2.4再探实际问题与一元一次方程(教案)
探索实际问题与一元一次方程数学优秀教案
探索实际问题与一元一次方程数学优秀教案各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢一、教材分析(一)教材的地位和作用本节内容是一元一次方程应用的延伸与拓展,它进一步让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,同时又渗透了函数与不等式的思想,为以后内容学习奠定了必要的数学基础,本节内容具有承上启下的作用.学生能深刻地认识到方程是刻画现实世界有效的数学模型,领悟到“方程”的数学思想方法.总之,本节内容无论在知识上还是在数学思想方法上,都是十分很好的素材,能很好培养学生的探索精神、应用意识以及创新能力.(二)教材的重难点本节的重点是探索并掌握列一元一次方程解决实际问题的方法.而方程的建模思想学生还是初步接触,寻找相等关系对学生来说仍相当困难,所以确定“找出已知量与未知量之间的关系,尤其是相等关系”为本节的难点之一,列方程解应用题的最终目标是运用方程的解对客观现实作出合理的解释,这是本节的难点之二.二、教学目标分析(一)知识技能目标1.目标内容结合生活实际,会在独立思考后与他人合作,结合估算和试探,列出一元一次方程解决本节的三个实际问题,并能解释结果的实际意义及其合理性.培养学生建立方程模型来分析、解决实际问题的能力以及探索精神、合作意识.2.目标分析本节的内容就是通过列方程、解方程来解决实际问题,这是必须掌握的知识,估算与试探的思维方法也很重要,这是发现和解决问题的有效途径.七年级的学生对数学建模还比较陌生,建模能突出应用数学的意识,而探索精神和合作意识又是课标所大力倡导的,因而必须加强培养学生这方面的能力.(二)过程目标1.目标内容在活动中感受方程思想在数学中的作用,进一步增强应用意识.2.目标分析利用方程解决问题是有用的数学方法,学生在前两节的数学活动中,有了一些初步的经验,但是更接近生活,更富有挑战性的问题则需要师生合作,探索解决.(三)情感目标1.目标内容在探索中获得成功的体验,激发学生学习数学的热情,享受与他人合作的乐趣,建立自信心.通过对实际问题的解决,进一步体会“数学于生活,且服务于生活”的辩证思想.2.目标分析七年级学生的年龄特征决定了他们好奇心强、思想活跃、求知心切.利用教材培养学生良好的学习习惯、方法和品质,这是落实新课标倡导的教育理念的关键.三、教材处理与教法分析本节内容拟定两课时完成,今天说课的内容是第一课时(探究Ⅰ、探究Ⅱ).根据本节课的特点及七年级学生的心理特征和认知特征,本节课采用探索发现法进行教学,在活动中充分体现学生是学习的主人,教师是学习的组织者、引导者、合作者.本课借助多媒体辅助教学,给学生以直观形象的演示,增强感性认识,增强教学效果.课中以设疑提问、分组活动等方式,激发学生的兴趣,引导学生自主探索与合作交流,主动获得知识.四、教学过程分析(一)教学过程流程图探究Ⅰ(二)教学过程Ⅰ(以探究为主线、形式多样化)1.问题情境多媒体展示有关盈亏的新闻报道,感受生活实际.据此生活实例,展示探究Ⅰ,引入新课.考虑到学生不完全明白“盈利”、“亏损”这样的商业术语,故针对性地播放相关新闻报道,然后引出要探索的问题Ⅰ.2.讨论交流学生结合自己的生活实际,交流对“盈利”、“亏损”含义的理解.学生交流后,老师提出问题:某件商品的进价是40元,卖出后盈利25%,那么利润是多少?如果卖出后亏损25%,利润又是多少?(利润是负数,是什么意思?)要求学生对探究Ⅰ中商店的盈亏进行估算,交流讨论并说明理由.在讨论中学生对商店盈亏可能出现不同的观点,因此引导学生用数学方法解决问题,统一认识.师生互动,要知道究竟是盈是亏,必须先知道什么?从而引出要算出每件衣服的进价.让学生讨论盈利和亏损的含义,理解其概念,建立感性认识;乍一看,大多数学生可能在大体估算后得到不亏不盈,直觉上也是如此,但要解决实际问题,还要知其原价(未知量),从这一分析引入未知量,为后面建立模型,做了必要的铺垫.3.建立模型学生自主探索,寻找已知量与未知量之间的关系,确定相等关系.学生分组,根据找出的相等关系列出方程,其中一组计算盈利25%的衣服的进价,另一组计算亏损25%的衣服的进价.师生互动:①两件衣服的进价和为________;②两件衣服的售价和为________;③由于进价________售价,由此可知两件衣服的盈亏情况.(教师及时给出完整的解答过程)学生分组、计算盈亏;教师参与、适当提示;师生互动、得到决策.这样设计,让学生体会到合作交流、互相评价、互相尊重的学习方式,有利于学生知识的形成与发展,也有利于学生健康人格的养成.这样设计易于突出重点,突破难点,巩固应用一元一次方程作工具来解决实际问题的方法,也很好地让学生从已有的经验中、活动中,有意义地构建自己的知识结构,获得富有成效的学习体验.4.小结一个感悟:估算与主观判断往往与实际情况大相径庭,需要我们通过准确的计算来检验自己的判断.培养学生科学的学习态度与严谨的学习作风.探究Ⅱ(三)教学过程Ⅱ1.在灯具店选购灯具时,由于两种灯具价格、能耗的不同,引起矛盾冲突.恰当的问题情境激发学生探索的欲望,同时让学生体会到数学于生活,又服务于生活的实用性.启发:选择的目的是节省费用,费用又是由哪些因素决定的?学生讨论得出结论:2.列代数式费用=灯的售价+电费电费=灯的功率(千瓦)照明时间(时)在此基础上,用t表示照明时间(小时).要求学生列出代数式表示这两种灯的费用.节能灯的费用(元):60+.白炽灯的费用(元):3+.分析各个量之间的关系,列出代数式,为后面列方程,并进一步探索提供了基础.3.特值试探具体感知学生分组计算:t=1000、2000、2500、3000时,这两种灯具的使用费用,填入下表:时间(小时)1000200025003000节能灯的费用(元)白炽灯的费用(元)学生填完表格后,展示由表格数据制成的条形统计图.引导学生讨论:从统计图表,你发现了什么?问题的答案是多样的,师生共同得出:照明时间不同,作出的选择不同.由于在前面的第二节,学生已经学过“两种移动电话计费方式”的一道例题,因此学生应该能较熟练地完成表格中的特值试探.又因为七年级学生的认知以直观形象为主,再给出统计图,完成特殊到一般,感性到理性的深化.4.方程建模观察统计图,你能看出使用时间为多少(小时)时,这两种灯的费用相等吗?列出方程:60+=3+5.合作交流解释拓展照明时间小于2327小时,用哪种灯省钱?照明时间超过2327小时.但不超过3000小时,用哪种灯省钱?学生分组讨论,交流各自的看法.如果计划照明3500小时,则需购买两个灯,设计你认为合理的选灯方案.学生分组、讨论购灯方案只有三种:①两盏节能灯;②两盏白炽灯;③一盏节能灯、一盏白炽灯.学生计算各种方案所需费用.关于选灯方案③,学生可能会有不同的结果,先让学生充分展示他们的计算理由,然后对学生得出“使用节能灯3000小时,白炽灯500小时”的结论,给予充分肯定,并引导学生寻找理论依据,列式验证:设节能灯的照明时间为t(小时),那么总费用为:60+3++(3500t)=168(0≤t≤3000)观察上式可看出,只有当t=3000时,总费用最低.培养学生合作交流,倾听他人意见,并从交流中获益的学习习惯,综合各方面信息的能力.讨论2需要考虑的情形不只一种,通过这一问题,培养分类讨论的思想,养成缜密的思维品质.此处渗透着函数、不等式和分类讨论的思想,为后面学习实际问题提供了实践经验.6.反馈练习一家游泳馆每年6~8月出售夏季会员证,每张会员证80元,只限本人使用,凭证购入场券每张1元,不凭证购入场券每张3元,讨论并回答:什么情况下,购会员证与不购证付相同的钱?