高三物理二轮复习 专题10 电磁感应练习
高考物理二轮复习练案电磁感应规律及其应用(有答案)
一、选择题(本题共8小题,其中1~4题为单选,5~8题为多选) 1.(2017•河北省定州中学4月考)如图所示,匀强磁场垂直于圆形线圈指向纸里,a、b、c、d为圆形线圈上等距离的四点,现用外力作用在上述四点,将线圈拉成正方形。
设线圈导线不可伸长,且线圈仍处于原先所在的平面内,则在线圈发生形变的过程中导学号86084260( A )A.线圈中将产生abcd方向的感应电流B.线圈中将产生adcb方向的感应电流C.线圈中产生感应电流的方向先是abcd,后是adcbD.线圈中无感应电流产生[解析] 当由圆形变成正方形时磁通量变小,根据楞次定律知在线圈中将产生abcd方向的感应电流,故选项A正确。
2.(2017•江西省鹰潭市一模)如图所示,在竖直平面内有一金属环,环半径为0.5 m,金属环总电阻为2 Ω,在整个竖直平面内存在垂直纸面向里的匀强磁场,磁感应强度为B=1 T,在环的最高点上方A 点用铰链连接一长度为1.5 m,电阻为3 Ω的导体棒AB,当导体棒AB摆到竖直位置时,导体棒B端的速度为3 m/s。
已知导体棒下摆过程中紧贴环面且与金属环有良好接触,则导体棒AB摆到竖直位置时AB两端的电压大小为导学号86084261( B )A.0.4 V B.0.65 VC.2.25 V D.4.5 V[解析] 当导体棒摆到竖直位置时,由v=ωr可得:C点的速度为:vC=13vB=13×3 m/s=1 m/s。
AC间电压为:UAC=EAC=BLAC•vC2=1×0.5×12=0.25 VCB段产生的感应电动势为:ECB=BLCB•vC+vB2=1×1×1+32=2 V。
圆环两侧并联,电阻为:R=12Ω=0.5 Ω,金属棒CB段的电阻为:r=2 Ω,则CB间电压为:UCB=Rr+RECB=0.50.5+2×2 V =0.4 V故AB两端的电压大小为:UAB=UAC+UCB=0.25+0.4=0.65 V。
高三物理第二轮复习专练电磁感
准兑市爱憎阳光实验学校高三第二轮复习专练电磁感1.如图为理想变压器原线圈所接电源电压波形,原副线圈匝数之比n1∶n2 = 10∶1,串联在原线圈电路中电流表的示数为1A,下那么说法正确的选项是A.变压器输出两端所接电压表的示数为222VB.变压器输出功率为220WC.变压器输出的交流电的频率为50HZD.假设n1 = 100匝,那么变压器输出端穿过每匝线圈的磁通量的变化率的最大值为22.2wb/s2.如下图,图A、B为两个相同的线圈,共轴并靠边放置,A线圈中画有如图乙所示的交变电流i,那么A.在 t1到t2的时间内,A、BB.在 t2到t3的时间内,A、BC.t1D.t2时刻,两线圈的引力最大3.如下图,光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导线所在平面,当ab棒下滑到稳状态时,小灯泡获得的功率为P,除灯泡外,其它电阻不计,要使灯泡的功率变为2PA.换一个电阻为原来2倍的灯泡B.把磁感强度B增为原来的2倍C.换一根质量为原来2倍的金属棒D.把导轨间的距离增大为原来的24.如下图,闭合属环从高h的光滑曲面上端无初速滚下,沿曲面的另一侧上升,曲面在磁场中〔〕A.假设是非匀强磁场,环在左侧滚上的高度小于hB. 假设是匀强磁场,环在左侧滚上的高度于hc.假设是非匀强磁场,环在左侧滚上的高度于hD.假设是匀强磁场,环在左侧滚上的高度小于h5.如下图,一电子以初速v间,在以下哪种情况下,电子将向M板偏转?A.开关K接通瞬间B.断开开关K瞬间C.接通K后,变阻器滑动触头向右迅速滑动D.接通K后,变阻器滑动触头向左迅速滑动6.如图甲,在线圈1l中通入电流1i后,在2l上产生感电流随时间变化规律如图乙所示,那么通入线圈1l1l、2l中电7S1闭合,S2A、B S1断开,以下A甲BL×××××××B.A灯将比原来更亮一些后再熄灭C.有电流通过B灯,方向为c dD.有电流通过A灯,方向为b a8.如下图,足够长的两条光滑水平导轨平行放置在匀强磁场中,磁场垂直于导轨所在平面,金属棒ab可沿导轨自由滑动,导轨一端跨接一值电阻,其他电阻不计。
高考物理二轮复习 电磁感应专题训练
高考物理二轮复习 电磁感应专题训练一、选择题1.(青岛市08年3月一摸)在竖直方向的匀强磁场中,水平放置一圆形导体环.规定导体环中电流的正方向如图1所示,磁场向上为正.当磁感应强度 B 随时间 t 按图2变化时,下列能正确表示导体环中感应电流变化情况的是( )答案:C2.(德州市2008届质检)穿过闭合回路的磁通量Φ随时间t 变化的图像分别如下图①~④所示。
下列关于回路中产生的感应电动势的论述中正确的是( ) A .图①中回路产生的感应电动势恒定不变 B .图②中回路产生的感应电动势一直在变大C .图③中回路0~t 1时间内产生的感应电动势小于在t 1~t 2时间内产生的感应电动势答案:D3.(德州市2008届质检)如图所示,电阻R 1=3Ω,R 2=6Ω,线圈的直流电阻不计,电源电动势E=5V ,内阻r=1Ω。
开始时,电键S 闭合,则( )A 、断开S 前,电容器所带电荷量为零B 、断开S 前,电容器两端的电压为10/3VC 、断开S 的瞬间,电容器a 板带上正电D 、断开S 的瞬间,电容器b 板带上正电 答案:AC①③ t t 12-I /s-I /s-I /s-I /s4.(泰安市2008届高三期末考试)足够长的光滑金属导轨MN、PQ水平平行固定,置于竖直向上的匀强磁场中,在导轨上放两条金属杆ab、cd,两杆平行且与导轨垂直接触良好。
设导轨电阻不计,两杆的电阻为定值。
从某时刻起给ab施加一与导轨平行方向向右的恒定拉力F作用,则以下说法正确的是()A.cd向左做加速运动B.ab受到的安培力始终向左C.ab一直做匀加速直线运动D.ab、cd均向右运动,运动后的速度始终不会相等,但最终速度差为一定值答案:BD5.(广东省汕头市2008年普通高校招生模拟考试)如图所示,电路中A、B是完全相同的灯泡,L是一带铁芯的线圈.开关S原来闭合,则开关S断开的瞬间()A.L中的电流方向改变,灯泡B 立即熄灭B.L中的电流方向不变,灯泡B要过一会才熄灭C.L中的电流方向改变,灯泡A比B 慢熄灭D.L中的电流方向不变,灯泡A比B慢熄灭答案:D6.(泰州市2008届第二学期期初联考)如图所示,电路中A、B是规格相同的灯泡,L是电阻可忽略不计的电感线圈,那么()A.合上S,A、B一起亮,然后A变暗后熄灭B.合上S,B先亮,A逐渐变亮,最后A、B一样亮C.断开S,A立即熄灭,B由亮变暗后熄灭D.断开S,B立即熄灭,A闪亮一下后熄灭答案:AD7.(2008年山东省高考冲刺预测卷)某同学在实验室里熟悉各种仪器的使用.他将一条形磁铁放在水平转盘上,如图甲所示,磁铁可随转盘转动,另将一磁感应强度传感器固定在转盘旁边.当转盘(及磁铁)转动时,引起磁感应强度测量值周期性地变化,该变化的周期与转盘转动周期一致.经过操作,该同学在计算机上得到了如图乙所示的图像.B该同学猜测磁感应强度传感器内有一线圈,当测得磁感应强度最大时就是穿过线圈的磁通量最大时.接照这种猜测()A .在t =0.1 s 时刻,线圈内产生的感应电流的方向发生了变化,B .在t =0.15 s 时刻,线圈内产生的感应电流的方向发生了变化,C .在t =0.1 s 时刻,线圈内产生的感应电流的大小达到了最大值,D .在t =0.15 s 时刻,线圈内产生的感应电流的大小达到了最大值. 答案:AC8.(泰州市2008届第一次联考)如图所示,MN 利PQ 为处于同一水平面内的两根平行的光滑金属导轨,垂直导轨放置的金属棒ab 与导轨接触良好,在水平金属导轨之间加竖直向—卜的匀强磁场,导轨的N 、Q 端按理想变压器的初级线圈,理想变压器的输出端有三组次级线圈,分别接有电阻元件R 、电感元件L 和电容元件C 。
高考物理二轮复习 电磁感应专题检测
高考物理二轮复习 电磁感应专题检测电磁感应(时间:100分钟 满分:110分)第Ⅰ卷 选择题一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不答的得0分。
1.某部小说中描述一种窃听电话:窃贼将并排在一起的两根电话线分开,在其中一根电话线旁边铺设一条两端分别与耳机连接的导线,这条导线与电话线是绝缘的.如下图所示,下列说法正确的是( )A .不能窃听到电话,因为电话线中电流太小B .不能窃听到电话,因为电话线与耳机没有接通C .可以窃听到电话,因为电话中的电流是恒定电流,在耳机电路中引起感应电流 D .可以窃听到电话,因为电话中的电流是交流电,在耳机电路中引起感应电流2.现代汽车中有一种先进的制动机构,可保证车轮在制动时不是完全刹死滑行,而是让车轮仍有一定的滚动.经研究这种方法可以更有效地制动,它有一个自动检测车速的装置,用来控制车轮的转动,其原理如图所示,铁质齿轮P 与车轮同步转动,右端有一个绕有线圈的磁体,M 是一个电流检测器.当车轮带动齿轮转动时,线圈中会有电流,这是由于齿靠近线圈时被磁化,使磁场增强,齿离开线圈时磁场减弱,磁通量变化使线圈中产生了感应电流.将这个电流放大后去控制制动机构,可有效地防止车轮被制动抱死.如图所示,在齿a 转过虚线位置的过程中,关于M 中感应电流的说法正确的是( )A .M 中的感应电流方向一直向左B .M 中的感应电流方向一直向右C .M 中先有自右向左,后有自左向右的感应电流D .M 中先有自左向右,后有自右向左的感应电流3.一航天飞机下有一细金属杆,杆指向地心.若仅考虑地磁场的影响,则当航天飞机位于赤道上空( )A .由东向西水平飞行时,金属杆中感应电动势的方向一定由上向下B .由西向东水平飞行时,金属杆中感应电动势的方向一定由上向下C .沿经过地磁极的那条经线由南向北水平飞行时,金属杆中感应电动势的方向一定由下向上D .沿经过地磁极的那条经线由北向南水平飞行时,金属杆中一定没有感应电动势4. 北半球地磁场的竖直分量向下.如图37-3所示,在北京某中学实验室的水平桌面上,放置边长为L 的正方形闭合导体线圈abcd ,线圈的ab 边沿南北方向,ad 边沿东西方向.下列说法中正确的是( )A .若使线圈向东平动,则a 点的电势比b 点的电势低B .若使线圈向北平动,则a 点的电势比b 点的电势低C .若以ab 为轴将线圈向上翻转,则线圈中感应电流方向为a →b →c →d →aD .若以ab 为轴将线圈向上翻转,则线圈中感应电流方向为a →d →c →b →a图37-1图37-2 图37-35.如图37-4所示,一有限范围的匀强磁场,宽度为d ,将一个边长为L 的正方形导线框以速度υ匀速地通过磁场区域,若d>L ,则在线框中不产生感应电流的时间应等于( )A 、d/υ;B 、L/υ;C 、(d-L)/υ;D 、(d-2L)/υ;6.如图37-5是法拉第做成的世界上第一台发电机模型的原理图.将铜盘放在磁场中,让磁感线垂直穿过铜盘;图中a 、b 导线与铜盘的中轴线处在同一竖直平面内;转动铜盘,就可以使闭合电路获得电流.若图中铜盘半径为L ,匀强磁场的磁感应强度为B ,回路总电阻为R ,从上往下看逆时针匀速转动铜盘的角速度为ω,则下列说法正确的是( )A .回路中有大小和方向周期性变化的电流B .回路中电流大小恒定,且等于BL 2ωRC .回路中电流方向不变,且从b 导线流进灯泡,再从a 导线流向旋转的铜盘D .若将匀强磁场改为仍然垂直穿过铜盘的正弦变化的磁场,不转动铜盘,灯泡中也会有电流流过7.如图37-6所示的电路中,三个相同的灯泡a 、b 、c 和电感L 1、L 2与直流电源连接,电感的电阻忽略不计.电键S 从闭合状态突然断开时,下列判断正确的有( )A .a 先变亮,然后逐渐变暗B .b 先变亮,然后逐渐变暗C .c 先变亮,然后逐渐变暗D .b 、c 都逐渐变暗8.电吉他是利用电磁感应原理工作的一种乐器.如图37-7甲为电吉他的拾音器的原理图,在金属弦的下方放置有一个连接到放大器的螺线管.一条形磁铁固定在管内,当拨动金属弦后,螺线管内就会产生感应电流,经一系列转化后可将电信号转为声音信号.若由于金属弦的振动,螺线管内的磁通量随时间的变化如图4-20乙所示,则对应感应电流的变化为图丙中的( )9、如图37-8所示,将一阴极射线管置于一通电螺线管的正上方且在同一水平面内,则阴极射线将( )A .向外偏转B .向里偏转C .向上偏转D .向下偏转10、用同种材料粗细均匀的电阻丝做成ab 、cd 、ef 三根导线,ef 较图37-5 图37-7 丙图37-6长,分别放在电阻可忽略的光滑的平行导轨上,如图37-9所示,磁场是均匀的,用外力使导线水平向右作匀速运动(每次只有一根导线在导轨上),而且每次外力做功功率相同,则下列说法正确的是( )A 、ab 运动得最快B 、ef 运动得最快C 、导线产生的感应电动势相等D 、每秒钟产生的热量不相等二、实验题:共4小题,共20分。
高考物理二轮复习专题过关检测专题:电磁感应(全部含详细答案解析)
高考物理二轮总复习专题过关检测电磁感应(附参考答案)(时间:90分钟满分:100分)一、选择题(本题共10小题,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.如图12-1所示,金属杆ab、cd可以在光滑导轨PQ和R S上滑动,匀强磁场方向垂直纸面向里,当ab、cd分别以速度v1、v2滑动时,发现回路感生电流方向为逆时针方向,则v1和v2的大小、方向可能是()图12-1A.v1>v2,v1向右,v2向左B.v1>v2,v1和v2都向左C.v1=v2,v1和v2都向右D.v1=v2,v1和v2都向左解析:因回路abdc中产生逆时针方向的感生电流,由题意可知回路abdc的面积应增大,选项A、C、D错误,B正确.答案:B2.(2010河北唐山高三摸底,12)如图12-2所示,把一个闭合线圈放在蹄形磁铁两磁极之间(两磁极间磁场可视为匀强磁场),蹄形磁铁和闭合线圈都可以绕OO′轴转动.当蹄形磁铁匀速转动时,线圈也开始转动,当线圈的转动稳定后,有()图12-2A.线圈与蹄形磁铁的转动方向相同B.线圈与蹄形磁铁的转动方向相反C.线圈中产生交流电D.线圈中产生为大小改变、方向不变的电流解析:本题考查法拉第电磁感应定律、楞次定律等考点.根据楞次定律的推广含义可知A正确、B错误;最终达到稳定状态时磁铁比线圈的转速大,则磁铁相对线圈中心轴做匀速圆周运动,所以产生的电流为交流电.答案:AC3.如图12-3 所示,线圈M和线圈P绕在同一铁芯上.设两个线圈中的电流方向与图中所标的电流方向相同时为正.当M中通入下列哪种电流时,在线圈P中能产生正方向的恒定感应电流()图12-3图12-4解析:据楞次定律,P 中产生正方向的恒定感应电流说明M 中通入的电流是均匀变化的,且方向为正方向时应均匀减弱,故D 正确.答案:D4.如图12-5所示,边长为L 的正方形导线框质量为m ,由距磁场H 高处自由下落,其下边ab 进入匀强磁场后,线圈开始做减速运动,直到其上边cd 刚刚穿出磁场时,速度减为ab 边进入磁场时的一半,磁场的宽度也为L ,则线框穿越匀强磁场过程中产生的焦耳热为( )图12-5A.2mgLB.2mgL +mgHC.mgH mgL 432+D.mgH mgL 412+ 解析:设刚进入磁场时的速度为v 1,刚穿出磁场时的速度212v v =① 线框自开始进入磁场到完全穿出磁场共下落高度为2L .由题意得mgH mv =2121② Q mv L mg mv +=⋅+222121221③ 由①②③得mgH mgL Q 432+=.C 选项正确. 答案:C5.如图12-6(a)所示,圆形线圈P 静止在水平桌面上,其正上方悬挂一相同线圈Q ,P 和Q 共轴,Q 中通有变化电流,电流随时间变化的规律如图12-6(b)所示,P 所受的重力为G ,桌面对P 的支持力为F N ,则( )图12-6A.t 1时刻F N >GB.t 2时刻F N >GC.t 3时刻F N <GD.t 4时刻F N =G 解析:t 1时刻,Q 中电流正在增大,穿过P 的磁通量增大,P 中产生与Q 方向相反的感应电流,反向电流相互排斥,所以F N >G ;t 2时刻Q 中电流稳定,P 中磁通量不变,没有感应电流,F N =G ;t 3时刻Q 中电流为零,P 中产生与Q 在t 3时刻前方向相同的感应电流,而Q 中没有电流,所以无相互作用,F N =G ;t 4时刻,P 中没有感应电流,F N =G .答案:AD6.用相同导线绕制的边长为L 或2L 的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图12-7所示.在每个线框进入磁场的过程中,M 、N 两点间的电压分别为U a 、U b 、U c 和U d .下列判断正确的是()图12-7A.U a <U b <U c <U dB.U a <U b <U d <U cC.U a =U b <U d =U cD.U b <U a <U d <U c 解析:线框进入磁场后切割磁感线,a 、b 产生的感应电动势是c 、d 电动势的一半.而不同的线框的电阻不同.设a 线框电阻为4r ,b 、c 、d 线框的电阻分别为6r 、8r 、6r ,则4343BLv r r BLv U a =⋅=,,6565BLv r r BLv U b =⋅=,23862BLv r r Lv B U c =⋅= .34642Blv r r Lv B U d =⋅=所以B 正确. 答案:B7.(2010安徽皖南八校高三二联,16)如图12-8所示,用一块金属板折成横截面为“”形的金属槽放置在磁感应强度为B 的匀强磁场中,并以速度v 1向右匀速运动,从槽口右侧射入的带电微粒的速度是v 2,如果微粒进入槽后恰能做匀速圆周运动,则微粒做匀速圆周运动的轨道半径r 和周期T 分别为()图12-8 A.g v g v v 2212,π B.g v g v v 1212,π C.g v g v 112,π D.gv g v 212,π 解析:金属板折成“”形的金属槽放在磁感应强度为B 的匀强磁场中,并以速度v 1向右匀速运动时,左板将切割磁感线,上、下两板间产生电势差,由右手定则可知上板为正,下板为负,11Bv lBlv d U E ===,微粒做匀速圆周运动,则重力等于电场力,方向相反,故有,1g qBv g qE m ==向心力由洛伦兹力提供,所以,222r v m B qv =得gv m qB mv r 212==,周期gv v r T 1222ππ==,故B 项正确.