2010年高考数学(文)全国卷I
2010年高考新课标全国卷_文科数学(含答案)
2010年普通高等学校招生全国统一考试(新课标全国卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2}D .{0,1,2}2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .23.曲线y =xx +2在点(-1,-1)处的切线方程为( ) A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -24.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )5.已知命题p 1:函数y =2x -2-x在R 为增函数.p 2:函数y =2x +2-x在R 为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 46.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4007.如果执行如图的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.568.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}9.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12C .2D .-210.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2 D .5πa 211.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分1⎰f (x )d x .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分1⎰f (x )d x 的近似值为________.14.正视图为一个三角形的几何体可以是________.(写出三种)解析:正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.15.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________.16.在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 21.(本小题满分12分)设函数f (x )=e x -1-x -ax 2. (1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.请考生在第22、23、24三题中任选一题做答.如果多做,则按所做的第一题记分. 22.(本小题满分10分) 选修4-1:几何证明选讲如图,已知圆上的弧AC =BD ,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ; (2)BC 2=BE ×CD . 23.(本小题满分10分) 选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数).(1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满分10分)选修4-5:不等式选讲 设函数f (x )=|2x -4|+1. (1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.2010年高校招生考试文数(新课标) 试题及答案一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。
2010年浙江高考数学文科试卷带详解
2010年普通高等学校招生全国统一考试(浙江卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设2{|1},{|4},P x x Q x x =<=<则P Q = ( )A.{|12}x x -<<B.{|31}x x -<<-C.{|14}x x <<-D.{|21}x x -<<【测量目标】集合的基本运算.【考查方式】考查了集合的基本运算,给出两集合,用图象法求其交集. 【参考答案】D【试题解析】2422x x ∴<⇒-<<,{}2Q x x ∴=-<<1,{}21P Q x x ∴=-<<,故选D.2.已知函数 2()log (1),f x x =+若()1,f α= α= ( )A.0B.1C.2D.3【测量目标】对数函数的性质.【考查方式】给出对数函数解析式,()f α的值,求未知数α. 【参考答案】B 【试题解析】2()log (1)f αα=+,12α∴+=,故1α=,选B.3.设i 为虚数单位,则5i1i-=+ ( ) A.23i -- B.23i -+ C.23i - D.23i +【测量目标】复数代数形式的四则运算..【考查方式】考查了复数代数形式的四则运算,给出复数,对其进行化简. 【参考答案】C 【试题解析】5i (5i)(1i)46i23i 1i (1i)(1i)2----===-++-,故选C , 4.某程序框图所示,若输出的S=57,则判断框内为 ( )A.4?k >B.5?k >C.6?k >D.7?k > 【测量目标】循环结构的程序框图.【考查方式】给出部分程序框图,输出值,利用与数列有关的简单运算求判断框内的条件. 【参考答案】A【试题解析】程序在运行过程中各变量变化如下表:k S 是否继续循环 循环前 1 1第一次 2 4 是 第二次 3 11 是 第三次 4 26 是 第四次5 57否故4k >.5.设n S 为等比数列{}n a 的前n 项和,2580a a +=则52S S = ( ) A.11- B.8- C.5 D.11 【测量目标】等比数列的通项公式与前n 项和公式. 【考查方式】给出数列中两项关系,求数列的和. 【参考答案】A【试题解析】通过2580a a +=,设公比为q ,将该式转化为08322=+q a a ,解得2q =-,带入所求式可知答案选A.6.设0<x <π2,则“2sin 1x x <”是“sin 1x x <”的 ( ) A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件 【测量目标】充分条件,必要条件,充分必要条件.【考查方式】考查了必要条件、充分条件与充要条件的意义,以及转化思想和处理不等关系的能力.【参考答案】B 【试题解析】π0,sin 12x x <<∴<,故2sin sin x x x x <,结合2sin x x 与sin x x 的取值范围相同,可知答案选B.7.若实数,x y 满足不等式组330,230,10,x y x y x y +-⎧⎪--⎨⎪-+⎩,则x y +的最大值为( ) A.9 B.157 C.1 D.715【测量目标】二元线性规划求目标函数的最值.【考查方式】给出线性规划条件,求最值. 【参考答案】A【试题解析】先根据约束条件画出可行域,设z x y =+,直线z x y =+过可行域内点()4,5A 时z 最大,最大值为9,故选A.8.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是 ( ) A.35233cm B.3203 3cm C.22433cm D.16033cm 【测量目标】由三视图求几何体的体积.【考查方式】考查了对三视图所表示的空间几何体的识别以及几何体体积的计算. 【参考答案】B【试题解析】由三视图知该几何体是一个上面是正方体,下面为正四棱台的组合体,对应的长方体的长、宽、高分别为4、4、2,正四棱台上底边长为4,下底边长为8,高为2,那么相应的体积为:222213204422(4488)33⨯⨯+⨯⨯+++=.故选B.9.已知0x 是函数1()21x f x x=+-的一个零点.若()()10201,,,x x x x ∈∈+∞,则 ( ) A.1()0f x <,2()0f x < B.1()0f x <,2()0f x > C.12()0,()0f x f x >< D.12()0,()0f x f x >>【测量目标】函数零点的应用.【考查方式】考查了数形结合的思想,以及函数零点的概念和零点的判断. 【参考答案】B【试题解析】0x 是1()21xf x x=+-的一个零点,0()0f x ∴=,又1()21x f x x=+-是单调递增函数,且()()10201,,,x x x x ∈∈+∞,102()()0()f x f x f x ∴<=<,故选B.10.设O 为坐标原点,12,F F 是双曲线22221(0,0)x y a b a b-=>>的焦点,若在双曲线上存在点P ,满足∠12F PF =60°,∣OP ∣=7a ,则该双曲线的渐近线方程为 ( ) A.x ±3y 0= B.3x ±y 0= C.x ±2y 0= D.2x ±y 0=【测量目标】双曲线的标准方程及几何性质.【考查方式】给出双曲线的标准方程形式,结合双曲线与直线的关系,求渐进线方程. 【参考答案】D【试题解析】假设1,F P x OP =为12FF P △的中线,根据三角形中线定理可知: 222222(2)2(7)(2)5x a x c a x x a c a ++=+⇒+=+,由余弦定理可知: 22222(2)(2)4(2)142x a x x a x c x x a a c ++-+=⇒+=-,,∴渐进线为20y ±=. 故选D.非选择题部分(共100分)二,填空题:本大题共7小题,每小题4分,共28分.11.在如图所示的茎叶图中,甲、乙两组数据的中位数分别是 、 . 【测量目标】茎叶图及样本数据的基本的数字特征的提取.【考查方式】考查了茎叶图所表达的含义,以及从样本数据中提取数字特征的能力. 【参考答案】45;46【试题解析】由茎叶图中的样本数据可知答案为45;46.12.函数2π()sin (2)4f x x =-的最小正周期是 .【测量目标】三角函数的几何性质,二倍角.【考查方式】给出正弦函数,借助三角恒等变换降幂求周期. 【参考答案】π2【试题解析】对解析式进行降幂扩角,转化为()1π1cos 4222f x x ⎛⎫=--+ ⎪⎝⎭,可知其最小正周期为π2. 13.已知平面向量,,1,2,(2),==⊥-αβαβααβ则2+αβ的值是 .【测量目标】平面向量的数量积、加法、减法及数乘运算. 【考查方式】考查了平面向量的四则运算及其几何意义. 【参考答案】10【试题解析】10,由题意可知()20•-=ααβ,结合2214==,αβ,解得12•=αβ,所以22+=αβ22448210+•+=+=ααββ,开方可知答案为10.14.在如下数表中,已知每行、每列中的树都成等差数列,那么,位于下表中的第n 行、 第1n +列的数是 .【测量目标】等差数列的性质与通项公式.【考查方式】考查了等差数列的概念和通项公式,以及运用等差关系解决问题的能力.【参考答案】2n n +【试题解析】第n 行第一列的数为n ,观察得,第n 行的公差为n ,所以第0n 行的通项公式为()001n n n a n -+=,又因为为第1n +列,故可得答案为n n +2.15.若正实数,x y 满足26x y xy ++=, 则xy 的最小值是 .【测量目标】利用基本不等式求最值.【考查方式】考查了用基本不等式解决最值问题的能力 ,以及换元思想和简单一元二次不等式的解法.【参考答案】18【试题解析】运用基本不等式,26226xy x y xy =+++,令2t xy =,可得22260t t --,注意到t >0,解得t ≥23,故xy 的最小值为18.16. 某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等,若一月至十月份销售总额至少达7000万元,则x 的最小值 .【测量目标】利用不等式求最大(小)值.【考查方式】考查了用一元二次不等式解决实际问题的能力. 【参考答案】20【试题解析】由2386050012(1%)2(1%)7000x x ⎡⎤++⋅++⋅+⎣⎦可得x 的最小值为20.17.在平行四边形ABCD 中,O 是AC 与BD 的交点,P 、Q 、M 、N 、分别是线段OA 、OB 、OC 、OD 的中点,在APMC 中任取一点记为E ,在B 、Q 、N 、D 中任取一点记为F ,设G 为满足向量OG OE OF =+的点,则在上述的点G 组成的集合中的点,落在平行四边形ABCD 外(不含边界)的概率为 . 【测量目标】古典概型的概率.【考查方式】考查了平面向量与古典概型的综合运用. 【参考答案】34【试题解析】由题意知,G 点共有16种取法,而只有E 为P 、M 中一点,F 为Q 、N 中一点时,落在平行四边形内,故符合要求的G 的只有4个,因此概率为43. 三、解答题:本大题共5小题,共72分.解答应写出文字说明、证明过程或演算步骤.18.(本题满分)在ABC △中,角,,A B C 所对的边分别为,,.a b c 设S 为ABC △的面积,满足2223()4S a b c =+-. (Ⅰ)求角C 的大小;(Ⅱ)求sin sin A B +的最大值.【测量目标】余弦定理、正弦函数的性质、两角差的正弦.【考查方式】根据余弦定理求角的大小,利用三角恒等变换化简,确定最大值.【试题解析】 (Ⅰ)解:由题意可知1sin 2cos 24ab C ab C =⋅.∴tan C = (步骤1)0<<πC ,∴π3C =. (步骤2) (Ⅱ)解:由已知得2πsin sin sin sin(π)sin sin()3A B A C A A A +=+--=+-1πsin sin )326A A A A =+=+. (步骤3)当ABC △为正三角形时取等号,∴sin A +sin B . (步骤4)19.(本题满分14分)设1,a d 为实数,首项为1a ,公差为d 的等差数列{}n a 的前n 项和为n S ,满足56150S S +=.(Ⅰ)若55S =,求6S 及1a ;(Ⅱ)求d 的取值范围.【测量目标】等差数列的前n 项和与通项,一元二次不等式.【考查方式】由所给条件列求和公式求解,根据求和公式列一元二次不等式求解. 【试题解析】(Ⅰ)解:由题意知65153S S -==-,6658a S S =-=-, (步骤1) ∴115105,58.a d a d +=⎧⎨+=-⎩ (步骤2)解得17a =,∴613,7S a =-=. (步骤3) (Ⅱ)解:56150,S S +=11(510)(615)150,a d a d ∴+++= (步骤4)即2211291010,a da d +++=∴221(49)8,a d d +=- (步骤5)28,d ∴ (步骤6)∴d 的取值范围为22d-或2 2.d (步骤7)20.(本题满分14分)如图,在平行四边形ABCD 中,2AB BC =,120ABC ∠=.E 为线段AB 的中点,将ADE △沿直线DE 翻折成'A DE △,使平面'A DE ⊥平面BCD ,F 为线段'AC的中点. (Ⅰ)求证:BF ∥平面'A DE ;(Ⅱ)设M 为线段DE 的中点,求直线FM 与平面A DE ‘所成角的余弦值.【测量目标】线面平行的判定,面面垂直的判定,线面角.【考查方式】借助做辅助线,由线线垂直证明线面垂直;借助做辅助线,通过线线垂直得到线面垂直,将线面角转化为三角形中一角,进而求解.