三相异步电机的制动

合集下载

三相异步电动机的制动

三相异步电动机的制动

四. 如何才能使电动机的电磁转矩 与转子的转动方向相反呢?
回顾一下三相异步电动机的转动原理, 能否从中受到启发?
三相异步电动机转动原理
1.电生磁:三相对称绕组通
入三相对称电流,产生圆形旋 转磁场。
2.磁生电:旋转磁场切割
转子导体,产生感应电动势 和电流。
3.电磁力:转子载流导体在
磁场作用下受电磁力作用,形 成电磁转矩,驱动电动机旋转, 将电能转化为机械能。
• V2
W1

n1 •

•n
U1

U2
W2 V1
电动机运行状态
形成了旋转磁场在前,电动机转子 在后,磁场牵引转子运动的情形。
电磁转矩是驱动性质的。
电动机转子
旋转磁场
站在转子上看,旋转磁 场在转子后面。是不是就可 以产生制动转矩了?
电磁转矩是如何产生的?
改变了旋转磁场和电动机转子 之间的相对运动方向。
(2)能耗制动
磁场
电动机转子
如何才能使磁场静止不动呢?
定子绕组从交流电网上断开,同时 切换到直流电源上。
能量流向:
转子上的机械能消耗在转子回路的电阻 上。
特点:
制动准确、平稳,能量消耗少。需要附加直流 电源,设备成本较高。
(3)反接制动
旋转磁场
电动机转子
பைடு நூலகம்
如何才能使转子和磁场的 转速方向相反呢?
(1)回馈制动(又称为再生制动)
旋转磁场
电动机转子
如何才能使电动机转子的 转速超过磁场转速呢?
1. 电机拖动位能性负载下放时。 (起重机下放重物)
2. 电动机变极调速,由少极数变为多极数时。
能量流向:
转子上的机械能被转换为电能,传递到 定子侧,并最终回馈到电网。

三相异步电动机的制动

三相异步电动机的制动
发 电制 动 几 种
转 速 n, 时 电 动 机 处 于 电动 运 行 状 态 , 由于 莺 力作 用 , 重 . 这 但 在 物 的下 放 过 程 中 . 使 电 动机 的 转 速 n大 于 同 步 转 速 1. 时 会 1这 1
电动 机 处 于发 电运 行 状 态 . 子 相 对 于 旋 转 磁 场 切 割 磁 感 线 的 转

转 由于 这种 制 动 方 法 是 在 定 子绕 组 中通 入 直 流 电 以消 耗 转 子 惯 性 运 转 的动 能 来 进 行 制 动 的 . 以称 为 能 耗 制 动 。 能 耗 制 动 所
时 . 生 的 制 动 力矩 的大 小 与 通 人 定 子 绕 组 中的 直 流 电 流 的 大 产
当起 重 机 在 高处 开 始 下 放 重 物 时 . 电动 机 转 速 n小 于 同步
使 电 动 机 在 切 断 电源 停 转 的 过 程 中 . 生 一 个 和 电动 机 实 产 际旋 转 方 向相 反 的 电磁 力 矩 . 使 电 动机 迅 速 停 转 的方 法 叫 做 迫 电 气制 动 。电 气制 动 常 用 的 方 法 有 反 接 制 动 、 耗 制 动 和 再 生 能
力 , 是 失 败 的 。 外 , 果 在 教学 中运 用 一 般 的 传统 教 学 方 式 则 另 如
就 可 以 取 得 较 好 的教 学 效 果 . 学 生 学 到 知 识 . 没 有 必 要 制 让 就 作 多 媒 体 课 件 了 , 样 会 花 费大 量 的 时 间 和 精 力 。 因 此 . 师 那 教 不 要 一 味 赶 时 髦 . 课 堂 上 滥 用 多 媒 体 课 件 . 且 在 制 定 课 件 在 而 时 . 师应 该选 取 那 些 重 点 和 难 点 的 内容 进 行 编 排 如数 学 概 教 念 、 义 等 知 识 比较 抽 象 。 用 计 算 机 的 动 画 来 演 示 , 仅 能 定 若 不 把 高 度 抽 象 的 知 识 直 观 显 示 出来 .而 且 能 给 学 生 以 新 颖 的刺

三相异步电动机的三种制动方式

三相异步电动机的三种制动方式

三相异步电动机的三种制动方式最经济:回馈制动最迅速:反接制动能制停:能耗制动时间:2010-04-27 16:47来源:作者:点击:次三相异步电动机与直流电动机一样,也有再生回馈制动、反接制动和能耗制动三种方式。

