∴k 1=1×8=8.∴18y x =.∵点B (﹣4,m )在反比例函数18y x =上,∴﹣4m =8.∴m =﹣2.∴B (﹣4,﹣2).∵点A (1,8)、B (﹣4,﹣2)在一次函数y 2=k 2x+b 的图象上,∴22842k b k b +=⎧⎨-+=-⎩,解得:226k b =⎧⎨=⎩.∴y 2=2x+6.(2)解:设直线AB 与y 轴交于点C,如图,由直线AB:y 2=2x+6,令x =0,则y =6,∴C (0,6).∴OC =6.过点A 作AF ⊥y 轴于点F ,过点B 作BE ⊥y 轴于点E ,∵A (1,8),B (﹣4,﹣2),∴AF =1,BE =4.∴AOBAOC BOC S S S =+△△△11××22OC AF OC BE =+1=6(14)2⨯⨯+=15答:△AOB 的面积是15.(3)解:由图象可知,点A 右侧的部分和点B 与点C 之间的部分y 1<y 2,∴若y 1<y 2,x 的取值范围为:﹣4<x <0或x >1.【点睛】本题是一道反比例函数与一次函数图象的交点问题,主要考查了待定系数法,一次函数图象上点的坐标的特征,反比例函数图象上点的坐标的特征,利用点的坐标表示出相应线段的长和利用数形结合的思想方法求得x 的取值范围是解题的关键.22.(1)证明见解析;(2)4.【分析】(1)欲证明四边形OCED 是矩形,只需推知四边形OCED 是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)证明:因为四边形ABCD 是菱形,所以AC BD ⊥,90COD ︒∴∠=,//,//CE OD DE OC ,所以四边形OCED 是平行四边形,90COD ︒∠= ,∴四边形OCED 是矩形;(2)由(1)知,四边形OCED 是矩形,则CE=OD=1,∵四边形ABCD 是菱形,∴AB=AD=CD=BC ,∵菱形ABCD 的周长为CD ∴2OC∴==,24,22 AC OC BD OD==== ,∴菱形ABCD的面积为:11424 22AC BD⋅=⨯⨯=.23.(1)作图见解析;(2)存在,P(0,5 3).【分析】(1)有两种情形,分别画出图象即可;(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.求出直线BA′的解析式即可解决问题.【详解】(1)△A1B1O的图象如图所示.(2)存在.如图作点A关于y轴的对称点A′,连接BA′交y轴于P,连接PA,此时PA+PB 的值最小.∵点A(1,2)在反比例函数y=kx上,∴k=2,∴B (2,1),∵A′(﹣1,2),设最小BA′的解析式为y=kx+b ,则有221k b k b -+⎧⎨+⎩==,解得1253k b ⎧-⎪⎪⎨⎪⎪⎩==,∴直线BA′的解析式为y=﹣13x+53,∴P (0,53).24.每件童装应降价20元.【分析】设每件童装应降价x 元,再根据题意即可列出关于x 的一元二次方程,解出x ,最后舍去不合题意的解即可.【详解】解:设每件童装应降价x 元,依题意可列方程为(40)(404)2400x x -+=,解得:121020x x ==,,∵要减少库存,∴20x =,答:每件童装应降价20元.【点睛】本题考查一元二次方程的实际应用.根据题意找出等量关系,列出方程是解题关键.25.(1)见解析;(2)见解析;(3)CG =3【分析】(1)根据正方形的性质得到∠ADB =∠CDB =45°,AD =CD ,从而利用全等三角形的判定定理推出△ADG ≌△CDG (SAS ),进而利用全等三角形的性质进行证明即可;(2)根据正方形的性质得到AD ∥CB ,推出∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,利用全等三角形的性质得到∠DAG =∠DCG ,结合图形根据角之间的和差关系∠DAB−∠DAG =∠DCB−∠DCG ,推出∠BCF =∠BAG ,从而结合图形可利用相似三角形的判定定理得到△AEG ∽△FAG ,(3)根据相似三角形的性质进行求解即可.【详解】(1)证明:∵BD 是正方形ABCD 的对角线,∴∠ADB =∠CDB =45°,又AD =CD ,在△ADG 和△CDG 中,AD CDADG CDG DG DG=⎧⎪∠=∠⎨⎪=⎩,∴△ADG ≌△CDG (SAS ),∴AG =CG ;(2)解:∵四边形ABCD 是正方形,∴AD ∥CB ,∴∠FCB =∠F ,由(1)可知△ADG ≌△CDG ,∴∠DAG =∠DCG ,∴∠DAB−∠DAG =∠DCB−∠DCG ,即∠BCF =∠BAG ,∴∠EAG =∠F ,又∠EGA =∠AGF ,∴△AEG ∽△FAG ;(3)∵△AEG ∽△FAG ,∴GEGAGA GF =,即GA 2=GE•GF ,∴GA =3或GA =−3(舍去),根据(1)中的结论AG =CG ,∴CG =3.。
北师大版九年级上册数学期末考试试卷含答案解析
北师大版九年级上册数学期末考试试题一、选择题。
(每小题只有一个正确答案)1.在一个四边形ABCD 中,依次连结各边中点的四边形是菱形,则对角线AC 与BD 需要满足条件()A .垂直B .相等C .垂直且相等D .不再需要条件2.如图,在矩形ABCD 中,AB=3,BC=4,将其折叠,使AB 边落在对角线AC 上,得到折痕AE ,则点E 到点B 的距离为()A .32B .2C .52D .33.下列方程中,是关于x 的一元二次方程的是A .()()12132+=+x x B .02112=-+x x C .02=++c bx ax D .1222-=+x x x 4.已知点()12,A y -、B (-1,y 2)、C (3,y 3)都在反比例函数4y x=的图象上,则y 1、y 2、y 3的大小关系是()A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 35.学生冬季运动装原来每套的售价是100元,后经连续两次降价,现在的售价是81元,则平均每次降价的百分数是A .9%B ..5%C .9.5%D .10%6.二次三项式243x x -+配方的结果是()A .2(2)7x -+B .2(2)1x --C .2(2)7x ++D .2(2)1x +-7.函数x ky =的图象经过(1,-1),则函数2-=kx y 的图象是2222-2-2-2-2O OOOy y y y xxxxA .B .C .D.8.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M 点的运动A .变短B .变长C .不变D.无法确定9.如图,点A 在双曲线=6上,且OA =4,过A 作AC ⊥轴,垂足为C ,OA 的垂直平分线交OC 于B ,则△ABC 的周长为()A .47B .5C .27D .2210.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD=4,DB=2,则的值为.二、填空题11.反比例函数2k y x+=的图象在一、三象限,则k 应满足_________.12.把一个三角形改做成和它相似的三角形,如果面积缩小到原来的12倍,边长应缩小到原来的____倍.13.已知一元二次方程22(1)7340a x ax a a -+++-=有一个根为0,则a 的值为_______.14.已知534a b c ==,则232a b c a b c++=++_______15.如图,已知点A 在反比例函数(0)ky x x=<的图象上,AC y ⊥轴于点C ,点B 在x 轴的负半轴上,若2ABC S = ,则k 的值为_________.16.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于D ,若AD=1,BD=4,则CD=_____.17.若关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,则k 的取值范围是______.三、解答题18.解方程(1);(2).19.(8分)已知,如图,AB 和DE 是直立在地面上的两根立柱.AB=5m ,某一时刻AB 在阳光下的投影BC=3m .B(1)请你在图中画出此时DE 在阳光下的投影;(2)在测量AB 的投影时,同时测量出DE 在阳光下的投影长为6m ,请你计算DE 的长.20.(10分)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.21.已知甲同学手中藏有三张分别标有数字11,,124的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为,a b.(1)请你用树形图或列表法列出所有可能的结果.(2)现制定这样一个游戏规则:若所选出的能使得有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释22.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE,已知∠BAC=30°,EF⊥AB,垂足为F,连接DF(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.23.某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元.为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元?24.如图,已知A (−4,n ),B (2,−4)是一次函数y =kx +b 的图象和反比例函数my x=的图象的两个交点;(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求不等式kx +b −mx<0的解集(请直接写出答案).25.在平面直角坐标系中,直线l 1:y =x +5与反比例函数y =kx(k ≠0,x >0)图象交于点A(1,n );另一条直线l 2:y =﹣2x +b 与x 轴交于点E ,与y 轴交于点B ,与反比例函数y =k x(k ≠0,x >0)图象交于点C 和点D (12,m ),连接OC 、OD .(1)求反比例函数解析式和点C 的坐标;(2)求△OCD 的面积.26.(12分)如图,在ABC △中,5AB =,3BC =,4AC =,动点E (与点A C ,不重合)在AC 边上,EF AB ∥交BC 于F 点.CE FA B(1)当ECF△的面积与四边形EABF的面积相等时,求CE的长;(2)当ECF△的周长与四边形EABF的周长相等时,求CE的长;(3)试问在AB上是否存在点P,使得EFP△为等腰直角三角形?若不存在,请简要说明理由;若存在,请求出EF的长.参考答案1.B【解析】试题分析:如图:∵四边形EFGH是菱形,∴EH=FG=EF=HG=12BD=12AC,故AC=BD.故选B.考点:中点四边形.2.A【解析】试题分析:由于AE是折痕,可得到AB=AF,BE=EF,设出未知数,在Rt△EFC中利用勾股定理列出方程,通过解方程即可得到答案.设BE=x,∵AE为折痕,∴AB=AF,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,,∴Rt△EFC中,FC=5-3=2,EC=4-X,∴,解得,故选A.考点:本题考查的是图形折叠的性质及勾股定理点评:熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.3.A【解析】试题分析:A、由原方程得到3x2+4x+1=0,符合一元二次方程的定义,故本选项正确;B、该方程中分母中含有未知数.不属于整式方程,故本选项错误;C、当a=0时.该方程不是一元二次方程.故本选项错误;D、由原方程得到2x+1=0,即未知数的最高次数是1.故本选项错误;故选A.考点:一元二次方程定义4.D【分析】分别把各点坐标代入反比例函数y=4x,求出y1,y2,y3的值,再比较大小即可.【详解】∵点A(-2,y1)、B(-1,y2)、C(3,y3)都在反比例函数y=4x的图象上,∴y1=-2,y2=-4,y3=4 3,∵-4<-2<4 3,∴y2<y1<y3.故选D.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.5.D【解析】试题分析:设平均每次降价的百分数是x,依题意得100(1-x)2=81,解方程得x1=0.1,x2=1.9(舍去)所以平均每次降价的百分数是10%.故选D.考点:一元二次方程的应用6.B【解析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算.解:x2-4x+3=x2-4x+4-1=(x-2)2-1.故选B.考点:配方法的应用.7.A【解析】试题分析:∵函数xky=的图象经过(1,-1),∴k=-1,∴函数2-=kxy的解析式为:y=-x-2,函数y=-x-2的图像过二、四象限过(0,-2),(-2,0)点,故选A考点:1.反比例函数图像2.一次函数8.C【解析】试题分析:∵E,F分别是AM,MR的中点,∴EF=12AR.∵R是定点,∴AR的定长.∴无论M运动到哪个位置EF的长不变.故选C.考点:1.动点问题;2.三角形中位线定理.9.C【解析】试题分析:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:ab=6,a2+b2=16,解得a+b=27,即△ABC的周长=OC+AC=27.故选C考点:反比例函数图象上点的坐标特征10.2 3【解析】试题分析::∵DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC,∵AD=4,DB=2,∴AD:AB=DE:BC=2:3.则的值为2 3.考点:相似三角形的判定与性质.11.k>-2【解析】试题分析:反比例函数:当时,图象在第一、三象限;当时,图象在第二、四象限.由题意得,考点:本题主要考查了反比例函数的性质点评:本题属于基础应用题,只需学生熟练掌握反比例函数的性质,即可完成.12.2【解析】试题分析::∵改做的三角形与原三角形相似,且面积缩小到原来的倍,∴边长应缩小到原来的2倍.考点:相似三角形的性质13.-4【解析】【分析】将x=0代入原方程可得关于a的方程,解之可求得a的值,结合一元二次方程的定义即可确定出a的值.【详解】把x=0代入一元二次方程(a-1)x2+7ax+a2+3a-4=0,可得a2+3a-4=0,解得a=-4或a=1,∵二次项系数a-1≠0,∴a≠1,∴a=-4,故答案为-4.【点睛】本题考查了一元二次方程的一般式以及一元二次方程的解,熟知一元二次方程二次项系数不为0是解本题的关键.14.15 26【解析】试题分析:设=k ,则a=5k ,b=3k ,c=4k ,25641532153826a b c k k k a b c k k k ++++==++++考点:比例的性质15.-4【分析】连结OA ,由AC ⊥y 轴,可得AC ∥x 轴,可知S △ACB =S △ACO =2,可得=4k ,由反比例函数图像在第二象限(x<0),可知k<0,可求k=-4.【详解】解:连结OA ,∵AC ⊥y 轴,∴AC ∥x 轴,∴S △ACB =S △ACO =2,∴1=22k ,∴=4k ,∵反比例函数图像在第二象限(x<0),∴k<0,∴k=-4.故答案为:-4.【点睛】本题考查反比例函数解析式,掌握反比例函数的性质,关键是反比例函数中k 的几何意义.16.2.【分析】首先证△ACD ∽△CBD ,然后根据相似三角形的对应边成比例求出CD 的长.【详解】解:Rt △ACB 中,∠ACB=90°,CD ⊥AB ;∴∠ACD=∠B=90°﹣∠A ;又∵∠ADC=∠CDB=90°,∴△ACD ∽△CBD ;∴CD 2=AD•BD=4,即CD=2.故答案为:2【点睛】本题考查相似三角形的判定与性质.17.0k >且1k ≠【分析】根据题意,结合一元二次方程的定义和根的判别式可得关于k 的不等式,然后解不等式即可求解.【详解】解:∵关于x 的一元二次方程()21210k x x -+-=有两个不相等的实数根,∴21024(1)(1)0k k -≠⎧⎨∆=--⨯->⎩,10k k ≠⎧⎨>⎩,∴k 的取值范围是0k >且1k ≠,故答案为:0k >且1k ≠.【点睛】本题考查了一元二次方程的定义、根的判别式、解一元一次不等式,熟练掌握一元二次方程的根的判别式与根的关系是解答的关键.18.(1)1x =2x =.(2)【详解】试题分析:(1)用公式法(2)用分解因式法试题解析:(1)因为(()245248∆=--⨯-⨯=,所以x =即1x =2x =.(2)移项得,分解因式得,解得考点:解一元二次方程19.(1)见解析;(2)DE=10m【解析】试题分析:(1)根据投影的定义,作出投影即可;(2)根据在同一时刻,不同物体的物高和影长成比例;构造比例关系AB BC DE EF =.计算可得DE试题解析:(1)如图:连接AC ,过点D 作DE//AC ,交直线BC 于点F ,线段EF 即为DE 的投影(2)∵AC//DF ,∴∠ACB=∠DFE.∵∠ABC=∠DEF=90°∴△ABC ∽△DEF.53,.6AB BC DE EF DE ∴=∴= ∴DE=10(m )考点:平行投影20.(1)BD=CD .(2)当△ABC 满足:AB=AC 时,四边形AFBD 是矩形.【解析】试题分析:(1)根据两直线平行,内错角相等求出∠AFE=∠DCE ,然后利用“角角边”证明△AEF 和△DEC 全等,根据全等三角形对应边相等可得AF=CD ,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD 是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90°,由等腰三角形三线合一的性质可知必须是AB=AC.试题解析:(1)BD=CD.理由如下:∵AF∥BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形.理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴▱AFBD是矩形.考点:1.矩形的判定2.全等三角形的判定与性质.21.(1)列表见解析;(2)不公平,理由见解析.【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平.【详解】(1)列表如下:a b12312(12,1)(12,2)(12,3)14(14,1)(14,2)(14,3)1(1,1)(1,2)(1,3)(2)要使方程210ax bx ++=有两个不相等的实根,即△=240b a ->,满足条件的有5种可能:1111,2,,2,,3,,3,(1,3)2424⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴甲获胜的概率为()59P =甲,乙获胜的概率为()49P =乙,5499> 即此游戏不公平.22.证明见解析.【分析】(1)一方面Rt △ABC 中,由∠BAC=30°可以得到AB=2BC ,另一方面△ABE 是等边三角形,EF ⊥AB ,由此得到AE=2AF ,并且AB=2AF ,从而可证明△AFE ≌△BCA ,再根据全等三角形的性质即可证明AC=EF .(2)根据(1)知道EF=AC ,而△ACD 是等边三角形,所以EF=AC=AD ,并且AD ⊥AB ,而EF ⊥AB ,由此得到EF ∥AD ,再根据平行四边形的判定定理即可证明四边形ADFE 是平行四边形.【详解】证明:(1)∵Rt △ABC 中,∠BAC=30°,∴AB=2BC .又∵△ABE 是等边三角形,EF ⊥AB ,∴AB=2AF .∴AF=BC .∵在Rt △AFE 和Rt △BCA 中,AF=BC ,AE=BA ,∴△AFE ≌△BCA (HL ).∴AC=EF .(2)∵△ACD 是等边三角形,∴∠DAC=60°,AC=AD .∴∠DAB=∠DAC+∠BAC=90°.∴EF ∥AD .∵AC=EF ,AC=AD ,∴EF=AD .∴四边形ADFE 是平行四边形.考点:1.全等三角形的判定与性质;2.等边三角形的性质;3.平行四边形的判定.23.每张贺年卡应降价0.1元.【分析】设每张贺年卡应降价x 元,等量关系为:(原来每张贺年卡盈利-降价的价格)×(原来售出的张数+增加的张数)=120,把相关数值代入求得正数解即可.【详解】设每张贺年卡应降价x 元,根据题意得:(0.3-x )(500+1000.1x )=120,整理,得:21002030x x +-=,解得:120.1,0.3x x ==-(不合题意,舍去),∴0.1x =,答:每张贺年卡应降价0.1元.24.(1)8y x=-,2y x =--;(2)C 点坐标为(2,0)-,6;(3)40x -<<或2x >.【分析】(1)先把B 点坐标代入代入m y x =求出m 得到反比例函数解析式,再利用反比例函数解析式确定A 点坐标,然后利用待定系数法求一次函数解析式;(2)根据x 轴上点的坐标特征确定C 点坐标,然后根据三角形面积公式和AOB 的面积AOC BOC S S ∆∆=+进行计算;(3)观察函数图象得到当4x <-或02x <<时,一次函数图象都在反比例函数图象下方.【详解】解:(1)把(2,4)-B 代入m y x=得2(4)8m =⨯-=-,所以反比例函数解析式为8y x =-,把(4,)A n -代入8y x=-得48n -=-,解得2n =,则A 点坐标为(4,2)-,把(4,2)A -,(2,4)-B 分别代入y kx b =+得4224k b k b -+=⎧⎨+=-⎩,解得12k b =-⎧⎨=-⎩,所以一次函数的解析式为2y x =--;(2)当0y =时,20x --=,解得2x =-,则C 点坐标为(2,0)-,∴AOC BOCAOB S S S ∆∆∆=+11222422=⨯⨯+⨯⨯6=;(3)由kx +b −m x <0可得kx +b <m x故该不等式的解为40x -<<或2x >.【点睛】本题考查了反比例函数与一次函数综合.(1)中理解函数图象上的点都满足函数关系式是解题关键;(2)中掌握“割补法”求图形面积是解题关键;(3)中掌握数形结合思想是解题关键.25.(1)y =6x ,点C (6,1);(2)1434.【分析】(1)点A (1,n )在直线l 1:y =x +5的图象上,可求点A 的坐标,进而求出反比例函数关系式,点D 在反比例函数的图象上,求出点D 的坐标,从而确定直线l 2:y =﹣2x +b 的关系式,联立求出直线l 2与反比例函数的图象的交点坐标,确定点C 的坐标,(2)求出直线l 2与x 轴、y 轴的交点B 、E 的坐标,利用面积差可求出△OCD 的面积.【详解】解:(1)∵点A (1,n )在直线l 1:y =x +5的图象上,∴n =6,∴点A (1,6)代入y =k x 得,k =6,∴反比例函数y =6x ,当x =12时,y =12,∴点D (12,12)代入直线l 2:y =﹣2x +b 得,b =13,∴直线l 2:y =﹣2x +13,由题意得:6213y x y x ⎧=⎪⎨⎪=-+⎩解得:111212x y ⎧=⎪⎨⎪=⎩,2261x y =⎧⎨=⎩,∴点C (6,1)答:反比例函数解析式y =6x,点C 的坐标为(6,1).(2)直线l 2:y =﹣2x +13,与x 轴的交点E (132,0)与y 轴的交点B (0,13)∴S △OCD =S △BOE ﹣S △BOD ﹣S △OCE11311113143131312222224=⨯⨯-⨯⨯⨯=答:△OCD 的面积为1434.【点睛】本题考查了待定系数法求反比例函数解析式、反比例函数与一次函数交点问题、以及反比例函数与几何面积的求解,解题的关键是灵活处理反比例函数与一次函数及几何的关系.26.(1)CE =22;(2)CE 的长为724;(3)在AB 上存在点P ,使△EFP 为等腰直角三角形,此时EF =3760或EF =49120【解析】试题分析:(1)因为EF ∥AB ,所以容易想到用相似三角形的面积比等于相似比的平方解题;(2)根据周长相等,建立等量关系,列方程解答;(3)先画出图形,根据图形猜想P 点可能的位置,再找到相似三角形,依据相似三角形的性质解答.试题解析:(1)∵△ECF 的面积与四边形EABF 的面积相等∴S △ECF :S △ACB =1:2又∵EF ∥AB ∴△ECF ∽△ACB.,21)(2==∆∆CA CE S S ACB ECF 且AC =4∴CE =22;(2)设CE 的长为x∵△ECF ∽△ACB ∴CB CF CA CE =∴CF=x 43.由△ECF 的周长与四边形EABF 的周长相等,得EFx x x EF x +-++-=++)433(5)4(43解得724=x ∴CE 的长为724;(3)△EFP 为等腰直角三角形,有两种情况:①如图1,假设∠PEF =90°,EP =EF图1A B由AB =5,BC =3,AC =4,得∠C =90°∴Rt △ACB 斜边AB 上高CD =512设EP =EF =x ,由△ECF ∽△ACB ,得CD EP CD AB EF -=,即5125125xx -=,解得3760=x ,即EF =3760,当∠EFP´=90°,EF =FP´时,同理可得EF =3760.②如图2,假设∠EPF =90°,PE =PF 时,点P 到EF 的距离为EF 21。
新北师大版2014-2015年九年级上学期期末考试数学试题
C (第7题)新北师大版2014-2015年九年级上学期期末考试数学试题时间120分钟 满分120分 2015、1、16一、填空题(本大题共有9小题,每小题3分,共27分)1.方程x x 22=的解为 . 2.把抛物线223x y -=向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为 .3.如图,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 等于 °.4.如图,PA 是O ⊙的切线,切点为A ,PA∠APO =30°,则O ⊙的半径为 .5.已知二次函数2(0)y ax bx c a =++≠,其中a b c ,,满足0a b c ++=和930a b c -+=,则该二次函数图象的对称轴是直线 .6.如图,在平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(3-,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为 .7.如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A =60°, BC =2,则图中阴影部分面积为 .8.如图,矩形ABCD 中,AB=4,AD=6,以为A 圆心,R 长为半径作圆,⊙A 仅与直线BC 、CD 中一条相离,R 的取值范围是 .9.已知a 是关于x 的一元二次方程02=-+m x x 的一个根,a+1是关于x 的一元二次方程022=-+m x x 的一个根,(其中m ≠0) 则a= .二、选择题(本大题共有5小题,每小题3分,共15分)第3题图第4题图第6题图BCDA(第8题)A .100)1(1442=-xB .144)1(1002=-xC .100)1(1442=+xD .144)1(1002=+x11.在Rt △ABC 中,∠ACB =90°,AC =4,BC =3,则△ABC 的内切圆半径为 ( )A .1B .2C .512D .6 12.下列说法正确的是( )A.三点确定一个圆。
北师大版九年级数学第一学期期末试题及答案
