2019年全国各地中考数学试题分类汇编(第一期) 专题42 综合性问题(含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综合性问题
一.选择题
1. (2019•湖北十堰•3分)如图,平面直角坐标系中,A(﹣8,0),B(﹣8,4),C(0,4),
反比例函数y=的图象分别与线段AB,BC交于点D,E,连接DE.若点B关于DE 的对称点恰好在OA上,则k=()
A.﹣20 B.﹣16 C.﹣12 D.﹣8
【分析】根据A(﹣8,0),B(﹣8,4),C(0,4),可得矩形的长和宽,易知点D的横坐标,E的纵坐标,由反比例函数的关系式,可用含有k的代数式表示另外一个坐标,由三角形相似和对称,可用求出AF的长,然后把问题转化到三角形ADF中,由勾股定理建立方程求出k的值.
【解答】解:过点E作EG⊥OA,垂足为G,设点B关于DE的对称点为F,连接DF、EF、BF,如图所示:
则△BDE≌△FDE,
∴BD=FD,BE=FE,∠DFE=∠DBE=90°
易证△ADF∽△GFE
∴,
∵A(﹣8,0),B(﹣8,4),C(0,4),
∴AB=OC=EG=4,OA=BC=8,
∵D.E在反比例函数y=的图象上,
∴E(,4)、D(﹣8,)
∴OG=EC=,AD=﹣,
∴BD=4+,BE=8+
∴,
∴AF=,
在Rt△ADF中,由勾股定理:AD2+AF2=DF2
即:(﹣)2+22=(4+)2
解得:k=﹣12
故选:C.
【点评】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现BD与BE的比是1:2是解题的关键.
2. (2019•湖北武汉•3分)如图,AB是⊙O的直径,M、N是(异于A.B)上两点,C是
上一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C 从点M运动到点N时,则C.E两点的运动路径长的比是()
A.B.C.D.
【分析】如图,连接E B.设OA=r.易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C的运动轨迹是,由题意∠MON=2∠GDF,设∠GDF=α,则∠MON=2α,利用弧长公式计算即可解决问题.
【解答】解:如图,连接E B.设OA=r.
∵AB是直径,
∴∠ACB=90°,
∵E是△ACB的内心,
∴∠AEB=135°,
∵∠ACD=∠BCD,
∴=,
∴AD=DB=r,
∴∠ADB=90°,
易知点E在以D为圆心DA为半径的圆上,运动轨迹是,点C的运动轨迹是,∵∠MON=2∠GDF,设∠GDF=α,则∠MON=2α
∴==.
故选:A.
【点评】本题考查弧长公式,圆周角定理,三角形的内心等知识,解题的关键是理解题意,正确寻找点的运动轨迹,属于中考选择题中的压轴题.
3. (2019•湖南衡阳•3分)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m
为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()
A.x<﹣1 B.﹣1<x<0
C.x<﹣1或0<x<2 D.﹣1<x<0或x>2
【分析】根据一次函数图象在反比例函数图象上方的x的取值范围便是不等式kx+b>的解集.
【解答】解:由函数图象可知,当一次函数y1=kx+b(k≠0)的图象在反比例函数y2=(m为常数且m≠0)的图象上方时,x的取值范围是:x<﹣1或0<x<2,
∴不等式kx+b>的解集是x<﹣1或0<x<2
故选:C.
【点评】本题是一次函数图象与反比例函数图象的交点问题:主要考查了由函数图象求不等式的解集.利用数形结合是解题的关键.
4. (2019•湖南衡阳•3分)如图,在直角三角形ABC中,∠C=90°,AC=BC,E是AB的
中点,过点E作AC和BC的垂线,垂足分别为点D和点F,四边形CDEF沿着CA方向匀速运动,点C与点A重合时停止运动,设运动时间为t,运动过程中四边形CDEF与△ABC的重叠部分面积为S.则S关于t的函数图象大致为()
A.B.
C.D.
【分析】根据已知条件得到△ABC是等腰直角三角形,推出四边形EFCD是正方形,设正方形的边长为a,当移动的距离<a时,如图1S=正方形的面积﹣△EE′H的面积=a2﹣t2;当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,根据函数关系式即可得到结论;
【解答】解:∵在直角三角形ABC中,∠C=90°,AC=BC,
∴△ABC是等腰直角三角形,
∵EF⊥BC,ED⊥AC,
∴四边形EFCD是矩形,
∵E是AB的中点,
∴EF=AC,DE=BC,
∴EF=ED,
∴四边形EFCD是正方形,
设正方形的边长为a,
如图1当移动的距离<a时,S=正方形的面积﹣△EE′H的面积=a2﹣t2;
当移动的距离>a时,如图2,S=S△AC′H=(2a﹣t)2=t2﹣2at+2a2,
∴S关于t的函数图象大致为C选项,
故选:C.
【点评】本题考查动点问题的函数图象,正方形的性质、勾股定理等知识,解题的关键是读懂题意,学会分类讨论的思想,属于中考常考题型. 5.
(2019•广东深圳•3分)下列命题正确的是( ) A.矩形对角线互相垂直 B.方程x x 142
=的解为14=x C.六边形内角和为540°
D.一条斜边和一条直角边分别相等的两个直角三角形全等 【答案】D
【解析】矩形的对角线互相平分且相等,故A 错;方程x x 142
=的解为14=x 或0=x ,故B 错;六边形内角和为720°,故C 错.故选D
6. (2019•广西贵港•3分)下列命题中假命题是( ) A .对顶角相等
B .直线y =x ﹣5不经过第二象限
C .五边形的内角和为540°
D .因式分解x 3
+x 2
+x =x (x 2
+x )
【分析】由对顶角相等得出A 是真命题;由直线y =x ﹣5的图象得出B 是真命题;由五边形的内角和为540°得出C 是真命题;由因式分解的定义得出D 是假命题;即可得出答案.
【解答】解:A .对顶角相等;真命题; B .直线y =x ﹣5不经过第二象限;真命题; C .五边形的内角和为540°;真命题; D .因式分解x 3
+x 2
+x =x (x 2
+x );假命题;