它们的共同点是电动机的转矩M与转速n的方向相反,以实现制动。

此时电动机由轴上吸收机械能,并转换成电能。

一、再生回馈制动再生回馈制动是在外加转矩的作用下,转子转速超过同步转速,电磁转矩改变方向成为制动转矩的运行状态。

再生回馈制动与反接制动和能耗制动不同,再生回馈制动不能制动到停止状态。

以下是再生回馈制动存在:(1)当电网的频率突然下降或者电机的极数突然增高,电机可能工作在发电状态,此时的电机将机械能转变成电能回馈给电网。

如图1,当电机在电动状态下运行时工作于P点,在突然变极或者变频时,电机的工作特性会突然在a线1段部分(蓝线部分),电机的转矩突然变负,其制动作用,直到最后重新稳定工作于P点为止,电机又回到电动状态。

2图1(2)当电机在位能负载(如吊车、提升机)的作用下,使其转速n高于同步转速n,此时,电机的输出转矩变负,电机由轴上吸收机械能,当电机的转矩(制0点),此动转矩)与负载的位能转矩相平衡时,电机既稳定运行(如图2中P3时电机以高于同步转速的速度运行。

在转子电路中串入不同的电阻,可得到不同的人为机械特性,并可得到不同的稳定速度,串入的电阻越大,稳定速度越高,一般在回馈制动时不串入电阻,以免转速过高。

图2二、反接制动反接制动是在电机定子三根电源线中的任意两根对调而使电机输出转矩反向产生制动,或者在转子电路上串接较大附加电阻使转速反向,而产生制动。

(1)电源两相反接的反接制动:点稳定运行,为使电机停转,将定子三根电源线中如图3所示,电机原在P1的任意两根对调,使旋转磁场反向,电机的转矩反向,起制动作用,电机运行在a线段。

当电机制动停止时,应及时将电机与电网分离,否则电机会反转。

电源两相反接反接制动的优点是制动效果强,缺点是能量损耗大,制动准确度差。

三相异步电动机的制动控制

三相异步电动机的制动控制

三相异步电动机的制动控制制动:就是给电动机一个与转动方向相反的转矩使它迅速停转(或限制其转速)。

制动的方法一般有两类:机械制动和电气制动。

机械制动:利用机械装置使电动机断开电源后迅速停转的方法叫机械制动。

机械制动常用的方法有:电磁抱闸和电磁离合器制动。

电气制动:电动机产生一个和转子转速方向相反的电磁转矩,使电动机的转速迅速下降。

三相交流异步电动机常用的电气制动方法有能耗制动、反接制动和回馈制动。

一、反接制动1.反接制动的方法异步电动机反接制动有两种,一种是在负载转矩作用下使电动机反转的倒拉反转反接制动,这种方法不能准确停车。

另一种是依靠改变三相异步电动机定子绕组中三相电源的相序产生制动力矩,迫使电动机迅速停转的方法。

反接制动的优点是:制动力强,制动迅速。

缺点是:制动准确性差,制动过程中冲击强烈,易损坏传动零件,制动能量消耗大,不宜经常制动。

因此反接制动一般适用于制动要求迅速、系统惯性较大,不经常启动与制动的场合。

2.速度继电器(文字符号KS)速度继电器是依靠速度大小使继电器动作与否的信号,配合接触器实现对电动机的反接制动,故速度继电器又称为反接制动继电器。

感应式速度继电器是靠电磁感应原理实现触头动作的。

从结构上看,与交流电机类似,速度继电器主要由定子、转子和触头三部分组成。

定子的结构与笼型异步电动机相似,是一个笼型空心圆环,有硅钢片冲压而成,并装有笼型绕组。

转子是一个圆柱形永久磁铁。

速度继电器的结构原理图速度继电器的符号速度继电器的轴与电动机的轴相连接。

转子固定在轴上,定子与轴同心。

当电动机转动时,速度继电器的转子随之转动,绕组切割磁场产生感应电动势和电流,此电流和永久磁铁的磁场作用产生转矩,使定子向轴的转动方向偏摆,通过定子柄拨动触头,使常闭触头断开、常开触头闭合。