北师大版九年级数学第一学期期末试题及答案一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)已知a、b、c、d是成比例线段,其中a=3,b=0.6,c=2,则线段d的长为()A.0.4B.0.6C.0.8D.42.(3分)如图所示的几何体,它的左视图是()A.B.C.D.3.(3分)如图,四边形ABCD与四边形AEFG是位似图形,点A是位似中心,且AC:AF=2:3,则四边形ABCD 与四边形AEFG的面积之比等于()A.2:3B.4:9C.1:4D.1:24.(3分)关于x的一元二次方程x2﹣3x+n=0没有实数根,则实数n的值可以为()A.0B.1C.2D.35.(3分)已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.图象在第一、二象限C.图象在第一、三象限D.若x=2,则y=16.(3分)如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积是3,则矩形ABCD的面积是()A.6B.9C.12D.157.(3分)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A或B),再过第二道门(C,D或E)才能出去,则松鼠走出笼子的路线是“先经过A门、再经过D门”的概率为()A.B.C.D.8.(3分)如图,△ABC中,∠ACB=90°,分别以AB,AC为边作正方形ABPQ,ACFH,BP交FH于点O.若BC=BF=2,则OP的长为()A.B.2C.D.2二、填空题(共5小题,每小题3分,计15分)9.(3分)已知关于x的一元二次方程x2﹣mx+6=0.其中一个解x=3,则m的值为.10.(3分)地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而(增大、变小).11.(3分)在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是.12.(3分)如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为.13.(3分)如图,在平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G.若AC=40,则AG=.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:y(y﹣7)+2y﹣14=0.15.(5分)画出如图所示的正三棱柱的三视图.16.(5分)如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.17.(5分)已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.18.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.19.(5分)某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?20.(5分)如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.21.(6分)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.22.(7分)学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.23.(7分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有三个种类的奶制品:A:纯牛奶,B:酸奶,C:核桃奶;伊利品牌有两个种类的奶制品:D:纯牛奶,E:核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请用列表法或画树状图法求出两人选购到同一种类奶制品的概率.24.(8分)如图,在△ABC中,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DE∥AB交BC的延长线于点E.(1)求证:△ECD∽△EDB;(2)求△DCE与△ACB的周长比.25.(8分)如图,直角坐标系中,点B坐标为(6,0),且AO=AB=5,AH⊥x轴于点H,过B作BC⊥x轴交过点A的双曲线于点C,连接OC交AB于点D,交AH于点M.(1)求双曲线的表达式;(2)求的值.26.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FP A;(3)若PE=4,PF=12,求PC的长.参考答案与试题解析一、选择题(共8小题,每小题3分,计24分.每小题只有一个选项是符合题意的)1.(3分)已知a、b、c、d是成比例线段,其中a=3,b=0.6,c=2,则线段d的长为()A.0.4B.0.6C.0.8D.4【分析】由a、b、c、d四条线段是成比例的线段,根据成比例线段的定义,即可得=,又由a=3,b=0.6,c=2,即可求得d的值.【解答】解:∵a、b、c、d四条线段是成比例的线段,∴=,∵a=3,b=0.6,c=2,∴=解得:d=0.4.故选:A.【点评】此题考查了比例线段,此题比较简单,解题的关键是注意掌握比例线段的定义.2.(3分)如图所示的几何体,它的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看是两个同心圆,内圆要画成实线.故选:C.【点评】本题考查了简单几何体的三视图,从左边看得到的图形是左视图.3.(3分)如图,四边形ABCD与四边形AEFG是位似图形,点A是位似中心,且AC:AF=2:3,则四边形ABCD 与四边形AEFG的面积之比等于()A.2:3B.4:9C.1:4D.1:2【分析】根据位似图形的概念得到EF∥BC,证明△BAC∽△EAF,根据相似三角形的性质求出,根据相似多边形的性质计算即可.【解答】解:∵四边形ABCD与四边形AEFG是位似图形,∴四边形ABCD∽四边形AEFG,EF∥BC,∴△BAC∽△EAF,∴==,∴四边形ABCD与四边形AEFG的面积之比为4:9,故选:B.【点评】本题考查的是位似变换的概念和性质,掌握相似多边形的面积比等于相似比的平方是解题的关键.4.(3分)关于x的一元二次方程x2﹣3x+n=0没有实数根,则实数n的值可以为()A.0B.1C.2D.3【分析】根据方程没有实数根得出(﹣3)2﹣4×1×n<0,解之求出n的范围,结合各选项可得答案.【解答】解:根据题意,得:(﹣3)2﹣4×1×n<0,解得:n>,∴n的值可以是3,故选:D.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根.5.(3分)已知反比例函数y=,在下列结论中,不正确的是()A.图象必经过点(1,2)B.图象在第一、二象限C.图象在第一、三象限D.若x=2,则y=1【分析】由k=2>0即可判断B,C;把x=2,代入y=可判断A,D.【解答】解:A.把(2,1)代入y=得:左边=右边,故本选项不符合题意;B.k=2>0,图象在第一、三象限内,故本选项符合题意;C.k=2>0,图象在第一、三象限内,故本选项不符合题意;D.把x=2,代入y=得y=1,故本选项不符合题意;故选:B.【点评】本题主要考查了反比例函数的性质,能熟练地根据反比例函数的性质进行判断是解此题的关键.6.(3分)如图,在矩形ABCD中,AC,BD相交于点O,若△AOB的面积是3,则矩形ABCD的面积是()A.6B.9C.12D.15【分析】由矩形的性质可得AO=CO=BO=DO,可得S△AOB=S△BOC=S△AOD=S△OCD=3,即可求解.【解答】解:∵四边形ABCD是矩形,∴AO=CO=BO=DO,∴S△AOB=S△BOC=S△AOD=S△OCD=3,∴矩形ABCD的面积=12,故选:C.【点评】本题考查了矩形的性质,掌握矩形的对角线互相平分且相等是解题的关键.7.(3分)笼子里关着一只小松鼠(如图).笼子主人决定把小松鼠放归大自然,将笼子所有的门都打开,松鼠要先过第一道门(A或B),再过第二道门(C,D或E)才能出去,则松鼠走出笼子的路线是“先经过A门、再经过D门”的概率为()A.B.C.D.【分析】画树状图,即可得出答案.【解答】解:画树状图如下:共有6种等可能的结果,先经过A门、再经过D门只有1种结果,所以先经过A门、再经过D门的概率为,故选:D.【点评】此题考查的是用树状图法.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;正确画出树状图是解题的关键.8.(3分)如图,△ABC中,∠ACB=90°,分别以AB,AC为边作正方形ABPQ,ACFH,BP交FH于点O.若BC=BF=2,则OP的长为()A.B.2C.D.2【分析】根据正方形的性质得到△FOB∽△CBA,根据相似三角形的性质得到OF,利用勾股定理分别求出OB,PB进而可求.【解答】解:∵四边形ABPQ,ACFH为正方形,∴PB=AB,AC=CF=CB+BF=4,∠F=∠C=90°,∠PBA=90°,∴∠FOB+∠FBO=90°,∠ABC+∠FBO=90°∴∠FOB=∠ABC,∴△FOB∽△CBA,∴=,即=,∴OF=1,在Rt△FBO中,由勾股定理得,OB===,在Rt△ABC中,由勾股定理得,AB===2,∴OP=PB﹣OB=,故选:A.【点评】本题考查了正方形的性质和相似三角形的性质与判定,利用正方形的性质得到△FOB∽△CBA,根据相似三角形的性质得到OF是解题的关键.二、填空题(共5小题,每小题3分,计15分)9.(3分)已知关于x的一元二次方程x2﹣mx+6=0.其中一个解x=3,则m的值为5.【分析】把x=3代入方程x2﹣mx+6=0得到关于m的方程,然后解关于m的方程即可.【解答】解:把x=3代入方程x2﹣mx+6=0得9﹣3m+6=0,解得m=5.故答案为:5.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.(3分)地面上有一支蜡烛,蜡烛前面有一面墙,王涛同学在蜡烛与墙之间运动,则他在墙上的投影长度随着他离墙的距离变小而变小(增大、变小).【分析】可连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.【解答】解:连接光源和人的头顶可知,墙上的影长和人到墙的距离变化规律是:距离墙越近,影长越短,距离墙越远影长越长.则他在墙上投影长度随着他离墙的距离变小而变小.故答案为变小.【点评】本题综合考查了中心投影的特点和规律.中心投影的特点是:①等高的物体垂直地面放置时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.②等长的物体平行于地面放置时,在灯光下,离点光源越近,影子越长;离点光源越远,影子越短,但不会比物体本身的长度还短.11.(3分)在一个布袋中装有只有颜色不同的a个小球,其中红球的个数为2,随机摸出一个球记下颜色后再放回袋中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出a大约是10.【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【解答】解:由题意可得,=0.2,解得,a=10.故可以推算出a大约是10个.故答案为:10.【点评】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.12.(3分)如图,点A在反比例函数的图象上,点B在反比例函数的图象上,且AB∥x轴,点C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】首先延长BA交y轴于点E,易得四边形ADOE与四边形BCOE是矩形,又由点A在反比例函数的图象上,点B在反比例函数的图象上,即可得S矩形ADOE=1,S矩形BCOE=3,继而求得答案.【解答】解:延长BA交y轴于点E,∵四边形ABCD为矩形,且AB∥x轴,点C、D在x轴上,∴AE⊥y轴,∴四边形ADOE与四边形BCOE是矩形,∵点A在反比例函数的图象上,点B在反比例函数的图象上,∴S矩形ADOE=1,S矩形BCOE=3,∴S矩形ABCD=S矩形BCOE﹣S矩形ADOE=3﹣1=2.故答案为:2.【点评】此题考查了反比例函数的系数k的几何意义.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)如图,在平行四边形ABCD中,E是AB的中点,F在AD上,且AF:AD=1:3,EF交AC于G.若AC=40,则AG=8.【分析】设AC的中点为O,连接EO,根据题意可得OE是△ABC的中位线,从而可得OE=BC,OE∥BC,进而可证8字模型相似三角形△AFG∽△OEG,然后利用相似三角形的性质进行计算即可解答.【解答】解:设AC的中点为O,连接EO,∴AO=AC=20,∵E是AB的中点,∴OE是△ABC的中位线,∴OE=BC,OE∥BC,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴AD∥OE,∴∠F AG=∠AOE,∠AFG=∠OEG,∴△AFG∽△OEG,∴=,∵AF:AD=1:3,∴=,∴==,∴=,∴AG=8,故答案为:8.【点评】本题考查了平行四边形的性质,相似三角形的判定与性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三、解答题(共13小题,计81分.解答应写出过程)14.(5分)解方程:y(y﹣7)+2y﹣14=0.【分析】根据因式分解法即可求出答案.【解答】解:y(y﹣7)+2y﹣14=0,y(y﹣7)+2(y﹣7)=0,分解因式得:(y﹣7)(y+2)=0,则y﹣7=0或y+2=0,解得:y1=7,y2=﹣2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.15.(5分)画出如图所示的正三棱柱的三视图.【分析】根据题意可得正三棱柱的主视图为中间有一条竖的实心线的矩形,左视图为矩形,俯视图为正三角形,从而可画出三视图.【解答】解:如图所示:【点评】此题考查了作图﹣三视图,属于基础题,解答本题的关键是掌握三视图的观察方法,要求一定的空间想象能力.16.(5分)如图,菱形ABCD的边长为4,∠B=60°,以AC为边长作正方形ACEF,求这个正方形的周长.【分析】根据已知可求得△ABC是等边三角形,从而得到AC=AB,再根据正方形的周长公式计算即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是16.【点评】本题考查菱形与正方形的性质,关键是根据已知可求得△ABC是等边三角形.17.(5分)已知反比例函数y=,当x<0时,y随x的增大而减小,求正整数m的值.【分析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【解答】解:∵反比例函数y=,当x<0时,y随x的增大而减小,∴3﹣2m>0,解得m<,∴正整数m的值是1.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)的图象是双曲线;当k>0时,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小.18.(5分)在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.求证:四边形BFDE是矩形.【分析】根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE是平行四边形,再根据矩形的判定,可得答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形,∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形.【点评】本题考查了平行四边形的性质,矩形的判定,熟练掌握矩形的判定定理是解题关键.19.(5分)某游泳池有1200立方米水,设放水的平均速度为v立方米/小时,将池内的水放完需t小时.(1)求v关于t的函数表达式;(2)若要求在3小时之内把游泳池的水放完,则每小时应至少放水多少立方米?【分析】(1)由题意得vt=900,即v=,自变量的取值范围为t>0,(2)把t=3代入求出相应的v的值,即可求出放水速度.【解答】解:(1)由题意得:vt=1200,即:v=,答:v关于t的函数表达式为v=,自变量的取值范围为t>0.(2)当t=3时,v==400,所以每小时应至少放水400立方米.【点评】考查求反比例函数的应用,根据常用的数量关系得出函数关系式是解题的关键.20.(5分)如图,延长正方形ABCD的一边CB至E,ED与AB相交于点F,过F作FG∥BE交AE于点G,求证:GF=FB.【分析】结合条件可得到GF∥AD,则有=,由BF∥CD可得到=,又因为AD=CD,可得到GF =FB.【解答】证明:∵四边形ABCD为正方形,∴BF∥CD,∴=,∵FG∥BE,∴GF∥AD,∴=,∴=,且AD=CD,∴GF=BF.【点评】本题主要考查平行线分线段成比例及正方形的性质,掌握平行线分线段中的线段对应成比例是解题的关键,注意利用比例相等也可以证明线段相等.21.(6分)解读诗词(通过列方程算出周瑜去世时的年龄):大江东去浪淘尽,千古风流数人物,而立之年督东吴,早逝英年两位数,十位恰小个位三,个位平方与寿符,哪位学子算得快,多少年华属周瑜?诗词大意:周瑜三十岁当东吴都督,去世时的年龄是两位数,十位数字比个位数字小三,个位数字的平方等于他去世时的年龄.【分析】设周瑜去世时的年龄的个位数字为x,则十位数字为x﹣3.根据题意建立方程求出其值就可以求出其结论.【解答】解:设周瑜去世时的年龄的个位数字为x,则十位数字为x﹣3,依题意得:10(x﹣3)+x=x2,解得x1=5,x2=6,当x=5时,25<30,(不合题意,舍去),当x=6时,36>30(符合题意),答:周瑜去世时的年龄为36岁.【点评】本题是一道数字问题的运用题,考查了列一元二次方程解实际问题的运用,在解答中理解而立之年是一个人30岁的年龄是关键.22.(7分)学习了相似三角形相关知识后,小明和同学们想利用“标杆”测量大楼的高度.如图,小明站立在地面点F处,他的同学在点B处竖立“标杆”AB,使得小明的头顶E、标杆顶端A、大楼顶端C在一条直线上(点F、B、D也在一条直线上).已知小明的身高EF=1.5米,“标杆“AB=2.5米,BD=23米,FB=2米,EF、AB、CD均垂直于地面BD.求大楼的高度CD.【分析】如图1中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH都是矩形.利用相似三角形的性质求出CH,可得结论.【解答】解:如图中,过点E作EH⊥CD于点H,交AB于点J.则四边形EFBJ,四边形EFDH都是矩形.∴EF=BJ=DH=1.5米,BF=EJ=2米,DB=JH=23米,∵AB=2.5米.∴AJ=AB﹣BJ=2.5﹣1.5=1(米),∵AJ∥CH,∴△EAJ∽△ECH,∴=,∴=,∴CH=12.5(米),∴CD=CH+DH=12.5+1.5=14(米).答:大楼的高度CD为14米.【点评】本题考查相似三角形的应用,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.23.(7分)甲、乙两人去超市选购奶制品,有两个品牌的奶制品可供选购,其中蒙牛品牌有三个种类的奶制品:A:纯牛奶,B:酸奶,C:核桃奶;伊利品牌有两个种类的奶制品:D:纯牛奶,E:核桃奶.(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是;(2)若甲喜爱蒙牛品牌的奶制品,乙喜爱伊利品牌的奶制品,甲、乙两人从各自喜爱的品牌中随机选购一种奶制品,请用列表法或画树状图法求出两人选购到同一种类奶制品的概率.【分析】(1)根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【解答】解:(1)甲从这两个品牌的奶制品中随机选购一种,选购到纯牛奶的概率是,故答案为:;(2)列表如下:A B CD(A,D)(B,D)(C,D)E(A,E)(B,E)(C,E)由表知,共有6种等可能结果,其中两人选购到同一种类奶制品的有2种结果,所以两人选购到同一种类奶制品的概率为=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.24.(8分)如图,在△ABC中,D为AC延长线上一点,AC=3CD,∠CBD=∠A,过点D作DE∥AB交BC的延长线于点E.(1)求证:△ECD∽△EDB;(2)求△DCE与△ACB的周长比.【分析】(1)由DE∥AB得∠EDC=∠A,因为∠CBD=∠A,所以∠EDC=∠EBD,而∠A=∠A,可证明△ECD ∽△EDB;(2)由DE∥AB可证明△DCE∽△ACB,而AC=3CD,所以△DCE的周长:△ACB的周长=CD:AC=1:3,即可得出问题的答案.【解答】(1)证明:如图,∵DE∥AB,∴∠EDC=∠A,∵∠CBD=∠A,∴∠EDC=∠CBD,即∠EDC=∠EBD,∵∠E=∠E,∴△ECD∽△EDB;(2)解:∵DE∥AB,∴△DCE∽△ACB,∵AC=3CD,∴△DCE的周长:△ACB的周长=CD:AC=1:3=,∴△DCE与△ACB的周长比为.【点评】此题考查平行线的性质、相似三角形的判定与性质等知识,其中证明△DCE∽△ACB是解题的关键.25.(8分)如图,直角坐标系中,点B坐标为(6,0),且AO=AB=5,AH⊥x轴于点H,过B作BC⊥x轴交过点A的双曲线于点C,连接OC交AB于点D,交AH于点M.(1)求双曲线的表达式;(2)求的值.【分析】(1)根据B坐标为(6,0),得到OB=6,根据等腰三角形的性质得到OH=BH=OB=3,根据勾股定理得到AH===4,求得A坐标为(3,4),于是得到结论;(2)设C坐标为(6,m),根据y=(x>0)经过点C,求得BC=2,根据相似三角形的性质得到=,根据三角形的中位线定理得到MH=BC=×2=1于是得到结论.【解答】解:(1)∵B坐标为(6,0),∴OB=6,∵AO=AB=5,AH⊥x轴于点H,∴OH=BH=OB=3,在Rt△AOH中,AO2=AH2+OH2,∴AH===4,∴A坐标为(3,4),∵y=(x>0)经过点A,∴4=,∴k=12,∴双曲线表达式为y=(x>0);(2)设C坐标为(6,m),∵y=(x>0)经过点C,∴m==2,∴BC=2,∵AH⊥x轴,BC⊥x轴,∴AM∥CB,∴△ADM∼△ABC,∴=,∵OH=BH,∴OM=CM,∴MH是△OBC的中位线,∴MH=BC=×2=1,∴AM=AH﹣MH=3,∴=.【点评】本题考查了待定系数法求反比例函数的解析式,相似三角形的判定和性质,三角形的中位线定理,熟练掌握待定系数法求函数的解析式是解题的关键.26.(10分)如图,点P是菱形ABCD的对角线BD上一点,连接CP并延长交AD于点E,交BA的延长线于点F.(1)求证:△APD≌△CPD;(2)求证:△APE∽△FP A;(3)若PE=4,PF=12,求PC的长.【分析】(1)由四边形ABCD是菱形,根据菱形的性质得AD=CD=AB=CB,还有BD是公共边,可证明△ADB ≌△CDB,得∠PDA=∠PDC,再证明△APD≌△CPD即可;(2)由CD∥AB得∠F=∠PCD,由△APD≌△CPD得∠P AE=∠PCD,所以∠P AE=∠F,而∠P AE=∠FP A,即可证明△APE∽△FP A;(3)由△APE∽△FP A得=,其中PE=4,PF=12,可求出P A的长,由△APD≌△CPD可知PC=P A,即可求得PC的长.【解答】(1)证明:如图,∵四边形ABCD是菱形,∴AD=CD=AB=CB,在△ADB和△CDB中,,∴△ADB≌△CDB(SSS),∴∠PDA=∠PDC,在△APD和△CPD中,,∴△APD≌△CPD(SAS).(2)证明:如图,∵CD∥AB,∴∠F=∠PCD,∵∠P AE=∠PCD,∴∠P AE=∠F,∵∠P AE=∠FP A,∴△APE∽△FP A.(3)解:如图,∵△APE∽△FP A,∴=,∵PE=4,PF=12,∴P A2=PE•PF=4×12=48,∴P A==4,∴PC=P A=4.∴PC的长为4.【点评】此题考查菱形的性质、全等三角形的判定与性质、相似三角形的判定与性质等知识,根据菱形的性质找出相等的角并证明角相等是解题的关键.。
北师大版九年级上学期期末考试数学试卷(含答案)