答案:B8.超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图12-9所示的模型:在水平面上相距L的两根平行直导轨间,有竖直方向等距离分布的匀强磁场B1和B2,且B1=B2=B,每个磁场的宽度都是l,相间排列,所有这些磁场都以相同的速度向右匀速运动,这时跨在两导轨间的长为L、宽为l的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R,运动中所受到的阻力恒为F f,金属框的最大速度为v m,则磁场向右匀速运动的速度v可表示为()图12-9A.v=(B2L2v m-F f R)/B2L2B.v=(4B2L2v m+F f R)/4B2L2C.v=(4B2L2v m-F f R)/4B2L2D.v=(2B2L2v m+F f R)/2B2L2解析:导体棒ad和bc各以相对磁场的速度(v-v m)切割磁感线运动,由右手定则可知回路中产生的电流方向为abcda,回路中产生的电动势为E=2BL(v-v m),回路中电流为I=2BL(v-v m)/R,由于左右两边ad和bc均受到安培力,则合安培力为F合=2×BL I=4B2L2(v-v m)/R,依题意金属框达到最大速度时受到的阻力与安培力平衡,则F f=F合,解得磁场向右匀速运动的速度v=(4B2L2v m+F f R)/4B2L2,B对.答案:B9.矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直,磁感应强度B随时间变化的图象如图12-10甲所示,t=0时刻,磁感应强度的方向垂直纸面向里.在0~4 s时间内,线框中的感应电流(规定顺时针方向为正方向)、ab边所受安培力(规定向上为正方向)随时间变化的图象分别为图乙中的()甲乙图12-0解析:在0~1 s内,穿过线框中的磁通量为向里的减少,由楞次定律,感应电流的磁场垂直纸面向里,由安培定则,线框中感应电流的方向为顺时针方向.由法拉第电磁感应定律,t S B nE ∆⋅∆=,E 一定,由,RE I =故I 一定.由左手定则,ab 边受的安培力向上.由于磁场变弱,故安培力变小.同理可判出在1~2 s 内,线框中感应电流的方向为顺时针方向,ab 边受的安培力为向下的变强.2~3 s 内,线框中感应电流的方向为逆时针方向,ab 边受的安培力为向上的变弱,因此选项AD 对. 答案:AD10.如图12-11甲所示,用裸导体做成U 形框架abcd ,ad 与bc 相距L =0.2 m,其平面与水平面成θ=30°角.质量为m =1 kg 的导体棒PQ 与ad 、bc 接触良好,回路的总电阻为R =1 Ω.整个装置放在垂直于框架平面的变化磁场中,磁场的磁感应强度B 随时间t 的变化情况如图乙所示(设图甲中B 的方向为正方向).t =0时,B 0=10 T 、导体棒PQ 与cd 的距离x 0=0.5 m.若PQ 始终静止,关于PQ 与框架间的摩擦力大小在0~t 1=0.2 s 时间内的变化情况,下面判断正确的是( )图12-11 A.一直增大B.一直减小C.先减小后增大D.先增大后减小 解析:由图乙,T/s 5010==∆∆t B t B ,t =0时,回路所围面积S =Lx 0=0.1 m 2,产生的感应电动势V 5=∆⋅∆=t S B E ,A 5==RE I ,安培力F =B 0IL =10 N,方向沿斜面向上.而下滑力mg sin30°=5 N,小于安培力,故刚开始摩擦力沿斜面向下.随着安培力减小,沿斜面向下的摩擦力也减小,当安培力等于下滑力时,摩擦力为零.安培力再减小,摩擦力变为沿斜面向上且增大,故选项C 对. 答案:C二、填空题(共2小题,共12分)11.(6分)如图12-12所示,有一弯成θ角的光滑金属导轨POQ ,水平放置在磁感应强度为B 的匀强磁场中,磁场方向与导轨平面垂直.有一金属棒M N 与导轨的OQ 边垂直放置,金属棒从O 点开始以加速度a 向右运动,求t 秒末时,棒与导轨所构成的回路中的感应电动势是____________________.图12-12解析:该题求的是t 秒末感应电动势的瞬时值,可利用公式E =Blv 求解,而上面错误解法求的是平均值.开始运动t 秒末时,金属棒切割磁感线的有效长度为.tan 21tan 2θθat OD L == 根据运动学公式,这时金属棒切割磁感线的速度为v =at .由题知B 、L 、v 三者互相垂直,有θtan 2132t Ba Blv E ==,即金属棒运动t 秒末时,棒与导轨所构成的回路中的感应电动势是.tan 2132θt Ba E =答案:θtan 2132t Ba 12.(6分)如图12-13所示,有一闭合的矩形导体框,框上M 、N 两点间连有一电压表,整个装置处于磁感应强度为B 的匀强磁场中,且框面与磁场方向垂直.当整个装置以速度v 向右匀速平动时,M 、N 之间有无电势差?__________(填“有”或“无”),电压表的示数为__________.图12-13解析:当矩形导线框向右平动切割磁感线时,AB 、CD 、MN 均产生感应电动势,其大小均为BLv ,根据右手定则可知,方向均向上.由于三个边切割产生的感应电动势大小相等,方向相同,相当于三个相同的电源并联,回路中没有电流.而电压表是由电流表改装而成的,当电压表中有电流通过时,其指针才会偏转.既然电压表中没有电流通过,其示数应为零.也就是说,M 、N 之间虽有电势差BLv ,但电压表示数为零.答案:有 0三、计算、论述题(共4个题,共48分.解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题答案中必须明确写出数值和单位)13.(10分)如图12-14所示是一种测量通电线圈中磁场的磁感应强度B 的装置,把一个很小的测量线圈A 放在待测处,线圈与测量电荷量的冲击电流计G 串联,当用双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G 测出电荷量Q ,就可以算出线圈所在处的磁感应强度B.已知测量线圈的匝数为N,直径为d ,它和表G 串联电路的总电阻为R ,则被测出的磁感应强度B 为多大?图12-14解析:当双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,根据法拉第电磁感应定律可得:td B N t N E ∆=∆∆Φ=2)2(2π 由欧姆定律和电流的定义得:,t Q R E I ∆==即t RE Q ∆= 联立可解得:.22NdQR B π= 答案:22Nd QR π 14.(12分)如图12-15所示,线圈内有理想边界的磁场,开始时磁场的磁感应强度为B 0.当磁场均匀增加时,有一带电微粒静止于平行板(两板水平放置)电容器中间,若线圈的匝数为n ,平行板电容器的板间距离为d ,粒子的质量为m ,带电荷量为q .(设线圈的面积为S )求:图12-15(1)开始时穿过线圈平面的磁通量的大小.(2)处于平行板电容器间的粒子的带电性质.(3)磁感应强度的变化率.解析:(1)Φ=B 0S.(2)由楞次定律,可判出上板带正电,故推出粒子应带负电. (3),tn E ∆∆Φ=,ΔΦ=ΔB ·S, mg dE q =⋅,联立解得:.nqS mgd t B =∆∆ 答案:(1)B 0S (2)负电 (3)nqS mgd t B =∆∆ 15.(12分)两根光滑的长直金属导轨MN 、M ′N ′平行置于同一水平面内,导轨间距为l ,电阻不计,M 、M ′处接有如图12-16所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C.长度也为l 、阻值同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中.ab 在外力作用下向右匀速运动且与导轨保持良好接触,在ab 运动距离为s 的过程中,整个回路中产生的焦耳热为Q .求:图12-16(1)ab 运动速度v 的大小;(2)电容器所带的电荷量q .解析:本题是电磁感应中的电路问题,ab 切割磁感线产生感应电动势为电源.电动势可由E =Blv 计算.其中v 为所求,再结合闭合(或部分)电路欧姆定律、焦耳定律、电容器及运动学知识列方程可解得.(1)设ab 上产生的感应电动势为E ,回路中的电流为I ,ab 运动距离s 所用时间为t ,三个电阻R 与电源串联,总电阻为4R ,则E=Blv 由闭合电路欧姆定律有RE I 4= vs t = 由焦耳定律有Q =I 2(4R )t 由上述方程得.422s l B QR v =(2)设电容器两极板间的电势差为U ,则有U=IR电容器所带电荷量q =CU 解得.BlsCQR q =答案:(1)s l B QR 224 (2)Bls CQR 16.(14分)如图12-17所示,水平地面上方的H 高区域内有匀强磁场,水平界面PP ′是磁场的上边界,磁感应强度为B ,方向是水平的,垂直于纸面向里.在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R .使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP ′为止.从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q .求:图12-17(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电荷量是多少?(2)线框是从cd 边距边界PP ′多高处开始下落的?(3)线框的cd 边到达地面时线框的速度大小是多少?解析:(1)设线框abcd 进入磁场的过程所用时间为t ,通过线框的平均电流为I ,平均感应电动势为ε,则RI t εε=∆∆Φ=,,ΔΦ=Bl 1l 2 通过导线的某一横截面的电荷量t I q ∆=解得.21Rl Bl q = (2)设线框从cd 边距边界PP ′上方h 高处开始下落,cd 边进入磁场后,切割磁感线,产生感应电流,在安培力作用下做加速度逐渐减小的加速运动,直到安培力等于重力后匀速下落,速度设为v ,匀速过程一直持续到ab 边进入磁场时结束,有ε=Bl 1v ,,R I ε=F A =BIl 1,F A =mg 解得212l B mgR v = 线框的ab 边进入磁场后,线框中没有感应电流.只有在线框进入磁场的过程中有焦耳热Q .线框从开始下落到ab 边刚进入磁场的过程中,线框的重力势能转化为线框的动能和电路中的焦耳热.则有Q mv l h mg +=+2221)(解得.222414414223l l mgB l QB R g m h -+= (3)线框的ab 边进入磁场后,只有重力作用下,加速下落,有)(21212222l H mg mv mv -=- cd 边到达地面时线框的速度.)(224142222l H g l B R g m v -+= 答案:(1)Rl Bl 21 (2)241441422322l l mgB l QB R g m -+ (3))(22414222l H g l B R g m -+。
高三物理 第二轮复习 电磁感应 专题练习试卷(后附答案)
高三物理 第二轮复习 电磁感应 专题练习试卷(后附答案)电磁感应1.如图所示,一导线弯成半径为a 的半圆形闭合回路。
虚线MN 右侧有磁感应强度为B 的匀强磁场。
方向垂直于回路所在的平面。
回路以速度v 向右匀速进入磁场,直径CD 始络与MN 垂直。
从D 点到达边界开始到C点进入磁场为止,下列结论正确的是 A .感应电流方向不变 B .CD 段直线始终不受安培力 C .感应电动势最大值E =Bav D .感应电动势平均值14E Bav =π 2.绕有线圈的铁芯直立在水平桌面上,铁芯上套着一个铝环,线圈与电源、电键相连,如图所示.线圈上端与电源正极相连,闭合电键的瞬间,铝环向上跳起.若保持电键闭合,则 ( )A .铝环不断升高B .铝环停留在某一高度C .铝环跳起到某一高度后将回落D .如果电源的正、负极对调,观察到的现象不变3.如图所示,矩形闭台线圈放置在水平薄板上,有一块蹄形磁铁如图所示置于平板的正下方(磁极间距略大于矩形线圈的宽度)当磁铁匀速向右通过线圈时,线圈仍静止不动,那么线圈受到薄扳的摩擦力方向和线圈中产生感应电流的方向(从上向下看)是( )A .摩擦力方向一直向左B .摩擦力方向先向左、后向或右C .感应电流的方向顺时针→逆时针→逆时针→顺时针D .感应电流的方向顺时针→逆时针4.如图所示,A 为水平放置的橡胶圆盘,在其侧面带有负电荷─Q ,在A 正上方用丝线悬挂一个金属圆环B (丝线未画出),使B 的环面在水平面上与圆盘平行,其轴线与橡胶盘A的轴线O 1O 2重合。
现使橡胶盘A 由静止开始绕其轴线O 1O 2按图中箭头方向加速转动,则( )A .金属圆环B 有扩大半径的趋势,丝线受到拉力增大BB .金属圆环B 有缩小半径的趋势,丝线受到拉力减小C .金属圆环B 有扩大半径的趋势,丝线受到拉力减小D .金属圆环B 有缩小半径的趋势,丝线受到拉力增大5.如图所示,一矩形线框竖直向上进入有水平边界的匀强磁场,磁场方向垂直纸面向里,线框在磁场中运动时只受重力和磁场力,线框平面始终与磁场方向垂直。
高三物理二轮专题复习第10讲 电磁感应
第10讲电磁感应1.(2018·全国卷Ⅰ·17)如图1,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于( )图1A.54B.32C.74D .2 【考点定位】 电磁感应、法拉第电磁感应定律【点评】 应用二级结论:q =n ΔΦR可快速解题,重点是磁通量的计算【难度】 中等 [答案] B[解析] 在过程Ⅰ中,根据法拉第电磁感应定律,有 E 1=ΔΦ1Δt 1=B ⎝⎛⎭⎫12πr 2-14πr 2Δt 1根据闭合电路欧姆定律,有I 1=E 1R 且q 1=I 1Δt 1在过程Ⅱ中,有E 2=ΔΦ2Δt 2=(B ′-B )12πr 2Δt 2I 2=E 2Rq 2=I 2Δt 2又q 1=q 2,即B ⎝⎛⎭⎫12πr 2-14πr 2R =(B ′-B )12πr 2R所以B ′B =32.2.(多选)(2018·全国卷Ⅰ·19)如图2,两个线圈绕在同一根铁芯上,其中一线圈通过开关与电源连接,另一线圈与远处沿南北方向水平放置在纸面内的直导线连接成回路.将一小磁针悬挂在直导线正上方,开关未闭合时小磁针处于静止状态.下列说法正确的是( )图2A .开关闭合后的瞬间,小磁针的N 极朝垂直纸面向里的方向转动B .开关闭合并保持一段时间后,小磁针的N 极指向垂直纸面向里的方向C .开关闭合并保持一段时间后,小磁针的N 极指向垂直纸面向外的方向D .开关闭合并保持一段时间再断开后的瞬间,小磁针的N 极朝垂直纸面向外的方向转动 【考点定位】 互感现象、电磁感应条件、楞次定律、安培定则 【难度】 中等 [答案] AD[解析] 根据安培定则,开关闭合时铁芯中产生水平向右的磁场,开关闭合后的瞬间,根据楞次定律,直导线上将产生由南向北的电流,直导线上方的磁场垂直纸面向里,故小磁针的N 极朝垂直纸面向里的方向转动,A 项正确;开关闭合并保持一段时间后,直导线上没有感应电流,故小磁针的N 极指北,B 、C 项错误;开关闭合并保持一段时间再断开后的瞬间,根据楞次定律,直导线上将产生由北向南的电流,这时直导线上方的磁场垂直纸面向外,故小磁针的N 极朝垂直纸面向外的方向转动,D 项正确.3.(2018·全国卷Ⅱ·18)如图3,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l ,磁感应强度大小相等、方向交替向上向下.一边长为32l 的正方形金属线框在导轨上向左匀速运动.线框中感应电流i 随时间t 变化的正确图线可能是( )图3【考点定位】右手定则、楞次定律、电磁感应图象问题【难度】中等[答案] D[解析]设线框中只有一边切割磁感线时产生的感应电流为i.分析知,只有选项D 符合要求.4.(多选)(2018·全国卷Ⅲ·20)如图4(a),在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧.导线PQ 中通有正弦交流电i ,i 的变化如图(b)所示,规定从Q 到P 为电流正方向.导线框R 中的感应电动势( )图4A .在t =T4时为零B .在t =T2时改变方向C .在t =T2时最大,且沿顺时针方向D .在t =T 时最大,且沿顺时针方向【考点定位】 交变电流图象问题、法拉第电磁感应定律、楞次定律【点评】 由电流变化的图象分析出通过R 的磁通量的变化规律,判断出其斜率大小对应感应电动势大小 【难度】 中等 [答案] AC[解析] 在t =T 4时,交流电图线斜率为0,即磁场变化率为0,由E =ΔΦΔt =ΔBΔt S 知,E =0,A项正确;在t =T 2和t =T 时,图线斜率最大,在t =T2和t =T 时感应电动势最大.在T 4到T2之间,电流由Q 向P 减弱,导线在R 处产生垂直纸面向里的磁场,且磁场减弱,由楞次定律知,R 产生的感应电流的磁场方向也垂直纸面向里,即R 中感应电动势沿顺时针方向,同理可判断在T 2到3T 4时,R 中电动势也为顺时针方向,在34T 到T 时,R 中电动势为逆时针方向,C 项正确,B 、D 项错误.5.(2017·全国卷Ⅰ·18)扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM 的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图5所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及其左右振动的衰减最有效的方案是( )图5【考点定位】电磁阻尼、电磁感应条件【点评】与科学仪器结合、情景新颖【难度】较易[答案] A6.