【试题解析】 (Ⅰ)证明:取'A D 的中点G ,连接,GF CE ,由条件易知FG ∥CD ,12FG CD =.BE ∥CD ,12BE CD =. (步骤1)∴FG ∥,.BE FG BE = (步骤2)故四边形BEGF 为平行四边形,∴BF ∥EG , (步骤3)又EG ⊂平面'A DE ,BF ⊄平面'A DE∴BF //平面'A DE (步骤4)(Ⅱ)解:在平行四边形ABCD 中,设BC a =, 则2,,AB CD a AD AE EB a ===== (步骤5) 连接CE ,120ABC ∠=在BCE △中,可得3,CE a =(步骤6)在ADE △中,可得,DE a = (步骤7) 在CDE △中,222,CD CE DE =+CE DE ∴⊥. (步骤8)在正'A DE △中,M 为DE 中点,∴'AM DE ⊥. (步骤9)由平面'A DE ⊥平面BCD ,可知'AM ⊥平面',BCD A M CE ⊥. (步骤10)取'A E 的中点N ,连线NM 、NF ,∴',NF DE NF A M ⊥⊥. (步骤11)DE 交'AM于M ,∴NF ⊥平面'A DE , (步骤12)则FMN ∠为直线FM 与平面'A DE 所成角.在Rt FMN △中,NF a , M N =12a , FM =a , 则1cos 2FMN ∠=, (步骤13) ∴直线FM 与平面'A DE 所成角的余弦值为12. (步骤14)21.(本题满分15分)已知函数2()()f x x a =-()a b -(,R,)a b a b ∈<.(I )当1,2a b ==时,求曲线()y f x =在点(2,()f x )处的切线方程.(II )设12,x x 是()f x 的两个极值点,3x 是()f x 的一个零点,且31x x ≠,32x x ≠. 证明:存在实数4x ,使得1234,,,x x x x 按某种顺序排列后的等差数列,并求4x .【测量目标】函数的几何意义、导数的应用、曲线的切线方程、等差数列的等差中项.【考查方式】根据导数的几何意义求切线方程,利用导数与极值关系,求极值点,并根据等差数列的概念证明.【试题解析】(Ⅰ)解:当1,2a b ==时,'()(1)(35)f x x x =--∴'(2)1,(2)0f f ==, (步骤1)∴()f x 在点()2,0处的切线方程为2y x =-. (步骤2)(Ⅱ)证明:'2()3()(),3a bf x x a x +=--由于a b <,.故23a ba +<. ∴()f x 的两个极值点为x =a ,x =23a b+. (步骤3) 不妨设x 1=a ,x 2=23a b+, x 3≠x 1,x 3≠x 2,且x 3是f (x )的零点,∴x 3=b . (步骤4)又23a b +-a =2(b -23a b+),x 4=12(a +23a b +)=23a b +,∴a ,23a b +,23a b +,b 依次成等差数列, (步骤5)∴存在实数x 4满足题意,且x 4=23a b+. (步骤6)22.(本题满分15分)已知m 是非零实数,抛物线2:2C y ps =(0)p >的焦点F 在直线2:02m l x my --=上. (I )若2m =,求抛物线C 的方程(II )设直线l 与抛物线C 交于A 、B ,2AA F △,1BB F △的重心 分别为,G H .求证:对任意非零实数m ,抛物线C 的准线与x 轴的焦点在以线段GH 为直径的圆外. 【测量目标】抛物线的简单几何性质,直线与抛物线、点与圆的位置关系. 【考查方式】根据抛物线的几何性质及直线与抛物线的位置关系求解,利用直线与抛物线的位置关系、不等式的综合应用证明. 【试题解析】(Ⅰ)解:焦点(,0)2PF 在直线l 上,∴2p m = (步骤1) 又2m =,∴4p =∴抛物线C 的方程为222y m x = ,则抛物线C 的方程为28y x =. (步骤2)(Ⅱ)设1122(,),(,)A x y B x y ,由222,22,m x my y m x ⎧=+⎪⎨⎪=⎩消去x 得23420,y m y m --=m≠,∴∆64440m m+>=,且有3412122,y y m y y m+==-,(步骤3)设12,M M分别为线段11,AA BB的中点,由于122G,2,M C F M H HF==可知112(,)33x yG,222(,)33x yH,∴2421212(),6636x x m y y m m m+++==+312222,63y y m+=(步骤4)∴GH的中点4222,363m m mM⎛⎫+⎪⎝⎭. (步骤5)设R是以线段GH为直径的圆的半径,则2222211||(4)(1)49R GH m m m==++(步骤6)设抛物线的标准线与x轴交点2(,0)2mN-,则2423222||()2363m m m mMN⎛⎫=+++⎪⎝⎭442422222221(84)91(1)(4)391(1)(4)9m m mm m m mm m m R=++⎡⎤=+++⎣⎦>++=(步骤7)∴N在以线段GH为直径的圆外. (步骤8)。
2010年高考数学天津(文)(word版含答案)
x
s 1
i 1
s s (3 i) 1
i i 1
(A) ( 2, 1) (B) ( 1,0) (C) (0,1) (D) (1,2) (5)下列命题中,真命题的是 (A) m R ,使函数 f ( x) x mx( x R) 是偶函数
(9)如图,在△ABC 中,AD AB, BC 3 BD , AD 1 ,则 AC AD A (A) 2 3 (B)
3 2
(C)
3 3
(D)
3
B D C
(10)设函数 g ( x) x2 2( x R) , f ( x)
g ( x) x 4,x g ( x), 则 f ( x ) 的值域是 g ( x) x, x ≥ g ( x).
1 2 侧视图
2 1 俯视图 .
(14)已知圆 C 的圆心是直线 x y 1 0 与 x 轴的交点, 且圆 C 与直线 x y 3 0 相切.则圆 C 的方程为 ( 15 )设 an 是等比数列,公比 q
2 , Sn 为 an 的前 n 项和,记 Tn
.
17 Sn S2 n , an 1
2
(A) a c b
(B) b c a
(C) a b c
(D) b a c
(7)设集合 A x x a 1,x R , B x 1 x 5,x R ,若 A∩B = ,则实 数 a 的取值范围是 (A) a 0 ≤ a ≤ 6
2010年高考数学新课标(文)(word版含答案)
□ABCD 的内部,则 z 2 x 5 y 的取值范围是
(A) ( 14,16) (B) ( 14,20) (C) ( 12,18) (D) ( 12,20)
| lg x | , 0 x ≤10, (12) 已知函数 f ( x) 1 若 a, b, c 互不相等, 且 f (a) f (b) f (c) , x 6. x 10. 2
1] 上 的 图 像 是 连 续 不 断 的 一 条 曲 线 , 且 恒 有 ( 14 ) 设 函 数 y f ( x) 为 区 间 [0,
可以用随机模拟方法近似计算由曲线 y f ( x) 及直线 x 0 ,x 1 ,y 0 0 ≤ f x ≤1,
1] 上的均匀随机数 x1,x2, ,xN 和 所围成部分的面积 S , 先产生两组 (每组 N 个) 区间 [0,
(A)
k 1,S 0
SS
1 k (k 1)
是
k k 1
kN
否
输出S
结束
(9)设偶函数 f ( x ) 满足 f ( x) 2x 4 ( x ≥ 0 ),则 x f x 2 0 = (A) x x 2或x 4 (C) x x 0或x 6 (10)若 cos = (A)
y1,y2, ,yN , 由 此 得 到 N 个 点 xi,yi i 1 , 2, ,N . 再 数 出 其 中 满 足
y1 ≤ f ( xi )(i 1 , 2, ,N ) 的点数 N1 ,那么由随机模拟方法可得 S 的近似值为
(15)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的 入所有可能的几何体前的编号) ① 三棱锥 ② 四棱锥 ③ 三棱柱 ④ 四棱柱 ⑤ 圆锥 ⑥ 圆柱
2010年高考数学试题及答案(全国卷文数3套)
2010年全国统一高考数学试卷(文科)(全国新课标)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2} 2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.24.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2 5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa28.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:男女性别是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P(K2≥k)0.0500.0100.001 k 3.841 6.63510.828附:K2=.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b 的值.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x )的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.2010年全国统一高考数学试卷(文科)(全国新课标)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2010•全国新课标)已知集合A={x||x|≤2,x∈R},B={x|≤4,x∈Z},则A ∩B=()A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}【分析】由题意可得A={x|﹣2≤x≤2},B={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16},从而可求【解答】解:∵A={x||x|≤2}={x|﹣2≤x≤2}B={x|≤4,x∈Z}={0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16}则A∩B={0,1,2}故选:D.【点评】本题主要考查了集合的交集的求解,解题的关键是准确求解A,B,属于基础试题2.(5分)(2010•全国新课标)平面向量,已知=(4,3),=(3,18),则夹角的余弦值等于()A.B.C.D.【分析】先设出的坐标,根据a=(4,3),2a+b=(3,18),求出坐标,根据数量积的坐标公式的变形公式,求出两个向量的夹角的余弦【解答】解:设=(x,y),∵a=(4,3),2a+b=(3,18),∴∴cosθ==,故选:C.【点评】本题是用数量积的变形公式求向量夹角的余弦值,数量积的主要应用:①求模长;②求夹角;③判垂直,实际上在数量积公式中可以做到知三求一.3.(5分)(2010•全国新课标)已知复数Z=,则|z|=()A.B.C.1D.2【分析】由复数的代数形式的乘除运算化简可得Z=,由复数的模长公式可得答案.【解答】解:化简得Z===•=•=•=,故|z|==,故选:B.【点评】本题考查复数的代数形式的乘除运算,涉及复数的模长,属基础题.4.(5分)(2010•全国新课标)曲线y=x3﹣2x+1在点(1,0)处的切线方程为()A.y=x﹣1B.y=﹣x+1C.y=2x﹣2D.y=﹣2x+2【分析】欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.【解答】解:验证知,点(1,0)在曲线上∵y=x3﹣2x+1,y′=3x2﹣2,所以k=y′|x﹣1=1,得切线的斜率为1,所以k=1;所以曲线y=f(x)在点(1,0)处的切线方程为:y﹣0=1×(x﹣1),即y=x﹣1.故选:A.【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力.属于基础题.5.(5分)(2010•全国新课标)中心在原点,焦点在x轴上的双曲线的一条渐近线经过点(4,2),则它的离心率为()A.B.C.D.【分析】先求渐近线斜率,再用c2=a2+b2求离心率.【解答】解:∵渐近线的方程是y=±x,∴2=•4,=,a=2b,c==a,e==,即它的离心率为.故选:D.【点评】本题考查双曲线的几何性质.6.(5分)(2010•全国新课标)如图,质点P在半径为2的圆周上逆时针运动,其初始位置为P0(,﹣),角速度为1,那么点P到x轴距离d关于时间t的函数图象大致为()A.B.C.D.【分析】本题的求解可以利用排除法,根据某具体时刻点P的位置到到x轴距离来确定答案.【解答】解:通过分析可知当t=0时,点P到x轴距离d为,于是可以排除答案A,D,再根据当时,可知点P在x轴上此时点P到x轴距离d为0,排除答案B,故选:C.【点评】本题主要考查了函数的图象,以及排除法的应用和数形结合的思想,属于基础题.7.(5分)(2010•全国新课标)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为()A.3πa2B.6πa2C.12πa2D.24πa2【分析】本题考查的知识点是球的体积和表面积公式,由长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则长方体的对角线即为球的直径,即球的半径R满足(2R)2=6a2,代入球的表面积公式,S=4πR2,即可得到答案.球【解答】解:根据题意球的半径R满足(2R)2=6a2,所以S=4πR2=6πa2.球故选:B.【点评】长方体的外接球直径等于长方体的对角线长.8.(5分)(2010•全国新课标)如果执行如图的框图,输入N=5,则输出的数等于()A.B.C.D.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.【解答】解:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=的值.∵S==1﹣=故选:D.【点评】根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是::①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.9.(5分)(2010•全国新课标)设偶函数f(x)满足f(x)=2x﹣4(x≥0),则{x|f(x﹣2)>0}=()A.{x|x<﹣2或x>4}B.{x|x<0或x>4}C.{x|x<0或x>6}D.{x|x<﹣2或x>2}【分析】由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,根据偶函数的性质将函数转化为绝对值函数,再求解不等式,可得答案.【解答】解:由偶函数f(x)满足f(x)=2x﹣4(x≥0),可得f(x)=f(|x|)=2|x|﹣4,则f(x﹣2)=f(|x﹣2|)=2|x﹣2|﹣4,要使f(|x﹣2|)>0,只需2|x﹣2|﹣4>0,|x﹣2|>2解得x>4,或x<0.应选:B.【点评】本题主要考查偶函数性质、不等式的解法以及相应的运算能力,解答本题的关键是利用偶函数的性质将函数转化为绝对值函数,从而简化计算.10.(5分)(2010•全国新课标)若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.【分析】根据α的所在的象限以及同角三角函数的基本关系求得sinα的值,进而利用两角和与差的正弦函数求得答案.【解答】解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.【点评】本题主要考查了两角和与差的正弦函数,以及同角三角函数的基本关系的应用.根据角所在的象限判断三角函数值的正负是做题过程中需要注意的.11.(5分)(2010•全国新课标)已知▱ABCD的三个顶点为A(﹣1,2),B(3,4),C(4,﹣2),点(x,y)在▱ABCD的内部,则z=2x﹣5y的取值范围是()A.