1[1].2《极坐标系--简单曲线的极坐标方程》教案(新人教选修4-4)

合集下载

人教课标版高中数学选修4-4《简单曲线的极坐标方程》教案-新版

人教课标版高中数学选修4-4《简单曲线的极坐标方程》教案-新版

1.3 简单曲线的极坐标方程一、教学目标 (一)核心素养通过这节课学习,了解极坐标方程的意义、能在极坐标系中给出简单曲线的方程,体会极坐标下方程与直角坐标系下曲线方程的互化,培养学生归纳类比推理、逻辑推理能力. (二)学习目标1.通过实例,了解极坐标方程的意义,了解曲线的极坐标方程的求法. 2.掌握特殊情形的直线与圆的极坐标方程.3.能进行曲线的极坐标方程与直角坐标方程的互化,体会在用方程刻画平面图形时选择适当坐标系的意义. (三)学习重点1.掌握特殊情形的直线与圆的极坐标方程. 2.进行曲线的极坐标方程与直角坐标方程的互化. (四)学习难点1.求曲线的极坐标方程.2.对不同位置的直线和圆的极坐标方程的理解. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第12页至第15页,填空:一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程 0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程. 2.预习自测(1)下列点不在曲线θρcos =上的是( )A.)3,21(πB.)32,21(π-C.)3,21(π-D.)32,21(π-【知识点】极坐标方程【解题过程】将选项中点一一代入验证可得选项D 不满足方程 【思路点拨】由极坐标方程定义可得 【答案】D .(2)极坐标系中,圆心在极点,半径为2的圆的极坐标方程为( ) A.2=ρ B .4=ρ C.2cos =θρD.1sin =θρ【知识点】极坐标方程【解题过程】任取圆上一点的极坐标为),(θρ,依题意R ∈=θρ,2,所以选A 【思路点拨】根据题意寻找θρ,的等量关系式 【答案】A .(3)将下列曲线的直角坐标方程化为极坐标方程: ①射线)0(3≤=x x y ;②圆0222=++x y x . 【知识点】直角坐标方程与极坐标方程互化【解题过程】①因为=x θρcos ,=y θρsin 代入可得3tan ,cos 3sin ==θθθ 又因为0≤x ,所以射线在第三象限,故取θ=4π3(ρ≥0 )②将=x θρcos ,=y θρsin 代入0222=++x y x ,整理得θρcos 2-= 【思路点拨】利用极坐标与直角坐标互化可得 【答案】①θ=4π3(ρ≥0 ) ②θρcos 2-=.(4)极坐标系下,直线2)4cos(=-πθρ与圆ρ=2的公共点个数是 .【知识点】极坐标方程、直线与圆的位置关系【解题过程】直线方程ρcos )4(πθ-=2,即)sin 22cos 22(θθρ+=2,所以直角坐标方程为x +y -2=0.圆的方程ρ=2,即ρ2=2,所以直角坐标方程为x 2+y 2=2. 因为圆心到直线的距离为d =|0+0-2|2=2=r ,所以直线与圆相切,即公共点个数是1.【思路点拨】将问题转化为平面直角坐标系中的问题处理 【答案】 1 (二)课堂设计 1.知识回顾(1)极坐标系的建立:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系内一点的极坐标的规定:设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.(3)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,则:=x θρcos , =y θρsin=2ρ22y x +, =θtan )0(≠x xy2.问题探究探究一 结合实例,类比认识极坐标方程★ ●活动① 类比推理概念在平面直角坐标系中,平面曲线C 可以用方程0),(=y x f 表示.曲线与方程满足如下关系:(1)曲线C 上点的坐标都是方程0),(=y x f 的解; (2)以方程0),(=y x f 的解为坐标的点都在曲线C 上.那么,在极坐标系中,平面曲线是否可以用方程0),(=θρf 表示呢?我们先看一个例子 半径为a 的圆的圆心坐标为)0,(a C ,你能用一个等式表示圆上任意一点的极坐标),(θρ满足的条件吗?类比直角坐标方程的求解过程,我们先建立极坐标系,如右图所示,设圆经过极点O ,圆与极轴的另一个交点为A ,则a OA 2=,设),(θρM 为圆上除A O ,以外的任意一点,则AM OM ⊥,所以在AMO Rt ∆中,MOA OA OM ∠=cos ,即θρcos 2a =.经验证,点)0,2(),2,0(a A O π的坐标满足上式.于是上述等式为圆上任意一点的极坐标),(θρ满足的条件,反之,坐标适合上述等式的点都在这个圆上.所以我们类比直角坐标方程可以得到极坐标方程的定义,即:一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程.由于平面上点的极坐标的表示形式不惟一,即一条曲线上点的极坐标有多组表示形式,所以我们这里要求至少有一组能满足极坐标方程.则这个点在曲线上.【设计意图】利用类比的思想,从熟悉的概念得到新的数学概念,体会概念的提炼、抽象过程. ●活动② 归纳梳理、理解提升分析上述实例,你能得出求解极坐标方程的一般步骤吗?求曲线的极坐标方程的方法和步骤与求直角坐标方程的步骤类似,就是把曲线看作适合某种条件的点的集合或轨迹.将已知条件用曲线上的点的极坐标θρ,的关系式0),(=θρf 表示出来,就得到曲线的极坐标方程,具体如下:(1)建立适当的极坐标系,设),(θρM 是曲线上任意一点.(2)连接OM ,根据几何条件建立关于极径ρ和极角θ之间的关系式. (3)将列出的关系式进行整理,化简,得出曲线的极坐标方程.(4)检验并确认所得方程即为所求.若方程的推导过程正确,化简过程都是同解变形,证明可以省略.【设计意图】通过实例类比总结方法,培养学生数学抽象、归类整理意识. 