(2016·全国卷Ⅲ·25)如图6所示,两条相距l的光滑平行金属导轨位于同一水平面(纸面)内,其左端接一阻值为R的电阻;一与导轨垂直的金属棒置于两导轨上;在电阻、导轨和金属棒中间有一面积为S的区域,区域中存在垂直于纸面向里的均匀磁场,磁感应强度大小B1随时间t的变化关系为B1=kt,式中k为常量;在金属棒右侧还有一匀强磁场区域,区域左边界MN(虚线)与导轨垂直,磁场的磁感应强度大小为B0,方向也垂直于纸面向里.某时刻,金属棒在一外加水平恒力的作用下从静止开始向右运动,在t0时刻恰好以速度v0越过MN,此后向右做匀速运动.金属棒与导轨始终相互垂直并接触良好,它们的电阻均忽略不计.求:图6(1)在t =0到t =t 0时间间隔内,流过电阻的电荷量的绝对值;(2)在时刻t (t >t 0)穿过回路的总磁通量和金属棒所受外加水平恒力的大小. 【考点定位】 法拉第电磁感应定律、磁通量的计算【点评】 虽然是双电源问题,但题目引导学生从总磁通量的变化角度去解题 【难度】 中等 [答案] (1)kt 0SR(2)B 0l v 0(t -t 0)+kSt (B 0l v 0+kS )B 0lR[解析] (1)在金属棒未越过MN 之前,穿过回路的磁通量的变化量为ΔΦ=ΔBS =k ΔtS ① 由法拉第电磁感应定律有E =ΔΦΔt ②由欧姆定律得i =ER ③由电流的定义得i =ΔqΔt ④联立①②③④式得|Δq |=kSRΔt ⑤由⑤式得,在t =0到t =t 0的时间间隔内即Δt =t 0,流过电阻R 的电荷量q 的绝对值为|q |=kt 0SR⑥(2)当t >t 0时,金属棒已越过MN .由于金属棒在MN 右侧做匀速运动,有F =F 安⑦式中,F 是外加水平恒力,F 安是金属棒受到的安培力.设此时回路中的电流为I ,F 安=B 0lI ⑧ 此时金属棒与MN 之间的距离为s =v 0(t -t 0)⑨ 匀强磁场穿过回路的磁通量为Φ′=B 0ls ⑩ 回路的总磁通量为Φt =Φ+Φ′⑪ 其中Φ=B 1S =ktS ⑫由⑨⑩⑪⑫式得,在时刻t (t >t 0),穿过回路的总磁通量为Φt =B 0l v 0(t -t 0)+kSt ⑬ 在t 到t +Δt 的时间间隔内,总磁通量的改变量ΔΦt 为 ΔΦt =(B 0l v 0+kS )Δt ⑭由法拉第电磁感应定律得,回路感应电动势的大小为 E t =ΔΦt Δt⑮由欧姆定律得I =E tR⑯联立⑦⑧⑭⑮⑯式得,F =(B 0l v 0+kS )B 0lR.选择题中的考查重点在于产生感应电流的条件、楞次定律、右手定则、法拉第电磁感应定律的基本应用,往往结合图象、电路、历史中的著名实验、现代科技中的应用等创设新情景,总体难度不大.计算题在2013全国卷Ⅰ、2014全国卷Ⅱ、2016全国卷Ⅰ、Ⅱ、Ⅲ等年份出现过,一般考查电磁感应定律的应用,与力学问题结合时一般是匀速或静止时的平衡问题,较简单. 2013年的与电容器充电过程相结合较难,除外考点1 楞次定律与电磁感应定律的应用1.楞次定律中“阻碍”的主要表现形式 (1)阻碍原磁通量的变化——“增反减同”; (2)阻碍相对运动——“来拒去留”;(3)使线圈面积有扩大或缩小的趋势——“增缩减扩”; (4)阻碍原电流的变化(自感现象)——“增反减同”. (5)感应电流产生的“结果”阻碍引起感应电流的“原因”. 2.求感应电动势大小的五种类型 (1)磁通量变化型:E =n ΔΦΔt .(2)磁感应强度变化型:E =nS ΔBΔt .(3)面积变化型:E =nB ΔSΔt .(4)平动切割型:E =Bl v (v ⊥B ). (5)转动切割型:E =12Bl 2ω.注意:公式E =nS ΔB Δt 中的ΔBΔt 等于B -t 图象的斜率.3.电磁感应现象中的电源与电路(1)产生感应电动势的那部分导体相当于电源. (2)在电源内部电流由负极流向正极.(3)电源两端的电压为路端电压.(多选)(2018·湖南省常德市期末检测)2017年9月13日,苹果在乔布斯剧院正式发布旗下三款iPhone新机型,除了常规的硬件升级外,三款iPhone还支持快充和无线充电.图7甲为兴趣小组制作的无线充电装置中的受电线圈示意图,已知线圈匝数n=100、电阻r=1 Ω、横截面积S=1.5×10-3m2,外接电阻R=7 Ω.线圈处在平行于线圈轴线的匀强磁场中,磁场的磁感应强度随时间变化如图乙所示,则()图7A.在t=0.01 s时通过R的电流发生改变B.在t=0.01 s时线圈中的感应电动势E=0.6 VC.在0~0.02 s内通过电阻R的电荷量q=1.5×10-3 CD.在0.02~0.03 s内R产生的焦耳热为Q=1.8×10-3 J[答案]BC[解析]根据楞次定律可知,在0~0.01 s内电流方向和在0.01~0.02 s内电流方向相同,故A 错误;根据法拉第电磁感应定律可知: E =n ΔΦΔt =n ΔBS Δt =100×4×1.5×10-3 V =0.6 V ,故B 正确;在0~0.02 s 内,产生的感应电流为 I =E R +r =0.67+1A =0.075 A , 电荷量为q =It =0.075×0.02 C =1.5×10-3 C , 故C 正确;在0.02~0.03 s 内,产生的感应电动势为E ′=n ΔΦ′Δt =n ΔB ′SΔt =100×8×1.5×10-3 V =1.2 V ,产生的感应电流为I ′=E ′R +r =1.27+1A =0.15 A ,R 上产生的焦耳热为Q =I ′2Rt =0.152×7×0.01 J =1.575×10-3 J ,故D 错误.(多选)(2018·江西省仿真模拟)如图8甲,螺线管内有平行于轴线的外加匀强磁场,以图中箭头所示方向为其正方向.螺线管与导线框abcd 相连,导线框内有一小金属圆环L ,圆环与导线框在同一平面内.当螺线管内的磁感应强度B 随时间按图乙所示规律变化时( )图8A.在t1~t2时间内,L有收缩趋势B.在t2~t3时间内,L有扩张趋势C.在t2~t3时间内,L内有逆时针方向的感应电流D.在t3~t4时间内,L内有顺时针方向的感应电流[答案]AD[解析]据题意,在t1~t2时间内,外加磁场磁感应强度增加且图线切线的斜率在增加,则在导线框中产生沿顺时针方向增加的电流,该电流产生增加的磁场,该磁场通过圆环,在圆环内产生感应电流,根据结论“增缩减扩”可以判定圆环有收缩趋势,故选项A正确;在t2~t3时间内,外加磁场均匀变化,在导线框中产生稳定电流,该电流产生稳定磁场,该磁场通过圆环时,圆环中没有感应电流,故选项B、C错误;在t3~t4时间内,外加磁场向下减小,且图线切线的斜率也减小,在导线框中产生沿顺时针方向减小的电流,该电流激发出向内减小的磁场,故圆环内产生顺时针方向的感应电流,选项D正确.1.(多选)(2018·湖北省武汉市调研)如图9甲所示,在足够长的光滑的斜面上放置着金属线框,垂直于斜面方向的匀强磁场的磁感应强度B随时间的变化规律如图乙所示(规定垂直斜面向上为正方向).t=0时刻将线框由静止释放,在线框下滑的过程中,下列说法正确的是()图9A.线框中产生大小、方向周期性变化的电流B.MN边受到的安培力先减小后增大C.线框做匀加速直线运动D.线框中产生的焦耳热等于其机械能的损失[答案]BC[解析]穿过线框的磁通量先向下减小,后向上增加,则根据楞次定律可知,感应电流方向不变,选项A错误;因B的变化率不变,则感应电动势不变,感应电流不变,而B的大小先减小后增加,根据F=BIL可知,MN边受到的安培力先减小后增大,选项B正确;因线框平行的两边电流等大反向,则整个线框受的安培力为零,则线框下滑的加速度不变,线框做匀加速直线运动,选项C正确;因安培力对线框做功为零,斜面光滑,则线框的机械能守恒,选项D错误.2.(2018·闽粤期末大联考)如图10所示,Ⅰ和Ⅱ是一对异名磁极,ab为放在其间的金属棒,ab和cd用导线连成一个闭合回路,当ab棒向左运动时,cd棒受到向下的磁场力.则有()图10A.由此可知d电势高于c电势B.由此可知Ⅰ是S极C.由此可知Ⅰ是N极D.当cd棒向下运动时,ab棒不受到向左的磁场力[答案] B[解析]cd棒受到的安培力向下,由左手定则可知,cd棒中电流方向是:由c指向d,所以c 点的电势高于d点的电势,故A错误;ab中的电流由b流向a,ab棒向左运动时,由右手定则可知,ab棒所处位置磁场方向竖直向上,则Ⅰ是S极,Ⅱ是N极,故B正确,C错误;当cd棒向下运动时,ab棒中电流方向由a流向b,故ab棒受到向左的磁场力,故D错误.考点2电磁感应中的图象问题1.磁场变化产生感应电动势或感应电流时一般由B-t图象或Φ-t图象,判断I-t或E-t关系(1)注意正方向的规定.(2)B-t图象、Φ-t图象的斜率不变时,E、I大小方向不变;反之电流、电动势恒定时,B(Φ)随时间均匀变化.(3)安培力大小与B、I、L有关,当I、L不变,B随时间均匀变化时安培力随时间均匀变化.2.导体棒、线框切割磁感线时有效切割长度:导体首尾连线在垂直磁场、垂直切割速度方向上的投影长度.(多选)(2018·江西师范大学附中三模)如图11所示,abcd为一边长为l的正方形导线框,导线框位于光滑水平面内,其右侧为一匀强磁场区域,磁场的边界与线框的cd边平行,磁场区域的宽度为2l,磁感应强度为B,方向竖直向下.线框在一垂直于cd边的水平恒定拉力F作用下沿水平方向向右运动,直至通过磁场区域.cd边刚进入磁场时,线框开始匀速运动,规定线框中电流沿逆时针时方向为正,则导线框从刚进入磁场到完全离开磁场的过程中,a、b两端的电压U ab及导线框中的电流i随cd 边的位移x变化的图线可能是()图11[答案]BD[解析]线框的cd边刚进入磁场时做匀速运动,则整个线框进入磁场时速度不变,根据楞次定律知产生逆时针方向的电流,为正方向,电动势大小E=Bl v,此时ab两端的电压为U ab=14Bl v,当线框全部进入磁场时,线框内无感应电流,此时线框做匀加速运动,ab两端的电压为U ab=Bl(v+at),线框cd边刚出磁场后的瞬间,ab两端的电压为cd边即将出磁场前瞬,且逐渐减小,对比图象可知,A错误,B正确;当线圈的cd边出磁场时,间ab两端电压的34电流为顺时针方向,由于此时安培力大于外力F,故此时线框做减速运动,且加速度逐渐减小,电流-位移图象切线的斜率减小,逐渐趋近于开始进入磁场时的电流大小,C错误,D 正确.(多选)(2018·福建省厦门市质检)如图12所示,在倾角为θ的光滑斜面上,存在着磁感应强度大小为B的匀强磁场,磁场方向垂直斜面向上,磁场的宽度为2L.一边长为L的正方形导线框,由静止开始沿斜面下滑,当ab边刚越过GH进入磁场瞬间和刚越过MN穿出磁场瞬间速度刚好相等.从ab边刚越过GH处开始计时,规定沿斜面向上为安培力的正方向,则线框运动的速率v与线框所受安培力F随时间变化的图线中,可能正确的是()图12[答案] AC[解析] 根据楞次定律可得线框进入磁场的过程中电流方向为顺时针;根据法拉第电磁感应定律可得感应电动势E =BL v ,感应电流I =BL v R ,产生的安培力大小为F =BIL =B 2L 2v R,随速度变化而变化,ab 边刚越过GH 进入磁场瞬间和刚越过MN 穿出磁场瞬间速度刚好相等,可能的运动情况有两种,一是进磁场时匀速,完全进入磁场后做匀加速直线运动,但出磁场过程中,做加速度逐渐减小的减速运动,二是进磁场时做加速度逐渐减小的减速运动,完全进入磁场后做匀加速运动,出磁场时做加速度逐渐减小的减速运动,结合图象知A 正确,B 错误;根据左手定则可得线框进入磁场的过程中安培力方向沿斜面向上,为正,且F =BIL =B 2L 2v R,线框完全进入磁场后,线框所受安培力为零;出磁场的过程中安培力方向沿斜面向上,且出磁场时的安培力可能等于进入磁场时的安培力,所以C 正确,D 错误.3.(2018·河北省张家口市上学期期末)一正三角形导线框ABC(高为a)从如图13所示的位置沿x轴正方向匀速穿过两匀强磁场区域.两磁场区域磁感应强度大小均为B、磁场方向相反且均垂直于平面、宽度均为a.则感应电流I与线框移动距离x的关系图线可能是(以逆时针方向为感应电流的正方向)()图13[答案] C[解析]当线框移动距离x在0~a范围,线框穿过左侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值,故B错误;当线框移动距离x在a~2a范围,线框穿过两磁场分界线时,三角形导线框左侧在左边磁场中切割磁感线,有效切割长度逐渐增大,产生的感应电动势E1增大,三角形导线框右侧在右边磁场中切割磁感线,产生的感应电动势E2增大,两个电动势方向一致,总电动势E=E1+E2增大,感应电流增大,故A错误;当线框移动距离x 在2a~3a范围,线框穿过右侧磁场时,根据楞次定律,感应电流方向为逆时针,为正值,故C正确,D错误.考点3 电磁感应中的动力学与能量问题1.电磁感应与动力学综合题的解题策略(1)做好电路分析,明确电源与外电路,可画等效电路图.(2)做好受力分析,把握安培力的特点,安培力大小与导体棒速度有关,一般在牛顿第二定律方程里讨论,v 的变化影响安培力大小,进而影响加速度大小,加速度的变化又会影响v 的变化.(3)做好运动过程分析:注意导体棒进入磁场或离开磁场时的速度是否达到“收尾速度”.2.电磁感应中能量的三种求解方法(1)利用克服安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功. 其他形式的能量――――――→克服安培力做功电能――――→电流做功焦耳热或其他形式的能量(2)利用能量守恒定律求解:若只有电能和机械能参与转化,则机械能的减少量等于产生的电能.(3)利用电路的相关公式——电功公式或电热公式求解:若通过电阻的电流是恒定的或电流的有效值已知,则可直接利用电功公式或焦耳定律求解焦耳热.特别提醒:注意区分回路中某个元件的焦耳热和回路总焦耳热,不能混淆. (2018·河北省张家口市上学期期末)如图14所示,两根半径为r 的四分之一圆弧轨道间距为L ,其顶端a 、b 与圆心处等高,轨道光滑且电阻不计,在其上端连有一阻值为R 的电阻,整个装置处于辐向磁场中,圆弧轨道所在处的磁感应强度大小均为B .将一根长度稍大于L 、质量为m 、电阻为R 0的金属棒从轨道顶端ab 处由静止释放.已知当金属棒到达图示的cd 位置(金属棒与轨道圆心连线和水平面夹角为θ)时,金属棒的速度达到最大;当金属棒到达轨道底端ef 时,对轨道的压力为1.5mg .求:图14(1)当金属棒的速度最大时,流经电阻R 的电流大小和方向;(2)金属棒滑到轨道底端的整个过程中流经电阻R 的电荷量.(3)金属棒滑到轨道底端的整个过程中电阻R 上产生的热量.[答案] (1)mg cos θBL电流方向为a →R →b (2)BL πr 2(R +R 0) (3)3mgrR 4(R +R 0)[解析] (1)金属棒速度最大时,在轨道切线方向所受合力为0,则有:mg cos θ=BIL解得:I =mg cos θBL,流经R 的电流方向为a →R →b . (2)金属棒滑到轨道底端的整个过程中,穿过回路的磁通量变化量为:ΔΦ=BS =BL ·πr 2=BL πr 2平均电动势为:E =ΔΦΔt ,平均电流为:I =E R +R 0则流经电阻R 的电荷量:q =I Δt =ΔΦR +R 0=BL πr 2(R +R 0)(3)在轨道底端时,由牛顿第二定律得:F N -mg =m v 2r据题有:F N =1.5mg由能量转化和守恒得:Q=mgr-12m v2=34mgr电阻R上产生的热量为:Q R=RR+R0Q=3mgrR4(R+R0).(2018·广东省广州市4月模拟)如图15,两条间距L=0.5 m且足够长的平行光滑金属直导轨,与水平地面成α=30°角固定放置,磁感应强度B=0.4 T的匀强磁场方向垂直导轨所在的斜面向上,质量m ab=0.1 kg、m cd=0.2 kg 的金属棒ab、cd垂直导轨放在导轨上,两金属棒的总电阻r=0.2 Ω,导轨电阻不计.ab在沿导轨所在斜面向上的外力F作用下,沿该斜面以v=2 m/s的恒定速度向上运动.某时刻释放cd,cd向下运动,经过一段时间其速度达到最大.已知重力加速度g=10 m/s2,求在cd 速度最大时,图15(1)abdc回路的电流强度I以及F的大小;(2)abdc回路磁通量的变化率以及cd的速率.[答案](1)5 A 1.5 N (2)1.0 Wb/s 3 m/s[解析](1)以cd为研究对象,当cd速度达到最大时,有:m cd g sin α=BIL①代入数据得:I=5 A由于两棒均沿导轨所在斜面方向做匀速运动,可将两棒看作整体,作用在ab上的外力:F=(m ab+m cd)g sin α②(或对ab:F=m ab g sin α+BIL)代入数据得:F=1.5 N(2)设cd达到最大速度时abdc回路产生的感应电动势为E,根据法拉第电磁感应定律有:E=ΔΦΔt③由闭合电路欧姆定律有:I=Er④联立③④并代入数据得:ΔΦ=1.0 Wb/sΔt设cd的最大速率为v m,cd达到最大速度后的一小段时间Δt内,abdc回路磁通量的变化量:ΔΦ=B·ΔS=BL(v m+v)·Δt⑤回路磁通量的变化率:ΔΦ=BL(v m+v)⑥Δt联立⑤⑥并代入数据得:v m=3 m/s.4.(多选)(2018·广东省茂名市第二次模拟)如图16甲所示,一粗细均匀的单匝正方形铜线框,质量m =1 kg ,放置在光滑绝缘水平面上,两平行虚线间存在与水平面垂直的匀强磁场,磁场边界线与线框ab 边平行.现用垂直于ab 边的水平恒力F 拉动线框,线框到达位置Ⅰ时开始计时,此时线框开始进入匀强磁场,速度v 0=3 m/s ,线框中感应电动势为2 V .在t =3 s 时线框到达位置Ⅱ,线框开始离开匀强磁场,此过程中线框v -t 图象如图乙所示,那么( )图16A .t =0时,ab 间的电压为0.75 VB .恒力F 的大小为0.5 NC .线框进入磁场与离开磁场的过程中线框内感应电流的方向相同D .