重点高中数学-圆锥曲线练习测试题含参考答案

合集下载

圆锥曲线练习题含答案(很基础,很好的题)

圆锥曲线练习题含答案(很基础,很好的题)

圆锥曲线练习题含答案(很基础,很好的题)1.抛物线y=10x的焦点到准线的距离是()2答案:52.若抛物线y=8x上一点P到其焦点的距离为9,则点P的坐标为()。

答案:(7,±14)3.以椭圆x^2/25+y^2/16=1的顶点为顶点,离心率为2的双曲线方程是()。

答案:x^2/9 - y^2/16 = 14.F1,F2是椭圆x^2/16+y^2/27=1的两个焦点,A为椭圆上一点,且∠AF1F2=45,则ΔAF1F2的面积()。

答案:75.以坐标轴为对称轴,以原点为顶点且过圆x^2+y^2-2x+6y+9=0的圆心的抛物线的方程是()。

答案:y=3x或y=-3x6.若抛物线y=x上一点P到准线的距离等于它到顶点的距离,则点P的坐标为()。

答案:(±1/4.1/8)7.椭圆x^2/48+y^2/27=1上一点P与椭圆的两个焦点F1、F2的连线互相垂直,则△PF1F2的面积为()。

答案:288.若点A的坐标为(3,2),F是抛物线y=2x的焦点,点M 在抛物线上移动时,使MF+MA取得最小值的M的坐标为()。

答案:(2/5.4/5)9.与椭圆4x^2+y^2=1共焦点且过点Q(2,1)的双曲线方程是()。

答案:x^2/3 - y^2/4 = 110.若椭圆x/√3 + y/√2 = 1的离心率为2/3,则它的长半轴长为_______________。

答案:√611.双曲线的渐近线方程为x±2y=0,焦距为10,这双曲线的方程为______________。

答案:x^2/4 - y^2/36 = 112.抛物线y=6x的准线方程为y=3,焦点为(0,3)。

13.椭圆5x^2+k^2y^2=5的一个焦点是(0,2),那么k=____________。

答案:√314.椭圆kx^2+8y^2=9的离心率为2/3,则k的值为____________。

答案:7/315.根据双曲线的定义,其焦点到准线的距离等于其焦距的一半,因此该双曲线的焦距为3.又根据双曲线的标准方程,8kx-ky=8,将焦点代入方程可得8k(0)-3k=8,解得k=-8/3.16.将直线x-y=2代入抛物线y=4x中,得到交点为(2,8)和(-1,-5)。

(完整版)圆锥曲线综合练习题(有答案)

(完整版)圆锥曲线综合练习题(有答案)

圆锥曲线综合练习一、 选择题:1.已知椭圆221102x y m m +=--的长轴在y 轴上,若焦距为4,则m 等于( )A .4B .5C .7D .82.直线220x y -+=经过椭圆22221(0)x y a b a b +=>>的一个焦点和一个顶点,则该椭圆的离心率为( )A B .12 C D .233.设双曲线22219x y a -=(0)a >的渐近线方程为320x y ±=,则a 的值为( )A .4B .3C .2D .14.若m 是2和8的等比中项,则圆锥曲线221y x m+=的离心率是( )A B C D 5.已知双曲线22221(00)x y a b a b-=>>,,过其右焦点且垂直于实轴的直线与双曲线交于M N ,两点,O 为坐标原点.若OM ON ⊥,则双曲线的离心率为( )A B C D 6.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( )A .0B .1C .2D .7.双曲线221259x y -=上的点到一个焦点的距离为12,则到另一个焦点的距离为( )A .22或2B .7C .22D .28.P 为双曲线221916x y -=的右支上一点,M N ,分别是圆22(5)4x y ++=和22(5)1x y -+= 上的点,则||||PM PN -的最大值为( )A .6B .7C .8D .99.已知点(8)P a ,在抛物线24y px =上,且P 到焦点的距离为10,则焦点到准线的距离为( ) A .2 B .4 C .8 D .1610.在正ABC △中,D AB E AC ∈∈,,向量12DE BC =,则以B C ,为焦点,且过D E ,的双曲线离心率为( )A B 1 C 1 D 111.两个正数a b ,的等差中项是92,一个等比中项是a b >,则抛物线2by x a=-的焦点坐标是( )A .5(0)16-, B .2(0)5-, C .1(0)5-, D .1(0)5, 12.已知12A A ,分别为椭圆2222:1(0)x y C a b a b+=>>的左右顶点,椭圆C 上异于12A A ,的点P恒满足1249PA PA k k ⋅=-,则椭圆C 的离心率为( )A .49 B .23 C .59D 513.已知2212221(0)x y F F a b a b+=>>、分别是椭圆的左、右焦点,A 是椭圆上位于第一象限内的一点,点B 也在椭圆 上,且满足0OA OB +=(O 为坐标原点),2120AF F F ⋅=2, 则直线AB 的方程是( ) A . 22y =B .22y x =C .3y =D .3y = 14.已知点P 是抛物线22y x =上的一个动点,则点P 到点(02)M ,的距离与点P 到该抛物线准线的距离之和的最小值为A .3B 17C 5D .9215.若椭圆221x y m n+=与双曲线221(x y m n p q p q -=,,,均为正数)有共同的焦点F 1,F 2,P 是两曲线的一个公共点,则12||||PF PF ⋅等于 ( )A .m p +B .p m -C .m p -D .22m p -16.若()P a b ,是双曲线22416(0)x y m m -=≠上一点,且满足20a b ->,20a b +>,则该点P 一定位于双曲线( ) A .右支上 B .上支上 C .右支上或上支上 D .不能确定17.如图,在ABC △中,30CAB CBA ∠=∠=,AC BC ,边上的高分别为BD AE ,,则以A B , 为焦点,且过D E ,的椭圆与双曲线的离心率的倒数和为( ) A .3 B .1 C .32D .218221sin 2sin 3cos 2cos 3=--表示的曲线是( )A .焦点在x 轴上的椭圆B .焦点在x 轴上的双曲线C .焦点在y 轴上的椭圆D .焦点在y 轴上的双曲线19.已知12F F ,是椭圆22221(0)x y a b a b +=>>的左、右焦点,点P 在椭圆上,且122F PF π∠=记线段1PF 与y 轴的交点为Q ,O 为坐标原点,若1FOQ △与四边形2OF PQ 的面积之比为1:2,则该椭圆的离心率等于 ( ) A .23 B .33 C .43- D 3120.已知双曲线方程为2214y x -=,过(21)P -,的直线L 与双曲线只有一个公共点,则直线l 的条数共有( )A .4条B .3条C .2条D .1条 21.已知以1(20)F -,,2(20)F ,为焦点的椭圆与直线340x +=有且仅有一个交点,则椭圆的长轴长为( ) A .2 B .6 C .7 D .222.双曲线22221x y a b -=与椭圆22221x y m b+=(00)a m b >>>,的离心率互为倒数,那么以a b m ,,为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形23.已知点(10)(10)A B -,,,及抛物线22y x =,若抛物线上点P 满足PA m PB =,则m 的最大值为( ) A .3 B .2 CD24.设12F F ,是椭圆2222:1(0)x y E a b a b+=>>的左、右焦点,P 为直线32x a =上一点,21F PF △是底角为30的等腰三角形,则E 的离心率为( )A .12B .23C .34D .4525.等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A B ,两点,||AB =则C 的实轴长为( )AB. C .4 D .826.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A B ,两点,||12AB =,P 为C 准线上一点,则ABP △的面积为( )A .18B .24C .36D .48 27.中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点(42)-,,则它的离心率为( ) ABCD28.椭圆221ax by +=与直线1y x =-交于A B ,两点,过原点与线段AB中点的直线的斜率为,则ab的值为( )B. C.D. 29.若椭圆221(00)x y m n m n +=>>,与曲线22||x y m n +=-无焦点,则椭圆的离心率e 的取值范围是( )A.1) B.(0 C.1) D.(030.已知12F F ,分别是椭圆22143x y +=的左、右焦点,A 是椭圆上一动点,圆C 与1F A 的延长线、12F F 的延长线以及线段2AF 相切,若(0)M t ,为一个切点,则( )A .2t =B .2t >C .2t <D .t 与2的大小关系不确定31.如图,过抛物线22(0)y px p =>的焦点F 的直线l 交抛物线于点A B ,,交其准线于点C ,若||2||BC BF =,且||3AF =,则此抛物线方程为( )A .29y x =B .26y x =C .23y x = D.2y32.已知椭圆2214x y +=的焦点为12F F 、,在长轴12A A 上任取一点M ,过M 作垂直于12A A 的直线交椭圆于P ,则使得120PF PF ⋅<的M 点的概率为( D ) ABC .12D33.以O 为中心,12F F ,为两个焦点的椭圆上存在一点M ,满足12||2||2||MF MO MF ==,则该椭圆的离心率为( ) AB .23CD34.已知点12F F ,是椭圆2222x y +=的两个焦点,点P 是该椭圆上的一个动点,那么12||PF PF +的最小值是( ) A. B .2 C .1 D .035.在抛物线25(0)y x ax a =+-≠上取横坐标为1242x x =-=,的两点,过这两点引一条割线,有平行于该割线的一条直线同时与抛物线和圆225536x y +=相切,则抛物线的顶点坐标为( ) A .(29)--, B .(05)-, C .(29)-, D .(16)-,36.若点O 和点F 分别为椭圆22143x y +=的中心和左焦点,点P 为椭圆上的任意一点,则OP FP ⋅的最大值为( ) A .2 B .3 C .6 D .837.直线3440x y -+=与抛物线24x y =和圆22(1)1x y +-=从左到右的交点依次为A B C D ,,,,则||||AB CD 的值为( )A .16B .116 C .4 D .1438.如图,双曲线的中心在坐标原点O ,A C ,分别是双曲线虚轴的上、下端点,B 是双曲线的左顶点,F 是双曲线的左焦点,直线AB 与FC 相交于点DBDF ∠的余弦是( )ABC D39.设双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,若在双曲线的右支上存在一点P ,使得12||3||PF PF =,则双曲线C 的离心率e 的取值范围为( )A .(12],B .2]C .2)D .(12),40.已知11()A x y ,是抛物线24y x =上的一个动点,22()B x y ,是椭圆22143x y +=上的一个动点,(10)N ,是一个定点,若AB ∥x 轴,且12x x <,则NAB △的周长l 的取值范围为( )A .10(5)3,B .8(4),C .10(4)3,D .11(5)3,41.的离心率2=e ,右焦点(0)F c ,,方程20ax bx c +-=的两个根分别为1x ,2x ,则点12()P x x ,在( )A .圆1022=+y x 内 B .圆1022=+y x 上 C .圆1022=+y x 外 D .以上三种情况都有可能42.过双曲线22221(00)x y a b a b-=>>,的右焦点F 作圆222x y a +=的切线FM (切点为M ),交y 轴于点P ,若M 为线段FP 的中点, 则双曲线的离心率是( )A B C .2 D43P 使得右焦点F 关于直线OP (O 为双曲线的中心)的对称点在y 轴上,则该双曲线离心率的取值范围为( )ABCD44F 为圆心,a 为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是( )A B C D 45的左准线l ,左.右焦点分别为F 1.F 2,抛物线C 2的准线为l ,焦点是F 2,C 1与C 2的一个交点为P ,则|PF 2| )A B C .4 D .846.已知F 1、F 2是双曲线 a >0,b >0)的两焦点,以线段F 1F 2为边作正三角形MF 1F 2,若边MF 1的中点在双曲线上,则双曲线的离心率是 ( )A . 147A 、F ,点B (0,b )则该双曲线离心率e 的值为( )A B C D 48.直线l 是双曲线O 为圆心且过双曲线焦点的圆被直线l 分成弧长为2:1的两段,则双曲线的离心率为( )A .B .C .D . 49的左焦点F 引圆222a y x =+的切线,切点为T ,延长FT 交双曲线右支于P 点,若M 为线段FP 的中点,O 为坐标原点,则与a b -的大小关系为A BCD .不确定.50.点P 为双曲线1C :和圆2C :2222b a y x +=+的一个交点,且12212F PF F PF ∠=∠,其中21,F F 为双曲线1C 的两个焦点,则双曲线1C 的离心率为( )ABCD .251.设圆锥曲线r 的两个焦点分别为12F F ,,若曲线r 上存在点P ,则曲线r 的离心率等于A B 2 C D 52.已知点P 为双曲线22221(00)x y a b a b -=>>,右支上一点,12F F ,分别为双曲线的左、右交点,I 为22PF F △的内心,若1212IPF IPF IF F S S S λ=+△△△成立,则λ的值为( )AB C .b a D .ab二、填空题:53.已知12F F ,为椭圆221259x y +=的两个焦点,过1F 的直线交椭圆于A B ,两点.若22||||12F A F B +=,则||AB = . 54.中心在原点,焦点在x 轴上,且长轴长为4,离心率为12的椭圆的方程为 . 55.9.已知双曲线221y x a-=的一条渐近线与直线230x y -+=垂直,则a = .56.已知P 为椭圆22194x y +=上的点,12F F ,是椭圆的两个焦点,且1260F PF ∠=,则12F PF △ 的面积是 . 57.已知双曲线22221(00)x y a b a b -=>>,和椭圆221169x y +=有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为 .58.若双曲线22221(00)x y a b a b -=>>,的一条渐近线与椭圆22143x y +=的焦点在x 轴上的射影恰为该椭圆的焦点,则双曲线的离心率为 . 59.已知双曲线22221(00)x y a b a b-=>>,的左、右焦点分别为12F F ,,过点2F 做与x 轴垂直的直线与双曲线一个焦点P ,且1230PF F ∠=,则双曲线的渐近线方程为 .60.已知12F F 、分别为椭圆221259x y +=的左、右焦点,P 为椭圆上一点,Q 是y 轴上的一个动点,若12||||4PF PF -=,则12()PQ PF PF ⋅-= .61.已知圆22:68210C x y x y ++++=,抛物线28y x =的准线为l ,设抛物线上任意一点P 到直线l 的距离为m ,则||m PC +的最小值为 .62.设双曲线221916x y -=的右顶点为A ,右焦点为F .过点F 平行双曲线的一条渐近线的直线与双曲线交于点B ,则AFB △的面积为 . 63.已知直线1l :4360x y -+=和直线2:0l x =,抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是 .三、解答题:64.已知椭圆2222:1(0)x y C a b a b +=>>的两个焦点为12F F ,,点P 在椭圆C 上,且12PF PF ⊥,14||3PF =,214||3PF =.(Ⅰ)求椭圆C 的方程; (Ⅱ)若直线l 过点M (21)-,,交椭圆C 于A B ,两点,且点M 恰是线段AB 的中点,求直线l 的方程. 65.已知抛物线2:2(0)C y px p =>过点(12)A -,.(Ⅰ)求抛物线C 的方程,并求其准线方程;(Ⅱ)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与L 的距离等?若存在,求直线l 的方程;若不存在,请说明理由. 66.已知抛物线22(0)x py p =>.(Ⅰ)已知P 点为抛物线上的动点,点P 在x 轴上的射影是点M ,点A 的坐标是(42)-,,且||||PA PM +的最小值是4.(ⅰ)求抛物线的方程;(ⅱ)设抛物线的准线与y 轴的交点为点E ,过点E 作抛物线的切线,求此切线方程; (Ⅱ)设过抛物线焦点F 的动直线l 交抛物线于A B ,两点,连接AO BO ,并延长分别交抛物线的准线于C D ,两点,求证:以CD 为直径的圆过焦点F .67.如图所示,已知椭圆2222:1(0)x y C a b a b+=>>,12A A ,分别为椭圆C 的左、右顶点.(Ⅰ)设12F F ,分别为椭圆C 的左、右焦点,证明:当且仅当椭圆C 上的点P 在椭圆的左、右顶点时,1||PF 取得最小值与最大值;(Ⅱ)若椭圆C 上的点到焦点距离的最大值为3,最小值为1,求椭圆C 的标准方程;(Ⅲ)若直线l :y kx m =+与(Ⅱ)中所述椭圆C 相交于A B ,两点(A B ,不是左、右顶点),且满足22AA BA ⊥,证明:直线l 过定点,并求出该定点的坐标.68.已知椭圆2222:1(0)x y C a b a b+=>>的离心率2e =12的交点F 恰好是该椭圆的一个顶点. (Ⅰ)求椭圆C 的方程;(Ⅱ)已知圆222:3O x y +=的切线l 与椭圆相交于A B ,两点,那么以AB 为直径的圆是否经过定点?如果时,求出定点的坐标;如果不是,请说明理由.。