什么情况下,购会员证比不购证更合算?什么情况下,不购会员证比购证更合算?适时的反馈练习,以加深学生对这一知识的理解,逐步完善自己的知识结构.(四)教学小结学生分组小结“本课学到了什么”,各组发言交流体验、教师总结:五、设计说明七年级学生的年龄特征决定了他们好奇心强,思想活跃、求知心切.因此我从“以人为本”的理念出发,依据数学的工具性和人文性等特点,在整个教学活动中始终关注学生的发展,培养学生的创新精神与创新能力.(一)充分尊重学生的主体地位发挥学生的主体作用,坚持让学生自主探索、合作交流,展示学生的思维过程.(二)树立方程建模思想突出解释与应用,渗透函数、不等式、分类讨论等数学思想和方法,培养学生应用数学的意识.(三)注重对学习过程与方法的评价关注学生参与数学活动的热情,与他人合作的态度,以及独立地分析问题、解决问题的能力,力争让不同的人在数学上得到不同的发展.某种商品因换季打折出售,如果按定价的七五折出售将赔25元;而按定价的九折出售将赚20元.问这种商品的定价为多少元?某商店为了促销A牌高级洗衣机,规定在元旦那天购买该机可以分两期付款,在购买时先付一笔款,余下部分及它的利息(年利率为%)在明年的元旦付清,该洗衣机售价是每台8224元,若两次付款相同,问每次应付款多少元?工厂甲、乙两车间去年计划共完成税利720万元,结果甲车间完成了计划的115%,乙车间完成了计划的110%,两车间共完成税利812万元,求去年两个车间各超额完成税利多少万元?一辆汽车用40千米/时的速度由甲地驶向乙地,车行3小时后,因遇雨平均速度被迫每小时减少10千米,结果到达乙地时比预计的时间晚了45分钟,求甲、乙两地间的距离.甲、乙两人合办一小型服装厂,并协议按照投资额的比例多少分配所得利润,已知甲与乙投资比例为3∶4,第一年共获利30800元,问甲、乙两人可获利润多少元?有人问老师班级有多少名学生时,老师说:“一半学生在学数学,四分之一学生在学音乐,七分之一的学生在读外语,还剩六名学生在操场踢球.”你知道这个班有多少名学生吗?某人10时10分离家去赶11时整的火车,已知他家离车站10千米,他离家后先以3千米/时的速度走了5分钟,然后乘公共汽车去车站,问公共汽车每小时至少走多少千米才能不误火车?综合运用4.某市居民生活用电基本价格是每度元,若每月用电量超过a度,超出部分按基本电价的70%收费.某户五月份用电84度,共交电费元,求a;若该户六月份的电费平均为每度元,求六月份共用电多少度?应交电费多少元?5.为了鼓励节约用水,市政府对自来水的收费标准作如下规定:每月每户不超过10吨部分,按元/吨收费;超过10吨而不超过20吨部分,按元/吨收费;超过20吨部分,按元/吨收费.现已知李老师家六月份缴水费14元,问李老师家六月份用水多少吨?6.一支自行车队进行训练,训练时所有队员都以35千米/时的速度前进.突然,有一名队员以45千米/时的速度独自行进,行进10千米后调转车头,仍以45千米/时的速度往回骑,直到与其他队员会合.你知道这名队员从离队到与队员重新会合,经过了多长时间吗?7.有8名同学分别乘两辆轿车赶往火车站,其中一辆轿车在距离火车站15千米时出现故障,此时离火车停止检票时间还有42分,这时惟一可以利用的交通工具只有一辆轿车,连司机在内限乘5人,这辆小轿车的平均速度为60千米/时.这8名同学都能赶上火车吗?拓广探索8.一家庭(父亲、母亲和孩子们)去某地旅游.甲旅行社说:“如父亲买全票一张,其余人可享受半价优惠.”乙旅行社说:“家庭旅行算集体票,按原价的优惠.”这两家旅行社的原价相同.你知道哪家旅行社更优惠吗?各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢。
再探实际问题与一元一次方程1
再探实际问题与一元一次方程1【教学目标】1.能根据商品销售问题中的数量关系找出等量关系,列出方程;2.了解怎样对不同的方案作出选择;3.使学生在从事探索性活动的学习过程中,形成良好的学习方式和学习态度;4.熟悉列方程解应用题的一般思路.【对话探索设计】〖探索1〗(1)一件衣服的进价为50元,售价为60元,利润是______元,利润率是_______.(提示:利润=售价-进价, 利润率=利润÷进价.)(2)一件衣服的进价为50元,售价为80元,若按原价的8折出售,利润是______元,利润率是__________.(3)一件衣服的进价为50元,售价为60元,若按原价的8折出售,利润是______元,利润率是__________.(4)一件衣服的进价为50元,若要利润率是20%,应把售价定为________.〖探索2〗某商店以每件60元的价格卖出一件衣服,盈利25%,这件衣服的进价是多少?利润是多少?解:设这件衣服的进价是x元,根据利润率、利润、进价三者的关系(关系式为利润=_____________),得利润为_________,根据利润、售价、进价三者之间的关系可列方程:________________________.解得___________.利润为_________.(答略)另解: 设这件衣服的进价是x元,根据利润、售价、进价三者之间的关系,得利润为_________,想一想:下一步应该根据哪一个关系式列方程?比较两种解法,你有什么体会?〖试一试〗某商店以每件60元的价格卖出一件衣服,亏损25%,利润是多少?相信你能独立解决这道题,如果能用两种方法解更好.〖探索3〗某服装店出售一种优惠卡,花200元买这种卡后,可凭卡在这家商店按8折购物.小芳购卡后买了一件原价1200元的西装;小敏购卡后买了一件原价500元的毛衣.他们买卡购物是否划算?为什么? 你知道她们在什么情况下买卡购物才划算吗?〖探索4〗1.若每千瓦时的电费为0.5元,3只60瓦(即0.06千瓦)的白炽灯,一个月使用120小时,该付电费多少元?提示:电灯的电功率(千瓦数)×使用时间(小时数)=用电量(千瓦时数).2.小明和爸爸一起逛超市.小明想在两种灯中选购一种,其中一种是11瓦(即0.011千瓦)的节能灯,售价是50元;另一种是60瓦的白炽灯,售价3元,两种灯的照明效果一样,使用寿命也相同,起初,小明想节省一点,买白炽灯.爸爸告诉他: “节能灯售价高,但较省电.”已知两种灯的使用寿命都是3000小时,每千瓦时的电费是0.5元.(1)请你帮小明算一下,如果照明时间为1000小时,该买哪一种灯?如果照明时间为2000小时呢?(2)照明多少时间用两种灯的费用相等(精确到1小时)?(3)照明多少时间选择节能灯可以省钱?【备用素材】1.某种品牌服装的利润率为15%.如果进货价降低8%,而售出价不变, 那么利润率可增加到多少?比原来多了几个百分点?解:设原进价为a元(使用辅助性字母),则原售价为_______元,现进价为_______元,现利润率为(_____-______)÷_______=_____%.∴______%-15%=______%.答:___________________________.(思考:为什么不能说比原来多了10%?)2.若进货价降低 8 %, 而售出价不变, 那么利润率可由目前的 p% 增加到(p+10)%(即增加10个百分点),求原来的利润率是多少?解:不妨设原进货价为1元,则售出价为(1+p%)元,现在的进货价为0.92元,列方程:0. 92×[1+(p+10)%]=1+p%.解得p%=15%.答略.另解:设原进货价为a元,则售出价为(1+p%)a元,现在的进货价为0.92a元,列方程:0. 92a×[1+(p+10)%]=(1+p%)a.解得p%=15%.答略.思考:后一种解法是否比前一种更有说服力?。
