《圆锥曲线》单元测试题

合集下载

高二圆锥曲线单元测试题及答案

高二圆锥曲线单元测试题及答案

《圆锥曲线》单元测试题一、选择题1.已知椭圆方程192522=+y x ,椭圆上点M 到该椭圆一个焦点的距离是2,N 是MF 1的中点,O 是椭圆的中心,那么线段ON 的长是( )A .2B .4C .8D .23 2.从椭圆的短轴的一个端点看长轴的两个端点的视角为120º,那么此椭圆的离心率为( )A .22B .33C .21D .363.设1>k ,则关于x 、y 的方程1)1(222-=+-k y x k 所表示的曲线是( )A .长轴在y 轴上的椭圆B .长轴在x 轴上的椭圆C .实轴在y 轴上的双曲线D .实轴在x 轴上的双曲线4.到定点(7, 0)和定直线x =7716的距离之比为47的动点轨迹方程是( )。

A .116922=+y x B .191622=+y x C .1822=+y x D .1822=+y x 5.若抛物线顶点为(0,0),对称轴为x 轴,焦点在01243=--y x 上那么抛物线的方程为( )A .x y 162= B .x y 162-=; C .x y 122=; D .x y 122-=;6.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 的斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是( )A .⎝⎛⎭⎫14,94B .⎝⎛⎭⎫23,1C .⎝⎛⎭⎫12,23D .⎝⎛⎭⎫0,12 7.若椭圆)1(122>=+m y m x 与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2,P 是两曲线的一个交点,则21PF F ∆的面积是( )A .4B .2C .1D .128.双曲线221(0)x y mn m n-=≠的离心率为2, 有一个焦点与抛物线24y x =的焦点重合,则mn 的值为( ) A .316 B .38 C .163 D .839.设双曲线以椭圆221259x y +=长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为( ) A .2± B .43±C .12±D .34± 10.已知椭圆222(0)2y x a a +=>与A (2,1),B (4,3)为端点的线段没有公共点,则a 的取值范围是( )A.02a <<B.02a <<或2a > C .103a <<D.22a << 第Ⅱ卷(非选择题,共90分)二、填空题(本大题共5小题,每小题5分,共25分)11.双曲线8822=-ky kx 的一个焦点是(0,3),那么k 的值为 。

高中数学选修《圆锥曲线图》单元测试题

高中数学选修《圆锥曲线图》单元测试题

《圆锥曲线》单元测试一、选择题:每小题8分,共40分1.设圆锥曲线C 的两个焦点分别为12,F F ,若曲线上存在点P 满足1122||:||:||4:3:2PF F F PF =,则曲线C 的离心率等于 A.1322或B.23或2 C.12或2 D.3223或2.已知两个正数,a b 的等差中项是92,一个等比中项是,b a >则双曲线22221x y ab-=的离心率为A.53 B.4C.5453.已知椭圆22:12xC y +=的右焦点为F ,右准线为l ,点A l ∈,线段A F 交C 于点B ,若3FA FB =,则||AF =B.2 D.34.下列命题中假命题是A. B. 双曲线2228x y -=的虚轴长是 C.抛物线22y x =的焦点到准线的距离为1 D.2222135x y +=的两条准线之间的距离为2545.设斜率为2的直线l 过抛物线2(0)y ax a =≠的焦点F ,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为A.24y x =±B.28y x =±C.24y x =D.28y x =6.已知直线(2)(0)y k x k =+>与抛物线2:8C y x =相交A 、B 两点,F 为C 的焦点。

若||2||FA FB =,则k = A.322 B.32 C.32D. 317.已知双曲线2221(0)2xy b b-=>的左、右焦点分别是12,F F ,其一条渐近线方程为y x =,点0)P y 在双曲线上.则12PF PF ⋅=A.4B.0C.2-D.12-8.已知双曲线22122xy-=的准线过椭圆22214xy b+=的焦点,则直线2y kx =+与椭圆至多有一个交点的充要条件是A.11[,]22k ∈-B.11(,][,)22k ∈-∞-⋃+∞C.[22k ∈-D.(,])22k ∈-∞-⋃+∞ 二、填空题:每小题5分,共30分9.曲线C 是平面内与两个定点12(1,0),(1,0)F F -的距离的积等于常数2(1)a a >的点的轨迹.给出下列三个结论:① 曲线C 过坐标原点;② 曲线C 关于坐标原点对称;③若点P 在曲线C 上,则12F PF D 的面积不大于22a;其中,所有正确结论的序号是 .10.若双曲线22221(,)x y a b R a b+-=∈的离心率2]e ∈,则一条渐近线与实轴所构成的角的取值范围_ _.11.已知双曲线C 的两个焦点及虚轴的两个端点构成一个内角为60 的菱形,那么双曲线C 的离心率为 .12.若抛物线22y px =的焦点与双曲线22163xy-=的右焦点重合,则p 的值为 .13.若椭圆22221x y ab+=的焦点在x 轴上,过点1(1,)2作圆221x y +=的切线,切点分别为A,B ,直线AB 恰好经过椭圆的右焦点和上顶点,则椭圆方程是 . 14.已知椭圆22221(0)x y a b ab+=>>的左、右焦点分别为12(,0),(,0)F c F c -,若椭圆上存在一点P 使1221sin sin a c PF F PF F =∠∠,则该椭圆的离心率的取值范围为 .三、解答题:须写出演算过程、文字说明等,满分48分15.(10分)求与椭圆x 2144+y 2169=1有共同焦点,且过点()0,2的双曲线方程,并且求出这条双曲线的实轴长、焦距、离心率.16.(12分)在平面直角坐标系xoy 中, 已知点(0,1)A -,B 点在直线3y =-上,M 点满足//,M B O A M A ABM B BA ?,M 点的轨迹为曲线C .(I )求C 的方程;(II )若00(,)P x y 为C 上一动点,l 为过P 点的直线且斜率为02x ,求O 点到l 距离的最小值.17.(12分)在平面直角坐标系xOy 中,已知椭圆1C :22221xy ab+=(0a b >>)的左焦点为1(1,0)F -,且点(0,1)P 在1C 上. (1)求椭圆1C 的方程;(2)设直线l 同时与椭圆1C 和抛物线2C :24y x =相切,求直线l 的方程.18.(14分)如下图,椭圆的中心为原点O ,离心率2e =,一条准线的方程为x =.(Ⅰ)求该椭圆的标准方程; (Ⅱ)设动点P 满足:2OP OM ON =+,其中,M N 是椭圆上的点,直线O M 与O N 的斜率之积为12-,问:是否存在两个定点12,F F ,使得12||||PF PF +为定值?若存在,求12,F F 的坐标;若不存在,说明理由.班级姓名座号得分圆锥曲线单元测试答题卡9. 10. 11.12. 13. 14.三、解答题:满分48分15.(10分)16.(12分)17.(12分)18.(14分)圆锥曲线单元测试参考答案1-8:ADAD BABA 9.②③10. [π4,π3].2c a ≤≤,∴2224c a ≤≤,即22224a b a -≤≤,∴2213b a≤≤,得1b a ≤≤,∴43ππθ≤≤11.212.6 13.22154xy+=14.)1,1-因为在12P F F ∆中,由正弦定理得1211a c P F P F =,知12c P F P F a=由椭圆的定义知 212222222c aPF PF a PF PF a PF ac a+=+==+则即,由椭圆的几何性质知22222,,20,aPF a c a c c c a c a<+<++->+则既所以2210,e e +->11(0,1)e e e <<∈或,又,故椭圆的离心率1,1)e ∈-15.解:椭圆221114169xy +=的焦点是(0,5),(0,5)-,焦点在y 轴上, 设双曲线的方程为22221(0,0)y x a b ab-=>>又因为双曲线过点(0,2),把这个点代入方程可得224,21a b == 所以双曲线的方程为221421yx-=,双曲线的实轴长为4,焦距为10,离心率为2.5.16. 解: (Ⅰ)设(,)M x y 由已知得(,3),(0,1)B x A --.所以 (,1),(0,3),(,2)M A x y M B y AB x =---=--=-再由题意可知()0M A M B AB +?即(,42)(,2)0x y x ---?=,故曲线C 的方程式为224xy =-.(Ⅱ)因为00(,)P x y ,l 的斜率为02x 因此直线l 的方程为000()2xy y x x -=-,即2000220x x y y x -+-=.则O 点到l的距离2d =.又20024x y =-,所以2014122x d +==,当200x =时取等号,故O 点到l 距离的最小值为2.17. 解:(1)因为椭圆1C 的左焦点为1(1,0)F -,所以1c =,点(0,1)P 代入椭圆22221x y ab+=,得211b=,即1b =,所以2222a b c =+=,所以椭圆1C 的方程为2212xy +=.(2)直线l 的斜率显然存在,设直线l 的方程为y kx m =+,2212x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 并整理得222(12)4220k x km x m +++-=,因为直线l 与椭圆1C 相切,所以2222164(12)(22)0k m k m ∆=-+-=,整理得22210k m -+= ①24y xy kx m⎧=⎨=+⎩,消去y 并整理得222(24)0k x km x m +-+=。