当电动机转速下降到接近零时,转矩减小,定子柄在弹簧力的作用下恢复原位,触头也复原。

常用的感应式速度继电器有JY1和JFZ0系列。

JY1系列能在3000r/min的转速下可靠工作。

三相异步电动机能耗制动原理

三相异步电动机能耗制动原理

三相异步电动机能耗制动原理
三相异步电动机的能耗制动原理是通过将电动机的转子绕组接入电网,利用电网的能量来制动电动机。

具体原理如下:
1. 异步电动机在运行时,由于电动机的输出功率大于负载的需求功率,电动机会将多余的功率转化为机械能,从而实现驱动负载。

而在能耗制动下,电动机需要将多余的功率转化为电能,通过电网耗散掉。

2. 当电动机进行能耗制动时,将电动机的转子绕组与电网相连。

根据转子绕组的连接方式,能耗制动可分为串联能耗制动和并联能耗制动两种方式。

a. 串联能耗制动方式:将转子绕组串联到电网上,使得电动
机的转子与电网同频运行。

由于电动机的转速略低于同步速度,电机输出的是负功率,将功率传送到电网中。

b. 并联能耗制动方式:将转子绕组并联在电网上,使得电动
机的转子电流与电网电流相位相差180度。

这样电动机的转子失去了能源引起的转动力矩,使其自动停转,电能通过转子绕组流向电网。

3. 通过连续地将多余的能量传送到电网中,电动机的转动速度逐渐减小,直至停止转动。

这样就实现了对电动机的耗散制动。

值得注意的是,能耗制动产生的电能需要通过电网耗散掉,因此在实际应用中需要考虑电网的负载能力和电动机的安全性能。

三相异步电动机的反转与制动

三相异步电动机的反转与制动

2023年8月26日 星期六
§4-9 三相异步电动机的反转与制动
3、电路安装
接触器KM1线圈 电
电动机正转
按下按钮 SB1
4、频繁反转的缺点
接触器KM2线圈 得电
电动机反转
按下按钮 SB2
2023年8月26日 星期六
§4-9 三相异步电动机的反转与制动
异步电动机在反转瞬间,转子由于惯 性,还朝原方向转动,而定子旋转磁场 方向已经改变,转子绕组与旋转磁场相 对速度为(n1 + n),转子感应电流很 大I2↑→I1↑> Ist,若频繁反转,会使 电机绕组过热,同时使转速产生很大的 冲击,损坏电机。
一、三相异步电动机的反转 1、原理
三相异步电动机的转子旋转方向取决于旋 转磁场方向,旋转磁场方向和电源相序有关, 所以只要改变旋转磁场的旋转方向,就能使 三相异步电动机反转。 2、方法
用倒顺开关、组合开关控制、接触器联锁 控制。来实现,即将电动机两相绕组与交流电 源的接线互相对调,则旋转磁场反向,电动 机跟着反转。
2023年8月26日 星期六
§4-9 三相异步电动机的反转与制动
③ 特点
制动力较强,能耗少,制动较平稳,
对电网及机械设备冲击小;但在低速时
制动力矩也随之减小,不易制动停止,
需要直流电源,常用于机床设备。
⑶再生制动(发电制动)
① 定义:在电动机工作过程中,由于外力 的作用,使n>n1导条切割旋转磁场的方向 相反,则电磁转矩方向与转子旋转的方 向相反,变为制动转矩。
返回
能耗制动电路原理图
2023年8月26日 星期六
§4-9 三相异步电动机的反转与制动
返回
绕线转子异步电动机转子串电阻的反接制动