实际问题与一元一次方程教案
实际问题与一元一次方程教案一、教学目标1. 理解一元一次方程的概念和解法。
2. 学会将实际问题转化成一元一次方程,并解决问题。
3. 培养学生分析问题、解决问题的能力。
二、教学重难点1. 一元一次方程的转化及解法。
2. 如何将实际问题转换成一元一次方程的形式。
三、教学过程Step 1 引入新知教师可以通过一则数学小故事来引入学生。
例如:小明每天从家里到学校的路程是固定的,他发现每天都需要花费30分钟的时间。
请问他每分钟走多少米?让学生思考一下这个问题,有同学可以用口算解出答案,但也有些同学可能会有困惑。
Step 2 学习新知1. 讲解一元一次方程的概念和基本形式,即ax + b = 0。
2. 给学生举一些简单的例子来解释一元一次方程的求解方法。
3. 引导学生分析实际问题,寻找与一元一次方程相关的关系。
4. 以实例的方式,提供一些实际问题,让学生试着将其转换成一元一次方程,并解答问题。
Step 3 拓展应用1. 让学生自主寻找实际生活中能够转换成一元一次方程的问题,并互相交流解决方案。
2. 分组讨论并展示各组的问题及解决方法。
四、教学评价1. 课堂练习:在教学过程中穿插一些练习题,检查学生的理解和掌握程度。
2. 课后作业:留一些基础练习题和拓展题供学生巩固和拓展。
五、教学反思本节课采用了引入实际问题的方式来学习一元一次方程,帮助学生更好地理解和应用所学知识。
同时,通过拓展应用环节,学生在合作探究中培养了解决问题的能力,提高了学生的综合素养。
但是,在教学过程中,需要注意引导学生合理思考和分析问题,避免套公式的机械运算。
教案竞赛实际问题与一元一次方程教案
探究(一)销售中的盈亏大连世纪中学初秀娟教案背景:由于本节问题的背景和表达都比较贴近实际,有必要让学生了解,所以设计了此教案教材分析:本课是3.4节《实际问题与一元一次方程》的第一课时,是在前面已经讨论过由实际问题抽象出一元一次方程模型和解一元一次方程的一般步骤的基础上,进一步以“探究”的形式讨论如何用一元一次方程解决设计及问题————————销售中的盈亏。
一、教学目标1、理解商品销售中所涉及进价、原价、售价、利润、打折、利润率这些基本量之间关系。
2、能根据数量关系找出等量关系列出方程,掌握商品盈亏的解法。
3、能利用一元一次方程解决商品销售中的实际问题。
二、重点、难点重点:让学生知道商品销售中盈亏的算法。
难点:弄清商品销售中的“进价”、“标价”、“售价”及“利润”的含义。
三、教学方法:通过创设“商场打折销售”这一问题情境,引导学生认识销售问题中的有关概念及其关系,在此基础上探究销售中的盈亏问题。
在经历“猜想。
计算验证”之后归纳解决问题的一般方法,反思学习过程中值得关注的细节。
四、课时安排:1课时五、教具准备:多媒体课件六、教学过程(一)创设情境,导入新课由一幅商场促销打折图片,(百度图片搜索)创设问题情境提出问题:引出本节课题——销售中的盈亏问题你能根据自己的理解说出它的意思吗?进价:购进商品时的价格(有时也叫成本价)售价:在销售商品时的售出价(有时叫成交价、卖出价)标价:在销售时标出的价(称原价、定价)打折:卖货时,按照标价乘以十分之几或百分之几十。
利润:在销售过程中的纯收入。
利润=售价 - 进价利润率:在销售过程中,利润占进价的百分比。
利润率=利润÷进价×100%引例:1、一件衣服500元打9折是______元。
2、某商品的每件销售价是172元,进价120元,则利润是_______元。
3、某商品进价是100元,利润是25元,那么利润率是_________。
4.某商品的进价是200元,利润率是20%,则利润是________元,售价是_______元。
七年级数学《一元一次方程》教案【4篇】
七年级数学《一元一次方程》教案【4篇】七年级数学《一元一次方程》教案篇一2.自主探索、合作交流:先由学生独立思考求解,再小组合作交流,师生共同评价分析。
方法1:解:方程两边都加上2,得5x-2+2=8+2也就是5x=8+2合并同类项,得5x=10所以,x=23.理性归纳、得出结论(让学生通过观察、归纳,独立发现移项法则。
)比较方程5x=8+2与原方程5x-2=8,可以发现,这个变形相当于5x-2=85x=8+2即把原方程中的-2改变符号后,从方程的一边移到另一边,这种变形叫做移项。
教学建议:关于移项法则,不应只强调记忆,更应强调理解。
学生开始时也许仍习惯于利用逆运算而不利用移项法则来求解方程,可借助例题、练习题使相互逐步体会到移项的优越性)。
方法2;解:移项,得5x=8+2合并同类项,得5x=10方程两边都除以5,得x=24.运用反思、拓展创新[例1]解下列方程:(1)2x+6=1(2)3x+3=2x+7教学建议:先鼓励学生自己尝试求解方程,教师要注意发现学生可能出现的错误,然后组织学生进行讨论交流。
[例2]解方程:教学建议:①先放手让学生去做,学生可能采取多种方法,教学时,不要拘泥于教科书中的解法,只要学生的解法合理,就应给予鼓励。
②在移项时,学生常会犯一些错误,如移项忘记变号等。
这时,教士不要急于求成,而要引导学生反思自己的解题过程。
必要时,可让学生利用等式的性质和移项法则两种方法解例1、例2中的方程,并将两者加以对照,进而使学生加深对移项法则的理解,并自觉地改正错误。
5.小结回顾:学生谈本节课的收获与体会。
师强调:移项法则。
七年级数学《一元一次方程》教案篇二教学内容:人教版七年级上册3.1.1一元一次方程教学目标:知识与技能:1、理解一元一次方程,以及一元一次方程解的概念。
2、会从题目中找出包含题目意思的一个相等关系,列出简单的方程。
3、掌握检验某个数值是不是方程解的方法。
过程与方法:在实际问题的过程中探讨概念,数量关系,列出方程的方法,训练学生运用新知识解决实际问题的能力。
实际问题与一元一次方程教案
实际问题与一元一次方程------------配套问题一、教材分析教材所处的地位和作用:本课是在接一元一次方程的基础上,讲述一元一次方程的应用,让学生通过审题,根据应用题的实际意义,找出相等关系,列出有关一元一次方程,是本节的重点和难点,同时也是本章节的重难点。
本课讲述一元一次方程的应用题,为学生初中阶段学好必备的代数,几何的基础知识与基本技能,解决实际问题起到启蒙作用,以及对其他学科的学习的应用。
在提高学生的能力,培养他们对数学的兴趣以及对他们进行思想教育方面有独特的意义,同时,对后续教学内容起到奠基作用。
二、学情分析七年级学生刚刚跨入少年期,理性思维的发展还很有限,他们在身体发育、知识经验、心理品质方面,依然保留着小学生的天真活泼、对新生事物很感兴趣、求知欲望强、具有强烈的好奇心与求知欲,形象直观思维已比较成熟,但抽象思维能力还比较薄弱。
于是我根据学生和中小学教材衔接的特点设计了这节课。
1:学生初学列方程解应用题时,往往弄不清解题步骤,不设未知数就直接进行列方程或在设未知数时,有单位却忘记写单位等。
2:学生在列方程解应用题时,可能存在三个方面的困难:(1)抓不准相等关系;(2)找出相等关系后不会列方程;(3)习惯于用小学算术解法,得用代数方法分析应用题不适应,不知道要抓怎样的相等关系。
3:学生在列方程解应用题时可能还会存在分析问题时思路不同,列出方程也可能不同,这样一来部分学生可能认为存在错误,实际不是,作为教师应鼓励学生开拓思路,只要思路正确,所列方程合理,都是正确的,让学生选择合理的思路,使得方程尽可能简单明了。