探究二 探究直线的极坐标方程 ●活动 互动交流、初步实践组织课堂讨论:结合极坐标方程的定义及求解极坐标方程的步骤,我们动手求解:直线l 经过极点,从极轴到直线l 的角为3π的直线的极坐标方程.M如右图,以极点O 为分界点,直线l 上的点的极坐标分成射线,OM 射线M O '两个部分,射线OM 上任意一点的极角都为3π,所以射线OM 的极坐标方程为:)0(3≥=ρπθ;而射线M O '上任意一点的极角都是34π,所以射线M O '的极坐标方程为:)0(34≥=ρπθ 综上:直线l 的极坐标方程可以用)0(3≥=ρπθ和)0(34≥=ρπθ表示现在产生一个问题:能否用一个方程来表示呢?我们定义:若0<ρ,则0>-ρ,我们规定点),(θρM 与),(θρ-P 关于极点对称.这样就可以将ρ的取值范围推广到全体实数.于是在允许R ∈ρ,那么上述直线l 的极坐标方程就可以写为: )(3R ∈=ρπθ或)(34R ∈=ρπθ 【设计意图】得到特殊直线的极坐标方程,加深对极坐标方程内涵与外延的理解,突破重点. 探究三 探究极坐标方程与直角坐标方程的联系★▲ ●活动① 巩固理解,加深认识在学习了极坐标方程及求解步骤后,动手做一做:在极坐标系中,圆心为)4,1(πA ,半径为1的圆的极坐标方程是多少呢?如右图所示,设),(θρP 为圆上任一点,当P A O ,,三点不共线是,在OPA ∆中利用余弦定理可得222)4cos(2AP OAOP OP OA =--+πθ1)4cos(212=--+∴πθρρ即 )4cos(2πθρ-=当P A O ,,三点共线时,点P 的坐标为)43,0(π或)4,2(π,这两点的坐标满足上式,所以上式为所求的圆的极坐标方程.在找平面曲线的极坐标方程时,就要找极径ρ和极角θ之间的关系式,常用解三角形(正弦定理,余弦定理)的知识以及利用三角形的面积相等来建立ρ、θ之间的关系.【设计意图】巩固极坐标方程的求解,同时为极坐标方程与直角坐标方程的转化作准备. ●活动② 强化提升、灵活应用),(θρPO根据上节的直角坐标与极坐标的互化,先把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.,然后先求直角坐标系下的圆的方程;即由于圆心在极坐标系下为)4,1(πA ,则在直角坐标系下圆心)22,22(A ,半径1=r ,所以圆的直角坐标方程为:1)22()22(22=-+-y x ,整理得:y x y x 2222+=+,因为=x θρcos , =y θρsin ,代入直角坐标方程得)4cos(2sin 2cos 22πθρθρθρρ-=+=化简得: )4cos(2πθρ-= 【设计意图】掌握极坐标方程与直角坐标方程的转化,进一步认识极坐标系. 活动③ 巩固基础,检查反馈 例1 极坐标方程2πρ=表示( )A .直线B .射线C .圆D .椭圆 【知识点】曲线与极坐标方程.【解题过程】44,222222ππρπρ=+∴=∴=y x ,所以曲线表示的是圆. 【思路点拨】通过转化为直角坐标方程来判断. 【答案】C同类训练 极坐标方程)(21sin R ∈=ρθ表示的曲线是( ) A .两条相交直线 B .两条射线 C .一条直线 D .一条射线 【知识点】曲线与极坐标方程. 【解题过程】∵sin θ=21,∴)(26Z k k ∈+=ππθ或)(265Z k k ∈+=ππθ,又∵R ∈ρ,∴)(21sin R ∈=ρθ表示两条相交直线. 【思路点拨】通过极坐标方程来判断. 【答案】A例2 把下列直角坐标方程化成极坐标方程.(1)0132=--y x (2)0222=++y y x (3)1022=-y x【知识点】直角坐标方程化成极坐标方程.【解题过程】(1)由=x θρcos ,=y θρsin ,代入直角坐标方程0132=--y x 得,01sin 3cos 2=--θρθρ,即01)sin 3cos 2(=--θθρ(2)由上同理可得:θρsin 2-= (3)102cos 2=θρ 【思路点拨】利用直角坐标与极坐标互化公式求解.【答案】(1)01)sin 3cos 2(=--θθρ;(2)θρsin 2-=;(3)102cos 2=θρ同类训练 把下列极坐标方程化为直角坐标方程. (1) 2sin =θρ (2) θθρsin 4cos 2-= 【知识点】直角坐标方程与极坐标方程互化.【解题过程】(1)由=x θρcos , =y θρsin ,代入极坐标方程2sin =θρ得,2=y ,即02=-y (2)由θθρsin 4cos 2-=,等式两边同乘以ρ得θρθρρsin 4cos 22-=,所以y x y x 4222-=+,即:5)2()1(22=++-y x【思路点拨】极坐标方程化为直角坐标方程要通过变形,构造形如θρsin ,θρcos ,2ρ的形式,进行整体代换.【答案】(1)02=-y ; (2)5)2()1(22=++-y x .【设计意图】巩固极坐标方程的求解、判断以及直角坐标方程与极坐标方程的互化. ●活动4 强化提升、灵活应用例3 已知直线的极坐标方程为22)4sin(=+πθρ,求点)47,2(πA 到这条直线的距离.【知识点】极坐标与直角坐标互化、点到直线的距离.【解题过程】以极点为直角坐标原点,极轴为x 轴正半轴建立平面直角坐标系,直线的极坐标方程22)4sin(=+πθρ化为直角坐标方程,得:1=+y x .把点A 的极坐标)47,2(π化为直角坐标,得:)2,2(-在平面直角坐标系下,由点到直线的距离公式,得点A 到直线的距离222122=--=d ,所以点)47,2(πA 到直线22)4sin(=+πθρ的距离为22. 【思路点拨】把极坐标问题转化为直角坐标系中问题. 【答案】22. 同类训练 求极点到直线2)cos (sin =-θθρ的距离. 【知识点】极坐标与直角坐标互化、点到直线的距离.【解题过程】以极点为直角坐标原点,极轴为x 轴正半轴建立平面直角坐标系,直线的极坐标方程2)cos (sin =-θθρ化为直角坐标方程,得:2=-x y . 把极点的极坐标)0,0(化为直角坐标,得:)0,0(在平面直角坐标系下,由点到直线的距离公式,得点A 到直线的距离22200=--=d ,所以极点到直线2)cos (sin =-θθρ的距离为2. 【思路点拨】把极坐标问题转化为直角坐标系中问题. 