(﹣14,16)B.(﹣14,20)C.(﹣12,18)D.(﹣12,20)【分析】根据点坐标与向量坐标之间的关系,利用向量相等求出顶点D的坐标是解决问题的关键.结合线性规划的知识平移直线求出目标函数的取值范围.【解答】解:由已知条件得⇒D(0,﹣4),由z=2x﹣5y得y=,平移直线当直线经过点B(3,4)时,﹣最大,即z取最小为﹣14;当直线经过点D(0,﹣4)时,﹣最小,即z取最大为20,又由于点(x,y)在四边形的内部,故z∈(﹣14,20).如图:故选B.【点评】本题考查平行四边形的顶点之间的关系,用到向量坐标与点坐标之间的关系,体现了向量的工具作用,考查学生线性规划的理解和认识,考查学生的数形结合思想.属于基本题型.12.(5分)(2010•全国新课标)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则abc的取值范围是()A.(1,10)B.(5,6)C.(10,12)D.(20,24)【分析】画出函数的图象,根据f(a)=f(b)=f(c),不妨a<b<c,求出abc的范围即可.【解答】解:作出函数f(x)的图象如图,不妨设a<b<c,则ab=1,则abc=c∈(10,12).故选:C.【点评】本题主要考查分段函数、对数的运算性质以及利用数形结合解决问题的能力.二、填空题:本大题共4小题,每小题5分.13.(5分)(2010•全国新课标)圆心在原点上与直线x+y﹣2=0相切的圆的方程为x2+y2=2.【分析】可求圆的圆心到直线的距离,就是半径,写出圆的方程.【解答】解:圆心到直线的距离:r=,所求圆的方程为x2+y2=2.故答案为:x2+y2=2【点评】本题考查圆的标准方程,直线与圆的位置关系,是基础题.14.(5分)(2010•全国新课标)设函数y=f(x)为区间(0,1]上的图象是连续不断的一条曲线,且恒有0≤f(x)≤1,可以用随机模拟方法计算由曲线y=f(x)及直线x=0,x =1,y=0所围成部分的面积S,先产生两组(每组N个),区间(0,1]上的均匀随机数x1,x2,…,x n和y1,y2,…,y n,由此得到N个点(x,y)(i﹣1,2…,N).再数出其中满足y1≤f(x)(i=1,2…,N)的点数N1,那么由随机模拟方法可得S的近似值为.【分析】由题意知本题是求∫01f(x)dx,而它的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,积分得到结果.【解答】解:方法一:∵∫01f(x)dx的几何意义是函数f(x)(其中0≤f(x)≤1)的图象与x轴、直线x=0和直线x=1所围成图形的面积,∴根据几何概型易知∫01f(x)dx≈.方法二:这种随机模拟的方法是在[0,1]内生成了N个点,而满足几条曲线围成的区域内的点是N1个,所以根据比例关系=,而正方形的面积为1,所以随机模拟方法得到的面积为.故答案为:.【点评】古典概型和几何概型是我们学习的两大概型,古典概型要求能够列举出所有事件和发生事件的个数,而不能列举的就是几何概型,几何概型的概率的值是通过长度、面积和体积的比值得到.15.(5分)(2010•全国新课标)一个几何体的正视图为一个三角形,则这个几何体可能是下列几何体中的①②③⑤(填入所有可能的几何体前的编号)①三棱锥②四棱锥③三棱柱④四棱柱⑤圆锥⑥圆柱.【分析】一个几何体的正视图为一个三角形,由三视图的正视图的作法判断选项.【解答】解:一个几何体的正视图为一个三角形,显然①②⑤正确;③是三棱柱放倒时也正确;④⑥不论怎样放置正视图都不会是三角形;故答案为:①②③⑤【点评】本题考查简单几何体的三视图,考查空间想象能力,是基础题.16.(5分)(2010•全国新课标)在△ABC中,D为BC边上一点,BC=3BD,AD=,∠ADB=135°.若AC=AB,则BD=2+.【分析】先利用余弦定理可分别表示出AB,AC,把已知条件代入整理,根据BC=3BD 推断出CD=2BD,进而整理AC2=CD2+2﹣2CD得AC2=4BD2+2﹣4BD把AC=AB,代入整理,最后联立方程消去AB求得BD的方程求得BD.【解答】用余弦定理求得AB2=BD2+AD2﹣2AD•BD cos135°AC2=CD2+AD2﹣2AD•CD cos45°即AB2=BD2+2+2BD①AC2=CD2+2﹣2CD②又BC=3BD所以CD=2BD所以由(2)得AC2=4BD2+2﹣4BD(3)因为AC=AB所以由(3)得2AB2=4BD2+2﹣4BD(4)(4)﹣2(1)BD2﹣4BD﹣1=0求得BD=2+故答案为:2+【点评】本题主要考查了余弦定理的应用.考查了学生创造性思维能力和基本的推理能力.三、解答题:解答应写出文字说明,证明过程或演算步骤.17.(10分)(2010•全国新课标)设等差数列{a n}满足a3=5,a10=﹣9.(Ⅰ)求{a n}的通项公式;(Ⅱ)求{a n}的前n项和S n及使得S n最大的序号n的值.【分析】(1)设出首项和公差,根据a3=5,a10=﹣9,列出关于首项和公差的二元一次方程组,解方程组得到首项和公差,写出通项.(2)由上面得到的首项和公差,写出数列{a n}的前n项和,整理成关于n的一元二次函数,二次项为负数求出最值.【解答】解:(1)由a n=a1+(n﹣1)d及a3=5,a10=﹣9得a1+9d=﹣9,a1+2d=5解得d=﹣2,a1=9,数列{a n}的通项公式为a n=11﹣2n(2)由(1)知S n=na1+d=10n﹣n2.因为S n=﹣(n﹣5)2+25.所以n=5时,S n取得最大值.【点评】数列可看作一个定义域是正整数集或它的有限子集的函数,当自变量从小到大依次取值对应的一列函数值,因此它具备函数的特性.18.(10分)(2010•全国新课标)如图,已知四棱锥P﹣ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高.(Ⅰ)证明:平面PAC⊥平面PBD;(Ⅱ)若AB=,∠APB=∠ADB=60°,求四棱锥P﹣ABCD的体积.【分析】(Ⅰ)要证平面PAC⊥平面PBD,只需证明平面PAC内的直线AC,垂直平面PBD内的两条相交直线PH,BD即可.(Ⅱ),∠APB=∠ADB=60°,计算等腰梯形ABCD的面积,PH是棱锥的高,然后求四棱锥P﹣ABCD的体积.【解答】解:(1)因为PH是四棱锥P﹣ABCD的高.所以AC⊥PH,又AC⊥BD,PH,BD都在平PHD内,且PH∩BD=H.所以AC⊥平面PBD.故平面PAC⊥平面PBD(6分)(2)因为ABCD为等腰梯形,AB∥CD,AC⊥BD,AB=.所以HA=HB=.因为∠APB=∠ADB=60°所以PA=PB=,HD=HC=1.可得PH=.等腰梯形ABCD的面积为S=ACxBD=2+(9分)所以四棱锥的体积为V=×(2+)×=.(12分)【点评】本题考查平面与平面垂直的判定,棱柱、棱锥、棱台的体积,考查空间想象能力,计算能力,推理能力,是中档题.19.(10分)(2010•全国新课标)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如表:性别是否需要志愿者男女需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中需要志愿者提供帮助的老年人比例?说明理由.P (K 2≥k )0.0500.0100.001k3.8416.63510.828附:K 2=.【分析】(1)由样本的频率率估计总体的概率,(2)求K 2的观测值查表,下结论;(3)由99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关,则可按性别分层抽样.【解答】解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此在该地区老年人中,需要帮助的老年人的比例的估计值为(2)K 2的观测值因为9.967>6.635,且P (K 2≥6.635)=0.01,所以有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关.(3)根据(2)的结论可知,该地区的老年人是否需要志愿者提供帮助与性别有关,并且从样本数据能够看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男女两层,并采取分层抽样方法比简单随机抽样方法更好.【点评】本题考查了抽样的目的,独立性检验的方法及抽样的方法选取,属于基础题.20.(10分)(2010•全国新课标)设F1,F2分别是椭圆E:x2+=1(0<b<1)的左、右焦点,过F1的直线l与E相交于A、B两点,且|AF2|,|AB|,|BF2|成等差数列.(Ⅰ)求|AB|;(Ⅱ)若直线l的斜率为1,求b的值.【分析】(1)由椭圆定义知|AF2|+|AB|+|BF2|=4,再由|AF2|,|AB|,|BF2|成等差数列,能够求出|AB|的值.(2)L的方程式为y=x+c,其中,设A(x1,y1),B(x1,y1),则A,B两点坐标满足方程组,化简得(1+b2)x2+2cx+1﹣2b2=0.然后结合题设条件和根与系数的关系能够求出b的大小.【解答】解:(1)由椭圆定义知|AF2|+|AB|+|BF2|=4又2|AB|=|AF2|+|BF2|,得(2)L的方程式为y=x+c,其中设A(x1,y1),B(x2,y2),则A,B两点坐标满足方程组.,化简得(1+b2)x2+2cx+1﹣2b2=0.则.因为直线AB的斜率为1,所以即.则.解得.【点评】本题综合考查椭圆的性质及其运用和直线与椭圆的位置关系,解题时要注意公式的灵活运用.21.(2010•全国新课标)设函数f(x)=x(e x﹣1)﹣ax2(Ⅰ)若a=,求f(x)的单调区间;(Ⅱ)若当x≥0时f(x)≥0,求a的取值范围.【分析】(I)求导函数,由导数的正负可得函数的单调区间;(II)f(x)=x(e x﹣1﹣ax),令g(x)=e x﹣1﹣ax,分类讨论,确定g(x)的正负,即可求得a的取值范围.【解答】解:(I)a=时,f(x)=x(e x﹣1)﹣x2,=(e x ﹣1)(x+1)令f′(x)>0,可得x<﹣1或x>0;令f′(x)<0,可得﹣1<x<0;∴函数的单调增区间是(﹣∞,﹣1),(0,+∞);单调减区间为(﹣1,0);(II)f(x)=x(e x﹣1﹣ax).令g(x)=e x﹣1﹣ax,则g'(x)=e x﹣a.若a≤1,则当x∈(0,+∞)时,g'(x)>0,g(x)为增函数,而g(0)=0,从而当x≥0时g(x)≥0,即f(x)≥0.若a>1,则当x∈(0,lna)时,g'(x)<0,g(x)为减函数,而g(0)=0,从而当x∈(0,lna)时,g(x)<0,即f(x)<0.综合得a的取值范围为(﹣∞,1].另解:当x=0时,f(x)=0成立;当x>0,可得e x﹣1﹣ax≥0,即有a≤的最小值,由y=e x﹣x﹣1的导数为y′=e x﹣1,当x>0时,函数y递增;x<0时,函数递减,可得函数y取得最小值0,即e x﹣x﹣1≥0,x>0时,可得≥1,则a≤1.【点评】本题考查导数知识的运用,考查函数的单调性,考查分类讨论的数学思想,属于中档题.22.(10分)(2010•全国新课标)如图:已知圆上的弧,过C点的圆的切线与BA的延长线交于E点,证明:(Ⅰ)∠ACE=∠BCD.(Ⅱ)BC2=BE•CD.【分析】(I)先根据题中条件:“”,得∠BCD=∠ABC.再根据EC是圆的切线,得到∠ACE=∠ABC,从而即可得出结论.(II)欲证BC2=BE x CD.即证.故只须证明△BDC~△ECB即可.【解答】解:(Ⅰ)因为,所以∠BCD=∠ABC.又因为EC与圆相切于点C,故∠ACE=∠ABC所以∠ACE=∠BCD.(5分)(Ⅱ)因为∠ECB=∠CDB,∠EBC=∠BCD,所以△BDC~△ECB,故.即BC2=BE×CD.(10分)【点评】本题主要考查圆的切线的判定定理的证明、弦切角的应用、三角形相似等基础知识,考查运化归与转化思想.属于基础题.23.(10分)(2010•全国新课标)已知直线C1(t为参数),C2(θ为参数),(Ⅰ)当α=时,求C1与C2的交点坐标;(Ⅱ)过坐标原点O做C1的垂线,垂足为A,P为OA中点,当α变化时,求P点的轨迹的参数方程,并指出它是什么曲线.【分析】(I)先消去参数将曲线C1与C2的参数方程化成普通方程,再联立方程组求出交点坐标即可,(II)设P(x,y),利用中点坐标公式得P点轨迹的参数方程,消去参数即得普通方程,由普通方程即可看出其是什么类型的曲线.【解答】解:(Ⅰ)当α=时,C1的普通方程为,C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0).(Ⅱ)C1的普通方程为x sinα﹣y cosα﹣sinα=0①.则OA的方程为x cosα+y sinα=0②,联立①②可得x=sin2α,y=﹣cosαsinα;A点坐标为(sin2α,﹣cosαsinα),故当α变化时,P点轨迹的参数方程为:,P点轨迹的普通方程.故P点轨迹是圆心为,半径为的圆.【点评】本题主要考查直线与圆的参数方程,参数方程与普通方程的互化,利用参数方程研究轨迹问题的能力.24.(10分)(2010•全国新课标)设函数f(x)=|2x﹣4|+1.(Ⅰ)画出函数y=f(x)的图象:(Ⅱ)若不等式f(x)≤ax的解集非空,求a的取值范围.【分析】(I)先讨论x的范围,将函数f(x)写成分段函数,然后根据分段函数分段画出函数的图象即可;(II)根据函数y=f(x)与函数y=ax的图象可知先寻找满足f(x)≤ax的零界情况,从而求出a的范围.【解答】解:(Ⅰ)由于f(x)=,函数y=f(x)的图象如图所示.(Ⅱ)由函数y=f(x)与函数y=ax的图象可知,极小值在点(2,1)当且仅当a<﹣2或a≥时,函数y=f(x)与函数y=ax的图象有交点.故不等式f(x)≤ax的解集非空时,a的取值范围为(﹣∞,﹣2)∪[,+∞).【点评】本题主要考查了函数的图象,以及利用函数图象解不等式,同时考查了数形结合的数学思想,属于基础题.2010年全国统一高考数学试卷(文科)(全国大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•全国大纲版Ⅰ)cos300°=()A.B.﹣C.D.2.(5分)(2010•全国大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}3.(5分)(2010•全国大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.14.(5分)(2010•全国大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.5.(5分)(2010•全国大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.36.(5分)(2010•全国大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°7.(5分)(2010•全国大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)8.(5分)(2010•全国大纲版Ⅰ)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2B.4C.6D.89.(5分)(2010•全国大纲版Ⅰ)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.(5分)(2010•全国大纲版Ⅰ)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a 11.