圆锥曲线》单元测试题

圆锥曲线》单元测试题

《圆锥曲线》单元测试题班级姓名学号分数第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若双曲线x2a2-y2b2=1的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为()A. 5 B.5 C. 2 D.22、圆锥曲线y29+x2a+8=1的离心率e=12,则a的值为()A.4B.-54C.4或-54D.以上均不正确3、以椭圆的右焦点F2为圆心的圆恰好过椭圆的中心,交椭圆于点M、N,椭圆的左焦点为F1,且直线MF1与此圆相切,则椭圆的离心率e为()A.3-1 B.2-3 C.22 D.324、已知双曲线x2a21-y2b2=1与椭圆x2a22+y2b2=1的离心率互为倒数,其中a1>0,a2>b>0,那么以a1、a2、b为边长的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形5、设椭圆x2m2+y2n2=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的方程为()A.x212+y216=1 B.x216+y212=1 C.x248+y264=1 D.x264+y248=16、已知椭圆E:x2m+y24=1,对于任意实数k,下列直线被椭圆E截得的弦长与l:被椭圆E截得的弦长不可能相等的是()A.kx+y+k=0 B.kx-y-1=0 C.kx+y-k=0 D.kx+y-2=07、过双曲线M:x2-y2b2=1的左顶点A作斜率为1的直线l,若l与双曲线M的两条渐近线分别相交于点B、C,且|AB|=|BC|,则双曲线M的离心率是()A.52 B.103 C. 5 D.108、设直线l:2x+y+2=0关于原点对称的直线为l′,若l′与椭圆x2+y24=1的交点为A、B,点P为椭圆上的动点,则使△P AB的面积为12的点P的个数为()A.1B.2C.3D.49、设F1、F2分别是椭圆x2a2+y2b2=1(a>b>0)的左、右焦点,与直线y=b相切的⊙F2交椭圆于点E,且E是直线EF1与⊙F2的切点,则椭圆的离心率为()A.53 B.63 C.32 D.3-110、如图所示,从双曲线x2a2-y2b2=1(a>0,b>0)的左焦点F引圆x2+y2=a2的切线,切点为T,延长FT交双曲线右支于P点,若M为线段FP的中点,O为坐标原点,则|MO|-|MT|与b-a的大小关系为()A.|MO|-|MT|>b-a B.|MO|-|MT|=b-aC.|MO|-|MT|<b-a D.不确定11、已知曲线C:y=2x2,点A(0,-2)及点B(3,a),从点A观察点B,要使视线C 挡住,则实数a 的取值范围是( )A .(4,+∞)B .(-∞,4]C .(10,+∞)D .(-∞,10]12、点P 在曲线C :x 24+y 2=1上,若存在过P 的直线交曲线C 于A 点,交直线l :x =4于B 点,满足|P A |=|PB |或|P A |=|AB |,则称点P 为“H 点”,那么下列结论正确的是( )A .曲线C 上的所有点都是“H 点”B .曲线C 上仅有有限个点是“H 点”C .曲线C 上的所有点都不是“H 点”D .曲线C 上有无穷多个点是“H 点”二、填空题(本大题共4个小题,每小题4分,共20分,把正确答案填在题中横线上.)13.已知点A (1,0),B (2,0).若动点M 满足AB →·BM →+2|AM →|=0,则点M 的轨迹方程为________.14.过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1、P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为______.15.设双曲线x 2-y23=1的左右焦点分别为F 1、F 2,P 是直线x =4上的动点,若∠F 1PF 2=θ,则θ的最大值为________.16.直线l :x -y =0与椭圆x 22+y 2=1相交A 、B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17、已知A (-2,0)、B (2,0),点C 、点D 满足|AC →|=2, AD→=12(AB →+AC →). (1)求点D 的轨迹E 的方程;(2)过点A 作直线l 交以A 、B 为焦点的椭圆G 于M 、N 两点,线段MN 的中点到y 轴的 距离为45,且直线l 与轨迹E 相切,求椭圆G 的方程.18、设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过原点O 斜率为1的直线与椭圆C 相交于M ,N 两点,椭圆右焦点F 到直线l 的距离为 2.(1)求椭圆C 的方程;(2)设P 是椭圆上异于M ,N 外的一点,当直线PM ,PN 的斜率存在且不为零时,记直线PM 的斜率为k 1,直线PN 的斜率为k 2,试探究k 1·k 2是否为定值?若是,求出定值;若不是,说明理由.19、过点M (1,1)作直线与抛物线x 2=2y 交于A 、B 两点,该抛物线在A 、B 两点处的两条切 线交于点P .(1)求点P 的轨迹方程;(2)求△ABP 的面积的最小值.20、已知菱形ABCD 的顶点A ,C 在椭圆x 2+3y 2=4上,对角线BD 所在直线的斜率为1.(1)当直线BD 过点(0,1)时,求直线AC 的方程; (2)当∠ABC =60°时,求菱形ABCD 面积的最大值.21、如图,在由圆O :x 2+y 2=1和椭圆C :x 2a2+y 2=1(a >1)构成的“眼形”结构中,已知椭圆的离心率为63, 直线l 与圆O 相切于点M ,与椭圆C 相交于两点A , B .(1)求椭圆C 的方程;(2)是否存在直线l ,使得OA →·OB→=12OM →2,若存在,求此时直线l 的方程;若不存在,请说明理由.22、已知椭圆的两个焦点F 1(-3,0),F 2(3,0),过F 1且与坐标轴不平行的直线l 1与椭圆相交于M ,N 两点,如果△MNF 2的周长等于8. (1)求椭圆的方程;(2)若过点(1,0)的直线l 与椭圆交于不同两点P 、Q ,试问在x 轴上是否存在定点E (m,0),使PE →·QE →恒为定值?若存在,求出E 的坐标及定值;若不存在,请说明理由.《圆锥曲线》单元测试题答案一、 选择题:二、 填空题:13、x 22+y 2=1 14、 -12 15、 30° 16、三、 解答题:17、[解析] (1)设C 、D 点坐标分别为C (x 0,y 0),D (x ,y ),则AC →=(x 0+2,y 0),AB →=(4,0), 则AB →+AC →=(x 0+6,y 0),故AD →=12(AB →+AC →)=⎝ ⎛⎭⎪⎫x 02+3,y 02. 又AD →=(x +2,y ),故⎩⎪⎨⎪⎧x 02+3=x +2,y 02=y .解得⎩⎨⎧x 0=2x -2,y 0=2y .代入|AC →|=?x 0+2?2+y 20=2得x 2+y 2=1,即为所求点D 的轨迹E 的方程. (2)易知直线l 与x 轴不垂直,设直线l 的方程为 y =k (x +2)①又设椭圆方程为x 2a 2+y 2a 2-4=1 (a 2>4)②因为直线l 与圆x 2+y 2=1相切,故|2k |k 2+1=1,解得k 2=13.将①代入②整理得(a 2k 2+a 2-4)x 2+4a 2k 2x +4a 2k 2-a 4+4a 2=0,而k 2=13,即(a 2-3)x 2+a 2x -34a 4+4a 2=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-a 2a 2-3.由题意有a 2a 2-3=2×45,求得a 2=8.经检验,此时Δ>0.故所求的椭圆方程为x 28+y 24=1. 18、[解析] (1)设椭圆的焦距为2c (c >0),焦点F (c,0),直线l :x -y =0,F 到l 的距离为|c |2=2,解得c =2,又∵e =c a =22,∴a =22,∴b =2.∴椭圆C 的方程为x 28+y 24=1.(2)由⎩⎨⎧x 28+y 24=1,y =x ,解得x =y =263,或x =y =-263,不妨设M ⎝ ⎛⎭⎪⎫263,263,N ⎝⎛⎭⎪⎫-263,-263,P (x ,y ), ∴k PM ·k PN =y -263x -263·y +263x +263=y 2-83x 2-83,由x 28+y 24=1,即x 2=8-2y 2,代入化简得k 1·k 2=k PM ·k PN =-12为定值. 19、[解析] (1)设直线AB 方程为y =k (x -1)+1,代入x 2=2y 中得,x 2-2kx +2k -2=0 其中Δ=(-2k )2-4(2k -2)=4[(k -1)2+1]>0 记A ⎝ ⎛⎭⎪⎫x 1,x 212,B ⎝ ⎛⎭⎪⎫x 2,x 222,则x 1+x 2=2k ,x 1x 2=2k -2. 对y =x 22求导得,y ′=x则切线P A 的方程为y =x 1(x -x 1)+x 212,即y =x 1x -x 212①同理,切线PB 的方程为y =x 2x -x 222②由①、②两式得点P 的坐标为⎝ ⎛⎭⎪⎫x 1+x 22,x 1x 22, 于是得P (k ,k -1),设P (x ,y ),则⎩⎨⎧x =ky =k -1,消去参数k ,得点P 的轨迹方程为x -y -1=0. (2)由(1)知|AB |=1+k 2|x 1-x 2| =?1+k 2?[?x 1+x 2?2-4x 1x 2] =2?1+k 2??k 2-2k +2?. 点P 到直线AB 的距离d =|k ?k -1?+1-?k -1?|1+k 2=k 2-2k +21+k 2△ABC 的面积S =12|AB |·d =(k 2-2k +2)32=[(k -1)2+1]32.当k =1时,S 有最小值1.20、[解析] (1)由题意得直线BD 的方程为y =x +1.因为四边形ABCD 为菱形,所以AC ⊥BD . 于是可设直线AC 的方程为y =-x +n .由⎩⎨⎧x 2+3y 2=4,y =-x +n得4x 2-6nx +3n 2-4=0. 因为A ,C 在椭圆上,所以Δ=-12n 2+64>0, 解得-433<n <433. 设A ,C 两点坐标分别为(x 1,y 1),(x 2,y 2),则 x 1+x 2=3n2,x 1x 2=3n 2-44,y 1=-x 1+n ,y 2=-x 2+n .所以y 1+y 2=n 2,所以AC 的中点坐标为⎝ ⎛⎭⎪⎫3n 4,n 4.由四边形ABCD 为菱形可知,点⎝ ⎛⎭⎪⎫3n 4,n 4在直线y =x +1上,所以n 4=3n 4+1,解得n =-2.所以直线AC 的方程为y =-x -2, 即x +y +2=0.(2)因为四边形ABCD 为菱形,且∠ABC =60°, 所以|AB |=|BC |=|CA |.所以菱形ABCD 的面积S =32|AC |2.由(1)可得|AC |2=(x 1-x 2)2+(y 1-y 2)2=-3n 2+162,所以S =34(-3n 2+16)⎝ ⎛⎭⎪⎫-433<n <433. 所以当n =0时,菱形ABCD 的面积取得最大值4 3.21、[解析] (1)∵e =c a =63,c 2=a 2-1,∴23=a 2-1a2,解得:a 2=3,所以所求椭圆C 的方程为x23+y 2=1.(2)假设存在直线l ,使得OA →·OB →=12OM →2 易得当直线l 垂直于x 轴时,不符合题意,故设直线l 方程为y =kx +b , 由直线l 与圆O 相切可得,b 2=k 2+1①把直线y =kx +b 代入椭圆C :x 23+y 2=1中,整理得:(1+3k 2)x 2+6kbx +3b 2-3=0 则x 1+x 2=-6kb1+3k 2,x 1·x 2=3b 2-31+3k 2,OA →·OB →=x 1·x 2+y 1·y 2=x 1·x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1·x 2+kb (x 1+x 2)+b 2 =(1+k 2)3b 2-31+3k 2+6k 2b 21+3k 2+b 2=4b 2-3k 2-31+3k 2=12②由①②两式得k 2=1,b 2=2, 故存在直线l ,其方程为y =±x ±2.22、[解析] (1)由题意知c =3,4a =8,∴a =2,b =1,∴椭圆的方程为x 24+y 2=1.(2)当直线l 的斜率存在时,设其斜率为k ,则l 的方程为y =k (x -1), 由⎩⎨⎧x 24+y 2=1y =k ?x -1?消去y 得(4k 2+1)x 2-8k 2x +4k 2-4=0,设P (x 1,y 1),Q (x 2,y 2)则由韦达定理得x 1+x 2=8k 24k 2+1,x 1x 2=4k 2-44k 2+1,则PE →=(m -x 1,-y 1),QE →=(m -x 2,-y 2), ∴PE →·QE →=(m -x 1)(m -x 2)+y 1y 2 =m 2-m (x 1+x 2)+x 1x 2+y 1y 2=m 2-m (x 1+x 2)+x 1x 2+k 2(x 1-1)(x 2-1)=m 2-8k 2m 4k 2+1+4k 2-44k 2+1+k 2⎝ ⎛⎭⎪⎫4k 2-44k 2+1-8k 24k 2+1+1 =?4m 2-8m +1?k 2+?m 2-4?4k 2+1要使上式为定值须4m 2-8m +1m 2-4=41,解得m =178,∴PE →·QE →为定值3364,当直线l 的斜率不存在时P ⎝⎛⎭⎪⎫1,32,Q ⎝⎛⎭⎪⎫1,-32, 由E ⎝ ⎛⎭⎪⎫178,0可得PE →=⎝ ⎛⎭⎪⎫98,-32,QE →=⎝ ⎛⎭⎪⎫98,32,∴PE →·QE →=8164-34=3364,综上所述当E ⎝ ⎛⎭⎪⎫178,0时,PE →·QE →为定值3364.。

人教版高中数学选择性必修第一册-第3章-圆锥曲线的方程单元测试卷(含解析)

人教版高中数学选择性必修第一册-第3章-圆锥曲线的方程单元测试卷(含解析)