三相异步电动机制动方式

三相异步电动机制动方式

三相异步电动机制动方式
三相异步电动机的制动方式主要有以下几种:
1. 直接制动:即电动机的定子绕组通电,但转子不转动。

这种制动方式适用于制动时需要较大的制动力矩的情况,如电梯制动等。

2. 动态制动:将电动机的定子绕组接通外部电阻或电抗,使电动机减速至停止。

动态制动又分为旁路制动和串联制动两种方式。

旁路制动是将外部电阻或电抗与电动机的定子绕组并联,串联制动则是将外部电阻或电抗与电动机的定子绕组串联。

动态制动的优点是可以调整制动力矩,适用于制动时需要提供可调制动力矩的情况。

3. 动态制动加感应制动:将动态制动的电阻或电抗与电动机的定子绕组并联,同时通过感应制动装置将电动机的定子绕组接入外部电抗,从而实现制动。

这种制动方式不仅可以提供较大的制动力矩,还可以实现能量回收,提高能量利用率。

综上所述,三相异步电动机的制动方式多种多样,可以根据具体要求选择合适的制动方式。

电磁制动三相异步电动机 制动原理

电磁制动三相异步电动机 制动原理

电磁制动三相异步电动机制动原理电磁制动是一种通过电磁力来制动运动物体的方法,广泛应用于各种机械设备中。

三相异步电动机是一种常见的电动机类型,也可以通过电磁制动来实现制动功能。

本文将介绍电磁制动三相异步电动机的制动原理。

我们需要了解什么是电磁制动。

电磁制动是利用电磁感应原理,通过电磁力使运动物体减速或停止的一种制动方式。

在电磁制动系统中,通常会有一个电磁铁和一个可移动的制动体,当电磁铁通电时,会产生一个电磁场,使制动体受到电磁力的作用,从而实现制动效果。

对于三相异步电动机来说,它是一种常见的交流电动机,广泛应用于各种工业设备中。

在正常运行时,电动机通过电磁感应原理将电能转化为机械能,驱动负载运动。

然而,在某些情况下,我们需要快速减速或停止电动机的运动,这时就需要使用电磁制动来实现。

三相异步电动机的电磁制动原理主要包括以下几个方面:1. 制动器的结构:电磁制动器通常由电磁铁、制动盘和制动体组成。

电磁铁是制动器的核心部件,当通电时会产生电磁力。

制动盘是固定在电动机轴上的一个金属盘,而制动体则是可移动的摩擦体,通常由摩擦材料制成。

2. 制动力的产生:当电磁铁通电时,会产生一个电磁场,使制动体受到电磁力的作用。

制动体与制动盘之间会产生摩擦力,从而实现制动效果。

电磁力的大小取决于电磁铁的磁场强度和制动体与制动盘之间的压力。

3. 制动控制:为了实现对电磁制动的控制,通常会使用一个控制装置来控制电磁铁的通断。

当需要制动时,控制装置会给电磁铁供电,使其产生电磁力;当不需要制动时,控制装置会切断电磁铁的电源,使其停止产生电磁力。

通过控制电磁铁的通断,可以实现对电磁制动的启动和停止。

通过以上原理,我们可以看出,电磁制动三相异步电动机的制动过程是通过电磁力产生摩擦力来实现的。

当需要制动时,控制装置给电磁铁通电,使其产生电磁力,制动体与制动盘之间产生摩擦力,从而减速或停止电动机的运动。

当不需要制动时,控制装置切断电磁铁的电源,使其停止产生电磁力,电动机恢复正常运行。

三相异步电动机的制动控制方式

三相异步电动机的制动控制方式

三相异步电动机的制动控制方式
某些生产机械,如车床等要求在工作时频繁的起动与停止;有些工作机械,如起重机的吊勾需要准确定位,这些机械都要求电动机在断电后迅速停转,以提高生产效率和保护安全生产。

电动机断电后,能使电动机在很短的时间内就停转的方法,称作制动控制。

制动控制的方法常用的有二类,即机械制动与电力制动,下面将这两种制动方法介绍如下。

一、机械制动
机械制动是利用机械装置,使电动机迅速停转的方法,经常采用的机械制动设备是电磁抱闸,电闸抱闸的外形结构如图21801所示。

电磁抱闸主要由两部分构成:制动电磁铁和闸瓦制动器。

制动电磁铁由铁芯和线圈组成;线圈有的采用三相电源,有的采用单相电源;闸瓦制动器包括:闸瓦,闸轮,杠杆和弹簧等。

闸轮与电动机装在同一根转轴上.制动强度可通过调整弹簧力来改变。

一)电磁抱闸制动控制线路之一
电磁抱闸制动控制线路之一如图21802所示:
电磁抱闸制动控制线路的工作原理简述如下:
接通电源开关QS后,按起动按钮SB2,接触器KM线圈获电工作并自锁。

电磁抱闸YB线圈获电,吸引衔铁(动铁芯),使动、静铁芯吸合,动铁芯克服弹簧拉力,迫使制动杠杆向上移动,从而使制动器的闸瓦
与闸轮分开,取消对电动机的制动;与此同时,电动机获电起动至正常运转。

当需要停车时,按停止按钮SB1,接触器KM断电释放,电动机的电源被切断的同时,电磁抱闸的线圈也失电,衔铁被释放,在弹簧拉力的作用下,使闸瓦紧紧抱住闸轮,电动机被制动,迅速停止转动。

(信息。

2.4三相异步电动机的制动控制

2.4三相异步电动机的制动控制

U
V
W
QS FU1 FU2 FR
SB1 KM1 KM2 SB2 KM1 n KS
KM1
FR KM2 M 3~
KM1
KS
KM1
KM2
图2-19单向反接制动线路图*
U
V W QS FU1 FU2
正转
FR
反转
正转
反转
SB1
KM1
KM2 SB2 KA1 KA1 KA4 SB3 KA2 KA2 KA3 n KS-Z n KS-F KA1 KA2
二、反接制动控制线路 1.线路设计思想 反接制动是一种电气制动方法,通过改变电 动机电源电压相序使电动机制动。由于电源相序 改变,定子绕组产生的旋转磁场方向也与原方向 相反,而转子仍按原方向惯性旋转,于是在转子 电路中产生相反的感应电流。转子要受到一个与 原转动方向相反的力矩的作用,从而使电动机转 速迅速下降,实现制动。
2.4 三相异步电动机制动控制
三相异步电动机从切断电源到安全停止转动, 由于惯性的关系总要经过一段时间,影响了劳动 生产率。在实际生产中,为了实现快速、准确停 车,缩短时间,提高生产效率,对要求停转的电 动机强迫其迅速停车,必须采取制动措施。
三相异步电动机的制动方法分为两类:机械 制动和电气制动。机械制动有电磁抱闸制动、电 磁离合器制动等;电气制动有反接制动、能耗制 动、回馈制动等。
所示为定子电路中串接对称电阻或不对称电阻。
U
V W
U
V W
QS FU1
QS FU1
KM1
KM2 R
KM2 R
FR
M 3 ~
M 3 ~
图2-18(a)定子电路中串接对称电阻
(b) 定子电路中串接不对称电阻