(5分)(2010•全国大纲版Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B 为两切点,那么的最小值为()A.B.C.D.12.(5分)(2010•全国大纲版Ⅰ)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•全国大纲版Ⅰ)不等式的解集是.14.(5分)(2010•全国大纲版Ⅰ)已知α为第二象限角,sinα=,则tan2α=.15.(5分)(2010•全国大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)16.(5分)(2010•全国大纲版Ⅰ)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)(2010•全国大纲版Ⅰ)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.18.(12分)(2010•全国大纲版Ⅰ)已知△ABC的内角A,B及其对边a,b满足a+b=a cot A+b cot B,求内角C.19.(12分)(2010•全国大纲版Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(12分)(2010•全国大纲版Ⅰ)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.21.(12分)(2010•全国大纲版Ⅰ)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.22.(12分)(2010•全国大纲版Ⅰ)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.2010年全国统一高考数学试卷(文科)(全国大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•全国大纲版Ⅰ)cos300°=()A.B.﹣C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选:C.【点评】本小题主要考查诱导公式、特殊三角函数值等三角函数知识.2.(5分)(2010•全国大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【分析】根据补集意义先求∁U M,再根据交集的意义求N∩(∁U M).【解答】解:(∁U M)={2,3,5},N={1,3,5},则N∩(∁U M)={1,3,5}∩{2,3,5}={3,5}.故选:C.【点评】本小题主要考查集合的概念、集合运算等集合有关知识,属容易题.3.(5分)(2010•全国大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4B.3C.2D.1【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y 轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.【点评】本小题主要考查线性规划知识、作图、识图能力及计算能力,以及利用几何意义求最值,属于基础题.4.(5分)(2010•全国大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7C.6D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选:A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.5.(5分)(2010•全国大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6B.﹣3C.0D.3【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选:A.【点评】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.6.(5分)(2010•全国大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选:C.【点评】本小题主要考查直三棱柱ABC﹣A1B1C1的性质、异面直线所成的角、异面直线所成的角的求法,考查转化思想,属于基础题.7.(5分)(2010•全国大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f(b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0。
2010年高考新课标全国卷理科数学试题(附答案)
2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。
(1)已知集合A{xR|x |2}},B{xZ|x4},则AB(A)(0,2)(B)[0,2](C){0,2](D){0,1,2} (2)已知复数 z3i2 (13i) ,z 是z 的共轭复数,则zz=(A)1 4(B)1 2(C)1(D)2x在点(1,1)处的切线方程为 (3)曲线yx2(A)y2x1(B)y2x1(C)y2x3(D)y2x2(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为d 2 tOπ 4ABCD(5)已知命题xxp :函数y22在R 为增函数, 1xxp :函数y22在R 为减函数, 2则在命题 q :p 1p 2,q 2:p 1p 2,q 3:p 1p 2和q 4:p 1p 2中,真命1 题是(A ) q ,1 q (B ) 3 q , 2 q (C ) 3 q , 1 q (D ) 4q , 2 q4(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再 补种2粒,补种的种子数记为X ,则X 的数学期望为 开始 (A)100(B )200 输入N (C)300(D )400k=1,S=0 (7)如果执行右面的框图,输入N5,则输出的数等于(A) 5 4 (B )4 5(C) 6 5 (D )5 61S=S+k(k+1) k<N 否 输出Sk=k+1 是(8)设偶函数f(x)满足 3 f(x)x8(x0),结束则{x|f(x 2)0}(A){x |x2或x4}(B){x |x0或x4} (C){x |x0或x6}(D){x |x2或x2}(9)若cos 45 ,是第三象限的角,则 1tan 1tan2 2(A)1 2(B)1 2(C)2(D)2(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为(A) 2 a(B)7 3 2 a(C)11 3 2 a(D)2 5a|lgx|,0x10,(11)已知函数 f x ()12x6,x10.若a,b,c 互不相等,且f(a)f(b)f(c),则abc 的取值范围是(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)(12)已知双曲线E 的中心为原点,P(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (12,15),则E 的方程式为(A) 22 xy 36 1 (B) 22 xy 45 1 (C) 22 xy 63 1 (D) 22 xy 541第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都 必须做答,第(22)题~第(24)题为选考题,考试求做答。
2010年全国高考文科数学试题及答案-安徽
2010年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试题卷分选择题和非选择题两部分。
全卷共5页,选择题部分1至2页,非选择题部分3至5页。
满分150分,考试时间120分钟。
参考公式:如果事件A ,B 互斥,那么 P (A +B )=P A+P B. 如果事件A ,B 相互独立,那么 P (A ·B )=P A·P B.如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率k n k k n n P P C k P --=)1()(),,2,1,0(n k =台体的体积公式)(312211S S S S h V ++=,其中1S ,2S 分别表示台体的上、下底面积,h 表示台体的高柱体的体积公式 Sh V =,其中S 表示柱体的底面积,h 表示柱体的高 锥体的体积公式Sh V 31=,其中S 表示锥体的底面积,h 表示锥体的高球的表面积公式24R S π= 球的体积公式334R V π=,其中R 表示球的半径第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.1.若A={}|10x x +>,B={}|30x x -<,则A B = ( ) A.(-1,+∞) B.(-∞,3) C.(-1,3) D.(1,3)2.已知21i =-,则i(1-)= ( )A.i i C.i D.i3.设向量(1,0)a =,11(,)22b =,则下列结论中正确的是 ( )A.a b =B.2a b ⋅=B.//a b D.a b -与b 垂直4.过点(1,0)且与直线x-2y-2=0平行的直线方程是 ( ) A.x-2y-1=0 B.x-2y+1=0 B.2x+y-2=0 D.x+2y-1=05.设数列{}n a 的前n 项和2n S n =,则8a 的值为A. 15B. 16 B. 49 D.64 6.设0abc >,二次函数2()f x ax bx c =++的图像可能是A. B.C. D.7.设2535a ⎛⎫= ⎪⎝⎭,3525b ⎛⎫= ⎪⎝⎭,2525c ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系是 ( )A. a c b >>B.a b c >>C. c a b >>D. b c a >>8.设x,y 满足约束条件260,260,0,x y x y y +-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z x y =+的最大值是( )A.3B. 4 (C ) 6 D.8 9.一个几何体的三视图如图,该几何体的表面积是 ( )A.372 C.292B.360 D.28010.甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( )A.318B.418C.518D.618第Ⅱ卷(非选择题 共100分)二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置· 11.命题“存在x ∈R ,使得x 2+2x+5=0”的否定是 12.抛物线y 2=8x 的焦点坐标是13.如图所示,程序框图(算法流程图)的输出值x= .14.某地有居民100 000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .15.若0,0,2a b a b >>+=,则下列不等式对一切满足条件的,a b 恒成立的是 . (写出所有正确命题的编号).①1ab ≤; ≤ ③ 222a b +≥;④333a b +≥; ⑤112ab+≥三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤. 16. (本小题满分12分)A B C ∆的面积是30,内角,,A B C 所对边长分别为,,a b c ,12cos 13A =.(Ⅰ)求AB AC ⋅ ;(Ⅱ)若1c b -=,求a 的值.17. (本小题满分12分)椭圆E 经过点()2,3A ,对称轴为坐标轴,焦点12,F F 在x 轴上,离心率12e =.(Ⅰ)求椭圆E 的方程;(Ⅱ)求12F AF ∠的角平分线所在直线的方程。
2010年高考数学湖北(文)(word版含答案)
17.(本小题满分 12 分) 为了了解一个小水库中养殖的鱼的有关情况,从这个水库中多个不同位置捕捞出 100 条鱼,称得每条鱼的质量(单位:千克) ,并将所得数据分组,画出频率分布直方图(如图 所示) . (Ⅰ)在答题卡上的表格中填写相应的频率; (Ⅱ)估计数据落在[1.15,1.30 )中的概率为多少; (Ⅲ)将上面捕捞的 100 条鱼分别作一记号后再放回水库,几天后再从水库的多处不同 位置捕捞出 120 条鱼, 其中带有记号的鱼有 6 条. 请根据这一情况来估计该水库中的鱼的总 条数. 频率/组距 6 5.6 5 4 3 2 1 0.4 1.00 1.05 1.10 1.15 1.20 1.25 1.30
2010 年普通高等学校招生全国统一考试(湖北卷) 数 学(文史类)
本试题卷共 4 页,三大题 21 小题.全卷满分 150 分.考试用时 120 分钟. ★祝考试顺利★ 注意事项: 1.答题前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证 号条形码粘贴在答题卡上的指定位置.用 2B 铅笔将答题卡上试卷类型 A(或 B)后的方框 涂黑. 2.选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂 黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷、草稿纸上无效. 3.填空题和解答题用 0.5 毫米黑色墨水签字笔将答案直接答在答题卡上对应的答题区 域内.答在试题卷、草稿纸上无效. 4.考生必须保持答题卡的整洁.考试结束后,请将本试题卷和答题卡一并上交. 一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有 一项是符合题目要求的. 1.设集合 M={1,2,4,8},N={ x | x 是 2 的倍数},则 M A.{2,4} 2.函数 f ( x ) = 3 sin A. B.{1,2,4} C.{2,4,8}
2010年全国1卷高考数学(含答案)
绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项: 1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码.请认真核准条形码的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........3.第I 卷共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.参考公式:如果事件A 、B 互斥,那么 球的表面积公式P (A +B )=P (A )+P (B ) 24R S π= 如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么 334R V π=球n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n k kn n P P C k P --=)1()(一、选择题 (1)复数=-+i i3223(A )i(B )i - (C )i 1312- (D )i 1312+ (2)记k =︒-)80cos(,那么=︒100tan(A )k k 21-(B )-kk 21- (C )21kk - (D )-21kk -(3)若变量y x ,满足约束条件⎪⎩⎪⎨⎧≤--≥+≤.02,0,1y x y x y 则y x z 2-=的最大值为 (A )4 (B )3 (C )2 (D )1(4)已知各项均为正数的等比数列}{n a 中,634987321,10,5a a a a a a a a a 则===(A )25(B )7(C )6(D )24(5)533)1()21(x x -+的展开式中x 的系数是(A )-4 (B )-2 (C )2 (D )4(6)某校开设A 类选修课3门,B 类选择题4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 (A )30种 (B )35种 (C )42种 (D )48种 (7)正方体ABCD —A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为(A )32 (B )33 (C )32 (D )36 (8)设2135,2ln ,2log -===c b a ,则(A )c b a <<(B )a c b << (C )b a c << (D )a b c <<(9)已知F 1、F 2为双曲线1:22=-y x C 的左、右焦点,点P 在C 上,︒=∠6021PF F ,则P到x 轴的距离为(A )23 (B )26 (C )3 (D )6(10)已知函数)()(,0.|lg |)(b f a f b a x x f =<<=且若,则b a 2+的取值范围是(A )),22(+∞(B )[)+∞,22(C )),3(+∞(D )[)+∞,3(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PB PA ⋅的最小值为(A )24+-(B )23+-(C )224+-(D )223+-(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AC=CD=2,则四面体ABCD 的体积的最大值为(A )332 (B )334 (C )32 (D )338 绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:七彩教育网 免费提供Word 版教学资源七彩教育网 全国最新初中、高中试卷、课件、教案等教学资源免费下载1.答题前,考生先在答题卡上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2010年全国统一高考数学试卷(文科)(全国卷一)及答案
2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)cos300°=()A.B.﹣ C.D.2.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}3.(5分)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.14.(5分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.5.(5分)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6 B.﹣3 C.0 D.36.(5分)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°7.(5分)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)8.(5分)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.89.(5分)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.(5分)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a11.(5分)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A. B. C.D.12.(5分)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)不等式的解集是.14.(5分)已知α为第二象限的角,,则tan2α=.15.(5分)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)16.(5分)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.18.(12分)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.19.(12分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(12分)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.21.(12分)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.22.(12分)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C 相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•大纲版Ⅰ)cos300°=()A.B.﹣ C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选C.2.(5分)(2010•大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【分析】根据补集意义先求C U M,再根据交集的意义求N∩(C U M).【解答】解:(C U M)={2,3,5},N={1,3,5},则N∩(C U M)={1,3,5}∩{2,3,5}={3,5}.故选C3.(5分)(2010•大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.1【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.4.(5分)(2010•大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.5.(5分)(2010•大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6 B.﹣3 C.0 D.3【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选A6.(5分)(2010•大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选C.7.(5分)(2010•大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f (b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0∴lg(ab)=0∴ab=1,又a>0,b>0,且a≠b∴(a+b)2>4ab=4∴a+b>2故选:C.(方法二)由对数的定义域,设0<a<b,且f(a)=f(b),得:,整理得线性规划表达式为:,因此问题转化为求z=x+y的取值范围问题,则z=x+y⇒y=﹣x+z,即求函数的截距最值.根据导数定义,函数图象过点(1,1)时z有最小为2(因为是开区域,所以取不到2),∴a+b的取值范围是(2,+∞).故选:C.8.(5分)(2010•大纲版Ⅰ)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.8【分析】解法1,利用余弦定理及双曲线的定义,解方程求|PF1|•|PF2|的值.解法2,由焦点三角形面积公式和另一种方法求得的三角形面积相等,解出|PF1|•|PF2|的值.【解答】解:法1.由双曲线方程得a=1,b=1,c=,由余弦定理得cos∠F1PF2=∴|PF1|•|PF2|=4.法2;由焦点三角形面积公式得:∴|PF1|•|PF2|=4;故选B.9.(5分)(2010•大纲版Ⅰ)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.【分析】正方体上下底面中心的连线平行于BB1,上下底面中心的连线与平面ACD1所成角,即为BB1与平面ACD1所成角,直角三角形中,利用边角关系求出此角的余弦值.【解答】解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O与平面ACD1所成角就是BB1与平面ACD1所成角,即∠O1OD1,直角三角形OO1D1中,cos∠O1OD1===,故选D.10.(5分)(2010•大纲版Ⅰ)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【分析】根据a的真数与b的真数相等可取倒数,使底数相同,找中间量1与之比较大小,便值a、b、c的大小关系.【解答】解:a=log32=,b=ln2=,而log23>log2e>1,所以a<b,c==,而,所以c<a,综上c<a<b,故选C.11.(5分)(2010•大纲版Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A. B. C.D.【分析】要求的最小值,我们可以根据已知中,圆O的半径为1,PA、PB 为该圆的两条切线,A、B为两切点,结合切线长定理,设出PA,PB的长度和夹角,并将表示成一个关于x的函数,然后根据求函数最值的办法,进行解答.【解答】解:如图所示:设OP=x(x>0),则PA=PB=,∠APO=α,则∠APB=2α,sinα=,==×(1﹣2sin2α)=(x2﹣1)(1﹣)==x2+﹣3≥2﹣3,∴当且仅当x2=时取“=”,故的最小值为2﹣3.故选D.12.(5分)(2010•大纲版Ⅰ)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.【分析】四面体ABCD的体积的最大值,AB与CD是对棱,必须垂直,确定球心的位置,即可求出体积的最大值.【解答】解:过CD作平面PCD,使AB⊥平面PCD,交AB于P,设点P到CD的距离为h,则有,当直径通过AB与CD的中点时,,故.故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•大纲版Ⅰ)不等式的解集是{x|﹣2<x<﹣1,或x>2} .【分析】本题是解分式不等式,先将分母分解因式,再利用穿根法求解.【解答】解::,数轴标根得:{x|﹣2<x<﹣1,或x>2}故答案为:{x|﹣2<x<﹣1,或x>2}14.(5分)(2010•大纲版Ⅰ)已知α为第二象限的角,,则tan2α=.【分析】先求出tanα的值,再由正切函数的二倍角公式可得答案.【解答】解:因为α为第二象限的角,又,所以,,∴故答案为:﹣15.(5分)(2010•大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有30种.(用数字作答)【分析】由题意分类:(1)A类选修课选1门,B类选修课选2门,确定选法;(2)A类选修课选2门,B类选修课选1门,确定选法;然后求和即可.【解答】解:分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;(2)A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.所以不同的选法共有C31C42+C32C41=18+12=30种.故答案为:3016.(5分)(2010•大纲版Ⅰ)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.【分析】由椭圆的性质求出|BF|的值,利用已知的向量间的关系、三角形相似求出D的横坐标,再由椭圆的第二定义求出|FD|的值,又由|BF|=2|FD|建立关于a、c的方程,解方程求出的值.【解答】解:如图,,作DD1⊥y轴于点D1,则由,得,所以,,即,由椭圆的第二定义得又由|BF|=2|FD|,得,a2=3c2,解得e==,故答案为:.三、解答题(共6小题,满分70分)17.(10分)(2010•大纲版Ⅰ)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.【分析】由2a1,a2,a3+1成等比数列,可得a22=2a1(a3+1),结合s3=12,可列出关于a1,d的方程组,求出a1,d,进而求出前n项和s n.【解答】解:设等差数列{a n}的公差为d,由题意得,解得或,∴s n=n(3n﹣1)或s n=2n(5﹣n).18.(12分)(2010•大纲版Ⅰ)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.【分析】先利用正弦定理题设等式中的边转化角的正弦,化简整理求得sin(A ﹣)=sin(B+),进而根据A,B的范围,求得A﹣和B+的关系,进而求得A+B=,则C的值可求.【解答】解:由已知及正弦定理,有sinA+sinB=sinA•+sinB•=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB∴sin(A﹣)=sin(B+),∵0<A<π,0<B<π∴﹣<A﹣<<B+<∴A﹣+B+=π,∴A+B=,C=π﹣(A+B)=19.(12分)(2010•大纲版Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.【分析】(1)投到该杂志的1篇稿件被录用包括稿件能通过两位初审专家的评审或稿件恰能通过一位初审专家的评审又能通过复审专家的评审两种情况,这两种情况是互斥的,且每种情况中包含的事情有时相互独立的,列出算式.(2)投到该杂志的4篇稿件中,至少有2篇被录用的对立事件是0篇被录用,1篇被录用两种结果,从对立事件来考虑比较简单.【解答】解:(Ⅰ)记A表示事件:稿件能通过两位初审专家的评审;B表示事件:稿件恰能通过一位初审专家的评审;C表示事件:稿件能通过复审专家的评审;D表示事件:稿件被录用.则D=A+B•C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B•C)=P(A)+P(B•C)=P(A)+P(B)P(C)=0.25+0.5×0.3=0.40.(2)记4篇稿件有1篇或0篇被录用为事件E,则P(E)=(1﹣0.4)4+C41×0.4×(1﹣0.4)3=0.1296+0.3456=0.4752,∴=1﹣0.4752=0.5248,即投到该杂志的4篇稿件中,至少有2篇被录用的概率是0.5248.20.(12分)(2010•大纲版Ⅰ)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB ∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.【分析】(Ⅰ)连接BD,取DC的中点G,连接BG,作BK⊥EC,K为垂足,根据线面垂直的判定定理可知DE⊥平面SBC,然后分别求出SE与EB的长,从而得到结论;(Ⅱ)根据边长的关系可知△ADE为等腰三角形,取ED中点F,连接AF,连接FG,根据二面角平面角的定义可知∠AFG是二面角A﹣DE﹣C的平面角,然后在三角形AGF中求出二面角A﹣DE﹣C的大小.【解答】解:(Ⅰ)连接BD,取DC的中点G,连接BG,由此知DG=GC=BG=1,即△DBC为直角三角形,故BC⊥BD.又SD⊥平面ABCD,故BC⊥SD,所以,BC⊥平面BDS,BC⊥DE.