北师大版九年级数学上册期末考试卷试卷说明:本试卷共4页,满分120分,考试时间90分钟.答题前,学生务必将自己的姓名等信息按要求填写在答题卡...上;答案必须写在答题卡...各题目指定区域内;考试结束后,只需将答题卡...交回.一、选择题(本大题共10小题,每小题3分,共30分,在每小题的四个选项中,只有一项正确) 1.下列方程中没有实数根的是( ) A .0222=+-x x B .0442=+-x x C .()02=-x xD .()312=-x2.矩形、菱形都具有的性质是( )A .对角线互相垂直B .对角线互相平分C .对角线相等D .对角线互相垂直且相等 3.已知反比例函数x ky =经过点A ()2,3、B ()m ,1-,则m 的值为( ) A .6- B .32- C .32D .64.身高1.6m 的小刚在阳光下的影长是1.2m ,在同一时刻,阳光下旗杆的影长是l5m ,则旗杆高为( )A .14米B .16米C .18米D .20米5.在一个不透明纸箱中放有除了数字不同外,其它完全相同的2张卡片,分别标有数字1、2,从中任意摸出一张,放回搅匀后再任意摸出一张,两次摸出的数字之和为奇数的概率为( )A .41 B .31 C .21 D .436.如图,D 为△ABC 中AC 边上一点,则添加下列条件 不能..判定△ABC ∽△BDC 的是( ) A .CD AC BC ⋅=2 B .BC BD AC AB =C .∠ABC =∠BDCD .∠A =∠CBD 7.用小正方体搭一个几何体,使它的主视图和俯视图如图所示,这样的几何体最少需要正方体个数为a ,最多需要正方体个数为b , 则a+b 的值为( ) A .14 B .15 C .16D .17 8.已知215+是一元二次方程02=+-m x x 的一个根,则方程的另外一根为( )A .215-B .253-C .251-D .235-9.2002年国际数学家大会在北京召开,大会的会标是我国古代数学家 赵爽画的“弦图”(如图),体现了数学研究的继承和发展,弦图 中四边形ABCD 与EFGH 均为正方形,若,a DF CE BH AG ==== ,b DE CH BG AF ====且正方形EFGH 的面积为正方形ABCD 的面积的一半,则a :b 的值为( )A .32- B .2C .2D .32+10.如图,已知E ,F 分别为正方形ABCD 的边AB 、BC 的中点,AF 与DE 交于点M ,则下列结论:①AF ⊥DE ;②EG AE =;③AM =32MF ;④41=∆∆ADM AEM S S .其中正确的结论有( )题9图题7图题6图A .4个B .3个C .2个D .1个 二、填空题(本大题共7小题,每小题4分,共28分) 11.如果2:3:=b a ,那么ba ba -+=_________. 12.矩形ABCD 的对角线AC 和BD 相交于点O ,∠ACB =40°,则∠AOB =_________°.13.一个不透明的袋子中放有若干个红球,小亮往其中放入10个黑球,并采用以下实验方式估算其数量:每次摸出一个小球记录下颜色并放回,实验数据如下表:实验次数 100 200 300 400 摸出红球78161238321则袋中原有红色小球的个数约为__________个. 14.正比例函数x y 21-=和反比例函数xky =2的图象都经过点A (-1, 2),若21y y >,则x 的取值范围是__________________. 15.已知02322=--x x .则________122=+xx . 16.如图,菱形ABCD 边长为4,∠B =60°,AD DE 41=,BC BF 41=,连接EF 交菱形的对角线AC 于点O ,则图中阴影部分面积等于________________.17.如图,△ABC 中AB =AC ,A (0,8),C (6,0),D 为射线AO 上一点,一动点P 从A 出发,运动路径为A →D →C ,点P 在AD 上的运动速度是在CD 上的35倍,要使整个运动时间最少,则点D 的坐标应为____________.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.解方程:()()333-=-+x x x .19.小明家客厅里装有一种三位开关,分别控制着A (餐厅)、B (客厅)、C (走廊)三盏电灯,按下任意一个开关均可打开对应的一盏灯,由于刚搬进新房不久,小明不熟悉情况. (1)若小明任意按下一个开关,能打开客厅灯的概率为___________. (2)若任意按下一个开关后,再按下剩下两个开关中的一个,则正好客厅灯和走廊灯同时亮的概率是多少?请用树状图法或列表法说明.20.如图,△ABC 中,∠ACB =90°,CA =CB =22,D 、E 为AB 上两点,且∠DCE =45°,(1)求证:△ACE ∽△BDC . (2)若AD =1,求DE 的长.题17图题10图题16图四、解答题(二)(本大题共3小题,每小题8分,共24分)21.如图,一次函数y =ax +b 的图象与反比例函数xky =的图象交于C 、D 两点,与x 、y 轴分别交于B 、A 两点,CE ⊥x 轴,且OB =4,CE =3,21=BE CE .(1)求一次函数的解析式和反比例函数的解析式. (2)求△OCD 的面积.22.为响应国家“国际国内双循环”号召,南海广场购进一批国产高档服装,进价为500元/件,售价为1000元/件时,每天可以出售40件,经市场调查发现每降价50元,一天可以多售出10件. (1)售价为850元时,当天的销售量为多少件?(2)如果每天的利润要比原来多4000元,并使顾客得到更大的优惠,问每件售价为多少元?23.如图,公路旁有两个高度相等的路灯AB 、CD ,小明上午上学时发现路灯AB 在太阳光下的影子恰好落在路牌底部E 处,他自己的影子恰好落在路灯CD 的底部C 处;晚自习放学时,站在上午同一个地方,发现在路灯CD 的灯光下自己的影子恰好落在E 处. (1)在图中画出小明的位置(用线段FG 表示).(2)若上午上学时,高1米的木棒的影子为2米,小明身高为1.5米,他距离路牌底部E 恰好2米,求路灯高.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,四边形OABC 为正方形,反比例函数x k y =的图象过AB 上一点E ,BE =2,53=OE AE (1)求k 的值.(2)反比例函数的图象与线段BC 交于点D ,直线y =ax +b 过点D 及线段AB 的中点F ,探究直线OF 与直线DF 的位置关系,并证明.(3)点P 是直线OF 上一点,当PD +PC 的值最小时,求点P 的坐标.题21图题20图题23图题24图25.如图1,在矩形ABCD 中,AB =8,AD =4,点P 是对角线BD 上一点上,连接AP ,AE ⊥AP ,且21AE AP ,连接BE .(1)当DP =2时,求BE 的长.(2)四边形AEBP 可能为矩形吗?如果不可能,请说明理由;如果可能,求出此时四边形AEBP 的面积. (3)如图2,作AQ ⊥PE ,垂足为Q ,当点P 从点D 运动到点B 时,直接写出点Q 运动的距离.题25图1题25图2参考答案与评分标准一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10 答案ABADCBCCDB二、填空题(每题4分,共28分)11.5; 12.80°; 13.40; 14.x <-1或0<x<1; 15.417; 16.235; 17.⎪⎭⎫ ⎝⎛29,0.三、解答题(一)(本大题3小题,每小题6分,共18分)以下评分细则仅供参考.18.解: ()()()0333=---+x x x ………………1分()()[]0133=-+-x x ………………2分即 ()()023=+-x x ………………3分 ∴03=-x 或02=+x ,………………4分 ∴31=x 或22-=x .………………6分(其他解法酌情给分)19.解:(1)31.…………………2分(2)共有6种等可能的结果,其中客厅灯和走廊灯同时亮的结果为有2种:(B,C ), (C,B ), 所以P (客厅灯和走廊灯同时亮)=3162=.……6分(列表或树状图2分,满足要求的结果1分,概率1分) 20.(1)证明:∵∠ACB =90°,CA =CB ,∴()︒=︒-︒=∠=∠459018021B A ,………………1分 又∵ACE ACD ACD A CDB ∠=∠+︒=∠+∠=∠45, ………………2分 ∴△ACE ∽△BDC . ………………3分(2)解:由勾股定理得()()4222222=+=AB ,………………4分设DE 长为x , ∵△ACE ∽△BDC , ∴BCAE BDAC =,即221322x +=,………………5分解得35=x ,即35=DE .………………6分(其他解法酌情给分)第一盏灯第二盏灯A B C A (B ,A ) (C ,A ) B (A ,B ) (C ,B ) C(A ,B )(B ,C )四、解答题(二)(本大题3小题,每小题8分,共24分)21.解:(1)∵21=BE CE ,CE =3,∴62==CE BE ,∴2=-=OB BE OE , ………………1分 将C )3,2(-代入x ky =得:632-=⨯-=k ,………………2分将C )3,2(-,B )0,4(代入y =ax +b 得⎩⎨⎧=+=+-0432b a b a ,解得⎪⎩⎪⎨⎧=-=221b a ,………4分 一次函数的解析式为221+-=x y ,反比例函数的解析式为x y 6-=.………5分2.联立得⎪⎪⎩⎪⎪⎨⎧-=+-=x y x y 6221,解得⎩⎨⎧=-=3211y x ,⎩⎨⎧-==1622y x ,…………6分 834211421=⨯⨯+⨯⨯=+=∆∆∆BOC BOD COD S S S .…………8分22.解:(1)()3508501000=÷-,7010340=⨯+.答:售价为850元时,当天的销售量为70件. …………………2分(2) 设每件服装降价x 元.(1000﹣500﹣x )×(40+0.2x )=40×(1000﹣500)+4000,……………………4分 解得:x 1=100,x 2=200, ……………………6分 ∵使顾客得到尽可能大的实惠,∴x =200, ……………………7分 80020010001000=-=-x .答:每件应定价800元. ……………………8分.23.解:(1)如图,FG 就是所求作的线段. ……………4分(BE 、DE 、CF 、FG 每条线1分,垂足没标记不扣分) (2)∵上午上学时,高1米的木棒的影子为2米, ∴32==FG CG ,……………5分∵FG ∥CD ,∴∠EFG=∠D ,∠EGF=∠ECD , ∴△EFG ∽△EDC ,……………6分∴EC EG CD FG =即525.1=CD , ……………7分解得75.3=CD . ……………8分 因此,路灯高3.75米.五、解答题(三)(本大题2小题,每小题10分,共20分) 24.(1)证明:∵四边形OABC 是正方形,∴AO =AB ,∠OAB =90°,∵53=OE AE , 设x AE 3=,则x OE 5=,由勾股定理得x AO 4=,…………1分 ∴x x 423=+.∴2=x ,∴63==x AE ,84==x AO , ∴点E 坐标为)8,6(,…………2分∴4886=⨯=k .…………3分 (2) OF ⊥DF ,理由如下: 将8=x 代入xy 48=得6=y ,∴268=-=-=CD BC BD∵点F 是线段AB 的中点, ∴4==BF AF ,∵BFBD AOAF ==21,∠OAF =∠FBD=90° ∴△AOF ∽△BFD , ………………5分 ∴∠AOF =∠BFD ,∴∠AFO+∠BFD=∠AFO+∠AOF =90°, ∴∠OFD =180°-(∠AFO+∠BFD )=90°, ∴OF ⊥DF . ……………………6分(本小题也可以用勾股逆定理解决,酌情给分。
新北师大版2014-2015年九年级上学期期末考试数学试题
新北师大版2014-2015年九年级上学期期末考试数学试题( 时间:120分钟 分值:120分)测试范围:九年级上下册全部2015、1、1 一、选择题(24分)1、已知6,4,3,2====d c b a ,则下列各式中正确的是 ( ) A .d c b a = B .d c a b = C .b c d a = D .da b c = 2、已知线段a =9cm ,c =4cm ,b 是a , c 的比例中项,则b 等于 ( ) A . 6cm B . -6cm C .±6cm D .814cm 3、在半径为1的⊙O 中,120°的圆心角所对的弧长是 ( )A .3π B .23π C .πD .32π4则这组数据的中位数与众数分别是 ( ) A .26.5,27 B .27.5,28 C .28,27 D . 27,285、已知函数12)3(2++-=x x k y 的图象与x 轴有交点,则k 的取值范围是 ( ) A .4<k B .k ≤4 C .4<k 且3≠k D .4≤k 且3≠k6、在同一坐标系中,一次函数1+=ax y 与二次函数a x y +=2的图像可能是 ( )7、下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同圆中,相等的圆周角所对的弦相等;④三点确定一个圆;⑤两个等边三角形相似.其中正确命题的个数为 ( ) A .2B .3C .4D .5 8、如右图,点C、D 是以线段AB 为公共弦的两条圆弧的中点, AB =2,点E 、F 分别是线段CD ,AB 上的动点,设AF =x , AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( )二、填空题(20分)9、已知2x -5y =0,则x :y = ;10、当k = 时,函数()112+-=+kkx k y 为二次函数;11、小刚的身高是1.6m ,他在阳光下的影长是1.2m ,在同一时刻测得某棵树的影长为3.6m ,则这棵树的高度约为 m ; 12、计算:tan 245°-1= ;13、已知某样本的方差是4,则这个样本的标准差是 ;14、已知弦AB 的长等于⊙O 的半径,弦AB 所对的圆周角是____ ___ 度;15、如图,是二次函数y=ax 2+bx+c 图象的一部分,其对称轴为直线x =1,若其与x 轴一交点为A (3,0),则由图象可知,不等式ax 2+bx+c >0的解集是 ;16、已知圆锥底面半径是2,母线长是4,则圆锥的侧面展开的扇形圆心角是 ; 17、如图,已知⊙P 的半径为1,圆心P 在抛物线2112y x =-上运动,当⊙P 与x 轴相切 时,圆心P 的坐标为 ;18、如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0)、(2,0)、(2,1)、(1,1)、(1,2)、(2,2)根据这个规律,第2014个点的坐标为 。
北师大版九年级(上)期末数学试卷(含答案)
北师大版九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)深圳湾“春笋”大楼的顶部如图所示,则该几何体的主视图是()A.B.C.D.2.(3分)若x=1是关于x的一元二次方程x2+mx﹣3=0的一个根,则m的值是()A.﹣2B.﹣1C.1D.23.(3分)如图,已知△ABC∽△DEF,若∠A=35°,∠B=65°,则∠F的度数是()A.30°B.35°C.80°D.100°4.(3分)一元二次方程x2+x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断5.(3分)已知菱形的两条对角线的长分别为6cm和8cm,则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm26.(3分)为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》《新中国史》《改革开放史》《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为()A.B.C.D.17.(3分)如图,已知△A′B′C′与△ABC是位似图形,点O是位似中心,若A′是OA的中点,则△A′B'C′与△ABC的面积比是()A.1:4B.1:2C.2:1D.4:18.(3分)下列命题中,是真命题的是()A.一条线段上只有一个黄金分割点B.各角分别相等,各边成比例的两个多边形相似C.两条直线被一组平行线所截,所得的线段成比例D.若2x=3y,则=9.(3分)文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?设这种工艺品的销售价每个应降低x元,由题意可列方程为()A.(38﹣x)(160+×120)=3640B.(38﹣x﹣22)(160+120x)=3640C.(38﹣x﹣22)(160+3x×120)=3640D.(38﹣x﹣22)(160+×120)=364010.(3分)如图,矩形ABCD中,点E,点F分别是BC,CD的中点,AE交对角线BD于点G,BF交AE于点H.则的值是()A.B.C.D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)已知:,则=.12.(3分)深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同.凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物.据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个.则该纸箱中红球的数量约有个.13.(3分)如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE =°.14.(3分)如图,已知一次函数y=2x+4的图象与反比例函数y=的图象交于A,B两点,点B的横坐标是1,过点A作AC⊥y轴于点C,连接BC,则△ABC的面积是.15.(3分)如图,已知△ABC与△ADE均是等腰直角三角形,∠BAC=∠ADE=90°,AB=AC=1,AD=DE=,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是.三、解答题(本题共7小题,共55分)16.(5分)解方程:x2﹣4x+3=0.17.(7分)小明为探究反比例函数y=的性质,他想先画出它的图象,然后再观察、归纳得到.(1)他列出y与x的几组对应值如表:x…﹣4﹣3﹣2﹣1﹣0.50.51b34…y…﹣1﹣a﹣4﹣88421…表格中,a=,b=;(2)结合表,在如图所示的平面直角坐标系xOy中,画出当x>0时的函数y的图象;(3)①若(6,m),(10,n)在该函数的图象上,则m n(填“>”,“=”或“<”);②若(x1,y1),(x2,y2)在该函数的图象上,且x1<x2<0,则y1y2(填“>”,“=”或“<”).18.(8分)深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同.张红与李萍两位同学需要通过该地铁入口乘坐地铁.(1)张红选择A安全检查口通过的概率是;(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率.19.(8分)如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB 于点F,DC=DE.(1)求证:四边形CDEF是菱形;(2)若BC=3,CD=5,求AG的长.20.(8分)如图①,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2.(1)求原正方形空地的边长;(2)在实际建造时,从校园美观和实用的角度考虑,按图②的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度.21.(9分)【综合与实践】现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:①根据光源确定榕树在地面上的影子;②测量出相关数据,如高度,影长等;③利用相似三角形的相关知识,可求出所需要的数据.根据上述内容,解答下列问题:(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;(2)如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;(3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为米.22.(10分)(1)【探究发现】如图①,已知四边形ABCD是正方形,点E为CD边上一点(不与端点重合),连接BE,作点D关于BE的对称点D',DD'的延长线与BC的延长线交于点F,连接BD′,D'E.①小明探究发现:当点E在CD上移动时,△BCE≌△DCF.并给出如下不完整的证明过程,请帮他补充完整.证明:延长BE交DF于点G.②进一步探究发现,当点D′与点F重合时,∠CDF=°.(2)【类比迁移】如图②,四边形ABCD为矩形,点E为CD边上一点,连接BE,作点D关于BE的对称点D',DD′的延长线与BC的延长线交于点F,连接BD',CD',D'E.当CD'⊥DF,AB=2,BC=3时,求CD'的长;(3)【拓展应用】如图③,已知四边形ABCD为菱形,AD=,AC=2,点F为线段BD上一动点,将线段AD绕点A按顺时针方向旋转,当点D旋转后的对应点E落在菱形的边上(顶点除外)时,如果DF=EF,请直接写出此时OF的长.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一个是正确的)1.(3分)深圳湾“春笋”大楼的顶部如图所示,则该几何体的主视图是()A.B.C.D.【分析】根据简单几何体的三视图的意义,得出从正面看所得到的图形即可.【解答】解:从正面看深圳湾“春笋”大楼所得到的图形如下:故选:A.【点评】本题考查简单几何体的三视图,理解视图的意义,掌握简单几何体三视图的画法是正确解答的关键.2.(3分)若x=1是关于x的一元二次方程x2+mx﹣3=0的一个根,则m的值是()A.﹣2B.﹣1C.1D.2【分析】把x=1代入方程x2+mx﹣3=0,得出一个关于m的方程,解方程即可.【解答】解:把x=1代入方程x2+mx﹣3=0得:1+m﹣3=0,解得:m=2.故选:D.【点评】本题考查了一元二次方程的解和解一元一次方程,关键是能根据题意得出一个关于m的方程.3.(3分)如图,已知△ABC∽△DEF,若∠A=35°,∠B=65°,则∠F的度数是()A.30°B.35°C.80°D.100°【分析】先根据三角形内角和定理求出∠C的度数,再根据相似三角形对应角相等即可解决问题.【解答】解:∵△ABC中,∠A=35°,∠B=65°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣65°=80°,又∵△ABC∽△DEF,∴∠F=∠C=80°,故选:C.【点评】本题考查相似三角形的性质,掌握相似三角形对应角相等是解题的关键.也考查了三角形内角和定理.4.(3分)一元二次方程x2+x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断【分析】先计算根的判别式,再根据根的判别式进行判断即可.【解答】解:∵Δ=12﹣4×1×1=1﹣4=﹣3<0,∴一元二次方程没有实数根.故选:C.【点评】此题考查了根的判别式,熟练掌握一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac的关系:当Δ>0时,方程有两个不相等的实数根;当Δ=0时,方程有两个相等的实数根;当Δ<0时,方程无实数根是解本题的关键.5.(3分)已知菱形的两条对角线的长分别为6cm和8cm,则这个菱形的面积是()A.20cm2B.24cm2C.48cm2D.100cm2【分析】直接根据菱形的面积公式计算即可.【解答】解:∵菱形的两条对角线的长分别为6cm和8cm,∴这个菱形的面积=×6×8=24(cm2),故选:B.【点评】本题考查了菱形的性质,熟记菱形的面积=两对角线长乘积的一半是解题的关键.6.(3分)为庆祝中国共产党成立100周年,某学校开展学习“四史”(《党史》《新中国史》《改革开放史》《社会主义发展史》)交流活动,小亮从这四本书中随机选择1本进行学习心得体会分享,则他恰好选到《新中国史》这本书的概率为()A.B.C.D.1【分析】直接根据概率公式求解即可.【解答】解:由题意得,他恰好选到《新中国史》这本书的概率为.故选:A.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.7.(3分)如图,已知△A′B′C′与△ABC是位似图形,点O是位似中心,若A′是OA的中点,则△A′B'C′与△ABC的面积比是()A.1:4B.1:2C.2:1D.4:1【分析】根据位似图形的概念得到△A′B′C′∽△ABC,A′B′∥AB,根据△OA′B′∽△OAB,求出,根据相似三角形的性质计算,得到答案.【解答】解:∵△A′B′C′与△ABC是位似图形,∴△A′B′C′∽△ABC,A′B′∥AB,∴△OA′B′∽△OAB,∴==,∴△A′B'C′与△ABC的面积比为1:4,故选:A.【点评】本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.8.(3分)下列命题中,是真命题的是()A.一条线段上只有一个黄金分割点B.各角分别相等,各边成比例的两个多边形相似C.两条直线被一组平行线所截,所得的线段成比例D.若2x=3y,则=【分析】根据黄金分割的定义对A选项进行判断;根据相似多边形的定义对B选项进行判断;根据平行线分线段成比例定理对C选项进行判断;根据比例的性质对D选项进行判断.【解答】解:A.一条线段上有两个黄金分割点,所以A选项不符合题意;B.各角分别相等,各边成比例的两个多边形相似,所以B选项符合题意;C.两条直线被一组平行线所截,所得的对应线段成比例,所以C选项不符合题意;D.若2x=3y,则=,所以D选项不符合题意.故选:B.【点评】本题考查了命题:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.9.(3分)文博会期间,某公司调查一种工艺品的销售情况,下面是两位调查员和经理的对话.小张:该工艺品的进价是每个22元;小李:当销售价为每个38元时,每天可售出160个;当销售价降低3元时,平均每天将能多售出120个.经理:为了实现平均每天3640元的销售利润,这种工艺品的销售价应降低多少元?设这种工艺品的销售价每个应降低x元,由题意可列方程为()A.(38﹣x)(160+×120)=3640B.(38﹣x﹣22)(160+120x)=3640C.(38﹣x﹣22)(160+3x×120)=3640D.(38﹣x﹣22)(160+×120)=3640【分析】由这种工艺品的销售价每个降低x元,可得出每个工艺品的销售利润为(38﹣x﹣22)元,销售量为(160+×120)个,利用销售总利润=每个的销售利润×销售量,即可得出关于x的一元二次方程,此题得解.【解答】解:∵这种工艺品的销售价每个降低x元,∴每个工艺品的销售利润为(38﹣x﹣22)元,销售量为(160+×120)个.依题意得:(38﹣x﹣22)(160+×120)=3640.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.10.(3分)如图,矩形ABCD中,点E,点F分别是BC,CD的中点,AE交对角线BD于点G,BF交AE于点H.则的值是()A.B.C.D.【分析】取BD的中点M,连接EM,交BF于点N,则EM=,EM∥DC,由△BEN∽△BCF,得EN=,由EM∥AB,得△EMG∽△ABG,△ENH∽△ABH,则EG=,EH=,从而解决问题.【解答】解:∵矩形ABCD中,点E,点F分别是BC,CD的中点,∴BE=,AB∥CD,CF=DF=,取BD的中点M,连接EM,交BF于点N,如图,则EM是△BCD的中位线,∴EM=,EM∥DC,∴EM=,EM∥AB,∴△BEN∽△BCF,∴,∴EN=,∴EN=,∵EM∥AB,∴△EMG∽△ABG,△ENH∽△ABH,∴,,∴EG=,EH=,∴GH=EG﹣EH=,∴,故选:B.【点评】本题主要考查了矩形的性质,相似三角形的判定与性质,利用相似三角形的性质表示出GH和HE的长是解题的关键.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)已知:,则=.【分析】根据比例式的合比性质可直接求出的值.【解答】解:∵,∴=.【点评】注意观察要求的式子和已知式子的关系,能够根据比例合比性质求解.12.(3分)深圳某商场为吸引顾客,设置了一种游戏,其规则如下:在一个不透明的纸箱中装有红球和白球共10个,这些球除颜色外都相同.凡参与游戏的顾客从纸箱中随机摸出一个球,如果摸到红球就可免费得到一个吉祥物,摸到白球没有吉祥物.据统计,参与这种游戏的顾客共有5000人,商场共发放了吉祥物1500个.则该纸箱中红球的数量约有3个.【分析】设袋中红球的个数为x,根据概率公式列出算式,求出x的值即可得出答案.【解答】解:设袋中红球的个数为x,根据题意得:,解得:x=3,答:估计袋中红球的个数为3个;故答案为:3.【点评】本题主要考查利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.13.(3分)如图,矩形ABCD中,AC的垂直平分线MN与AB交于点E,连接CE.若∠CAD=70°,则∠DCE=40°.【分析】根据线段垂直平分线的性质得到EC=EA,根据矩形的性质得到∠DCA=∠EAC=20°,结合图形计算,得到答案.【解答】解:∵MN是AC的垂直平分线,∴EC=EA,∴∠ECA=∠EAC,∵四边形ABCD是矩形,∴AB∥CD,∠D=90°,∴∠DCA=∠EAC=90°﹣70°=20°,∴∠DCE=∠DCA+∠ECA=20°+20°=40°,故答案为:40.【点评】本题考查的是矩形的性质,线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.(3分)如图,已知一次函数y=2x+4的图象与反比例函数y=的图象交于A,B两点,点B的横坐标是1,过点A作AC⊥y轴于点C,连接BC,则△ABC的面积是12.【分析】由一次函数解析式求得B的坐标,代入y=求得k,然后两个解析式联立成方程组,解方程组求得A 的坐标,然后根据三角形面积公式求得即可.【解答】解:∵一次函数y=2x+4的图象与反比例函数y=的图象交于A,B两点,点B的横坐标是1,∴把x=1代入y=2x+4得,y=6,∴B(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=,解得或,∴A(﹣3,﹣2),∵AC⊥y轴于点C,∴AC=3,∴S△ABC==12.