第3章圆锥曲线的方程单元测试卷(原卷版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为()A .4B .-4C .-14D.142.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为()A.x 23+y 2=1 B.x 23+y 22=1C.x 29+y 28=1 D.y 29+x 28=13.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为()A .1B .-1C .1或-1D .1或-1或04.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为()A.52B.5C.52D .55.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是()6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为()A .2B .4C .6D .87.如图,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是()A .3B .2C.3D.28.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是()A .(1,3)B .(1,4)C .(2,3)D .(2,4)二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为()A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=θ D.x 2cos 2θ-y 2sin 2θ=θ10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为()A.2-1 B.22C.2D.2+111.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是()A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是()A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)15.在椭圆x 2a 2+y 2b 2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F2向∠F1QF2的平分线作垂线F2P,垂足为P,求P点的轨迹方程.18.(12分)已知点P到F1(0,3),F2(0,-3)的距离之和为4,设点P的轨迹为C,直线y=kx+1与轨迹C交于A,B两点.(1)求轨迹C的方程;(2)若|AB|=825,求k.19.(12分)已知直线l:y=x+m与抛物线y2=8x交于A,B两点.(1)若|AB|=10,求m的值;(2)若OA⊥OB,求m的值.x2,圆C2:x2+(y-1)2=1,过点P(t,0)(t>0)作不过20.(12分)如图,已知抛物线C1:y=14原点O的直线PA,PB分别与抛物线C1和圆C2相切,A,B为切点.(1)求点A,B的坐标;(2)求△PAB的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.21.(12分)已知椭圆Γ:x2a2+y2b2=1(a>b>0)的左顶点为M(-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N(1,0)的直线AB交椭圆Γ于A,B两点;当MA→·MB→取得最大值时,求△MAB的面积.22.(12分)已知曲线C上任意一点S(x,y)都满足到直线l′:x=2的距离是它到点T(1,0)的距离的2倍.(1)求曲线C的方程;(2)设曲线C与x轴正半轴交于点A2,不垂直于x轴的直线l与曲线C交于A,B两点(异于点A2).若以AB为直径的圆经过点A2,试问直线l是否过定点?若是,请求出该定点坐标;若不是,请说明理由.1.过椭圆C:x2a2+y2b2=1(a>b>0)的左顶点A且斜率为k的直线交椭圆C于另一个点B,且点B在x轴上的射影恰好为右焦点F,若13<k<12,则椭圆离心率的取值范围是()2.若椭圆x2m+y2n=1(m>n>0)和双曲线x2a-y2b=1(a>b>0)有相同的左、右焦点F1,F2,P是两条曲线的一个交点,则|PF1|·|PF2|的值是()A.m-a B.12(m-a)C.m2-a2 D.m-a3.已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433B.233C .3D .24.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为()A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=15.【多选题】已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为()A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1 D.x 22-y 24=16.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是()A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 27.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则()A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.9.设F1,F2分别是椭圆E:x2+y2b2=1(0<b<1)的左、右焦点,过点F1的直线交椭圆E于A,B两点.若|AF1|=3|F1B|,AF2⊥x轴,则椭圆E的方程为________.10.设F为抛物线C:y2=4x的焦点,过点P(-1,0)的直线l交抛物线C于A,B两点,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于________.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.12.已知抛物线y2=-4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线l 与抛物线交于A,B两点,弦AB的中点为P,AB的垂直平分线与x轴交于E(x0,0).(1)求k的取值范围;(2)求证:x0<-3.13.设椭圆x2a2+y2b2=1(a>b>0)的左焦点为F,离心率为33,过点F且与x轴垂直的直线被椭圆截得的线段长为43 3.(1)求椭圆的方程;(2)设A,B分别为椭圆的左、右顶点,过点F且斜率为k的直线与椭圆交于C,D两点,若AC→·DB→+AD→·CB→=8,求k的值.14.已知抛物线C的顶点在原点O,焦点与椭圆x225+y29=1的右焦点重合.(1)求抛物线C的方程;(2)在抛物线C的对称轴上是否存在定点M,使过点M的动直线与抛物线C相交于P,Q两点时,有∠POQ=π2.若存在,求出M的坐标;若不存在,请说明理由.15.如图所示,已知椭圆x2a2+y2b2=1(a>b>0),A,B分别为其长、短轴的一个端点,F1,F2分别是其左、右焦点.从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且AB→与OM→是共线向量.(1)求椭圆的离心率e;(2)设Q是椭圆上异于左、右顶点的任意一点,求∠F1QF2的取值范围.第3章圆锥曲线的方程单元测试卷(解析版)[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线y =ax 2的准线方程是y =1,则a 的值为()A .4B .-4C .-14 D.14答案C2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,离心率为13,过F 2的直线l交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的标准方程为()A.x 23+y 2=1 B.x 23+y 22=1C.x 29+y 28=1 D.y 29+x 28=1答案C解析因为△AF 1B 的周长为12,所以4a =12,所以a =3.又c a =13,所以c =1,b 2=8,所以C 的标准方程为x 29+y 28=1.3.直线l :y =k (x -2)与双曲线x 2-y 2=1仅有一个公共点,则实数k 的值为()A .1B .-1C .1或-1D .1或-1或0答案C解析由题意可知直线l 恒过点(2,0),即双曲线的右焦点,双曲线的渐近线方程为y =±x .要使直线l 与双曲线只有一个公共点,则该直线与渐近线平行,所以k =±1.故选C.4.已知中心在原点,焦点在y 轴的双曲线的渐近线方程为y =±12x ,则此双曲线的离心率为()A.52B.5C.52D .5答案B解析由已知可设双曲线方程为y 2a 2-x 2b2=1(a >0,b >0).∴±a b =±12,∴b =2a ,∴b 2=4a 2,∴c 2-a 2=4a 2.∴c 2=5a 2,∴c 2a 2=5,∴e =ca= 5.5.设a ,b ∈R ,a ≠b 且ab ≠0,则方程bx -y +a =0和方程ax 2-by 2=ab 在同一坐标系下的图象可能是()答案B解析方程ax 2-by 2=ab 变形为x 2b -y 2a=1,直线bx -y +a =0,即y =bx +a 的斜率为b ,纵截距为a .当a >0,b >0时,x 2b -y 2a =1表示焦点在x 轴上的双曲线,此时直线的斜率b >0,纵截距a >0,故C 错误;当a <0,b <0时,x 2b -y 2a =1表示焦点在y 轴上的双曲线,此时直线的斜率b <0,纵截距a <0,故D 错误;当a <0,b >0,且-a ≠b 时,x 2b -y 2a =1表示椭圆,此时直线的斜率b >0,纵截距a <0,故A 错误.故选B.6.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为()A .2B .4C .6D .8答案B解析由题意,不妨设抛物线方程为y 2=2px (p >0).由|AB |=42,|DE |=25,可取D (-p 2,5),设O 为坐标原点,由|OA |=|OD |,得16p 2+8=p 24+5,得p =4.故选B.7.如图,已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,|F 1F 2|=4,P 是双曲线右支上的一点,F 2P 的延长线与y 轴交于点A ,△APF 1的内切圆在边PF 1上的切点为Q ,若|PQ |=1,则双曲线的离心率是()A .3B .2C.3 D.2答案B解析如图,记AF1,AF 2与△APF 1的内切圆分别相切于点N ,M ,则|AN |=|AM |,|PM |=|PQ |,|NF 1|=|QF 1|,又因为|AF 1|=|AF 2|,则|NF 1|=|AF 1|-|AN |=|AF 2|-|AM |=|MF 2|,因此|QF 1|=|MF 2|,则|PF 1|-|PF 2|=(|PQ |+|QF 1|)-(|MF 2|-|PM |)=|PQ |+|PM |=2|PQ |=2,即2a =2,则a =1.由|F 1F 2|=4=2c ,得c =2,所以双曲线的离心率e =ca=2.故选B.8.设直线l 与抛物线y 2=4x 相交于A ,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是()A .(1,3)B .(1,4)C .(2,3)D .(2,4)答案D解析如图,显然当直线l 的斜率不存在时,必有两条直线满足题意,当直线l 的斜率存在时,设斜率为k ,设A (x 1,y 1),B (x 2,y 2),x 1≠x 2,M (x 0,y 0)12=4x 1,22=4x 2,两式相减得(y 1+y 2)(y 1-y 2)=4(x 1-x 2).由于x 1≠x 2,所以y 1+y 22·y 1-y 2x 1-x 2=2⇒ky 0=2.①圆心为C (5,0),由CM ⊥AB ,得k ·y 0-0x 0-5=-1⇒ky 0=5-x 0.②由①②解得x 0=3,即点M 必在直线x =3上,将x 0=3代入y 2=4x ,得y 02=12⇒-23<y 0<23,因为点M 在圆(x -5)2+y 2=r 2(r >0)上,所以(x 0-5)2+y 02=r 2(r >0),r 2=y 02+4<12+4=16.因为斜率存在,所以y 0≠0,所以4<y 02+4<16⇒2<r <4.故选D.二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.已知点F (1,0)为曲线C 的焦点,则曲线C 的方程可能为()A .y 2=4x B .x 2=4yC.x 2cos 2θ+y 2sin 2θ=θ D.x 2cos 2θ-y 2sin 2θ=θ答案AD解析对于A ,y 2=4x ,抛物线的焦点为F (1,0),满足;对于B ,x 2=4y ,抛物线的焦点为F (0,1),不满足;对于C ,x 2cos 2θ+y 2sin 2θ=θ(±cos 2θ-sin 2θ,0)或(0,±sin 2θ-cos 2θ)或曲线表示圆不存在焦点,均不满足;对于D ,x 2cos 2θ-y 2sin 2θ=θF (1,0),满足.10.已知A ,B 为圆锥曲线E 的焦点,点C 在E 上,若△ABC 为等腰直角三角形,则E 的离心率可能为()A.2-1 B.22C.2D.2+1答案ABD 解析若圆锥曲线E 为椭圆,不妨设椭圆方程为x 2a 2+y 2b2=1(a >b >0),设椭圆的离心率为e .因为△ABC 为等腰直角三角形,所以当AB 为斜边时,可以得到b =c =22a ,则e =c a =22;当AB 为直角边时,不妨令|AC |=|AB |=2c ,所以22c +2c =2a ,所以e =ca =2-1.若圆锥曲线E 为双曲线,不妨设双曲线方程为x 2a ′2-y 2b ′2=1(a ′>0,b ′>0),设双曲线的离心率为e ′.因为△ABC 为等腰直角三角形,所以AB 只能为直角边,不妨令AC ⊥AB ,则|AC |=|AB |=2c ,可以得到22c ′=2a ′+2c ′,则e ′=c ′a ′=2+1.故选ABD.11.已知P 是椭圆E :x 28+y 24=1上一点,F 1,F 2为其左、右焦点,且△F 1PF 2的面积为3,则下列说法正确的是()A .P 点纵坐标为3B .∠F 1PF 2>π2C .△F 1PF 2的周长为4(2+1)D .△F 1PF 2的内切圆半径为32(2-1)答案CD解析设点P 的坐标为(x ,y ),由椭圆E :x 28+y 24=1,可知a 2=8,b 2=4,所以c 2=a 2-b 2=4,所以c =2,F 1(-2,0),F 2(2,0).因为△F 1PF 2的面积为3,所以12×2c ×|y |=12×4×|y |=3,得到y =±32,A 说法错误;将y =±32代入椭圆E 的方程,得到x 28+916=1,解得x =±142,不妨取PF 1→·PF 2→2-142,--142,-=144-4+94>0,所以∠F 1PF 2为锐角,B 说法错误;因为a =22,所以|PF 1|+|PF 2|=42,所以△F 1PF 2的周长为4+42=4(2+1),C 说法正确;设△F 1PF 2的内切圆半径为r ,因为△F 1PF 2的面积为3,所以12×r ×4(2+1)=3,解得r =32(2-1),D 说法正确.故选CD.12.已知A ,B 两点的坐标分别是(-1,0),(1,0),直线AP ,BP 相交于点P ,且两直线的斜率之积为m ,则下列结论正确的是()A .当m =-1时,点P 的轨迹为圆(除去与x 轴的交点)B .当-1<m <0时,点P 的轨迹为焦点在x 轴上的椭圆(除去与x 轴的交点)C .当0<m <1时,点P 的轨迹为焦点在x 轴上的抛物线(除去与x 轴的交点)D .当m >1时,点P 的轨迹为焦点在x 轴上的双曲线(除去与x 轴的交点)答案ABD解析设点P 的坐标为(x ,y )(x ≠±1),则直线AP 的斜率为k AP =yx +1,直线BP 的斜率为k BP=y x -1.因为k AP ·k BP =m ,所以y x +1·y x -1=m (x ≠±1),化简得到点P 的轨迹方程为x 2+y 2-m =1(x ≠±1),所以正确结论有A 、B 、D.故选ABD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知a ∈{-2,0,1,3},b ∈{1,2},则曲线ax 2+by 2=1为椭圆的概率是________.答案38解析由题意,得(a ,b )共有8种不同情况,其中满足“曲线ax 2+by 2=1为椭圆”的有(1,2),(3,1),(3,2),共3种情况,由古典概型的概率公式,得所求概率P =38.14.抛物线y 2=2px (p >0)的准线与双曲线x 2-y24=1的两条渐近线所围成的三角形的面积为2,则p =________,抛物线焦点到双曲线渐近线的距离为________.(本题第一空2分,第二空3分)答案2255解析抛物线y 2=2px (p >0)的准线方程为x =-p 2,双曲线x 2-y 24=1的两条渐近线方程分别为y =2x ,y =-2x ,这三条直线构成等腰三角形,其底边长为2p ,三角形的高为p 2,因此12×2p ×p2=2,解得p =2.则抛物线焦点坐标为(1,0),且到直线y =2x 和y =-2x 的距离相等,均为|2-0|5=255.15.在椭圆x 2a 2+y 2b 2=1(a >b >0)上,与两焦点张角为90°的点可能有________个(填出所有可能情况).答案0或2或4解析设该点为P (x ,y ),椭圆的左、右焦点分别为F 1(-c ,0),F 2(c ,0)(c >0),则|PF 1|=(x +c )2+y 2a +ex ,|PF 2|=a -ex .|PF 1|2+|PF 2|2=4a 2-2|PF 1|·|PF 2|=2a 2+2c 2a2x 2=4c 2.∴x 2=2a 2-a 4c 2=a 2(2c 2-a 2)c 2≥0.∴当a 2>2c 2时,该点不存在;当a 2≤2c 2时,该点存在,且当a 2=2c 2时这样的点有2个,当c 2<a 2<2c 2时有4个.16.设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|PA |=|PB |,则该双曲线的离心率是________.答案52解析利用渐近线与直线方程求出交点A ,B 的坐标,进而得出中点C 的坐标;由|PA |=|PB |可知,PC 与直线x -3y +m =0(m ≠0)垂直,利用斜率关系求出a ,b 的关系式.双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax .=b a x ,-3y +m =0,得=-b a x ,-3y +m =0,得-am a +3b ,所以AB 的中点C设直线l :x -3y +m =0(m ≠0),因为|PA |=|PB |,所以PC ⊥l .所以k PC =-3,即3b 2m 9b 2-a 2a 2m9b 2-a 2-m=-3,化简得a 2=4b 2.在双曲线中,c 2=a 2+b 2=5b 2,所以e =c a =52.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知Q 点是双曲线x 2a 2-y 2b 2=1(a ,b >0)上异于两顶点的一动点,F 1,F 2是双曲线的左、右焦点.从F 2向∠F 1QF 2的平分线作垂线F 2P ,垂足为P ,求P 点的轨迹方程.解析如图,延长F 2P 交F 1Q 于点A ,连接OP ,则由角平分线的性质,知|AQ |=|F 2Q |.由三角形中位线性质,知|OP |=12|F 1A |.∴|OP |=12(|QF 1|-|QA |)=12(|QF 1|-|QF 2|).若点Q 在双曲线的左支上时,|OP |=12(|QF 2|-|QF 1|),即|OP |=12×2a =a ,∴P 点的轨迹方程为x 2+y 2=a 2(y ≠0).18.(12分)已知点P 到F 1(0,3),F 2(0,-3)的距离之和为4,设点P 的轨迹为C ,直线y =kx +1与轨迹C 交于A ,B 两点.(1)求轨迹C 的方程;(2)若|AB |=825,求k .解析(1)设P (x ,y ),由椭圆定义可知,点P 的轨迹C 是以(0,-3),(0,3)为焦点,长半轴长为2的椭圆,即a =2,c =3,b =22-(3)2=1,故轨迹C 的方程为x 2+y 24=1.