作BK⊥EC,K为垂足,因平面EDC⊥平面SBC,故BK⊥平面EDC,BK⊥DE,DE与平面SBC内的两条相交直线BK、BC都垂直,DE⊥平面SBC,DE⊥EC,DE⊥SB.SB=,DE=EB=所以SE=2EB(Ⅱ)由SA=,AB=1,SE=2EB,AB⊥SA,知AE==1,又AD=1.故△ADE为等腰三角形.取ED中点F,连接AF,则AF⊥DE,AF=.连接FG,则FG∥EC,FG⊥DE.所以,∠AFG是二面角A﹣DE﹣C的平面角.连接AG,AG=,FG=,cos∠AFG=,所以,二面角A﹣DE﹣C的大小为120°.21.(12分)(2010•大纲版Ⅰ)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.【分析】先求函数的极值,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.【解答】解:f′(x)=3x2﹣3=3(x+1)(x﹣1),令f′(x)=0,则x=﹣1或x=1,经验证x=﹣1和x=1为极值点,即f(1)=﹣2为极小值,f(﹣1)=2为极大值.又因为f(﹣3)=﹣18,f(3)=18,所以函数f(x)的最大值为18,最小值为﹣18.22.(12分)(2010•大纲版Ⅰ)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.【分析】(Ⅰ)先根据抛物线方程求得焦点坐标,设出过点K的直线L方程代入抛物线方程消去x,设L与C 的交点A(x1,y1),B(x2,y2),根据韦达定理求得y1+y2和y1y2的表达式,进而根据点A求得点D的坐标,进而表示出直线BD 和BF的斜率,进而问题转化两斜率相等,进而转化为4x2=y22,依题意可知等式成立进而推断出k1=k2原式得证.(Ⅱ)首先表示出结果为求得m,进而求得y2﹣y1的值,推知BD的斜率,则BD方程可知,设M为(a,0),M到x=y﹣1和到BD的距离相等,进而求得a和圆的半径,则圆的方程可得.【解答】解:(Ⅰ)抛物线C:y2=4x①的焦点为F(1,0),设过点K(﹣1,0)的直线L:x=my﹣1,代入①,整理得y2﹣4my+4=0,设L与C 的交点A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=4,点A关于X轴的对称点D为(x1,﹣y1).BD的斜率k1===,BF的斜率k2=.要使点F在直线BD上需k1=k2需4(x2﹣1)=y2(y2﹣y1),需4x2=y22,上式成立,∴k1=k2,∴点F在直线BD上.(Ⅱ)=(x1﹣1,y1)(x2﹣1,y2)=(x1﹣1)(x2﹣1)+y1y2=(my1﹣2)(my2﹣2)+y1y2=4(m2+1)﹣8m2+4=8﹣4m2=,∴m2=,m=±.y2﹣y1==4=,∴k1=,BD:y=(x﹣1).易知圆心M在x轴上,设为(a,0),M到x=y﹣1和到BD的距离相等,即|a+1|×=|((a﹣1)|×,∴4|a+1|=5|a﹣1|,﹣1<a<1,解得a=.∴半径r=,∴△BDK的内切圆M的方程为(x﹣)2+y2=.。
2010年大纲全国卷1数学高考试题评分细则
2010年数学高考试题评分细则 一、填空题(13~16题) 文科:(13)不等式22032x x x -++的解集是 .(14)已知α为第二象限的角,3sin 5a =,则tan 2α= . (15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有 种.(用数字作答) (16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D , 且BF 2FD =,则C 的离心率为 .理科:(13)不等式2211x x +-≤的解集是 . (14)已知α为第三象限的角,3cos 25α=-,则tan(2)4πα+= . (15)直线1y =与曲线2y x x a =-+有四个交点,则a 的取值范围是 .(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF 2FD =,则C 的离心率为 .理科:13.{}|02x x ≤≤或[0,2] ;14.17-;15.5(1,)4或514a <<;16.3313文科:13. {|21,x x -<<- 或 2};x > 或 (2,1)(2,)--⋃+∞; 14.247-;或 337- ;15. 30; 16. 3, 或 3 二、解答题文17.(本小题满分10分)记等差数列{}n a 的前n 项和为n S ,设312S =,且1232,,1a a a +成等比数列,求n S .解法1:设数列{}n a 的公差为d . 依题意有12312a a a ++= ① 21322(1)a a a += ② …………2分 即 14a d += ③ 22111220a a d d a +-+= ④解得111,3;8,4a d a d ====-. ⑤ ……………………………………6分因此 1(31)2n S n n =- ⑥ 或 2(5)n S n n =- .⑦………………………..10分解法2:设数列{}n a 的公差为d . 依题意有 12312a a a ++= ① 即14a d += ③ …………………………………2分又 21322(1)a a a += ② 即22111220a a d d a +-+= ④ ……………………4分 解得 111,3;8,4a d a d ====-. ⑤ ……………………………………6分因此 1(31)2n S n n =- ⑥ 或 2(5)n S n n =- .⑦………………………..10分解法3:设数列{}n a 的公差为d 。
2010年全国高考数学文科试题和答案-重庆
2010年普通高等学校招生全国统一考试(重庆卷)数学 (文史类)数学试题卷(文史类)共4页。
满分150分。
考试时间l20分钟。
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个备选项中.只有一项是符合题目要求的.1.4(1)x +的展开式中2x 的系数为 ( )A.4B.6C.10D.202.在等差数列{}n a 中,1910a a +=,则5a 的值为 ( )A.5B.6C.8D.103.若向量(3,)a m =,(2,1)b =-,0a b ∙=,则实数m 的值为 ( )A.32-B.32C.2D.64.函数y = ( )A.[0,)+∞B.[0,4]C.[0,4)D.(0,4)5.某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为 ( )A.7B.15C.25D.356.下列函数中,周期为π,且在[,]42ππ上为减函数的是 ( )A.sin(2)2y x π=+ B.cos(2)2y x π=+C.sin()2y x π=+D.cos()2y x π=+7.设变量,x y 满足约束条件0,0,220,x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则32z x y =-的最大值为 ( )A.0B.2C.4D.68.若直线y x b =-与曲线2cos ,sin x y θθ=+⎧⎨=⎩([0,2)θπ∈)有两个不同的公共点,则实数b 的取值范围为 ( )A.(2-B.[22-+C.(,2(2)-∞-++∞D.(22-+9.到两互相垂直的异面直线的距离相等的点 ( )A.只有1个B.恰有3个C.恰有4个D.有无穷多个10.某单位拟安排6位员工在今年6月14日至16日(端午节假期)值班,每天安排2人,每人值班1天;若6位员工中的甲不值14日,乙不值16日,则不同的安排方法共有 ( )A.30种B.36种C.42种D.48种二、填空题:本大题共5小题,每小题5分,共25分.把答案填写在答题卡相应位置上. 11.设{}{}|10,|0A x x B x x =+>=<,则A B =____________ .12.已知0t >,则函数241t t y t-+=的最小值为____________ .13.已知过抛物线24y x =的焦点F 的直线交该抛物线于A 、B 两点,2AF =,则BF =_ _ .14.加工某一零件需经过三道工序,设第一、二、三道工序的次品 率分别为170、169、168,且各道工序互不影响,则加工出来的零件的次品率为____________ .15.如图,图中的实线是由三段圆弧连接而成的一条封闭曲线C ,各段弧所在的圆经过同一点P (点P 不在C 上)且半径相等. 设第i段弧所对的圆心角为(1,2,3)i i α=,则232311coscossinsin3333αααααα++-=____________ .三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分. )已知{}n a 是首项为19,公差为-2的等差数列,n S 为{}n a 的前n 项和.(Ⅰ)求通项n a 及n S ;(Ⅱ)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n项和n T .17.(本小题满分13分,(Ⅰ)小问6分,(Ⅱ)小问7分. )在甲、乙等6个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起. 若采用抽签的方式随机确定各单位的演出顺序(序号为1,2,……,6),求:(Ⅰ)甲、乙两单位的演出序号均为偶数的概率; (Ⅱ)甲、乙两单位的演出序号不相邻的概率.18.(本小题满分13分),(Ⅰ)小问5分,(Ⅱ)小问8分)设A B C ∆的内角A 、B 、C 的对边长分别为a 、b 、c,且32b +32c -32abc .(Ⅰ) 求sinA 的值;(Ⅱ)求2sin()sin()441cos 2A B C Aππ+++-的值.19.(本小题满分12分), (Ⅰ)小问5分,(Ⅱ)小问7分.)已知函数32()f x ax x bx =++(其中常数a,b ∈R),()()()g x f x f x '=+是奇函数. (Ⅰ)求()f x 的表达式;(Ⅱ)讨论()g x 的单调性,并求()g x 在区间上的最大值和最小值.20.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分. )如图,四棱锥P A B C D -中,底面A B C D 为矩形,P A ⊥底面A B C D ,PA AB ==,点E 是棱P B 的中点.(Ⅰ)证明:A E ⊥平面PBC ;(Ⅱ)若1AD =,求二面角B E C D --的平面角的余弦值.21.(本小题满分12分,(Ⅰ)小问5分,(Ⅱ)小问7分. )已知以原点O 为中心,0)F 为右焦点的双曲线C 的离心率2e =.(Ⅰ)求双曲线C 的标准方程及其渐近线方程; (Ⅱ)如题(21)图,已知过点11(,)M x y 的直线1l :1144x x y y +=与过点22(,)N x y (其中21x x ≠)的直线2l :2244x x y y +=的交点E在双曲线C 上,直线M N 与双曲线的两条渐近线分别交于G 、H 两点,求OG OH的值.参考答案一、选择题:本大题共10个小题,每小题5分,共50分。
2010年高考山东省数学试卷-文科(含详细答案)
绝密★启用前2010年普通高等学校招生全国统一考试(山东卷)文科数学第I 卷(共60分)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知全集U R =,集合{}240M x x =-≤,则U C M =A. {}22x x -<< B. {}22x x -≤≤ C .{}22x x x <->或 D. {}22x x x ≤-≥或(3)函数()()2log 31xf x =+的值域为A. ()0,+∞B. )0,+∞⎡⎣C. ()1,+∞D. )1,+∞⎡⎣ 【答案】A【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A 。
【命题意图】本题考查对数函数的单调性、函数值域的求法等基础知识。
(4)在空间,下列命题正确的是 A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【命题意图】本题考查平均数与方差的求法,属基础题。
(7)设{}n a 是首项大于零的等比数列,则“12a a <”是“数列{}n a 是递增数列”的 (A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件 【答案】C【解析】若已知12a <a ,则设数列{}n a 的公比为q ,因为12a <a ,所以有11a <a q ,解得q>1,又1a >0,所以数列{}n a 是递增数列;反之,若数列{}n a 是递增数列,则公比q>1且1a >0,所以11a <a q ,即12a <a ,所以12a <a 是数列{}n a 是递增数列的充分必要条件。
【命题意图】本题考查等比数列及充分必要条件的基础知识,属保分题。
(8)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为(A )13万件 (B)11万件 (C) 9万件 (D)7万件(10)观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= (A )()f x (B)()f x - (C) ()g x (D)()g x - 【答案】D【解析】由给出的例子可以归纳推理得出:若函数()f x 是偶函数,则它的导函数是奇函数,因为定义在R 上的函数()f x 满足()()f x f x -=,即函数()f x 是偶函数,所以它的导函数是奇函数,即有()g x -=()g x -,故选D 。
2010年高考数学(全国Ⅰ)试卷分析及思考
2010年高考数学(全国Ⅰ)试卷分析及思考2010年高考数学试题与2009年试题在题量和题型上基本保持不变,但与09年相比,能力立意类型试题较多,适度创新,难度比较平稳,具有很高的可信度,遵循了考试大纲所倡导的“高考应具有较高的信度、效度,必要的区分度和适当的难度”这一原则。
总之,2010年高考数学(全国Ⅰ)试卷命题按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测了考生的数学素养。
就整个试卷来说,重点考查函数与导数、数列与不等式、概率与统计、直线与圆锥曲线综合的相关内容。
试题融入了考纲的命题理念,以重点知识构建试题的主体,选材寓于教材又高于教材,立意创新又朴实无华,为以后的高中新课程的数学教学改革和日常教学,发挥了良好的导向作用。
二. 试卷结构与往年一样,文、理科试卷结构不变,依然分为两部分:第Ⅰ卷为12个选择题;第Ⅱ卷为非选择题为4道填空题和6道解答题。
解答题分别是三角函数、概率统计、立体几何、函数与导数、解析几何、数列与不等式。
其排列顺序与2009年相比有所改变,但总体难度设置相当。
除理科17题,文科17,18题外,每题都以两问形式设置,先易后难,形成梯度,层次分明。
试卷分值设置未做调整。
三. 试题的主要特点特点一:中等难度试题较多择题与往年相比难度偏大。
前7题属于基础题,比较容易得分,但从第8 题开始,难度增大。
第8题注重考查指数函数、对数函数的图象和性质及学生的估算能力;第9题考查双曲线的第一定义(其中利用重要结论处理比较简捷);第10题考查函数的图象和性质,侧重数形结合思想的应用,包含了对重要不等式或线性规划的应用;第11题侧重考查平面向量与解析几何的综合应用,以及利用重要不等式求函数的最值;第12题属于立体几何类型题目,考查空间想象能力以及体积分割法。
填空题第13题至第15题属于基础题,第16题属于09年高考考题的变形,重点考查圆锥曲线的第二定义。
2010年湖北高考数学文科试卷(带答案)