(完整word版)圆锥曲线经典练习题及答案

(完整word版)圆锥曲线经典练习题及答案

一、选择题 1. 圆锥曲线经典练习题及解答大足二中 欧国绪直线I 经过椭圆的一个顶点和一个焦点,若椭圆中心到 1 l 的距离为其短轴长的丄,则该椭圆 4 的离心率为 1 (A ) ( B ) 3(C) I (D ) 2.设F 为抛物线 c : y 2=4x 的焦点, 曲线 ky= ( k>0)与C 交于点P , PF 丄x 轴,则k= x(B )1 3 (C)—2(D )23•双曲线 2 x C : Ta 2y_1(a 0,b 0)的离心率为2,焦点到渐近线的距离为'、3,贝U C的焦距等于 A. 2 B. 2、2 C.4D.4•已知椭圆 C :0)的左右焦点为 F i ,F 2,离心率为丄3,过F 2的直线l3交C 与A 、B 两点, 若厶AF i B 的周长为4、、3,则C 的方程为()2 A. x_3 B. 2x 2彳 xr y 1C.2 x 12 D. 2 x 12 5. y 2 b 2线的一个焦点在直线 2 A.— 5 6.已知 已知双曲线 2 x ~2a 1(a 0,b 0)的一条渐近线平行于直线 I :y 2x 10,双曲 2 B — 20 2为抛物线y 2 ' 1 20 F l 上, 2 y 5 则双曲线的方程为( 也1 100 A , B 在该抛物线上且位于x 轴的两侧, c 3x 21 C.— 25 占 八、、的焦点, uu uuuOA OB A 、2 (其中O 为坐标原点),则-1^/2 87.抛物线 =X 2的准线方程是4(A) y (B)2(C)) D M 辽.100 25 ABO 与 AFO 面积之和的最小值是( )x 1(D)8•已知点A( 2,3)在抛物线C:2px的准线上,记C的焦点为F,则直线AF的斜率为A. 4B. 13C.D.9.设F为抛物线C A, B两点,贝S AB =(A)旦3 2 c:y =3x(B)10.已知抛物线C: 的焦点,过F且倾斜角为30°的直线交于C于(C) 12 (D)7、、3x的焦点为F , A X o, y0是C上一点, AF 5 冲4X0,则X o ()A. 1B. 2C. 4x2 11.已知双曲线—a拆A. 2 B.- D. 82y3、5C. -D.121(a 0)的离心率为2,则a20)与C 交于点P , PF 丄x 轴,所以- 2,所以k=2 ,1选D.3.C4.A5.A••• - 2,0 2c 10, A c 5, a 2 5, b 2 20, a2 2A x- y_ 1.5206. B试卷答案 1.B试题分析:如图,在椭圆中, OF c, OB b, OD 2b -b2在 Rt OFB 中,| OF | |OB| |BF | |OD |,且 a 2 b 22c ,代入解得x2 2 a 4c ,所以椭圆的离心率为: e 1,故选B. k焦点F(1,0),又因为曲线y (k xy2= x ••• F(],0),设人(%2,%)弋(『22°2),%>0, y2<0, B=v OAOB>4OAOB= y^y^ + y』2 = 2 • (y』2+ 2)(%丫2-1) = 0,即yy = -21 1 1 1 - •…S从OF = ?- ?y1, S^A OB = ?OA?OB?sin 0= -?OAOB?tan 0= tan 0cos0=驴!. 4 22 4 2= < 222|OA||OB| W + y1 肛 + y2 2讥%+1)(y2 +1)1_______ = 1/2 2 2 2 - ,i'~2 2 - ■ y1 y2 + y1 + y2 + 1 , y1 + y2 +5i14 2 i14 2 2,— ----------- 川+4y1 +4 卩+4y1 +4 % + 2 2--tan 0= 比+ y2 + 4 = = = 一= y1 +y1 *y1 y1 + S 从OB =鲁+ %+ —= 98y1+ —8 y1 8 y17. A8. C【答SIC【解析】试題分析;由已知得,抛物柱於=2四的谁竝方程为兀=一彳,且过点故一彳=一2,则左二4,2 2-r 3-0 3戸(2卫>则直线AF的斜率肛=-- =—「选U-2-24【考点定位】1、抛物线的标准方程和简单几何性质;2、直线的斜率.9. C3设AF = 2m, BF = 2n, F(-,0).则由抛物线的定义和直角三角形知识可得,43 3 3 32m=2?—+ ..3m,2n=2?—- 3n,解得m= —(2+、3),n 二(2八3), • m+n =6.4 4 2 2AB= AF + BF = 2m+ 2n = 12故选C.10. A根据抛物线的定义可知AF1 5X0 - - X0,解之得X0 1 .选A4 411.D 注??:=3.选 BS AAOF2 3由双曲线的离心率可得7a------- 2,解得a 1,选D.a。

(完整版)圆锥曲线大题20道(含标准答案)

(完整版)圆锥曲线大题20道(含标准答案)