线框完全离开磁场瞬间的速度大小为2 m/s[答案] BD[解析] t =0时,ab 相当于电源,外电阻为内阻的3倍,ab 间电压应为电动势的34,即U ab =34E =34×2 V =1.5 V ,A 错误;线框进入磁场过程中,穿过线框的磁通量增加,而线框离开磁场过程中,穿过线框的磁通量减小,根据楞次定律可知两个过程中产生的感应电流方向相反,当线框完全进入磁场到刚要穿出磁场过程,即1~3 s 过程中,由于穿过线框的磁通量不变,所以没有感应电流,不受安培力作用,外力F 即为线圈受到的合力,根据牛顿第二定律可得F =ma =1×3-22N =0.5 N ,B 正确,C 错误;因为线框刚要离开磁场时的速度和线框开始进入磁场时速度相等,所以受力情况、运动情况相同,线框刚离开磁场瞬间的速度和刚进入磁场瞬间的速度相等,即为2 m/s ,D 正确.5.(多选)(2018·河南省郑州市第二次质量预测)如图17,MN 和PQ 是电阻不计的平行金属导轨,其间距为L ,导轨弯曲部分光滑,平直部分粗糙,固定在水平面上,右端接一个阻值为R 的定值电阻,平直部分导轨左边区域有宽度为d 、方向竖直向上、磁感应强度大小为B 的匀强磁场,质量为m 、电阻也为R 的金属棒从高为h 处由静止释放,到达磁场右边界处恰好停止.已知金属棒与平直部分导轨间的动摩擦因数为μ,金属棒与导轨间接触良好,则金属棒穿过磁场区域的过程中(重力加速度为g )( )图17A .金属棒中的最大电流为Bd 2gh 2RB .金属棒克服安培力做的功为mghC .通过金属棒的电荷量为BdL 2RD .金属棒产生的电热为12mg (h -μd ) [答案] CD[解析] 金属棒下滑过程中,根据动能定理得:mgh =12m v 2,金属棒到达磁场左边界时的速度为v =2gh ,金属棒到达磁场左边界后做减速运动,刚到达磁场左边界时的速度最大,最大感应电动势E =BL v ,则最大感应电流为:I =E R +R =BL 2gh 2R ,故A 错误;金属棒在整个运动过程中,由动能定理得:mgh -W B -μmgd =0-0,克服安培力做的功:W B =mgh -μmgd ,故B 错误;通过金属棒的电荷量为:q =I Δt =ΔΦ2R =BLd 2R,故C 正确;克服安培力做的功转化为焦耳热,电阻与金属棒电阻相等,通过它们的电流相等,则金属棒产生的焦耳热:Q R =12Q =12W B =12mg (h -μd ),故D 正确. 考点4 电磁感应与动量结合的问题(2018·山东省淄博市模拟)如图18所示,一个质量为m 、电阻不计、足够长的光滑U 形金属框架MNQP ,位于光滑绝缘水平桌面上,平行导轨MN 和PQ 相距为L .空间存在着足够大的方向竖直向下的匀强磁场,磁感应强度的大小为B .另有质量也为m 的金属棒CD ,垂直于MN 放置在导轨上,并用一根绝缘细线系在定点A .已知,细线能承受的最大拉力为F T0,CD 棒接入导轨间的有效电阻为R .现从t =0时刻开始对U 形框架施加水平向右的拉力,使其从静止开始做加速度为a 的匀加速直线运动.图18(1)求从框架开始运动到细线断裂所需的时间t 0及细线断裂时框架的瞬时速度v 0大小;。
高考物理二轮复习第讲电磁感应专题训练.docx
第13讲电磁感应一、选择题(每小题6分,共36分)1.(2018湖北宜昌元月调研)一种早期发电机原理示意图如图所示,该发电机由固定的圆形线圈和一对用铁芯连接的圆柱形磁铁构成,两磁极相对于线圈平面对称,线圈圆心为O点。
在磁极绕转轴匀速转动的过程中,当磁极与O点在同一条直线上时,穿过线圈的( )A.磁通量最大,磁通量变化率最大B.磁通量最大,磁通量变化率最小C.磁通量最小,磁通量变化率最大D.磁通量最小,磁通量变化率最小2.(2018辽宁大连双基,8)如图所示,线圈L的自感系数很大,且其电阻可以忽略不计,L1、L2是两个完全相同的灯泡,随着开关S闭合和断开(灯丝不会断),灯L1、L2亮度的变化情况是( )A.S闭合,L1不亮,L2亮度逐渐变亮,最后两灯一样亮B.S闭合,L1、L2同时亮,而后L1逐渐熄灭,L2则逐渐变得更亮C.S断开,L1、L2立即不亮D.S断开,L1、L2都会亮一下再熄灭3.(2018安徽六校二联)(多选)如图所示,光滑水平面上存在有界匀强磁场,磁感应强度为B,质量为m、边长为a的正方形线框ABCD斜向右上方穿进磁场,当AC刚进入磁场时,线框的速度为v,方向与磁场边界成45°角,若线框的总电阻为R,则( )A.线框穿进磁场过程中,线框中电流的方向为DCBADB.AC刚进入磁场时线框中感应电流为2BavRC.AC刚进入磁场时线框所受安培力为2B2a2vRD.此时CD两端电压为34Bav4.(2018河南豫南九校联盟第一次联考)(多选)如图所示,足够长的U形光滑金属导轨平面与水平面成θ角(0<θ<90°),其中MN与PQ平行且间距为L,导轨平面与磁感应强度为B的匀强磁场垂直,导轨电阻不计。
金属棒ab由静止开始沿导轨下滑,并与两导轨始终保持垂直且良好接触,金属棒ab接入电路的电阻为R,当流过金属棒ab某一横截面的电量为q时,金属棒ab的速度大小为v,则金属棒ab在这一过程中( )A.运动的平均速度大于12vB.受到的最大安培力大小为B2L2vR sin θC.下滑的位移大小为qRBLD.产生的焦耳热为qBLv5.(2018宁夏银川唐徕回民中学等三校三模,7)(多选)如图甲所示,光滑的平行金属导轨AB、CD竖直放置,AB、CD相距L,在B、C间接一个阻值为R的电阻;在两导轨间的abcd矩形区域内有垂直导轨平面向外、高度为5h的有界匀强磁场,磁感应强度为B。
2023届高考物理二轮专题复习:电磁感应+电容+试题
电磁感应之电容模型模型1无外力充电式(电容器+单棒)例1 两条相互平行的光滑水平金属导轨,电阻不计,匀强磁场垂直导轨平面向上,磁感应强度为B 。
电容器的电容为C ,击穿电压足够大,开始时电容器不带电。
棒ab 长为L ,质量为m ,电阻为R , 初速度为v 0,金属棒运动时,金属棒与导轨始终垂直且接触良好。
(1) 请分析电容器的工作状态,导体棒的运动情况,若导轨足够长,求导体棒最终的速度。
(2) 若电容器储存的电能满足 212E CU ,忽略电磁辐射损失,求导体棒ab 在整个过程中产生的焦耳热。
模型2.放电式(电容器+单棒)例2 两条相互平行的光滑水平金属导轨,电阻不计,匀强磁场垂直导轨平面向上,磁感应强度为B 。
棒ab 长为L ,质量为m ,电阻为R ,静止在导轨上。
电容器的电容为C ,先给电容器充电,带电量为Q ,再接通电容器与导体棒。
金属棒运动时,金属棒与导轨始终垂直且接触良好。
请分析电容器的工作状态,导体棒的运动情况,若导轨足够长,求导体棒最终的速度。
模型3.有恒力的充电式电容器例3. 水平金属导轨光滑,电阻不计,匀强磁场与导轨垂直,磁感应强度为B 。
棒ab 长为L ,质量为m ,电阻为R ,初速度为零,在恒力F 作用下向右运动。
电容器的电容为C ,击穿电压足够大,开始时电容器不带电。
请分析导体棒的运动情况。
4.模型迁移:(分析方法完全相同,尝试分析吧!)(1)导轨不光滑(2)恒力的提供方式不同,如导轨变成竖直放置或倾斜放置等(3) 电路结构变化1. ( 2017年天津卷12题)电磁轨道炮利用电流和磁场的作用使炮弹获得超高速度,其原理可用来研制新武器和航天运载器。
电磁轨道炮示意如图,图中直流电源电动势为E ,电容器的电容为C 。
两根固定于水平面内的光滑平行金属导轨间距为l ,电阻不计。
炮弹可视为一质量为m 、电阻为R 的金属棒MN ,垂直放在两导轨间处于静止状态,并与导轨良好接触。
首先开关S 接1,使电容器完全充电。
(广东版)高三物理第二轮专题复习(专家概述+解题思路与方法+专题测试)专题十 电磁感应与力学综合[0
专题十电磁感应与力学综合【专家概述】本专题的重点和难点内容1、能量守恒定律、动量守恒定律、法拉第电磁感应定律、全电路欧姆定律、牛顿运动定律、万有引力定律、胡克定律2、动量定理、动能定理、运动公式、滑动摩擦力公式、其它物理量的定义及公式(如电场力、安培力、洛仑兹力等)本专题的解题思路与方法1、处理单体运动问题时,确定研究对象(如质点、杆等),受力分析(通电导线涉及法拉第电磁感应定律、全电路欧姆定律、安培力公式;带电粒子在电场、磁场中运动涉及电场力公式、洛仑兹力公式),建立直角坐标系,根据能量守恒定律、动量定理、动能定理、牛顿第二定律分别在x轴方向、y轴方向建立方程2、处理双体运动问题时(如碰撞、爆炸等),确定研究系统(如两质点、两杆等),受力分析,建立直角坐标系,根据动量守恒定律沿运动方向建立方程3、根据已知条件或几何关系建立方程,联立以上方程组解出结果,判断结果的合理性。
【经典例说】例1 (湛江调研)如下图,在磁感应强度B=1.2T的匀强磁场中,让导体PQ在U型导轨υ=10m/s向右匀速滑动,两导轨间距离L=0.5m,那么产生的感应电动势的大小和PQ 上以速度中的电流方向分别为()A.0.6V,由P向QB.0.6V,由Q向PC.6V,由P向QD.6V,由Q向P答案:D分析:PQ在外力作用下匀速向右运动,切割磁感线,产生感应电动势、感应电流。
E==6V,根据楞次定律判断出感应电流方向为QPaRd,选项D正确。
解:BLv小结:求感应电动势用法拉第电磁感应定律,求感应电流方向用楞次定律,此题用“增反减同”要快一些。
变式训练 1.(茂名一模)如下图,光滑的“U ”形金属框架静止在水平面上,处于竖直向下的匀强磁场中.现使ab 棒突然获得一初速度V 向右运动,以下说法正确的选项是( )A .ab 做匀减速运动B .回路中电流均匀减小C .a 点电势比b 点电势低D .U 形框向右运动2.(江苏高考)如下图,水平面内有一平行金属导轨,导轨光滑且电阻不计.匀强磁场与导轨平面垂直.阻值为R 的导体棒垂直于导轨静止放置,且与导轨接触.T=0时,将开关S 由1掷到2.q 、i 、v 和a 分别表示电容器所带的电荷量、棒中的电流、棒的速度和加速度.以下图象正确的选项是( )例2 (东莞上末)如下图,质量为M 的金属棒P 在离地h 高处从静止开场沿弧形金属平行导轨MN 、M ′N ′下滑.水平轨道所在的空间有竖直向上的匀强磁场,磁感应强度为B 、水平导轨上原来放有质量为m 的金属杆Q.已知两金属棒的电阻均为r.导轨宽度为L ,且足够长,不计导轨的摩擦及电阻.求:(1)两金属棒的最大速度分别为多少?(2)P 棒两端的最大感应电动势及所受最大安培力分别是多少? (3)在两棒运动过程中释放出的热量是多少?分析:P 棒下落,不切割磁感线,没有电动势产生,重力势能转化为动能。
2019-2020年高三物理二轮复习 专题限时练10 第1部分 专题10 电磁感应规律及其应用
2019-2020年高三物理二轮复习 专题限时练10 第1部分 专题10 电磁感应规律及其应用一、选择题(本题共8小题,每小题6分.在每小题给出的四个选项中,第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求.全部选对的得6分,选对但不全的得3分,有错选的得0分)1.如图1014所示,矩形导线环水平放置,O 是矩形两组对边中点连线ab 、cd 的交点,在线ab 上右侧放有垂直环面的通电导线,电流方向垂直纸面向外,则能使导线环中产生感应电流的是( )图1014A .突然加大通电直导线中的电流B .让导线环在纸面内绕O 点沿顺时针转动C .让导线环以ab 为轴转动D .让导线环沿ab 方向向直导线靠近2.(xx·安徽高考)如图1015所示,abcd 为水平放置的平行“”形光滑金属导轨,间距为l ,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B ,导轨电阻不计,已知金属杆MN 倾斜放置,与导轨成θ角,单位长度的电阻为r ,保持金属杆以速度v 沿平行于cd 的方向滑动(金属杆滑动过程中与导轨接触良好).则( )图1015A .电路中感应电动势的大小为Blv sin θB .电路中感应电流的大小为Bv sin θrC .金属杆所受安培力的大小为B 2lv sin θrD .金属杆的热功率为B 2lv 2r sin θ3.(xx·重庆高考)图1016为无线充电技术中使用的受电线圈示意图,线圈匝数为n ,面积为S .若在t 1到t 2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B 1均匀增加到B 2,则该段时间线圈两端a 和b 之间的电势差φa -φb ( )图1016A .恒为nS (B 2-B 1)t 2-t 1B .从0均匀变化到nS (B 2-B 1)t 2-t 1 C .恒为-nS (B 2-B 1)t 2-t 1D .从0均匀变化到-nS (B 2-B 1)t 2-t 1 4.(xx·江苏高考)如图1017所示,用天平测量匀强磁场的磁感应强度.下列各选项所示的载流线圈匝数相同,边长MN 相等,将它们分别挂在天平的右臂下方.线圈中通有大小相同的电流,天平处于平衡状态.若磁场发生微小变化,天平最容易失去平衡的是( )图10175.如图1018所示,间距为d =0.75 m 的两虚线间存在垂直纸面向里的匀强磁场,磁感应强度B =0.5 T ,质量m =0.1 kg 、长s =0.75 m 、宽L =0.2 m 的矩形金属框总电阻R =0.1 Ω,t =0时金属框自左边虚线以速度v 0=1 m/s 垂直进入磁场,在外力F 的作用下,以加速度a =2 m/s 2向右做匀加速直线运动,当线框刚要出磁场时又以等大加速度向右做匀减速直线运动直到速度减为零,规定向右为外力F 的正方向,则下列关于外力F 随时间变化的图象正确的是( )图10186.(xx·山东高考)如图1019所示,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是( )图1019A .处于磁场中的圆盘部分,靠近圆心处电势高B .所加磁场越强越易使圆盘停止转动C .若所加磁场反向,圆盘将加速转动D .若所加磁场穿过整个圆盘,圆盘将匀速转动7.(xx·上海模拟)如图1020甲,固定在光滑水平面上的正三角形金属线框,匝数n =20,总电阻R =2.5 Ω,边长L =0.3 m ,处在两个半径均为r =L 3的圆形匀强磁场区域中.线框顶点与右侧圆中心重合,线框底边中点与左侧圆中心重合.磁感应强度B 1垂直水平面向外,大小不变;B 2垂直水平面向里,大小随时间变化,B 1、B 2的值如图乙所示,则( )图1020A.通过线框中感应电流方向为逆时针方向B.t=0时刻穿过线框的磁通量为0.1 WbC.在0.6 s内通过线框中的电荷量为0.13 CD.经过0.6 s线框中产生的热量为0.07 J8.如图1021所示,竖直虚线MN两侧存在垂直纸面向里的匀强磁场,两磁场的磁感应强度相等,上边界在同一水平线上,区域Ⅰ磁场高3L,区域Ⅱ磁场高L,两个完全相同的正方形线圈位于竖直平面内,边长为L,质量为m、电阻为R、底边始终与磁场上边界平行,现让线圈1从磁场上方高4L处、线圈2从磁场上方一定高度处均由静止释放,结果发现线圈1刚进入磁场时的速度与刚到达磁场下边界时的速度相等,线圈2刚好能匀速通过磁场且穿过磁场时的速度与线圈1刚好完全进入磁场时的速度相等,则下列说法中正确的是( )图1021A.两线圈在进入磁场过程中产生逆时针方向的感应电流B.线圈2开始下落时距磁场上边界高LC.线圈1在进入磁场过程中产生的热量是2mgLD.匀强磁场的磁感应强度大小为mgRL·44gL二、计算题(本题共2小题,共计32分.解答过程要有必要的文字说明和解题步骤)9.(12分)(xx·海南高考)如图1022所示,两平行金属导轨位于同一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下.一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好.已知导体棒与导轨间的动摩擦因数为μ,重力加速度大小为g,导轨和导体棒的电阻均可忽略.求:图1022(1)电阻R消耗的功率;(2)水平外力的大小.10.(20分)(xx·广东高考)如图1023(a)所示,平行长直金属导轨水平放置,间距L =0.4 m.导轨右端接有阻值R=1 Ω的电阻.导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域abcd内有方向竖直向下的匀强磁场,bd连线与导轨垂直,长度也为L.从0时刻开始,磁感应强度B的大小随时间t变化,规律如图1023(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1 s后刚好进入磁场,若使棒在导轨上始终以速度v=1 m/s做直线运动,求:(1)棒进入磁场前,回路中的电动势E;(2)棒在运动过程中受到的最大安培力F,以及棒通过三角形abd区域时电流i与时间t 的关系式.