三、教学目标:知识目标:1.会将配套关系转化为等量关系2.会根据实际问题中的数量关系列方程解决实际问题能力目标:培养学生的数学建模能力,分析问题,解决问题的能力情感目标:结合实际问题,创造活跃有趣的情景,提高学生的学习兴趣,培养学生的探索精神,树立学习的信心。
四、教学重难点:教学重点:找到配套问题和工程问题中的相等关系,建立数学模型,正确列出一元一次方程进行求解。
【教案】实际问题与 一元一次方程(第3课时)
第三章一元一次方程3.4 实际问题与一元一次方程第3课时一、教学目标【知识与技能】学会解决信息图表问题的方法.【过程与方法】经历探索球赛积分中数量关系的过程,进一步体会方程是解决实际问题的数学模型,明确用方程解决实际问题时,还要检验方程的解是否符合问题的实际意义.【情感态度与价值观】1.让学生进一步感受数学的应用价值;2.感受与同伴交流的乐趣.二、课型新授课三、课时第3课时,共4课时。
四、教学重难点【教学重点】经历探索球赛积分中数量关系的过程,进一步体会方程是解决实际问题的数学模型.【教学难点】学会解决信息图表问题的方法五、课前准备教师:课件、三角尺、比赛积分表等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课你喜欢看篮球比赛吗?你对篮球比赛中的积分规则有了解吗?(出示课件2)(二)探索新知1.师生互动,探究比赛积分问题某次男篮联赛常规赛最终积分榜:(出示课件4)教师问1:从这张表格中,你能得到什么信息?(出示课件5)学生回答:(1)每队的胜场数+负场数=这个队比赛场次;(2)每队胜场总积分+负场总积分=这个队的总积分;(3)每队胜场总积分=胜1场得分×胜场数……教师问2:你能从表格中看出负一场积多少分吗?(出示课件6)学生回答:由钢铁队得分可知负一场积1分.教师问3:你能进一步算出胜一场积多少分吗?师生共同讨论后解答如下:(出示课件7)分析:设胜一场积x 分,根据表中其他任何一行可以列方程求解,这里以第一行为例.解:设胜一场积x 分,依题意,得10x+1×4=24.解得x=2.经检验,x=2符合题意.所以,胜一场积2分.教师问4:怎样用式子表示总积分与胜、负场数之间的关系?(出示课件8)师生共同解答如下:解:若一个队胜m场,则负(14-m) 场,胜场积分为2m,负场积分为14-m,总积分为:2m + (14-m) = m +14.即胜m场的总积分为(m +14) 分.教师问5:某队胜场总积分能等于它负场总积分吗?(出示课件9)师生共同解答如下:解:设一个队胜x 场,则负(14-x) 场,依题意得2x=14-x.解得x=143教师问6:x 表示什么量?它可以是分数吗?不符合实际.学生回答:x 表示所胜的场数,必须是整数,所以x=143由此可以判定没有哪个队的胜场总积分等于负场总积分.总结点拨:解决实际问题时,要考虑得到的结果是不是符合实际.例1:某次篮球联赛共有十支队伍参赛,部分积分表如下:(出示课件10)根据表格提供的信息,你能求出胜一场、负一场各积多少分吗?师生共同解答如下:(出示课件11)分析:关键信息是由C队的积分得出等量关系:胜场积分+负场积分=3.解:由C队的得分可知,胜场积分+负场积分=27÷9=3分.设胜一场积x分,则负一场积(3-x)分.根据A队得分,可列方程为14x+4(3-x)=32,解得x=2,则3-x=1.答:胜一场积2分,则负一场积1分.教师问7:某队的胜场总积分能等于它的负场总积分吗?学生讨论后回答:能. 胜6场、负12场时,胜场总积分等于它的负场总积分.(三)课堂练习(出示课件15-19)1. 篮球比赛规定:胜一场得3分,负一场得1分,某篮球队共进行了6场比赛,得了12分,该队获胜的场数是()A.2 B.3 C.4 D.52. 某球队参加比赛,开局9 场保持不败,积21 分,比赛规则:胜一场得3 分,平一场得1分,则该队共()A. 4场B. 5场C. 6场D. 7场3. 中国男篮CBA职业联赛的积分办法是:胜一场积 2 分,负一场积1 分,某支球队参加了12 场比赛,总积分恰是所胜场数的4 倍,则该球队共胜____ 场.4. 某次知识竞赛共20道题,每答对一题得8分,答错或不答要扣3分. 某选手在这次竞赛中共得116 分,那么他答对几道题?5. 把探究新知中积分榜的最后一行删去(如下表),如何求出胜一场积几分,负一场积几分.参考答案:1.B 解析:设该队获胜x场,则负了(6﹣x)场,根据题意得:3x+(6﹣x)=12,解得:x=3.答:该队获胜3场.2.C3.44. 解:设答对了x 道题,则有(20-x) 道题答错或不答,由题意得:8x-(20-x)×3=116.解得x=16.答:他答对16道题.5. 解:从雄鹰队或远大队的积分可以看出胜一场与负一场共得21÷7 = 3 (分),设每队胜一场积x 分,则负一场积(3-x) 分,根据前进队的信息可列方程为:10x + 4(3-x) = 24.解得x = 2.所以3-x =1.答:胜一场积2 分,负一场积1 分.(四)课堂小结今天我们学了哪些内容:1.解决有关图表信息问题,要充分利用图表中的数据信息;2.利用方程解决实际问题时,不仅可以求解,还要看解是否符合实际意义,由此,可以利用方程对一些问题进行推理判断。
人教版七年级数学上册3.4.1《实际问题与一元一次方程(第1课时)》教案
人教版七年级数学上册3.4.1《实际问题与一元一次方程(第1课时)》教案一. 教材分析《实际问题与一元一次方程(第1课时)》是人教版七年级数学上册第三章第四节的一部分。
这部分内容是在学生学习了代数式、方程等知识的基础上进行学习的。
本节课主要让学生学会如何将实际问题转化为一元一次方程,并利用方程求解。
通过本节课的学习,培养学生解决实际问题的能力,提高学生的数学素养。
二. 学情分析七年级的学生已经具备了一定的代数基础,对方程的概念和性质有一定的了解。
但学生在解决实际问题时,往往不知道如何将实际问题转化为方程。
因此,在教学过程中,教师需要引导学生将实际问题与方程建立联系,培养学生解决实际问题的能力。
三. 教学目标1.让学生掌握将实际问题转化为一元一次方程的方法。
2.培养学生运用方程解决实际问题的能力。
3.提高学生的数学素养,培养学生的逻辑思维能力。
四. 教学重难点1.教学重点:如何将实际问题转化为一元一次方程。
2.教学难点:如何指导学生运用方程解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。
通过实际问题的引入,引导学生自主探索,合作交流,培养学生解决实际问题的能力。
六. 教学准备1.教师准备相关的实际问题案例。
2.准备课件,展示解题过程。
3.准备黑板,用于板书解题步骤。
七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题引入新课,如“小明买了3本书和2支笔,共花了27元,请问一本书的价格和一支笔的价格分别是多少?”让学生尝试将这个问题转化为方程。
2.呈现(10分钟)教师呈现更多的实际问题案例,引导学生发现实际问题与方程之间的联系。
例如,通过“速度、时间和路程”的关系,引导学生列出相应的方程。
3.操练(10分钟)教师学生进行小组合作,让学生尝试解决呈现的实际问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)教师选取几个典型的问题,让学生上黑板板书解题过程,并讲解解题思路。
2.4再探一元一次方程(1)
当代数学家苏步青教授曾在法国遇到一个很有名 气的数学家,这位数学家在电车里给苏教授出了几 个题目:
问题1: “甲、乙两人,同时出发,相对而行, 距离是50km,甲每小时走3km,乙每小时 走2km,问他俩几小时可以碰到?”