1.已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为)0,3( (1)求双曲线C 的方程; (2)若直线2:+=kx y l 与双曲线C 恒有两个不同的交点A 和B ,且2>⋅OB OA (其中O 为原点). 求k 的取值范围.解:(Ⅰ)设双曲线方程为12222=-by a x ).0,0(>>b a由已知得.1,2,2,32222==+==b b ac a 得再由故双曲线C 的方程为.1322=-y x (Ⅱ)将得代入13222=-+=y x kx y .0926)31(22=---kx x k 由直线l 与双曲线交于不同的两点得⎪⎩⎪⎨⎧>-=-+=∆≠-.0)1(36)31(36)26(,0312222k k k k即.13122<≠k k 且①设),(),,(B B A A y x B y x A ,则 ,22,319,312622>+>⋅--=-=+B A B A B A B A y y x x OB OA kx x k k x x 得由 而2)(2)1()2)(2(2++++=+++=+B A B A B A B A B A B A x x k x x k kx kx x x y y x x.1373231262319)1(22222-+=+-+--+=k k k k k k k于是解此不等式得即,01393,213732222>-+->-+k k k k .3312<<k ② 由①、②得.1312<<k故k 的取值范围为).1,33()33,1(⋃-- 2..已知椭圆C :22a x +22by =1(a >b >0)的左.右焦点为F 1、F 2,离心率为e. 直线l :y =e x +a 与x 轴.y 轴分别交于点A 、B ,M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ.(Ⅰ)证明:λ=1-e 2;(Ⅱ)确定λ的值,使得△PF 1F 2是等腰三角形.(Ⅰ)证法一:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是2222222.,,1,).,0(),0,(b a c c b y c x b y ax a ex y a e a +=⎪⎩⎪⎨⎧=-=⎪⎩⎪⎨⎧=++=-这里得由. 所以点M 的坐标是(a b c 2,-). 由).,(),(2a eaa b e a c AB AM λλ=+-=得即221e a ab e ac e a-=⎪⎪⎩⎪⎪⎨⎧==-λλλ解得证法二:因为A 、B 分别是直线l :a ex y +=与x 轴、y 轴的交点,所以A 、B 的坐标分别是).,0(),0,(a ea-设M 的坐标是00(,),x y00(,)(,),a aAM AB x y a e eλλ=+=u u u u r u u u r 由得所以⎪⎩⎪⎨⎧=-=.)1(00a y e a x λλ因为点M 在椭圆上,所以,122220=+by a x即.11)1(,1)()]1([22222222=-+-=+-e e b a a e aλλλλ所以 ,0)1()1(2224=-+--λλe e解得.1122e e -=-=λλ即(Ⅱ)解法一:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|,即.||211c PF = 设点F 1到l 的距离为d ,由,1||1|0)(|||21221c eec a e a c e d PF =+-=+++-==得.1122e ee =+-所以.321,3122=-==e e λ于是即当,32时=λ△PF 1F 2为等腰三角形. 解法二:因为PF 1⊥l ,所以∠PF 1F 2=90°+∠BAF 1为钝角,要使△PF 1F 2为等腰三角形,必有|PF 1|=|F 1F 2|, 设点P 的坐标是),(00y x ,则0000010.22y x ce y x c e a -⎧=-⎪+⎪⎨+-⎪=+⎪⎩,2022023,12(1).1e x c e e a y e ⎧-=⎪⎪+⎨-⎪=⎪+⎩解得由|PF 1|=|F 1F 2|得,4]1)1(2[]1)3([2222222c e a e c e c e =+-+++- 两边同时除以4a 2,化简得.1)1(2222e e e =+- 从而.312=e 于是32112=-=e λ 即当32=λ时,△PF 1F 2为等腰三角形. 3.设R y x ∈,,j i ρρ、为直角坐标平面内x 轴、y 轴正方向上的单位向量,若j y i x b j y i x a ρρρρϖρ)3( ,)3(-+=++=,且4=+b a ϖϖ.(Ⅰ)求点),(y x P 的轨迹C 的方程;(Ⅱ)若A 、B 为轨迹C 上的两点,满足MB AM =,其中M (0,3),求线段AB 的长. [启思]4.已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (Ⅰ)求椭圆的离心率;(Ⅱ)设M 为椭圆上任意一点,且),( R ∈+=μλμλ,证明22μλ+为定值. 解:本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知识,考查综合运用数学知识解决问题及推理的能力. 满分12分.(1)解:设椭圆方程为)0,(),0(12222c F b a by a x >>=+ 则直线AB 的方程为c x y -=,代入12222=+b y a x ,化简得02)(22222222=-+-+b a c a cx a x b a .令A (11,y x ),B 22,(y x ),则.,22222222122221b a b a c a x x b a c a x x +-=+=+ 由OB OA a y y x x OB OA +-=++=+),1,3(),,(2121与共线,得,0)()(32121=+++x x y y 又c x y c x y -=-=2211,,.23,0)()2(3212121c x x x x c x x =+∴=++-+∴ 即232222cba c a =+,所以36.32222a b a c b a =-=∴=, 故离心率.36==a c e (II )证明:(1)知223b a =,所以椭圆12222=+by a x 可化为.33222b y x =+设),(y x =,由已知得),,(),(),(2211y x y x y x μλ+=⎩⎨⎧+=+=∴.,2121x x y x x x μλμλ),(y x M Θ在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ 即.3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ① 由(1)知.21,23,23222221c b c a c x x ===+ [变式新题型3]抛物线的顶点在原点,焦点在x 轴上,准线l 与x 轴相交于点A(–1,0),过点A 的直线与抛物线相交于P 、Q 两点.(1)求抛物线的方程;(2)若FP •FQ =0,求直线PQ 的方程;(3)设=λAQ (λ>1),点P 关于x 轴的对称点为M ,证明:FM =-λFQ ..6.已知在平面直角坐标系xoy 中,向量32),1,0(的面积为OFP ∆=,且,3OF FP t OM j ⋅==+u u u r u u u r u u u u r u u ur r .(I )设4t OF FP θ<<u u u r u u u r求向量与 的夹角的取值范围;(II )设以原点O 为中心,对称轴在坐标轴上,以F 为右焦点的椭圆经过点M ,且||,)13(,||2c t c 当-==取最小值时,求椭圆的方程.7.已知(0,2)M -,点A 在x 轴上,点B 在y 轴的正半轴,点P 在直线AB 上,且满足,AP PB =-u u u r u u u r ,0MA AP ⋅=u u ur u u u r . (Ⅰ)当点A 在x 轴上移动时,求动点P 的轨迹C 方程;(Ⅱ)过(2,0)-的直线l 与轨迹C 交于E 、F 两点,又过E 、F 作轨迹C 的切线1l 、2l ,当12l l ⊥,求直线l 的方程.8.已知点C 为圆8)1(22=++y x 的圆心,点A (1,0),P 是圆上的动点,点Q 在圆的半径CP 上,且.2,0AM AP AP MQ ==⋅(Ⅰ)当点P 在圆上运动时,求点Q 的轨迹方程; (Ⅱ)若直线12++=k kx y 与(Ⅰ)中所求点Q的轨迹交于不同两点F ,H ,O 是坐标原点,且4332≤⋅≤OH OF ,求△FOH 的面积已知椭圆E 的中心在坐标原点,焦点在坐标轴上,且经过()2,0A -、()2,0B 、31,2C ⎛⎫ ⎪⎝⎭三点.(Ⅰ)求椭圆E 的方程;(Ⅱ)若直线l :()1y k x =-(0k ≠)与椭圆E 交于M 、N 两点,证明直线AM 与直线BN 的交点在直线4x =上.10.如图,过抛物线x 2=4y 的对称轴上任一点P(0,m)(m>0)作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点。

圆锥曲线综合测试题(含详细答案)

圆锥曲线综合测试题(含详细答案)