图1023【详解答案】1.C 由安培定则知通电直导线电流磁场是以直导线为圆心与纸面平行的一簇同心圆,突然加大通电直导线中的电流、让导线环在纸面内绕O 点顺时针转动、让导线环沿ab 方向向直导线靠近时,穿过导线环的磁通量都为零,不发生变化,不会产生感应电流,A 、B 、D 错误;让导线环以ab 为轴转动,穿过导线环的磁通量会从无到有,发生变化,环中会产生感应电流,C 正确.2.B 金属杆的运动方向与金属杆不垂直,电路中感应电动势的大小为E =Blv (l 为切割磁感线的有效长度),选项A 错误;电路中感应电流的大小为I =E R =Blv l sin θr =Bv sin θr ,选项B 正确;金属杆所受安培力的大小为F =BIl ′=B ·Bv sin θr ·l sin θ=B 2lv r,选项C 错误;金属杆的热功率为P =I 2R =B 2v 2sin 2θr 2·lr sin θ=B 2lv 2sin θr ,选项D 错误. 3.C 根据法拉第电磁感应定律得,感应电动势E =n ΔΦΔt =n (B 2-B 1)S t 2-t 1,由楞次定律和右手螺旋定则可判断b 点电势高于a 点电势,因磁场均匀变化,所以感应电动势恒定,因此a 、b 两点电势差恒为φa -φb =-n (B 2-B 1)S t 2-t 1,选项C 正确. 4.A 磁场发生微小变化时,因各选项中载流线圈在磁场中的面积不同,由法拉第电磁感应定律E =n ΔΦΔt =n ΔB ·S Δt知载流线圈在磁场中的面积越大,产生的感应电动势越大,感应电流越大,载流线圈中的电流变化越大,所受的安培力变化越大,天平越容易失去平衡,由题图可知,选项A 符合题意.5.B 设经时间t 1线框完全进入磁场,则S =v 0t 1+12at 21,代入数值得t 1=0.5 s ,此时线框速度为v 1=v 0+at 1=2 m/s ,当t ≤t 1时,由法拉第电磁感应定律知线框中感应电流为I 1=BL (v 0+at )R,由左手定则可知产生水平向左的安培力,其大小为F A 1=BI 1L =B 2L 2(v 0+at )R=0.1+0.2t (0≤t ≤0.5),由牛顿第二定律知F -F A 1=ma 得F =0.3+0.2t (0≤t ≤0.5,F 方向水平向右),随时间是线性变化的,且t =0时F =0.3 N ,t =0.5 s 时F =0.4 N ,由线框在进出磁场运动的对称性可知线框再经时间t 2=0.5 s 刚好离开匀强磁场且离开磁场时速度为v 0=1 m/s ,此过程中,F A 2=BI 2L =B 2L 2[v 1-a (t -0.5)]R=0.3-0.2t (0.5<t ≤1.0),由牛顿第二定律知F +F A 2=ma 得F =0.2t -0.1(0.5<t ≤1.0,F 方向水平向左),随时间是线性变化的,出磁场后经时间t 3=v 0a=0.5 s 速度减为零,由牛顿第二定律F =ma 知F =0.2 N ,方向水平向左,综上所述,B 正确.6.ABD 根据右手定则可判断靠近圆心处电势高,选项A 正确;圆盘处在磁场中的部分转动切割磁感线,相当于电源,其他部分相当于外电路,根据左手定则,圆盘所受安培力与运动方向相反,磁场越强,安培力越大,故所加磁场越强越易使圆盘停止转动,选项B 正确;磁场反向,安培力仍阻碍圆盘转动,选项C 错误;若所加磁场穿过整个圆盘,整个圆盘相当于电源,不存在外电路,没有电流,所以圆盘不受安培力而匀速转动,选项D 正确.7.ACD 磁感应强度B 1垂直水平面向外,大小不变,B 2垂直水平面向里,大小随时间增大,故线框向外的磁通量减小,由楞次定律可得,线框中感应电流方向为逆时针方向,选项A 正确;t =0时刻穿过线框的磁通量为Φ=B 1×12πr 2+B 2×16πr 2=-0.0 052 Wb ,选项B 错误;在0.6 s 内通过线框的电荷量q =n ΔΦR =20×(5-2)×16π×0.122.5C =0.13 C ,选项C 正确;由Q =I 2R Δt =(n ΔΦ)2R Δt =(20×3×16×3.14×0.01)22.5×0.6J =0.07 J ,选项D 正确. 8.AD 两线圈刚进磁场时,底边开始切割磁感线,由右手定则可知线圈在进入磁场过程中产生的感应电流为逆时针方向,A 正确;由题意知线圈1刚进磁场时的速度v 1=22gL ,从刚进入磁场到刚好完全进入磁场的过程中一直在做减速运动,刚好完全进入磁场到刚到达磁场下边界的过程中,只在重力作用下做匀加速运动,令刚好完全进入磁场时的速度为v ,则v 21-v 2=2g ·2L ,即v 2=4gL =2gh ,所以线圈2开始下落时距磁场上边界高h =2L ,B 错误;由能量守恒定律知线圈1在进入磁场过程中产生的热量等于线圈1刚进入磁场到刚到达磁场下边界过程中重力势能的减小量,即Q =3mgL ,C 错误;因线圈2刚好能匀速通过磁场,所以mg =F A =B 2L 2v R ,联立解得B =mgR L ·44gL,D 正确. 9.解析:(1)导体切割磁感线运动产生的电动势为E =Blv ,根据欧姆定律,闭合回路中的感应电流为I =E R ,电阻R 消耗的功率为P =I 2R ,联立可得P =B 2l 2v 2R. (2)对导体棒受力分析,受到向左的安培力和向左的摩擦力,向右的外力,三力平衡,故有F 安+μmg =F ,F 安=BIl =B ·Blv R ·l ,故F =B 2l 2v R+μmg . 答案:(1)B 2l 2v 2R (2)B 2l 2v R+μmg10.解析:(1)设正方形磁场的面积为S ,则S =L 22=0.08 m 2.在棒进入磁场前,回路中的感应电动势是由于磁场的变化而产生的.由B t 图象可知ΔB Δt =0.5 T/s ,根据E =n ΔΦΔt,得回路中的感应电动势E =ΔB Δt S =0.5×0.08 V =0.04 V. (2)当导体棒通过bd 位置时感应电动势、感应电流最大,导体棒受到的安培力最大.此时感应电动势E ′=BLv =0.5×0.4×1 V =0.2 V ;回路中感应电流I ′=E ′R =0.21A =0.2 A 导体棒受到的安培力 F =BI ′L =0.5×0.2×0.4 N =0.04 N当导体棒通过三角形abd 区域时,导体棒切割磁感线的有效长度l =2v (t -1) (1 s ≤t ≤1.2 s)感应电动势e =Blv =2Bv 2(t -1)=(t -1)V感应电流i =e R =(t -1)A (1 s ≤t ≤1.2 s).答案:(1)0.04 V (2)0.04 N i =(t -1)A(1 s ≤t ≤1.2 s)。
高三物理二轮复习精练(电磁感应完全版)
高三物理二轮复习精练(电磁感应 完全版)59.电磁感应现象。
感应电流的方向,右手定则。
法拉第电磁感应定律。
楞次定律。
229.如图,矩形线框平面跟磁感线方向平行,在下列情况下线圈中有感应电流的是( )A.线框以 ab 为轴转动B.线框垂直纸面向外平动C.线框沿 ab 轴向下移动D.线框绕 cd 轴转动230.如图,矩形线圈匀速向右运动的过程中,能正确反映回路中感应电流随时间变化的是( )231.德国《世界报》曾报道个别西方发达国家正在研制电磁脉冲武器——电磁炸弹,若将一枚原始脉冲功率 10 千兆瓦,频率 5 千兆赫的电磁炸弹在不到 100米的高空爆炸,它将使方圆 400~500 米2 的地面范围内的电场强度达到每米数千伏,使得电网设备、通信设施和计算机的硬盘和软件均遭到破坏。
电磁炸弹有如此破坏力的主要原因是( )A.电磁脉冲引起的电磁感应现象B.电磁脉冲产生的动能C.电磁脉冲产生的高温D.电磁脉冲产生的强光232.用均匀导线做成的正方形线框,每边长为0.2米,正方形的一半放在和纸面垂直向里的匀 强磁场中,如右图示,当磁场以每秒10特斯拉的变化率增强时,线框中点a 、b 两点电势差是( )A.U ab =0 . 1伏B.U ab =-0 . 1伏C.U ab =0 . 2伏D.U ab =-0 . 2伏233.如图,abcd 是用粗细均匀的电阻丝围成的长方形闭合线圈,ab 段和cd 段的外表面涂有绝缘漆,ad 、bc 段是裸露的电阻丝,框面处于水平面,硬导线MN 置于ad 、bc上可以无摩擦的滑动,线框处于竖直向下的匀强磁场中,则MN 在外力的作用下由线框的一端向另一端匀速滑动的过程中( ) A.作用在MN 上的外力大小不变 B.MN 中的电流先减小后增大C.MN 两端的电压不变D.作用在MN 上的外力的功率先减小后增大234.一个圆环位于匀强磁场中,圆环平面和磁场方向垂直,匀强磁场方向及大小的变化与时间的关系如图,规定磁场方向垂直纸面向内为正,则( ) A.第1秒和第4秒圆环中的感应电流大小相等B.第2秒和第4秒圆环中的感应电流方向相反C.第4秒圆环中的感应电流大小为第6秒的两倍D.第5秒圆环中的感应电流为顺时针方向235.如图10所示,两个导体圆环的面积相等,处于同一磁场中,已知电容C= 0.lF ,导体环电阻R= 10欧,若磁场以lT/s 均匀地由2T 减小到零。
2022届高考物理二轮复习专题10 电磁感应
一.选择题1.如图甲所示,绝缘的水平桌面上放置一金属圆环,在圆环的正上方放置一个螺线管,在螺线管中通入如图乙所示的电流,电流从螺线管a 端流入为正,以下说法正确的是( )A .从上往下看,0~1 s 内圆环中的感应电流沿顺时针方向B .0~1 s 内圆环面积有扩张的趋势C .3 s 末圆环对桌面的压力小于圆环的重力D .1~2 s 内和2~3 s 内圆环中的感应电流方向相反2.(多选)法拉第圆盘发电机的示意图如图所示.铜圆盘安装在竖直的铜轴上,两铜片P 、Q 分别与圆盘的边缘和铜轴接触.圆盘处于方向竖直向上的匀强磁场B 中.圆盘旋转时,关于流过电阻R 的电流,下列说法正确的是( )A .若圆盘转动的角速度恒定,则电流大小恒定B .若从上向下看,圆盘顺时针转动,则电流沿a 到b 的方向流动C .若圆盘转动方向不变,角速度大小发生变化,则电流方向可能发生变化D .若圆盘转动的角速度变为原来的2倍,则电流在R 上的热功率也变为原来的2倍3.(多选)如图甲所示,水平面上的平行导轨MN 、PQ 上放着两根垂直导轨的光滑导体棒ab 、cd ,两棒间用绝缘丝线连接;已知平行导轨MN 、PQ 间距为L 1,导体棒ab 、cd 间距为L 2,导轨电阻可忽略,每根导体棒在导轨之间的电阻为R .开始时匀强磁场垂直纸面向里,磁感应强度B 随时间t 的变化如图乙所示.则以下说法正确的是( )A .在t 0时刻回路中产生的感应电动势E =0B .在0~t 0时间内导体棒中的电流为L 1L 2B 02Rt 0C .在t 02时刻绝缘丝线所受拉力为L 21L 2B 24Rt 0D .在0~2t 0时间内回路中电流方向是abdca4.如图所示,匝数n =6的螺线管(电阻不计),截面积为S =10 cm 2,线圈与R =12 Ω的电阻连接,水平向右且均匀分布的磁场穿过螺线管,磁场与线圈平面垂直,磁感应强度大小B 随时间t 变化的关系如图2所示,规定感应电流i 从a 经过R 到b 的方向为正方向.忽略线圈的自感影响,下列i -t 关系图中正确的是( )5.如图所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,在环的最高点上方A 点用铰链连接长度为3a 、电阻为3R2的导体棒AB ,AB由水平位置摆下,下摆过程中紧贴环面,当摆到竖直位置时,B 点的线速度为v 且刚好交圆环的最低点,则这时AB 两端的电压大小为( )A.Ba v 5B.4Ba v 15C.Ba v 3D.2Ba v56.如图甲所示,在竖直方向分布均匀的磁场中水平放置一个金属圆环,圆环所围面积为0.1 m 2,圆环电阻为0.2 Ω。
2021届高考物理二轮复习:电磁感应 练习
2021届高考物理:电磁感应二轮练习含答案专练:电磁感应**一、选择题1、如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡D的阻值.在t=0 时刻闭合开关S,经过一段时间后,在t =t1时刻断开S.下列表示A、B两点间电压U AB随时间t变化的图象中,正确的是()2、如图所示,线圈两端与电阻相连构成闭合回路,在线圈上方有一竖直放置的条形磁铁,磁铁的S极朝下。
在将磁铁的S极插入线圈的过程中()A.通过电阻的感应电流的方向由a到b,线圈与磁铁相互排斥B.通过电阻的感应电流的方向由b到a,线圈与磁铁相互排斥C.通过电阻的感应电流的方向由a到b,线圈与磁铁相互吸引D.通过电阻的感应电流的方向由b到a,线圈与磁铁相互吸引3、在一空间有方向相反,磁感应强度大小均为B的匀强磁场,如图所示,垂直纸面向外的磁场分布在一半径为a的圆形区域内,垂直纸面向里的磁场分布在除圆形区域外的整个区域,该平面内有一半径为b(b>2a)的圆形线圈,线圈平面与磁感应强度方向垂直,线圈与半径为a 的圆形区域是同心圆。
从某时刻起磁感应强度在Δt 时间内均匀减小到B 2,则此过程中该线圈产生的感应电动势大小为( )A .πB (b 2-a 2)2Δt B .πB (b 2-2a 2)ΔtC .πB (b 2-a 2)ΔtD .πB (b 2-2a 2)2Δt4、如图所示,正方形线框的左半侧处在磁感应强度为B 的匀强磁场中,磁场方向与线框平面垂直,线框的对称轴MN 恰与磁场边缘平齐。
若第一次将线框从磁场中以恒定速度v 1向右匀速拉出,第二次以线速度v 2让线框绕轴MN 匀速转过90°。
为使两次操作过程中,线框产生的平均感应电动势相等,则( )A .v 1∶v 2=2∶πB .v 1∶v 2=π∶2C .v 1∶v 2=1∶2D .v 1∶v 2=2∶15、如图所示,纸面内有一矩形导体闭合线框abcd ,ab 边长大于bc 边长.从置于垂直纸面向里、边界为MN 的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN .第一次ab 边平行MN 进入磁场,线框上产生的热量为Q 1,通过线框导体横截面的电荷量为q 1;第二次bc 边平行MN 进入磁场,线框上产生的热量为Q 2,通过线框导体横截面的电荷量为q 2,则( )A .Q 1>Q 2 q 1=q 2B .Q 1>Q 2 q 1>q 2C .Q 1=Q 2 q 1=q 2D .Q 1=Q 2 q 1>q 26、(多选)半径分别为r 和2r 的同心圆形导轨固定在同一水平面内,一长为r 、电阻为R的均匀金属棒AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯视图如图所示,整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下。
2021届物理高考二轮复习训练:电磁感应
2021届物理高考二轮复习分层训练:电磁感应一、选择题(1~4题为单项选择题,5~10题为多项选择题)1.[2020·全国卷Ⅲ,14]如图,水平放置的圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环.圆环初始时静止.将图中开关S由断开状态拨至连接状态,电路接通的瞬间,可观察到()A.拨至M端或N端,圆环都向左运动B.拨至M端或N端,圆环都向右运动C.拨至M端时圆环向左运动,拨至N端时向右运动D.拨至M端时圆环向右运动,拨至N端时向左运动2.如图所示,在带负电荷的橡胶圆盘附近悬挂一个小磁针.现驱动圆盘绕中心轴高速旋转,小磁针发生偏转.下列说法正确的是()A.偏转原因是圆盘周围存在电场B.偏转原因是圆盘周围产生了磁场C.仅改变圆盘的转动方向,偏转方向不变D.仅改变圆盘所带电荷的电性,偏转方向不变3.如图所示,一光滑绝缘半圆槽ABC水平固定,AC为水平直径,B为半圆槽的最低点,一闭合金属圆环从A 点由静止释放,运动过程中经过一有界匀强磁场区域,则()A.圆环向右穿过磁场后,能摆至C点B.在进入和离开磁场的过程,圆环中感应电流方向相反C.圆环完全进入磁场后离B点越近速度越大,感应电流也越大D.圆环最终停在B点4.[2020·浙江7月,12]如图所示,固定在水平面上的半径为r的金属圆环内存在方向竖直向上、磁感应强度大小为B的匀强磁场.长为l的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴OO′上,随轴以角速度ω匀速转动,在圆环的A点和电刷间接有阻值为R的电阻和电容为C、板间距为d的平行板电容器,有一带电微粒在电容器极板间处于静止状态.已知重力加速度为g,不计其它电阻和摩擦,下列说法正确的是()A .棒产生的电动势为12Bl 2ωB .微粒的电荷量与质量之比为2gdBr 2ωC .电阻消耗的电功率为πB 2r 4ω2RD .电容器所带的电荷量为CBr 2ω 5.[2020·天津卷,6]手机无线充电是比较新颖的充电方式.如图所示,电磁感应式无线充电的原理与变压器类似,通过分别安装在充电基座和接收能量装置上的线圈,利用产生的磁场传递能量.当充电基座上的送电线圈通入正弦式交变电流后,就会在邻近的受电线圈中感应出电流,最终实现为手机电池充电.在充电过程中( )A .送电线圈中电流产生的磁场呈周期性变化B .受电线圈中感应电流产生的磁场恒定不变C .送电线圈和受电线圈通过互感现象实现能量传递D .手机和基座无需导线连接,这样传递能量没有损失6.[2020·新高考Ⅰ卷,12]如图所示,平面直角坐标系的第一和第二象限分别存在磁感应强度大小相等、方向相反且垂直于坐标平面的匀强磁场,图中虚线方格为等大正方形.一位于Oxy 平面内的刚性导体框abcde 在外力作用下以恒定速度沿y 轴正方向运动(不发生转动).从图示位置开始计时,4 s 末bc 边刚好进入磁场.在此过程中,导体框内感应电流的大小为I ,ab 边所受安培力的大小为F ab ,二者与时间t 的关系图像可能正确的是( )7.某同学在实验室里做如下实验,两根光滑竖直金属导轨(电阻不计)上端接有电阻R ,下端开口,所在区域有垂直纸面向里的匀强磁场,一个矩形导体框(电阻不计)在整个运动过程中始终和光滑金属导轨保持良好接触,矩形导体框的宽度大于两根导轨的间距,一弹簧下端固定在水平面上,弹簧涂有绝缘漆,弹簧和导体框接触时,二者处于绝缘状态,且导体框与弹簧接触过程无机械能的损失.现将导体框在距离弹簧上端H 处由静止释放,导体框下落,接触到弹簧后一起向下运动然后反弹,直至导体框静止.导体框的质量为m ,重力加速度为g ,则下列说法正确的是( )A .导体框接触到弹簧后,可能立即做减速运动B .导体框在接触弹簧前下落的加速度为gC .只改变下落的初始高度H ,导体框的最大速度可能不变D .只改变R 的阻值,在导体框运动过程中系统产生的焦耳热会改变 8.[2020·山西临汾市二轮复习模拟]如图甲所示,半径为1 m 的带缺口刚性金属圆环导轨固定在水平面内,在导轨上垂直放置一质量为0.1 kg 、电阻为1 Ω的直导体棒,其长度恰好等于金属圆环的直径,导体棒初始位置与圆环直径重合,且与导轨接触良好.已知导体棒与导轨间的动摩擦因数为0.3,不计金属圆环的电阻,导体棒受到的最大静摩擦力等于滑动摩擦力,取重力加速度g =10 m/s 2.现若在圆环内加一垂直于纸面向里的变化磁场,变化规律如图乙所示,则( )A .导体棒中的电流是从b 到aB .