三相异步电动机再生发电制动原理

三相异步电动机再生发电制动原理

三相异步电动机再生发电制动原理
三相异步电动机再生发电制动是指当电动机在运行过程中,由于负载变轻或者逆转等原因,电动机不再消耗电能,而是将机械能通过变频器或者某种装置转化为电能,并返回给电源供电或者其他负载使用。

三相异步电动机再生发电制动的原理主要包括以下几个方面:
1. 反电动势逆变控制:当电动机产生反电动势时,通过变频器将其转换为直流电,然后逆变为交流电,返回给电源供电或者其他负载使用。

2. 回馈电源供电:利用变频器将电动机产生的反电动势逆变为直流电后,通过逆变器将其变回交流电,再送回电源供电,实现电能的回馈。

3. 电网供电:将产生的电能通过某种装置直接接入电网,实现再生发电制动。

三相异步电动机再生发电制动具有以下优点:
1. 能够将产生的电能回馈给电源供电或者其他负载使用,提高了能源利用效率。

2. 在制动过程中可以实现能量的回收,减少能源浪费。

3. 能够降低对电网的冲击,减少对电网的负荷影响。

总之,三相异步电动机再生发电制动通过逆变器或者某种装置将电动机产生的机械能转化为电能,并回馈给电源供电或者其他负载使用,实现了能量的再利用和节能减排的目的。

三相异步电动机制动的工作方法

三相异步电动机制动的工作方法

三相异步电动机制动的工作方法
1. 能耗制动,哇塞,这就好像是让电动机来了个急刹车!就好比你正在跑步,突然让你一下子停住。

比如说在起重机上,当重物快到指定位置时,就可以用能耗制动让它稳稳停下来。

2. 反接制动呀,嘿,就如同来个猛地掉头!像是开车时突然快速反转方向。

比如一些铣床在工作结束时就可能用到反接制动来迅速停止。

3. 回馈制动,哎呀呀,这简直是电动机在给我们送能量呢!就好像是你给别人分享你多余的东西。

像电动汽车在下坡时不就能用这个方法回收能量嘛。

4. 机械制动,瞧,这就是直接用机械的力量让电动机刹住车!好比一个大力士硬生生拉住你。

像卷扬机不就是经常用这种方式来制动。

5. 电气制动,这可神奇了,完全是用电的魔力来实现制动呀!如同用魔法让电动机停下来。

那种需要精确控制停止的设备就常用电气制动呢。

6. 电磁抱闸制动,哇哦,就像是给电动机上了一把牢固的锁!仿佛给大门上了一道坚固的锁。

比如一些提升机就要靠这个来保证安全停止。

7. 再生制动,嘿,这是电动机把能量变变变出来了哦!像变魔术一样呢。

像轨道交通中就经常有这种神奇制动效果。

8. 动态制动,这可是很厉害的一招,能迅速把电动机的速度降下来!如同给奔跑的马儿猛拉缰绳。

在一些高速运转的设备里就很需要它啦。

总之,三相异步电动机制动的工作方法各有各的厉害之处呀,它们就像是电动机的守护天使,保障着各种设备的安全和高效运行!。

三相异步电机自然制动原理

三相异步电机自然制动原理

三相异步电机自然制动原理题目:三相异步电机自然制动原理引言:三相异步电机作为目前工业生产过程中广泛使用的电动机之一,其自然制动原理十分重要。

在某些情况下,电机必须迅速停止,而使用制动器或其他控制设备可能并不切实可行。

因此,了解三相异步电机的自然制动原理对于保障电机运行的安全性具有重要意义。

本文将一步一步地回答有关三相异步电机自然制动原理的问题,并对其实际应用进行探讨。

一、什么是三相异步电机自然制动?三相异步电机自然制动是指在电机通电停止后,电机自身动量和反电动势的作用下,电机逐渐减速,并最终停止旋转的过程。