(2)设A (x 1,y1),B (x 2,y 2).2+y 24=1,=kx +1,得(k 2+4)x 2+2kx -3=0,则Δ=4k 2+12(k 2+4)=16(k 2+3)>0,且x 1+x 2=-2k k 2+4,x 1x 2=-3k 2+4.则(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16(k 2+3)(k 2+4)2,所以|AB |2=(1+k )2(x 1-x 2)2=(1+k )2·16(k 2+3)(k 2+4)2=12825,整理得(17k 2+53)(k 2-1)=0,解得k 2=1,所以k =±1.19.(12分)已知直线l :y =x +m 与抛物线y 2=8x 交于A ,B 两点.(1)若|AB |=10,求m 的值;(2)若OA ⊥OB ,求m 的值.解析设A (x 1,y 1),B (x 2,y 2),(1)=x +m ,2=8x ,得x 2+(2m -8)x +m 2=0,=(2m -8)2-4m 2>0,1+x 2=8-2m ,1x 2=m 2.由|AB |=2|x 1-x 2|=2·(x 1+x 2)2-4x 1x 2=10.得m =716(m <2).(2)∵OA ⊥OB ,∴x 1x 2+y 1y 2=0.∴x 1x 2+(x 1+m )(x 2+m )=0.∴2x 1x 2+m (x 1+x 2)+m 2=0.∴2m 2+m (8-2m )+m 2=0.∴m 2+8m =0,m =0或m =-8.经检验得m =-8.20.(12分)如图,已知抛物线C 1:y =14x 2,圆C 2:x 2+(y -1)2=1,过点P (t ,0)(t >0)作不过原点O 的直线PA ,PB 分别与抛物线C 1和圆C 2相切,A ,B 为切点.(1)求点A ,B 的坐标;(2)求△PAB 的面积.注:直线与抛物线有且只有一个公共点,且与抛物线的对称轴不平行,则称该直线与抛物线相切,称该公共点为切点.解析(1)由题意知直线PA 的斜率存在,故可设直线PA 的方程为y =k (x -t ),=k (x -t ),=14x 2,消去y ,整理得x 2-4kx +4kt =0,由于直线PA 与抛物线相切,令Δ=0,得k =t .因此,点A 的坐标为(2t ,t 2).设圆C 2的圆心为D (0,1),点B 的坐标为(x 0,y 0),由题意知点B ,O 关于直线PD 对称,=-x 02t +1,-y 0=0,0=2t 1+t 2,0=2t 21+t 2.因此,点B(2)由(1)知|AP |=t ·1+t 2,直线PA 的方程为tx -y -t 2=0.点B 到直线PA 的距离是d =t 21+t 2.设△PAB 的面积为S ,所以S =12|AP |·d =t 32.21.(12分)已知椭圆Γ:x 2a 2+y 2b 2=1(a >b >0)的左顶点为M (-2,0),离心率为22.(1)求椭圆Γ的方程;(2)过N (1,0)的直线AB 交椭圆Γ于A ,B 两点;当MA →·MB →取得最大值时,求△MAB 的面积.解析(1)由已知a =2,c a =22,得c =2,∴a 2-b 2=2,即4-b 2=2,∴b 2=2,∴椭圆Γ的方程为x 24+y 22=1.(2)当直线AB 与x 轴重合时,MA →·MB →=0.当直线AB 与x 轴不重合时,设直线AB 的方程为x =ty +1,A (x 1,y 1),B (x 2,y 2),则MA →=(x 1+2,y 1),MB →=(x 2+2,y 2).ty +1,+y 22=1,得(t 2+2)y 2+2ty -3=0.显然Δ>0,∴y 1+y 2=-2t t 2+2,y 1y 2=-3t 2+2.∴MA →·MB →=(x 1+2)(x 2+2)+y 1y 2=(ty 1+3)(ty 2+3)+y 1y 2=(t 2+1)y 1y 2+3t (y 1+y 2)+9=(t 2+1)·-3t 2+2+3t ·-2t t 2+2+9=-3-3t 2-6t 2t 2+2+9=-9t 2-3t 2+2+9=15t 2+2≤152,∴MA →·MB →的最大值为152.此时t =0,直线AB 的方程为x =1.综上可知MA →·MB →的最大值为152.1,+y 22=1,=1,=6=1,=-62,不妨令|AB |=6,又|MN |=3,∴S △MAB =12|MN |·|AB |=12×3×6=362.22.(12分)已知曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)的距离的2倍.(1)求曲线C 的方程;(2)设曲线C 与x 轴正半轴交于点A 2,不垂直于x 轴的直线l 与曲线C 交于A ,B 两点(异于点A 2).若以AB 为直径的圆经过点A 2,试问直线l 是否过定点?若是,请求出该定点坐标;若不是,请说明理由.解析(1)∵曲线C 上任意一点S (x ,y )都满足到直线l ′:x =2的距离是它到点T (1,0)的距离的2倍,∴|x -2|=2·(x -1)2+y 2,化简,得x 22+y 2=1,即曲线C 是椭圆,其方程为x 22+y 2=1.(2)设直线l 的方程为y =kx +m ,A (x 1,y 1),B (x 2,y 2),kx +m ,y 2=1,得(1+2k 2)x 2+4mkx +2m 2-2=0,∴Δ=(4mk )2-4(1+2k 2)(2m 2-2)>0,即2k 2+1>m 2,x 1+x 2=-4mk1+2k 2,x 1x 2=2m 2-21+2k 2.∵y 1=kx 1+m ,y 2=kx 2+m ,∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=k 2·2m 2-21+2k 2+mk ·-4mk 1+2k 2+m 2=m 2-2k 21+2k 2.∵点A 2(2,0)在以AB 为直径的圆上,∴AA 2⊥BA 2,即AA 2→·BA 2→=0.又AA 2→=(2-x 1,-y 1),BA 2→=(2-x 2,-y 2),∴(2-x 1,-y 1)·(2-x 2,-y 2)=0,即(2-x 1)(2-x 2)+y 1y 2=2-2(x 1+x 2)+x 1x 2+y 1y 2=0,∴2+2·4mk1+2k 2+2m 2-21+2k 2+m 2-2k 21+2k 2=0,化简得2k 2+42mk +3m 2=0,即(2k +m )(2k +3m )=0,∴2k +m =0或2k +3m =0.当2k +m =0时,直线l :y =k (x -2)过定点(2,0),即过点A 2(2,0),不满足题意;当2k +3m =0时,直线l 的方程可化为y =综上,直线l1.过椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左顶点A 且斜率为k 的直线交椭圆C 于另一个点B ,且点B 在x 轴上的射影恰好为右焦点F ,若13<k <12,则椭圆离心率的取值范围是()答案C解析由题意知k =b 2a c +a=a -ca =1-e ,∴13<1-e <12,∴12<e <23.故选C.2.若椭圆x 2m +y 2n =1(m >n >0)和双曲线x 2a -y 2b =1(a >b >0)有相同的左、右焦点F 1,F 2,P 是两条曲线的一个交点,则|PF 1|·|PF 2|的值是()A .m -a B.12(m -a )C .m 2-a 2D.m -a 答案A解析不妨取P 1|+|PF 2|=2m ,1|-|PF 2|=2a ,解得|PF 1|=m +a ,|PF 2|=m -a .∴|PF 1|·|PF 2|=(m +a )(m -a )=m -a .3.已知F 1,F 2是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且∠F 1PF 2=π3,则椭圆和双曲线的离心率的倒数之和的最大值为()A.433B.233C .3D .2答案A解析利用椭圆、双曲线的定义和几何性质求解.设|PF 1|=r 1,|PF 2|=r 2(r 1>r 2),|F 1F 2|=2c ,椭圆长半轴长为a 1,双曲线实半轴长为a 2,椭圆、双曲线的离心率分别为e 1,e 2,由(2c )2=r 12+r 22-2r 1r 2cosπ3,得4c 2=r 12+r 22-r 1r 2.1+r 2=2a 1,1-r 2=2a 2,1=a 1+a 2,2=a 1-a 2.∴1e 1+1e 2=a 1+a 2c=r 1c .令m =r 12c 2=4r 12r 12+r 22-r 1r 2=41-r 2r 14+34,当r 2r 1=12时,m max=163,∴max=433.即1e 1+1e 2的最大值为433.4.已知双曲线x 24-y 2b 2=1(b >0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A ,B ,C ,D 四点,四边形ABCD 的面积为2b ,则双曲线的方程为()A.x 24-3y 24=1 B.x 24-4y 23=1C.x 24-y 24=1 D.x 24-y 212=1答案D解析根据圆和双曲线的对称性,可知四边形ABCD 为矩形.双曲线的渐近线方程为y =±b2x ,圆的方程为x 2+y 2=4,不妨设交点A 在第一象限,由y =b2x ,x 2+y 2=4得x A =44+b 2,y A=2b 4+b 2,故四边形ABCD 的面积为4x A y A =32b 4+b 2=2b ,解得b 2=12,故所求的双曲线方程为x 24-y 212=1.故选D.5.【多选题】已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的两个顶点分别为A 1(-a ,0),A 2(a ,0),P ,Q 的坐标分别为(0,b ),(0,-b ),且四边形A 1PA 2Q 的面积为22,四边形A 1PA 2Q 的内切圆的周长为263π,则双曲线C 的方程为()A.x 22-y 2=1B .x 2-y 22=1C.x 24-y 22=1 D.x 22-y 24=1答案AB解析因为A 1(-a ,0),A 2(a ,0),P (0,b ),Q (0,-b ),所以|A 1A 2|=2a ,|PQ |=2b ,所以|A 1P |=|A 2Q |=|A 1Q |=|A 2P |=a 2+b 2=c .又四边形A 1PA 2Q 的面积为22,所以4×12ab =22,即ab =2.记四边形A 1PA 2Q 的内切圆的半径为r ,则2πr =263π,解得r =63,所以2cr =22,所以c = 3.又c 2=a 2+b 2=3=2,=1=1,=2,所以双曲线C 的方程为x 22-y 2=1或x 2-y 22=1.故选AB.6.【多选题】我们通常称离心率是5-12的椭圆为“黄金椭圆”.如图,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),A 1,A 2,B 1,B 2分别为其左、右、上、下顶点,F 1,F 2分别为左、右焦点,P 为椭圆上一点,下列条件中能使椭圆C 为“黄金椭圆”的是()A .|A 1F 1|·|F 2A 2|=|F 1F 2|2B .∠F 1B 1A 2=90°C .PF 1⊥x 轴,且PO ∥A 2B 1D .四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2答案BD 解析∵椭圆C :x 2a 2+y 2b2=1(a >b >0),∴A 1(-a ,0),A 2(a ,0),B 1(0,b ),B 2(0,-b ),F 1(-c ,0),F 2(c ,0).对于A ,若|A 1F 1|·|F 2A 2|=|F 1F 2|2,则(a -c )2=(2c )2,∴a -c =2c ,∴e =13,不符合题意,故A 错误;对于B ,若∠F 1B 1A 2=90°,则|A 2F 1|2=|B 1F 1|2+|B 1A 2|2,∴(a +c )2=a 2+a 2+b 2,∴c 2+ac -a 2=0,∴e 2+e -1=0,解得e =5-12或e =-5-12(舍去),符合题意,故B 正确;对于C ,若PF 1⊥x 轴,且PO ∥A 2B 1,则c k PO =kA 2B 1,∴b 2a -c =b -a,解得b =c ,又a 2=b 2+c 2,∴e =c a =c 2c =22,不符合题意,故C 错误;对于D ,若四边形A 1B 2A 2B 1的内切圆过焦点F 1,F 2,即四边形A 1B 2A 2B 1的内切圆的半径为c ,则由菱形面积公式可得ab =c a 2+b 2,∴c 4-3a 2c 2+a 4=0,∴e 4-3e 2+1=0,解得e 2=3+52(舍去)或e 2=3-52,∴e =5-12,故D 正确.故选BD.7.【多选题】已知方程mx 2+ny 2=1,其中m 2+n 2≠0,则()A .mn >0时,方程表示椭圆B .mn <0时,方程表示双曲线C .n =0时,方程表示抛物线D .n >m >0时,方程表示焦点在x 轴上的椭圆答案BD解析mx 2+ny 2=1表示椭圆的充要条件是m >0,n >0,A 不正确;mx 2+ny 2=1表示双曲线的充要条件是mn <0,B 正确;当n =0时,mx 2=1不表示抛物线,C 不正确;mx 2+ny 2=1表示焦点在x 轴上的椭圆的充要条件是n >m >0,D 正确.故选BD.8.如图,正方形ABCD 和正方形DEFG 的边长分别为a ,b (a <b ),原点O 为AD 的中点,抛物线y 2=2px (p >0)经过C ,F 两点,则ba=________.答案2+1思路分析根据正方形的边长及O 为AD 的中点,求出点C ,F 的坐标,将两点坐标代入抛物线方程列式求解.解析∵正方形ABCD 和正方形DEFG 的边长分别为a ,b ,O 为AD 的中点,∴b ,又∵点C ,F 在抛物线y 2=2px (p >0)上,2=pa ,2=2解得ba =2+1.9.设F 1,F 2分别是椭圆E :x 2+y 2b2=1(0<b <1)的左、右焦点,过点F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为________.答案x 2+32y 2=1思路分析根据题意,求出点B 的坐标代入椭圆方程求解.解析设点B 的坐标为(x 0,y 0).∵x 2+y2b 2=1,∴F 1(-1-b 2,0),F 2(1-b 2,0).∵AF 2⊥x 轴,∴A (1-b 2,b 2).∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →.∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0).∴x 0=-51-b 23,y 0=-b 23.∴点B -51-b 23,-将B -51-b 23,-x 2+y 2b 2=1,得b 2=23.∴椭圆E 的方程为x 2+32y 2=1.10.设F 为抛物线C :y 2=4x 的焦点,过点P (-1,0)的直线l 交抛物线C 于A ,B 两点,点Q 为线段AB 的中点,若|FQ |=2,则直线l 的斜率等于________.答案±1解析设直线l 的方程为y =k (x +1),A (x 1,y 1),B (x 2,y 2)2=4x ,=k (x +1),得k 2x 2+2(k 2-2)x +k 2=0.∴x 1+x 2=-2(k 2-2)k 2.∴x 1+x 22=-k 2-2k 2=-1+2k 2,y 1+y 22=2k ,即1+2k 2,又|FQ |=2,F (1,0),1+2k2-=4,解得k =±1.11.如图,已知椭圆上横坐标等于焦点横坐标的点,其纵坐标等于短半轴长的23,求椭圆的离心率.解析方法一:根据题图设焦点坐标为F 1(-c ,0),F 2(c ,0),M 是椭圆上一点,依题意设M ,23b 在Rt △MF 1F 2中,|F 1F 2|2+|MF 2|2=|MF 1|2,即4c 2+49b 2=|MF 1|2.而|MF 1|+|MF 2|=4c 2+49b 2+23b =2a ,整理,得3c 2=3a 2-2ab .又c 2=a 2-b 2,所以3b =2a ,所以b 2a 2=49.所以e 2=c 2a 2=a 2-b 2a2=1-b 2a 2=59,所以e =53.方法二:设,23b ,代入椭圆方程,得c 2a 2+4b 29b 2=1,所以c 2a 2=59,所以c a =53,即e =53.12.已知抛物线y 2=-4x 的焦点为F ,其准线与x 轴交于点M ,过M 作斜率为k 的直线l 与抛物线交于A ,B 两点,弦AB 的中点为P ,AB 的垂直平分线与x 轴交于E (x 0,0).(1)求k 的取值范围;(2)求证:x 0<-3.解析(1)由y 2=-4x ,可得准线x =1,从而M (1,0).设l 的方程为y =k (x -1),=k (x -1),2=-4x ,得k 2x 2-2(k 2-2)x +k 2=0.∵A ,B 存在,∴Δ=4(k 2-2)2-4k 4>0,∴-1<k <1.又k ≠0,∴k ∈(-1,0)∪(0,1).(2)证明:设P (x 3,y 3),A (x 1,y 1),B (x 2,y 2),可得x 3=x 1+x 22=k 2-2k 2,y 3==-2k k 2=-2k.即直线PE 的方程为y +2k =-令y =0,x 0=-2k2-1.∵k 2∈(0,1),∴x 0<-3.13.设椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(1)求椭圆的方程;(2)设A ,B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点,若AC →·DB →+AD →·CB →=8,求k 的值.解析(1)设F (-c ,0),由c a =33,知a =3c .过点F 且与x 轴垂直的直线为x =-c ,代入椭圆方程有(-c )2a 2+y 2b 2=1,解得y =±6b 3.于是26b 3=433,解得b = 2.又a 2-c 2=b 2,从而a =3,c =1,所以椭圆的方程为x 23+y 22=1.(2)设点C (x 1,y 1),D (x 2,y 2),由F (-1,0)得直线CD 的方程为y =k (x +1),由方程组k (x +1),+y 22=1,消去y ,整理得(2+3k 2)x 2+6k 2x +3k 2-6=0.由根与系数的关系可得x 1+x 2=-6k 22+3k 2,x 1x 2=3k 2-62+3k2.因为A (-3,0),B (3,0),所以AC →·DB →+AD →·CB →=(x 1+3,y 1)·(3-x 2,-y 2)+(x 2+3,y 2)·(3-x 1,-y 1)=6-2x 1x 2-2y 1y 2=6-2x 1x 2-2k 2(x 1+1)(x 2+1)=6-(2+2k 2)x 1x 2-2k 2(x 1+x 2)-2k 2=6+2k 2+122+3k2.由已知得6+2k 2+122+3k 2=8,解得k =± 2.14.已知抛物线C的顶点在原点O,焦点与椭圆x225+y29=1的右焦点重合.(1)求抛物线C的方程;(2)在抛物线C的对称轴上是否存在定点M,使过点M的动直线与抛物线C相交于P,Q两点时,有∠POQ=π2.若存在,求出M的坐标;若不存在,请说明理由.解析(1)椭圆x225+y29=1的右焦点为(4,0),所以抛物线C的方程为y2=16x.(2)设点M(a,0)(a≠0)满足题设,当PQ的斜率存在时,PQ的方程为y=k(x-a),2=16x,=k(x-a)⇒k2x2-2(ak2+8)x+a2k2=0,则x1+x2=2(ak2+8)k2,x1x2=a2.设P(x1,y1),Q(x2,y2),则由∠POQ=π2,得x1x2+y1y2=0.从而x1x2+k2(x1-a)(x2-a)=0⇒a2-16a=0⇒a=16,若PQ的方程为x=a,代入抛物线方程得y=±4a,当∠POQ=π2时,a=4a,即a=16,所以存在满足条件的点M(16,0).15.如图所示,已知椭圆x2a2+y2b2=1(a>b>0),A,B分别为其长、短轴的一个端点,F1,F2分别是其左、右焦点.从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点F1,且AB→与OM→是共线向量.(1)求椭圆的离心率e;(2)设Q是椭圆上异于左、右顶点的任意一点,求∠F1QF2的取值范围.解析(1)设M(x M,y M),∵F1(-c,0),∴x M=-c,y M=b2a,∴k OM=-b2ac.由题意知k AB=-ba,∵OM→与AB→是共线向量,∴-b2ac=-ba,∴b=c,∴a=2c,∴e=22(2)设|F1Q|=r1,|F2Q|=r2,∠F1QF2=θ,则r1+r2=2a.又|F1F2|=2c,∴由余弦定理,得cosθ=r12+r22-4c22r1r2=(r1+r2)2-2r1r2-4c22r1r2=a2r1r2-1a2-1=0,当且仅当r1=r2时等号成立,∴cosθ≥0,∴θ,π2..。