圆锥曲线测试卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =-14x 2的准线方程为( )A .x =116B .x =1C .y =1D .y =2解析: 抛物线的标准方程为x 2=-4y , 准线方程为y =1. 答案: C2.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为( )A.x 216+y 212=1 B.x 212+y 216=1 C.x 216+y 24=1 D.x 24+y 216=1 解析: 双曲线x 24-y 212=-1的焦点坐标为(0,±4),顶点坐标为(0,±23),故所求椭圆的焦点在y 轴上,a =4,c =23, ∴b 2=4,所求方程为x 24+y 216=1,故选D. 答案: D3.设P 是椭圆x 2169+y 2144=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .13解析: 由椭圆的定义知,|PF 1|+|PF 2|=26, 又∵|PF 1|=4,∴|PF 2|=26-4=22. 答案: A4.双曲线方程为x 2-2y 2=1,则它的右焦点坐标为( ) A.⎝⎛⎭⎫22,0B.⎝⎛⎭⎫52,0C.⎝⎛⎭⎫62,0D .(3,0)解析: 将双曲线方程化为标准方程为x 2-y 212=1,∴a 2=1,b 2=12,∴c 2=a 2+b 2=32,∴c =62, 故右焦点坐标为⎝⎛⎭⎫62,0.答案: C 5.若抛物线x 2=2py的焦点与椭圆x 23+y 24=1的下焦点重合,则p 的值为( )A .4B .2C .-4D .-2解析: 椭圆x 23+y 24=1的下焦点为(0,-1),∴p2=-1,即p =-2. 答案: D6.若k ∈R ,则k >3是方程x 2k -3-y 2k +3=1表示双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 方程x 2k -3-y 2k +3=1表示双曲线的条件是(k -3)(k +3)>0,即k >3或k <-3.故k >3是方程x 2k -3-y 2k +3=1表示双曲线的充分不必要条件.故选A. 答案: A7.已知F 1、F 2是椭圆的两个焦点,满足MF 1→·MF 2→=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )A .(0,1) B.⎝⎛⎦⎤0,12 C.⎝⎛⎭⎫0,22 D.⎣⎡⎭⎫22,1解析: 由MF 1→·MF 2→=0可知点M 在以线段F 1F 2为直径的圆上,要使点M 总在椭圆内部,只需c <b ,即c 2<b 2,c 2<a 2-c 2,2c 2<a 2, 故离心率e =c a <22.因为0<e <1,所以0<e <22. 即椭圆离心率的取值范围是⎝⎛⎭⎫0,22.故选C. 答案: C8.已知抛物线C :y 2=4x 的焦点为F ,直线y =2x -4与C 交于A ,B 两点,则cos ∠AFB =( )A.45B.35 C .-35D .-45解析 方法一:由⎩⎪⎨⎪⎧ y =2x -4,y 2=4x ,得⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =4,y =4.令B (1,-2),A (4,4),又F (1,0),∴由两点间距离公式得|BF |=2,|AF |=5,|AB |=3 5. ∴cos ∠AFB =|BF |2+|AF |2-|AB |22|BF |·|AF |=4+25-452×2×5=-45.方法二:由方法一得A (4,4),B (1,-2),F (1,0), ∴F A →=(3,4),FB →=(0,-2), ∴|F A →|=32+42=5,|FB →|=2.∴cos ∠AFB =F A →·FB→|F A →|·|F B →|=3×0+4×(-2)5×2=-45.答案: D9.F 1、F 2是椭圆x 29+y 27=1的两个焦点,A 为椭圆上一点,且∠AF 1F 2=45°,则△AF 1F 2的面积为( )A .7 B.72 C.74D.752解析: |F 1F 2|=22,|AF 1|+|AF 2|=6,|AF 2|=6-|AF 1|.|AF 2|2=|AF 1|2+|F 1F 2|2-2|AF 1|·|F 1F 2|cos 45° =|AF 1|2-4|AF 1|+8(6-|AF 1|)2 =|AF 1|2-4|AF 1|+8,∴|AF 1|=72.S =12×72×22×22=72. 答案: B10.已知点M (-3,0)、N (3,0)、B (1,0),动圆C 与直线MN 切于点B ,过M 、N 与圆C 相切的两直线相交于点P ,则P 点的轨迹方程为( )A .x 2-y 28=1(x >1) B .x 2-y 28=1(x <-1) C .x 2+y 28=1(x >0) D .x 2-y 210=1(x >1) 解析: 设圆与直线PM 、PN 分别相切于E 、F , 则|PE |=|PF |,|ME |=|MB |,|NB |=|NF |. ∴|PM |-|PN |=|PE |+|ME |-(|PF |+|NF |) =|MB |-|NB |=4-2=2<|MN |.所以点P 的轨迹是以M (-3,0),N (3,0)为焦点的双曲线的一支,且a =1, ∴c =3,b 2=8, ∴所以双曲线方程是x 2-y 28=1(x >1). 答案: A11.(2009全国卷Ⅰ理)已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF = (A). 2 (B). 2 (C).3 (D). 3解:过点B 作BM l ⊥于M,并设右准线l 与X 轴的交点为N ,易知FN=1.由题意3FA FB =,故2||3BM =.又由椭圆的第二定义,得222||233BF =⋅=||2AF ∴=.故选A 12.(2009山东卷理)设双曲线12222=-by a x 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为( ).A.45B. 5C. 25D.5【解析】:双曲线12222=-b y a x 的一条渐近线为x a b y =,由方程组21b y x a y x ⎧=⎪⎨⎪=+⎩,消去y,得210b x x a -+=有唯一解,所以△=2()40ba-=, 所以2b a =,2221()5c a b b e a a a+===+=,故选D.答案:D.二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.若双曲线的渐近线方程为y =±13x ,它的一个焦点是(10,0),则双曲线的标准方程是________.解析: 由双曲线的渐近线方程为y =±13x ,知b a =13,它的一个焦点是(10,0),知a 2+b 2=10, 因此a =3,b =1,故双曲线的方程是x 29-y 2=1.答案: x 29-y 2=112.若过椭圆x 216+y 24=1内一点(2,1)的弦被该点平分,则该弦所在直线的方程是________.解析: 设直线方程为y -1=k (x -2),与双曲线方程联立得(1+4k 2)x 2+(-16k 2+8k )x +16k 2-16k -12=0, 设交点A (x 1,y 1),B (x 2,y 2),则x 1+x 2=16k 2-8k 1+4k 2=4,解得k =-12, 所以直线方程为x +2y -4=0. 答案: x +2y -4=013.如图,F 1,F 2分别为椭圆x 2a 2+y 2b 2=1的左、右焦点,点P 在椭圆上,△POF 2是面积为3的正三角形,则b 2的值是________.解析: ∵△POF 2是面积为3的正三角形, ∴12c 2sin 60°=3, ∴c 2=4, ∴P (1,3),∴⎩⎪⎨⎪⎧1a 2+3b 2=1,a 2=b 2+4,解之得b 2=2 3. 答案: 2 314.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A (x 1,y 1),B (x 2,y 2)两点,则y 21+y 22的最小值是________.解析: 显然x 1,x 2≥0,又y 21+y 22=4(x 1+x 2)≥8x 1x 2, 当且仅当x 1=x 2=4时取等号,所以最小值为32. 答案: 32三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解析: (1)因为椭圆的焦点在x 轴上, 所以可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0),∵椭圆经过点(2,0)和(0,1)∴⎩⎨⎧22a 2+0b 2=10a 2+1b 2=1,∴⎩⎪⎨⎪⎧a 2=4b 2=1,故所求椭圆的标准方程为x 24+y 2=1.(2)∵椭圆的焦点在y 轴上,所以可设它的标准方程为 y 2a 2+x 2b 2=1(a >b >0), ∵P (0,-10)在椭圆上,∴a =10.又∵P 到它较近的一个焦点的距离等于2, ∴-c -(-10)=2,故c =8,∴b 2=a 2-c 2=36. ∴所求椭圆的标准方程是y 2100+x 236=1.18.(12分)已知双曲线与椭圆x 29+y 225=1共焦点,它们的离心率之和为145,求双曲线方程.解析: 由椭圆方程可得椭圆的焦点为F (0,±4), 离心率e =45,所以双曲线的焦点为F (0,±4),离心率为2, 从而c =4,a =2,b =2 3. 所以双曲线方程为y 24-x 212=1.19.(12分)设椭圆的中心在原点,焦点在x 轴上,离心率e =32.已知点P ⎝⎛⎭⎫0,32 到这个椭圆上的点的最远距离为7,求这个椭圆的方程.解析: 设椭圆方程为x 2a 2+y 2b 2=1(a >b >0),M (x ,y )为椭圆上的点,由c a =32得a =2b .|PM |2=x 2+⎝⎛⎭⎫y -322=-3⎝⎛⎭⎫y +122+4b 2+3(-b ≤y ≤b ), 若b <12,则当y =-b 时,|PM |2最大,即⎝⎛⎭⎫b +322=7, 则b =7-32>12,故舍去.若b ≥12时,则当y =-12时,|PM |2最大,即4b 2+3=7,解得b 2=1.∴所求方程为x 24+y 2=1.20.(12分)已知椭圆的长轴长为2a ,焦点是F 1(-3,0)、F 2(3,0),点F 1到直线x =-a 23的距离为33,过点F 2且倾斜角为锐角的直线l 与椭圆交于A 、B 两点,使得|F 2B |=3|F 2A |.(1)求椭圆的方程; (2)求直线l 的方程.解析: (1)∵F 1到直线x =-a 23的距离为33,∴-3+a 23=33.∴a 2=4. 而c =3, ∴b 2=a 2-c 2=1. ∵椭圆的焦点在x 轴上, ∴所求椭圆的方程为x 24+y 2=1.(2)设A (x 1,y 1)、B (x 2,y 2). ∵|F 2B |=3|F 2A |,∴⎩⎪⎨⎪⎧3=x 2+3x 11+3,0=y 2+3y 11+3,⎩⎪⎨⎪⎧x 2=43-3x 1,y 2=-3y 1.∵A 、B 在椭圆x 24+y 2=1上,∴⎩⎪⎨⎪⎧x 214+y 21=1,(43-3x 1)24+(-3y 1)2=1.∴⎩⎪⎨⎪⎧x 1=1033,y 1=233(取正值).∴l 的斜率为233-01033-3= 2.∴l 的方程为y =2(x -3), 即2x -y -6=0.21.(12分)已知直线l 经过抛物线y 2=4x 的焦点F ,且与抛物线相交于A 、B 两点.(1)若|AF |=4,求点A 的坐标; (2)求线段AB 的长的最小值. 解析: 由y 2=4x ,得p =2, 其准线方程为x =-1,焦点F (1,0). 设A (x 1,y 1),B (x 2,y 2). (1)由抛物线的定义可知.|AF |=x 1+p2,从而x 1=4-1=3.代入y 2=4x ,解得y 1=±2 3.∴点A 的坐标为(3,23)或(3,-23). (2)当直线l 的斜率存在时, 设直线l 的方程为y =k (x -1).与抛物线方程联立,得⎩⎪⎨⎪⎧y =k (x -1)y 2=4x,消去y ,整理得k 2x 2-(2k 2+4)x +k 2=0, 因为直线与抛物线相交于A 、B 两点, 则k ≠0,并设其两根为x 1,x 2, 则x 1+x 2=2+4k 2.由抛物线的定义可知, |AB |=x 1+x 2+p =4+4k2>4,当直线l 的斜率不存在时,直线l 的方程为x =1,与抛物线交于A (1,2),B (1,-2),此时|AB |=4.所以|AB |≥4,即线段AB 的长的最小值为4.22.(12分)如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为32,x 轴被曲线C 2:y =x 2-b截得的线段长等于C 1的长半轴长.(1)求C 1,C 2的方程.(2)设C 2与y 轴的交点为M ,过坐标原点O 的直线l 与C 2相交于点A ,B ,直线MA ,MB 分别与C 1相交于点D ,E .证明:MD ⊥ME .解析: 由题意知e =c a =32,从而a =2b .又2b =a ,所以a =2,b =1.故C 1,C 2的方程分别为x 24+y 2=1,y =x 2-1.(2)证明:由题意知,直线l 的斜率存在,设为k ,则直线l 的方程为y =kx .由⎩⎪⎨⎪⎧y =kx ,y =x 2-1,得x 2-kx -1=0. 设A (x 1,y 1),B (x 2,y 2),则x 1,x 2是上述方程的两个实根,于是x 1+x 2=k ,x 1x 2=-1. 又点M 的坐标为(0,-1),所以k MA ·k MB =y 1+1x 1·y 2+1x 2=(kx 1+1)(kx 2+1)x 1x 2=k 2x 1x 2+k (x 1+x 2)+1x 1x 2=-k 2+k 2+1-1=-1.故MA ⊥MB ,即MD ⊥ME .。

高中数学圆锥曲线练习题及参考答案2023

高中数学圆锥曲线练习题及参考答案2023

高中数学圆锥曲线练习题及参考答案2023一、选择题1. 下列不是圆锥曲线的是:A. 椭圆B. 抛物线C. 双曲线D. 直线2. 椭圆的离心率范围是:A. 0 < e < 1B. e = 1C. e > 1D. e = 03. 若双曲线的离心率为1.5,焦点到准线的距离为6,则双曲线的方程为:A. $\frac{x^2}{4} - \frac{y^2}{16} = 1$B. $\frac{x^2}{25} - \frac{y^2}{9} = 1$C. $\frac{x^2}{9} - \frac{y^2}{25} = 1$D. $\frac{x^2}{16} - \frac{y^2}{4} = 1$4. 抛物线的焦点位于:A. 抛物线的顶点处B. 抛物线的准线上C. 抛物线的对称轴上D. 抛物线的焦点处5. 设双曲线的离心率为2,焦点到准线的距离为10,则双曲线的方程为:A. $\frac{x^2}{36} - \frac{y^2}{64} = 1$B. $\frac{x^2}{64} - \frac{y^2}{36} = 1$C. $\frac{x^2}{16} - \frac{y^2}{9} = 1$D. $\frac{x^2}{9} - \frac{y^2}{16} = 1$二、填空题1. 椭圆的离心率等于:答案:$\sqrt{1 - \frac{b^2}{a^2}}$2. 双曲线的焦点间距离等于:答案:$2ae$3. 抛物线的焦距等于:答案:$p = \frac{1}{4a}$4. 椭圆的离心率范围是:答案:$0 < e < 1$5. 双曲线的准线称为:答案:对称轴三、计算题1. 求椭圆 $\frac{x^2}{16} + \frac{y^2}{9} = 1$ 的焦点坐标。