通过导体棒的电流大小为0.5 AC .0~2 s 内,导体棒产生的热量为0.125 JD .t =π s 时,导体棒受到的摩擦力大小为0.3 N9.[2020·云南第二次统一检测]如图所示,倾角为θ=37°的足够长的平行金属导轨固定在水平面上,两导体棒ab 、cd 垂直于导轨放置,空间存在垂直导轨平面向上的匀强磁场,磁感应强度大小为B .现给导体棒ab 沿导轨平面向下的初速度v 0使其沿导轨向下运动,已知两导体棒质量均为m ,电阻相等,两导体棒与导轨之间的动摩擦因数均为μ=0.75,导轨电阻忽略不计,sin 37°=0.6,cos 37°=0.8.从ab 开始运动到两棒相对静止的整个运动过程中两导体棒始终与导轨保持良好的接触,下列说法正确的是( )A .导体棒cd 中产生的焦耳热为14m v 20B .导体棒cd 中产生的焦耳热为18m v 2C .当导体棒cd 的速度为14v 0时,导体棒ab 的速度为12v 0D .当导体棒ab 的速度为34v 0时,导体棒cd 的速度为14v 010.[2020·全国卷Ⅰ,21]如图,U 形光滑金属框abcd 置于水平绝缘平台上,ab 和dc 边平行,和bc 边垂直.ab 、dc 足够长,整个金属框电阻可忽略.一根具有一定电阻的导体棒MN 置于金属框上,用水平恒力F 向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN 与金属框保持良好接触,且与bc 边保持平行.经过一段时间后( )A .金属框的速度大小趋于恒定值B .金属框的加速度大小趋于恒定值C .导体棒所受安培力的大小趋于恒定值D .导体棒到金属框bc 边的距离趋于恒定值 二、非选择题 11.[2020·全国卷Ⅲ,24]如图,一边长为l 0的正方形金属框abcd 固定在水平面内,空间存在方向垂直于水平面,磁感应强度大小为B 的匀强磁场.一长度大于2l 0的均匀导体棒以速率v 自左向右在金属框上匀速滑过,滑动过程中导体棒始终与ac 垂直且中点位于ac 上,导体棒与金属框接触良好.已知导体棒单位长度的电阻为r ,金属框电阻可忽略.将导体棒与a 点之间的距离记为x ,求导体棒所受安培力的大小随x (0≤x ≤2l 0)变化的关系式.12.[2020·安徽蚌埠市第二次质检]如图所示,质量M=1 kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=1 kg的导体棒自ce端的正上方h=2 m 处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好.已知磁场的磁感应强度B=0.5 T,导轨的间距与导体棒的长度均为L=0.5 m,导轨的半径r=0.5 m,导体棒的电阻R=1 Ω,其余电阻均不计,重力加速度g=10 m/s2,不计空气阻力.(1)求导体棒刚进入凹槽时的速度大小;(2)求导体棒从开始下落到最终静止的过程中系统产生的热量;(3)若导体棒从开始下落到第一次通过导轨最低点的过程中产生的热量为16 J,求导体棒第一次通过最低点时回路中的电功率.参考答案1.答案:B解析:左侧线圈通电后相当于条形磁铁,形成的磁场相当于条形磁铁的磁场,将图中开关闭合时,线圈及金属圆环内磁场由0开始增加,根据楞次定律可知,金属圆环将向磁场弱的方向移动,即向右移动.圆环移动方向与开关拨至M 或拨至N 无关.故选B 项.2.答案:B解析:小磁针发生偏转是因为带负电荷的橡胶圆盘高速旋转形成电流,而电流周围有磁场,磁场会对放入其中的小磁针有力的作用,故A 错误,B 正确;仅改变圆盘的转动方向,形成的电流的方向与初始相反,小磁针的偏转方向也与之前相反,故C 错误;仅改变圆盘所带电荷的电性,形成的电流的方向与初始相反,小磁针的偏转方向也与之前相反,故D 错误.故选B.3.答案:B解析:圆环向右进入磁场的过程,会产生电流,圆环中将产生焦耳热,根据能量守恒定律知圆环的机械能将转化为电能,所以圆环回不到原来的高度,故A 错误;当圆环进入或离开磁场区域的过程,磁通量会发生变化,产生电流,根据楞次定律可知,感应电流的方向相反,故B 正确;整个圆环完全进入磁场后,磁通量不发生变化,不产生感应电流,故C 错误;圆环不断进出磁场的过程中,机械能不断损耗,圆环越摆越低,最后整个圆环只会在磁场区域内来回摆动,因为在此区域内没有磁通量的变化(一直是最大值),所以圆环的机械能守恒,即圆环最后的运动状态为在磁场区域内来回摆动,而不是静止在B 点,故D 错误.4.答案:B解析:棒产生的电动势为E =Br ·12ωr =12Br 2ω,选项A 错误.金属棒电阻不计,故电容器两极板间的电压等于棒产生的电动势,微粒的重力与其受到的电场力大小相等,有q E d =mg ,可得q m =2gdBr 2ω,选项B 正确.电阻消耗的电功率P =E 2R =B 2r 4ω24R ,选项C 错误.电容器所带的电荷量Q =CE =12CBr 2ω,选项D 错误.5.答案:AC解析:由题意可知送电线圈中通入了正弦式交变电流,可知电流产生的磁场也呈周期性变化,A 正确;由变压器的工作原理可知,受电线圈中输出的电流按余弦规律变化,因此受电线圈中感应电流产生的磁场随电流的变化而变化,B 错误;送电线圈和受电线圈的能量传递是通过互感现象实现的,C 正确;由于送电线圈产生的磁场并没有全部穿过受电线圈,即有磁通量的损失,因此该充电过程存在能量的损失,D 错误.6.答案:BC解析:第1 s 内,ae 边切割磁感线,由E =BL v 可知,感应电动势不变,导体框总电阻一定,故感应电流一定,由安培力F =BIL 可知ab 边所受安培力与ab 边进入磁场的长度成正比;第2 s 内,导体框切割磁感线的有效长度均匀增大,感应电动势均匀增大,感应电流均匀增大;第3~4 s 内,导体框在第二象限内切割磁感线的有效长度保持不变,在第一象限内切割磁感线的有效长度不断增大,但两象限磁场方向相反,导体框的两部分感应电动势方向相反,所以第2 s 末感应电动势达到最大,之后便不断减小,第3 s 末与第1 s 末,导体框切割磁感线的有效长度相同,可知第3 s 末与第1 s 末线框中产生的感应电流大小相等,A 项错误,B 项正确;但第3 s 末ab 边进入磁场的长度是笫1 s 末的3倍,即ab 边所受安培力在第3 s 末的大小等于第1 s 末所受安培力大小的3倍,C 项正确,D 项错误.7.答案:AC解析:导体框下落过程中两部分切割磁感线,相当于两个电源给电阻R 供电,当导体框所受安培力等于导体框的重力时导体框速度达到最大,达到最大速度可能发生在接触弹簧之前,所以导体框有可能在接触弹簧前已经开始匀速,故A 、C 正确;由于导体框中有感应电流,导体框受到安培力作用,所以加速度小于g ,故B 错误;由于导体框质量一定,所以最后弹簧停止的位置是确定的,重力势能的减少量是确定的,弹簧增加的弹性势能是确定的,所以电阻产生的热量与R 的阻值无关,电阻大小会影响导体框反复运动的次数,故D 错误.8.答案:AC解析:穿过闭合回路的磁通量向里且增加,由楞次定律可知导体棒中的电流是从b 到a ,选项A 正确;假设0~π s 时间内导体棒静止不动,感应电动势E =ΔΦΔt =ΔB Δt ·12πr 2=0.5π×12π×12 V =0.25 V ,则感应电流I =E R =0.251A=0.25 A ,t =π s 时,导体棒受到的安培力F =2BIr =2×0.5×0.25×1 N =0.25 N ,最大静摩擦力F fm =μmg =0.3 N ,则假设成立,故导体棒所受摩擦力大小为0.25 N ,选项B 、D 错误;0~2 s 内,导体棒产生的热量为Q =I 2Rt =0.252×1×2 J =0.125 J ,选项C 正确.9.答案:BD解析:由题意可知:mg sin 37°=μmg cos 37°,则两棒组成的系统沿轨道方向动量守恒,当最终稳定时:m v 0=2m v ,解得v =0.5v 0,则回路产生的焦耳热为Q =12m v 20-12·2m v 2=14m v 20,则导体棒c 中产生的焦耳热为Q cd =Q ab =12Q =18m v 20,选项A 错误,B 正确;当导体棒cd 的速度为14v 0时,则由动量守恒:m v 0=m ·14v 0+m v ab ,解得v ab=34v 0,选项C 错误;当导体棒ab 的速度为34v 0时,则由动量守恒:m v 0=m ·34v 0+m v cd ,解得v cd =14v 0,选项D 正确.10.答案:BC解析:用水平恒力F 向右拉动金属框,bc 边切割磁感线产生感应电动势,回路中有感应电流i ,bc 边受到水平向左的安培力作用,设金属框的质量为M ,加速度为a 1,由牛顿第二定律有F -BiL =Ma 1;导体棒MN 受到向右的安培力,向右做加速运动,设导体棒的质量为m ,加速度为a 2,由牛顿第二定律有BiL =ma 2.设金属框bc 边的速度为v 时,导体棒的速度为v ′,则回路中产生的感应电动势为E =BL (v -v ′),由闭合电路欧姆定律i =ER=BL (v -v ′)R ,F 安=BiL ,可得金属框bc 边所受安培力和导体棒MN 所受的安培力均为F 安=B 2L 2(v -v ′)R,二者加速度之差Δa =a 1-a 2=F -F 安M -F 安m =F M-F 安⎝⎛⎭⎫1M +1m ,随着所受安培力的增大,二者加速度之差Δa 减小,当Δa 减小到零时,F M =B 2L 2(v -v ′)R ·⎝⎛⎭⎫1M +1m ,之后金属框和导体棒的速度之差Δv =v -v ′=FRmB 2L 2(m +M ),保持不变.由此可知,金属框的速度逐渐增大,金属框所受安培力趋于恒定值,金属框的加速度大小趋于恒定值,导体棒所受的安培力F 安=B 2L 2(v -v ′)R 趋于恒定值,选项A 错误,BC 正确;导体棒到金属框bc 边的距离x =⎠⎛0t (v -v ′)dt ,随时间的增大而增大,选项D 错误.11.答案:f =⎩⎨⎧2B 2v r x ,0≤x ≤22l 02B 2v r (2l 0-x ),22l 0<x ≤2l 0解析:当导体棒与金属框接触的两点间棒的长度为l 时,由法拉第电磁感应定律知,导体棒上感应电动势的大小为E =Blv ①由欧姆定律,流过导体棒的感应电流为 I =ER② 式中,R 为这一段导体棒的电阻.按题意有 R =rl ③此时导体棒所受安培力大小为 f =BlI ④由题设和几何关系有l =⎩⎨⎧2x ,0≤x ≤22l 02(2l 0-x ),22l 0<x ≤2l 0⑤联立①②③④⑤式得f =⎩⎨⎧2B 2v r x ,0≤x ≤22l 02B 2v r (2l 0-x ),22l 0<x ≤2l 0⑥12.答案:(1)210 m /s (2)25 J (3)94W解析:(1)根据机械能守恒定律,可得:mgh =12mv 2解得导体棒刚进入凹槽时的速度大小: v =210 m /s(2)导体棒在凹槽导轨上运动过程中发生电磁感应现象,产生感应电流,最终整个系统处于静止,导体棒停在凹槽最低点.根据能量守恒可知,整个过程中系统产生的热量:Q =mg(h +r)=25 J(3)设导体棒第一次通过最低点时速度大小为v 1,凹槽速度大小为v 2,导体棒在凹槽内运动时系统在水平方向动量守恒,故有:mv 1=Mv 2由能量守恒可知:mg(h +r)-Q 1=12mv 21+12Mv 22导体棒第一次通过最低点时感应电动势: E =BL(v 1+v 2)回路电功率:P =E 2R联立解得:P =94W .。
高考物理二轮复习专题过关检测专题:电磁感应(全部含详细答案解析)
高考物理二轮总复习专题过关检测电磁感应(附参考答案)(时间:90分钟满分:100分)一、选择题(本题共10小题,共40分.在每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确.全部选对的得4分,选对但不全的得2分,有选错的得0分)1.如图12-1所示,金属杆ab、cd可以在光滑导轨PQ和R S上滑动,匀强磁场方向垂直纸面向里,当ab、cd分别以速度v1、v2滑动时,发现回路感生电流方向为逆时针方向,则v1和v2的大小、方向可能是()图12-1A.v1>v2,v1向右,v2向左B.v1>v2,v1和v2都向左C.v1=v2,v1和v2都向右D.v1=v2,v1和v2都向左解析:因回路abdc中产生逆时针方向的感生电流,由题意可知回路abdc的面积应增大,选项A、C、D错误,B正确.答案:B2.(2010河北唐山高三摸底,12)如图12-2所示,把一个闭合线圈放在蹄形磁铁两磁极之间(两磁极间磁场可视为匀强磁场),蹄形磁铁和闭合线圈都可以绕OO′轴转动.当蹄形磁铁匀速转动时,线圈也开始转动,当线圈的转动稳定后,有()图12-2A.线圈与蹄形磁铁的转动方向相同B.线圈与蹄形磁铁的转动方向相反C.线圈中产生交流电D.线圈中产生为大小改变、方向不变的电流解析:本题考查法拉第电磁感应定律、楞次定律等考点.根据楞次定律的推广含义可知A正确、B错误;最终达到稳定状态时磁铁比线圈的转速大,则磁铁相对线圈中心轴做匀速圆周运动,所以产生的电流为交流电.答案:AC3.如图12-3 所示,线圈M和线圈P绕在同一铁芯上.设两个线圈中的电流方向与图中所标的电流方向相同时为正.当M中通入下列哪种电流时,在线圈P中能产生正方向的恒定感应电流()图12-3图12-4解析:据楞次定律,P 中产生正方向的恒定感应电流说明M 中通入的电流是均匀变化的,且方向为正方向时应均匀减弱,故D 正确.答案:D4.如图12-5所示,边长为L 的正方形导线框质量为m ,由距磁场H 高处自由下落,其下边ab 进入匀强磁场后,线圈开始做减速运动,直到其上边cd 刚刚穿出磁场时,速度减为ab 边进入磁场时的一半,磁场的宽度也为L ,则线框穿越匀强磁场过程中产生的焦耳热为( )图12-5A.2mgLB.2mgL +mgHC.mgH mgL 432+D.mgH mgL 412+ 解析:设刚进入磁场时的速度为v 1,刚穿出磁场时的速度212v v =① 线框自开始进入磁场到完全穿出磁场共下落高度为2L .由题意得mgH mv =2121② Q mv L mg mv +=⋅+222121221③ 由①②③得mgH mgL Q 432+=.C 选项正确. 答案:C5.如图12-6(a)所示,圆形线圈P 静止在水平桌面上,其正上方悬挂一相同线圈Q ,P 和Q 共轴,Q 中通有变化电流,电流随时间变化的规律如图12-6(b)所示,P 所受的重力为G ,桌面对P 的支持力为F N ,则( )图12-6A.t1时刻F N>GB.t2时刻F N>GC.t3时刻F N<GD.t4时刻F N=G解析:t1时刻,Q中电流正在增大,穿过P的磁通量增大,P中产生与Q方向相反的感应电流,反向电流相互排斥,所以F N>G;t2时刻Q中电流稳定,P中磁通量不变,没有感应电流,F N=G;t3时刻Q 中电流为零,P中产生与Q在t3时刻前方向相同的感应电流,而Q中没有电流,所以无相互作用,F N=G;t4时刻,P中没有感应电流,F N=G.答案:AD6.用相同导线绕制的边长为L或2L的四个闭合导体线框,以相同的速度匀速进入右侧匀强磁场,如图12-7所示.在每个线框进入磁场的过程中,M、N两点间的电压分别为U a、U b、U c 和U d.下列判断正确的是()图12-7A.U a<U b<U c<U dB.U a<U b<U d<U cC.U a=U b<U d=U cD.U b<U a<U d<U c解析:线框进入磁场后切割磁感线,a、b产生的感应电动势是c、d电动势的一半.而不同的线框的电阻不同.设a线框电阻为4r,b、c、d线框的电阻分别为6r、8r、6r,则4343BLvrrBLvUa=⋅=,,6565BLvrrBLvUb=⋅=,23862BLvrrLvBUc=⋅=.34642BlvrrLvBUd=⋅=所以B正确.答案:B7.(2010安徽皖南八校高三二联,16)如图12-8所示,用一块金属板折成横截面为“”形的金属槽放置在磁感应强度为B的匀强磁场中,并以速度v1向右匀速运动,从槽口右侧射入的带电微粒的速度是v2,如果微粒进入槽后恰能做匀速圆周运动,则微粒做匀速圆周运动的轨道半径r和周期T分别为()图12-8A.gvgvv2212,πB.gvgvv1212,πC.gvgv112,πD.gvgv212,π解析:金属板折成“”形的金属槽放在磁感应强度为B的匀强磁场中,并以速度v1向右匀速运动时,左板将切割磁感线,上、下两板间产生电势差,由右手定则可知上板为正,下板为负,11BvlBlvdUE===,微粒做匀速圆周运动,则重力等于电场力,方向相反,故有,1gqBvgqEm==向心力由洛伦兹力提供,所以,222rvmBqv=得gvmqBmvr212==,周期gvvrT1222ππ==,故B项正确.答案:B8.超导磁悬浮列车是利用超导体的抗磁作用使列车车体向上浮起,同时通过周期性地变换磁极方向而获得推进动力的新型交通工具.其推进原理可以简化为如图12-9所示的模型:在水平面上相距L的两根平行直导轨间,有竖直方向等距离分布的匀强磁场B1和B2,且B1=B2=B,每个磁场的宽度都是l,相间排列,所有这些磁场都以相同的速度向右匀速运动,这时跨在两导轨间的长为L、宽为l的金属框abcd(悬浮在导轨上方)在磁场力作用下也将会向右运动.设金属框的总电阻为R,运动中所受到的阻力恒为F f,金属框的最大速度为v m,则磁场向右匀速运动的速度v可表示为()图12-9A.v=(B2L2v m-F f R)/B2L2B.v=(4B2L2v m+F f R)/4B2L2C.v=(4B2L2v m-F f R)/4B2L2D.v=(2B2L2v m+F f R)/2B2L2解析:导体棒ad和bc各以相对磁场的速度(v-v m)切割磁感线运动,由右手定则可知回路中产生的电流方向为abcda,回路中产生的电动势为E=2BL(v-v m),回路中电流为I=2BL(v-v m)/R,由于左右两边ad和bc均受到安培力,则合安培力为F合=2×BL I=4B2L2(v-v m)/R,依题意金属框达到最大速度时受到的阻力与安培力平衡,则F f=F合,解得磁场向右匀速运动的速度v=(4B2L2v m+F f R)/4B2L2,B对.