甲
50km
乙
分析:甲乙相遇时,他们共走的路程为多少千米? 本题有哪些相等关系呢? 从路程角度分析:甲行走的路程+乙行走的路程 =—. 从时间角度分析:甲行走的时间=乙行走的时间.
50km
问题1: “甲、乙两人,同时出发,相对而行, 距离是50km,甲每小时走3km,乙每小时走 2km,问他俩几小时可以碰到?” 问题2:“接着这位数学家又说:一只小狗每小 时走5km,它同甲一起出发,碰到乙时它又往 甲这边走,碰到甲它又往乙这边走,问小狗在 甲、乙相遇时一共走了多少千米?”
问题1: “甲、乙两人,同时出发,相对而行,距离是50km, 甲每小时走3km,乙每小时走2km,问他俩几小时可以碰到?”
公元前400多年古希腊的数学家提出这样一 个观点: 跑得最快的阿基里斯永远追不到爬得最慢的 乌龟,因为阿到达乌龟的出发点A,而此时乌 龟又进到A1点,当阿再进到A1点时,乌龟又进 到A2点,如此继续下去,阿永远追不上它,显然 这是一个错误的结论,故称为悖论.应该怎样 反驳这个结论呢?
假如你是苏步青的学生,你也出一 个题来考考他,看哪些同学提出的 问题有深度?
你来试一试
课后作业: 必做题:教课书98页习题2.4第6、8题 选做题: 试对以下情境提出问题,并讨论解答(必要 时可对情境作适当补充) 某班级组织去风景区春游,大部分同学先坐公共汽车 前往,平均速度为24千米/时;4名负责后勤的同学晚半 小时坐校车出发,速度为60千米/时,结果同时到达山 脚下,到达后发现乘缆车上山费用较大,且不能游览沿 途风景。于是商定:大部队步行上山,4名后勤该为先 遣队,乘缆车上山,做好在山顶举行活动的准备,缆车 的速度是步行的3倍,步行同学中途在一个景点逗留10 分钟,到达山顶时比先遣队晚半小时。
一次函数及一元一次方程教案
一次函数及一元一次方程教案第一章:一次函数的概念与性质1.1 引入:通过实际生活中的问题,让学生感受函数的存在,引导学生理解函数的概念。
1.2 一次函数的定义:函数是一种对应关系,一次函数是形如y=kx+b(k、b 为常数,k≠0,x为自变量)的函数。
1.3 一次函数的性质:讨论一次函数的图像,包括斜率k和截距b对图像的影响。
1.4 一次函数的图像:通过绘制函数图像,让学生理解一次函数的增减性和转折点。
第二章:一元一次方程的定义与解法2.1 引入:通过实际问题,引导学生理解方程的概念,让学生感受方程的解决过程。
2.2 一元一次方程的定义:形如ax+b=0(a、b为常数,a≠0,x为未知数)的方程称为一元一次方程。
2.3 一元一次方程的解法:通过讨论解法,让学生掌握解一元一次方程的技巧。
2.4 应用:通过实际问题,让学生运用一元一次方程解决问题。
第三章:一次函数与一元一次方程的关系3.1 引入:通过实际问题,引导学生理解一次函数与一元一次方程之间的关系。
3.2 一次函数与一元一次方程的转化:讨论如何将一元一次方程转化为一次函数,以及如何将一次函数转化为一元一次方程。
3.3 应用:通过实际问题,让学生运用一次函数与一元一次方程的关系解决问题。
第四章:一次函数的应用4.1 引入:通过实际问题,引导学生理解一次函数在实际生活中的应用。
4.2 实际问题:让学生解决一些实际问题,如计算成本、收益等。
4.3 数据拟合:让学生通过给定的数据,拟合出一次函数,并解释其含义。
第五章:一元一次方程的应用5.1 引入:通过实际问题,引导学生理解一元一次方程在实际生活中的应用。
5.2 实际问题:让学生解决一些实际问题,如计算距离、面积等。
5.3 优化问题:让学生通过一元一次方程,解决一些优化问题,如最短路线等。
第六章:一次函数的图像与解析式6.1 引入:通过实际问题,引导学生理解一次函数图像与解析式之间的关系。
6.2 一次函数图像的绘制:让学生掌握如何绘制一次函数的图像,包括直线、斜率和截距的概念。
实际问题与一元一次方程——工程问题教案
实际问题与一元一次方程——工程问题教案【教学目标】:(一)知识与技能:1、并使学生进一步掌控列于一元一次方程求解应用题的方法和步骤;2、熟练掌握追及问题中的等量关系。
(二)过程与方法培养学生观察能力,提高他们分析问题和解决实际问题的能力。
(三)情感态度价值观:培养学生勤于思考、乐于探究、敢于发表自己观点的学习习惯,从实际问题中体验数学的价值。
体会观察、分析、归纳对数学知识中获取数学信息的重要作用,进一步掌握列一元一次方程解应用题的方法和步骤,能在独立思考和小组交流中获益。
【教学重难点】:1、重点:找等量关系列一元一次方程,解决追及问题。
2、难点:将实际问题转变为数学模型,并找到等量关系。
【教学方法】:探究式【教学过程】:一、创设问题情景,导入新课:1、行程问题中有哪些基本量?它们间有什么关系?2、行程问题存有哪些基本类型?二、知识应用,拓展创新:行程问题应用题就是中小学数学应用题中很关键的一类,学生难以认知,不难掌控。
行程问题的题型千变万化,引致许多学生深感束手无策,难以奈何。
其实深入细致分析,就可以辨认出行程问题应用题主要存有三种基本类型:赴援问题、碰面问题和航行问题,而且三个基本量之间的基本关系“路程=速度×时间”维持维持不变。
三、例题讲解基准1(同时相同地)甲乙两人距离米,甲在前每秒走3米,乙在后每秒走5米。
两人同时启程,同向而行,几秒后乙能甩开甲?分析:在这个直线型追及问题中,两人速度不同,跑的路程也不同,后面的人要追上前面的人,就要比前面的人多跑米,而两人跑步所用的时间是相同的。
所以有等量关系:乙走的路程—甲走的路程=求解:设x秒后乙能甩开甲根据题意得5x—3x=Champsaurx=50答:50秒后乙能追上甲。
小结:针对本题展开小结、概括,它属行程问题应用题(赴援问题)中的同时相同地问题,以后碰到此类题,该如何化解。
例2(同地不同时)两匹马赛跑,黄色马的速度是5m/s,棕色马的速度是6m/s。
实际问题与一元一次方程1(教案)
课题 3.4实际问题与一元一次方程(1)学习目标:学生在前面的知识中,已经能够基本掌握一元一次方程的解题过程,如何把这些解题过程展现在实际应用中,那就是本节课需要探导的问题——实际问题与一元一次方程。
有些应用题,学生是可以用小学的思想来解题出来,但上到初中之后,为了能让学生适应初中的学习思想,以及初中的答题规范,所以在遇到实际问题中有数量关系时,我们需要让学生有意识的用列方程来解决问题。
本节课的重点是:需要培养学生的建模能力,能够列方程解实际问题。
而难点将是,如何寻找实际问题中的等量关系。
【教学过程】一、知识链接1.解方程: 51131+=--x x ;(通过这个题目,复习巩固解方程的步骤和论据) 2.(回忆小学知识,为后面的学生做准备。
)一项工作甲独做5天完成,乙独做10天完成,那么甲每天的工作效率是 ,乙每天的工作效率是 ,两人合作3天完成的工作量是 ,此时剩余的工作量是 。
二、自主学习例1:某车间有22名工人,每人每天可以生产1200个螺钉或2000个螺母,1个螺钉配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少个?分析:每天生产的螺母数量是螺钉数量的2倍,它们刚好配套1. 知识准备关系:工作量= ×2. 设生产螺钉工人 人,生产螺母的工人 人。
3,分析出:分配的人员在实际中各生产中,一共有多少的数量4. 这些数量有什么样的相等关系:列方程 : (课后再解)(师生共同完成)例2 :整理一批图书,由一个人做要40h 完成。
现在计划由一部分人先做4小时,再增加2人和他们一起做8h ,完成这项工作.假设这些人的工作效率相同,具体应安排多少人工作?分析:(1)人均效率(一个人做1小时完成的工作量)为 。