解答:椭圆的方程为 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中 $a = 4$,$b = 3$。

(完整版)圆锥曲线经典题目(含答案)

(完整版)圆锥曲线经典题目(含答案)

圆锥曲线经典题型一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.27.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=110.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.一.选择题(共10小题)1.直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,则此双曲线离心率的范围是()A.(1,)B.(,+∞) C.(1,+∞)D.(1,)∪(,+∞)【解答】解:∵直线y=x﹣1与双曲线x2﹣=1(b>0)有两个不同的交点,∴1>b>0或b>1.∴e==>1且e≠.故选:D.2.已知M(x0,y0)是双曲线C:=1上的一点,F1,F2是C的左、右两个焦点,若<0,则y0的取值范围是()A.B.C. D.【解答】解:由题意,=(﹣﹣x0,﹣y0)•(﹣x0,﹣y0)=x02﹣3+y02=3y02﹣1<0,所以﹣<y0<.故选:A.3.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,若双曲线右支上存在一点P,使得,其中O为坐标原点,且,则该双曲线的离心率为()A.B. C.D.【解答】解:取PF2的中点A,则∵,∴⊥∵O是F1F2的中点∴OA∥PF1,∴PF1⊥PF2,∵|PF1|=3|PF2|,∴2a=|PF1|﹣|PF2|=2|PF2|,∵|PF1|2+|PF2|2=4c2,∴10a2=4c2,∴e=故选C.4.过双曲线﹣=1(a>0,b>0)的右焦点F作直线y=﹣x的垂线,垂足为A,交双曲线左支于B点,若=2,则该双曲线的离心率为()A.B.2 C.D.【解答】解:设F(c,0),则直线AB的方程为y=(x﹣c)代入双曲线渐近线方程y=﹣x得A(,﹣),由=2,可得B(﹣,﹣),把B点坐标代入双曲线方程﹣=1,即=1,整理可得c=a,即离心率e==.故选:C.5.若双曲线=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相交,则此双曲线的离心率的取值范围是()A.(2,+∞)B.(1,2) C.(1,)D.(,+∞)【解答】解:∵双曲线渐近线为bx±ay=0,与圆(x﹣2)2+y2=2相交∴圆心到渐近线的距离小于半径,即∴b2<a2,∴c2=a2+b2<2a2,∴e=<∵e>1∴1<e<故选C.6.已知双曲线C:的右焦点为F,以F为圆心和双曲线的渐近线相切的圆与双曲线的一个交点为M,且MF与双曲线的实轴垂直,则双曲线C的离心率为()A.B.C.D.2【解答】解:设F(c,0),渐近线方程为y=x,可得F到渐近线的距离为=b,即有圆F的半径为b,令x=c,可得y=±b=±,由题意可得=b,即a=b,c==a,即离心率e==,故选C.7.设点P是双曲线=1(a>0,b>0)上的一点,F1、F2分别是双曲线的左、右焦点,已知PF1⊥PF2,且|PF1|=2|PF2|,则双曲线的一条渐近线方程是()A.B.C.y=2x D.y=4x【解答】解:由双曲线的定义可得|PF1|﹣|PF2|=2a,又|PF1|=2|PF2|,得|PF2|=2a,|PF1|=4a;在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2,∴4c2=16a2+4a2,即c2=5a2,则b2=4a2.即b=2a,双曲线=1一条渐近线方程:y=2x;故选:C.8.已知双曲线的渐近线与圆x2+(y﹣2)2=1相交,则该双曲线的离心率的取值范围是()A.(,+∞) B.(1,)C.(2.+∞)D.(1,2)【解答】解:∵双曲线渐近线为bx±ay=0,与圆x2+(y﹣2)2=1相交∴圆心到渐近线的距离小于半径,即<1∴3a2<b2,∴c2=a2+b2>4a2,∴e=>2故选:C.9.如果双曲线经过点P(2,),且它的一条渐近线方程为y=x,那么该双曲线的方程是()A.x2﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由双曲线的一条渐近线方程为y=x,可设双曲线的方程为x2﹣y2=λ(λ≠0),代入点P(2,),可得λ=4﹣2=2,可得双曲线的方程为x2﹣y2=2,即为﹣=1.故选:B.10.已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.B.C.D.【解答】解:由双曲线C:x2﹣=1的右焦点F(2,0),PF与x轴垂直,设(2,y),y>0,则y=3,则P(2,3),∴AP⊥PF,则丨AP丨=1,丨PF丨=3,∴△APF的面积S=×丨AP丨×丨PF丨=,同理当y<0时,则△APF的面积S=,故选D.二.填空题(共2小题)11.过双曲线的左焦点F1作一条l交双曲线左支于P、Q两点,若|PQ|=8,F2是双曲线的右焦点,则△PF2Q的周长是20.【解答】解:∵|PF1|+|QF1|=|PQ|=8∵双曲线x2﹣=1的通径为==8∵PQ=8∴PQ是双曲线的通径∴PQ⊥F1F2,且PF1=QF1=PQ=4∵由题意,|PF2|﹣|PF1|=2,|QF2|﹣|QF1|=2∴|PF2|+|QF2|=|PF1|+|QF1|+4=4+4+4=12∴△PF2Q的周长=|PF2|+|QF2|+|PQ|=12+8=20,故答案为20.12.设F1,F2分别是双曲线的左、右焦点,若双曲线右支上存在一点P,使,O为坐标原点,且,则该双曲线的离心率为.【解答】解:取PF2的中点A,则∵,∴2•=0,∴,∵OA是△PF1F2的中位线,∴PF1⊥PF2,OA=PF1.由双曲线的定义得|PF1|﹣|PF2|=2a,∵|PF1|=|PF2|,∴|PF2|=,|PF1|=.△PF1F2中,由勾股定理得|PF1|2+|PF2|2=4c2,∴()2+()2=4c2,∴e=.故答案为:.三.解答题(共4小题)13.已知点F1、F2为双曲线C:x2﹣=1的左、右焦点,过F2作垂直于x轴的直线,在x轴上方交双曲线C于点M,∠MF1F2=30°.(1)求双曲线C的方程;(2)过双曲线C上任意一点P作该双曲线两条渐近线的垂线,垂足分别为P1、P2,求•的值.【解答】解:(1)设F2,M的坐标分别为,因为点M在双曲线C上,所以,即,所以,在Rt△MF2F1中,∠MF1F2=30°,,所以…(3分)由双曲线的定义可知:故双曲线C的方程为:…(6分)(2)由条件可知:两条渐近线分别为…(8分)设双曲线C上的点Q(x0,y0),设两渐近线的夹角为θ,则点Q到两条渐近线的距离分别为,…(11分)因为Q(x0,y0)在双曲线C:上,所以,又cosθ=,所以=﹣…(14分)14.已知曲线C1:﹣=1(a>0,b>0)和曲线C2:+=1有相同的焦点,曲线C1的离心率是曲线C2的离心率的倍.(Ⅰ)求曲线C1的方程;(Ⅱ)设点A是曲线C1的右支上一点,F为右焦点,连AF交曲线C1的右支于点B,作BC垂直于定直线l:x=,垂足为C,求证:直线AC恒过x轴上一定点.【解答】(Ⅰ)解:由题知:a2+b2=2,曲线C2的离心率为…(2分)∵曲线C1的离心率是曲线C2的离心率的倍,∴=即a2=b2,…(3分)∴a=b=1,∴曲线C1的方程为x2﹣y2=1;…(4分)(Ⅱ)证明:由直线AB的斜率不能为零知可设直线AB的方程为:x=ny+…(5分)与双曲线方程x2﹣y2=1联立,可得(n2﹣1)y2+2ny+1=0设A(x1,y1),B(x2,y2),则y1+y2=﹣,y1y2=,…(7分)由题可设点C(,y2),由点斜式得直线AC的方程:y﹣y2=(x﹣)…(9分)令y=0,可得x===…(11分)∴直线AC过定点(,0).…(12分)15.已知双曲线Γ:的离心率e=,双曲线Γ上任意一点到其右焦点的最小距离为﹣1.(Ⅰ)求双曲线Γ的方程;(Ⅱ)过点P(1,1)是否存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点?若直线l存在,请求直线l的方程;若不存在,说明理由.【解答】解:(Ⅰ)由题意可得e==,当P为右顶点时,可得PF取得最小值,即有c﹣a=﹣1,解得a=1,c=,b==,可得双曲线的方程为x2﹣=1;(Ⅱ)过点P(1,1)假设存在直线l,使直线l与双曲线Γ交于R、T两点,且点P是线段RT的中点.设R(x1,y1),T(x2,y2),可得x12﹣=1,x22﹣=1,两式相减可得(x1﹣x2)(x1+x2)=(y1﹣y2)(y1+y2),由中点坐标公式可得x1+x2=2,y1+y2=2,可得直线l的斜率为k===2,即有直线l的方程为y﹣1=2(x﹣1),即为y=2x﹣1,代入双曲线的方程,可得2x2﹣4x+3=0,由判别式为16﹣4×2×3=﹣8<0,可得二次方程无实数解.故这样的直线l不存在.16.已知双曲线C:的离心率e=,且b=.(Ⅰ)求双曲线C的方程;(Ⅱ)若P为双曲线C上一点,双曲线C的左右焦点分别为E、F,且•=0,求△PEF的面积.【解答】解:(Ⅰ)∵C:的离心率e=,且b=,∴=,且b=,∴a=1,c=∴双曲线C的方程;(Ⅱ)令|PE|=p,|PF|=q由双曲线定义:|p﹣q|=2a=2平方得:p2﹣2pq+q2=4•=0,∠EPF=90°,由勾股定理得:p2+q2=|EF|2=12所以pq=4即S=|PE|•|PF|=2.。

高二数学圆锥曲线测试题以及详细答案(完整资料).doc

高二数学圆锥曲线测试题以及详细答案(完整资料).doc
(2)将k=1代入方程①得x2-2x-3=0,解出 x1=-1,x2=3,由y=x+1得y1=0,y2=4
即A、B的坐标分别为(-1,0)和(3,4)
由CD垂直平分AB,得直线CD的方程为y=-(x-1)+2,即 y=3-x ,代入双曲线方程,整理,
得 x2+6x-11=0②
记C(x3,y3),D(x4,y4),以及CD中点为M(x0,y0),则x3、x4是方程②的两个的实数根,所以
A. B. C. D.
6.双曲线 离心率为2,有一个焦点与抛物线 的焦点重合,则mn的值为()
A. B. C. D.
7.若双曲线 的左焦点在抛物线y2=2px的准线上,则p的值为 ()
(A)2(B)3(C)4(D)4
8.如果椭圆 的弦被点(4,2)平分,则这条弦所在的直线方程是( )
A B C D
9、无论 为何值,方程 所表示的曲线必不是( )
20在平面直角坐标系 中,点P到两点 , 的距离之和等于4,设点P的轨迹为 .(Ⅰ)写出C的方程;
(Ⅱ)设直线 与C交于A,B两点.k为何值时 ?此时 的值是多少?
21.A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?
(Ⅱ)设 ,其坐标满足
消去y并整理得 , 故 .
,即 . 而 ,
于是 .
所以 时, ,故 .
当 时, , .