新人教版圆锥曲线测试卷

新人教版圆锥曲线测试卷

第二章 圆锥曲线与方程 单元测试一.选择题:(60分)1.方程x =所表示的曲线是 ( )(A )双曲线 (B )椭圆(C )双曲线的一部分 (D )椭圆的一部分2.椭圆14222=+a y x 与双曲线1222=-y a x 有相同的焦点,则a 的值是 ( )(A )12 (B )1或–2 (C )1或12 (D )1 3.双曲线22221x y a b-=的两条渐近线互相垂直,那么该双曲线的离心率是 ( ) (A )2 (B )3 (C )2 (D )23 4. 抛物线y 2= 4x 上一点P 到焦点F 的距离是10, 则P 点的坐标是( )(A )(9, 6) (B )(6, 9) (C )(±6, 9) (D )(9,±6) 5. 若椭圆22221(0)x y a b a b +=>>的离心率是2,则双曲线22221x y a b-=的离心率是( ) A .54 B .2 C . 32D .4 6.若双曲线1922=-my x 的渐近线l 方程为x y 35±=,则双曲线焦点F 到渐近线l 的距离为 A .2 B .14C .5D .25 7、直线y x b =+与抛物线22x y =交于A 、B 两点,O 为坐标原点,且OA OB ⊥,则b =( ).2A .2B - .1C .1D -8、若直线l 过点(3,0)与双曲线224936x y -=只有一个公共点,则这样的直线有( )A.1条B.2条C.3条D.4条9、已知双曲线中心在原点且一个焦点为)0,7(F ,直线1-=x y 与其交于N M 、两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) A.14322=-y x B.13422=-y x C.12522=-y x D.15222=-y x 10、设离心率为e 的双曲线2222:1x y C a b-=(0a >,0b >)的右焦点为F ,直线l 过点F 且斜率为k ,则直线l 与双曲线C 的左、右两支都相交的充要条件是 ( )A .221k e -<B . 221k e ->C .221e k -<D .221e k ->11、双曲线两条渐近线的夹角为60º,该双曲线的离心率为 ( )A .332或2B .332或2 C .3或2 D .3或2 12、若不论k 为何值,直线(2)y k x b =-+与曲线221x y -=总有公共点,则b 的取值范围是( )A.(B.⎡⎣C.(2,2)-D.[]2,2- 13(选做)、椭圆221259x y +=上一点M 到焦点1F 的距离为2,N 是1MF 的中点,则ON 等于 ( )A .2B .4C .6D .32二、填空题(20分)1.双曲线14522=-y x 的焦点到渐近线的距离等于 . 2. 椭圆的焦点为F 1、F 2,过点F 1作直线与椭圆相交,被椭圆截得的最短的线段MN 长为532,N MF 2∆的周长为20,则椭圆的离心率为 __________ 3、双曲线22221(,0)x y a b a b-=>和直线2y x =有交点,则它的离心率的取值范围是______________ 4.已知点P(6, y )在抛物线y 2=2p x (p >0)上,F 为抛物线焦点, 若|PF |=8, 则点F 到抛物线准线的距离等于三、简答题(70分)1.(12分) 已知椭圆的中心在原点,焦点为F 1()022,-,F 2(0,22),且离心率e =223。

高二数学选修1-1《圆锥曲线》单元测试卷

高二数学选修1-1《圆锥曲线》单元测试卷

A. x 2 y 2 1 9 16
x2
B.
y2
1
25 16
x2
C.
y2
1或 x2
y2
1
25 16
16 25
D.以上都不对
3.抛物线 y2 8x 的准线方程是( )
(A) x 2
(B) x 4
(C) y 2
(D) y 4
4.曲线 x2 y2 1(m 6) 与曲线 x2 y2 1(5 m 9) 的( )
10 m 6 m
5m 9m
(A)焦距相等
(B) 离心率相等
(C)焦点相同
(D)准线相同
5.已知
F1 ,
Hale Waihona Puke F2是椭圆x a
2 2
y2 b2
1(a
b 0) 的两个焦点, AB 是过 F1 的弦,则 ABF2 的周长是
(
)
A. 2a
B. 4a
C. 8a
D. 2a 2b
6.一动圆与圆 x2 y2 1外切,同时与圆 x2 y2 6x 91 0 内切,则动圆的圆心在( )
F (
3,
0)
,右顶点为
D(2,
0)
,设点
A
1,
1 2
.
(1)求该椭圆的标准方程;
(2)若 P 是椭圆上的动点,求线段 PA 中点 M 的轨迹方程;
第3页共4页
x2 20、(本大题满分 13 分)椭圆 a2
y2 b2
1(a, b 0) 的两个左右焦点为 F1、F2,点 P 在椭圆 C 上,
4
第4页共4页
13.直线 x+2y-2=0 经过椭圆a2+b2=1(a>b>0)的一个焦点和一个顶点,则该椭圆的离心率 等于

(完整版)(最新)圆锥曲线单元测试题(含答案解析)

(完整版)(最新)圆锥曲线单元测试题(含答案解析)