(2)有x 人先做4小时,完成的工作量为 。
再增加2人和前一部分人一起做8小时,完成的工作量为 。
(3)这项工作分两段完成,两段完成的工作量之和为 。
(4) 师生共同完成解题过程。
实际问题与一元一次方程教案
实际问题与一元一次方程教案教案标题:实际问题与一元一次方程一、教学目标:1. 理解实际问题与一元一次方程的关系;2. 能够根据实际问题建立一元一次方程;3. 能够解决实际问题中的一元一次方程;4. 培养学生的逻辑思维和数学建模能力。
二、教学重点和难点:1. 理解实际问题与一元一次方程的对应关系;2. 能够正确建立实际问题对应的一元一次方程;3. 能够灵活运用代数方法解决实际问题。
三、教学内容:1. 实际问题与一元一次方程的关系介绍;2. 实际问题的具体案例分析;3. 一元一次方程的基本概念和解法;4. 实际问题与一元一次方程的对应关系实例练习。
四、教学过程:1. 导入:通过一个生活中的实际问题引入一元一次方程的概念,激发学生的学习兴趣;2. 概念讲解:介绍实际问题与一元一次方程的关系,引导学生理解实际问题中的未知数和等式的建立;3. 实例分析:通过具体的实际问题案例,引导学生分析并建立对应的一元一次方程;4. 解题方法:介绍一元一次方程的解法,包括等式变形、消元法等;5. 练习与拓展:让学生进行实际问题与一元一次方程的对应练习,并拓展到更复杂的实际问题中。
五、教学手段:1. 多媒体课件:呈现实际问题案例和解题方法;2. 教学实例:通过生活中的实际问题案例引导学生理解和建立一元一次方程;3. 小组讨论:让学生分组进行实际问题与一元一次方程的对应练习,促进学生合作学习;4. 个案辅导:针对学生的不同水平和问题,进行个别辅导和指导。
六、教学评价:1. 课堂练习:通过课堂练习检验学生对实际问题与一元一次方程的理解和掌握程度;2. 作业布置:布置实际问题与一元一次方程的相关作业,巩固学生的学习成果;3. 课后辅导:针对学生的作业情况进行个别辅导和指导,及时发现和解决问题。
七、教学反思:教学结束后,对学生的学习情况进行总结和反思,及时调整教学方法和内容,不断提高教学质量和效果。
求解一元一次方程数学教案(优秀6篇)
求解一元一次方程数学教案(优秀6篇)解一元一次方程的教案篇一知识技能会通过“移项”变形求解“ax+b=cx+d”类型的一元一次方程。
数学思考1.经历探索具体问题中的数量关系过程,体会一元一次方程是刻画实际问题的有效数学模型。
进一步发展符号意识。
2.通过一元一次方程的学习,体会方程模型思想和化归思想。
解决问题能在具体情境中从数学角度和方法解决问题,发展应用意识。
经历从不同角度寻求分析问题和解决问题的方法的过程,体验解决问题方法的多样性。
情感态度经历观察、实验计算、交流等活动,激发求知欲,体验探究发现的快乐。
教学重点建立方程解决实际问题,会通过移项解“ax+b=cx+d”类型的一元一次方程。
教学难点分析实际问题中的相等关系,列出方程。
教学过程活动一知识回顾解下列方程:1. 3x+1=42. x-2=33. 2x+0.5x=-104. 3x-7x=2提问:解这些方程时,方程的解一般化成什么形式?这些题你采用了那些变形或运算?教师:前面我们学习了简单的一元一次方程的解法,下面请大家解下列方程。
出示问题(幻灯片)。
学生:独立完成,板演2、4题,板演同学讲解所用到的变形或运算,共同讲评。
教师提问:(略)教师追问:变形的依据是什么?学生独立思考、回答交流。
本次活动中教师关注:(1)学生能否准确理解运用等式性质和合并同列项求解方程。
(2)学生对解一元一次方程的变形方向(化成x=a的形式)的理解。
通过这个环节,引导学生回顾利用等式性质和合并同类项对方程进行变形,再现等式两边同时加上(或减去)同一个数、两边同时乘以(除以,不为0)同一个数、合并同类项等运算,为继续学习做好铺垫。
活动二问题探究问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本.这个班有多少学生?教师:出示问题(投影片)提问:在这个问题中,你知道了什么?根据现有经验你打算怎么做?(学生尝试提问)学生:读题,审题,独立思考,讨论交流。
实际问题与一元一次方程(销售问题)教学设计
实际问题与一元一次方程(销售问题)教学设计三门中学赖俊勤一、教学内容分析本节课是七年级数学再探实际问题与一元一次方程打折销售问题,学生已学习了利润、成本、售价之间数量关系及简单换算,所以本节课我们要重视方程建模的过程性学习,发展学生的个性。
通过本节内容的学习,不仅让学生理解打折销售中的数学关系,掌握列一元一次方程解决有关问题的基本技能,更要让学生体验数学在生活中的应用与价值,从而提高学生学习数学的兴趣。
二、学情分析在日常生活中,学生对打折销售现象有一定的生活经验,但对打折销售的实质未必真正清楚。
从这种现象的实质上把握其中的数量关系,对学生来说具有一定的挑战性。
同时,本节内容是生活中的常见现象,学生具备可以利用的现有知识和生活经验。
在教师的适当点拨、引导下,学生完全有能力独立探究出打折销售中的数量关系,列一元一次方程,解决有关问题。
三、教学目标1.理解利润、成本、售价、标价、利润率的含义及它们之间的数量关系。
2.进一步经历运用方程解决实际问题的过程,总结用方程解决实际问题的一般步骤。
3.培养学生观察、分析、归纳的能力,会从问题情境中探索等量关系。
4.体验数学在现实生活中的应用价值,感受数学来源于生活、服务于生活,进一步激发学数学、用数学的兴趣和信心。
四.教学重难点1重点:列出一元一次方程解决销售问题。
2难点:探索实际问题中的等量关系。
五、教学过程设计(一)创设问题情景,激发学生兴趣,导入新课:利用大屏幕播放商场里打折销售的图片,结合前段时间我们刚放完元旦假期,从而引出课题。
设计说明:通过录像渲染和生动的语言描绘,创设情景,使学生产生强烈的好奇心,很快融入到课堂中,极大的激发了学生学习热情和积极性.(二)热身训练1.课前热身:(1)商品标价200元,九折出售,售价是元.(2)商品进价是40元,售价是50元,则利润是元,利润率为.( 3 ) 某种品牌的彩电进价3000元,卖出一台彩电的利润率20%,则该品牌彩电的售价应为()元.(4)某商品的进价为60元,提高10%后销售,售价是元.( 5 )一件衣服降价10% 后售价为126元,这件衣服原来的售价是元.设计说明:这组习题的设计意在使学生将几个量之间的关系应用于实际,也为后面习题扫清障碍。
初中七年级上册数学解一元一次方程教案优质(优秀5篇)
初中七年级上册数学解一元一次方程教案优质(优秀5篇)元一次方程篇一教学目标1.使学生正确认识含有字母系数的一元一次方程。
2.使学生掌握含有字母系数的一元一次方程的解法。
3.使学生会进行简单的公式变形。
4.培养学生由特殊到一般、由一般到特殊的逻辑思维能力。
5.通过公式变形例题,培养学生解决实际问题的能力,激发学生的求知欲望和学习兴趣。
教学重点:(1)含有字母系数的一元一次方程的解法。
(2)公式变形。
教学难点:(1)对字母函数的理解,并能准确区分字母系数与数字系数的区别与联系。
(2)在公式中会准确区分未知数与字母系数,并进行正确的公式变形。
教学方法启发式教学和讨论式教学相结合教学手段多媒体教学过程(一)复习提问提出问题:1.什么是一元一次方程?在学生答的基础上强调:(1)“一元”——一个未知数;“一次”——未知数的次数是1.2.解一元一次方程的步骤是什么?答:(1)去分母、去括号。
(2)移项——未知项移到等号一边常数项移到等号另一边。
注意:移项要变号。
(3)合并同类项——提未知数。
(4)未知项系数化为1——方程两边同除以未知项系数,从而解得方程。