故答案为:12.【点评】此题是反比例函数与一次函数的交点问题,一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式,三角形面积等,数形结合是解本题的关键.15.(3分)如图,已知△ABC与△ADE均是等腰直角三角形,∠BAC=∠ADE=90°,AB=AC=1,AD=DE=,点D在直线BC上,EA的延长线交直线BC于点F,则FB的长是.【分析】过点A作AH⊥BC于点H,根据等腰直角三角形的性质可得DH=,CD=,再证明△ABF∽△DAC,进而对应边成比例即可求出FB的长.【解答】解:如图,过点A作AH⊥BC于点H,∵∠BAC=90°,AB=AC=1,∴BC=,∵AH⊥BC,∴BH=CH=,∴AH=,∵AD=DE=,∴DH===,∴CD=DH﹣CH=,∵∠ABC=∠ACB=45°,∴∠ABF=∠ACD=135°,∵∠DAE=45°,∴∠DAF=135°,∵∠BAC=90°,∴∠BAF+∠DAC=45°,∵∠BAF+∠F=45°,∴∠F=∠DAC,∴△ABF∽△DAC,∴=,∴=,∴BF=.故答案为:.【点评】本题考查了相似三角形的判定与性质,等腰直角三角形,解决本题的关键是得到△ABF∽△DAC.三、解答题(本题共7小题,共55分)16.(5分)解方程:x2﹣4x+3=0.【分析】利用因式分解法解出方程.【解答】解:x2﹣4x+3=0(x﹣1)(x﹣3)=0x﹣1=0,x﹣3=0x1=1,x2=3.【点评】本题考查的是一元二次方程的解法,掌握因式分解法解一元二次方程的一般步骤是解题的关键.17.(7分)小明为探究反比例函数y=的性质,他想先画出它的图象,然后再观察、归纳得到.(1)他列出y与x的几组对应值如表:x…﹣4﹣3﹣2﹣1﹣0.50.51b34…y…﹣1﹣a﹣4﹣88421…表格中,a=﹣2,b=2;(2)结合表,在如图所示的平面直角坐标系xOy中,画出当x>0时的函数y的图象;(3)①若(6,m),(10,n)在该函数的图象上,则m>n(填“>”,“=”或“<”);②若(x1,y1),(x2,y2)在该函数的图象上,且x1<x2<0,则y1>y2(填“>”,“=”或“<”).【分析】(1)把(﹣4,﹣1)代入y=解方程得到反比例函数的解析式为y=,把x=﹣2,把y=2时,分别代入反比例函数的解析式即可得到答案;(2)根据题意画出图象即可;(3)根据反比例函数的性质即可得到结论.【解答】解:(1)把(﹣4,﹣1)代入y=得,﹣1=,∴k=4,∴反比例函数的解析式为y=,当x=﹣2时,y==﹣2,即a=﹣2;当y=2时,2=,则x=2,即b=2;故答案为:﹣2,2;(2)如图所示,(3)∵反比例函数的解析式为y=,∴k=4>0,∴在每个象限内y随x的增大而减小,①若(6,m),(10,n)在该函数的图象上,∵6<10,∴m>n;故答案为:>;②若(x1,y1),(x2,y2)在该函数的图象上,∵x1<x2<0,∴y1>y2,故答案为:>.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,反比例函数的图象,正确的作出图象是解题的关键.18.(8分)深圳某地铁站入口有A,B,C三个安全检查口,假定每位乘客通过任意一个安全检查口的可能性相同.张红与李萍两位同学需要通过该地铁入口乘坐地铁.(1)张红选择A安全检查口通过的概率是;(2)请用列表或画树状图的方法求出她俩选择相同安全检查口通过的概率.【分析】(1)根据概率公式求解即可;(2)根据题意先画出树状图得出所有等情况数和选择相同安全检查口通过的情况数,然后根据概率公式即可得出答案.【解答】解:(1)∵有A.B、C三个闸口,∴张红选择A安全检查口通过的概率是;故答案为:;(2)根据题意画图如下:共有9种等情况数,其中她俩选择相同安全检查口通过的有3种,则她俩选择相同安全检查口通过的概率是=.【点评】本题考查列表法与树状图法,解题的关键是明确题意,正确画出树状图.19.(8分)如图,点E是矩形ABCD的边BA延长线上一点,连接ED,EC,EC交AD于点G,作CF∥ED交AB 于点F,DC=DE.(1)求证:四边形CDEF是菱形;(2)若BC=3,CD=5,求AG的长.【分析】(1)根据矩形性质先证明四边形CDEF是平行四边形,再根据有一组邻边相等的平行四边形是菱形即可解决问题;(2)连接GF,根据菱形的性质证明△CDG≌△CFG,然后根据勾股定理即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形,∴AB∥CD,AB=CD,∵CF∥ED,∴四边形CDEF是平行四边形,∵DC=DE.∴四边形CDEF是菱形;(2)解:如图,连接GF,∵四边形CDEF是菱形,∴CF=CD=5,∵BC=3,∴BF===4,∴AF=AB﹣BF=5﹣4=1,在△CDG和△CFG中,,∴△CDG≌△CFG(SAS),∴FG=GD,∴FG=GD=AD﹣AG=3﹣AG,在Rt△FGA中,根据勾股定理,得FG2=AF2+AG2,∴(3﹣AG)2=12+AG2,解得AG=.【点评】本题考查了矩形的性质,菱形的判定与性质,全等三角形的判定与性质,勾股定理,解决本题的关键是掌握菱形的判定与性质.20.(8分)如图①,某校进行校园改造,准备将一块正方形空地划出部分区域栽种鲜花,原空地一边减少了4m,另一边减少了5m,剩余部分面积为650m2.(1)求原正方形空地的边长;(2)在实际建造时,从校园美观和实用的角度考虑,按图②的方式进行改造,先在正方形空地一侧建成1m宽的画廊,再在余下地方建成宽度相等的两条小道后,其余地方栽种鲜花,如果栽种鲜花区域的面积为812m2,求小道的宽度.【分析】(1)设原正方形空地的边长为xm,则剩余部分长(x﹣4)m,宽(x﹣5)m,根据剩余部分面积为650m2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)设小道的宽度为ym,则栽种鲜花的区域可合成长(30﹣y)m,宽(30﹣1﹣y)m的矩形,根据栽种鲜花区域的面积为812m2,即可得出关于y的一元二次方程,解之取其符合题意的值即可得出结论.【解答】解:(1)设原正方形空地的边长为xm,则剩余部分长(x﹣4)m,宽(x﹣5)m,依题意得:(x﹣4)(x﹣5)=650,整理得:x2﹣9x﹣630=0,解得:x1=30,x2=﹣21(不合题意,舍去).答:原正方形空地的边长为30m.(2)设小道的宽度为ym,则栽种鲜花的区域可合成长(30﹣y)m,宽(30﹣1﹣y)m的矩形,依题意得:(30﹣y)(30﹣1﹣y)=812,整理得:y2﹣59y+58=0,解得:y1=1,y2=58(不合题意,舍去).答:小道的宽度为1m.【点评】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(9分)【综合与实践】现实生活中,人们可以借助光源来测量物体的高度.已知榕树CD,FG和灯柱AB如图①所示,在灯柱AB上有一盏路灯P,榕树和灯柱的底端在同一水平线上,两棵榕树在路灯下都有影子,只要测量出其中一些数据,则可求出所需要的数据,具体操作步骤如下:①根据光源确定榕树在地面上的影子;②测量出相关数据,如高度,影长等;③利用相似三角形的相关知识,可求出所需要的数据.根据上述内容,解答下列问题:(1)已知榕树CD在路灯下的影子为DE,请画出榕树FG在路灯下的影子GH;(2)如图①,若榕树CD的高度为3.6米,其离路灯的距离BD为6米,两棵榕树的影长DE,GH均为4米,两棵树之间的距离DG为6米,求榕树FG的高度;(3)无论太阳光还是点光源,其本质与视线问题相同.日常生活中我们也可以直接利用视线解决问题.如图②,建筑物CD高为50米,建筑物MF上有一个广告牌EM,合计总高度EF为70米,两座建筑物之间的直线距离FD为30米.一个观测者(身高不计)先站在A处观测,发现能看见广告牌EM的底端M处,观测者沿着直线AF向前走了5米到B处观测,发现刚好看到广告牌EM的顶端E处.则广告牌EM的高度为米.【分析】(1)根据题意画出图形;(2)证明△ECD∽△EPB,根据相似三角形的性质列出比例式,把已知数据代入计算即可;(3)根据△BCD∽△BEF求出BD,再根据△ACD∽△AMF求出MF,进而求出EM.【解答】解:(1)图①中GH即为所求;(2)∵CD∥PB,∴△ECD∽△EPB,∴=,即=,解得:PB=9,∵FG∥PB,∴△HFG∽△HPB,∴=,即=,解得:FG=,答:榕树FG的高度为米;(3)∵CD∥EF,∴△BCD∽△BEF,∴=,即=,解得:BD=75,∵CD∥EF,∴△ACD∽△AMF,∴=,即=,解得:MF=,∴EM=EF﹣MF=70﹣=(米),故答案为:.【点评】本题考查的相似三角形的判定和性质的应用,掌握相似三角形的判定定理和性质定理是解题的关键.22.(10分)(1)【探究发现】如图①,已知四边形ABCD是正方形,点E为CD边上一点(不与端点重合),连接BE,作点D关于BE的对称点D',DD'的延长线与BC的延长线交于点F,连接BD′,D'E.①小明探究发现:当点E在CD上移动时,△BCE≌△DCF.并给出如下不完整的证明过程,请帮他补充完整.证明:延长BE交DF于点G.②进一步探究发现,当点D′与点F重合时,∠CDF=22.5°.(2)【类比迁移】如图②,四边形ABCD为矩形,点E为CD边上一点,连接BE,作点D关于BE的对称点D',DD′的延长线与BC的延长线交于点F,连接BD',CD',D'E.当CD'⊥DF,AB=2,BC=3时,求CD'的长;(3)【拓展应用】如图③,已知四边形ABCD为菱形,AD=,AC=2,点F为线段BD上一动点,将线段AD绕点A按顺时针方向旋转,当点D旋转后的对应点E落在菱形的边上(顶点除外)时,如果DF=EF,请直接写出此时OF的长.【分析】(1)①延长BE交DF于点G,则由对称可知∠EGD=∠EGD'=90°,结合∠DEG=∠BEC得到∠EBC =∠EDF,由正方形的性质得到∠BCE=∠DCF、BC=DC,从而证明△BCE≌△DCF;②当点D'与点F重合时,由对称可知∠DBG=∠D'BG=22.5°,然后由①得到∠EDF=∠EBC=22.5°;(2)延长BE交DF于点G,由对称可知点G是DD'的中点、∠EGD=∠EGD'=90°,结合CD'⊥DF得到CD'∥BG,从而有EG是△DCD'的中位线,得到点E是CD的中点,从而求得CE=DE=1,再由勾股定理求得BE 的长;由(1)①得∠EBC=∠FDC,∠ECB=∠EGD=90°得到△ECB∽△EGD,进而借助相似三角形的性质求得EG的长,然后由中位线的性质求得CD'的长;(3)以点A为圆心,AD的长为半径作圆弧,与CD和BC的交点即为点E,然后分点E在CD上和点E在BC 上讨论,延长AF交DE于点G,然后借助(1)(2)的思路求解.【解答】(1)①证明:如图①,延长由对称可知,∠EGD=∠EGD'=90°,∵∠DEG=∠BEC,∴∠EBC=∠EDF,∵四边形ABCD是正方形,∴∠BCE=∠DCF=90°,BC=DC,在△BCE和△DCF中,,∴△BCE≌△DCF(ASA).②解:如图1,当点D'与点F重合时,由对称可知∠DBE=∠D'BE,∵四边形ABCD是正方形,∴∠DBC=45°,∴∠DBE=∠D'BE=22.5°,由①得到∠CDF=∠EBD',∴∠CDF=22.5°,故答案为:22.5°.(2)解:如图2,延长BE交DF于点G,由对称可知,点G是DD'的中点,∠EGD=∠EGD'=90°,∵CD'⊥DF,∴CD'∥BG,∴EG是△DCD'的中位线,∴点E是CD的中点,∴CE=DE=CD=×2=1,∴BE==,由(1)①得,∠EBC=∠FDC,∠ECB=∠EGD=90°,∴△ECB∽△EGD,∴,∴,∴EG=,∴BG=BE+EG=+=,∵EG是△DCD'的中位线,∴CD'=2EG=2×=.(3)以点A为圆心,AD的长为半径作圆弧,与CD和BC的交点即为点E,①如图3,当点E在CD上时,延长AF交DE于点G,由(1)①可得,∠GDF=∠OAF,∵四边形ABCD为菱形,∴AC⊥BD,AO=CO,∠ODC=∠ODA,∴∠OAF=∠ODA,∵AC=2,∴OA=1,∵AD=,∴OD=,∴tan∠OAF=tan∠ODA==,∴,∴OF=;②如图4,当点E在BC上时,延长AF交DE于点G,则∠AGD=90°,∠DAG=∠EAG=∠DAE,∵AD=AB=AE,∴∠AEB=∠ABE,∵四边形ABCD是菱形,∴∠ABO=∠ABE,AD∥BC,∴∠DAE=∠AEB,∴∠ABO=∠DAG,在△AGD和△BOA中,,∴△AGD≌△BOA(AAS),∴DG=AO=1,AG=BO=,∴DG=AO,∵∠F AO=∠FDG,∠FOA=∠FGD,∴△FOA≌△FGD(ASA),∴OF=FG,设OF=FG=x,则DF=﹣x,在Rt△DFG中,DF2=GF2+DG2,∴(﹣x)2=x2+12,解得:x=,∴OF=,综上所述,OF的长为或.【点评】本题考查了矩形的性质、轴对称的性质、旋转的性质、全等三角形的判定与性质、相似三角形的判定与性质、解直角三角形,解题的关键是通过菱形的性质和三角形的内角和定理得到∠EBC=∠EDF,从而得到相似三角形或全等三角形,难度较大,需要学生学会利用前面所学的知识解答后面的题目,具有很强的综合性,是中考常考题型.。
北师大版九年级(上)期末数学试卷(解析版) (7)
九年级(上)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.) 1.若2a =3b ,则a :b 等于( ) A .3:2 B .2:3C .﹣2:3D .﹣3:22.与如图中的三视图相对应的几何体是( )A .B .C .D .3.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则k 的取值范围是( )A .k >﹣1B .k >﹣1且k ≠0C .k <1D .k <1且k ≠04.下列命题中,真命题是( )A .两条对角线相等的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相垂直且相等的四边形是正方形D .两条对角线互相平分的四边形是平行四边形5.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm ,则它的宽约为( ) A .12.36cmB .13.6cmC .32.36cmD .7.64cm6.已知反比例函数,当x <0时,y 随x 的增大而增大,则k 的值可以是( )A .﹣1B .0C .1D .27.如图,已知DE ∥BC ,CD 和BE 相交于点O ,S △DOE :S △COB =4:9,则AE :EC 为( )A.2:1 B.2:3 C.4:9 D.5:48.函数(k≠0)的图象如图所示,那么函数y=kx﹣k的图象大致是()A. B.C.D.9.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()A.14cm B.17cm C.28cm D.34cm10.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2015 C.2016 D.201711.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.12.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2B.2C.3 D.二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡上).13.方程x2=2x的解为.14.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊只.15.如图,DE∥BC,DF∥AC,AD=4cm,BD=8cm,DE=5cm,则线段BF长为cm.16.两个反比例函数和在第一象限内的图象如图所示,点P在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B,当点P在的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是(把你认为正确结论的序号都填上,答案格式:“①②③④”).三、解答题(本大题有7题,其中17题6分,18题6分,19题7分,20题7分,21题8分,22题8分,23题10分,共52分)17.(6分)解方程(1)x2﹣4x﹣5=0 (2)5x2+2x﹣1=0.18.(6分)在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.19.(7分)阳光下,小亮测量“望月阁”的高A B.(如图),由于观测点与“望月阁”底部间的距离不易测得,因此他首先在直线BM上点C处固定平放一平面镜,在镜面上做了一个标记,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.20.(7分)在“文博会”期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸花边.(1)若丝绸花边的面积为650cm2,求丝绸花边的宽度;(2)已知该工艺品的成本是40元/件,如果以单价100元/件销售,那么每天可售出200件,另每天除工艺品的成本外所需支付的各种费用是2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,请问该公司每天所获利润能否达到22500元,如果能应该把销售单价定为多少元?如果不能,请说明理由.21.(8分)已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2)(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x 轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.22.(8分)已知矩形ABCD中,M、N分别是AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌DCM;(2)判断四边形MENF是(只写结论,不需证明);(3)在(1)(2)的前提下,当等于多少时,四边形MENF是正方形,并给予证明.23.(10分)如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥B C.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.2016-2017学年广东省深圳市南山区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.若2a=3b,则a:b等于()A.3:2 B.2:3 C.﹣2:3 D.﹣3:2【考点】比例的性质.【分析】依据比例的基本性质:两内项之积等于两外项之积,分别对各选项计算,只有A 选项符合题意.【解答】解:∵2a=3b,∴a:b=3:2.故选A.【点评】比例的变化可以依据比例的基本性质,等比性质与合比性质.2.与如图中的三视图相对应的几何体是()A.B.C. D.【考点】简单组合体的三视图.【分析】根据三视图判断长方体上面放着小正方体,确定具体位置后即可得到答案.【解答】解:由主视图和左视图可以得到该几何体是一个正方体和一个长方体的复合体,由俯视图可以得到小正方体位于大长方体的右侧靠里的角上.故选:D.【点评】本题考查了由三视图判断几何体,解题时不仅要有一定的数学知识,而且还应有一定的生活经验.3.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1 B.k>﹣1且k≠0C.k<1 D.k<1且k≠0【考点】根的判别式;一元二次方程的定义.【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选B.【点评】本题考查的是根的判别式,熟知一元二次方程的根与判别式的关系是解答此题的关键.4.下列命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A.两条对角线相等的平行四边形是矩形,故本选项错误;B.两条对角线互相垂直的平行四边形是菱形,故本选项错误;C.两条对角线互相垂直且相等的平行四边形是正方形,故本选项错误;D.两条对角线互相平分的四边形是平行四边形,正确;故选:D.【点评】主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.36cm D.7.64cm【考点】黄金分割.【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:方法1:设书的宽为x,则有(20+x):20=20:x,解得x=12.36cm.方法2:书的宽为20×0.618=12.36cm.故选A.【点评】理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.6.已知反比例函数,当x<0时,y随x的增大而增大,则k的值可以是()A.﹣1 B.0 C.1 D.2【考点】反比例函数的性质.【分析】根据反比例函数的性质列出关于k的不等式,求出k的取值范围即可.【解答】解:∵反比例函数,当x<0时,y随x的增大而增大,∴1﹣k<0,解得k>1.故选D.【点评】本题考查的是反比例函数的性质,即反比例函数y=(k≠0)中,当k<0时,y随x的增大而增大.7.如图,已知DE∥BC,CD和BE相交于点O,S△DOE:S△COB=4:9,则AE:EC为()A.2:1 B.2:3 C.4:9 D.5:4【考点】相似三角形的判定与性质.【分析】由DE ∥BC ,得到△DOE ∽△COB ,根据相似三角形的性质得到S △DOE :S △COB =()2=4:9,求得=,通过△ADE ∽△ABC ,得到=,根据相似三角形的性质即可得到结论.【解答】解:∵DE ∥BC , ∴△DOE ∽△COB ,∴S △DOE :S △COB =()2=4:9,∴=,∵DE ∥BC , ∴△ADE ∽△ABC ,∴=,∴AE :EC =2:1, 故选A .【点评】本题考查了相似三角形的判定和性质,证得=是解题的关键.8.函数(k ≠0)的图象如图所示,那么函数y =kx ﹣k 的图象大致是( )A .B .C .D .【考点】一次函数的图象;反比例函数的图象.【分析】首先由反比例函数y =的图象位于第二、四象限,得出k <0,则﹣k >0,所以一次函数图象经过第二四象限且与y 轴正半轴相交.【解答】解:∵反比例函数y=的图象位于第二、四象限,∴k<0,﹣k>0.∵k<0,∴函数y=kx﹣k的图象过二、四象限.又∵﹣k>0,∴函数y=kx﹣k的图象与y轴相交于正半轴,∴一次函数y=kx﹣k的图象过一、二、四象限.故选C.【点评】本题考查的知识点:(1)反比例函数y=的图象是双曲线,当k<0时,它的两个分支分别位于第二、四象限.(2)一次函数y=kx+b的图象当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限.9.若菱形的周长为52cm,面积为120cm2,则它的对角线之和为()A.14cm B.17cm C.28cm D.34cm【考点】菱形的性质.【分析】作出图形,根据菱形的对角线互相垂直平分可得AC⊥BD,AO=CO=AC,BO=DO=BD,然后根据菱形的面积等于对角线乘积的一半列式整理可得AO•BO=60,根据菱形的周长求出AB=13,再利用勾股定理可得AO2+BO2=169,然后利用完全平方公式整理并求出AO+BO,再求解即可.【解答】解:如图,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=AC,BO=DO=BD,∵菱形的面积为120cm2,∴AC•BD=120,即×2AO•2BO=120,所以,AO•BO=60,∵菱形的周长为52cm,∴AB=13cm,在Rt△AOB中,由勾股定理得,AO2+BO2=AB2=132=169,所以,(AO+BO)2=AO2+2AO•BO+BO2=169+60×2=289,所以,AO+BO=17,所以,AC+BD=2(AO+BO)=2×17=34cm.故选D.【点评】本题考查了菱形的性质,勾股定理,完全平方公式,熟练掌握菱形的性质是解题的关键,作出图形更形象直观.10.设a,b是方程x2+x﹣2016=0的两个实数根,则a2+2a+b的值为()A.2014 B.2015 C.2016 D.2017【考点】根与系数的关系.【分析】先根据一元二次方程的解的定义得到a2+a﹣2016=0,即a2=﹣a+2016,则a2+2a+b 可化简为a+b+2016,再根据根与系数的关系得a+b=﹣1,然后利用整体代入的方法计算.【解答】解:∵a是方程x2+x﹣2016=0的实数根,∴a2+a﹣2016=0,∴a2=﹣a+2016,∴a2+2a+b=﹣a+2016+2a+b=a+b+2016,∵a、b是方程x2+x﹣2016=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=﹣1+2016=2015.故选B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程的解.11.如图,在矩形ABCD中,AD=2AB,点M、N分别在边AD、BC上,连接BM、DN.若四边形MBND是菱形,则等于()A.B.C.D.【考点】勾股定理;菱形的性质;矩形的性质.【分析】首先由菱形的四条边都相等与矩形的四个角是直角,即可得到直角△ABM中三边的关系.【解答】解:∵四边形MBND是菱形,∴MD=M B.∵四边形ABCD是矩形,∴∠A=90°.设AB=x,AM=y,则MB=2x﹣y,(x、y均为正数).在Rt△ABM中,AB2+AM2=BM2,即x2+y2=(2x﹣y)2,解得x=y,∴MD=MB=2x﹣y=y,∴==.故选:C.【点评】此题考查了菱形与矩形的性质,以及直角三角形中的勾股定理.解此题的关键是注意数形结合思想与方程思想的应用.12.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.2 B.2C.3 D.【考点】轴对称-最短路线问题.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE 最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】解:设BE与AC交于点F(P′),连接BD,∵点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度;∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故选:A.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡上).13.方程x2=2x的解为x1=0,x2=2.【考点】解一元二次方程-因式分解法.【分析】首先移项,再提取公因式,即可将一元二次方程因式分解,即可得出方程的解.【解答】解:∵x2=2x∴x2﹣2x=0,x(x﹣2)=0,解得:x1=0,x2=2,故答案为:x1=0,x2=2.【点评】此题主要考查了因式分解法解一元二次方程,根据题意正确的因式分解方程是解决问题的关键.14.某地区为估计该地区黄羊的只数,先捕捉20只黄羊给它们分别作上标志,然后放回,待有标志的黄羊完全混合于黄羊群后,第二次捕捉60只黄羊,发现其中2只有标志.从而估计该地区有黄羊600只.【考点】用样本估计总体.【分析】捕捉60只黄羊,发现其中2只有标志.说明有标记的占到,而有标记的共有20只,根据所占比例解得.【解答】解:20 =600(只).故答案为600.