2010年普通高等学校招生全国统一考试(湖北卷)文科数学一、选择题:本大题共10小题,每小5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设集合{}{}1,2,4,8,|2M N x x ==是的倍数,则=MN ( )A.{2,4}B.{1,2,4}C.{2,4,8} D{1,2,8}【测量目标】集合的基本运算(交集).【考查方式】考查了集合的表示法(描述法、列举法),求集合的交集. 【参考答案】C【试题解析】因为{}|2N x x =是的倍数={…,0,2,4,6,8,…},故{}=2,4,8MN所以C 正确. 2.函数()f x=πsin(),24x x -∈R 的最小正周期为 ( )A.π2B. xC.2πD.4π【测量目标】三角函数的周期性.【考查方式】考查三角函数的基本定义,给出三角函数解析式求出最小正周期. 【参考答案】D【试题解析】由T =2π12=4π,故D 正确. 3.已知函数3log ,0()2,0x x x f x x >⎧=⎨⎩≤,则1(())9f f = ( )A.4B.14C.-4D.14-【测量目标】函数的定义域与值域.【考查方式】根据给出的分段函数解析式,求出结果. 【参考答案】B【试题解析】根据分段函数可得311()log 299f ==-,则211(())(2)294f f f -=-==,所以B 正确.4.用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题:①若a b ,b c ,则a c ;②若a ⊥b ,b ⊥c ,则a ⊥c ;③若ay ,b y ,则a b ;④若a ⊥y ,b ⊥y ,则a b .哪些是正确的选项 ( ) A. ①② B. ②③ C. ①④ D.③④ 【测量目标】直线与直线、平面之间的位置关系.【考查方式】考查学生对线线之间、线面之间的位置关系的理解和灵活运用. 【参考答案】C【试题解析】根据平行直线的传递性可知①正确;在长方体模型中容易观察出②中a c 还可以平行或异面; ③中a 、b 还可以相交; ④是真命题,故C 正确 5.函数y =的定义域为 ( )A.(34,1)B.(34,∞) C.(1,+∞) D. (34,1)∪(1,+∞) 【测量目标】复合函数的定义域.【考查方式】根据根号内值>0,对数函数内430x ->求出定义域. 【参考答案】A【试题解析】由0.5log (43)0x ->且430x ->可解得314x <<,故A 正确.6.现有6名同学同时进行5个课外知识讲座,6名同学可自由选择其中的一个讲座,不同选法的种数是 ( ) A .65B. 56C.5654322⨯⨯⨯⨯⨯D.65432⨯⨯⨯⨯【测量目标】简单的排列组合.【考查方式】结合实际情况,求出满足条件的排列种数. 【参考答案】A【试题解析】因为每位同学均有5种讲座可选择,所以6位同学共有6555555=5⨯⨯⨯⨯⨯种,故A 正确.7.已知等比数列{m a }中,各项都是正数,且1a ,321,22a a 成等差数列,则91078a a a a +=+( )A.1B. 1C. 3+D 3-【测量目标】等差数列、等比数列的基本性质.【考查方式】根据等差数列等差中项性质求出q ,然后代入91078a a a a ++得到结果.【参考答案】C【试题解析】依题意可得: 231231211112=+2,=+2,=+22a a a a a a a q a a q ⎛⎫⨯⎪⎝⎭即则有 (步骤1)可得2=1+2q q ,解得=1+2q 或=12q -(舍去)(步骤2)所以8923291011677811++===3+22+1+a a a q a q q q q a a a q a q q+=+,故C 正确. (步骤3) 8.已知ABC △和点M 满足MA MB MC ++=0.若存在实m 使得AM AC mAM +=成立,则m = ( ) A.2 B.3 C.4 D.5 【测量目标】向量的线性运算.【考查方式】考查考生向量的线性运算的理解和运用,给出向量间的线性关系,要求计算出其系数.【参考答案】B【试题解析】由MA MB MC ++=0知,点M 为ABC △的重心,设点D 为底边BC 的中点,则2==3AM AD 21(32⨯)AB AC +=1()3AB AC +,所以有3AB AC AM +=,故m =3,选B.9.若直线y x b =+与曲线234y x x =--有公共点,则b 的取值范围是 ( ) A.[122-,122+] B.[12,3]- C.[1-,122+]D.[122,3]-【测量目标】直线与圆的标准方程及位置关系.【考查方式】结合直线与圆的方程,利用点到直线距离公式求出解析式中未知参数范围. 【参考答案】D【试题解析】曲线方程可化简为22(2)(3)4(13)x y y -+-=≤≤,即表示圆心为(2,3)半径为2的半圆. (步骤1)当直线y x b =+与此半圆相切时须满足圆心(2,3)到直线y x b =+距离等于2,解得122122b b =+=-或. (步骤2)因为是下半圆故可得122b =+(舍去),当直线过(0,3)时,解得b =3,故1223,b -≤≤所以D 正确. (步骤3)10.记实数12,,x x …n x 中的最大数为max {12,,x x …n x },最小数为min{12,,x x …n x }.已知ABC △的三边边长为a 、b 、c (a b c ≤≤),定义它的倾斜度为max{,,}min{,,},a b c a b ct b c a b c a=•则“t=1”是“ABC △为等边三角形”的 ( )A.充分不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件 【测量目标】命题之间的基本关系、充分必要条件的判断.【考查方式】以三角形三边长条件为背景,考查了命题之间的基本关系、充分必要条件的判断.【参考答案】B【试题解析】若ABC △为等边三角形,即a=b=c ,则max ,,1min ,,a b c a b c b c a b c a ⎧⎫⎧⎫==⎨⎬⎨⎬⎩⎭⎩⎭则t =1;若△ABC 为等腰三角形,如2,2,3a b c ===时,则32max ,,,min ,,23a b c a b c b c a b c a ⎧⎫⎧⎫==⎨⎨⎬⎪⎭⎩⎭⎩,此时l =1仍成立但△ABC 不为等边三角形,所以B正确.二、填空题:本大题共5小题,每小题5分,共25分,请将答案填在答题卡对应题号的位置上,一题两空的题,其答案按先后次序填写,答错位置,书写不清,摸棱两可均不得分.11.在210(1)x -的展开中, 4x 的系数为______.【测量目标】二项式定理【考查方式】由二项式求其某项展开式系数. 【参考答案】45【试题解析】210(1)x -展开式即是10个21x -相乘,要得到4x ,则取2个21x -中的2x -相乘,其余选1,则系数为222410C ()45x x ⨯-=,故系数为45. 12.已知:2z x y =-式中变量,x y 满足的束条件,1,2y x x y x ⎧⎪+⎨⎪⎩≤≥≤则z 的最大值为______.【测量目标】二元线性规划求最值.【考查方式】给出约束条件,应用数形结合思想画出不等式组所表示的平面区域,求出目标函数的最大值. 【参考答案】5【试题解析】根据不等式组,可得上图,2z x y =-,联立方程组可得(2,1)-是满足条件的点,所以max 5z =13.一个病人服用某种新药后被治愈的概率为0.9.则服用这种新药的4个病人中至少3人被治愈的概率为_______(用数字作答). 【测量目标】排列组合.【考查方式】给出某件事件的概率,要求求出另外一件相关事件的概率,考查了考生对排列组合和分类讨论思想的理解和运用 【参考答案】0.9477【试题解析】分情况讨论:若共有3人被治愈,则3314C (0.9)(10.9)0.2916P =⨯-=;若共有4人被治愈,则42(0.9)0.6561P ==,故至少有3人被治愈概率120.9477P P P =+=. 14.圆柱形容器内盛有高度为8cm 的水,若放入三个相同的珠(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是____cm.【测量目标】圆柱、球的体积公式.【考查方式】考查了球体积公式的基本概念和基本运算,利用体积相等求出其半径 【参考答案】4【试题解析】设球半径为r ,则由3V V V +=球水柱可得32243ππ8π63r r r r ⨯+⨯=⨯,解得r =4. 15.已知椭圆22:12x C y +=的两焦点为12,F F ,点00(,)P x y 满足2200012x y <+<,则|1PF |+2PF |的取值范围为_______,直线0012x xy y +=与椭圆C 的公共点个数_____. 【测量目标】椭圆的标准方程、直线与椭圆相交.【考查方式】根据椭圆内一点到两焦点距离之和判断公共点个数. 【参考答案】[)2,22,0【试题解析】依题意知,点P 在椭圆内部.由数形结合可得,当P 在原点处时12max (||||)2PF PF += (步骤1)当P 在椭圆顶点处时,取到12max (||||)PF PF +为(21)(21) =2 2 -++,故范围为[2,22. (步骤2)因为00(,)x y 在椭圆2212x y +=的内部,则直线0012x x y y +=上的点(x, y )均在椭圆外,故此直线与椭圆不可能有交点,故交点数为0个. (步骤3)三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤. 16.(本小题满分12分)已知函数22cos sin 11(),()sin 2.224x x f x g x x -==- (Ⅰ)函数()f x 的图象可由函数()g x 的图象经过怎样变化得出?(Ⅱ)求函数()()()h x f x g x =-的最小值,并求当()h x 取得最小值时x 的集合. 【测量目标】三角函数的图象及性质,三角函数的恒等变换.【考查方式】给出三角函数解析式,通过图象平移变换得到所求三角函数;把函数()h x 化简得到最简的三角函数解析式,然后根据三角函数基本概念求出最小值和取得最小值时的x 的集合.【试题解析】解:(Ⅰ) 11π1π()cos 2sin(2)sin 2()22224f x x x x ==+=+ (步骤1) 所以要得到()f x 的图象只需把()g x 的图象向左平移π4个长度单位,再将所得的图象向上平移14个长度单位即可. (步骤2)(Ⅱ)111π1()()()cos 2sin 2cos 2224244h x f x g x x x x ⎛⎫=-=-+=++ ⎪⎝⎭ 当π22π+π()4x k k +=∈Z 时,()h x 取得最小值11244--+=. ()h x 取得最小值时,对应x 的集合为3|π+π,8x x k k ⎧⎫=∈⎨⎬⎩⎭Z . (步骤3)17.(本小题满分12分)为了了解一个小水库中养殖的鱼有关情况,从这个水库中多个不同位置捕捞出100条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,画出频率分布直方图(如图所示) (Ⅰ)在答题卡上的表格中填写相应的频率;(Ⅱ)估计数据落在(1.15,1.30)中的概率为多少; (Ⅲ)将上面捕捞的100条鱼分别作一记号后再放回水库,几天后再从水库的多处不同位置捕捞出120条鱼,其中带有记号的鱼有6条,请根据这一情况来估计该水库中鱼的总条数.【测量目标】频率分布直方图、用样本数字特征估计总体数字特征.【考查方式】考查考生对频率分布直方图、频数、概率等基本概念和总体分布的估计. 概率=每一个柱形的体积. 【试题解析】解:(Ⅰ)根据频率分布可知。
2010高考数学文科真题带答案
2010年普通高等学校招生全国统一考试数学文试题(辽宁卷,解析版)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{}1,3,5,7,9U =,{}1,5,7A =,则U C A =(A ){}1,3(B ){}3,7,9 (C ){}3,5,9(D ){}3,9解析:选D. 在集合U 中,去掉1,5,7,剩下的元素构成.U C A (2)设,a b 为实数,若复数121ii a bi+=++,则 (A )31,22a b == (B )3,1a b ==(C )13,22a b == (D )1,3a b == 解析:选A. 1231122i a bi i i ++==++,因此31,22a b ==.(3)设n S 为等比数列{}n a 的前n 项和,已知3432S a =-,2332S a =-,则公比q =(A )3(B )4(C )5(D )6解析:选B. 两式相减得, 3433a a a =-,44334,4a a a q a =∴==. (4)已知0a >,函数2()f x ax bx c =++,若0x 满足关于x 的方程20ax b +=,则下列选项的命题中为假命题的是(A )0,()()x R f x f x ∃∈≤ (B )0,()()x R f x f x ∃∈≥ (C ) 0,()()x R f x f x ∀∈≤ (D )0,()()x R f x f x ∀∈≥ 解析:选C.函数()f x 的最小值是0()()2bf f x a-= 等价于0,()()x R f x f x ∀∈≥,所以命题C 错误.(5)如果执行右面的程序框图,输入6,4n m ==,那么输出的p 等于(A )720 (B ) 360 (C ) 240 (D ) 120 解析:选B.13456360.p =⨯⨯⨯⨯= (6)设0ω>,函数sin()23y x πω=++的图像向右平移43π个单位后与原图像重合,则ω的最小值是 (A )23 (B ) 43 (C ) 32(D ) 3 解析:选C.由已知,周期243,.32T ππωω==∴=(7)设抛物线28y x =的焦点为F ,准线为l ,P 为抛物线上一点,PA l ⊥,A 为垂足,如果直线AF 斜率为3-,那么PF =(A )43 (B ) 8 (C ) 83 (D ) 16 解析:选B.利用抛物线定义,易证PAF ∆为正三角形,则4||8sin30PF ︒==(8)平面上,,O A B 三点不共线,设,OA a OB b ==,则OAB ∆的面积等于(A )222()a b a b -⋅ (B )222()a b a b +⋅(C )2221()2a b a b -⋅ (D )2221()2a b a b +⋅解析:选 C.2222111()||||sin ,||||1cos ,||||1222||||OABa b S a b a b a b a b a b a b ∆⋅=<>=-<>=- 2221()2a b a b =-⋅(9)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为(A )2 (B )3 (C )312+ (D )512+ 解析:选D.不妨设双曲线的焦点在x 轴上,设其方程为:22221(0,0)x y a b a b -=>>,则一个焦点为(,0),(0,)F c B b一条渐近线斜率为:ba ,直线FB 的斜率为:bc -,()1b b a c∴⋅-=-,2b ac ∴=220c a ac --=,解得512c e a +==. (10)设25abm ==,且112a b+=,则m = (A )10 (B )10 (C )20 (D )100 解析:选A.211log 2log 5log 102,10,m m m m a b+=+==∴=又0,10.m m >∴= (11)已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,2BC =,则球O 的表面积等于(A )4π (B )3π (C )2π (D )π解析:选A.由已知,球O 的直径为22R SC ==,∴表面积为244.R ππ= (12)已知点P 在曲线41x y e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 (A)[0,4π) (B)[,)42ππ (C ) 3(,]24ππ (D) 3[,)4ππ 解析:选D.2441212x x x xxe y e e e e'=-=-++++,12,10xx e y e '+≥∴-≤<,即1tan 0α-≤<,3[,)4παπ∴∈ 第Ⅱ卷本试卷包括必考题和选考题两部分。