(二)引入新课提出问题:一个数的a倍(a≠0)等于b,求这个数。
引导学生列出方程:ax=b(a≠0).让学生讨论:(1)这个方程中的未知数是什么?已知数是什么?(a、b是已知数,x是未知数)(2)这个方程是不是一元一次方程?它与我们以前所见过的一元一次方程有什么区别与联系?(这个方程满足一元一次方程的定义,所以它是一元一次方程。
)强调指出:ax=b(a≠0)这个一元一次方程与我们以前所见过的一元一次方程最大的区别在于已知数是a、b(字母).a是x的系数,b是常数项。
(三)新课1.含有字母系数的一元一次方程的定义ax=b(a≠0)中对于未知数x来说a是x的系数,叫做字母系数,字母b是常数项,这个方程就是一个含有字母系数的一元一次方程,今天我们就主要研究这样的方程。
七年级《实际问题与一元一次方程》教案
七年级《实际问题与一元一次方程》教案一、教学目标【知识与技能】能利用方程解决实际问题。
【过程与方法】通过分类讨论将电话计费问题转化为方程问题、解决方程问题、利用方程问题的结论解释各个分类区间的花费变化情况。
【情感态度与价值观】体验方程模型解决问题的一般过程,体会分类思想和方程思想,增强应用意识和应用能力。
二、教学重难点【重点】建立电话计费问题的方程模型。
【难点】建立电话计费问题的方程模型。
三、教学过程.导入新课前面我们已经对一元一次方程解决实际问题进行了初步的探究,接下来我们继续研究一元一次方程在实际生活中的应用。
2.对问题的初步认识问题1:下面表格给出的是两种移动电话的计费方式:黑龙江教师招聘考试教学设计:《实际问题与一元一次方程》你了解表格中这些数字的含义吗?师生活动:教师提问,学生思考,回答。
教师对回答的方式适当给予提示,如“月使用费的比较”“超时费的比较”等,然后教师列举出一两个具体的主叫时间,让学生通过计算回答相应的费用。
问题2:你觉得哪种计费方式更省钱呢?师生活动:教师提出问题,学生思考回答。
根据学生的回答情况,教师适当加以引导:若学生回答计费方式以一或计费方式二省钱,可发动其他学生通过举例等方式加以质疑;若学生的回答中出现分类讨论的趋势,则教师加以肯定并进一步引导学生对分类的关键点、分类后各区间的变化趋势作进一步的探究。
讨论后安排学生再次思考,可适当讨论。
3.对问题的深入探究问题3:通过大家的讨论,你对电话计费问题有什么新的认识?师生活动:教师提出问题,学生思考回答。
根据学生的回答教师适当加以归纳引导:若学生还没有明确的分类,则引导学生思考“你可以确定哪一个时间区间内两种计费的比较结果?”,从而引导学生进行分类;若学生已经对问题进行了分类,则追问“你为什么这样分类?”以及“在每一个时间区间内你是怎么分析的?”从而引导学生更合理地解决问题。
问题4:设一个月内用移动电话主叫为tmin。
七级数学上册实际问题与一元一次方程教案人教新课标版
§3.4 实责问题与一元一次方程(1)一、说教材(一)说教材地位本节课是七年级上册第三章一元一次方程第四小节第一课时,行程问题中的相遇问题。
是前面所学的一元一次方程解法的运用,也将为今后学习用一元一次方程解决实责问题起到抛砖引玉的作用。
(二)说教课方案目标新课程的基本理念要求,学生的数学学习内容应该是现实的、有意义的、富饶挑战性的,这些内容要有利于学生主动地进行观察、实验、猜想、考据、推理与交流等数学活动。
数学教课方案活动必定建立在学生的认知发展水平和已有的知识经验基础之上。
所以,我将知识目标定为:利用行程、时间、速度三者之间的关系,借助画表示图列一元一次方程解以现实为背景的应用题。
能力目标定为:经历“问题情境——建立模型——求解——讲解与应用”的基本过程。
感情目标定为:经过获得成功的体验和战胜困难的经历,增进应用数学的自信心。
(三)说教课方案重难点数学教课方案活动必定建立在学生的认知发展水平和已有的知识经验基础之上。
所以我将重点定为:经过解析题意,搜寻等量关系,列方程。
难点定为:从不同样的角度来找等量关系,列方程。
二、说学生解析在前面的学习中,学生已经掌握了一元一次方程的解法,并初步的掌握了运用一元一次方程来解决一些简单的实责问题,体验到了用一元一次方程来解决问题的简洁性。
本节开始,学生将接触与学习掌握更复杂一点的实责问题,这些问题用算术方法来解决经常很难,而用方程来解决却很简略,进而培养学习用方程来解决实责问题的意识和应用技巧,使学生真切体验到学而适用。
三、说教课方案手段为了使学生愿意并有更多的精力投入到现实的、研究性的数学活动中去,我采用了多媒体辅助教课方案的手段。
四、说教法学法指导本节采用启示引导法,配以大屏幕辅助教课方案,声情并茂向学生显现问题情境。
学生以独自思虑为主,小组交流为辅,老师及时谈论的方式进行本节的教课方案。
五、教课方案过程(一)创立情境,提出问题今世数学家苏步青教授曾在法国遇到一个很有名气的数学家,这位数学家在电车里给苏教授出了几个题目:问题 1:“甲、乙两人,同时出发,相对而行,距离是 50km,甲每小时走 3 km ,乙每小时走 2km,问他俩几小时可以遇到?”苏教授一下子便回答出来了,你能回答出上述问题吗?设计妄图:经过问题引入,激发学生的学习积极性。
24再探实际问题与一元一次方程(教案)共6页
2.4再探究实际问题与一元一次方程(第2课时)南昌市育新学校尹智康教学内容:探究2 用哪种灯省钱教学目标:(一)知识技能:1.探索实际问题中的数量关系,能根据等量关系列出方程;2.会利用特殊值法比较两个数量的大小,能根据数量大小判断结论的合理性.(二)数学思考:能结合实际问题情境发现并提出数学问题.(三)解决问题:增强从实际问题出发建立数学模型的能力.(四)情感态度:1.勤于思考,乐于探究,敢于发表自己的观点;2.以积极的态度与同伴合作,从解决实际问题中体验数学价值.教学重点:会用一元一次方程解决实际问题.教学难点:将实际问题转化为数学问题,通过列方程解决问题.教学过程:一、引言同学们,你们好!今天由我带你们去游一次泳,这么冷的天气到哪去游泳?当然是去知识的海洋畅游一翻。
想不想和我一起去?好。
那我们做好准备就出发了。
在出发之前首先我来自我介绍一下,我叫尹智康,你们叫什么?那我们就算认识了,也就从这一刻开始是好朋友了。
对吗?OK!Let’go!哦!这不还有一位小伙伴想和我们一起同学,你们来看看他是谁?(出示电脑画面)哦,大家都认识小新呀,愿不愿意带上他?好,我们就叫上小新一起吧!诶,好象小新遇上了一点麻烦,现在还不能走,我们先来帮帮他解决掉这个难题在一起走吧!二、创设情境,展示问题多媒体展示问题:原来小新的爷爷奶奶卧室的灯坏了,二老去沃尔玛转悠了半天,一人看中了一种灯,竟争执起来了,爷爷说60元的节能灯好,奶奶说3元的白炽灯实惠,始终没没能把这件事情给决定下来。
小新也不知道应该给什么意见好。
我们先来了解两种灯的情况再来下判断吧:其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;另一种是60瓦(即0.06千瓦)的白炽灯,售价3元.两种灯的照明效果一样,使用寿命也相同(3000小时以上).同学们先分小组讨论一下然后发表发表你们的观点吧。
学生发表各种观点。
有的说买节能灯好-环保,有的说买白炽灯好-便宜,有的说要看用多久。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4再探究实际问题与一元一次方程
(第2课时)
南昌市育新学校尹智康教学内容:探究2 用哪种灯省钱
教学目标:
(一)知识技能:
1.探索实际问题中的数量关系,能根据等量关系列出方程;
2.会利用特殊值法比较两个数量的大小,能根据数量大小判断结论的合理性.