【点评】本题考查了用样本估计总体的思想,统计的思想就是用样本的信息来估计总体的信息,本题体现了统计思想,考查了用样本估计总体.15.如图,DE∥BC,DF∥AC,AD=4cm,BD=8cm,DE=5cm,则线段BF长为10cm.【考点】相似三角形的判定与性质.【分析】由题意推知四边形DFCE是平行四边形,则DE=FC,DE∥FC,易推知△ADE∽△ABC,由相似三角形的对应边成比例推知BC的长度,则BF=BC﹣DE.【解答】解:如图,∵DE∥BC,DF∥AC,∴四边形DFCE是平行四边形,∴DE=FC,DE∥FC,∴△ADE∽△ABC,∴=.又AD=4cm,BD=8cm,DE=5cm,∴=,故BC =15,则BF =BC ﹣DE =10cm . 故答案是:10.【点评】本题考查了相似三角形的判定与性质.根据题意推知四边形DFCE 是平行四边形是解题的关键.16.两个反比例函数和在第一象限内的图象如图所示,点P 在的图象上,PC ⊥x 轴于点C ,交的图象于点A ,PD ⊥y 轴于点D ,交的图象于点B ,当点P在的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 ①②④ (把你认为正确结论的序号都填上,答案格式:“①②③④”).【考点】反比例函数系数k 的几何意义.【分析】本题考查的是反比例函数中k 的几何意义,无论如何变化,只要知道过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是个恒等值即易解题.【解答】解:①△ODB 与△OCA 的面积相等都为; ②四边形PAOB 的面积不会发生变化为k ﹣1;③不能确定PA与PB是否始终相等;④由于反比例函数是轴对称图形,当A为PC的中点时,B为PD的中点,故本选项正确.故其中一定正确的结论有①、②、④.故答案为:①、②、④.【点评】本题主要考查反比例函数系数k的几何意义,反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.三、解答题(本大题有7题,其中17题6分,18题6分,19题7分,20题7分,21题8分,22题8分,23题10分,共52分)17.解方程(1)x2﹣4x﹣5=0(2)5x2+2x﹣1=0.【考点】解一元二次方程-因式分解法.【分析】(1)因式分解法求解可得;(2)公式法求解可得.【解答】解:(1)∵x2﹣4x﹣5=0,∴(x+1)(x﹣5)=0,∴x1=﹣1或x2=5.(2)∵a=5,b=2,c=﹣1,∴△=b2﹣4ac=4+4×5×1=24>0,∴x==.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.【考点】游戏公平性;列表法与树状图法.【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:此游戏不公平.理由如下:列树状图如下,列表如下,由上述树状图或表格知:所有可能出现的结果共有16种.P(小明赢)=,P(小亮赢)=.∴此游戏对双方不公平,小亮赢的可能性大.(说明:答题时只需用树状图或列表法进行分析即可)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.19.阳光下,小亮测量“望月阁”的高A B.(如图),由于观测点与“望月阁”底部间的距离不易测得,因此他首先在直线BM上点C处固定平放一平面镜,在镜面上做了一个标记,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米.然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.【考点】相似三角形的应用;平行投影.【分析】由物理知识:入射角等于反射角得∠ACB=∠ECD,由光线平行得:AF∥GH,则∠AFB=∠GHF,再证明△ABC∽△EDC,△ABF∽△GFH,列比例式可得AB的长.【解答】解:∵AB⊥BM,ED⊥BM,GF⊥BM,∴∠ABC=∠EDC=∠GFH=90°,由题意得:AF∥GH,∠ACB=∠ECD,∴∠AFB=∠GHF,故△ABC∽△EDC,△ABF∽△GFH,则=,=,即=,=,解得:AB=99,答:“望月阁”的高AB的长度为99 m.【点评】本题是相似三角形的应用,考查了平行投影和相似三角形的性质与判定,熟练掌握相似三角形的判定是关键,并熟悉生活中的常识.20.在“文博会”期间,某公司展销如图所示的长方形工艺品,该工艺品长60cm,宽40cm,中间镶有宽度相同的三条丝绸花边.(1)若丝绸花边的面积为650cm2,求丝绸花边的宽度;(2)已知该工艺品的成本是40元/件,如果以单价100元/件销售,那么每天可售出200件,另每天除工艺品的成本外所需支付的各种费用是2000元,根据销售经验,如果将销售单价降低1元,每天可多售出20件,请问该公司每天所获利润能否达到22500元,如果能应该把销售单价定为多少元?如果不能,请说明理由.【考点】一元二次方程的应用.【分析】(1)设出花边的宽,然后表示出花边的长,利用面积公式表示出其面积即可列出方程求解;(2)先根据题意设每件工艺品降价为x元出售,获利y元,则降价x元后可卖出的总件数为(200+20x),每件获得的利润为(100﹣x﹣40),此时根据获得的利润=卖出的总件数×每件工艺品获得的利润,列出二次方程,求解即可.【解答】解:(1)设花边的宽度为xcm,根据题意得:(60﹣2x)(40﹣x)=60×40﹣650,或60x+80x﹣2x2=650解得:x=5或x=65(舍去).答:丝绸花边的宽度为5cm;(2)设每件工艺品降价x元出售,则根据题意可得:(100﹣x﹣40)(200+20x)﹣2000=22500,整理得:x2﹣50x+625=0解这个方程得:x=25答:当售价100﹣25=75元时能达到利润22500元.【点评】此题考查了一元二次方程的应用,解题的关键是从实际问题中抽象出一元二次方程模型,难度不大.21.已知:如图,正比例函数y=ax的图象与反比例函数y=的图象交于点A(3,2)(1)试确定上述正比例函数和反比例函数的表达式;(2)根据图象回答,在第一象限内,当x取何值时,反比例函数的值大于正比例函数的值?(3)点M(m,n)是反比例函数图象上的一动点,其中0<m<3,过点M作直线MB∥x 轴,交y轴于点B;过点A作直线AC∥y轴交x轴于点C,交直线MB于点D.当四边形OADM的面积为6时,请判断线段BM与DM的大小关系,并说明理由.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A坐标分别代入正比例与反比例函数解析式中求出a与k的值,即可确定出两函数解析式;(2)在图象上找出反比例在正比例上方时x的范围即可;(3)BM=DM,理由为:由反比例函数k的几何意义得到三角形OBM与三角形OAC面积为k的绝对值的一半,求出面积,矩形OBDC的面积=三角形OBM面积+四边形OADM面积+三角形OAC面积,求出矩形OBDC的面积,即为OB与OC的积,由OC的长求出OB 的长,即为n的值,将n的值代入反比例解析式中求出m的值,即为BM的长,由BD﹣BM 求出MD的长,即可作出判断.【解答】解:(1)将A(3,2)分别代入y=,y=ax得:k=6,a=,则反比例函数解析式为y=,正比例函数解析式为y=x;(2)由图象得:在第一象限内,当0<x<3时,反比例函数的值大于一次函数的值;(3)BM=DM,理由为:∵S△OMB=S△OAC=×|k|=3,=S四边形OADM+S△OMB+S△OAC=3+3+6=12,即OC•OB=12,∴S矩形OBDC∵OC=3,∴OB=4,即n=4,∴m==,∴MB=,MD=3﹣=,则MB=M D.【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:待定系数法求函数解析式,坐标与图形性质,一次函数与坐标轴的交点,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.22.已知矩形ABCD中,M、N分别是AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌DCM;(2)判断四边形MENF是菱形(只写结论,不需证明);(3)在(1)(2)的前提下,当等于多少时,四边形MENF是正方形,并给予证明.【考点】矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的性质.【分析】(1)由矩形的性质得出AB=DC,∠A=∠D,再由M是AD的中点,根据SAS即可证明△ABM≌△DCM;(2)先由(1)得出BM=CM,再由已知条件证出ME=MF,EN、FN是△BCM的中位线,即可证出EN=FN=ME=MF,得出四边形MENF是菱形;(3)先证出∠AMB=45°,同理得出∠DMC=45°,证出∠BMC=90°,即可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,∵M是AD的中点,∴AM=DM,在△ABM和△DCM中,,∴△ABM≌△DCM(SAS);(2)解:四边形MENF是菱形;理由如下:由(1)得:△ABM≌△DCM,∴BM=CM,∵E、F分别是线段BM、CM的中点,∴ME=BE=BM,MF=CF=CM,∴ME=MF,又∵N是BC的中点,∴EN、FN是△BCM的中位线,∴EN=CM,FN=BM,∴EN=FN=ME=MF,∴四边形MENF是菱形;(3)解:当=2时,四边形MENF是正方形;证明如下:当=2时,AB=AM,∴△ABM是等腰直角三角形,∴∠AMB=45°,同理:∠DMC=45°,∴∠BMC=90°,∴四边形MENF是正方形.【点评】本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、正方形的判定;熟练掌握矩形的性质以及菱形、正方形的判定方法,证明三角形全等是解决问题的关键.23.(10分)(2016秋•深圳期末)如图1,已知△ABC中,AB=10cm,AC=8cm,BC=6cm,如果点P由B出发沿BA方向向点A匀速运动,同时点Q由A出发沿AC方向向点C匀速运动,它们的速度均为2cm/s,连接PQ,设运动的时间为t(单位:s)(0≤t≤4).解答下列问题:(1)当t为何值时,PQ∥B C.(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由.(3)如图2,把△APQ沿AP翻折,得到四边形AQPQ′.那么是否存在某时刻t使四边形AQPQ′为菱形?若存在,求出此时菱形的面积;若不存在,请说明理由.【考点】四边形综合题;解一元二次方程-公式法;三角形的面积;勾股定理;菱形的性质;相似三角形的判定与性质.【分析】(1)根据PQ∥BC,得出△APQ∽△ABC,根据相似三角形对应边成比例,列出比例式,求出方程的解即可;(2)假设存在某时刻t,使线段PQ恰好把△ABC的面积平分,据此得出一元二次方程;由于此一元二次方程的判别式小于0,则可以得出结论:不存在这样的某时刻t,使线段PQ 恰好把△ABC的面积平分;(3)首先根据菱形的性质及相似三角形比例线段关系,求得PQ、QD和PD的长度;然后在Rt△PQD中,根据勾股定理列出方程(8﹣t)2+(6﹣t)2=(2t)2,求得时间t的值;最后根据菱形的面积等于△AQP面积的2倍,进行计算即可.【解答】解:(1)由题意知:BP=2t,AP=10﹣2t,AQ=2t,∵PQ∥BC,∴△APQ∽△ABC,∴=,即=,解得:t=,∴当t=时,PQ∥BC;(2)如图1所示,过P点作PD⊥AC于点D,∴PD∥BC,∴=,即=,解得,∴△AQP的面积,。
北师大2014-2015学年九年级(上)期末数学试卷 三套
北师大2014-2015学年九年级(上)期末数学试卷姓名:______一、选择题(3*7=21)2,y=y=y=<0;④abc>0,其中正确的个数是()1.抛物线y=(x﹣1)2+2的顶点坐标是_________ .2.已知函数y=(m+1)是反比例函数,则m的值为_________ .3.已知直角三角形两直角边的长分别为6cm和8cm,则斜边上的中线长为_________ cm.4.已知菱形的周长为40cm,一条对角线长为16cm,则这个菱形的面积为_________ cm2.5.如图所示的抛物线是二次函数y=ax2﹣3x+a2﹣1的图象,那么a的值是_________ .6.在Rt△ABC中,∠C=90°,BC=5,AB=12,sinA= _________ .7.把一个转盘分成6等份,分别是红、黄、蓝、绿、白、黑,转动转盘两次,两次均是红色的概率是:_________ .三、解答题:19.(6分)解一元二次方程:x2+2x﹣3=0.20.(6分)|﹣|+﹣sin30°+(π+3)0+tan45°.21. (12分)已知:如图,矩形ABCD中AB=4,AD=12,点P是线段AD上的一动点(点P不与点A,D重合),点Q是直线CD上的一点,且PQ⊥BP,连接BQ,设AP=x,DQ=y(1)求证:△ABP∽△DPQ.(2)求y与x的函数关系式,并写出自变量x的取值范围.(3)并求出当y取何值,△ABP∽△PBQ.(4)若点Q在DC的延长线上,则x的取值范围.(不必写出过程).25.(7分)如图,天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B点测得C点的仰角为60°.已知AB=20m,点C和直线AB在同一铅垂平面上,求气球离地面的高度(结果保留根号).26.(12分)某商场销售一种进价为20元/台的台灯,经调查发现,该台灯每天的销售量w(台),销售单价x(元)满足w=﹣2x+80,设销售这种台灯每天的利润为y(元).(1)求y与x之间的函数关系式;(2)当销售单价定为多少元时.毎天的利润最大?最大利润多少?(3)在保证销售量尽可能大的前提下.该商场每天还想获得150元的利润,应将销售单价定位为多少元?27.(12分)如图,已知抛物线y=ax2+bx+c经过A(﹣2,0)、B(4,0)、C(0,4)三点.(1)求此抛物线的解析式;(2)此抛物线有最大值还是最小值?请求出其最大或最小值;(3)若点D(2,m)在此抛物线上,在y轴的正半轴上是否存在点P,使得△BDP是等腰三角形?若存在,请求出所有符合条件的P点的坐标;若不存在,请说明理由.北师大2014-2015学年九年级(上)期末数学试卷 姓名:_________..B9.如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且0<x≤10,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( ).1.若,则= _________ .2.如图,市政府准备修建一座高AB=6m 的过街天桥,已知天桥的坡面AC 与地面BC 的夹角∠ACB 的正弦值为,则坡面AC 的长度为 _________ m . 3.若△ABC∽△DEF,△ABC 与△DEF 的相似比为1:2, 则△ABC 与△DEF 的周长比为 _________ . 4.两个反比例函数和在第一象限内的图象如图所示,点P 在的图象上,PC⊥x 轴于点C ,交的图象于点A ,PD⊥y 轴于点D ,交的图象于点B ,当点P 在的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是_________ (把你认为正确结论的序号都填上) 三、解答题 15.(5分)计算:sin60°﹣cos45°+.16.(6分)已知在△ABC 中,∠C=90°,,,解这个直角三角形.18.(6分)随着人民生活水平的提高,小轿车也逐渐进入千家万户.为了解决停车难问题,我县交警大队在城区划定了许多机动车停车位.如图,矩形ABCD 的供一辆机动车停放的车尾示意图,已知BC=2.2m ,∠DCF=40°,请计算车位所占街道的宽度EF .(参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,结果精确到0.1m )19.(6分)如图,四边形OABC是面积为4的正方形,函数(x>0)的图象经过点B.(1)求k的值;(2)将正方形OABC分别沿直线AB、BC翻折,得到正方形MABC′、NA′BC.设线段MC′、NA′分别与函数(x>0)的图象交于点E、F,求线段EF所在直线的解析式.20.(6分)如图,在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,3)、B(2,2)、C (2,1),D(3,3).(1)以原点O为位似中心,相似比为2,将图形放大,画出符合要求的位似四边形;(2)在(1)的前提下,写出点A的对应点坐标A′,并说明点A与点A′坐标的关系.五、解答题(9分)21.王强在一次高尔夫球的练习中,在某处击球,其飞行路线满足抛物线y=﹣x2+x,其中y(m)是球的飞行高度,x(m)是球飞出的水平距离,结果球离球洞的水平距离还有2m.(1)请写出抛物线的开口方向,顶点坐标,对称轴.(2)请求出球飞行的最大水平距离.(3)若王强再一次从此处击球,要想让球飞行的最大高度不变且球刚好进洞,则球飞行路线应满足怎样的抛物线,求出其解析式.22.(12分)已知:如图,在正方形ABCD中,AB=8,点E在边AB上点,CE的垂直平分线FP 分别交AD、CE、CB于点F、H、G,交AB的延长线于点P.(1)求证:△EBC∽△EHP;(2)设BE=x,BP=y,求y与x之间的函数解析式.七、解答题(9分)23.一家计算机专买店A型计算器每只进价12元,售价20元,多买优惠:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10×(20﹣10)=1(元),因此,所买的全部20只计算器都按每只19元的价格购买.但是最低价为每只16元.(1)求一次至少买多少只,才能以最低价购买?(2)写出专买店当一次销售x(x>10)只时,所获利润y元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲买了46只,乙买了50只,店主却发现卖46只赚的钱反而比卖50只赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他优惠条件不变的情况下,店家应把最低价每只16元至少提高到多少?北师大2014-2015学年九年级(上)期末数学试卷 姓名:______一、选择题1.的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定6.二次函数y=ax 2+bx+c 的图象如图所示,则反比例函数与一次函数y=bx+c 在同一坐标系中的大致图象是( )二、填空题7.写出一个经过点(2,3)的反比例函数 _________ .8.已知关于x 的方程x 2+mx+n=0的两个根分别是1和﹣3, 则m= _________ .9.在四边形ABCD 中,AB=DC ,AD=BC ,请再添加一个条件,使四边形ABCD 是矩形.你添加的条件是 ______. (写出一种即可) 10.在Rt△ABC 中,∠C=90°,,则tanB= ___ .11.如图,是二次函数y=ax 2+bx+c (a≠0)的图象的一部分,则方程ax 2+bx+c=0的两根分别为 ____..12.如图,AB是伸缩式的遮阳棚,CD是窗户,要想在夏至的正午时刻阳光刚好不能射入窗户,则AB的长度是_ 米.(假设夏至正午时的阳光与地平面的夹角是60°)13.如图,已知∠AOB,OA=OB,点E在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线.(请保留画图痕迹).14.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是_________ .三、解答题15.用适当方法解方程:2(x﹣3)2=x2﹣9.217.如图,已知双曲线y=(k<0)经过Rt△OAB斜边OA的中点D,且与直角边AB相交于点C.已知点A的坐标为(﹣3,2).(1)直接写出点D的坐标;(2)求△AOC的面积.18. (6分)在重阳节敬老爱老活动中,某校计划组织志愿者服务小组到“夕阳红”敬老院为老人服务,准备从初三(1)班中的3名男生小亮、小明、小伟和2名女生小丽、小敏中选取一名男生和一名女生参加学校志愿者服务小组.(1)若随机选取一名男生和一名女生参加志愿者服务小组,请用树状图或列表法写出所有可能出现的结果;(2)求出恰好选中男生小明与女生小丽的概率.20.如图,要建一个面积为130m2的养鸡场,养鸡场一边靠墙(墙长16m),并在与墙平行的一边开一道1m宽的门,其余部分为栅栏,总长32m.(1)若设仓库的垂直于墙的一边(AD)为xm,则这个养鸡场的长(AB)为_________ m.(用含x的代数式表示)(2)求这个养鸡场的长和宽.21.据媒体报道,近期“手足口病”可能进入发病高峰期,某校根据《学校卫生工作条例》,为预防“手足口病”,对教室进行“薰药消毒”.已知药物在燃烧及释放过程中,室内空气中每立方米含药量y(毫克)与燃烧时间x(分钟)之间的关系如图所示(即图中线段OA和双曲线在A点及其右侧的部分),根据图象所示信息,解答下列问题:(1)写出从药物释放开始,y与x之间的函数关系式及自变量的取值范围;(2)据测定,当空气中每立方米的含药量低于2毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?22.已知:如图,等边△ABC中,AB=1.若D、E分别是BC、AC上的点(点D与B、C不重合),且∠ADE=60°.设BD=x,AE=y.(1)找出与∠BAD相等的角,并给出证明;(2)求y关于x的函数关系式,并求出y的最小值;(3)△ADE可能为等边三角形吗?如若可能,求出此时x值,若不可能,说明理由.。
2013-2014学年北师大九年级上数学期末复习试题含答案详解
期末测试题【本试卷满分120分,测试时间120分钟】一、选择题(每小题3分,共36分)1.在△ABC 中,∠A ︰∠B ︰∠C =1︰2︰3,CD ⊥A B 于点D ,AB =a ,则BD 的长为( )A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.以上都不对 2.如图,在△ABC 中,∠C =90°,点E 是AC 上的点,且∠1=∠2,DE 垂直平分AB ,垂足是D ,如果EC =3 cm ,那么AE 等于( )A.3 cmB.错误!未找到引用源。
cmC.6 cmD.错误!未找到引用源。
cm3.定义:如果一元二次方程错误!未找到引用源。
满足错误!未找到引用源。
,那么我们称这个方程为“凤凰”方程.已知错误!未找到引用源。
是“凤凰”方程,且有两个相等的实数根,则下列结论正确的是( )A.a =cB.a =bC.b =cD.a =b =c4.已知方程错误!未找到引用源。
的一个根为错误!未找到引用源。
,则另一个根是( )A.5 B .错误!未找到引用源。
C .错误!未找到引用源。
D.35.如图,四边形ABCD 是矩形,F 是AD 上一点,E 是CB 延长线上一点,且四边形AECF 是等腰梯形,下列结论中,不一定正确的是( )A.AE=FCB.AD=BCC.BE=AFD.∠E=∠CFD6.如图,在菱形错误!未找到引用源。
中,对角线错误!未找到引用源。
、错误!未找到引用源。
相交于点O ,E 为BC 的中点,则下列式子中,一定成立的是( ) A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
7.多媒体教室呈阶梯形状或下坡的形状的原因是( )A.减小盲区B.增大盲区C.盲区不变D.为了美观而设计 8.两个不同长度的物体在同一时刻同一地点的太阳光下得到的投影是 ( ) A.相等 B.长的较长 C.短的较长 D.不能确定9.在反比例函数错误!未找到引用源。
北师大版初中数学九年级上册期末测试卷(较易)(含答案解析)
北师大版初中数学九年级上册期末测试卷考试范围:全册;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36.0分。
在每小题列出的选项中,选出符合题目的一项)1.如图,四边形ABCD是菱形,点E,F分别在BC,DC边上,添加以下条件不能判定△ABE≌△ADF的是( )A. BE=DFB. ∠BAE=∠DAFC. AE=ADD. ∠AEB=∠AFD2.在四边形ABCD中,∠A=∠B=∠C=90∘,若要使该四边形是正方形,则添加的一个条件可以是( )A. ∠D=90∘B. AB=CDC. AD=BCD. BC=CD3.如图,某建筑工程队在工地一边靠墙处,用81米长的铁栅栏围成三个相连的长方形仓库,仓库总面积为440平方米.为了方便取物,在各个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门.若设AB=x米,则可列方程( )A. x(81−4x)=440B. x(78−2x)=440C. x(84−2x)=440D. x(84−4x)=4404.国家统计局统计数据显示,我国快递业务收入逐年增加.2017年至2019年我国快递业务收入由5000亿元增加到7500亿元.设我国2017年至2019年快递业务收入的年平均增长率为x,则可列方程为( )A. 500(1+2x)=7500B. 5000×2(1+x)=7500C. 5000(1+x)2=7500D. 5000+5000(1+x)+5000(1+x)2=75005.为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为( )A. 23B. 12C. 13D. 166.关于频率和概率的关系,下列说法正确的是( )A. 频率等于概率B. 当试验次数很大时,频率稳定在概率附近C. 当试验次数很大时,概率稳定在频率附近D. 试验得到的频率与概率不可能相等7.如图,在6×6的正方形网格中,连接小正方形中两个顶点A、B,如果线段AB与网格线的其中两个交点为M、N,那么AM:MN:NB的值是( )A. 3:5:4B. 3:6:5C. 1:3:2D. 1:4:28.下面四组线段中,不能成比例的是( )A. a=1,b=√2,c=√6,d=√3B. a=3,b=6,c=2,d=4C. a=4,b=6,c=5,d=10D. a=2,b=√5,c=√15,d=2√39.如图所示的工件,其俯视图是( )A. B. C. D.10.如图所示,夜晚路灯下同样高的旗杆,离路灯越近,它的影子( )A. 越长B. 越短C. 一样长D. 无法确定11.根据下表中,反比例函数的自变量x与函数y的对应值,可得p的值为( )x−21y3pA. 3B. 1C. −2D. −612.如图,在▱ABCD中,对角线AC与BD交于点O,添加下列条件不能判定▱ABCD为矩形的只有( )A. AC=BDB. AB=6,BC=8,AC=10C. AC⊥BDD. ∠1=∠2第II卷(非选择题)二、填空题(本大题共4小题,共12.0分)13.如图,在菱形ABCD中,AC=2,∠ABC=60°,则BD=________.14.将一元二次方程x2+8x+13=0通过配方转化成(x+n)2=p的形式(n,p为常数),则n=________,p=________.15.在同一时刻两根木杆在太阳光下的影子如图所示,其中木杆AB=2m,它的影子BC=1.6m,木杆PQ的影子有一部分落在了墙上,PM=1.2m,MN=0.8m,则木杆PQ的长度为m.16.已知函数y=5,当x=1时,y=;当x=时,y=1.x三、解答题(本大题共9小题,共72.0分。
2014-2015学年北师大版九年级上期末数学试卷