【答案】2. 3.课堂总结 知识梳理(1)一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程.(2)求曲线的极坐标方程的一般步骤:①建立适当的极坐标系,设),(θρM 是曲线上任意一点.②连接OM ,根据几何条件建立关于极径ρ和极角θ之间的关系式. ③将列出的关系式进行整理,化简,得出曲线的极坐标方程.④检验并确认所得方程即为所求.若方程的推导过程正确,化简过程都是同解变形,证明可以省略.(3)若0<ρ,则0>-ρ,我们规定点),(θρM 与),(θρ-P 关于极点对称. 重难点归纳(1)求解平面曲线的极坐标方程时,就要找极径ρ和极角θ之间的关系式,常用解三角形(正弦定理,余弦定理)的知识以及利用三角形的面积相等来建立ρ、θ之间的关系.(2)极坐标方程化为直角坐标方程要通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须保持同解,因此应注意对变形过程的检验. (三)课后作业 基础型 自主突破1.经过极点,从极轴到直线l 的夹角是4π的直线l 的极坐标方程是( )A .)0(4≥=ρπθ B .4πρ=C .)0(4>=ρπθ D .)(4R ∈=ρπθ【知识点】极坐标方程.【解题过程】将直线l 画在极坐标系中,易得选项D 正确. 【思路点拨】根据根据图像进行判断. 【答案】D .2.直线33x -y =0的极坐标方程(限定ρ≥0)是( ) A .θ=π6 B .θ=76π C .θ=π6和θ=76πD .θ=56π【知识点】极坐标方程与直角坐标方程互化. 【解题过程】由33x -y =0,得33ρcos θ-ρsin θ=0,即tan θ=33,∴θ=π6和θ=76π.又ρ≥0,因此直线的方程可以用θ=π6和θ=76π表示 【思路点拨】极坐标方程与直角坐标方程互化. 【答案】C3.极坐标方程cos θ(ρ≥0)表示的曲线是( ).A .余弦曲线B .两条相交直线C .两条射线D .一条射线 【知识点】极坐标方程的求解.【解题过程】∵cos θ,∴θ=4π±+2k π(k ∈Z ).又∵ρ≥0,∴cos θ表示两条射线. 【思路点拨】利用三角函数图像可得. 【答案】C .4.圆的极坐标方程ρ=cos θ-2sin θ对应的直角坐标方程为( )A.45)1()21(22=+++y xB.45)1()21(22=++-y xC.45)1()21(22=-+-y xD.45)1()21(22=-++y x【知识点】极坐标方程与直角坐标方程互化.【解题过程】θρθρρθθρsin 2cos ,sin 2cos 2-=∴-= ,所以y x y x 222-=+即45)1()21(22=++-y x ,所以选B.【思路点拨】利用极坐标与直角坐标互化公式求解. 【答案】B .5.极坐标系内,点)2,1(π到直线ρcos θ=2的距离是________.【知识点】极坐标与直角坐标的转化.【解题过程】点)2,1(π的直角坐标为(0,1),直线ρcos θ=2的直角坐标方程为x =2,故点(0,1)到直线x =2的距离是d =2.【思路点拨】极坐标问题转化为直角坐标问题来求解. 【答案】2.6.在极坐标系中,A ,B 分别是直线3ρcos θ-4ρsin θ+5=0和圆ρ=2cos θ上的动点,则A ,B 两点之间距离的最小值是________.【知识点】直线与圆的极坐标方程、点到直线的距离. 【数学思想】分类讨论思想.【解题过程】:由题意,得直线的平面直角坐标方程为3x -4y +5=0,圆的普通方程为(x -1)2+y 2=1,则圆心(1,0)到直线的距离d =|3×1-4×0+5|32+42=85,所以A ,B 两点之间距离的最小值为d -r =85-1=35.【思路点拨】极坐标问题转化为直角坐标问题来求解. 【答案】 35. 能力型 师生共研7.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A.)2,1(πB.)23,1(π C .)0,1(D .),1(π【知识点】极坐标与直角坐标互化、圆的标准方程.【解题过程】由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为)23,1(π. 【思路点拨】极坐标问题转化为直角坐标问题来求解. 【答案】B .8.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为1)3cos(=-πθρ,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程. 【知识点】极坐标与直角坐标互化、极坐标方程.【解题过程】 (1)由1)3cos(=-πθρ,得1)sin 23cos 21(=+θθρ又x =ρcos θ,y =ρsin θ,∴曲线C 的直角坐标方程为x 2+32y =1, 即x +3y -2=0.当θ=0时,ρ=2,∴点M (2,0). 当θ=π2时,ρ=233,∴点N )2,332(π.(2)由(1)知,M 点的坐标(2,0),点N 的坐标)332,0(. 又P 为MN 的中点, ∴点P )33,1(,则点P 的极坐标为)6,332(π. 所以直线OP 的极坐标方程为θ=π6(ρ∈R ). 【思路点拨】把极坐标化为直角坐标求解. 【答案】(1)M (2,0),N )2,332(π;(2) θ=π6(ρ∈R ) 探究型 多维突破9.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴,取相同的长度单位建立极坐标系,直线l 的极坐标方程为22)4cos(=-πθρ,曲线C 的极坐标方程为),2(sin 4⎥⎦⎤⎢⎣⎡∈=ππθθρ,求直线l 与曲线C 的交点的极坐标.【知识点】极坐标方程的应用. 【数学思想】分类讨论的思想.【解题过程】由⎪⎩⎪⎨⎧=-=22)4cos(sin 4πθρθρ 得:1sin cos sin 2=+θθθ,即:θθθ2cos cos sin = (1)当0cos =θ时,即2πθ=时,4=ρ(2)当0cos ≠θ时,即2πθ≠时,此时θθcos sin =,即⎥⎦⎤⎢⎣⎡∈=ππθθ,21tan ,所以不成立. 