(二)数学思考:能结合实际问题情境发现并提出数学问题.
(三)解决问题:增强从实际问题出发建立数学模型的能力.
(四)情感态度:
1.勤于思考,乐于探究,敢于发表自己的观点;
2.以积极的态度与同伴合作,从解决实际问题中体验数学价值.
教学重点:会用一元一次方程解决实际问题.
教学难点:将实际问题转化为数学问题,通过列方程解决问题.
教学过程:
一、引言
同学们,你们好!今天由我带你们去游一次泳,这么冷的天气到哪去游泳?当然是去知识的海洋畅游一翻。
想不想和我一起去?好。
那我们做好准备就出发了。
在出发之前首先我来自我介绍一下,我叫尹智康,你们叫什么?那我们就算认识了,也就从这一刻开始是好朋友了。
对吗?OK!Let’go!
哦!这不还有一位小伙伴想和我们一起同学,你们来看看他是谁?(出示电脑画面)哦,大家都认识小新呀,愿不愿意带上他?好,我们就叫上小新一起吧!诶,好象小新遇上了一点麻烦,现在还不能走,我们先来帮帮他解决掉这个难题在一起走吧!
二、创设情境,展示问题
多媒体展示问题:
原来小新的爷爷奶奶卧室的灯坏了,二老去沃尔玛转悠了半天,一人看中了一种灯,竟争执起来了,爷爷说60元的节能灯好,奶奶说3元的白炽灯实惠,始终没没能把这件事情给决定下来。
小新也不知道应该给什么意见好。
我们先来了解两种灯的情况再来下判断吧:
其中一种是11瓦(即0.011千瓦)的节能灯,售价60元;
另一种是60瓦(即0.06千瓦)的白炽灯,售价3元.
两种灯的照明效果一样,使用寿命也相同(3000小时以上).
同学们先分小组讨论一下然后发表发表你们的观点吧。
学生发表各种观点。
有的说买节能灯好-环保,有的说买白炽灯好-便宜,有的说要看用多久。
师总结:同学们都很有想法很有主见,这是很值得骄傲的一件事情。
那么今天我们一起来尝试一下用我们的数学只是解决一下这个问题,你们有没有信心?
将身边的问题数学化或将数学问题生活化,可培养学生对数学的亲切感,让学生感受有价值的数学,从而启动学生学生参与数学的研究过程。
三、师生互动,探索研究
1.分解难点,降低坡度
(1)灯的费用由哪几部分组成?如何计算?
教师引导学生将问题分解成若干个小问题。
费用=灯的售价+电费
电费=0.5×灯的功率(千瓦)×照明时间(小时)
(2)两种灯的费用分别是多少?
这是一个具体的问题,教师要帮助学生理解:
设照明时间是t小时,则
节能灯的费用=60+0.5×0.011t
白炽灯的费用=3+0.5×0.06t
借灯的费用的组成部分能够学生思维的深刻性、学习兴趣和利用数学知识解决实际问题的能力。
列出灯的费用的计算式,便于学生发现影响灯的费用的最直接因素,从而降低分析问题的坡度。
2.探索引路,尝试比较
(1)这时能否比较两种灯费用的大小?为什么?
表示两种灯费用的是两个式子,能否用两个式子比较灯的费用大小呢?
学生在独立思考的基础上,可以分小组讨论。
(2)有的同学想到了可以假设一个时间进行两种灯费用的比较。
非常好!那么现在
给大家一个实验报告,请大家按照这个思路分小组完成这张报告。
请各小组用投影仪展示并汇报实验结果。
§电费的产生是一个动态过程,不同的用电时间对应着不同的费用。
要知道电费的具体数量,必须有具体的用电时间,让学生体会算式的值取决于算式中字母的值。
3.寻求支点,解决问题
猜一猜:照明时间为多少时,两种灯的费用一样多?
教师启发:灯的费用相等时,表示费用的两个式子会有什么关系?在此基础上学生建立一个方程:
60+0.5×0.011t=3+0.5×0.06t
解这个方程,得
t≈2327
构建方程并求解后知道:当用电时间为2327小时,两种灯的费用相等。
议一议:照明时间小于2327小时,用哪种灯省钱?
学生分组讨论,说明的方法可能多种,但主流也许是在指定时间范围内取特殊的时间值进行计算后作出结论。
从费用相等过渡到费用不等,是一个从特殊到一般的演变过程,渗透着两个数学思想:不等式及函数思想。
探究的过程,师生角色定位准确,教学环境轻松、民主、和谐,问题的解决鼓励了学生用数学的意识。
4.问题引申,拓展训练
探究二如果灯的使用寿命是3000小时,而计划照明3500小时,则需要购买两个灯,为了省钱,你将怎么设计购灯方案?
学生分小组讨论,各小组派代表给出购买灯的合理方案,并说明理由.
学生给出几种不同的选灯方案:
(1)两个节能灯;
(2)两个白炽灯;
(3)一个白炽灯,一个节能灯.
让学生从不同角度思考问题,验证解决问题方案的合理性,体现优化意识,培养学生独立决断和群体决策的能力.
四、小结归纳,应用创新
1.小结.
通过本节课的学习,你有什么体会?
(1)度=千瓦数×小时数
(2)方案选择:①列出不同算式;②列出方程,找出参考值点;③计算字母取参考值点左右数值时,两个算式的值,作出决策。
(3)考虑问题不能过于片面,不能轻易的下结论,要学会一分为二的看问题。
2.课后调查:
你们家的灯具及使用是合理的吗?
统计自己家的白炽灯、节能灯、日光灯的售价和功率以及使用寿命,计算各种灯的各自总费用,向爸爸妈妈提供一个最佳的购灯方案.
注重教学思想方法的早期渗透,提高学生的归纳总结能力和语言表达能力。
通过课后调查,让学生亲身体验数学来源于生活,并能利用数学知识和方法解决实际问题.教育学生关注学习和生活中的每件事,以达到使学生热爱生活,主动运用数学服务社会。
五、布置作业,巩固提高
1.我市为鼓励节约用水,对自来水的收费标准作如下规定:每月每户用水不超过10吨部分按0.45元/吨收费,超过10吨而不超过20吨部分按0.8元/吨收费,超过20吨部分按0.5元/吨收费,某月甲户比乙户多交水费3.75元,已知乙户交水费3.15元。
问:(1)甲、乙两户该月各用水多少吨?(自来水按整吨收费)
(2)根据你家用水情况,设计最佳用水方案。
2. 随着电信事业的发展,各式各样的电信业务不断推出,请你通过市场调查,为你家设计出一种通讯方案.
(1)两地间打长途电话所付电费有如下规定:若通话在3分钟以内都付2.4元,超过3分钟以后,每分钟付1元.
(2)某移动通讯公司升级了两种通讯业务,“全球通”使用者先缴50元的月租费,然后每通话1分钟,再付话费0.4元,“快捷通”不缴月租费,每通话1分钟,付话费0.6元.
根据上述材料,(1)你认为一个月通话多少分钟,两种移动通讯费用相同?
(2)某人估计一个月通话300分钟,应选择哪种移动通讯或用长途电话合算些?
提供给学生一个开放的空间,放手让学生去探索、发挥,通过学生合作交流来设计最佳方案,培养学生用数学的意识和创新意识。
附件:数学实验报告
实验日期:年月日
教学流程安排。