而 ,
所以 .
21A、B是双曲线x2- =1上的两点,点N(1,2)是线段AB的中点
(1)求直线AB的方程;
(2)如果线段AB的垂直平分线与双曲线相交于C、D两点,那么A、B、C、D四点是否共圆?为什么?

(完整word版)圆锥曲线练习题含答案(很基础,很好的题)

(完整word版)圆锥曲线练习题含答案(很基础,很好的题)

厂15 “5 C .D . 1028x 上一点P 到其焦点的距离为y 2 x 上一点P 到准线的距离等于它到顶点的距离,则点 P 的坐标为(B . (8, J)C .(4,』)D .(=)8 4 4 4 8 4圆锥曲线练习题21.抛物线y 10x 的焦点到准线的距离是(A . (7,帀)B . (14, .14)C . (7,2•一 14 D . ( 7,2、、帀)2x3.以椭圆——25 2y161的顶点为顶点,离心率为2的双曲线方程(2 xA .162y 482厶1272x162y 48 2y 27D .以上都不对2 x 4 . F 1, F 2是椭圆一9 1的两个焦点,A 为椭圆上一点, 且/ AF 1F 2450,则△ AF 1F 2的面积(5.以坐标轴为对称轴, 以原点为顶点且过圆2x 6y 90的圆心的抛物线的方程是2 3x 或y 3x 23x 2 C . y 2 9x 或 y 3x 2D. 3x 2或2小y 9x5A .—22.若抛物线9,则点P 的坐标为(6.若抛物线7.椭圆 x49y 241上一点P 与椭圆的两个焦点 F 1、F 2的连线互相垂直, 则厶PF 1F 2的面积为20 B . 22 C . 28 D . 248 .若点A 的坐标为(3,2) , F 是抛物线y 2 2x 的焦点,点M 在抛物线上移动时,使 MF MA 取得 最小值的M 的坐标为()A . 00B . AC. 1-2 D . 2,229.与椭圆 — y 21共焦点且过点 Q (2,1)的双曲线方程是()4A.2 2 2 2 2抛物线y 2 6x 的准线方程为 ________ . 椭圆5x 2 ky 2 5的一个焦点是(0,2),那么k 11的离心率为一,则k 的值为 ___2双曲线8kx 2 ky 28的一个焦点为(0,3),则k 的值为 ______________若直线x y 2与抛物线y 2 4x 交于A 、B 两点,则线段 AB 的中点坐标是 _________________k 为何值时,直线y kx 2和曲线2x 2 3y 2 6有两个公共点?有一个公共点?没有公共点?在抛物线y 4x 2上求一点,使这点到直线 y 4x 5的距离最短。

高三数学文科圆锥曲线大题训练(20个)(含答案)

高三数学文科圆锥曲线大题训练(20个)(含答案)

高三数学文科圆锥曲线大题训练(含详细解答)1.已知椭圆22:416C x y +=. (1)求椭圆C 的离心率;(2)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212x y +=的位置关系.2.已知椭圆的中心在坐标原点O,长轴长为离心率2e =,过右焦点F 的直线l 交椭圆于P ,Q 两点.(1)求椭圆的方程;(2)当直线l 的斜率为1时,求POQ ∆的面积;(3)若以,OP OQ 为邻边的平行四边形是矩形,求满足该条件的直线l 的方程.3.在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b +=>>的一个顶点为(2,0)A -(1)求椭圆C 的标准方程;(2)直线l 过点A ,过O 作l 的平行线交椭圆C 于P ,Q 两点,如果以PQ 为直径的圆与直线l 相切,求l 的方程.4.已知离心率为2的椭圆2222:1(0)x y C a b a b +=>>与直线2x =相交于,P Q 两点(点P 在x 轴上方),且2PQ =.点,A B 是椭圆上位于直线PQ 两侧的两个动点,且APQ BPQ ∠=∠. (1)求椭圆C 的标准方程;(2)求四边形APBQ 面积的取值范围.5.已知椭圆的一个顶点为)1,0(-A ,焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. (1)求椭圆的标准方程;(2)设直线()0y kx m k =+≠与椭圆相交于不同的两点M 、N ,当AM AN =时,求m 的取值范围.6.已知椭圆1C 的中心在坐标原点,两焦点分别为双曲线222:12x C y -=的顶点,直线0=x 与椭圆1C 交于A ,B 两点,且点A的坐标为(1),点P 是椭圆1C 上异于点A ,B 的任意一点,点Q 满足0AQ AP ⋅=,0BQ BP ⋅=,且A ,B ,Q 三点不共线.(1)求椭圆1C 的方程; (2)求点Q 的轨迹方程;(3)求ABQ ∆面积的最大值及此时点Q 的坐标.7.如图,B A ,分别是椭圆C :)0(12222>>=+b a by a x 的左右顶点,F 为其右焦点,2是AF 与FB 的等差中项,3是AF 与FB 的等比中项. (1)求椭圆C 的方程;(2)已知点P 是椭圆C 上异于B A ,的动点,直线l 过点A 且垂直于x 轴,若过F 作直线FQ 垂直于AP ,并交直线l 于点Q .证明:B P Q ,,三点共线.8.已知椭圆()2222:10x y C a b a b +=>>()0,1.圆22221:C x y a b +=+.(1)求椭圆C 的方程;(2)若直线l ():0y kx m k =+≠与椭圆C 有且只有一个公共点M ,且l 与圆1C 相交于,A B 两点,问AM BM +=0是否成立?请说明理由.9.已知抛物线C :22(0)y px p =>的焦点为F ,若过点F 且斜率为1的直线与抛物线相交于,M N 两点,且8MN =.(1)求抛物线C 的方程;(2)设直线l 为抛物线C 的切线,且l ∥MN ,P 为l 上一点,求PM PN ⋅的最小值.10.已知动圆C 过定点)(2,0M ,且在x 轴上截得弦长为4.设该动圆圆心的轨迹为曲线C . (1)求曲线C 方程;(2)点A 为直线l :20x y --=上任意一点,过A 作曲线C 的切线,切点分别为P 、 Q ,APQ ∆面积的最小值及此时点A 的坐标.11.已知点)1,2(A 在抛物线:E 2x ay =上,直线1:l 1y kx =+(R k ∈,且0k ≠)与抛物线E 相交于C B ,两点,直线AC AB ,分别交直线2:l 1y =-于点S ,T .(1)求a 的值;(2)若S T =1l 的方程;(3)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若不是,说明理由.12.在平面直角坐标系xOy 中,已知椭圆C 的中心在原点O ,焦点在x 轴上,短轴长为2(1)求椭圆C 的方程;(2)B A ,为椭圆C 上满足AOB ∆E 为线段AB 的中点,射线OE 交椭圆C 于点P ,设OP tOE =,求实数t 的值.13.已知点()2,1P 在抛物线()21:20C x py p =>上,直线l 过点()0,2Q 且与抛物线1C 交于A 、B 两点。

圆锥曲线经典练习题含答案

圆锥曲线经典练习题含答案

圆锥曲线专题一、选择题:1.已知抛物线x y 42=的顶点为O ,抛物线上B A ,两点满足0=⋅OB OA ,则点O 到直线AB 的最大距离为( )A.1B.2C.3D.42.椭圆22221()x y a b a b+=>>0的右焦点F ,其右准线与x 轴的交点为A ,在椭圆上存在点P满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是(A )20,⎛⎤ ⎥ ⎝⎦(B )10,2⎛⎤ ⎥⎝⎦ (C ) )21,1⎡-⎣ (D )1,12⎡⎫⎪⎢⎣⎭ 3.已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 且斜率为3的直线交C 于A B 、两点,若4AF FB =,则C 的离心率为A .65 B. 75 C. 58 D. 954.已知椭圆22:12x C y +=的右焦点为F ,右准线为l ,点A l ∈,线段AF 交C 于点B ,若3FA FB =,则||AF =(A)2 (B) 2 (C)3 (D) 35.已知直线()()20y k x k =+>与抛物线2:8C y x =相交于A B 、两点,F 为C 的焦点,若||2||FA FB =,则k =A.13 B.23 C. 23D. 2236.(2009天津卷理)设抛物线2y =2x 的焦点为F ,过点M 30)的直线与抛物线相交于A ,B 两点,与抛物线的准线相交于C ,BF =2,则∆BCF 与∆ACF 的面积之比BCFACFS S ∆∆=(A )45 (B )23 (C )47 (D )127.已知抛物线2:8C y x =的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且2AK AF =,则AFK ∆的面积为( )(A)4(B)8(C)16(D)328.过双曲线2222x y -=的右焦点作直线l 交双曲线于A B 、两点,若4,AB =则这样的直线有( ) A .4条 B .3条 C .2条 D .1条 9.到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线的平面内的轨迹是A. 直线B. 椭圆C. 抛物线D. 双曲线10.(浙江卷10)如图,AB 是平面a 的斜线段,A 为斜足,若点P 在平面a 内运动,使得△ABP 的面积为定值,则动点P 的轨迹是()(A )圆 (B )椭圆 (C )一条直线 (D )两条平行直线11.PAB ∆所在的平面α和四边形ABCD 所在的平面垂直,且,,4,8,6,AD BC AD BC AB APD CPB αα⊥⊥===∠=∠, 则点P 在平面α内的轨迹是( )A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分12.已知以4T =为周期的函数21,(1,1]()12,(1,3]m x x f x x x ⎧-∈-⎪=⎨--∈⎪⎩,其中0m >。

圆锥曲线练习题(附答案)

圆锥曲线练习题(附答案)