2014-----2015九年级数学上期末测试卷姓名一选择题:1. 下列方程中,不是一元二次方程的是( )A .01232=++y yB .x x 31212-= C .032611012=+-a aD .223x x x =-+2.下列四个点,在反比例函数xy 6=图象上的是( ) A .(1,-6) B .(2,4) C .(3,-2) D .(―6,―1) 3.如图所示的物体有两个紧靠在一起的圆柱体组成,它的主视图是( )4. 某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是( ) A .61 B .51 C .41 D .315. 如图:在等腰梯形ABCD 中,AD ∥BC ,过D 作DF ⊥BC 于F , 若AD =2,BC =4,DF =2,则DC 的长为( )A .1B .5C .2D . 3 6.某年爆发世界金融危机,某商品原价为200元,连续两次降价a%后,售价为148元,则下面所列方程正确的是( ) A .148%)1(2002=+a B . 148%)1(2002=-a C .148%)21(200=-a D .148%)1(200=-a 7. 如图,AC 、BD 是矩形ABCD 的对角线,过点D 作DF ∥AC 交BC 的延长线于F ,则图中与△ABC 全等的三角形共有( ) A .1个 B .2个 C .3个 D . 4个 8. 关于x 的函数)1(+=x k y 和)0(≠-=k xky 在同一坐标系中的图像大致是( )9.人离窗子越远,向外眺望时此人的盲区是( )A .变小B .变大C .不变D .以上都有可能 10.函数xky =的图象经过(1,-1),则函数2-=kx y 的图象是( )11.下列性质中正方形具有而矩形没有的是( ) A .对角线互相平分 B .对角线相等 C .对角线互相垂直 D .四个角都是直角12、计算:221sin 60tan 45()3-︒︒-- 结果是 .A .94B .114C . 94-D .114-13、若sin cos 2A A +=,则锐角∠A = .A .30°B .45°C .60°D .90°14、在△ABC 中,∠A 、∠B 、∠C 对边分别为a 、b 、c ,且a = 5,b = 12,c = 13,正确的是 .A .12sin 5A =B .5cos 13A = C .5tan 12A = D .12cos 13B =二,填空题15. 如图所示是小红在某天四个时刻看到一个棒及其影子的情况,那么她看到的先后顺序是 .16.用配方法解方程0622=--x x ,原方程可化为 . 17.如图:在Rt △ABC 中 ,∠B=90°,∠A=40°,AC 的垂直平分 线MN 与AB 交于D ,则∠BCD = . 18.某地区为估计该地区的绵羊只数,先捕捉20只绵羊给它们 分别做上记号,然后放还,待有标记的绵羊完全混合于羊群后 第二次捕捉40只绵羊,发现其中有2只有记号,从而估计这个 地区有绵羊 只. 19.如图:双曲线xky =上有一点A ,过点A 作AB ⊥x 轴于点B , △AOB 的面积为2,则该双曲线的关系式为 . 20.如图,已知矩形OABC 的面积是3100,它的对角线OB 与双 曲线)0(>x xky =交于点D ,且OB:OD =5:3,则=k . 21.如图,△ABC 中,DE 垂直平分AC 交AB 于E ,∠A=30°,∠ACB=80°,则∠BCE=_________度. 22.直线l 1:y=k 1x+b 与双曲线l 2:y=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式>k 1x+b 的解集为 _________ .23.有两组扑克牌各三张,牌面数字分别为2,3,4,随意从每组中牌中抽取一张,数字和是6的概率是 . 24.(本小题6分)如图,楼房和旗杆在路灯下的影子如图所示。
北师大版九年级上册数学 广东深圳
2014年广东省深圳市中考数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2014年广东深圳)9的相反数是()A.﹣9 B.9 C.±9 D.分析:根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答:解:9的相反数是﹣9,故选:A.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.(3分)(2014年广东深圳)下列图形中是轴对称图形但不是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.解答:解:A、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、此图形不是中心对称图形,是轴对称图形,故此选项正确;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形是中心对称图形,不是轴对称图形,故此选项错误.故答案选:B.点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.3.(3分)(2014年广东深圳)支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北.据统计,2014年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学记数法表示为()A. 4.73×108B.4.73×109C.4.73×1010D.4.73×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:47.3亿=47 3000 0000=4.73×109,故选:B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2014年广东深圳)由几个大小不同的正方形组成的几何图形如图,则它的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解:从上面看第一层右边一个,第二层三个正方形,故选:A.点评:本题考查了简单组合体的三视图,上面看得到的图形是俯视图.5.(3分)(2014年广东深圳)在﹣2,1,2,1,4,6中正确的是()A.平均数3 B.众数是﹣2 C.中位数是1 D.极差为8考点:极差;算术平均数;中位数;众数.分析:根据平均数、众数、中位数、极差的定义即可求解.解答:解:这组数据的平均数为:(﹣2+1+2+1+4+6)÷6=12÷6=2;在这一组数据中1是出现次数最多的,故众数是1;将这组数据从小到大的顺序排列为:﹣2,1,1,2,4,6,处于中间位置的两个数是1,2,那么由中位数的定义可知,这组数据的中位数是:(1+2)÷2=1.5;极差6﹣(﹣2)=8.故选D.点评:本题为统计题,考查平均数、众数、中位数、极差的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数;极差是一组数据中最大数据与最小数据的差.6.(3分)(2014年广东深圳)已知函数y=ax+b经过(1,3),(0,﹣2),则a﹣b=()A.﹣1 B.﹣3 C. 3 D.7考点:一次函数图象上点的坐标特征.分析:分别把函数y=ax+b经过(1,3),(0,﹣2)代入求出a、b的值,进而得出结论即可.解答:解:∵函数y=ax+b经过(1,3),(0,﹣2),∴,解得,∴a﹣b=5+2=7.故选D.点评:本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.7.(3分)(2014年广东深圳)下列方程没有实数根的是()A.x2+4x=10 B.3x2+8x﹣3=0 C.x2﹣2x+3=0 D.(x﹣2)(x﹣3)=12考点:根的判别式.分析:分别计算出判别式△=b2﹣4ac的值,然后根据△的意义分别判断即可.解答:解:A、方程变形为:x2+4x﹣10=0,△=42﹣4×1×(﹣10)=56>0,所以方程有两个不相等的实数根;B、△=82﹣4×3×(﹣3)=100>0,所以方程有两个不相等的实数根;C、△=(﹣2)2﹣4×1×3=﹣8<0,所以方程没有实数根;D、方程变形为:x2﹣5x﹣6=0,△=52﹣4×1×(﹣6)=49>0,所以方程有两个不相等的实数根.故选:C.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.8.(3分)(2014年广东深圳)如图,△ABC和△DEF中,AB=DE、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC≌△DEF()A.AC∥DF B.∠A=∠D C.A C=DF D.∠ACB=∠F考点:全等三角形的判定.分析:根据全等三角形的判定定理,即可得出答.解答:解:∵AB=DE,∠B=∠DEF,∴添加AC∥DF,得出∠ACB=∠F,即可证明△ABC≌△DEF,故A、D都正确;当添加∠A=∠D时,根据ASA,也可证明△ABC≌△DEF,故B都正确;但添加AC=DF时,没有SSA定理,不能证明△ABC≌△DEF,故C都不正确;故选C.点评:本题考查了全等三角形的判定定理,证明三角形全等的方法有:SSS,SAS,ASA,AAS,还有直角三角形的HL定理.9.(3分)(2014年广东深圳)袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,所抽取的两个球数字之和大于6的概率是()A.B.C.D.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与抽取的两个球数字之和大于6的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有16种等可能的结果,抽取的两个球数字之和大于6的有10种情况,∴抽取的两个球数字之和大于6的概率是:=.故选C.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.10.(3分)(2014年广东深圳)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12的山坡上走1300米,此时小明看山顶的角度为60°,求山高()A.600﹣250B.600﹣250 C.350+350D.500考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.分析:构造两个直角三角形△ABE与△BDF,分别求解可得DF与EB的值,再利用图形关系,进而可求出答案.解答:解:∵BE:AE=5:12,=13,∴BE:AE:AB=5:12:13,∵AB=1300米,∴AE=1200米,BE=500米,设EC=x米,∵∠DBF=60°,∴DF=x米.又∵∠DAC=30°,∴AC=CD.即:1200+x=(500+x),解得x=600﹣250.∴DF=x=600﹣750,∴CD=DF+CF=600﹣250(米).答:山高CD为(600﹣250)米.故选:B.点评:本题考查俯角、仰角的定义,要求学生能借助坡比、仰角构造直角三角形并结合图形利用三角函数解直角三角形.11.(3分)(2014年广东深圳)二次函数y=ax2+bx+c图象如图,下列正确的个数为()①bc>0;②2a﹣3c<0;③2a+b>0;④ax2+bx+c=0有两个解x1,x2,x1>0,x2<0;⑤a+b+c>0;⑥当x>1时,y随x增大而减小.A. 2 B. 3 C. 4 D. 5考点:二次函数图象与系数的关系.分析:根据抛物线开口向上可得a>0,结合对称轴在y轴右侧得出b<0,根据抛物线与y轴的交点在负半轴可得c<0,再根据有理数乘法法则判断①;再由不等式的性质判断②;根据对称轴为直线x=1判断③;根据图象与x轴的两个交点分别在原点的左右两侧判断④;由x=1时,y<0判断⑤;根据二次函数的增减性判断⑥.解答:解:①∵抛物线开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号即b<0,∵抛物线与y轴的交点在负半轴,∴c<0,∴bc>0,故①正确;②∵a>0,c<0,∴2a﹣3c>0,故②错误;③∵对称轴x=﹣<1,a>0,∴﹣b<2a,∴2a+b>0,故③正确;④由图形可知二次函数y=ax2+bx+c与x轴的两个交点分别在原点的左右两侧,即方程ax2+bx+c=0有两个解x1,x2,当x1>x2时,x1>0,x2<0,故④正确;⑤由图形可知x=1时,y=a+b+c<0,故⑤错误;⑥∵a>0,对称轴x=1,∴当x>1时,y随x增大而增大,故⑥错误.综上所述,正确的结论是①③④,共3个.故选B.点评:主要考查图象与二次函数系数之间的关系,二次函数的性质,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换.12.(3分)(2014年广东深圳)如图,已知四边形ABCD为等腰梯形,AD∥BC,AB=CD,AD=,E为CD中点,连接AE,且AE=2,∠DAE=30°,作AE⊥AF交BC于F,则BF=()A. 1 B.3﹣C.﹣1 D. 4﹣2考点:等腰梯形的性质.分析:延长AE交BC的延长线于G,根据线段中点的定义可得CE=DE,根据两直线平行,内错角相等可得到∠DAE=∠G=30°,然后利用“角角边”证明△ADE和△GCE全等,根据全等三角形对应边相等可得CG=AD,AE=EG,然后解直角三角形求出AF、GF,过点A作AM⊥BC于M,过点D作DN⊥BC于N,根据等腰梯形的性质可得BM=CN,再解直角三角形求出MG,然后求出CN,MF,然后根据BF=BM﹣MF计算即可得解.解答:解:如图,延长AE交BC的延长线于G,∵E为CD中点,∴CE=DE,∵AD∥BC,∴∠DAE=∠G=30°,在△ADE和△GCE中,,∴△ADE≌△GCE(AAS),∴CG=AD=,AE=EG=2,∴AG=AE+EG=2+2=4,∵AE⊥AF,∴AF=AGtan30°=4×=4,GF=AG÷cos30°=4÷=8,过点A作AM⊥BC于M,过点D作DN⊥BC于N,则MN=AD=,∵四边形ABCD为等腰梯形,∴BM=CN,∵MG=AG•cos30°=4×=6,∴CN=MG﹣MN﹣CG=6﹣﹣=6﹣2,∵AF⊥AE,AM⊥BC,∴∠FAM=∠G=30°,∴FM=AF•sin30°=4×=2,∴BF=BM﹣MF=6﹣2﹣2=4﹣2.故选D.点评:本题考查了等腰梯形的性质,解直角三角形,全等三角形的判定与性质,熟记各性质是解题的关键,难点在于作辅助线构造出全等三角形,过上底的两个顶点作出梯形的两条高.二、填空题(共4小题,每小题3分,满分12分)13.(3分)(2014•怀化)分解因式:2x2﹣8=2(x+2)(x﹣2).考点:提公因式法与公式法的综合运用.专题:常规题型.分析:先提取公因式2,再对余下的多项式利用平方差公式继续分解.解答:解:2x2﹣8=2(x2﹣4)=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.(3分)(2014年广东深圳)在Rt△ABC中,∠C=90°,AD平分∠CAB,AC=6,BC=8,CD=3.考点:角平分线的性质;勾股定理.分析:过点D作DE⊥AB于E,利用勾股定理列式求出AB,再根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据△ABC的面积列式计算即可得解.解答:解:如图,过点D作DE⊥AB于E,∵∠C=90°,AC=6,BC=8,∴AB===10,∵AD平分∠CAB,∴CD=DE,∴S△ABC=AC•CD+AB•DE=AC•BC,即×6•CD+×10•CD=×6×8,解得CD=3.故答案为:3.点评:本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质并利用三角形的面积列出方程是解题的关键.15.(3分)(2014年广东深圳)如图,双曲线y=经过Rt△BOC斜边上的点A,且满足=,与BC交于点D,S△BOD=21,求k=8.考点:反比例函数系数k的几何意义;相似三角形的判定与性质.分析:过A作AE⊥x轴于点E,根据反比例函数的比例系数k的几何意义可得S四边形AECB=S△BOD,根据△OAE∽△OBC,相似三角形面积的比等于相似比的平方,据此即可求得△OAE的面积,从而求得k的值.解答:解:过A作AE⊥x轴于点E.∵S△OAE=S△OCD,∴S四边形AECB=S△BOD=21,∵AE∥BC,∴△OAE∽△OBC,∴==()2=,∴S△OAE=4,则k=8.故答案是:8.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.16.(3分)(2014年广东深圳)如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有485.考点:规律型:图形的变化类.分析:由图可以看出:第一个图形中5个正三角形,第二个图形中5×3+2=17个正三角形,第三个图形中17×3+2=53个正三角形,由此得出第四个图形中53×3+2=161个正三角形,第五个图形中161×3+2=485个正三角形.解答:解:第一个图形正三角形的个数为5,第二个图形正三角形的个数为5×3+2=17,第三个图形正三角形的个数为17×3+2=53,第四个图形正三角形的个数为53×3+2=161,第五个图形正三角形的个数为161×3+2=485.故答案为:485.点评:此题考查图形的变化规律,找出数字与图形之间的联系,找出规律解决问题.三、解答题17.(2014年广东深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负指数幂法则计算即可得到结果.解答:解:原式=2﹣2+1﹣3=﹣2.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2014年广东深圳)先化简,再求值:(﹣)÷,在﹣2,0,1,2四个数中选一个合适的代入求值.考点:分式的化简求值.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将x=1代入计算即可求出值.解答:解:原式=•=2x+8,当x=1时,原式=2+8=10.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.(2014年广东深圳)关于体育选考项目统计图项目频数频率A 80 bB c 0.3C 20 0.1D 40 0.2合计 a 1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a=200,b=0.4,c=60.(2)如果有3万人参加体育选考,会有多少人选择篮球?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表.分析:(1)用C的频数除以频率求出a,用总数乘以B的频率求出c,用A的频数除以总数求出b,再画图即可;(2)用总人数乘以A的频率即可.解答:解:(1)a=20÷0.1=200,c=200×0.3=60,b=80÷200=0.4,故答案为:200,0.4,60,补全条形统计图如下:(2)30000×0.4=12000(人).答:3万人参加体育选考,会有12000人选择篮球.点评:此题考查了条形统计图和统计表,用到的知识点是频率、频数、用样本估计总体,关键是掌握频率、频数、总数之间的关系.20.(2014年广东深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.考点:平行四边形的判定;线段垂直平分线的性质;勾股定理.分析:(1)先证得△ADB≌△CDB求得∠ADDF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.解答:(1)证明:∵BD垂直平分AC,∴AB=BC,AD=DC,在△ADB与△CDB中,,∴△ADB≌△CDB(SSS)∴∠BCD=∠BAD,∵∠BCD=∠ADF,∴∠BAD=∠ADF,∴AB∥FD,∵BD⊥AC,AF⊥AC,∴AF∥BD,∴四边形ABDF是平行四边形,(2)解:∵四边形ABDF是平行四边形,AF=DF=5,∴▱ABDF是菱形,∴AB=BD=5,∵AD=6,设BE=x,则DE=5﹣x,∴AB2﹣BE2=AD2﹣DE2,即52﹣x2=62﹣(5﹣x)2解得:x=,∴=,∴AC=2AE=.点评:本题考查了平行四边形的判定,菱形的判定和性质以及勾股定理的应用.21.(2014年广东深圳)某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同.(1)求甲、乙进货价;(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求由几种方案?考点:分式方程的应用;一元一次不等式组的应用.分析:(1)由甲每个进货价高于乙进货价10元,设乙进货价x元,则甲进货价为(x+10)元,根据90元买乙的数量与150元买甲的数量相同列出方程解决问题;(2)由(1)中的数值,求得提高20%的售价,设进甲种文具m件,则乙种文具(100﹣m)件,根据进货价少于2080元,销售额要大于2460元,列出不等式组解决问题.解答:解:(1)设乙进货价x元,则甲进货价为(x+10)元,由题意得=解得x=15,则x+10=25,经检验x=15是原方程的根,答:甲进货价为25元,乙进货价15元.(2)设进甲种文具m件,则乙种文具(100﹣m)件,由题意得解得55<m<58所以m=56,57则100﹣m=44,43.有两种方案:进甲种文具56件,则乙种文具44件;或进甲种文具57件,则乙种文具43件.点评:本题考查了分式方程及一元一次不等式组的应用,重点在于准确地找出关系式,这是列方程或不等式组的依据.22.(2014年广东深圳)如图,在平面直角坐标系中,⊙M过原点O,与x轴交于A(4,0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接BD.(1)求⊙M的半径;(2)证明:BD为⊙M的切线;(3)在直线MC上找一点P,使|DP﹣AP|最大.考点:圆的综合题.分析:(1)利用A,B点坐标得出AO,BO的长,进而得出AB的长,即可得出圆的半径;(2)根据A,B 两点求出直线AB表达式为:y=﹣x+3,根据B,D 两点求出BD 表达式为y=x+3,进而得出BD⊥AB,求出BD为⊙M的切线;(3)根据D,O两点求出直线DO表达式为y=x 又在直线DO 上的点P的横坐标为2,所以p(2,),此时|DP﹣AP|=DO=.解答:(1)解:∵由题意可得出:OA2+OB2=AB2,AO=4,BO=3,∴AB=5,∴圆的半径为;(2)证明:由题意可得出:M(2,)又∵C为劣弧AO的中点,由垂径定理且MC=,故C(2,﹣1)过D 作DH⊥x 轴于H,设MC 与x 轴交于K,则△ACK∽△ADH,又∵DC=4AC,故DH=5KC=5,HA=5KA=10,∴D(﹣6,﹣5)设直线AB表达式为:y=ax+b,,解得:故直线AB表达式为:y=﹣x+3,同理可得:根据B,D两点求出BD的表达式为y=x+3,∵K AB×K BD=﹣1,∴BD⊥AB,BD为⊙M的切线;(3)解:取点A关于直线MC的对称点O,连接DO并延长交直线MC于P,此P点为所求,且线段DO的长为|DP﹣AP|的最大值;设直线DO表达式为y=kx,∴﹣5=﹣6k,解得:k=,∴直线DO表达式为y=x又∵在直线DO上的点P的横坐标为2,y=,∴P(2,),此时|DP﹣AP|=DO==.点评:此题主要考查了勾股定理以及待定系数法求一次函数解析式以及两直线垂直系数的关系等知识,得出直线DO,AB,BD的解析式是解题关键.23.(2014年广东深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.考点:二次函数综合题.分析:(1)求出点A的坐标,利用顶点式求出抛物线的解析式;(2)①首先确定点E为Rt△BEF的直角顶点,相似关系为:△BAO∽△BFE;如答图2﹣1,作辅助线,利用相似关系得到关系式:BH=4FH,利用此关系式求出点E的坐标;②首先求出△ACD的面积:S△ACD=8;若S△EFG与S△ACD存在8倍的关系,则S△EFG=64或S△EFG=1;如答图2﹣2所示,求出S△EFG的表达式,进而求出点F的坐标.解答:解:(1)直线AB的解析式为y=2x+4,令x=0,得y=4;令y=0,得x=﹣2.∴A(﹣2,0)、B(0,4).∵抛物线的顶点为点A(﹣2,0),∴设抛物线的解析式为:y=a(x+2)2,点C(0,﹣4)在抛物线上,代入上式得:﹣4=4a,解得a=﹣1,∴抛物线的解析式为y=﹣(x+2)2.(2)平移过程中,设点E的坐标为(m,2m+4),则平移后抛物线的解析式为:y=﹣(x﹣m)2+2m+4,∴F(0,﹣m2+2m+4).①∵点E为顶点,∴∠BEF≥90°,∴若△BEF与△BAO相似,只能是点E作为直角顶点,∴△BAO∽△BFE,∴,即,可得:BE=2EF.如答图2﹣1,过点E作EH⊥y轴于点H,则点H坐标为:H(0,2m+4).∵B(0,4),H(0,2m+4),F(0,﹣m2+2m+4),∴BH=|2m|,FH=|﹣m2|.在Rt△BEF中,由射影定理得:BE2=BH•BF,EF2=FH•BF,又∵BE=2EF,∴BH=4FH,即:4|﹣m2|=|2m|.若﹣4m2=2m,解得m=﹣或m=0(与点B重合,舍去);若﹣4m2=﹣2m,解得m=或m=0(与点B重合,舍去),此时点E位于第一象限,∠BEF为钝角,故此情形不成立.∴m=﹣,∴E(﹣,3).②假设存在.联立抛物线:y=﹣(x+2)2与直线AB:y=2x+4,可求得:D(﹣4,﹣4),∴S△ACD=×4×4=8.∵S△EFG与S△ACD存在8倍的关系,∴S△EFG=64或S△EFG=1.联立平移抛物线:y=﹣(x﹣m)2+2m+4与直线AB:y=2x+4,可求得:G(m﹣2,2m).∴点E与点M横坐标相差2,即:|x G|﹣|x E|=2.如答图2﹣2,S△EFG=S△BFG﹣S△BEF=BF•|xG|﹣BF|xE|=BF•(|x G|﹣|x E|)=BF.∵B(0,4),F(0,﹣m2+2m+4),∴BF=|﹣m2+2m|.∴|﹣m2+2m|=64或|﹣m2+2m|=1,∴﹣m2+2m可取值为:64、﹣64、1、﹣1.当取值为64时,一元二次方程﹣m2+2m=64无解,故﹣m2+2m≠64.∴﹣m2+2m可取值为:﹣64、1、﹣1.∵F(0,﹣m2+2m+4),∴F坐标为:(0,﹣60)、(0,3)、(0,5).综上所述,S△EFG与S△ACD存在8倍的关系,点F坐标为(0,﹣60)、(0,3)、(0,5).点评:本题是二次函数压轴题,涉及运动型与存在型问题,难度较大.第(2)①问中,解题关键是确定点E为直角顶点,且BE=2EF;第(2)②问中,注意将代数式表示图形面积的方法、注意求坐标过程中方程思想与整体思想的应用.。
北师大版九年级上册数学期末测试试题