交点极坐标为)2,4(π【思路点拨】类比直角坐标系,联立方程组求解.【答案】)2,4(π.10.已知椭圆的中心在坐标原点O ,椭圆的方程为:12222=+b y a x ,B A ,分别为椭圆上的两点,且OB OA ⊥. (1)求证:2211OB OA +为定值;(2)求AOB ∆面积的最大值和最小值.【知识点】极坐标方程的应用.【解题过程】将椭圆的直角坐标方程化为极坐标方程得(ρcos θ)2a 2+(ρsin θ)2b 2=1,即ρ2=a 2b 2b 2cos 2θ+a 2cos 2 θ,由于OA ⊥OB ,可设A (ρ1,θ1),B ⎝ ⎛⎭⎪⎫ρ2,θ1+π2,则ρ21=a 2b 2b 2cos 2 θ1+a 2sin 2 θ1,ρ22=a 2b 2b 2sin 2 θ1+a 2cos 2 θ1.于是1|OA |2+1|OB |2=1ρ21+1ρ22=b 2cos 2θ1+a 2sin 2 θ1+b 2sin 2 θ1+a 2cos 2θ1a 2b 2=a 2+b 2a 2b 2.所以1|OA |2+1|OB |2为定值.(2)解析:依题意得到S △AOB =12|OA ||OB |=12ρ1ρ2= 12·a 2b 2(b 2cos 2θ1+a 2sin 2θ1)(b 2sin 2θ1+a 2cos 2θ1)=12·a 2b 2(a 2-b 2)2sin 22θ14+a 2b 2,当且仅当sin 22θ1=1,S △AOB 有最小值为a 2b 2a 2+b 2;当sin 22θ1=0,S △AOB 有最大值为ab 2. 【思路点拨】由于涉及到长度,所以将椭圆直角坐标方程转化为极坐标方程求解.【答案】(1)1|OA |2+1|OB |2=a 2+b 2a 2b 2;(2)S △AOB 有最小值为a 2b 2a 2+b 2,S △AOB有最大值为ab2. 自助餐1.过点)4,2(πA 且平行于极轴的直线的极坐标方程是( )A .2sin =θρB .2sin =θρC .2cos =θρD .2cos =θρ【知识点】极坐标方程的求解.【解题过程】如图所示,如图所示,在直线l 上任意取点M (ρ,θ)(ρ≥0),过Mx 轴于H .⎭⎪⎫2,π4,在直线l 上任意取点),(θρM ,过M 作x MH ⊥轴于H ,)4,2(πA 24sin 2==∴πMH ,,sin sin Rt OMH MH OM θρθ∴∆=∴=,所以,选B【思路点拨】利用根据所给的几何条件,寻找θρ,的关系式. 【答案】B .2.极坐标方程分别是ρ=cos θ和ρ=sin θ的两个圆的圆心距是( ) A.22B.2C.1D.2 【知识点】极坐标与直角坐标互化、两圆的关系.【解题过程】:将方程化为直角坐标方程.因为ρ不恒为零,可以用ρ分别乘方程两边,得ρ2=ρcos θ和ρ2=ρsin θ.∴x 2+y 2=x 和x 2+y 2=y .它们的圆心分别是(21,0)、(0,21),圆心距是22.【思路点拨】先化为直角坐标方程,在按直角坐标求解. 【答案】A .3.在极坐标系中,曲线C :ρ=2sin θ上的两点A ,B 对应的极角分别为2π3,π3,则弦长|AB |=________.【知识点】极坐标与直角坐标互化、两点间的距离. 【解题过程】A ,B 两点的极坐标分别为)3,3(),32,3(ππ,化为直角坐标为)23,23(),23,23(-.故3)2323()2323(22=-+--=AB 【思路点拨】先化为直角坐标方程,在按直角坐标求解. 【答案】3.4.曲线θ=0,θ=π3(ρ≥0)和ρ=4所围成图形的面积是__________. 【知识点】极坐标与直角坐标的互化、扇形的面积. 【数学思想】数形结合的思想【解题过程】将极坐标方程化为直角坐标系下的方程,分别为射线)0(3,0≥==x x y y ,圆1622=+y x ,他们围成的是一个圆心角为3πθ=,半径为4=r 的扇形,所以38212πθ==r S . 【思路点拨】先化为直角坐标方程,再在直角坐标系中画出相应的图形可得.【答案】38π. 5.把下列直角坐标方程与极坐标方程进行互化:(1)x 2+(y -2)2=4; (2)ρ=9(sin θ+cos θ); (3)ρ=4;【知识点】极坐标与直角坐标互化.【解题过程】(1)∵x 2+(y -2)2=4,∴x 2+y 2=4y ,代入x =ρcos θ,y =ρsin θ得ρ2-4ρsin θ=0,即ρ=4sin θ.(2)∵ρ=9(sin θ+cos θ),∴ρ2=9ρ(sin θ+cos θ), ∴x 2+y 2=9x +9y ,即281)29()29(22=-+-y x(3)∵ρ=4,∴ρ2=42,∴x 2+y 2=16.【思路点拨】用公式x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2进行直角坐标方程与极坐标方程的互化即可.【答案】(1)ρ=4sin θ;(2)281)29()29(22=-+-y x ;(3)x 2+y 2=16.6.在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程; (2)若直线C 3的极坐标为θ=π4(ρ∈R),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积 【知识点】极坐标与直角坐标互化、三角形的面积.【解题过程】:(1)因为x =ρcos θ,y =ρsin θ,所以C 1的极坐标方程为ρcos θ=-2,C 2的极坐标方程为ρ2-2ρcos θ-4ρsin θ+4=0.(2)将θ=π4代入ρ2-2ρcos θ-4ρsin θ+4=0,得ρ2-32ρ+4=0,解得ρ1=22,ρ2= 2.故ρ1-ρ2=2,即|MN |= 2.由于C 2的半径为1,所以△C 2MN 的面积为12.【思路点拨】根据极坐标与直角坐标互化公式求解,且把两圆画在极坐标系中,利用ρ的几何意义求三角形的面积.【答案】(1)C 1 ρcos θ=-2,C 2 ρ2-2ρcos θ-4ρsin θ+4=0;(2)12.。