2010全国高考文科数学试题(全国卷1)及答案
2010全国高考文科数学试题(全国卷1)及答案D参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中R表示球的半径球的体积公式如果事件A在一次试验中发生的概率是,那么次独立重复试验中事件恰好发生次的概率其中R表示球的半径一、选择题(1)(A)(B)-(C) (D)(2)设全集,集合,,则A. B. C.D.(3)若变量满足约束条件则的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{},=5,=10,则=(A) (B) 7 (C) 6 (D)(5)的展开式的系数是(A)-6 (B)-3 (C)0 (D)3(6)直三棱柱中,若,,则异面直线与所成的角等于(A)30° (B)45°(C)60° (D)90°(7)已知函数.若且,,则的取值范围是(A) (B)(C) (D)(8)已知、为双曲线C:的左、右焦点,点P 在C上,∠=,则(A)2 (B)4 (C)6 (D) 8(9)正方体-中,与平面所成角的余弦值为(A)(B)(C)(D)(10)设则(A)(B) (C) (D)(11)已知圆的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为(A) (B)(C)(D)(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A) (B)(C)(D)第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
请认真核准条形码上的准考证号、姓名和科目。
2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。
3.第Ⅱ卷共10小题,共90分。
二.填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.(注意:在试题卷上作答无效)(13)不等式的解集是 .(14)已知为第二象限的角,,则.(15)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)(16)已知是椭圆的一个焦点,是短轴的一个端点,线段的延长线交于点,且,则的离心率为 .三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)(注意:在试题卷上作答无效)记等差数列的前项和为,设,且成等比数列,求.(18)(本小题满分12分)(注意:在试题卷上作答无效)已知的内角,及其对边,满足,求内角.(19)(本小题满分12分)(注意:在试题卷上作答无效)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(I)求投到该杂志的1篇稿件被录用的概率;(II)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.(20)(本小题满分12分)(注意:在试题卷上作答无效)如图,四棱锥S-ABCD中,SD底面ABCD,AB//DC,AD DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC平面SBC .(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A-DE-C的大小 .(21)(本小题满分12分)(注意:在试题卷上作答无效)已知函数(I)当时,求的极值;(II)若在上是增函数,求的取值范围(22)(本小题满分12分)(注意:在试题卷上作答无效)已知抛物线的焦点为F,过点的直线与相交于、两点,点A关于轴的对称点为D .(Ⅰ)证明:点在直线上;(Ⅱ)设,求的内切圆的方程 .答案1.C【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识【解析】2.C【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】,,则=3.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解析】画出可行域(如右图),,由图可知,当直线经过点A(1,-1)时,z最大,且最大值为.4.A【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知,10,所以,所以5.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】的系数是 -12+6=-66.C【命题意图】本小题主要考查直三棱柱的性质、异面直线所成的角、异面直线所成的角的求法. 【解析】延长CA到D,使得,则为平行四边形,就是异面直线与所成的角,又三角形为等边三角形,7.C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a的取值范围,而利用均值不等式求得a+b=,从而错选D,这也是命题者的用苦良心之处.【解析1】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或,所以a+b=又0<a<b,所以0<a<1<b,令由“对勾”函数的性质知函数在(0,1)上为减函数,所以f(a)>f(1)=1+1=2,即a+b的取值范围是(2,+∞).【解析2】由0<a<b,且f(a)=f(b)得:,利用线性规划得:,化为求的取值范围问题,,过点时z最小为2,∴(C)8.B【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析1】.由余弦定理得cos∠P=4【解析2】由焦点三角形面积公式得:49.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面AC的距离是解决本题的关键所在,这也是转化思想的具体体现.【解析1】因为BB1//DD1,所以B与平面AC所成角和DD1与平面AC所成角相等,设DO⊥平面AC,由等体积法得,即.设DD1=a,则,.所以,记DD1与平面AC所成角为,则,所以.【解析2】设上下底面的中心分别为;与平面AC 所成角就是B与平面AC所成角,10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.【解析1】 a=2=, b=In2=,而,所以a<b,c==,而,所以c<a,综上c<a<b.【解析2】a=2=,b=ln2=, ,;c=,∴c<a<b11.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.【解析1】如图所示:设PA=PB=,∠APO=,则∠APB=,PO=,,===,令,则,即,由是实数,所以,,解得或.故.此时.【解析2】设,换元:,【解析3】建系:园的方程为,设,12.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为,则有,当直径通过AB与CD的中点时,,故.13. 【命题意图】本小题主要考查不等式及其解法【解析】: ,数轴标根得:14.【命题意图】本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.【解析】因为为第二象限的角,又, 所以,,所15. A【命题意图】本小题主要考查分类计数原理、组合知识,以及分类讨论的数学思想.【解析1】:可分以下2种情况:(1)A类选修课选1门,B 类选修课选2门,有种不同的选法;(2)A类选修课选2门,B类选修课选1门,有种不同的选法.所以不同的选法共有+种.【解析2】:16. 【命题意图】本小题主要考查椭圆的方程与几何性质、第二定义、平面向量知识,考查了数形结合思想、方程思想,本题凸显解析几何的特点:“数研究形,形助数”,利用几何性质可寻求到简化问题的捷径.【解析1】如图,,,则由,作轴于点D1得,所以,即,由椭圆的第二定义得又由,得【解析2】设椭圆方程为第一标准形式,设,F分BD所成的比为2,,代入,三,解答题:接答应写出文字说明,证明过程或演算步骤。
2010年高考数学全国一卷试卷分析
2010年高考数学全国一卷试卷分析一、试卷分析2010年高考数学试卷基本符合《考试大纲》的各项要求,结构稳定,试题排列由易到难,在多角度、多层次考查数学基础知识的基础上,注重了对数学思想和方法及数学能力的考查,尤其是思维能力和运算能力的考查。
1、试题立足基础,突出主干知识,注重通性通法初看试卷,给人的感觉是首先是在题型、题量及分值上同往年一样,没有变化,无论文理全卷都是22道题,其中选择题12道,每题5分,共60分,填空题4道,每道5分,共20分,解答题6道,共70分;其次题的面貌好像也似曾相识,没有出现乍一看就很陌生或很新颖的题目。
理科选择题以复数的除法运算开篇,文科选择题以求特殊角的三角函数值开篇,都较易上手。
六道大题的编排依次为理科:17三角、18概率、19立体几何、20函数与导数、21解析几何、22数列与不等式,文科:17数列、18三角、19概率、20立体几何、21函数与导数、22解析几何,考查的都是高中数学学科知识体系的主干内容,文理科共有1 4道完全相同题目,其中选择题有8道,填空题有1道,解答题有5道,故今年考题对文科考生来说,整体难度仍要高于理科。
考题对函数、不等式、解析几何、立体几何、三角函数、数列等重点内容以及线性规划、概率、向量、导数的应用等热点问题都予以了重点考查。
高考重视的是具有普遍意义的方法和相关知识,例如解析几何中有关直线与圆锥曲线的问题,基本解法是将直线方程代入圆锥曲线方程,整理出一元二次方程,再利用根的判别式、求根公式、韦达定理、两点间距离公式等解题,理科21题(文22)就考查了解析几何的这种基本方法,理18(文19)概率题贴近生活,背景简单,试题切合我国中学数学的实际,难度符合考生的水平。
2、以能力立意,强调基本数学思想和方法数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确定以能力立意命题的指导思想,将知识、能力与素质的考查融为一体,全面检测考生的数学素养。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年普通高等学校招生全国统一考试
文科数学(必修+选修I )
第I 卷
一、选择题
(1)cos300°= (A )32- (B )12- (C )12 (D )32
(2)设全集U =(1,2,3,4,5),集合M =(1,4),N =(1,3,5),则N ⋂(C ,M )
(A )(1,3) (B )(1,5) (C )(3,5) (D )(4,5)
(3)若变量x 、y 满足约束条件 1.0.20.y x y x y ≤⎧⎪+≥⎨⎪--≤⎩
则z =x-2y 的最大值为
(A )4 (B )3 (C )2 (D )1
(4)已知各项均为正数的等比数列{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6=
(A )52 (B)7 (C)6 (D)4 2
(5)(1-x )2(1-x )3的展开式中x 2的系数是
(A)-6 (B )-3 (C)0 (D)3
(6)直三棱柱ABC -A 1B 1C 1中,若∠BAC =90°,AB =AC=AA 1,则异面直线BA 1与AC 1所成的角等于
(A )30° (B)45° (C)60° (D)90°
(7)已知函数f (x )= lg x .若a ≠b ,且f (a )=f (b ),则a +b 的取值范围是
(A )(1,+∞) (B )[1,+∞] (C)(2,+∞) (D)[2,+∞)
(8)已知F 1、F 2为双曲线C :x 2-y 2=1的左、右焦点,点P 在C 上,∠F 1PF 2=60°,则 1PF ·2PF =
(A )2 (B)4 (C)6 (D)8
(9)正方体ABCD -A 1BCD 1中,BB 1与平面ACD 1所成角的余弦值为 (A) 23 (B)
33 (C) 23 (D) 63 (10)设a =log 3,2,b =ln2,c =1
25
-,则 (A )a <b <c (B)b <c <a (C)c <a <b (D)c <b <a
(11)已知圆O 的半径为1,P A 、PB 为该圆的两条切线,A 、B 为两切点,那么PA ·PB 的
最小值为
(A )-4+2 (B )-3+2 (C )-4+22 (D )-3+22
(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为
(A )
233 (B) 433 (C) 23 (D) 833
2010年普通高等学校招生全国统一考试
文科数学(必修+选修Ⅰ)
第Ⅱ卷
二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.
(13)不等式
2232
x x x -++>0的解集是 . (14)已知α为第一象限的角,sin α=35,则tan α= . (15)某学校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门,若要求两类课程种各至少选一门.则不同的选法共有 种.(用数字作答)
(16)已知F 是椭圆C 的一个焦点,B 是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为 .
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
(17)(本小题满分10分)
记等差数列{a n }的前n 项和为S ,设S x =12,且2a 1,a 2,a 3+1成等比数列,求S n .
(18)(本小题满分12分)
已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a cot A +b cot B ,求内角C .
(19)(本小题满分12分)
投到某杂志的稿件,先由两位初审专家进行评审,若能通过两位初审专家的评审,则予以录用:若两位初审专家都未予通过,则不予录用:若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审. (Ⅰ)求投到该杂志的1篇稿件被录用的概率;
(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.
(20)(本小题满分12分)
如图,四棱锥S—ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E 为棱SB上的一点,平面EDC⊥平面SBC.
(Ⅰ)证明:SE=2EB;
(Ⅱ)求二面角A—DC—C的大小.
(21)(本小题满分12分)
已知函数f(x)=3a x4-2(3a+2)x2+4x.
(Ⅰ)当a=1
6
时,求f(x)的极值;
(Ⅱ)若f(x)在(-1,1)上是增函数,求a的取值范围.
(22)(本小题满分12分)
已知抛物线C:y2=4x的焦点为F,过点K(-1,0)的直线l与C相交为A、B两点,点A关于x轴的对称点为D.
(Ⅰ)证明:点F在直线BD上;
(Ⅱ)设
8
9
FA FB
−−→-−−→=,求△BDK的内切圆M的方程.。