AD CB3题图学校2013—2014学年度第一学期九年级数学期末测试试题(满分150分,考试时间120分钟)一、选择题(本大题共15小题,每小题3分,共45分) 1、反比例函数xy 2-=的图像位于( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限2、用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )3、如图在ABCD 中,AD =4cm ,AB =2cm , 则ABCD 的周长等于( )A.12cmB.8cmC.6cmD.4cm 4、方程2x x =的根是( )A.1x =B. 1x =-C.1210x x ==,D. 1210x x =-=,5、如图是一个几何体的三视图,则这个几何体是 ( )A.长方体B.球体C.圆柱体D. 圆锥体6、若关于x 的方程0962=+-x kx 有实数根,则k 的取值范围是( ) A .1k < B .1k ≤ C . 10k k <=/且 D . 10k k ≤≠且7、已知粉笔盒里有4支红色粉笔和n 支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是,则n的值是( )A .4B .6C .8D .108、如下图,已知AD 与BC 相交于点O,AB//CD,如果∠B=40°,∠D=30°,则∠AOC 的大小为( )A.60°B.70°C.80°D.120°第8题图 第9题图9、如上图,已知D 、E 分别是的AB 、 AC 边上的点,且81::四边形=∆DBCE ADE S S 那么等于( ) A .1 : 9 B .1 : 3 C .1 : 8 D .1 : 410、在反比例函数xy 3-=的图象上有三点()()()3213322110,,,x x x y x y x y x ,若,,,则下列各式正确的是( )A 、213y y yB 、123y y yC 、321y y yD 、231y y y 11、2010年某市政府投资2亿元人民币建设了廉租房8万平方米,预计到2012年底三年共累计投资9.5亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.设每年市政府投资的增长率为x ,根据题意,列出方程为( )A .221+)9.5x =(B .221+)2(1)9.5x x ++=( 25ABC ∆,DE BC //:AE AC AB CDOBA DEC .22+21)2(1)9.5x x +++=( D .2881+)8(1)9.5x x +++=( 12、已知反比例函数1m y x-=的图象如图,则m 的取值范围是( )A 、1≥mB 、1 mC 、1≤mD 、1 m 13、如图所示,AB 是斜靠在墙壁上的长梯,梯脚B 距离墙角1.6m ,梯上点D 距离墙1.4m ,BD 长0.55m ,则梯子长为( )A .3.85mB .4.00mC .4.40mD .4.50m 14、如图,四边形ABCD 是平行四边形,下列说法不正确的是( )A 、当AC =BD 时,四边形ABCD 是矩形B 、当AB =BC 时,四边形ABCD 是菱形 C 、当AC ⊥BD 时,四边形ABCD 是菱形 D 、当∠DAB =90°时,四边形ABCD 是正方形 15、下列说法正确的有( )①两条对角线相等的四边形是矩形;②两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定;③从装有10个红球的袋子中,摸出1个白球是不可能事件.;④正方形既是菱形又是矩形;⑤某种彩票的中奖率为1%,买100张彩票一定有1张中奖; A 、③④ B 、③④⑤ C 、④⑤ D 、①④⑤二、填空题(本大题共5小题,每小题5分,共25分)16、一个菱形的两条对角线的长分别为4cm和8cm,则它的边长是____17、某公司前年缴税40万元,今年缴税48.4万元,该公司这两年缴税的平均增长率是___________18、若线段AB=20cm,C是AB 的黄金分割点,则AC=___________19、一个密码锁的密码由四个数字组成,每个数字都是0~9这十个数字中的一个,只有当四个数字与所设定的密码相同时,才能将锁打开,粗心的小明忘了中间的两个数字,他一次就能打开锁的概率是___________20、小亮的身高为1.8米,他在路灯下的影子长为2米;小亮距路灯杆底部为3米,则路灯灯泡距离地面的高度为 _米.三、解答及证明(本大题共7小题,各题分值见题后,共80分)21、画出下列物体的三视图(10分)22.小明和小亮玩一个游戏:三张大小、质地都相同的卡片上分别标有数字3、4、5,现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.如果和为奇数,则小明胜;和为偶数,则小亮胜.(10分)(1)请你用画树状图或列表的方法,求出这两数和为8的概率;(2)你认为这个游戏对双方公平吗?说说你的理由.23、已知,如图,在矩形ABCD中,对角线AC与BD相交于点O,点M,P,N,Q分别在AO,BO,CO,DO上,且AM=BP=CN=DQ.求证:四边形MPNQ是矩形。
2013-2014学年广东省深圳市南山区九年级(上)期末数学试卷
2013-2014学年广东省深圳市南山区九年级(上)期末数学试卷一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)一元二次方程3x2﹣x=0的解是()A.x=0 B.x1=0,x2=3 C.x1=0,x2=D.x=2.(3分)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形3.(3分)若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是()A.球B.圆柱C.圆锥D.棱锥4.(3分)在同一时刻,身高1.6m的小强,在太阳光线下影长是1.2m,旗杆的影长是15m,则旗杆高为()A.22m B.20m C.18m D.16m5.(3分)下列说法不正确的是()A.对角线互相垂直的矩形是正方形B.对角线相等的菱形是正方形C.有一个角是直角的平行四边形是正方形D.一组邻边相等的矩形是正方形6.(3分)直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是()A.4.8 B.5 C.3 D.107.(3分)若点(3,4)是反比例函数图象上一点,则此函数图象必须经过点()A.(2,6) B.(2,﹣6)C.(4,﹣3)D.(3,﹣4)8.(3分)二次三项式x2﹣4x+3配方的结果是()A.(x﹣2)2+7 B.(x﹣2)2﹣1 C.(x+2)2+7 D.(x+2)2﹣19.(3分)一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为()A.30°B.45°C.60°D.75°10.(3分)函数y=的图象经过(1,﹣1),则函数y=kx﹣2的图象是()A. B.C.D.11.(3分)如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别是AM,MR的中点,则EF的长随着M点的运动()A.变短B.变长C.不变D.无法确定12.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.B.5 C.D.二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡上.)13.(3分)如图所示,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为cm.14.(3分)如图,△OPQ是边长为2的等边三角形,若正比例函数的图象过点P,则它的解析式是.15.(3分)小明有道数学题不会,想打电话请教老师,可是他只想起了电话号码的前6位(共7位数的电话),那么他一次打通电话的概率是.16.(3分)一个平行四边形的两边分别是4.8cm和6cm,如果平行四边形的高是5cm,面积是cm2.三、解答题(本大题有7题,其中17题8分,18题8分,19题8分,20题6分,21题8分,22题6分,23题8分,共52分)17.(8分)解下列方程:(1)x2﹣2x﹣3=0 (2)(x﹣1)2﹣2x(x﹣1)=0.18.(8分)(1)如图所示,如果你的位置在点A,你能看到后面那座高大的建筑物吗?为什么?(2)如果两楼之间相距MN=20m,两楼的高各为10m和30m,则当你至少与M楼相距多少m时,才能看到后面的N楼?此时,你的视角α是多少度?19.(8分)已知反比例函数y=(m为常数)的图象经过点A(﹣1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.20.(6分)如图,在平行四边形ABCD纸片中,AC⊥AB,AC与BD相交于O,将纸△ABC沿对角线AC翻转180°,得到△AB′C,(1)问以A、C、D、B′为顶点的四边形是什么形状的四边形?证明你的结论;(2)若四边形ABCD的面积为20cm2,求翻转后纸片重叠部分的面积(即△ACE 的面积).21.(8分)某厂工业废气年排放量为400万立方米,为改善锦州市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到256万立方米,如果每期治理中废气减少的百分率相同.(1)求每期减少的百分率是多少?(2)预计第一期治理中每减少1万立方米废气需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元,问两期治理完成后需投入多少万元?22.(6分)两个警察抓两个小偷,目击者说:两个小偷分别躲藏在六个房间中的两间,但不知道他们到底躲藏在哪两间.而如果警察冲进了无人的房间,那么小偷就会趁机逃跑.如果两个警察随机地冲进两个房间抓小偷,(1)至少能抓获一个小偷的概率是多少?(2)两个小偷全部抓获的概率是多少?请简单说明理由.23.(8分)阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?2013-2014学年广东省深圳市南山区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项用铅笔涂在答题卡上.)1.(3分)一元二次方程3x2﹣x=0的解是()A.x=0 B.x1=0,x2=3 C.x1=0,x2=D.x=【分析】本题可对方程提取公因式x,得到()()=0的形式,则这两个相乘的数至少有一个为0,由此可以解出x的值.【解答】解:∵3x2﹣x=0即x(3x﹣1)=0解得:x1=0,x2=.故选C.【点评】本题考查一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.2.(3分)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.3.(3分)若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是()A.球B.圆柱C.圆锥D.棱锥【分析】本题中球的三视图中不可能有三角形,圆柱的三视图中也不可能由三角形,棱锥的俯视图不可能是圆,因此选择C.【解答】解:根据三视图的知识,依题意,该几何体的主视图、左视图以及俯视图分别是三角形、三角形和圆形,故该几何体可能为圆锥.故选C.【点评】本题考查由三视图确定几何体的形状,通过排除法即可得出正确结果.4.(3分)在同一时刻,身高1.6m的小强,在太阳光线下影长是1.2m,旗杆的影长是15m,则旗杆高为()A.22m B.20m C.18m D.16m【分析】利用在同一时刻身高与影长成比例计算.【解答】解:根据题意可得:设旗杆高为x.根据在同一时刻身高与影长成比例可得:=,故x=20.故选:B.【点评】本题考查了相似三角形的应用,只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求出旗杆的高度,体现了方程的思想.5.(3分)下列说法不正确的是()A.对角线互相垂直的矩形是正方形B.对角线相等的菱形是正方形C.有一个角是直角的平行四边形是正方形D.一组邻边相等的矩形是正方形【分析】分别根据矩形的判定以及正方形的判定判定各选项进而得出答案.【解答】解:A、对角线互相垂直的矩形是正方形,此选项正确不合题意;B、对角线相等的菱形是正方形,此选项正确不合题意;C、有一个角是直角的平行四边形是矩形形,此选项不正确符合题意;D、一组邻边相等的矩形是正方形,此选项正确不合题意.故选:C.【点评】此题主要考查了正方形的判定,熟练根据①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个矩形有一个角为直角.③还可以先判定四边形是平行四边形,再用1或2,进行判定是解题关键.6.(3分)直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是()A.4.8 B.5 C.3 D.10【分析】根据直角三角形中勾股定理的运用,根据两直角边可以计算斜边的长度,根据面积法计算斜边的高.【解答】解:两直角边为6、8,设斜边高线为h,则该直角三角形的斜边长为=10.根据面积法计算可得:S=×6×8=×10×h,解得h=4.8.故选A.【点评】本题考查了勾股定理的运用,考查了三角形面积的计算,根据面积法计算斜边上的高是解题的关键.7.(3分)若点(3,4)是反比例函数图象上一点,则此函数图象必须经过点()A.(2,6) B.(2,﹣6)C.(4,﹣3)D.(3,﹣4)【分析】根据反比例函数图象上点的坐标特征,将点(3,4)代入反比例函数,求得m2+2m﹣1值,然后再求函数图象所必须经过的点.【解答】解:∵点(3,4)是反比例函数图象上一点,∴点(3,4)满足反比例函数,∴4=,即m2+2m﹣1=12,∴点(3,4)是反比例函数为y=上的一点,∴xy=12;A、∵x=2,y=6,∴2×6=12,故本选项正确;B、∵x=2,y=﹣6,∴2×(﹣6)=﹣12,故本选项错误;C、∵x=4,y=﹣3,∴4×(﹣3)=﹣12,故本选项错误;D、∵x=3,y=﹣4,∴3×(﹣4)=﹣12,故本选项错误;故选:A.【点评】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数.8.(3分)二次三项式x2﹣4x+3配方的结果是()A.(x﹣2)2+7 B.(x﹣2)2﹣1 C.(x+2)2+7 D.(x+2)2﹣1【分析】在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数﹣4的一半的平方;可将常数项3拆分为4和﹣1,然后再按完全平方公式进行计算.【解答】解:x2﹣4x+3=x2﹣4x+4﹣1=(x﹣2)2﹣1.故选B.【点评】在对二次三项式进行配方时,一般要将二次项系数化为1,然后将常数项进行拆分,使得其中一个常数是一次项系数的一半的平方.9.(3分)一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为()A.30°B.45°C.60°D.75°【分析】作梯形的两条高线,证明△ABE≌△DCF,则有BE=FC,然后判断△ABE 为等腰直角三角形求解.【解答】解:如图,作AE⊥BC、DF⊥BC,四边形ABCD为等腰梯形,AD∥BC,BC﹣AD=12,AE=6,∵四边形ABCD为等腰梯形,∴AB=DC,∠B=∠C,∵AD∥BC,AE⊥BC,DF⊥BC,∴AEFD为矩形,∴AE=DF,AD=EF,∴△ABE≌△DCF,∴BE=FC,∴BC﹣AD=BC﹣EF=2BE=12,∴BE=6,∵AE=6,∴△ABE为等腰直角三角形,∴∠B=∠C=45°.故选B.【点评】根据等腰梯形的性质,结合全等三角形求解.10.(3分)函数y=的图象经过(1,﹣1),则函数y=kx﹣2的图象是()A. B.C.D.【分析】先根据函数y=的图象经过(1,﹣1)求出k的值,然后求出函数y=kx ﹣2的解析式,再根据一次函数图象与坐标轴的交点坐标解答.【解答】解:∵图象经过(1,﹣1),∴k=xy=﹣1,∴函数解析式为y=﹣x﹣2,所以函数图象经过(﹣2,0)和(0,﹣2).故选A.【点评】主要考查一次函数y=kx+b的图象.当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.11.(3分)如图,矩形ABCD,R是CD的中点,点M在BC边上运动,E,F分别是AM,MR的中点,则EF的长随着M点的运动()A.变短B.变长C.不变D.无法确定【分析】易得EF为三角形AMR的中位线,那么EF长恒等于定值AR的一半.【解答】解:∵E,F分别是AM,MR的中点,∴EF=AR,∴无论M运动到哪个位置EF的长不变,故选C.【点评】本题考查三角形中位线等于第三边的一半的性质.12.(3分)如图,点A在双曲线y=上,且OA=4,过A作AC⊥x轴,垂足为C,OA的垂直平分线交OC于B,则△ABC的周长为()A.B.5 C.D.【分析】根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b的方程组,解之即可求出△ABC的周长.【解答】解:∵OA的垂直平分线交OC于B,∴AB=OB,∴△ABC的周长=OC+AC,设OC=a,AC=b,则:,解得a+b=2,即△ABC的周长=OC+AC=2.故选:A.【点评】本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡上.)13.(3分)如图所示,在△ABC中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为4cm.【分析】要求点D到AB的距离,利用角的平分线上的点到角的两边的距离相等可知,只要求得D到AC的距离即可,而D到AC的距离就是CD的值.【解答】解:∵∠C=90°,AD平分∠BAC,∴CD是点D到AB的距离,∵CD=10﹣6=4,∴点D到AB的距离为4.故答案为:4.【点评】本题主要考查了角平分线上的一点到两边的距离相等的性质.做题前,要有分析过程,培养自己的分析能力.14.(3分)如图,△OPQ是边长为2的等边三角形,若正比例函数的图象过点P,则它的解析式是.【分析】过点P作PD⊥x轴于点D,由等边三角形的性质可知OD=OQ=1,再根据勾股定理求出PD的长,故可得出P点坐标,再利用待定系数法求出直线OP 的解析式即可.【解答】解:过点P作PD⊥x轴于点D,∵△OPQ是边长为2的等边三角形,∴OD=OQ=×2=1,在Rt△OPD中,∵OP=2,OD=1,∴PD===,∴P(1,),设直线OP的解析式为y=kx(k≠0),∴=k,∴直线OP的解析式为y=x.故答案为:y=x.【点评】本题考查的是用待定系数法求正比例函数的解析式,先根据题意得出点P的坐标是解答此题的关键.15.(3分)小明有道数学题不会,想打电话请教老师,可是他只想起了电话号码的前6位(共7位数的电话),那么他一次打通电话的概率是.【分析】由共有10个数字,即有10种等可能的结果,他一次打通电话的只有1种情况,利用概率公式即可求得答案.【解答】解:∵共有10个数字,即有10种等可能的结果,他一次打通电话的只有1种情况,∴他一次打通电话的概率是:.故答案为:.【点评】此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.16.(3分)一个平行四边形的两边分别是4.8cm和6cm,如果平行四边形的高是5cm,面积是24cm2.【分析】依据在直角三角形中斜边最长,先判断出5厘米高的对应底边是4.8厘米,进而利用平行四边形的面积公式即可求解.【解答】解:4.8×5=24(平方厘米);答:这个平行四边形的面积是24平方厘米.故答案为:24.【点评】此题主要考查了平行四边形的面积求法,解答此题的关键是:先确定出已知高的对应底边,即可求其面积.三、解答题(本大题有7题,其中17题8分,18题8分,19题8分,20题6分,21题8分,22题6分,23题8分,共52分)17.(8分)解下列方程:(1)x2﹣2x﹣3=0(2)(x﹣1)2﹣2x(x﹣1)=0.【分析】(1)分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:(1)x2﹣2x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0,x+1=0,x1=3,x2=﹣1.(2)(x﹣1)2﹣2x(x﹣1)=0,(x﹣1)(x﹣1﹣2x)=0,x﹣1=0,x﹣1﹣2x=0,x1=1,x2=﹣1.【点评】本题考查了解一元二次方程的应用,关键是能把一元二次方程转化成一元一次方程.18.(8分)(1)如图所示,如果你的位置在点A,你能看到后面那座高大的建筑物吗?为什么?(2)如果两楼之间相距MN=20m,两楼的高各为10m和30m,则当你至少与M楼相距多少m时,才能看到后面的N楼?此时,你的视角α是多少度?【分析】(1)连接点A与M楼的顶点,则可得出能否看到后面那座高大的建筑物;(2)构造直角三角形,设AM=x,则根据=,可得出AM的长度,继而也可求出视角α的度数.【解答】解:(1)所作图形如下:所以能看见后面的大楼,因为大楼没有处在盲区.(2)由题意得,MN=20m,FM=10m,EN=30m,设AM=x,则=,即=,解得:x=10,即AM=10米.tanα===,可得α=30°.答:当你至少与M楼相距10m时,才能看到后面的N楼,此时,你的视角α=30°.【点评】此题考查了盲区、视角的知识,关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.19.(8分)已知反比例函数y=(m为常数)的图象经过点A(﹣1,6).(1)求m的值;(2)如图,过点A作直线AC与函数y=的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐标.【分析】(1)将A点坐标代入反比例函数解析式即可得到一个关于m的一元一次方程,求出m的值;(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,则△CBD∽△CAE,运用相似三角形知识求出CD的长即可求出点C的横坐标.【解答】解:(1)∵图象过点A(﹣1,6),∴=6,解得m=2.故m的值为2;(2)分别过点A、B作x轴的垂线,垂足分别为点E、D,由题意得,AE=6,OE=1,即A(﹣1,6),∵BD⊥x轴,AE⊥x轴,∴AE∥BD,∴△CBD∽△CAE,∴=,∵AB=2BC,∴=,∴=,∴BD=2.即点B的纵坐标为2.当y=2时,x=﹣3,即B(﹣3,2),设直线AB解析式为:y=kx+b,把A和B代入得:,解得,∴直线AB解析式为y=2x+8,令y=0,解得x=﹣4,∴C(﹣4,0).【点评】由于今年来各地中考题不断降低难度,中考考查知识点有向低年级平移的趋势,反比例函数出现在解答题中的频数越来约多.20.(6分)如图,在平行四边形ABCD纸片中,AC⊥AB,AC与BD相交于O,将纸△ABC沿对角线AC翻转180°,得到△AB′C,(1)问以A、C、D、B′为顶点的四边形是什么形状的四边形?证明你的结论;(2)若四边形ABCD的面积为20cm2,求翻转后纸片重叠部分的面积(即△ACE 的面积).【分析】(1)以A、C、D、B′为顶点的四边形是矩形,根据平行四边形的性质以及已知条件求证出四边形ACDB′是平行四边形,进而求出四边形ACDB′是矩形;(2)根据矩形的性质以及平行四边形的性质求出△ACD的面积,因为△AEC和△EDC可以看作是等底等高的三角形,所以S△AEC =S△ACD=5cm2.【解答】(1)以A、C、D、B′为顶点的四边形是矩形,理由如下:四边形ABCD是平行四边形.∴AB平行且等于CD.∵△AB′C是由△ABC翻折得到的,AB⊥AC,∴AB=AB′,点A、B、B′在同一条直线上.∴AB′∥CD,∴四边形A CDB′是平行四边形.∵B′C=BC=AD.∴四边形ACDB′是矩形;(2)由四边形ACDB′是矩形,得AE=DE.∵S▱ABCD=20cm2,∴S△ACD=10cm2,∴S△AEC =S△ACD=5cm2.【点评】本题综合应用平行四边形、三角形面积公式、平行四边形中图形的面积关系,解题的关键是发现△ACE的面积为矩形面积的四分之一.21.(8分)某厂工业废气年排放量为400万立方米,为改善锦州市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到256万立方米,如果每期治理中废气减少的百分率相同.(1)求每期减少的百分率是多少?(2)预计第一期治理中每减少1万立方米废气需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元,问两期治理完成后需投入多少万元?【分析】(1)本题为平均变化率问题,可按照增长率的一般规律进行解答.增长率问题的一般形式为a(1+x)2=b,a为起始时间的有关数量,b为终止时间的有关数量.根据这个关系来列出方程,求出百分率是多少.(2)根据(1)中得出的百分率,分别求出第一期和第二期的投资,然后相加得出两期的总投资即可.【解答】解:(1)设每期减少的百分率是x,根据题意得400(1﹣x)2=256,解得x1=0.2,x2=1.8(舍去),所以每期减少的百分率为20%.(2)根据题意有400×0.2×3=240(万元),(400﹣400×0.2)×0.2×4.5=288(万元),∴240+288=528(万元),答:两期治理完成后需要投入528万元.【点评】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“﹣”).22.(6分)两个警察抓两个小偷,目击者说:两个小偷分别躲藏在六个房间中的两间,但不知道他们到底躲藏在哪两间.而如果警察冲进了无人的房间,那么小偷就会趁机逃跑.如果两个警察随机地冲进两个房间抓小偷,(1)至少能抓获一个小偷的概率是多少?(2)两个小偷全部抓获的概率是多少?请简单说明理由.【分析】(1)设房间号为1、2、3、4、5、6,其中假设两个小偷分别躲藏1、2,再用列举法展示所有15种等可能的结果数,然后根据概率公式求解;(2)找出两个小偷全部抓获的结果数,然后根据概率公式求解.【解答】解:(1)设房间号为1、2、3、4、5、6,其中假设两个小偷分别躲藏1、2,任意取两个,共有15种等可能的结果数:1、2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6;其中至少能抓获一个小偷占9种,所以至少能抓获一个小偷的概率==;(2)两个小偷全部抓获的结果数占1种,即1,2,所以两个小偷全部抓获的概率=.【点评】本题考查了列表法与树状图法:利用列表法或树状图法列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.23.(8分)阅读探索:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组:,消去y化简得:2x2﹣7x+6=0,∵△=49﹣48>0,∴x1=2,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)直接利用求根公式计算即可;(2)参照(1)中的解法解题即可;(3)解法同上,利用根的判别式列不等关系可求m,n满足的条件.【解答】解:(1)由上可知(x﹣2)(2x﹣3)=0∴x1=2,x2=;(2)设所求矩形的两边分别是x和y,由题意,得消去y化简,得2x2﹣3x+2=0∵△=9﹣16<0∴不存在矩形B;(3)(m+n)2﹣8mn≥0.设所求矩形的两边分别是x和y,由题意,得消去y化简,得2x2﹣(m+n)x+mn=0△=(m+n)2﹣8mn≥0即(m+n)2﹣8mn≥0时,满足要求的矩形B存在.【点评】此类题目要读懂题意,准确的找到等量关系列方程组,要会灵活运用根的判别式在不解方程的情况下判断一元二次方程的解的情况.。
北师大版九年级上册数学期末测试卷及含答案(易考题)完整版