简单曲线的极坐标方程(教案)

简单曲线的极坐标方程(教案)

简单曲线的极坐标方程教案内容:一、教学目标:1. 让学生掌握极坐标系的基本概念。

2. 让学生了解极坐标与直角坐标之间的关系。

3. 让学生学会求解简单曲线的极坐标方程。

二、教学内容:1. 极坐标系的基本概念。

2. 极坐标与直角坐标之间的关系。

3. 圆的极坐标方程。

4. 直线的极坐标方程。

5. 椭圆的极坐标方程。

三、教学重点与难点:1. 教学重点:圆、直线、椭圆的极坐标方程的求解。

2. 教学难点:椭圆的极坐标方程的求解。

四、教学方法:1. 采用讲解法,讲解极坐标系的基本概念,极坐标与直角坐标之间的关系。

2. 采用案例分析法,分析圆、直线、椭圆的极坐标方程的求解过程。

3. 采用练习法,让学生通过练习来巩固所学知识。

五、教学过程:1. 引入极坐标系的基本概念,讲解极坐标与直角坐标之间的关系。

2. 讲解圆的极坐标方程,举例说明求解过程。

3. 讲解直线的极坐标方程,举例说明求解过程。

4. 讲解椭圆的极坐标方程,举例说明求解过程。

5. 布置练习题,让学生巩固所学知识。

教学评价:通过课堂讲解、案例分析和练习,评价学生对极坐标系的理解和掌握程度,以及对简单曲线极坐标方程的求解能力。

六、教学准备:1. 教学PPT或黑板。

2. 极坐标系的图示或模型。

3. 圆、直线、椭圆的图示或模型。

4. 练习题。

七、教学步骤:1. 回顾极坐标系的基本概念,通过PPT或黑板展示极坐标系的图示,让学生回顾极坐标与直角坐标之间的关系。

2. 讲解圆的极坐标方程。

以一个具体的圆为例,说明圆的极坐标方程的求解过程。

将圆的直角坐标方程(x-a)²+ (y-b)²= r²转换为极坐标方程。

利用极坐标与直角坐标之间的关系,即x=ρcosθ,y=ρsinθ,将直角坐标方程中的x和y替换为极坐标方程中的ρcosθ和ρsinθ,得到圆的极坐标方程ρ=2a·cosθ。