与常规制动方式相比,它不需要外部制动器或控制设备的参与,仅依靠电机本身的物理特性完成制动。

二、三相异步电机自然制动的原理是什么?1. 动量制动原理三相异步电机自然制动的原理之一是动量制动。

当电机通电停止时,电机转子上的惯性作用使得电机继续旋转,而电机的旋转动量导致电机逐渐减速并最终停止旋转。

2. 反电动势制动原理三相异步电机自然制动的另一个原理是反电动势制动。

当电机通电停止时,电机中的感应电动势产生一个反向电场,反向电场与电源电压作用相抵消,从而减缓电机的旋转速度。

反电动势制动可以与动量制动同时发生,起到协同作用。

三、三相异步电机自然制动的过程是怎样的?三相异步电机自然制动过程可以分为三个阶段:惯性减速阶段、反电动势制动阶段和静态停止阶段。

1. 惯性减速阶段在电机通电停止后的初始阶段,电机继续以惯性作用旋转,并且以一定的速度逐渐减速。

这个阶段的时间较短,其速度减小主要受电机的质量和转动惯量的影响。

2. 反电动势制动阶段在惯性减速阶段之后,电机会进入反电动势制动阶段。

在此阶段,电机的转子上产生的反电动势与电源电压相抵消,使得电机的转速进一步减小。

该阶段的时间和电动机的特性有关,例如,电机的电感和功率等。

3. 静态停止阶段当电机的转速接近零时,电机逐渐停止旋转并达到静态停止阶段。

此时,电机的动能转化为热能,而电机停止旋转。

三相异步电动机的制动

三相异步电动机的制动

三相异步电动机的制动
1、能耗制动
在断开三相电源的同时,给电动机其中两相绕组通入直流电流,直流电流形成的固定磁场与旋转的转子作用,产生了与转子旋转方向相反的转距(制动转距),使转子迅速停止转动。

2、反接制动
停车时,将接入电动机的三相电源线中的任意两相对调,使电动机定子产生一个与转子转动方向相反的旋转磁场,从而获得所需的制动转矩,使转子迅速停止转动。

3、发电反馈制动
当电动机的n > n0时,旋转磁场产生的电磁转矩作用方向发生变化,由驱动转矩变为制动转矩。

电动机进入制动状态,同时将外力作用于转子的能量转换成电能回送给电网。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要近几十年来,随着电力电子技术、微电子技术及现代控制理论的发展,中、小功率电动机在工农业生产及人们的日常生活中都有极其广泛的的应用。

特别是在乡镇企业及家用电器中,更需要有大量的中、小功率电动机。

由于这种电动机的发展及广泛的应用,它的使用、保养和维护工作也越来越重要。

电机是现代工农业生产和交通运输的重要设备,与电机配套的控制设备的性能已经成为用户关注的焦点。

电机的控制包括电机的起动、调速和制动。

异步电动机由于具有结构简单、体积小、价格低廉、运行可靠、维修方便、运行效率较高、工作特性较好等优点,因而在电力拖动平台上得到了广泛应用。

据统计,其耗电量约占全国发电量的40%左右。

当电机并入电网时,电机转速从静止加速到额定转速的过程称为电机的起动过程。

异步电动机的起动性能最重要的是起动电流和起动转矩。

因此在电机的起动过程中,如何降低起动电流,增大起动转矩,一直是机电行业的专家们探讨的重要课题。

电动机机应用广泛,种类繁多、性能各异,分类方法也很多。

本文是对三相异步电动机做出深入的剖析与设计。

三相异步电动机是一种具有高效率、低磨损、低噪声的电机机种.本设计在介绍三相异步电动机中,关于相数、极数、槽数及绕组连接方式的选择方法和应遵从的规律详细的加以说明和介绍。