北师大版九年级上册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、二次函数的图象如图所示,反比列函数与正比列函数在同一坐标系内的大致图象是()A. B. C.D.2、用公式法解方程4y2=12y+3,得到()A.y=B.y=C.y=D.y=3、如图,已知反比例函数的图象经过点A,AB⊥x轴于点B,△AOB的面积是3,则k的值为()A.6B.3C.-3D.-64、如图,把一个矩形纸片ABCD沿AD和BC的中点连线EF对折,要使矩形AEFB与原矩形相似,则原矩形长与宽的比为()A.2:1B.3:1C. :1D.4:15、在同一时刻的阳光下,甲的影子比乙的影子长,那么在同一路灯下()A.甲的影子比乙的长B.甲的影子比乙的影子短C.甲的影子和乙的影子一样长D.无法判断6、已知正方形ABCD,E是CD的中点,P是BC边上的一点,下列条件中不能推出△ABP与△ECP相似的是()A.∠APB=∠EPCB.∠APE=90°C.P是BC的中点D.BP︰BC =2︰37、下列判断不正确的是()A.所有等腰直角三角形都相似B.所有直角三角形都相似C.所有正六边形都相似D.所有等边三角形都相似8、如图所示,直线y=﹣x与双曲线y= 交于A,B两点,点C在x轴上,1=15时,求k的值为()连接AC,BC.当AC⊥BC,S△ABCA.﹣10B.﹣9C.6D.49、已知2x=5y(y≠0),则下列比例式成立的是( )A. B. C. D.10、用配方法解方程x2﹣6x+4=0,下列配方正确的是()A.(x﹣3)2=13B.(x+3)2=13C.(x﹣3)2=5D.(x+3)2=511、如图所示的物体的左视图(从左面看得到的视图)是()A. B. C. D.12、有3个正方形如图所示放置,阴影部分的面积依次记为S1, S2,则S 1:S2等于()A.1:B.1:2C.2:3D.4:913、如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD并延长交BC于点F.则下列结论正确的有()①∠CBD=∠CEB;②;③点F是BC的中点;④若,则tanE= .A.①②B.③④C.①②④D.①②③14、若反比例函数的图像上有两个不同的点关于y轴对称点都在一次函数y=-x+m的图像上,则m的取值范围是()A. B. ① C. D.15、如图是某几何体的三视图,则与该三视图相对应的几何体是( )A. B. C. D.二、填空题(共10题,共计30分)16、如图所示,在平面直角坐标系中,等腰直角三角形的顶点、分别在轴、轴的正半轴上,,轴于点,点在函数的图象上,若,则的值为________.17、如图,正方形 ABCD 中,AB=3cm,以 B 为圆心,1cm 长为半径画☉B,点P 在☉B 上移动,连接 AP,并将 AP 绕点 A 逆时针旋转 90°至 AP',连接BP',在点 P 移动过程中,BP' 长度的最小值为________cm。
北师大初中数学九年级上册期末测试题(2015-2016学年广东省深圳市
2015-2016学年广东省深圳市九年级(上)期末数学试卷一、选择题题1.(3分)已知关于x的方程x2﹣kx+1=0的一个根是x=3,则实数k的值是()A.B.C.D.2.(3分)若反比例函数y=﹣的图象经过点A(3,m),则m的值是()A.﹣3B.3C.﹣D.3.(3分)如图是一个几何体的俯视图,则该几何体可能是()A.B.C.D.4.(3分)如图,反比例函数y1=的图象与正比例函数y2=k2x的图象交于点(2,1),则使y1>y2的x的取值范围是()A.0<x<2B.x>2C.x>2或﹣2<x<0D.x<﹣2或0<x<25.(3分)如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()A.B.C.D.6.(3分)如图的两个四边形相似,则∠α的度数是()A.87°B.60°C.75°D.120°7.(3分)已知线段a:b=3:2,且线段b是a,c的比例中项,那么b:c等于()A.3:2B.2:3C.4:3D.3:48.(3分)如图,在△ABC中,点D、E分AB、AC边上,DE∥BC,若AD:AB=3:4,AE=6,则AC等于()A.3B.4C.6D.89.(3分)某种商品原价是100元,经两次降价后的价格是90元.设平均每次降价的百分率为x,可列方程为()A.100x(1﹣2x)=90B.100(1+2x)=90C.100(1﹣x)2=90D.100(1+x)2=9010.(3分)将函数y=kx+k与函数的大致图象画在同一坐标系中,正确的函数图象是()A.B.C.D.11.(3分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米12.(3分)如右图,在的图象上有两点A、C,过这两点分别向x轴引垂线,交x轴于B、D两点,连结OA、OC,记△ABO、△CDO的面积S1,S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不确定二、填空题13.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是.14.(3分)从一本书中随机抽取若干页,其中“的”出现的频率为0.03,由此可估计这本书中“的”字出现的频率为.15.(3分)如图,函数y=kx(k≠0)与y=的图象交于A,B两点,过点A作AM垂直于x轴,垂足为点M,则△BOM的面积为.16.(3分)如图,矩形ABCD中,AD=4,∠CAB=30°,点P是线段AC上的动点,点Q 是线段CD上的动点,则AQ+QP的最小值是.三、解答题17.(3分)按要求解方程(1)x2﹣2x﹣2=0;(2)(2x﹣1)2=x(3x+2)﹣7.18.(3分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.19.(3分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.20.(3分)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?21.(3分)如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△P AC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.2015-2016学年广东省深圳市九年级(上)期末数学试卷参考答案与试题解析一、选择题题1.(3分)已知关于x的方程x2﹣kx+1=0的一个根是x=3,则实数k的值是()A.B.C.D.【分析】把x=3代入方程x2﹣kx+1=0,得到k的一元一次方程,解出k的值即可.【解答】解:∵方程x2﹣kx+1=0的一个根是x=3,∴9﹣3k+1=0,解得k=,故选:D.【点评】本题主要考查一元二次方程的解得知识点,解答本题的关键是把x=3代入原方程进行解答,此题基础题,比较简单.2.(3分)若反比例函数y=﹣的图象经过点A(3,m),则m的值是()A.﹣3B.3C.﹣D.【分析】直接把点的坐标代入解析式即可.【解答】解:把点A代入解析式可知:m=﹣.故选:C.【点评】主要考查了反比例函数图象上点的坐标特征.直接把点的坐标代入解析式即可求出点坐标中未知数的值.3.(3分)如图是一个几何体的俯视图,则该几何体可能是()A.B.C.D.【分析】由于俯视图是从物体的上面看得到的视图,所以先得出四个选项中各几何体的俯视图,再与题目图形进行比较即可.【解答】解:图示是一个圆环,且内环是虚线.A、圆锥的俯视图是一个圆及这个圆的圆心,故选项错误;B、球的俯视图是一个圆,没有圆心,故选项错误;C、球的下半部被消去一部分后俯视图为圆环,故选项正确;D、圆柱的俯视图是一个圆,没有圆心,故选项错误;故选:C.【点评】本题考查由三视图判断几何体,主要考查学生空间想象能力及对立体图形的认知能力.4.(3分)如图,反比例函数y1=的图象与正比例函数y2=k2x的图象交于点(2,1),则使y1>y2的x的取值范围是()A.0<x<2B.x>2C.x>2或﹣2<x<0D.x<﹣2或0<x<2【分析】先根据反比例函数与正比例函数的性质求出B点坐标,由函数图象即可得出结论.【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵A(2,1),∴B(﹣2,﹣1),∵由函数图象可知,当0<x<2或x<﹣2时函数y1的图象在y2的上方,∴使y1>y2的x的取值范围是x<﹣2或0<x<2.故选:D.【点评】本题考查的是反比例函数与一次函数的交点问题,能根据数形结合求出y1>y2时x的取值范围是解答此题的关键.5.(3分)如果矩形的面积为6cm2,那么它的长ycm与宽xcm之间的函数关系用图象表示大致是()A.B.C.D.【分析】根据题意有:xy=6;故y与x之间的函数图象为反比例函数,且根据x、y实际意义x、y应>0,其图象在第一象限,即可得出答案.【解答】解:由矩形的面积公式可得xy=6,∴y=(x>0,y>0).图象在第一象限.故选:C.【点评】考查了反比例函数的应用和反比例函数的图象.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.6.(3分)如图的两个四边形相似,则∠α的度数是()A.87°B.60°C.75°D.120°【分析】根据相似多边形的对应角相等求出∠1的度数,根据四边形内角和等于360°计算即可.【解答】解:∵两个四边形相似,∴∠1=138°,∵四边形的内角和等于360°,∴∠α=360°﹣60°﹣75°﹣138°=87°,故选:A.【点评】本题考查的是相似多边形的性质,掌握相似多边形的对应角相等、对应边相等是解题的关键.7.(3分)已知线段a:b=3:2,且线段b是a,c的比例中项,那么b:c等于()A.3:2B.2:3C.4:3D.3:4【分析】根据比例中项的概念可得a:b=b:c,则可求得b:c值.【解答】解:∵a:b=3:2,b是a和c的比例中项,即a:b=b:c,∴b:c=3:2.故选:A.【点评】本题考查了比例中项的概念.在线段a,b,c中,若b2=ac,则b是a,c的比例中项.8.(3分)如图,在△ABC中,点D、E分AB、AC边上,DE∥BC,若AD:AB=3:4,AE=6,则AC等于()A.3B.4C.6D.8【分析】首先由DE∥BC可以得到AD:AB=AE:AC,而AD:AB=3:4,AE=6,由此即可求出AC.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴AD:AB=AE:AC,而AD:AB=3:4,AE=6,∴3:4=6:AC,∴AC=8.故选:D.【点评】本题主要考查平行线分线段成比例定理,对应线段一定要找准确,有的同学因为没有找准对应关系,从而导致错选其他答案.9.(3分)某种商品原价是100元,经两次降价后的价格是90元.设平均每次降价的百分率为x,可列方程为()A.100x(1﹣2x)=90B.100(1+2x)=90C.100(1﹣x)2=90D.100(1+x)2=90【分析】设该商品平均每次降价的百分率为x,根据降价后的价格=降价前的价格(1﹣降价的百分率),则第一次降价后的价格是100(1﹣x),第二次后的价格是100(1﹣x)2,据此即可列方程求解.【解答】解:根据题意得:100(1﹣x)2=90.故答案为:100(1﹣x)2=90.【点评】此题主要考查了一元二次方程应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程即可.10.(3分)将函数y=kx+k与函数的大致图象画在同一坐标系中,正确的函数图象是()A.B.C.D.【分析】根据一次函数及反比例函数的图象与系数的关系作答.【解答】解:A、从一次函数的图象与y轴的负半轴相交知k<0与反比例函数的图象k >0相矛盾,错误;B、从一次函数的图象经过原点知k=0与反比例函数的图象k<0相矛盾,错误;C、从一次函数的图象知k>0与反比例函数的图象k<0相矛盾,错误;D、从一次函数的图象知k<0与反比例函数的图象k<0一致,正确.故选:D.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.11.(3分)如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1米,继续往前走3米到达E处时,测得影子EF的长为2米,已知王华的身高是1.5米,那么路灯A的高度AB等于()A.4.5米B.6米C.7.2米D.8米【分析】由于人和地面是垂直的,即和路灯到地面的垂线平行,构成两组相似.根据对应边成比例,列方程解答即可.【解答】解:如图,GC⊥BC,AB⊥BC,∴GC∥AB,∴△GCD∽△ABD(两个角对应相等的两个三角形相似),∴,设BC=x,则,同理,得,∴,∴x=3,∴,∴AB=6.故选:B.【点评】本题考查相似三角形性质的应用.在解答相似三角形的有关问题时,遇到有公共边的两对相似三角形,往往会用到中介比,它是解题的桥梁,如该题中的“”.12.(3分)如右图,在的图象上有两点A、C,过这两点分别向x轴引垂线,交x轴于B、D两点,连结OA、OC,记△ABO、△CDO的面积S1,S2,则S1与S2的大小关系是()A.S1>S2B.S1<S2C.S1=S2D.不确定【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值【解答】解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,所以S1=S2.故选:C.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.二、填空题13.(3分)关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,则m的值是0或8.【分析】先根据方程有两个相等的实数根列出关于m的方程,求出m的值即可.【解答】解:∵关于x的一元二次方程x2+(m﹣2)x+m+1=0有两个相等的实数根,∴△=(m﹣2)2﹣4(m+1)=0,即m2﹣8m=0,解得m=0或m=8.故答案为:0或8.【点评】本题考查的是根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△=0时,方程有两个相等的两个实数根.14.(3分)从一本书中随机抽取若干页,其中“的”出现的频率为0.03,由此可估计这本书中“的”字出现的频率为0.03.【分析】利用“的”字出现的频率估计整本书的字出现的频率即可.【解答】解:∵这本书中“的”出现的频率为0.03,∴可估计这本书中“的”字出现的频率为0.03,故答案为0.03.【点评】本题考查了利用频率估计概率,多次实验中,事件发生的频率约等于其发生的概率.15.(3分)如图,函数y=kx(k≠0)与y=的图象交于A,B两点,过点A作AM垂直于x轴,垂足为点M,则△BOM的面积为.【分析】由函数y=kx(k≠0)与y=的图象交于A,B两点,利用中心对称的性质得到OA=OB,即MO为三角形ABM的中线,根据等底同高可得出三角形AOM与三角形BOM的面积相等,要求三角形BOM的面积即要求三角形AOM的面积,设A坐标为(a,b),可表示出OM与AM,利用三角形的面积公式表示出三角形AOM的面积,再将A的坐标代入反比例函数解析式中,得到ab的值,将ab的值代入表示出的面积中求出三角形AOM的面积,即为三角形BOM的面积.【解答】解:由题意得:OA=OB,则S△AOM=S△BOM,设A(a,b)(a>0,b>0),故OM=a,AM=b,将x=a,y=b代入反比例函数y=得:b=,即ab=3,又∵AM⊥OM,即△AOM为直角三角形,∴S△BOM=S△AOM=OM•AM=ab=.故答案是:.【点评】此题考查了反比例函数解析式中k的几何意义,其k的几何意义为:过反比例函数y=(k≠0)图象上的点作两坐标轴的垂线,两垂线与两坐标轴围成矩形的面积等于|k|,熟练掌握此性质是解本题的关键.16.(3分)如图,矩形ABCD中,AD=4,∠CAB=30°,点P是线段AC上的动点,点Q 是线段CD上的动点,则AQ+QP的最小值是4.【分析】以CD为轴,将△ACD往上翻转180°,由已知的边角关系可知△A′CA为等边三角形,求出A′C边上的高线,由“直线外一点到这条直线中,垂线段最短”即可得出结论.【解答】解:以CD为轴,将△ACD往上翻转180°,如图,过点A作AE⊥A′C于E点,AE交CD于F点,当Q与F点重合,P′与E点重合时,AQ+QP=AF+EF=AE最短(直线外一点到这条直线中,垂线段最短),∵矩形ABCD中,AD=4,∠CAB=30°,∴∠A′CD=∠ACD=∠CAB=30°,∴∠A′CA=60°,又∵AC=A′C,∴△A′CA为等边三角形,且A′A=2AD=8,AE=A′A•sin∠A′CA=8×=4.故答案为:4.【点评】本题考查了轴对称图形的性质以及点到直线的距离,解题的关键是以CD为轴,将△ACD往上翻转180°,找出A′C边上的高线.三、解答题17.(3分)按要求解方程(1)x2﹣2x﹣2=0;(2)(2x﹣1)2=x(3x+2)﹣7.【分析】(1)利用公式法求解可得;(2)整理成一般式后,利用因式分解法求解可得.【解答】解:(1)∵a=1,b=﹣2,c=﹣2,∴△=(﹣2)2﹣4×1×(﹣2)=12>0,则x==1±,即x1=1+,x2=1﹣;(2)将方程整理成一般式得:x2﹣6x+8=0,则(x﹣2)(x﹣4)=0,∴x﹣2=0或x﹣4=0,解得x1=2,x2=4.【点评】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.18.(3分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.【分析】首先根据题意画出树状图,由树状图求得所有等可能的结果与小明穿的上衣和裤子恰好都是蓝色的情况,然后利用概率公式求解即可求得答案.【解答】解:画树状图得:如图:共有6种可能出现的结果,∵小明穿的上衣和裤子恰好都是蓝色的有2种情况,∴小明穿的上衣和裤子恰好都是蓝色的概率为:=.【点评】此题考查了列表法与树状图法求概率的知识.注意列表法与树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.19.(3分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE⊥AN,AD⊥BC,所以求证∠DAE=90°,可以证明四边形ADCE为矩形.(2)根据正方形的判定,我们可以假设当AD=BC,由已知可得,DC=BC,由(1)的结论可知四边形ADCE为矩形,所以证得,四边形ADCE为正方形.【解答】(1)证明:在△ABC中,AB=AC,AD⊥BC,∴∠BAD=∠DAC,∵AN是△ABC外角∠CAM的平分线,∴∠MAE=∠CAE,∴∠DAE=∠DAC+∠CAE=180°=90°,又∵AD⊥BC,CE⊥AN,∴∠ADC=∠CEA=90°,∴四边形ADCE为矩形.(2)当△ABC满足∠BAC=90°时,四边形ADCE是一个正方形.理由:∵AB=AC,∴∠ACB=∠B=45°,∵AD⊥BC,∴∠CAD=∠ACD=45°,∴DC=AD,∵四边形ADCE为矩形,∴矩形ADCE是正方形.∴当∠BAC=90°时,四边形ADCE是一个正方形.【点评】本题是以开放型试题,主要考查了对矩形的判定,正方形的判定,等腰三角形的性质,及角平分线的性质等知识点的综合运用.20.(3分)西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低多少元?【分析】设应将每千克小型西瓜的售价降低x元.那么每千克的利润为:(3﹣2﹣x)元,由于这种小型西瓜每降价0.1元/千克,每天可多售出40千克.所以降价x元,则每天售出数量为:(200+)千克.本题的等量关系为:每千克的利润×每天售出数量﹣固定成本=200.【解答】解:设应将每千克小型西瓜的售价降低x元.根据题意,得[(3﹣2)﹣x](200+)﹣24=200.方程可化为:50x2﹣25x+3=0,解这个方程,得x1=0.2(舍去),x2=0.3.答:应将每千克小型西瓜的售价降低0.3元.【点评】考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.21.(3分)如图,直线y=﹣x+b与反比例函数y=的图象相交于A(1,4),B两点,延长AO交反比例函数图象于点C,连接OB.(1)求k和b的值;(2)直接写出一次函数值小于反比例函数值的自变量x的取值范围;(3)在y轴上是否存在一点P,使S△P AC=S△AOB?若存在请求出点P坐标,若不存在请说明理由.【分析】(1)由待定系数法即可得到结论;(2)根据图象中的信息即可得到结论;(3)过A作AM⊥x轴,过B作BN⊥x轴,由(1)知,b=5,k=4,得到直线的表达式为:y=﹣x+5,反比例函数的表达式为:列方程,求得B(4,1),于是得到,由已知条件得到,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),根据三角形的面积公式列方程即可得到结论.【解答】解:(1)将A(1,4)分别代入y=﹣x+b和得:4=﹣1+b,4=,解得:b=5,k=4;(2)一次函数值小于反比例函数值的自变量x的取值范围为:x>4或0<x<1,(3)过A作AN⊥x轴,过B作BM⊥x轴,由(1)知,b=5,k=4,∴直线的表达式为:y=﹣x+5,反比例函数的表达式为:由,解得:x=4,或x=1,∴B(4,1),∴S△AOB=1×4+(1+4)×(4﹣1)÷2=,∵S△P AC=,∴,过A作AE⊥y轴,过C作CD⊥y轴,设P(0,t),∴S△P AC=OP•CD+OP•AE=OP(CD+AE)=|t|=3,解得:t=3,t=﹣3,∴P(0,3)或P(0,﹣3).【点评】本题考查了一次函数与反比例函数的交点问题,三角形的面积的计算,待定系数法求函数的解析式,正确的作出辅助线是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九 年 级 期 末 考 试
数 学
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页,满分100分,考试时
间90分钟。
第Ⅰ卷 选择题
一、选择题(本题有12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项
是符合题目要求的,请将正确的选项用铅笔涂在答题卡上...............
.) 1.一元二次方程230x x -=的解是 A .0x =
B .1203x x ==,
C .1210,3x x ==
D .1
3x =
2.顺次连结任意四边形各边中点所得到的四边形一定是 A .平行四边形
B .菱形
C .矩形
D .正方形
3. 若一个几何体的主视图、左视图、俯视图分别是三角形、三角形、圆,则这个几何体可能是
A .球
B .圆柱
C .圆锥
D .棱锥
4. 在同一时刻,身高1.6m 的小强,在太阳光线下影长是1.2m ,旗杆的影长是15m ,则旗杆高为 A 、22m B 、20m C 、18m D 、16m
5. 下列说法不正确的是 A .对角线互相垂直的矩形是正方形 B .对角线相等的菱形是正方形 C .有一个角是直角的平行四边形是正方形 D .一组邻边相等的矩形是正方形
6. 直角三角形的两条直角边分别是6和8,则这三角形斜边上的高是 A .4.8 B .5 C .3 D .10
7. 若点(3,4)是反比例函数221
m m y x
+-=图像上一点 ,则此函数图像必经过点
A .(3,-4)
B .(2,-6)
C .(4,-3)
D .(2,6) 8. 二次三项式2
43x x -+配方的结果是
A .2(2)7x -+
B .2
(2)1x -- C .2(2)7x ++ D .
2(2)1x +- 9.一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为
2014.01.9
A .30°
B .45°
C .60°
D .75° 10. 函数x
k
y =的图象经过(1,-1),则函数2-=kx y 的图象是
11.如图,矩形ABCD ,R 是CD 的中点,点M 在BC 边上运动,E 、F 分别是AM 、MR 的中点,则EF 的长随着M
点的运动
A .变短
B .变长
C .不变
D .无法确定
12.如图,点A 在双曲线6
y x
=上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,
OA 的垂直平分线交OC 于B ,则△ABC 的周长为
A .47
B .5
C .27
D .22
第Ⅱ卷 非选择题
二、填空题:(本题有4小题,每小题3分,共12分.把答案填在答题卡上.)
13.如图,△ABC 中,∠C=0
90,AD 平分∠BAC ,BC=10,BD=6,则点D 到AB 的距离是 。
14.如图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P ,则此反比例函数的解析式是 。
2
2 2 2 -2
-2 -2
-2
O
O
O
O
y
y y y
x
x
x
x
A .
B .
C .
D .
A B C
R D M E
F 第11题图
15.小明有道数学题不会,想打电话请教老师,可是他只想起了电话号码的前6位(共7位数的电话),那么他一次打通电话的概率是 。
16. 一个平行四边形的两边分别是4.8cm 和 6cm, 如果平行四边形的高是5cm, 面积是 2
cm 。
三、解答题(本大题有7题,其中17题8分,18题8分,19题8分,20题6分,21题8分,
22题6分,23题8分,共52分)
17.(本题每小题4分,共8分)计算下列各题:
(1)0322
=--x x (2) 2-1+2-1=0x x x ()()
18.(8分)(1)如图所示,如果你的位置在点A ,你能看到后面那座高大的建筑物吗?为什么? (2)如果两楼之间相距MN=203m ,两楼的高各为10m 和30m ,则当你至少与M 楼相距多少m 时,才能看到后面的N 楼?
19.(8分)已知反比例函数y =
8
m x
-(m 为常数)的图象经过点A (-1,6)。
(1)求m的值;
(2)如图,过点A作直线AC与函数y=
8
m
x
的图象交于点B,与x轴交于点C,且AB=2BC,求点C的坐
标。
20.(6分)如图,在平行四边形ABCD纸片中,AC⊥AB,AC与BD相交于O,将纸△ABC沿对角线AC翻转180°,得到△AB′C,
(1)问以A、C、D、B′为顶点的四边形是什么形状的四边形?证明你的结论;(3分)
(2)若四边形ABCD的面积为202
cm,求翻转后纸片重叠部分的面积(即△ACE的面积)。
(3分)
21.(8分)某厂工业废气年排放量为400万立方米,为改善锦州市的大气环境质量,决定分二期投入治理,使废气的年排放量减少到256万立方米,如果每期治理中废气减少的百分率相同。
(1)求每期减少的百分率是多少?
(2)预计第一期治理中每减少1万立方米废气需投入3万元,第二期治理中每减少1万立方米废气需投入4.5万元,问两期治理完成后需投入多少万元?
22.(6分)两个警察抓两个小偷,目击者说:两个小偷分别躲藏在六个房间中的两间,但不知道他们到底躲藏在哪两间。
而如果警察冲进了无人的房间,那么小偷就会趁机逃跑。
如果两个警察随机地冲进两个房间抓小偷,(1)至少能抓获一个小偷的概率是多少? (2)两个小偷全部抓获的概率是多少?请简单说明理由。
23.(本小题8分)阅读探索:“任意给定一个矩形A ,是否存在另一个矩形B ,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)
(1)当已知矩形A 的边长分别为6和1时,小亮同学是这样研究的:
设所求矩形的两边分别是y x 和,由题意得方程组:⎪⎩⎪
⎨⎧
==+3
27xy y x ,
消去y 化简得:06722=+-x x ,
∵△=49-48>0,∴1x = ,2x = 。
∴满足要求的矩形B存在。
(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B。
(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?。