3. 讲解直线的极坐标方程。

以一个具体的直线为例,说明直线的极坐标方程的求解过程。

(新)高中数学第一讲坐标系三简单曲线的极坐标方程学案新人教A版选修4-41

(新)高中数学第一讲坐标系三简单曲线的极坐标方程学案新人教A版选修4-41

三 简单曲线的极坐标方程1.能在极坐标系中给出简单图形(如过极点的直线,过极点或圆心在极点的圆)的方程. 2.通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义.1.圆的极坐标方程(1)曲线C 的极坐标方程:一般地,在极坐标系中,如果平面曲线C 上任意一点的极坐标中____________________,并且坐标________________________都在曲线C 上,那么方程f (ρ,θ)=0叫做曲线C 的极坐标方程.(1)由于平面上点的极坐标的表示形式不惟一,因此曲线的极坐标方程与直角坐标方程也有不同之处.一条曲线上点的极坐标有多组表示形式,这里要求至少有一组能满足极坐标方程.有些表示形式可能不满足方程.例如,对极坐标方程ρ=θ,点M (π4,π4)可以表示为(π4,π4+2π)或(π4,π4-2π)等多种形式,其中只有(π4,π4)的形式满足方程,而其他表示形式都不满足方程.(2)今后我们遇到的极坐标方程多是ρ=ρ(θ)的形式,即ρ为θ的一个函数. (3)由极坐标系中点的对称性可得到极坐标方程ρ=ρ(θ)的图形的对称性:若ρ(θ)=ρ(-θ),则相应图形关于极轴对称;若ρ(θ)=ρ(π-θ),则图形关于射线θ=π2所在的直线对称;若ρ(θ)=ρ(π+θ),则图形关于极点O 对称.(2)圆经过极点O ,圆与极轴的另一个交点是A (2a,0),圆的半径是a ,圆心坐标是C (a,0)(a >0),则圆的极坐标方程是________________.【做一做1-1】 极坐标方程ρ=1表示( ).A .直线B .射线C .圆D .椭圆【做一做1-2】 在极坐标系中,求圆心为A (8,π3),半径为5的圆的方程.2.直线的极坐标方程直线l 经过极点,极轴与直线l 的夹角是α,则直线l 的极坐标方程为________(ρ∈R ).求平面曲线的极坐标方程,就是要找极径ρ和极角θ之间的关系,常用解三角形(正弦定理、余弦定理)的知识、利用三角形的面积相等等来建立ρ,θ之间的关系.【做一做2-1】 极坐标方程sin θ=13(ρ∈R )表示的曲线是( ).A .两条相交直线B .两条射线C .一条直线D .一条射线【做一做2-2】 曲线θ=0,θ=π3(ρ≥0)和ρ=4所围成图形的面积是__________.【做一做2-3】 极坐标方程ρcos θ=sin 2θ所表示的曲线是__________.答案:1.(1)至少有一个满足方程f (ρ,θ)=0 适合方程f (ρ,θ)=0的点 (2)ρ=2a cos θ 【做一做1-1】 C【做一做1-2】 解:在圆上任取一点P (ρ,θ),那么,在△AOP 中,|OA |=8,|AP |=5,∠AOP =π3-θ或θ-π3.由余弦定理得cos ∠AOP =82+ρ2-522×8×ρ,即ρ2-16ρcos (θ-π3)+39=0为所求圆的极坐标方程. 2.θ=α【做一做2-1】 A 【做一做2-2】8π3【做一做2-3】 一条直线和一个圆 ∵ρcos θ=sin 2θ=2sin θcos θ, ∴cos θ=0或ρ=2sin θ. cos θ=0表示一条直线(y 轴);ρ=2sin θ=2cos (θ-π2)表示圆心为(1,π2),半径为1的圆.1.直角坐标系与极坐标系的区别剖析:(1)在平面直角坐标系内,点与有序实数对即坐标(x ,y )是一一对应的,可是在极坐标系内,虽然一个有序实数对(ρ,θ)只能与一个点P 对应,但一个点P 却可以与无数多个有序实数对(ρ,θ)对应.例如(ρ,2n π+θ)与(-ρ,(2n +1)π+θ)(n 为整数)表示的是同一个点,所以在极坐标系内点与有序实数对(ρ,θ)不是一一对应的.(2)在直角坐标系内,一条曲线如果有方程,那么曲线和它的方程是一一对应的(解集完全相同且互相可以推导的等价方程,只看作一个方程).可是在极坐标系内,虽然是一个方程只能与一条曲线对应,但一条曲线却可以与多个方程对应,所以曲线和它的方程不是一一对应的.(3)在直角坐标系内,曲线上每一点的坐标一定适合它的方程,可是在极坐标系内,曲线上一点的所有坐标不一定都适合方程.例如给定曲线ρ=θ,设点P 的一个极坐标为(π4,π4),那么点P 适合方程ρ=θ,从而是曲线上的一个点,但点P 的另一个极坐标(π4,9π4)就不适合方程ρ=θ了.所以在极坐标系内,确定某一个点P 是否在某一曲线C 上,只需判断点P 的极坐标中是否有一种形式适合曲线C 的方程即可.2.求极坐标方程的步骤 剖析:求曲线的极坐标方程的方法和步骤与求直角坐标方程的步骤类似,就是把曲线看作适合某种条件的点的集合或轨迹.将已知条件用曲线上的点的极坐标ρ,θ的关系式f (ρ,θ)=0表示出来,就得到曲线的极坐标方程,具体如下:(1)建立适当的极坐标系,设P (ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式.(3)将列出的关系式进行整理,化简,得出曲线的极坐标方程.(4)证明所得方程就是曲线的极坐标方程,若方程的推导过程正确,化简过程都是同解变形,证明可以省略.3.常见的直线和圆的极坐标方程 剖析:(1)直线的极坐标方程(a >0).①过极点,并且与极轴成α角的直线的极坐标方程:θ=α(ρ∈R ); ②垂直于极轴和极点间的距离为a 的直线的极坐标方程:ρcos θ=a ; ③平行于极轴和极轴间的距离为a 的直线的极坐标方程:ρsin θ=a ;④不过极点,和极轴成α角,到极点距离为a 的直线的极坐标方程:ρsin(α-θ)=a .(2)圆的极坐标方程(a >0).①圆心在极点,半径为a 的圆的极坐标方程:ρ=a ;②圆心在(a,0),半径为a 的圆的极坐标方程:ρ=2a cos θ;③圆心在(a ,π),半径为a 的圆的极坐标方程:ρ=-2a cos θ;④圆心在(a ,π2),半径为a 的圆的极坐标方程:ρ=2a sin θ;⑤圆心在(a ,3π2),半径为a 的圆的极坐标方程:ρ=-2a sin θ;⑥圆心在(a ,θ0),半径为a 的圆的极坐标方程:ρ=2a cos (θ-θ0).题型一 圆的极坐标方程【例1】 求圆心在A (2,3π2),并且过极点的圆的极坐标方程,并把它化为直角坐标方程.