答案:B9.矩形导线框abcd放在匀强磁场中,磁感线方向与线圈平面垂直,磁感应强度B随时间变化的图象如图12-10甲所示,t=0时刻,磁感应强度的方向垂直纸面向里.在0~4 s时间内,线框中的感应电流(规定顺时针方向为正方向)、ab边所受安培力(规定向上为正方向)随时间变化的图象分别为图乙中的()甲乙图12-0解析:在0~1 s内,穿过线框中的磁通量为向里的减少,由楞次定律,感应电流的磁场垂直纸面向里,由安培定则,线框中感应电流的方向为顺时针方向.由法拉第电磁感应定律,t S B n E ∆⋅∆=,E 一定,由,RE I =故I 一定.由左手定则,ab 边受的安培力向上.由于磁场变弱,故安培力变小.同理可判出在1~2 s 内,线框中感应电流的方向为顺时针方向,ab 边受的安培力为向下的变强.2~3 s 内,线框中感应电流的方向为逆时针方向,ab 边受的安培力为向上的变弱,因此选项AD 对. 答案:AD10.如图12-11甲所示,用裸导体做成U 形框架abcd ,ad 与bc 相距L =0.2 m,其平面与水平面成θ=30°角.质量为m =1 kg 的导体棒PQ 与ad 、bc 接触良好,回路的总电阻为R =1 Ω.整个装置放在垂直于框架平面的变化磁场中,磁场的磁感应强度B 随时间t 的变化情况如图乙所示(设图甲中B 的方向为正方向).t =0时,B 0=10 T 、导体棒PQ 与cd 的距离x 0=0.5 m.若PQ 始终静止,关于PQ 与框架间的摩擦力大小在0~t 1=0.2 s 时间内的变化情况,下面判断正确的是( )图12-11 A.一直增大B.一直减小C.先减小后增大D.先增大后减小 解析:由图乙,T/s 5010==∆∆t B t B ,t =0时,回路所围面积S =Lx 0=0.1 m 2,产生的感应电动势V 5=∆⋅∆=t S B E ,A 5==RE I ,安培力F =B 0IL =10 N,方向沿斜面向上.而下滑力mg sin30°=5 N,小于安培力,故刚开始摩擦力沿斜面向下.随着安培力减小,沿斜面向下的摩擦力也减小,当安培力等于下滑力时,摩擦力为零.安培力再减小,摩擦力变为沿斜面向上且增大,故选项C 对. 答案:C二、填空题(共2小题,共12分)11.(6分)如图12-12所示,有一弯成θ角的光滑金属导轨POQ ,水平放置在磁感应强度为B 的匀强磁场中,磁场方向与导轨平面垂直.有一金属棒M N 与导轨的OQ 边垂直放置,金属棒从O 点开始以加速度a 向右运动,求t 秒末时,棒与导轨所构成的回路中的感应电动势是____________________.图12-12解析:该题求的是t 秒末感应电动势的瞬时值,可利用公式E =Blv 求解,而上面错误解法求的是平均值.开始运动t 秒末时,金属棒切割磁感线的有效长度为.tan 21tan 2θθat OD L == 根据运动学公式,这时金属棒切割磁感线的速度为v =at .由题知B 、L 、v 三者互相垂直,有θtan 2132t Ba Blv E ==,即金属棒运动t 秒末时,棒与导轨所构成的回路中的感应电动势是.tan 2132θt Ba E =答案:θtan 2132t Ba 12.(6分)如图12-13所示,有一闭合的矩形导体框,框上M 、N 两点间连有一电压表,整个装置处于磁感应强度为B 的匀强磁场中,且框面与磁场方向垂直.当整个装置以速度v 向右匀速平动时,M 、N 之间有无电势差?__________(填“有”或“无”),电压表的示数为__________.图12-13解析:当矩形导线框向右平动切割磁感线时,AB 、CD 、MN 均产生感应电动势,其大小均为BLv ,根据右手定则可知,方向均向上.由于三个边切割产生的感应电动势大小相等,方向相同,相当于三个相同的电源并联,回路中没有电流.而电压表是由电流表改装而成的,当电压表中有电流通过时,其指针才会偏转.既然电压表中没有电流通过,其示数应为零.也就是说,M 、N 之间虽有电势差BLv ,但电压表示数为零.答案:有 0三、计算、论述题(共4个题,共48分.解答应写出必要的文字说明、方程式和重要的演算步骤.只写出最后答案的不能得分.有数值计算的题答案中必须明确写出数值和单位)13.(10分)如图12-14所示是一种测量通电线圈中磁场的磁感应强度B 的装置,把一个很小的测量线圈A 放在待测处,线圈与测量电荷量的冲击电流计G 串联,当用双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,从而引起电荷的迁移,由表G 测出电荷量Q ,就可以算出线圈所在处的磁感应强度B.已知测量线圈的匝数为N,直径为d ,它和表G 串联电路的总电阻为R ,则被测出的磁感应强度B 为多大?图12-14解析:当双刀双掷开关S 使螺线管的电流反向时,测量线圈中就产生感应电动势,根据法拉第电磁感应定律可得:td B N t N E ∆=∆∆Φ=2)2(2π 由欧姆定律和电流的定义得:,t Q R E I ∆==即t RE Q ∆= 联立可解得:.22NdQR B π= 答案:22Nd QR π 14.(12分)如图12-15所示,线圈内有理想边界的磁场,开始时磁场的磁感应强度为B 0.当磁场均匀增加时,有一带电微粒静止于平行板(两板水平放置)电容器中间,若线圈的匝数为n ,平行板电容器的板间距离为d ,粒子的质量为m ,带电荷量为q .(设线圈的面积为S )求:图12-15(1)开始时穿过线圈平面的磁通量的大小.(2)处于平行板电容器间的粒子的带电性质.(3)磁感应强度的变化率.解析:(1)Φ=B 0S.(2)由楞次定律,可判出上板带正电,故推出粒子应带负电. (3),t n E ∆∆Φ=,ΔΦ=ΔB ·S, mg dE q =⋅,联立解得:.nqS mgd t B =∆∆ 答案:(1)B 0S (2)负电 (3)nqS mgd t B =∆∆ 15.(12分)两根光滑的长直金属导轨MN 、M ′N ′平行置于同一水平面内,导轨间距为l ,电阻不计,M 、M ′处接有如图12-16所示的电路,电路中各电阻的阻值均为R ,电容器的电容为C.长度也为l 、阻值同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为B 、方向竖直向下的匀强磁场中.ab 在外力作用下向右匀速运动且与导轨保持良好接触,在ab 运动距离为s 的过程中,整个回路中产生的焦耳热为Q .求:图12-16(1)ab 运动速度v 的大小;(2)电容器所带的电荷量q .解析:本题是电磁感应中的电路问题,ab 切割磁感线产生感应电动势为电源.电动势可由E =Blv 计算.其中v 为所求,再结合闭合(或部分)电路欧姆定律、焦耳定律、电容器及运动学知识列方程可解得.(1)设ab 上产生的感应电动势为E ,回路中的电流为I ,ab 运动距离s 所用时间为t ,三个电阻R 与电源串联,总电阻为4R ,则E=Blv由闭合电路欧姆定律有RE I 4= vs t = 由焦耳定律有Q =I 2(4R )t 由上述方程得.422s l B QR v =(2)设电容器两极板间的电势差为U ,则有U=IR电容器所带电荷量q =CU 解得.Bls CQR q =答案:(1)s l B QR 224 (2)Bls CQR 16.(14分)如图12-17所示,水平地面上方的H 高区域内有匀强磁场,水平界面PP ′是磁场的上边界,磁感应强度为B ,方向是水平的,垂直于纸面向里.在磁场的正上方,有一个位于竖直平面内的闭合的矩形平面导线框abcd ,ab 长为l 1,bc 长为l 2,H >l 2,线框的质量为m ,电阻为R .使线框abcd 从高处自由落下,ab 边下落的过程中始终保持水平,已知线框进入磁场的过程中的运动情况是:cd 边进入磁场以后,线框先做加速运动,然后做匀速运动,直到ab 边到达边界PP ′为止.从线框开始下落到cd 边刚好到达水平地面的过程中,线框中产生的焦耳热为Q .求:图12-17(1)线框abcd 在进入磁场的过程中,通过导线的某一横截面的电荷量是多少?(2)线框是从cd 边距边界PP ′多高处开始下落的?(3)线框的cd 边到达地面时线框的速度大小是多少?解析:(1)设线框abcd 进入磁场的过程所用时间为t ,通过线框的平均电流为I ,平均感应电动势为ε,则RI t εε=∆∆Φ=,,ΔΦ=Bl 1l 2 通过导线的某一横截面的电荷量t I q ∆=解得.21Rl Bl q = (2)设线框从cd 边距边界PP ′上方h 高处开始下落,cd 边进入磁场后,切割磁感线,产生感应电流,在安培力作用下做加速度逐渐减小的加速运动,直到安培力等于重力后匀速下落,速度设为v ,匀速过程一直持续到ab 边进入磁场时结束,有ε=Bl 1v ,,R I ε=F A =BIl 1,F A =mg 解得212l B mgR v = 线框的ab 边进入磁场后,线框中没有感应电流.只有在线框进入磁场的过程中有焦耳热Q .线框从开始下落到ab 边刚进入磁场的过程中,线框的重力势能转化为线框的动能和电路中的焦耳热.则有Q mv l h mg +=+2221)(解得.222414414223l l mgB l QB R g m h -+= (3)线框的ab 边进入磁场后,只有重力作用下,加速下落,有)(21212222l H mg mv mv -=- cd 边到达地面时线框的速度.)(224142222l H g l B R g m v -+= 答案:(1)Rl Bl 21 (2)241441422322l l mgB l QB R g m -+ (3))(22414222l H g l B R g m -+。
10.电磁感应的综合应用-高三物理二轮复习错题本
错题本十:电磁感应的综合应用1.感应电动势大小的计算(1)转动产生感应电动势,长为L 的金属棒绕O 点以角速度ω匀速转动,产生感应电动势E =12BωL 2.如图(1) (2)线圈绕垂直磁感线的轴以角速度ω匀速转动,产生感应电动势的瞬时值为e =nBL 1L 2sin ωt .如图(2)2.电磁感应中的几个推论(1)安培力的冲量I =BLq .(2)计算通过导体某一截面的电荷量的两个途径.q =I -·t →⎩⎨⎧I -=E -R ,E -=n ΔΦΔt →q =n ΔΦR =n B ΔS R F 安=BL I -,F 安·Δt =Δp →q =Δp BL(3)导体棒平动垂直切割磁感线时所受的安培力F=B2L2v R总.1.(2019·全国卷Ⅰ)(多选)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图(a)中虚线MN所示.一硬质细导线的电阻率为ρ、横截面积为S,将该导线做成半径为r的圆环固定在纸面内,圆心O在MN上.t=0时磁感应强度的方向如图(a)所示;磁感应强度B随时间t的变化关系如图(b)所示.则在t=0到t=t1的时间间隔内()A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为B0rS 4t0ρD.圆环中的感应电动势大小为B0πr2 4t0【解析】根据楞次定律可知在0~t0时间内,磁感应强度减小,感应电流的方向为顺时针,圆环所受安培力水平向左,在t0~t1时间内,磁感应强度反向增大,感应电流的方向为顺时针,圆环所受安培力水平向右,所以选项A 错误,B 正确;根据法拉第电磁感应定律得E =ΔΦΔt =12πr 2·B 0t 0=B 0πr 22t 0,根据电阻定律可得R =ρ2πr S ,根据欧姆定律可得I =E R =B 0rS 4t 0ρ,所以选项C 正确,D 错误. 【答案】 BC2.(2019·石家庄)(多选)如图,半径为L 的小圆与半径为3L 的圆形金属导轨拥有共同的圆心,在小圆与导轨之间的环形区域存在垂直于纸面向外、磁感应强度大小为B 的匀强磁场.现将一长度为3L 的导体棒置于磁场中,让其一端O 点与圆心重合,另一端A 与圆形导轨良好接触.在O 点与导轨间接入一阻值为r 的电阻,导体棒以角速度ω绕O 点做逆时针匀速圆周运动,其他电阻不计.下列说法正确的是( )A .导体棒O 点的电势比A 点的电势低B .电阻r 两端的电压为9BωL 22C .在导体棒旋转一周的时间内,通过电阻r 的电荷量为8B πL 2rD .在导体棒旋转一周的时间内,电阻r 产生的焦耳热为8πωB 2L 4r【解析】 由右手定则可知O 点比A 点电势低,A 正确;导体棒匀速圆周运动,产生感应电动势E =B 2L 3Lω+ωL 2=4BL 2ω,B 错误;导体棒旋转一周时间内,电阻r 产生焦耳热Q =E 2r ·2πω=32B 2L 4ωπr,q =E -r T =ΔΦr =8B πL 2r ,C 正确,D 错误.【答案】 AC3.(2019·唐山一模)(多选)如图所示,半径为2r 的弹性螺旋线圈内有垂直纸面向外的圆形匀强磁场区域,磁场区域的半径为r ,已知弹性螺旋线圈的电阻为R ,线圈与磁场区域共圆心,则以下说法中正确的是( )A .保持磁场不变,线圈的半径由2r 变到3r 的过程中,有顺时针的电流B .保持磁场不变,线圈的半径由2r 变到0.5r 的过程中,有逆时针的电流C .保持半径不变,使磁场随时间按B =kt 变化,线圈中的电流为k πr 2R D .保持半径不变,使磁场随时间按B =kt 变化,线圈中的电流为2k πr 2R【解析】 由于磁场的面积不变,线圈的半径由2r 变到3r 的过程中,穿过线圈磁通量不变,所以在线圈中没有感应电流产生,A 错误;由于磁场的面积不变,线圈的半径由2r 变到0.5r 的过程中,线圈包含磁场的面积变小.磁通量变小,由“楞次定律\”可知,产生逆时针的电流,B 正确;保持半径不变,使磁场随时间按B =kt 变化,磁场增大,穿过线圈磁通量增大,由“楞次定律”可知,产生顺时针的电流,根据法拉第电磁感应定律和闭合电路欧姆定律:I =E R =ΔΦΔt R =ΔBS ΔtR=k S R =k πr 2R ,C 正确. 【答案】 BC【探究追问】 在典例1中,保持半径不变,使磁场随时间按B=kt 变化,求在t 时间内通过弹性螺旋线圈的横截面的电荷量q 和产生焦耳热?【解析】 由典例1解析可知:电流为恒定值,I =k πr 2R ,则q =It =k πtr 2R ;Q =I 2Rt =(k πr 2)2Rt R 2=k 2π2r 4t R .【答案】 k πtr 2R k 2π2r 4t R4. (2019·全国卷Ⅱ)(多选)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计.虚线ab 、cd 均与导轨垂直,在ab 与cd 之间的区域存在垂直于导轨所在平面的匀强磁场.将两根相同的导体棒PQ 、MN 先后自导轨上同一位置由静止释放,两者始终与导轨垂直且接触良好,已知PQ 进入磁场时加速度恰好为零.从PQ 进入磁场开始计时,到MN 离开磁场区域为止,流过PQ 的电流随时间变化的图象可能正确的是( )【解析】 根据题述,PQ 进入磁场时加速度恰好为零,两导体棒从同一位置释放,则两导体棒进入磁场时的速度相同,产生的感应电动势大小相等,若释放两导体棒的时间间隔足够长,在PQ通过磁场区域一段时间后MN进入磁场区域,根据法拉第电磁感应定律和闭合电路欧姆定律可知流过PQ的电流随时间变化的图象可能是A;由于两导体棒从同一位置释放,两导体棒进入磁场时产生的感应电动势大小相等,MN进入磁场区域切割磁感线产生感应电动势,回路中产生的感应电流不可能小于I1,B错误;若释放两导体棒的时间间隔较短,在PQ没有出磁场区域时MN就进入磁场区域,则两棒在磁场区域中运动时回路中磁通量不变,两棒不受安培力作用,二者在磁场中做加速运动,PQ出磁场后,MN切割磁感线产生感应电动势和感应电流,且感应电流一定大于I1,受到安培力作用,由于安培力与速度成正比,则MN所受的安培力一定大于MN的重力沿斜面方向的分力,所以MN一定做减速运动,回路中感应电流减小,流过PQ的电流随时间变化的图象可能是D,C错误.【答案】AD5.(2019·石家庄)如图所示,M1N1N2M2是位于光滑水平桌面上、间距为l的足够长刚性“⊂”形金属框架,框架左侧N1N2部分电阻为R,其他部分电阻不计.PQ是质量为m、电阻不计的金属杆,可在框架上保持与框架垂直滑动.初始时,杆PQ位于图中的虚线处,虚线右侧存在方向垂直桌面向下、磁感应强度为B的匀强磁场.现用大小为F的水平恒力垂直作用于杆PQ上,使之由静止开始在框架上向右运动.(1)若将框架固定于桌面上,且杆PQ与框架的接触光滑,求杆PQ的最大速度;(2)若将框架固定于桌面上,且杆PQ与框架的接触粗糙.由静止开始,仍用恒力F拉动杆PQ,经过时间t,杆PQ到虚线的距离为x,此时通过电路的电流为I0,求在此过程中框架的N1N2部分产生的焦耳热(不考虑回路的自感效应);(3)若框架不固定,且杆与框架的接触粗糙,已知框架的质量为m0,由静止开始,仍用恒力F拉动杆PQ,在框架左侧N1N2进入磁场后,求框架和杆PQ最终各自的加速度大小.【解析】(1)PQ做加速度逐渐减小的加速运动,最终将以最大速度v m做匀速运动.由法拉第电磁感应定律有E=Bl v mI=E R匀速运动时,对PQ受力分析有F=BIl联立解得v m=FR B2l2(2)由闭合电路欧姆定律有I0=Bl vR,F-安=B I-l对杆分析,由动量定理得:(F-f)t-F-安t=m vq=I-t=Blx R对杆PQ在磁场中的运动,根据动能定理有:(F-f)x-W安=12m v2杆克服安培力做的功等于电路中产生的焦耳热,即W 安=Q解得Q =mI 0Rx Blt +B 2l 2x 2Rt -mI 20R 22B 2l 2 (3)框架先做匀加速直线运动,进入磁场后加速度先瞬间增大,之后可能先做加速度增大的加速运动,后做匀加速直线运动,也可能先做加速度减小的加速运动,后做匀加速直线运动.最终两者的加速度大小相等,设为aF =(m +m 0)a解得:a =F m +m 0【答案】 (1)FR B 2L 2 (2)mI 0Rx Blt +B 2l 2x 2Rt -mI 20R 22B 2l 2 (3)F m +m 0 F m +m 06.