完美WORD 格式.整理圆锥曲线与方程单元测试(高二高三均适用)、选择题A 、25、过抛物线y 4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ()A 、有且仅有一条B 、有且仅有两条C 、有无穷多条D 、不存在6、一个椭圆中心在原点, 焦点R 、F 2在x 轴上,P (2, 3 )是椭圆上一点,且|PF 1|、|F 1F 2|、|PF 2 |成等差数列,则椭圆方程为()7 .设0v k v a 2,那么双曲线 上 - 异 =1与双曲线 % - y 2 = 1有()a — KD +K a b(A )相同的虚轴(B )相同的实轴(C )相同的渐近线(D )相同的焦点8 .若抛物线y 2= 2p x (p > 0)上一点P 到准线及对称轴的距离分别为10和6,则p 的值等于1 •方程x 、.、3y2 1所表示的曲线是 (A )双曲线(B )椭圆(C )双曲线的一部分 (D )椭圆的一部分2 •椭圆2y a21与双曲线—a 2-1有相同的焦点,贝U a 的值是 23.双曲线 2y_ b 2(A ) 2 已知圆x 2(B ) 1 或-2(D ) 11的两条渐近线互相垂直, 那么该双曲线的离心率是 (B ) ..3(C ) 、22y 6x7 0与抛物线y 2 2px(p(D )I0)的准线相切,则()()()()2A 、— 8 2壬162B 、—16 2乞1 62C 、x - 8 2乞1 42x D 、— 16 2上142222(A ) 2 或 18(B ) 2x9、设F 1> F 2是双曲线一 4或18(C ) 2或16 (D ) y 2 1的两个焦点,点P 在双曲线上,且 4或16UULTLUUQPF PFUUU 则 |PF 1 | LULU |PF 2 | 的值等于 A 、2B 、2 210.若点A 的坐标为(3,2) , F 是抛物线y 22x 的焦点,点M 在抛物线上移动时,使MF MA取得最小值的M的坐标为1A . 0,0B .- 1 C . 1,V2 D . 2,22’2 2X y 11、已知椭圆 — F =1 (a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且 BF 丄x 轴,ab直线AB 交y 轴于点P ,若AP 2BP (应为PB),则离心率为 ()A 、二B 、二C 、1D 1223212 .抛物线y22x 上两点A(X 1, yj 、B(X 2, y 2)关于直线1y x m 对称,且x 1 x 2则m 等于()A . 3B. 25C . -D . 322、填空题: 13 .若直线xy2与抛物线y 24x 交于A 、B 两点, 则线段 AB 的中点坐标是。

人教A版选修2-1:圆锥曲线单元理科测试题(含答案)

人教A版选修2-1:圆锥曲线单元理科测试题(含答案)

圆锥曲线单元测试(理)一、选择题:本大题共10小题,每小题4分,共40分. 在每小题的4个选项中,只有一项是符合题目要求的.1.直线过抛物线24y x =的焦点,与抛物线交于A(x 1, y 1)、B(x 2, y 2)两点,如果x 1 + x 2 = 6,那么AB 等于 ( )A.10B.8C.7D.62.已知双曲线12222=-by a x 的一条渐近线方程为x 43y =,则双曲线的离心率为 ( )A.35B.34C.45D.23 3.以(-6,0),(6,0)为焦点,且经过点(-5,2)的双曲线的标准方程是( )A.1201622=-y x B.1201622=-x y C.1162022=-y x D.1162022=-x y 4.方程22125-16x y m m +=+表示焦点在y 轴上的椭圆,则m 的取值范围是 ( ) A.1625m -<< B.9162m -<<C.9252m <<D.92m > 5.过双曲线22149x y -=的右焦点F 且斜率是32的直线与双曲线的交点个数是( )A.0个B.1个C.2个D.3个6.抛物线2y x =上的点到直线24x y -=的最短距离是( )A.35B.553 C.552 D.1053 7.抛物线x y 122=截直线12+=x y 所得弦长等于( ) A.15 B.152C.215D.158.设12,F F 是椭圆1649422=+y x 的两个焦点,P 是椭圆上的点,且3:4:21=PF PF ,则 21F PF ∆的面积为( )A.4B.6C.22D.24 9.如图,圆O 的半径为定长r ,A 是圆O 外一个定点,P 是圆上任意一点,线段AP 的垂直平分线l 和直线OP 相交于点Q ,当点P 在圆上运动时,点Q 的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线10.设P 为椭圆22221x y a b+=(0)a b >>上一点,两焦点分别为21F ,F ,如果1275PF F ∠=2115PF F ∠=,则椭圆的离心率为 ( ) A.36二、填空题:本大题共6小题,每小题4分,共24分.将答案填在题中横线上.11.抛物线261x y -=的准线方程为 .12.中心在原点,对称轴为坐标轴,离心率为21,长轴为8的椭圆的标准方程为________.13.以椭圆22185x y +=的焦点为顶点,以椭圆的顶点为焦点的双曲线方程为 .14.过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,则这条弦所在的直线方程是 .15.动点P 在曲线221y x =+上移动,则点P 和定点(0,1)A -连线的中点的轨迹方程是 . 16.如图,已知1F 、2F 是椭圆2222:1x y C a b += (0)a b >> 的左、右焦点,点P 在椭圆C 上,线段2PF 与圆222x y b +=相切于点Q ,且点Q 为线段2PF 的中点,则12PF PF ?uuu r uuu r;椭圆C 的离心率为 .三、解答题:本大题共3小题,共36分. 解答应写出文字说明、证明过程或演算步骤. 17.(本题共两小题满分10分,每小题5分) (1)求离心率36=e ,并且过点(3,0)的椭圆的标准方程;(2)双曲线C 和椭圆2241x y +=有相同的焦点,它的一条渐近线为y =,求双曲线C 的方程.18.(本题满分12分)已知椭圆22221(0)x y a b a b +=>>的离心率2e =,过(,0),(0,)AaB b -的直线到原点的距离是554. (1)求椭圆的方程;(2)已知直线1(0)y kx k =+≠交椭圆于不同的两点,E F 且,E F 都在以B 为圆心的圆上 ,求k 的值.19.(本题满分14分)给定抛物线x y C 4:2=,F 是C 的焦点,过点F 的直线l 与C 相交于,A B 两点,记O 为坐标原点. (1)求⋅的值;(2)设]52[,,的面积当三角形∈=S OAB FB AF λ时,求λ的取值范围.圆锥曲线测试理科答案一、选择题(满分40分,每题4分)二、填空题(满分24分,每题4分)11. 23y = 12.11216112162222=+=+x y y x 或 (丢解扣2分)13. 22135x y -= 14. 042=-+y x 15. 24y x = 16.0 , 3(每空2分) 三、解答题(满分36分)17.(本小题满分10分)(1) 13922=+y x 或192722=+x y …………………5分(丢解扣2分) (2)椭圆的焦点坐标为(0, ,…………………6分由双曲线的一条渐近线为y =,可得ab=,…………………7分 解得12b =,2a =, …………………9分 则双曲线方程为22241y x -= …………………10分 18. (本小题满分12分) 解(1)∵,c a=222a b c -= .∴ a = 2b , …………2分 ∵ 原点到直线AB :1x y a b-=的距离d ==.∴ b = 2 ,∴ 故所求椭圆方程为 221164x y+= . …………………5分(2)把2211164x yy kx =++=代入中消去y ,整理得22(14)8120k x kx ++-=.可知0∆>…………………7分设3344(,),(,),E x y F x y EF 的中点是00(,)M x y ,则 340002241,1,21414x x k x y kx k k +-===+=++……9分 0021.BM y k x k +==-……10分 ∴0020,x ky k ++=即 224201414k kk k k -++=++ .又 k ≠ 0 ,∴ 2k =18.故所求k=±4…………………12分 19. (本小题满分12分)(1)解:根据抛物线方程x y 42=可得F (1,0)………………………………1分设直线l 的方程为,1+=my x 将其与C 的方程联立,消去x 得0442=--my y ……3分 设A ,B 的坐标分别为),)(,(2211y x y x ,则y 1y 2=-4…………4分 因为1161,4,4222121222121====y y x x x y x y 所以………………5分 故32121-=+=⋅y y x x ……………………………………6分 (2)解:因为,FB AF λ=所以),1(),1(2211y x y x -=--λ,即12121(1)(2)x x y y λλλ-=-⎧⎨-=⎩……8分又1214x y = ③2224x y = ④由②、③、④消去22121,x x y y λ=后得, 将其代入①,注意到λλ1,02=>x 解得从而可得λλ2,212=-=y y ……………………………………11分故三角形OAB 的面积λλ1||||2121+=-⋅=y y OF S ………………12分 因为5121≤+≥+λλλλ恒成立,所以只要解即可,解得253253+≤≤-λ……………………………………………………14分。

圆锥曲线》单元测试题

圆锥曲线》单元测试题

圆锥曲线》单元测试题本文为一份圆锥曲线单元测试题,共有选择题12道,每道题5分,总分60分。

题目中涉及到椭圆、双曲线、抛物线等知识点。

1.若双曲线$ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为()。

A。

5 B。

5 C。

2 D。

22.圆锥曲线$\frac{y^2}{x^2} + \frac{1}{9} = 1$的离心率$e$,则$a$的值为()。

frac{9a+8}{5}$A。

4 B。

$-\frac{4}{5}$ C。

4或$-\frac{4}{5}$ D。

以上均不正确3.以椭圆的右焦点$F_2(2,0)$为圆心的圆恰好过椭圆的中心,交椭圆于点$M$、$N$,椭圆的左焦点为$F_1(-2,0)$,且直线$MF_1$与此圆相切,则椭圆的离心率$e$为()。

A。

$3-\sqrt{5}$ B。

$2-\sqrt{3}$ C。

$\frac{\sqrt{2}}{2}$ D。

$\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{3}$4.已知双曲线$\frac{x^2}{a_1^2} - \frac{y^2}{b^2} = 1$与椭圆$\frac{x^2}{a_2^2} + \frac{y^2}{b^2} = 1$的离心率互为倒数,其中$a_1>0$,$a_2>b>0$,那么以$a_1,b$,$a_2,b$为边长的三角形是()。

A。

锐角三角形 B。

直角三角形 C。

钝角三角形 D。

等腰三角形5.设椭圆$\frac{x^2}{m^2}+\frac{y^2}{n^2}=1(m>0,n>0)$的右焦点与抛物线$y^2=8x$的焦点相同,离心率为$\frac{1}{2}$,则此椭圆的方程为()。

A。

$\frac{x^2}{4}+\frac{y^2}{16}=1$ B。

$\frac{x^2}{16}+\frac{y^2}{4}=1$ C。

圆锥曲线单元测试题

圆锥曲线单元测试题

圆 锥 曲 线 单 元 测 试 题四川省邻水中学(国家级示范高中) 特级教师 杨才荣 638500一、选择题 (每小题3分,共36分) .1、双曲线x a 22-y b22=1的两条渐近线互相垂直,则此双曲线的离心率是 ( ) (A)2 (B)2 (C)22 (D)32、方程mx 2+ny 2+mn=0 (m<n<0) 所表示的曲线的焦点坐标是 ( ) (A) (0,±-m n ) (B) (0,±-n m) (C) (±-m n ,0) (D) (±-n m,0) 3、椭圆)0(12222>>=+b a b y a x 与双曲线)(12222+∈=-R n m ny m x 、有公共焦点,P 是椭圆与双曲线的交点,则|PF 1|·|PF 2|的值为 ( )(A) a 2+m 2 (B) b 2-n 2 (C) a 2-m 2 或b 2+n 2 (D) a 2+m 2 或b 2-n 24、设x 2-y 2=4,则xy x -21的取值范围是 ( ) (A)(-∞,0)∪(0,+∞) (B)(-1,1)(C)(-8,45) (D)(-∞,-2)∪[2,+∞] 5、设双曲线的左、右焦点是F 1、F 2,左、右顶点为M 、N ,若△PF 1F 2的顶点P 在双曲线上,则△PF 1F 2的内切圆与边F 1F 2的切点位置 ( )(A)不能确定 (B)在线段MN 的内部(C)在线段F 1M 内部或在线段NF 2内部 (D)是点M 或点N6、方程11662222=--+-+k k y k k x 表示双曲线的必要但非充分条件是 ( )(A)21<k <2 (B)-3<k <-31 (C) 21<k <2 或-3<k <-31 (D)-3<k <2 7、直线x -y -1=0与实轴在y 轴上的双曲线x 2-y 2=m 的交点在以原点为中心,边长为2且边平行于坐标轴的正方形内部,那么m 的取值范围是 ( )(A) 0<m <1 (B) m >-1 (C) m <0 (D) -1<m <08、过点P(-3,-4)的直线与双曲线116922=-y x 有一个公共点,则直线l 的方程为 ( ) (A) 4x -3y=0 (B) 4x +3y +24=0(C) x +3=0 (D) x +3=0或4x +3y +24=09、双曲线1251622=-y x 的两条渐近线所夹的锐角是 ( ) (A) 45arctg (B) 45arctg -π (C) 245arctg (D) 452arctg -π 10、过点A(1,1)作双曲线1222=-y x 的弦MN ,使A 为MN 的中点,则直线MN 的方程是 ( ) (A) 2x -y -1=0 (B )x -2y +1=0(C) 2x +y -3=0 (D) 不存在11、焦点在x 轴上,实轴长为8,一条渐近线方程是3x -2y=0的双曲线的标准方程是 ( ) (A) 191622=-y x (B) 11441622=-y x (C) 1361622=-y x (D) 1163622=-y x 12、以椭圆)0(12222>>=+b a by a x 的顶点为焦点、焦点为顶点的双曲线方程为 ( ) (A) 12222=-by a x (B) 122222=--b y b a x(C) 122222=--b a y a x (D) 12222=-ay b x 二、填空题(每小题4分,共24分).13、双曲线离心率为2,则渐近线夹角为________。