圆锥曲线一、填空题x2 1、对于曲线C∶4 ky2=1 ,给出下面四个命题:k 1①由线 C 不可能表示椭圆;②当1<k<4 时,曲线 C 表示椭圆;③若曲线 C 表示双曲线,则k<1 或k>4;④若曲线 C 表示焦点在x 轴上的椭圆,则 1 <k<52 其中所有正确命题的序号为.x2 2、已知椭圆2a y1(a bb 20) 的两个焦点分别为F1 , F2 ,点P 在椭圆上,且满足PF1 PF20 ,tan PF1 F252 ,则该椭圆的离心率为x 2 y23. 若m0 ,点P m, 在双曲线 1 上,则点P 到该双曲线左焦点的距离2 4 5为.4、已知圆 C : x2y2 6x 4 y 8 0 .以圆C 与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为.5、已知点P 是抛物线y2 4x 上的动点,点P 在y 轴上的射影是M,点A 的坐标是(4 ,a),则当| a | 4 时,| PA | | PM | 的最小值是.76.在ABC 中, AB BC ,cos B .若以A ,B 为焦点的椭圆经过点 C ,则该椭圆的离18心率e .7.已知ABC 的顶点B -3, 0 、C 3, 0 ,E 、F 分别为AB、AC 的中点,AB 和AC 边上的中线交于G ,且| GF |+| GE |= 5 ,则点G 的轨迹方程为8.离心率e5,一条准线为x=3 的椭圆的标准方程是. 329. 抛物线 y4ax ( a 0) 的焦点坐标是;10 将抛物线 x 4a ( y 3) 2(a 0) 按向量 v =( 4 ,- 3 )平移后所得抛物线的焦点坐标为.1211 、抛物线yx (m m0) 的焦点坐标是 .x2 12. 已知 F 1、F 2 是椭圆2a(10 y2a)2=1(5 <a < 10 =的两个焦点, B 是短轴的一个端点,则△ F 1BF 2 的面积的最大值是13. 设 O 是坐标原点, F 是抛物线 y 22 px ( p 0) 的焦点, A 是抛物线上的一点, FA 与 x轴正向的夹角为 60 °,则| OA |为 .714. 在 △ABC 中, ABBC , cosB.若以 A ,B 为焦点的椭圆经过点 C ,则该椭圆18的离心率 e.二.解答题15 、已知动点 P 与平面上两定点(Ⅰ)试求动点 P 的轨迹方程 C.A(2,0),B( 2,0)1 连线的斜率的积为定值.2(Ⅱ)设直线 l : ykx 1 与曲线 C 交于 M 、N 两点,当 |MN |= 4 2 3时,求直线 l 的方程 . 21 2 1 2 1 216 、已知三点 P ( 5 ,2)、 F 1 (- 6 , 0 )、 F 2 ( 6, 0)。

圆锥曲线练习题及答案

圆锥曲线练习题及答案

圆锥曲线测试题(文)时间:100分钟 满分100分一、选择题:(每题4分,共40分)1.0≠c 是方程 c y ax =+22 表示椭圆或双曲线的( )A .充分不必要条件B .必要不充分条件C .充要条件D .不充分不必要条件 2.如果抛物线y 2=ax 的准线是直线x =-1,那么它的焦点坐标为 ( ) A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0)3.直线y = x +1被椭圆x 2+2y 2=4所截得的弦的中点坐标是( ) A .(31, -32) B .(-32, 31) C.(21,-31) D .(-31,21 ) 4.一抛物线形拱桥,当水面离桥顶2m 时,水面宽4m ,若水面下降1m ,则水面宽为( )A .6mB .26mC .4.5mD .9m5. 已知椭圆15922=+y x 上的一点P 到左焦点的距离是34,那么点P 到椭圆的右准线的距离是( )A .2B .6C .7D .1436.曲线225x+29y =1与曲线225kx-+29ky-=1(k <9 )的( )A.长轴长相等B.短轴长相等C.离心率相等D.焦距相等 7.已知椭圆25x+2my=1的离心率则m 的值为( ) A .3 B.253或 38.已知椭圆C 的中心在原点,左焦点F 1,右焦点F 2均在x 轴上,A 为椭圆的右顶点,B 为椭圆短轴的端点,P 是椭圆上一点,且PF 1⊥x 轴,PF 2∥AB ,则此椭圆的离心率等于( )A .12 B.2C .13 D92)0>>n m 的曲线在同一坐标系10.椭圆225x+29y=1上一点M 到左焦点1F的距离为2,N 是M1F的中点,,则2ON等于 ( )A. 3 B . 4 C. 8 D.16二.填空题(每题4分,共16分)11.11422=-+-t y t x 表示双曲线,则实数t 的取值范围是. 12.双曲线42x -2y +64=0上一点P 到它的一个焦点的距离等于1,则点P 到另一个焦点的距离等于 .13.斜率为1的直线经过抛物线2y =4x 的焦点,且与抛物线相交于A,B 两点,则AB 等于 .14. 设x,y ∈R,在直角坐标平面内,a (x,y+2),b = (x,y -2),且a +b=8,则点M (x , y )的轨迹方程是 .三.解答题15.已知双曲线与椭圆1244922=+y x 共焦点,且以x y 34±=为渐近线,求双曲线方程.(10分)16.椭圆的中心是原点O ,它的短轴长为22,相应于焦点F (c ,0)(0>c )的准 线l 与x 轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)若0=⋅,求直线PQ 的方程;(12分)17.已知椭圆的中心在原点O ,焦点在坐标轴上,直线y = x +1与该椭圆相交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆的方程.(12分) 18.一炮弹在A 处的东偏北60°的某处爆炸,在A 处测到爆炸信号的时间比在B 处早4秒,已知A 在B 的正东方、相距6千米, P 为爆炸地点,(该信号的传播速度为每秒1千米)求A 、P 两地的距离.(10分)参考答案11.t>4或t<1 12. 17 13. 814. 212x +216x =1三.解答体15.(10分) [解析]:由椭圆1244922=+y x 5=⇒c .设双曲线方程为12222=-b y a x ,则⎪⎩⎪⎨⎧=+±=253422b a a b ⎪⎩⎪⎨⎧==⇒16922b a 故所求双曲线方程为116922=-y x 16.(12分) [解析]:(1)由已知由题意,可设椭圆的方程为)2(12222>=+a y a x .由已知得⎪⎩⎪⎨⎧-==-).(2,2222c c a c c a 解得2,6==c a 所以椭圆的方程为12622=+y x ,离心率36=e .(Ⅱ)解:由(1)可得A (3,0).设直线PQ 的方程为)3(-=x k y .由方程组⎪⎩⎪⎨⎧-==+)3(,12622x k y y x 得062718)13(2222=-+-+k x k x k 依题意0)32(122>-=∆k ,得3636<<-k .设),(),,(2211y x Q y x P ,则13182221+=+k k x x , ①136272221+-=k k x x . ② 由直线PQ 的方程得)3(),3(2211-=-=x k y x k y .于是]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y . ③∵0=⋅,∴02121=+y y x x . ④. 由①②③④得152=k ,从而)36,36(55-∈±=k .所以直线PQ 的方程为035=--y x 或035=-+y x . 17.(12分)Q y[解析]:设所求椭圆的方程为12222=+by a x ,依题意,点P (11,y x )、Q (22,y x )的坐标满足方程组⎪⎩⎪⎨⎧+==+112222x y b y a x解之并整理得0)1(2)(222222=-+++b a x a x b a或0)1(2)(222222=-+-+a b y b y b a所以222212ba a x x +-=+,222221)1(b a b a x x +-=① 222212b a b y y +=+,222221)1(b a a b y y +-=②由OP ⊥OQ 02121=+⇒y y x x 22222b a b a =+⇒③ 又由|PQ |=2102212212)()(y y x x PQ -+-=⇒=2521221212214)(4)(y y y y x x x x -++-+⇒=2521221212214)(4)(y y y y x x x x -++-+⇒=25④由①②③④可得:048324=+-b b 32222==⇒b b 或 23222==⇒a a 或 故所求椭圆方程为123222=+y x ,或122322=+y x18.(12分) [解析]:以直线AB 为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,则A (3,0)、B (-3,0) 3,5,2614||||===∴<⨯=-c b a PA PB15422=-∴y x P 是双曲线右支上的一点∵P 在A 的东偏北60°方向,∴360tan == AP k . ∴线段AP 所在的直线方程为)3(3-=x y解方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧>>-==-0)3(315422y x x y y x ⎩⎨⎧==358y x 得 , 即P 点的坐标为(8,35)∴A 、P 两地的距离为22)350()83(-+-=AP =10(千米).预测全市平均分:61。

高二数学圆锥曲线测试题及参考答案

高二数学圆锥曲线测试题及参考答案

高二数学圆锥曲线测试题一.选择题:本大题共10小题,每小题5分,共50分.1.椭圆22146x y +=的长轴长为( )A .2BC .4D .622. 设椭圆1422=+m y x 的离心率为21,则m 的值是( ) A .3 B .316或3 C .316 D .316或2 3.抛物线24y x =的焦点坐标是( ) A .(1,0) B .(0,1) C .1(,0)16 D .1(0,)164.双曲线221916x y -=右支上一点P 到右焦点的距离是4,则点P 到左焦点的距离为( ) A.10 B.16 C.9 D.155. 顶点在原点,焦点在对称轴上的抛物线过圆096222=++-+y x y x 的圆心,则其方程为( ) A .23x y =或23x y -= B .23x y = C .x y 92-=或23x y = D .23x y -=或x y 92=6.已知双曲线)0,0(12222>>=-b a by a x 的离心率为2 )A .2y x =±B .x y 2±=C .x y 22±= D .12y x =± 7.曲线21x xy +=的图像关于( )A .x 轴对称B .y 轴对称C . 坐标原点对称D . 直线x y =对称8.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在抛物线上移动时,使MA MF +取得最小值的M 的坐标为( )A .()0,0B .⎪⎭⎫⎝⎛1,21 C .()2,1 D .()2,2 二.填空题:本大题共4小题,每小题5分,满分20分.9.双曲线22x y k -=的一个焦点为,则k 的值为_________.10.如果方程224kx y +=表示焦点在x 轴上的椭圆,那么实数k 的取值范围是 .11.与椭圆2216x y +=共焦点且过点Q 的双曲线方程是 .12.双曲线221169x y -=的左、右焦点分别为F 1,F 2,在左支上过点F 1的弦AB 的长为5,那么△ABF 2的周长是 .13.椭圆192522=+y x 的焦点1F 、2F ,P 为椭圆上的一点,已知21PF PF ⊥,则△21PF F 的面积为________.14.若直线l 与抛物线216y x =交于点A ,B ,且弦AB 的中点为(2,2),则直线l 的方程为__________. 三.解答题:本大题共6小题,满分80分.15.(本小题满分12分)已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15,求抛物线的方程。