反思:在求曲线的极坐标方程时,关键是找出曲线上的点满足的几何条件,将它用坐标表示,然后化简,最后求出ρ与θ的函数关系,即要求的极坐标方程.题型二 直线的极坐标方程【例2】 求过点A (1,0)且倾斜角为π4的直线的极坐标方程.分析:本题可用两种解法:(1)可先根据题意画出草图,并设点M (ρ,θ)是直线上的任意一点,从而由等量关系建立关于ρ,θ的方程并化简,最后检验是否是所求即可;(2)可先由已知条件写出直线的点斜式的直角坐标方程,然后由公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ化为极坐标方程即可.反思:解法一通过运用正弦定理解三角形建立了动点M 所满足的等式,从而建立了以ρ,θ为未知数的方程;解法二先求出直线的直角坐标方程,然后通过利用直角坐标向极坐标的转化公式间接得解.题型三 直角坐标方程与极坐标方程的互化【例3】 将下列曲线的直角坐标方程化为极坐标方程:(1)射线y =3x (x ≤0);(2)圆x 2+y 2+2ax =0(a ≠0).分析:由公式⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ化简即可.反思:化曲线的直角坐标方程f (x ,y )=0为极坐标方程f (ρ,θ)=0,只要将x =ρcosθ,y =ρsin θ代入到方程f (x ,y )=0中即可.化为极坐标方程时,如果不加特殊说明,就认为ρ≥0.例如x 2+y 2=25化为极坐标方程时,有ρ=5或ρ=-5两种情况,由于ρ≥0,所以只取ρ=5.事实上,这两个方程都表示以极点为圆心,以5为半径的圆.题型四 易错辨析【例4】 把直角坐标方程x +y =0化为极坐标方程. 错解:将x =ρcos θ,y =ρsin θ代入x +y =0得 ρcos θ+ρsin θ=0.∴ρ(cos θ+sin θ)=0.∴tan θ=-1.所以极坐标方程是θ=k π-π4(k ∈Z ).答案:【例1】 解:如图,设M (ρ,θ)为圆上除O 、B 外的任意一点,连接OM ,MB ,则有OB =4,|OM |=ρ,∠MOB =|θ-3π2|,∠BMO =π2,从而△BOM 为直角三角形,所以有|OM |=|OB |cos ∠MOB ,即ρ=4cos(θ-3π2)=-4sin θ,点O (0,0),B (4,3π2)也适合此方程,故所求圆的极坐标方程为ρ=-4sin θ.化为直角坐标方程为x 2+y 2+4y =0.【例2】解法一:如图,设M (ρ,θ)(ρ≥0)为直线上除点A 以外的任意一点,则∠xAM =π4,∠OAM =3π4,∠OMA =π4-θ,在△OAM 中,由正弦定理得OM sin ∠OAM =OAsin ∠OMA,即ρsin 3π4=1sin π4-θ, 所以ρsin(π4-θ)=22,即ρ(sin π4cos θ-cos π4sin θ)=22,化简,得ρ(cos θ-sin θ)=1,经检验点A (1,0)的坐标适合上述方程,所以满足条件的直线的极坐标方程为ρ(cos θ-sin θ)=1.解法二:以极点O 为直角坐标原点,极轴为x 轴,建立平面直角坐标系xOy , 直线的斜率k =tan π4=1,直线方程为y =x -1,将y =ρsin θ,x =ρcos θ(ρ≥0)代入上式,得 ρsin θ=ρcos θ-1,所以ρ(cos θ-sin θ)=1.【例3】 解:(1)将x =ρcos θ,y =ρsin θ代入y =3x ,得ρsin θ=3ρcos θ,∴tan θ=3,∴θ=π3或θ=4π3.又x ≤0,∴ρcos θ≤0,∴θ=4π3,∴射线y =3x (x ≤0)的极坐标方程为θ=4π3(ρ≥0).(2)将x =ρcos θ,y =ρsin θ代入x 2+y 2+2ax =0,得 ρ2cos 2 θ+ρ2sin 2 θ+2aρcos θ=0,即ρ(ρ+2a cos θ)=0,∴ρ=-2a cos θ,∴圆x 2+y 2+2ax =0(a ≠0)的极坐标方程为ρ=-2a cos θ,圆心为(-a,0),半径为r =|a |.【例4】 错因分析:由直角坐标求极坐标时,理论上不是惟一的,但这里通常约定θ只在[0,2π)范围内取值.正解:将x =ρcos θ,y =ρsin θ代入x +y =0得 ρcos θ+ρsin θ=0,∴ρ(cos θ+sin θ)=0,∴tan θ=-1.∴θ=3π4(ρ≥0)和θ=7π4(ρ≥0).综上所述,直线x +y =0的极坐标方程为θ=3π4(ρ≥0)和θ=7π4(ρ≥0)或θ=3π4(ρ∈R )或θ=7π4(ρ∈R ).1极坐标方程cos θ=22(ρ≥0)表示的曲线是( ). A .余弦曲线 B .两条相交直线 C .一条射线 D .两条射线2在极坐标系中,过点P (3,3π)且垂直于极轴的直线方程为( ). A .ρcos θ=32 B .ρsin θ=32C .ρ=32cos θD .ρ=32sin θ3(2012广东惠州一模)在极坐标系中,点P (2,32π)到直线l :3ρcos θ-4ρsin θ=3的距离为________.4求过A (2,4π)且平行于极轴的直线. 5在圆心的极坐标为A (4,0),半径为4的圆中,求过极点O 的弦的中点的轨迹.答案:1.D ∵cos θ=2,∴θ=4π±+2k π(k ∈Z ). 又∵ρ≥0,∴cos θ=2表示两条射线. 2.A 设直线与极轴的交点为A , 则|OA |=|OP |·cos332π=, 又设直线上任意一点M (ρ,θ), 则|OM |·cos θ=|OA |,即ρcos θ=32. 3.1 在相应直角坐标系中,P (0,-2),直线l 方程:3x -4y -3=0,所以P 到l 的距离:d1=.4.解:如图所示,在直线l 上任意取一点M (ρ,θ),∵A (2,4π), ∴|MH |=2sin 4π.在Rt △OMH 中,|MH |=|OM |sin θ, 即ρsin θ,∴过A (2,4π)且平行于极轴的直线方程为ρsin θ. 5.解:设M (ρ,θ)是所求轨迹上任意一点.连接OM 并延长交圆A 于点P (ρ0,θ0),则有θ0=θ,ρ0=2ρ.由圆心为(4,0),半径为4的圆的极坐标方程为ρ=8cos θ,得ρ0=8cos θ0.所以2ρ=8cos θ,即ρ=4cos θ.故所求轨迹方程是ρ=4cos θ.它表示以(2,0)为圆心,2为半径的圆.。