文中主要介绍了几种常用的制动方式的特点,对不同制动方式进行了技术比较,分析了他们各自的实用场所,为实际应用提供了科学的理论依据。

关键词:三相异步电动机结构制动方式前言电动机是把电能转换成机械能的设备。

近几十年随着科技的发展电动机在机械、冶金、石油、煤炭、化学、航空、交通、农业以及其他各种工业中,被广泛地应用着。

随着工业自动化程度不断提高,需要采用各种各样的控制电机作为自动化系统的元件,人造卫星的自动控制系统中,电机也是不可缺少的。

此外在国防、文教、医疗及日常生活中(现代化的家电工业中)电动机也愈来愈广泛地应用起来与单相电动机相比,三相异步电动机运行性能好,并可节省各种材料。

按转子结构的不同,三相异步电动机可分为笼式和绕线式两种。

笼式转子的异步电动机结构简单、运行可靠、重量轻、价格便宜,得到了广泛的应用,其主要缺点是调速困难。

绕线式三相异步电动机的转子和定子一样也设置了三相绕组并通过滑环、电刷与外部变阻器连接。

调节变阻器电阻可以改善电动机的起动性能和调节电动机的转速。

而三相异步电动机的制动方法,在其中无疑起到了关键性的作用,其在切断电源以后,利用电气原理或机械装置使电动机迅速停转。

其制动方法主要分为,电力制动和机械制动。

电力制动和机械制动又可分为若干制动方式。

其制动方法和制动原理在第二章会重点介绍。

在本次课题设计中共分为三大章节,第一章为课题介绍,在其中说明了本课题的设计背景、设计意义以及本课题的主要工作。

第二章则着重于三相异步电动机制动方法的介绍、分类以及其结构原理。

第三章是三相异步电动机的绕组故障分析以及故障处理方法。

此课题在设计过程中,重点介绍了三相异步电动机的制动方法,在查阅相关资料和老师、同学的帮助下完成了相关理论知识的设计,由于个人设计的水平有限,难免有疏漏和欠妥之处,敬请老师和同学指正,谢谢!第1章课题介绍1.1 课题背景由于生产机械的不断更新和发展,对电动机的起动性能也提出了越来越高的要求。

电动机作为重要的动力装置,已被广泛用于工业、农业、交通运输、国防军事设施以及日常生活中。

直流电动机其调速在过去一直占统治地位,但由于本身结构原因,例如换向器的机械强度不高,电刷易于磨损等,远远不能适应现代生产向高速大容量化发展的要求。

相比之下,三相异步交流电动机拥有延长设备的使用寿命,有强大的降噪能力,操作智能化,维护简便、通用性强等众多特性,特别是三相线笼式异步电动机,由于其结构简单、制造方便、价格低廉,而且坚固耐用,惯量小,运行可靠等优势,在工业中得到了极为广泛的应用,也正在发挥着越来越重要的作用。

三相异步电动机在各种电动机中的应用最广,需求量最大,在工业生产、农业机械化交通运输、国防工业等电力拖动装置中有很大的比重,这是因为三相异步电动机具有结构简单、制造方便、价格低廉、运行可靠等一系列优点,另外还具有较高的运行效率和较好的工作特性,能满足各行业大多数生产机械的转动要求。

因此三相交流异步电动机的技术在我国有极为广泛的发展前景。

1.2 课题意义通过本课题的设计,了解三相异步电动机的基本自动方式,进一步了解三相异步电动机的结构、工作原理、三相异步电动机的分类及用途、各种制动方式和三相异步电动机在应用中经常出现的问题。

本次课程设计将对三相异步电动机的制动控制方式进行分析,进一步分别讨论了三相异步电动机的几种制动方式特性以及在不同设备中的应用情况。

1.3 本课题主要工作介绍三相异步电动机的基本结构和工作原理,详细介绍了三相异步电动机的制动方法、控制线路和使用过程中的故障处理。

第2章三相异步电动机的制动方法2.1 何谓三相异步电动机的制动在切断电源以后,利用电气原理或机械装置使电动机迅速停转的方法称为三相异步电动机的制动2.2 三相异步电动机的制动介绍制动的方法一般有两类:机械制动和电力制动。

机械制动:利用机械装置使电动机断开电源后迅速停转的方法叫机械制动。

机械制动常用的方法有:电磁抱闸和电磁离合器制动。

电气制动:电动机产生一个和转子转速方向相反的电磁转矩,使电动机的转速迅速下降。

三相交流异步电动机常用的电气制动方法有反接制动、能耗制动和回馈制动。

2.2.1 机械制动采用机械装置使电动机断开电源后迅速停转的制动方法。

如电磁抱闸、电磁离合离合器等电磁铁制动器。

(1)电磁抱闸断电制动控制电路电磁抱闸抱闸断电控制电路如图1所示。

合上电源开关QS和开关K,电动机接通电源,同时电磁抱闸线圈YB得电,衔铁吸合,克服弹簧的拉力使制动器的闸瓦与闸轮分开,电动机正常运转。

断开开关,电动机失电,同时电磁抱闸线圈YB也失电,衔铁在弹簧拉力作用下与铁芯分开,并使制动器的闸瓦紧紧抱住闸轮,电动机被制动而停转。

图中开关K可采用倒顺开关、主令控制器、交流接触器等控制电动机的正反转,满足控制要求。

倒顺开关接线示意图如图2所示。

这种制动方法在起重机械上广泛应用,如行车、卷扬机、电动葫芦(大多采用电磁离合器制动)等。

其优点是能准确定位,可防止电动机突然断电时重物自行坠落而造成事故。

(2)电磁抱闸通电制动控制电路电磁抱闸断电制动其闸瓦紧紧抱住闸轮,若想手动调整工作是很困难的。

因此,对电动机制动后仍想调整工件的相对位置的机床设备就不能采用断电制动,而应采用通电制动控制,其电路如图3所示。

当电动机得电运转时,电磁抱闸线圈无法得电,闸瓦与闸轮分开无制动作用;当电动机需停转按下停止按钮SB2时,复合按钮SB2的常闭触头先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为KM2线圈得电作好准备,经过一定的行程SB2的常开触头接通KM2线圈,其主触头闭合电磁抱闸的线圈得电,使闸瓦紧紧抱住闸轮制动;当电动机处于停转常态时,电磁抱闸线圈也无电,闸瓦与闸轮分开,这样操作人员可扳动主轴调整工件或对刀等。