完整版)圆锥曲线综合练习题(有答案)

完整版)圆锥曲线综合练习题(有答案)

完整版)圆锥曲线综合练习题(有答案)圆锥曲线综合练1.已知椭圆 $x^2/a^2+y^2/b^2=1$ 的长轴在 $y$ 轴上,焦距为 4,则 $m$ 等于()A。

4B。

5C。

7D。

82.直线 $x-2y+2=0$ 经过椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的一个焦点和一个顶点,则该椭圆的离心率为frac{\sqrt{5}}{2}3.设双曲线 $x^2/a^2-y^2/b^2=1(a>0)$ 的渐近线方程为$3x\pm 2y=0$,则 $a$ 的值为24.若 $m$ 是 2 和 8 的等比中项,则圆锥曲线$x^2/a^2+y^2/b^2=1$ 的离心率是frac{\sqrt{5}}{2}5.已知双曲线 $x^2/a^2-y^2/b^2=1(a>b>0)$,$N$ 两点,$O$ 为坐标原点,过其右焦点且垂直于实轴的直线与双曲线交于 $M$ 点。

若 $OM\perp ON$,则双曲线的离心率为frac{\sqrt{5}+1}{2}6.已知点$F_1,F_2$ 是椭圆$x^2/2+y^2/2=1$ 的两个焦点,点 $P$ 是该椭圆上的一个动点,则 $|PF_1+PF_2|$ 的最小值是sqrt{2}7.双曲线 $x^2/a^2-y^2/b^2=1$ 上的点到一个焦点的距离为 12,则到另一个焦点的距离为2\sqrt{5}8.$P$ 为双曲线 $x^2/a^2-y^2/b^2=1$ 的右支上一点,$M$,则 $|PM|-|PN|$ 分别是圆 $(x+5)^2+y^2=4$ 和 $(x-5)^2+y^2=1$ 上的点,的最大值为99.已知点 $P(8,a)$ 在抛物线 $y^2=4px$ 上,且 $P$ 到焦点的距离为 10,则焦点到准线的距离为210.在正三角形 $ABC$ 中,$D\in AB$,$E\in AC$,$\overrightarrow{DE}=\overrightarrow{BC}$,则以 $B$,$C$ 为焦点,且过 $D$,$E$ 的双曲线离心率为frac{3+\sqrt{5}}{2}11.两个正数 $a$,$b$ 的等差中项是 $5$,一个等比中项是 $25$,且 $a>b$,则抛物线 $y^2=-x$ 的焦点坐标是left(-\frac{5\sqrt{21}}{21},0\right)12.已知 $A_1$,$A_2$ 分别为椭圆$x^2/a^2+y^2/b^2=1(a>b>0)$ 的左右顶点,椭圆 $C$ 上异于$A_1$,$A_2$ 的点 $P$ 恒满足 $k\cdot PA_1\cdot k\cdotPA_2=-1$,则椭圆 $C$ 的离心率为frac{3}{5}13.已知椭圆 $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$ 的左、右焦点分别为 $F_1,F_2$,点 $A$ 在第一象限内且在椭圆上,点 $B$ 也在椭圆上。

高二数学圆锥曲线测试题以及详细答案

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案一、选择题:1、双曲线221102x y -=的焦距为()2.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF =()A .23B .3C .27D .4 3.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A.抛物线 B.双曲线C.椭圆D.以上都不对41,023F y x =-、F 2分别是双曲线的左、右56.双曲线)0(122≠=-mn ny m x 离心率为2A .163B .83C .316D .387.若双曲线2221613x y p-=的左焦点在抛物线y 2=2px(A)2(B)3(C)48.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是() A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x9、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是()A.双曲线B.抛物线C.椭圆D.以上都不对10.方程02=+ny mx 与)02>+mx 的曲线在同一坐标系中的示意图应是()A BCD11.的右焦点为圆心,且与其渐近线相切的圆的方程是A .C.12.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线 x y 42-=的焦点重合,则此椭圆方程为()A .13422=+y x B .16822=+y x C .1222=+y x D .1422=+y x 二、填空题:13.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ①椭圆的焦点恰好是双曲线的顶点;②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点;④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是.14相切,则a 的值为15PF 1中点在y 轴上,161718.P 为椭圆192522=+y x 上一点,1F 、2F (1)求△21PF F 的面积;(2)求P 点的坐标.(1419、求两条渐近线为02=±y x 且截直线3=--y x 320在平面直角坐标系xOy 中,点P 到两点(0-,,(0的距离之和等于4,设点P 的轨迹为C .(Ⅰ)写出C 的方程;(Ⅱ)设直线1y kx =+与C 交于A ,B 两点.k 为何值时OA ⊥OB ?此时AB 的值是多少? 21.A 、B 是双曲线x 2-=1上的两点,点N(1,2)是线段AB 的中点(1)求直线AB 的方程;(2)如果线段AB 的垂直平分线与双曲线相交于C 、D 两点,那么A 、B 、C 、D 四点是否共圆?为什么?22、点A 、B 分别是椭圆1203622=+y x 长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PF PA ⊥。

高中数学-圆锥曲线练习题含答案

高中数学-圆锥曲线练习题含答案

圆锥曲线专题练习一、选择题x 2y 21 上的一点P到椭圆一个焦点的距离为 3 ,则 P 到另一焦点距离为()1.已知椭圆1625B.3C.5 D .7A .22.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为 6 ,则椭圆的方程为()A. x 2y 21B. x2y 2 1 C.x2y21或 x2y 21D.以上都不对9162516251616253.设双曲线的半焦距为 c ,两条准线间的距离为 d ,且 c d ,那么双曲线的离心率e等于()A .2B.3C.2D.34.抛物线y210x的焦点到准线的距离是()5B .515D.10A .C.225.若抛物线y28x 上一点P到其焦点的距离为9 ,则点 P 的坐标为()A.(7,14)B.(14,14)C.(7, 214)D.( 7, 214)6.如果x2ky 22表示焦点在 y 轴上的椭圆,那么实数k 的取值范围是()A.0,B.0,2C.1,D.0,1二. 填空题7.双曲线的渐近线方程为x 2 y0,焦距为 10 ,这双曲线的方程为_______________ 。

8.设AB是椭圆x2y21的不垂直于对称轴的弦,M 为 AB 的中点, O 为坐标原点,a2b2则k AB k OM____________。

三 .解答题9x 轴上的抛物线被直线y 2x 1截得的弦长为15,求抛物线的方程。

.已知顶点在原点,焦点在10、已知动点P 与平面上两定点A(2,0), B( 2,0) 连线的斜率的积为定值1 . 2(Ⅰ)试求动点P 的轨迹方程 C.(Ⅱ)设直线l : y kx 1与曲线C交于M、N两点,当|MN|=4 2时,求直线l的方程.3参考答案1. D点 P 到椭圆的两个焦点的距离之和为2a10,10 372. C2a2b18, a b9, 2c6, c3,c2a2b29, a b 1得 a 5, b 4 ,x2y21或 x 2y 21251616253. C2a2c, c22a2 ,e2c22, e2c a24. B 2 p10, p 5 ,而焦点到准线的距离是p5. C点 P 到其焦点的距离等于点P 到其准线 x 2 的距离,得 x P7, y p 2 146. D焦点在 y 轴上,则y2x21,220k1 22kk7.x2y21设双曲线的方程为x24 y2,(0) ,焦距 2c225 20510, c当0时, x2y21,425,20 ;4当0时, y2x21,()25,20448.b2设 A( x1 , y1 ), B(x2 , y2 ) ,则中点 M ( x1x2, y1y2 ) ,得 kAB y2y1,a222x2x1kOM y2y1, k ABkOM y22y12, b2 x12a2 y12a2b2 ,x2x1x22x122 2 2 2 2 2222222y 2y 2b2b x2 a y2 a b ,得 b (x2x1 ) a ( y2y1 ) 0,即21x22x12a29.解:设抛物线的方程为y22 px ,则 y22 px, 消去 y 得y 2 x 14x2(2 p 4) x 1 0, x 1x 2p 2, x 1 x 2 124AB1 k 2x 1 x 25 (x 1x 2 )24x 1x 25 (p 2)24 115 ,24则p2p3, p24 p 12 0, p2,或64y24x ,或 y212xyy1x 2y21.P(x, y) ,则依题意有2 ,10、(Ⅰ)解:设点x2 x22,整理得 2由于xx2y2 1(x2).所以求得的曲线 C 的方程为2x2y21, : (1 2k 2 ) x 2 4kx0.4k2消去 y 得( x 1 , x 2kx1.解得 x 1=0, x 2=1(Ⅱ)由y2k2分别为 M ,N 的横坐标)由|MN|1k 2| x 1 x 2 |1k 2|4k| 4 2,解得 : k1 2k231. 所以直线 l 的方程 x - y+1=0 或x+ y -1=0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
参考答案
1.D点 到椭圆的两个焦点的距离之和为
2.C
得 , 或
3.C
4.B ,而焦点到准线的距离是
5.C点 到其焦点的距离等于点 到其准线 的距离,得
6.D焦点在 轴上,则
7. 设双曲线的方程为 ,焦距
当 时, ;
当 时,
8. 设 ,则中点 ,得
, ,
得 即
9.解:设抛物线的方程为 ,则 消去 得


10、(Ⅰ)解:设点 ,则依题意有 ,整理得 由于 ,所以求得的曲线C的方程为
(Ⅱ)由 解得x1=0,x2= 分别为M,N的横坐标)由 所以直线l的方程x-y+1=0或x+y-1=0
圆锥曲线专题练习
一、选择题
1.已知椭圆 上的一点 到椭圆一个焦点的距离为 ,则 到另一焦点距离为()
A. B. C. D.
2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为 ,焦距为 ,则椭圆的方程为()
A. B. C. 或 D.以上都不对
3.设双曲线的半焦距为 ,两条准线间的距离为 ,且 ,那么双曲线的离心率 等于()
8.设 是椭圆 的不垂直于对称轴的弦, 为 的中点, 为坐标原点,
则 ____________。
三.解答题
9.已知顶点在原点,焦点在 轴上的抛物线被直线 截得的弦长为 ,求抛物线的方程。
10、已知动点P与平面上两定点 连线的斜率的积为定值 .
(Ⅰ)试求动点P的轨迹方程C.
(Ⅱ)设直线 与曲线C交于M、N两点,当|MN|= 时,求直线l的方程.
A. B. C. D.
4.抛物线 的焦点到准线的距离是()
A. B. C. D.
5.若抛物线 上一点 到其焦点的距离为 ,则点 的坐标为()
A. B. C. D.
6.如果 表示焦点在 轴上的椭圆,那么实数 的取值范围是()
A. B. C. D.来自二.填空题7.双曲线的渐近线方程为 ,焦距为 ,这双曲线的方程为_______________。
相关文档
最新文档