(2019·衡水中学)如图所示,MN 、PQ 两平行光滑水平导轨分别与半径r =0.5 m 的相同竖直半圆导轨在N 、Q 端平滑连接,M 、P 端连接定值电阻R ,质量M =2 kg 的cd 绝缘杆垂直静止在水平导轨上,在其右侧至N 、Q 端的区域内充满竖直向上的匀强磁场.现有质量m =1 kg 的ab 金属杆以初速度v 0=12 m/s 水平向右与cd 绝缘杆发生正碰后,进入磁场并最终未滑出,cd 绝缘杆则恰好能通过半圆导轨最高点,不计其他电阻和摩擦,ab 金属杆始终与导轨垂直且接触良好,取g =10 m/s 2,求:(1)cd 绝缘杆通过半圆导轨最高点时的速度大小v ;(2)电阻R 产生的焦耳热Q .(3)定性画出两杆在水平轨道上的速度时间图象.【解析】 (1)cd 绝缘杆通过半圆导轨最高点时,由牛顿第二定律有:Mg =M v 2r解得:v = 5 m/s(2)碰撞后cd 绝缘杆以速度v 2运动,滑至最高点的过程中,由动能定理有:-Mg 2r =12M v 2-12M v 22 解得:v 2=5 m/s由于cd 是绝缘杆,没有电流通过,所以碰后一直匀速运动,则碰撞后cd 绝缘杆的速度:v 2=5 m/s两杆碰撞过程,动量守恒,有:m v 0=m v 1+M v 2解得碰撞后ab 金属杆的速度:v 1=2 m/sab 金属杆进入磁场后由能量守恒定律有:Q =12m v 21解得:Q=2 J(3)如右图【答案】(1) 5 m/s(2)2 J(3)见解析7.(2019·湖南)如图所示,在竖直平面内有两根相互平等、电阻忽略不计的金属导轨(足够长),在导轨间接有阻值分别为R1、R2的两个电阻,一根质量为m的金属棒ab垂直导轨放置其上,整个装置处于垂直导轨所在平面的匀强磁场中.现让金属棒ab沿导轨由静止开始运动,若只闭合开关S1,金属棒ab下滑能达到的最大速度为v1;若只闭合开关S2,金属棒ab下滑高度为h时恰好达到能达到的最大速度为v2,重力加速度为g,求:(1)金属棒的电阻r;(2)金属棒ab由静止开始到达到最大速度v2的过程中,通过电阻R2的电荷量Q;(3)金属棒ab由静止开始到达到最大速度v2所用的时间;(4)若让金属棒ab沿导轨由静止开始运动,同时闭合开关S1、S2,金属棒ab下滑高度为h′时达到的最大速度为v′.试比较h与h′、v2与v′的大小关系.(不用推导、直接写出结果)【解析】(1)设匀强磁场的磁感应强度为B,导轨间的距离为L,则当金属棒达到最大速度v1时,有:mg=BI1L其中I 1=BL v 1R 1+r 解得:mg =B 2L 2v 1R 1+r当金属棒达到最大速度v 2时,同理有:mg =B 2L 2v 2R 2+r解得:r =R 2v 1-R 1v 2v 2-v 1(2)由(1)可知:BL = mg (R 2-R 1)v 2-v 1 金属棒ab 由静止开始到达到最大速度v 2的过程中,其平均感应电动势为:E -=ΔΦΔt =BLh Δt其平均电流为:I -=E R 2+r结合Q =I -·Δt ,解得:Q =h v 2 mg (v 2-v 1)R 2-R 1.(3)金属棒从静止到最大速度过程中,由动量定理有: mgt -B I -L ·Δt =m v 2其中Q =I -Δt代入得t =v 2g +h v 2(4)由两次棒的v -t 图象可知 v 2>v ′,h >h ′.【答案】(1)R 2v 1-R 1v 2v 2-v 1 (2)h v 2 mg (v 2-v 1)R 2-R 1 (3)v 2g +hv 2 (4)v 2>v ′ h >h ′。
高三物理二轮考点典型例题解析专题辅导——电磁感应
高三物理二轮考点典型例题解析专题辅导——电磁感应考点1.电磁感应现象、磁通量、楞次定律例1: (07年崇文一模)如图所示, A 、B 都是很轻的铝环,分别调在绝缘 细杆的两端,杆可绕中间竖直轴在水平面内转动,环A 是闭合的,环B 是断开的。
若用磁铁分别接近这两个圆环,则下面说法正确的是( )A. 图中磁铁N 极接近A 环时,A 环被吸引,而后被推开B. 图中磁铁N 极远离A 环时,A 环被排斥,而后随磁铁运动C .用磁铁N 极接近B 环时,B 环被推斥,远离磁铁运动D .用磁铁的任意一磁极接近A 环时,A 环均被排斥例2:(08年朝阳一模)如图所示,A 、B 为两个闭合金属环挂在光滑的绝缘杆上,其中A 环固定。
现给A 环中分别通以如下图所示的四种电流,其中能使B 环在0~t 1时间内始终具有向右加速度的是( )例3:(07年海淀二模)如图所示,在水平地面下有一条沿东西方向铺设的水平直导线,导线中通有自东向西稳定、强大的直流电流。
现用一闭合的检测线圈(线圈中串有灵敏的检流计,图中未画出)检测此通电直导线的位置,若不考虑地磁场的影响,在检测线圈位于水平面内,从距直导线很远处由北向南沿水平地面通过导线的上方并移至距直导线很远处的过程中,俯视检测线圈,其中的感应电流的方向是( )A .先顺时针后逆时针B .先逆时针后顺时针C .先逆时针后顺时针,然后再逆时针D .先顺时针后逆时针,然后再顺时针 例4:(09年崇文二模)某物理研究小组的同学在实验室中做探究实验。
同学将一条形磁铁放在水平转盘上,如图甲所示,磁铁可随转盘转动,另将一磁感应强度传感器固定在转盘旁边。
当转盘(及磁铁)转动时,引起磁感应强度测量值周期性地变化,该变化的周期与转盘转动周期一致。
测量后,在计算机上得到了如图乙所示的图象。
由实验,同学们猜测磁感应强度传感器内有一线圈,当磁感应强度最大时,穿过线圈的磁通量也最大。
按照这种猜测,下列判断正确的是( )A .感应电流变化的周期为0.1sB .在t =0.1 s 时,线圈内产生的感应电流的方向发生改变C .在t =0.15 s 时,线圈内产生的感应电流的方向发生变化D .在t =0.15 s 时,线圈内产生的感应电流的大小达到了最大值考点2. 法拉第电磁感应定律例1:用均匀导线做成的正方形线框,每边长为0.2米,正方形的一半放在和纸面垂直向里的匀强磁场中,如右图示,当磁场以每秒10特斯拉的变化率增强时,线框中点a 、b 两点电势差是( ) A. U ab =0.1伏 B. U ab =-0.1伏 C. U ab =0.2伏 D. U ab =-0.2伏右 左 C例2:如图,设有一导线AC 以速率V 在金属导轨上向右匀速滑动,电路中只有电阻R ,导轨光滑,在AC 通过匀强磁场时,下列物理量中与速率V 成正比的是( ) A. AC 中的电流 B. 磁场作用在AC 上的力C. 电阻R 中产生的热功率D. 电路消耗的总功率例3:(08年宣武一模)如图所示,有一匝接在电容器C 两端的圆形导线回路, 垂直于回路平面以内存在着向里的匀强磁场B,已知圆的半径r =5cm,电容C =20μF ,当磁场B 以4×10-2T /s 的变化率均匀增加时,则( )A. 电容器a 板带正电,电荷量为2π×10-9CB. 电容器a 板带负电, 电荷量为2π×10-9CC. 电容器b 板带正电, 电荷量为4π×10-9CD. 电容器b 板带负电,电荷量为4π×10-9C例4:(09年海淀二模)两块水平放置的金属板问的距离为d ,用导线与一个多匝线 圈相连,线圈电阻为r ,线圈中有竖直方向均匀变化的磁场,其磁通量的变化率为k , 电阻R 与金属板连接,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题十 电磁感应1.法拉第“磁生电”这一伟大的发现引领人类进入了电气时代。
下列实验现象,不属于电磁感应现象的是 ( )2.物理课上,老师做了一个奇妙的“跳环实验”。
如图所示,她把一个带铁芯的线圈L 、开关S 和电源用导线连接起来后,将一金属套环置于线圈L 上,且使铁芯穿过套环。
闭合S 瞬间,套环立刻跳起。
某同学另找来器材再探究此实验,他连接好电路,经重复实验,线圈上的套环均未动。
对比老师演示的实验,这位同学在实验时可能存在的问题是 ( ) A .电源电压低 B .线圈匝数过多 C .线圈接在直流电源上 D .套环的材料与老师的不同3.如图(a )、(b )所示的电路中,电阻R 和自感线圈L 的电阻值都很小,且小于灯A 的电阻,接通S ,使电路达到稳定,灯泡A 发光,则 ( ) A .电路(a )中,断开S ,A 将渐渐变暗B .电路(a )中,断开S ,A 将先变得更亮,然后渐渐变暗导线通电后,其下方的小磁针偏转通电导线AB 在磁场中运动金属杆切割磁感线时,电流表指针偏转通电线圈在磁场中转动A B C DC.电路(b)中,断开S,A将渐渐变暗D.电路(b)中,断开S,A将先变得更亮,然后渐渐变暗4.如图所示是研究通电自感实验的电路图,A1、A2是两个规格相同的小灯泡,闭合电键调节电阻R,使两个灯泡的亮度相同,调节可变电阻R1,使它们都正常发光,然后断开电键S。
重新闭合电键S,则( )A.闭合瞬间,A1立刻变亮,A2逐渐变亮B.闭合瞬间,A2立刻变亮,A1逐渐变亮C.稳定后,L和R两端电势差一定相同D.稳定后,A1和A2两端电势差一定相同5.左图是用电流传感器(相当于电流表,其电阻可以忽略不计)研究自感现象的实验电路,图中两个电阻的阻值均为R,L是一个自感系数足够大的自感线圈,其直流电阻值也为R。
右图是某同学画出的在t0时刻开关S切换前后,通过传感器的电流随时间变化图象。
关于这些图象说法正确的是( )A.图甲是开关S由断开变为闭合,通过传感器1的电流随时间变化的情况B.图乙是开关S由断开变为闭合,通过传感器1的电流随时间变化的情况C.图丙是开关S由闭合变为断开,通过传感器2的电流随时间变化的情况D.图丁是开关S由闭合变为断开,通过传感器2的电流随时间变化的情况6.在“探究电磁感应的产生条件”实验中,如图所示,线圈A通过滑动变阻器和开关连接到电源上,线圈B连接到电流表上,线圈A插在B的里面,下列说法正确的是( )A.开关闭合瞬间,电流表指针发生偏转B.开关断开瞬间,电流表指针不发生偏转C.开关闭合后,将线圈A从B中拔出时,电流表指针不发生偏转D.开关闭合后,移动滑动变阻器的滑片P时,电流表指针不发生偏转7.在“探究感应电流的方向规律”实验中,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流。
各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,正确的是 ( )8.下图是做“探究电磁感应的产生条件”实验的器材及示意图。
(1)在图中用实线代替导线把它们连成实验电路。
(2)假设在开关闭合的瞬间,灵敏电流计的指针向左偏转,则当螺线管A 向上拔出的过程中, 灵敏电流计的指针向________偏转。
(3)某同学在连接好的电路中做实验。
第一次将螺线管A 从螺线管B 中快速抽出,第二次将 螺线管A 从螺线管B 中慢慢抽出,发现灵敏 电流计的指针摆动的幅度大小不同,第一次比第二次的幅度________(填“大”或“小”),原因是线圈中第一次比第二次的大。
9.如图甲所示,在水平面上固定有长L =2m 、宽d =1m 的金属“U ”型导轨,在“U ”型导轨右侧l =0.5m 范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化的规律如图乙所示。
在t =0时刻,质量m =0.1kg 的导体棒以v 0=1m/s 的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1Ω/m ,不计导体棒与导轨之间的接触电阻及地球磁场的影响。
(1)通过计算分析4s 内导体棒的运动情况; (2)计算4s 内回路中电流的大小,并判断电流方向;(3)计算4s 内回路产生的焦耳热。
甲乙10.如图所示,光滑水平面上停着一辆小车,车上固定一边长L=0.5m的正方形金属线框abcd,线框平面与纸面重合,总电阻R=0.25Ω,线框和车的总质量M=0.5kg。
在小车右侧有一宽度大于L、具有理想边界的匀强磁场,磁感应强度B=1.0T,方向垂直纸面向里。
现给小车一水平向右的初速度,使其向右运动并穿过磁场。
已知线框的ab边刚进磁场时,小车的加速度a=10m/s2。
求:(1)线框的ab边刚进磁场时,小车的速度大小;(2)线框穿过磁场的整个过程中,其上产生的焦耳热。
11.如图所示,两根足够长的固定平行金属导轨位于同一水平面内,间距为L。
导轨上垂直放置两根金属棒ab和cd,质量均为m,电阻均为R。
整个装置处于磁感应强度大小为B、方向竖直向上的匀强磁场中。
开始时ab棒和cd棒均有方向相反的水平初速度,大小分别为v0和2v0。
不计导轨的电阻和摩擦,求:(1)从两棒开始运动到最终稳定的过程中,回路中产生的焦耳热;cd棒消耗的电功率。
(2)当ab棒的速度大小为0.5v12.如图所示,水平面上固定两根平行导轨MN、PQ,间距为d,并处于磁感应强度大小为B、方向竖直向下的匀强磁场中。
两根完全相同的金属杆1和2间隔一定距离均垂直放置在导轨上,与导轨接触良好。
已知两金属杆的质量均为m,电阻均为R,导轨光滑且电阻不计。
现给金属杆1一个方向水平向右、大小为I的瞬间冲量。
(1)求金属杆1获得的初速度大小;(2)若金属杆2固定,为使两杆在运动过程中不相碰,求两杆开始放置时的距离至少多大? (3)若金属杆不固定,为使两杆在运动过程中不相碰,求两杆开始放置时的距离至少多大?13.某同学设计一个发电测速装置,工作原理如图所示。
一个半径为R =0.1m 的圆形金属导轨固定在竖直平面上,一根长为R 的金属棒OA ,A 端与导轨接触良好,O 端固定在圆心处的转轴上。
转轴的左端有一个半径为r =R /3的圆盘,圆盘和金属棒能随转轴一起转动。
圆盘上绕有不可伸长的细线,下端挂着一个质量为m =0.5kg 的铝块。
在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B =0.5T 。
a 点与导轨相连,b 点通过电刷与O 端相连。
测量a 、b 两点间的电势差U 可算得铝块速度。
铝块由静止释放,下落h =0.3m 时,测得U =0.15V 。
(细线与圆盘间没有滑动,金属棒、导轨、导线及电刷的电阻均不计)(1)测U 时,a(2)求此时铝块的速度大小;(3)求此下落过程中铝块机械能的损失。
14.为了探究电动机转速与弹簧伸长量之间的关系,小明设计了如图所示的装置。
半径为l的圆形金属导轨固定在水平面上,一根长也为l、电阻为R的金属棒ab一端与导轨接触良好,另一端固定在圆心处的导电转轴OO′上,由电动机A带动旋转。
在金属导轨区域内存在垂直于导轨平面,大小为B1、方向竖直向下的匀强磁场。
另有一质量为m、电阻为R的金属棒cd用轻质弹簧悬挂在竖直平面内,并与固定在竖直平面内的“U”型导轨保持良好接触,导轨间距为l,底部接阻值也为R的电阻,处于大小为B2、方向垂直导轨平面向里的匀强磁场中。
从圆形金属导轨引出导线和通过电刷从转轴引出导线经开关S与“U”型导轨连接。
当开关S断开,棒cd静止时,弹簧伸长量为x0;当开关S闭合,电动机以某一转速匀速转动,棒cd再次静止时,弹簧伸长量变为x(不超过弹性限度)。
不计其余电阻和摩擦等阻力,求此时(1)通过棒cd的电流I cd;(2)电动机对该装置的输出功率P;(3)电动机转动角速度ω与弹簧伸长量x之间的函数关系。
15.为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置。
如图所示,自行车后轮由半径r 1=5.0×10-2m 的金属内圈、半径r 2=0.40m 的金属外圈和绝缘辐条构成。
后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R 的小灯泡。
在支架上装有磁铁,形成了磁感应强度B =0.10T 、方向垂直纸面向外的“扇形”匀强磁 场,其内半径为r 1、外半径为r 2,张角θ=6。
后轮以角速度ω=2π rad/s 相对于转轴转动。
若不计其它电阻,忽略磁场的绝缘效应。
(1)当金属条ab 进入“扇形”磁场时,求感应电动势E ,并指出ab 上的电流方向; (2)当金属条ab 进入“扇形”磁场时,画出“闪烁”装置的电路图;(3)从金属条ab 进入“扇形”磁场时开始,经计算画出轮子转一圈过程中,内圈与外圈之间电势差U ab 随时间t 变化的图象;(4)若选择的是“1.5V ,0.3A ”的小灯泡,该“闪烁”装置能否正常工作?有同学提出,通过改变磁感应强度B 、后轮外圈半径r 2、角速度ω和张角θ等物理量的大小,优化前同学的设计方案,请给出你的评价。
16.小明设计的电磁健身器的简化装置如图所示,两根平行金属导轨相距l=0.50m,倾角θ=53º,导轨上端串接一个R=0.05Ω的电阻。
在导轨间长d=0.56m的区域内,存在方向垂直导轨平面向下的匀强磁场,磁感应强度B=2.0T。
质量m=4.0kg的金属棒CD水平置于导轨上,用绝缘绳索通过定滑轮与拉杆GH相连。
CD棒的初始位置与磁场区域的下边界相距s=0.24m。
一位健身者用恒力F=80N拉动GH杆,CD棒由静止开始运动,上升过程中CD棒始终保持与导轨垂直。
当CD棒到达磁场上边界时健身者松手,触发恢复装置使CD棒回到初始位置。
重力加速度g=10m/s2,sin53º=0.8,不计其它电阻、摩擦力以及拉杆和绳索的质量。
求:(1)CD棒进入磁场时速度v的大小;(2)CD棒进入磁场时所受的安培力F的大小;(3)在拉升CD棒的过程中,健身者所做的功W和电阻产生的焦耳热Q。
17.某同学设计了一个电磁推动加喷气推动的火箭发射装置,如图所示。
竖直固定在绝缘底座上的两根长直光滑导轨,间距为L。
导轨间加有方向垂直导轨平面向里、磁感应强度大小为B的匀强磁场。
绝缘火箭支撑在导轨间,总质量为m,其中燃料质量为m′,燃料室中的金属棒EF的电阻为R,并通过电刷与电阻可忽略的导轨良好接触。
引燃火箭下方的推进剂,迅速推动刚性金属棒CD(电阻可忽略且和导轨接触良好)向上运动,当回路CEFDC面积减少量达到最大值ΔS,用时Δt,此过程激励出强电流,产生电磁推力加速火箭。
在Δt时间内,电阻R上产生的焦耳热使燃料燃烧形成高温高压气体。