机械制动主要采用电磁抱闸、电磁离合器制动,两者都是利用电磁线圈通电后产生磁场,使静铁芯产生足够大的吸力吸合衔铁或动铁芯(电磁离合器的动铁芯被吸合,动、静摩擦片分开),克服弹簧的拉力而满足工作现场的要求。

电磁抱闸是靠闸瓦的摩擦片制动闸轮.电磁离合器是利用动、静摩擦片之间足够大的摩擦力使电动机断电后立即制动。

2.2.2 电力制动电动机在切断电源的同时给电动机一个和实际转向相反的电磁力矩(制动力矩)使电动机迅速停止的方法。

最常用的方法有:反接制动和能耗制动。

(1)反接制动在电动机切断正常运转电源的同时改变电动机定子绕组的电源相序,使之有反转趋势而产生较大的制动力矩的方法。

反接制动的实质:使电动机欲反转而制动,因此当电动机的转速接近零时,应立即切断反接制动电源,否则电动机会持续反转。

实际控制中采用速度继电器来自动切除制动电源。

反接制动控制电路如图4所示。

其主电路和正反转电路相同。

由于反接制动时转子与旋转磁场的相对转速较高,约为启动时的2倍,致使定子、转子中的电流会很大,大约是额定值的10倍。

因此反接制动电路增加了限流电阻R。

KM1为运转接触器,KM2为反接制动接触器,KV为速度继电器,其与电动机联轴,当电动机的转速上升到约为100转/分的动作值时.KV常开触头闭合为制动作好准备。

反接制动分析:停车时按下停止按钮SB2,复合按钮SB2的常闭先断开切断KM1线圈,KM1主、辅触头恢复无电状态,结束正常运行并为反接制动作好准备后,接通KM2线圈(KV常开触头在正常运转时已经闭合),其主触头闭合,电动机改变相序进入反接制动状态,辅助触头闭合自锁持续制动,当电动机的转速下降到设定的释放值时,KV触头释放,切断KM2线圈,反接制动结束。

一般地,速度继电器的释放值调整到90转/分左右,如释放值调整得太大,反接制动不充分;调整得太小,又不能及时断开电源而造成短时反转现象。

反接制动制动力强,制动迅速,控制电路简单,设备投资少,但制动准确性差,制动过程中冲击力强烈,易损坏传动部件。

因此适用于l0kw 以下小容量的电动机制动要求迅速、系统惯性大,不经常启动与制动的设备,如铣床、镗床、中型车床等主轴的制动控制。

(2)能耗制动电动机切断交流电源的同时给定子绕组的任意二相加一直流电源,以产生静止磁场,依靠转子的惯性转动切割该静止磁场产生制动力矩的方法。

原理分析:电动机切断电源后,转子仍沿原方向惯性转动,如图5设为顺时针方向,这时给定子绕组通入直流电,产生一恒定的静止磁场,转子切割该磁场产生感应电流,用右手定则判断其方向如图示。

该感生电流又受到磁场的作用产生电磁转矩,由左手定则知其方向正好与电动机的转向相反而使电动机受到制动迅速停转。

可逆运行能耗制动的控制电路如图6所示。

KV1、KV2分别为速度继电器KV的正、反转动作触头,接触器KM1、KM2、KM3之间互锁,防止交流电源、直流制动电源短路。

停车时按下停止按钮SB3,复合按钮SB3的常闭先断开切断正常运行接触器KM1或KM2线圈,后接通KM3线圈,KM3主、辅触头闭合,交流电流经变压器T,全波整流器VC通入V、W相绕组直流电,产生恒定磁场进行制动。

RP调节直流电流的大小,从而调节制动强度。

能耗制动分析:能耗制动平稳、准确,能量消耗小,但需附加直流电源装置,设备投资较高,制动力较弱,在低速时制动力矩小。

主要用于容量较大的电动机制动或制动频繁的场合及制动准确、平稳的设备,如磨床、立式铣床等的控制,但不适合用于紧急制动停车。

能耗制动还可用时间继电器代替速度继电器进行制动控制。

电动机的制动方法较多,还有如电容制动、再生发电制动等,但实际应用主要是上述介绍的制动方式,其各有特点和使用场合。

相关文档
最新文档