高二数学选修2—1圆锥曲线单元测试

高二数学选修2—1圆锥曲线单元测试

高二数学选修2—1圆锥曲线单元测试(理科)(90分钟完卷;总分100分)一、选择题:(本大题共10小题;每小题4分;共40分)1:12222=+b y a x ( a >b >0)焦点为顶点;以椭圆C 1的顶点为焦点的双曲线C 2;下列结论中错误的是( )A. C 2的方程为122222=--b y b a x B. C 1、C 2的离心率的和是1 C. C 1、C 2的离心率的积是1 D.短轴长等于虚轴长2、双曲线14322=-x y 的渐近线方程是( ) A. x y 23±= B. x y 332±= C. x y 43±= D. x y 34±=3、抛物线281x y -=的准线方程是( ). A. 321=x B. 2=y C. 321=y D. 2-=y 4、已知4||=AB ;点P 在A 、B 所在的平面内运动且保持6||||=+PB PA ;则||PA 的最大值和最小值分别是 ( )A .5、3B .10、2C .5、1D .6、45、抛物线x y 122=上与焦点的距离等于8的点的横坐标是( ) A 、2 B 、3 C 、4 D 、56、若双曲线与64422=+y x 有相同的焦点;它的一条渐近线方程是03=+y x ;则双曲线的方程是( )A.1123622=-y x B. 1123622=-x y C. 1123622±=-y x D. 1123622±=-x y 7.若双曲线的两条渐进线的夹角为060;则该双曲线的离心率为 A.2 B.36或36或3328、与圆x 2+y 2-4y=0外切; 又与x 轴相切的圆的圆心轨迹方程是 ( ).A. y 2=8xB. y 2=8x (x>0) 和 y=0C. x 2=8y (y>0)D. x 2=8y (y>0) 和 x=0 (y<0)9、若椭圆)1(122>=+m y m x 与双曲线)0(122>=-n y nx 有相同的焦点F 1、F 2;P 是两曲线的一个交点;则21PF F ∆的面积是( )A.4B.2C.1D.12班别姓名座号10、已知椭圆222(0)2y x a a +=>与A (2;1);B (4;3)为端点的线段没有公共点;则a 的取值范围是( )A.0a <<B.0a <<a > C. 103a <<D.22a <<一、 选择题:(4分×10=40分)二、填空题:(4分×4=16分)11. 与椭圆22143x y +=具有相同的离心率且过点(2;是 。

高二理科数学圆锥曲线单元测试

高二理科数学圆锥曲线单元测试

高二年单元考试试卷(圆锥曲线)一、选择题(60分)1.已知双曲线()222:1016x y C a a -=>的一个焦点为()5,0,则双曲线C 的渐近线方程为( )A. 4312x y ±= B. 40x ±= C . 1690x y ±= D. 430x y ±=2.平面直角坐标系中,已知O 为坐标原点,点A 、B 的坐标分别为(1,1)、()3,3-. 若动点P 满足OP OA OB λμ=+,其中λ、R μ∈,且1λμ+=,则点P 的轨迹方程为 A . 0x y -= B . 0x y += C. 230x y +-= D .()()22125x y ++-=3.抛物线22(0)y px p =>上横坐标为6的点到焦点的距离是10,则焦点到准线的距离是( )A. 4B. 8 C. 16 D. 324.椭圆221mx y +=的离心率是2,则它的长轴长是( ) A. 1 B. 1或2 C. 2 D . 2或45.设经过点()2,1M 的等轴双曲线的焦点为12,F F ,此双曲线上一点N 满足12NF NF ⊥,则12NF F ∆的面积为( )A.B. C . 2 D. 36.抛物线有如下光学性质:由焦点的光线经抛物线反射后平行于抛物线的对称轴;反之,平行于抛物线对称轴的入射光线经抛物线反射后必过抛物线的焦点.已知抛物线24y x =的焦点为F ,一条平行于x 轴的光线从点()3,1M 射出,经过抛物线上的点A反射后,再经抛物线上的另一点B 射出,则直线AB 的斜率为( ) A. 43-B. 43 C. 43± D . 169- 7.已知点12,F F 是椭圆2222x y +=的左、右焦点,点P 是该椭圆上的一个动点,那么12PF PF +的最小值是( )A . 2 B. C. 0 D. 18.椭圆22221x y a b +=(0a b >>)上存在一点P 满足F 2π∠AP =, F 为椭圆的左焦点,A 为椭圆的右顶点,则椭圆的离心率的范围是( ) A. 10,2⎛⎫⎪⎝⎭B. 20,2⎛⎫⎪ ⎪⎝⎭ C . 1,12⎛⎫⎪⎝⎭ D. 2,12⎛⎫ ⎪ ⎪⎝⎭9.把离心率512e +=的曲线()2222:10,0x y C a b a b-=>>称之为黄金双曲线.若以原点为圆心,以虚半轴长为半径画圆O ,则圆O 与黄金双曲线C ( )A. 无交点 B . 有1个交点 C. 有2个交点 D. 有4个交点 10.已知,则方程是与在同一坐标系内的图形可能是( )A B C D 11.设直线()1y k x =+与抛物线24y x =相交于M 、N 两点,抛物线的焦点为F ,若F 2F M =N ,则k 的值为( )A . 233±B. 223± C. 322± D. 33±12.已知椭圆和双曲线有共同焦点是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值是( )A. B. C. 2 D. 3二、填空题(20分) 13.已知是抛物线 的焦点,是上一点,的延长线交轴于点.若为的中点,则____________.14.抛物线的焦点为F,其准线与双曲线相交于两点,若△为等边三角形,则=________15.已知椭圆 离心率为,双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形面积为16,则椭圆的方程为_______________16.设椭圆2222x :1(a b 0)y C a b+=>>的左右焦点为12,F F ,过2F 作x 轴的垂线与C 相交于,A B 两点,1F B 与y 轴相交于D ,若1AD F B ⊥,则椭圆C 的离心率等于 .三、解答题17(10分).设命题p :方程221231x y k k -=++表示双曲线;命题q :斜率为k 的直线l 过定点()2,1,P -且与抛物线24y x =有两个不同的公共点.若p q ∧是真命题,求k 的取值范围.18(12分).(1)已知椭圆的离心率为,短轴一个端点到右焦点的距离为4,求椭圆的标准方程。

《圆锥曲线》单元测试题(有答案)

《圆锥曲线》单元测试题(有答案)

《圆锥曲线》单元测试题 答案一、选择题:本大题共10小题,每小题5分,共50分,每小题所给出的四个选项中只有一个是符合题意的,请将正确答案的代号填入下表内。

二、填空题:本大题共4小题,每小题5分,共20分,把答案填在题中横线上.11、22186x y +=或223412525y x +=. 12、1±=k 或25±=k . 13、、14三、解答题:本大题共6小题,共80分,写出文字说明、证明过程或演算步骤.15、解:由已知条件得椭圆的焦点在x 轴上,其中c=22,a=3,从而b=1,所以其标准方程是:2219x y +=.联立方程组22192x y y x ⎧+=⎪⎨⎪=+⎩,消去y 得, 21036270x x ++=. 设A(11,x y ),B(22,x y ),AB 线段的中点为M(00,x y )那么: 12185x x +=-,0x =12925x x +=所以0y =0x +2=15. 也就是说线段AB 中点坐标为(-95,15).16、解:由于椭圆焦点为F(0,±4),离心率为e=45,所以双曲线的焦点为F(0,±4),离心率为2,从而. 所以求双曲线方程为:221412y x -= 17、解:由于x y 22=,而==其中x 0≥(1)a ≤1时,当且仅当x=0时, )(a f =|PA|min =|a|.(2)a>时, 当且仅当x=a-1时, )(a f =|PA|min .所以)(a f =||,11a a a ≤⎧⎪>18.解:抛物线y a x 12=的焦点为)41,0(a F ,准线方程为ay 41-= 设直线PQ 的斜率为k ,则其方程为akx y 41+=,代入2y ax =,并化简,得0412=--akx ax设P(1x ,1y ),Q(2x ,2y ),则1x 2x =241a -,从而2222222121161)41(aa a ax ax y y =-== ∴2212121)41()(41)41)(41(||||ay y a y y a y a y QN PM pq +++=++== =pq)(41)]41()41[(41)41()(41)41(212212q p a a y a y a a y y a a +=+++=+++ ∴a pq q p =+ 即 a qp 411=+ 19、解:设双曲线方程为x 2-4y 2=λ.联立方程组得: 22x -4y =30x y λ⎧⎨--=⎩,消去y 得,3x 2-24x+(36+λ)=0设直线被双曲线截得的弦为AB ,且A(11,x y ),B(22,x y ),那么1212283632412(36)0x x x x λλ+=⎧⎪+⎪=⎨⎪∆=-+>⎪⎩ ∴===解得: λ=4,所以,所求双曲线方程是:2214x y -= 20.解:(1)联立方程223x -y =11y ax ⎧⎨=+⎩,消去y 得:(3-a 2)x 2-2ax-2=0.设A(11,x y ),B(22,x y ),那么:122122222323(2)8(3)0a x x a x x a a a ⎧+=⎪-⎪⎪=-⎨-⎪∆=+->⎪⎪⎩。

圆锥曲线单元测试卷

圆锥曲线单元测试卷

圆锥曲线单元测试卷一、选择题(每题3分,共30分)1. 椭圆的标准方程是:A. \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) (a > b)B. \( \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \) (a > b)C. \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) (a < b)D. \( \frac{x^2}{b^2} + \frac{y^2}{a^2} = 1 \) (a < b)2. 双曲线的离心率 e 的定义是:A. \( e = \frac{c}{a} \)B. \( e = \frac{a}{c} \)C. \( e = \frac{b}{a} \)D. \( e = \frac{c}{b} \)3. 抛物线的焦点到准线的距离是:A. 焦距B. 准线长度C. 顶点到焦点的距离D. 顶点到准线的距离4. 以下哪个方程不是圆锥曲线的方程?A. \( x^2 + y^2 = r^2 \)B. \( \frac{x^2}{a^2} + y^2 = 1 \)C. \( x^2 - y^2 = 1 \)D. \( x^2 + y^3 = 1 \)5. 椭圆的离心率 e 的取值范围是:A. \( 0 < e < 1 \)B. \( -1 < e < 0 \)C. \( e > 1 \)D. \( e = 0 \)6. 抛物线 \( y^2 = 4ax \) 的准线方程是:A. \( x = -a \)B. \( x = a \)C. \( x = 0 \)D. \( y = -a \)7. 双曲线 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 的渐近线方程是:A. \( y = \pm a \)B. \( y = \pm \frac{b}{a}x \)C. \( y = \pm \frac{a}{b}x \)D. \( x = \pm \frac{a}{b}y \)8. 椭圆的参数方程可以表示为:A. \( \begin{cases} x = a \sin t \\ y = b \cos t\end{cases} \)B. \( \begin{cases} x = a \cos t \\ y = b \sin t\end{cases} \)C. \( \begin{cases} x = a \tan t \\ y = b \cot t\end{cases} \)D. \( \begin{cases} x = a \sec t \\ y = b \csc t\end{cases} \)9. 以下哪个点不在椭圆 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} =1 \) 上?A. \( (a, 0) \)B. \( (0, b) \)C. \( (-a, 0) \)D. \( (0, -b) \)10. 抛物线 \( x^2 = 4py \) 的焦点坐标是:A. \( (0, p) \)B. \( (0, -p) \)C. \( (p, 0) \)D. \( (-p, 0) \)二、填空题(每空2分,共20分)11. 椭圆的长轴长度是 \( 2a \),其中 \( a \) 是椭圆的________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《圆锥曲线》单元测试题班级 姓名 学号 分数第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1、若双曲线x 2a 2-y 2b 2=1的焦点到其渐近线的距离等于实轴长,则该双曲线的离心率为( )A. 5 B .5 C. 2 D .2 2、圆锥曲线y 29+x 2a +8=1的离心率e =12,则a 的值为( )A .4B .-54C .4或-54D .以上均不正确3、以椭圆的右焦点F 2为圆心的圆恰好过椭圆的中心,交椭圆于点M 、N ,椭圆的左焦点为 F 1,且直线MF 1与此圆相切,则椭圆的离心率e 为( ) A.3-1 B .2-3 C.22 D.324、已知双曲线x 2a 21-y 2b 2=1与椭圆x 2a 22+y 2b 2=1的离心率互为倒数,其中a 1>0,a 2>b >0,那么以a 1、a 2、b 为边长的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形5、设椭圆x 2m 2+y 2n 2=1(m >0,n >0)的右焦点与抛物线y 2=8x 的焦点相同,离心率为12,则此椭圆的方程为( )A.x 212+y 216=1B.x 216+y 212=1C.x 248+y 264=1D.x 264+y 248=1 6、已知椭圆E :x 2m +y 24=1,对于任意实数k ,下列直线被椭圆E 截得的弦长与l :y =kx +1被椭圆E 截得的弦长不可能相等的是( )A .kx +y +k =0B .kx -y -1=0C .kx +y -k =0D .kx +y -2=0 7、过双曲线M :x 2-y 2b 2=1的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线 分别相交于点B 、C ,且|AB |=|BC |,则双曲线M 的离心率是( ) A.52 B.103C. 5D.10 8、设直线l :2x +y +2=0关于原点对称的直线为l ′,若l ′与椭圆x 2+y 24=1的交点为A 、 B ,点P 为椭圆上的动点,则使△P AB 的面积为12的点P 的个数为( )A .1B .2C .3D .49、设F 1、F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,与直线y =b 相切的⊙F 2交椭圆于点E ,且E 是直线EF 1与⊙F 2的切点,则椭圆的离心率为( ) A.53 B.63 C.32D.3-1 10、如图所示,从双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 引圆x 2+y 2=a 2的切线,切点为T ,延长FT 交双曲线右支于 P 点,若M 为线段FP 的中点,O 为坐标原点,则 |MO |- |MT |与b -a 的大小关系为( )A .|MO |-|MT |>b -aB .|MO |-|MT |=b -aC .|MO |-|MT |<b -aD .不确定11、已知曲线C :y =2x 2,点A (0,-2)及点B (3,a ),从点A 观察点B ,要使视线不被曲线 C 挡住,则实数a 的取值范围是( )A .(4,+∞)B .(-∞,4]C .(10,+∞)D .(-∞,10] 12、点P 在曲线C :x 24+y 2=1上,若存在过P 的直线交曲线C 于A 点,交直线l :x =4于B 点,满足|P A |=|PB |或|P A |=|AB |,则称点P 为“H 点”,那么下列结论正确的是( ) A .曲线C 上的所有点都是“H 点” B .曲线C 上仅有有限个点是“H 点” C .曲线C 上的所有点都不是“H 点”D .曲线C 上有无穷多个点是“H 点” 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题4分,共20分,把正确答案填在题中横线上.) 13.已知点A (1,0),B (2,0).若动点M 满足AB →·BM →+2|AM →|=0,则点M 的轨迹方程为________. 14.过点M (-2,0)的直线m 与椭圆x 22+y 2=1交于P 1、P 2两点,线段P 1P 2的中点为P ,设直线m 的斜率为k 1(k 1≠0),直线OP 的斜率为k 2,则k 1k 2的值为______. 15.设双曲线x 2-y 23=1的左右焦点分别为F 1、F 2,P 是直线x =4上的动点,若∠F 1PF 2=θ, 则θ的最大值为________.16.直线l :x -y =0与椭圆x 22+y 2=1相交A 、B 两点,点C 是椭圆上的动点,则△ABC 面积的最大值为________.三、解答题(本大题共6个小题,共70分,解答应写出文字说明,证明过程或演算步骤.)17、已知A (-2,0)、B (2,0),点C 、点D 满足|AC →|=2, AD →=12(AB →+AC →).(1)求点D 的轨迹E 的方程;(2)过点A 作直线l 交以A 、B 为焦点的椭圆G 于M 、N 两点,线段MN 的中点到y 轴的 距离为45,且直线l 与轨迹E 相切,求椭圆G 的方程.18、设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,过原点O 斜率为1的直线与椭圆C 相交于M ,N 两点,椭圆右焦点F 到直线l 的距离为 2.(1)求椭圆C 的方程;(2)设P 是椭圆上异于M ,N 外的一点,当直线PM ,PN 的斜率存在且不为零时,记直 线PM 的斜率为k 1,直线PN 的斜率为k 2,试探究k 1·k 2是否为定值?若是,求出定值; 若不是,说明理由.19、过点M (1,1)作直线与抛物线x 2=2y 交于A 、B 两点,该抛物线在A 、B 两点处的两条切 线交于点P .(1)求点P 的轨迹方程; (2)求△ABP 的面积的最小值.20、已知菱形ABCD 的顶点A ,C 在椭圆x 2+3y 2=4上,对 角线BD 所在直线的斜率为1.(1)当直线BD 过点(0,1)时,求直线AC 的方程;(2)当∠ABC =60°时,求菱形ABCD 面积的最大值.21、如图,在由圆O :x 2+y 2=1和椭圆C :x 2a2+y 2=1(a >1)构成的“眼形”结构中,已知椭圆的离心率为63, 直线l 与圆O 相切于点M ,与椭圆C 相交于两点A , B .(1)求椭圆C 的方程;(2)是否存在直线l ,使得OA →·OB →=12OM →2,若存在,求此时直线l 的方程;若不存在,请说明理由.22、已知椭圆的两个焦点F 1(-3,0),F 2(3,0),过F 1且与坐标轴不平行的直线l 1与椭圆 相交于M ,N 两点,如果△MNF 2的周长等于8. (1)求椭圆的方程;(2)若过点(1,0)的直线l 与椭圆交于不同两点P 、Q ,试问在x 轴上是否存在定点E (m,0), 使PE →·QE →恒为定值?若存在,求出E 的坐标及定值;若不存在,请说明理由.《圆锥曲线》单元测试题答案二、填空题:13、x 22+y 2=1 14、 -12 15、 30° 16、三、解答题:17、[解析] (1)设C 、D 点坐标分别为C (x 0,y 0),D (x ,y ),则AC →=(x 0+2,y 0),AB →=(4,0), 则AB →+AC →=(x 0+6,y 0),故AD →=12(AB →+AC →)=⎝⎛⎭⎫x 02+3,y 02. 又AD →=(x +2,y ),故⎩⎨⎧x 02+3=x +2,y2=y .解得⎩⎪⎨⎪⎧x 0=2x -2,y 0=2y .代入|AC →|=(x 0+2)2+y 20=2得x 2+y 2=1,即为所求点D 的轨迹E 的方程. (2)易知直线l 与x 轴不垂直,设直线l 的方程为 y =k (x +2)①又设椭圆方程为x 2a 2+y 2a 2-4=1 (a 2>4)②因为直线l 与圆x 2+y 2=1相切,故|2k |k 2+1=1,解得k 2=13.将①代入②整理得(a 2k 2+a 2-4)x 2+4a 2k 2x +4a 2k 2-a 4+4a 2=0,而k 2=13,即(a 2-3)x 2+a 2x -34a 4+4a 2=0,设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=-a 2a 2-3.由题意有a 2a 2-3=2×45,求得a 2=8.经检验,此时Δ>0.故所求的椭圆方程为x 28+y 24=1.18、[解析] (1)设椭圆的焦距为2c (c >0),焦点F (c,0),直线l :x -y =0,F 到l 的距离为|c |2=2,解得c =2,又∵e =c a =22,∴a =22,∴b =2.∴椭圆C 的方程为x 28+y 24=1.(2)由⎩⎪⎨⎪⎧x 28+y 24=1,y =x ,解得x =y =263,或x =y =-263,不妨设M ⎝⎛⎭⎫263,263,N ⎝⎛⎭⎫-263,-263,P (x ,y ), ∴k PM ·k PN =y -263x -263·y +263x +263=y 2-83x 2-83,由x 28+y 24=1,即x 2=8-2y 2,代入化简得k 1·k 2=k PM ·k PN =-12为定值. 19、[解析] (1)设直线AB 方程为y =k (x -1)+1,代入x 2=2y 中得,x 2-2kx +2k -2=0 其中Δ=(-2k )2-4(2k -2)=4[(k -1)2+1]>0 记A ⎝⎛⎭⎫x 1,x 212,B ⎝⎛⎭⎫x 2,x 222,则 x 1+x 2=2k ,x 1x 2=2k -2. 对y =x 22求导得,y ′=x则切线P A 的方程为y =x 1(x -x 1)+x 212,即y =x 1x -x 212①同理,切线PB 的方程为y =x 2x -x 222②由①、②两式得点P 的坐标为⎝⎛⎭⎪⎫x 1+x 22,x 1x 22,于是得P (k ,k -1),设P (x ,y ),则⎩⎪⎨⎪⎧x =ky =k -1,消去参数k ,得点P 的轨迹方程为x -y -1=0. (2)由(1)知|AB |=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2] =2(1+k 2)(k 2-2k +2).点P 到直线AB 的距离d =|k (k -1)+1-(k -1)|1+k 2=k 2-2k +21+k 2△ABC 的面积S =12|AB |·d =(k 2-2k +2)32=[(k -1)2+1]32. 当k =1时,S 有最小值1.20、[解析] (1)由题意得直线BD 的方程为y =x +1.因为四边形ABCD 为菱形,所以AC ⊥BD . 于是可设直线AC 的方程为y =-x +n .由⎩⎪⎨⎪⎧x 2+3y 2=4,y =-x +n 得4x 2-6nx +3n 2-4=0. 因为A ,C 在椭圆上,所以Δ=-12n 2+64>0, 解得-433<n <433.设A ,C 两点坐标分别为(x 1,y 1),(x 2,y 2),则 x 1+x 2=3n2,x 1x 2=3n 2-44,y 1=-x 1+n ,y 2=-x 2+n .所以y 1+y 2=n2,所以AC 的中点坐标为⎝⎛⎭⎫3n 4,n 4. 由四边形ABCD 为菱形可知,点⎝⎛⎭⎫3n 4,n 4在直线y =x +1上,所以n 4=3n4+1, 解得n =-2.所以直线AC 的方程为y =-x -2, 即x +y +2=0.(2)因为四边形ABCD 为菱形,且∠ABC =60°, 所以|AB |=|BC |=|CA |. 所以菱形ABCD 的面积S =32|AC |2. 由(1)可得|AC |2=(x 1-x 2)2+(y 1-y 2)2=-3n 2+162,所以S =34(-3n 2+16)⎝⎛⎭⎫-433<n <433. 所以当n =0时,菱形ABCD 的面积取得最大值4 3.21、[解析] (1)∵e =c a =63,c 2=a 2-1,∴23=a 2-1a2,解得:a 2=3,所以所求椭圆C 的方程为x 23+y 2=1.(2)假设存在直线l ,使得OA →·OB →=12OM →2易得当直线l 垂直于x 轴时,不符合题意,故设直线l 方程为y =kx +b , 由直线l 与圆O 相切可得,b 2=k 2+1①把直线y =kx +b 代入椭圆C :x 23+y 2=1中,整理得:(1+3k 2)x 2+6kbx +3b 2-3=0 则x 1+x 2=-6kb1+3k 2,x 1·x 2=3b 2-31+3k 2,OA →·OB →=x 1·x 2+y 1·y 2=x 1·x 2+(kx 1+b )(kx 2+b )=(1+k 2)x 1·x 2+kb (x 1+x 2)+b 2 =(1+k 2)3b 2-31+3k 2+6k 2b 21+3k 2+b 2=4b 2-3k 2-31+3k 2=12②由①②两式得k 2=1,b 2=2, 故存在直线l ,其方程为y =±x ±2.22、[解析] (1)由题意知c =3,4a =8,∴a =2,b =1,∴椭圆的方程为x 24+y 2=1.(2)当直线l 的斜率存在时,设其斜率为k ,则l 的方程为y =k (x -1),由⎩⎪⎨⎪⎧x 24+y 2=1y =k (x -1)消去y 得(4k 2+1)x 2-8k 2x +4k 2-4=0, 设P (x 1,y 1),Q (x 2,y 2)则由韦达定理得x 1+x 2=8k 24k 2+1,x 1x 2=4k 2-44k 2+1,则PE →=(m -x 1,-y 1),QE →=(m -x 2,-y 2), ∴PE →·QE →=(m -x 1)(m -x 2)+y 1y 2 =m 2-m (x 1+x 2)+x 1x 2+y 1y 2=m 2-m (x 1+x 2)+x 1x 2+k 2(x 1-1)(x 2-1)=m 2-8k 2m 4k 2+1+4k 2-44k 2+1+k 2⎝ ⎛⎭⎪⎫4k 2-44k 2+1-8k 24k 2+1+1=(4m 2-8m +1)k 2+(m 2-4)4k 2+1要使上式为定值须4m 2-8m +1m 2-4=41,解得m =178,∴PE →·QE →为定值3364,当直线l 的斜率不存在时P ⎝⎛⎭⎫1,32,Q ⎝⎛⎭⎫1,-32, 由E ⎝⎛⎭⎫178,0可得PE →=⎝⎛⎭⎫98,-32,QE →=⎝⎛⎭⎫98,32, ∴PE →·QE →=8164-34=3364,综上所述当E ⎝⎛⎭⎫178,0时,PE →·QE →为定值3364.。

相关文档
最新文档