选修4-4曲线极坐标方程-教案

选修4-4曲线极坐标方程-教案

简单曲线的极坐标方程【教学目标】1.掌握极坐标方程的意义2.能在极坐标中求直线和圆的极坐标方程3.通过观察圆的极坐标方程的推导过程,体会圆的极坐标方程的简介美【重难点分析】;教学重点:直线和圆的极坐标方程的求法教学难点:对不同位置的直线和圆的极坐标方程的理解【教学方法】引导发现、讲授【教学过程】1.导入问题设置1、直角坐标系中怎样描述点的位置#2、曲线的方程和方程的曲线(直角坐标系中)定义怎样3、直角坐标系的建立可以求曲线的方程;极坐标系的建立是否可以求曲线方程2、极坐标方程的概念引例如图,在极坐标系下半径为a的圆的圆心坐标为(a,0)(a>0),你能用一个等式表示圆上任意一点,的极坐标(,)满足的条件:[解] 设M (,)是圆上O、A以外的任意一点,连接AM,则有,OM=OAcosθ,所以,ρ=2acosθ.[思考] 曲线上的点的坐标都满足这个方程吗定义:一般地,在极坐标中,如果一条曲线C上任意一点的极坐标中至少有一个满足方程),(=θρf,并且坐标适合0),(=θρf的点都在曲线C上,那么这个方程称为这条曲线C的极坐标方程,这条曲线C称为这个极坐标方程的曲线。

[注] 1.定义中的所涉及到的两个方面.2.极坐标系下求曲线方程的步骤:Step1找到曲线上点满足的几何条件;Step2 几何条件坐标化;$Step3 化简.例1 已知圆O的半径为r,建立怎样的坐标系,可以使圆的极坐标方程更简单[分析]建系;设点M(ρ,θ);列式OM=r,即:ρ=r.)[思考] 和直角坐标方程222ryx=+相比较,此方程有哪些优点[变式练习] 求下列圆的极坐标方程(1)中心在C(a,0),半径为a;(2)中心在(a,/2),半径为a;答案:(1)=2acos (2) =2asin例2.(备选)(1)化在直角坐标方程0822=-+yyx为极坐标方程,&(2)化极坐标方程)3cos(6πθρ-=为直角坐标方程。

人教版高中数学选修4-4教案【第5节】曲线的极坐标方程的意义

人教版高中数学选修4-4教案【第5节】曲线的极坐标方程的意义

第 5 节:曲线的极坐标方程的意义教课目标:知识目标:掌握极坐标方程的意义。

能力目标:能在极坐标中给出简单图形的极坐标方程。

教课要点:极坐标方程的意义。

教课难点:求简单图形的极坐标方程。

讲课种类:新讲课教课模式:启迪、引诱发现教课.教具:多媒体、实物投影仪教课过程:一、复习引入:问题情境1、直角坐标系成立能够描绘点的地点,极坐标也有相同作用?2、直角坐标系的成立能够求曲线的方程,极坐标系的成立能否能够求曲线方程?学生回首1、直角坐标系和极坐标系中如何描绘点的地点?2、曲线的方程和方程的曲线(直角坐标系中)定义?3、求曲线方程的步骤?二、解说新课:1、引例:以极点O 为圆心 5 为半径的圆上随意一点极径为 5,反过来,极径为 5 的点都在这个圆上。

所以,以极点为圆心, 5 为半径的圆能够用方程 5 来表示。

2、发问:曲线上的点的坐标都知足这个方程吗?3、定义:一般地,在极坐标系中,假如平面曲线上 C 上随意一点的极坐标中起码有一个满足方程 f ( , ) 0 ,而且坐标合适方程 f ( , ) 0 的点都在曲线 C 上,那么方程 f ( , ) 0 称为曲线C的极坐标方程,曲线C称为这个极坐标方程的曲线。

4、求曲线的极坐标方程:例 1.求经过点A(3,0) 且与极轴垂直的直线l 的极坐标方程。

变式训练:已知点P 的极坐标为(1,) ,那么过点P 且垂直于极轴的直线极坐标方程。

例 2.求圆心在A(3,0) 且过极点的圆A的极坐标方程。

变式训练:求圆心在A(3, ) 且过极点的圆 A 的极坐标方程。

2例 3.( 1)化在直角坐标方程x2y 28 y0 为极坐标方程,( 2)化极坐标方程 6 cos() 为直角坐标方程。

3三、稳固与练习直角方程与极坐标方程互化2( 1)cos(2)tan四、小结:本节课学习了以下内容:1.极坐标方程的定义;2.如何求曲线的极坐标方程。

五、课后作业:。

高中新课程数学(新课标人教A版)选修4-4《1.3简单曲线的极坐标方程》教案

高中新课程数学(新课标人教A版)选修4-4《1.3简单曲线的极坐标方程》教案

(2)直角坐标方程2x-y+1 0的极坐标方程为_______
(3)直角坐标方程x2 y2 9的极坐标方程为_____
(4)直角坐标方程x 3的极坐标方程为_______
四、课堂小结: 1.曲线的极坐标方程的概念. 2.求曲线的极坐标方程的一般步骤.
五、课外作业:教材 P28 1,2
1.在极坐标系中,已知圆 C 的圆心 C(3, ) ,半径 r 3 , 6

4
A ( R) B 5 ( 0) C 5 ( R) D ( 0)
4
4
4
4
3、在极坐标系中,过点 A(2, ) 且与极轴平行的直线 l 的极坐标方程是 2
4、在极坐标系中,过圆 4cos 的圆心,且垂直于极轴的直线方程是
5、在极坐标系中,过点 A(2, 3 ) 且垂直于极轴的直线 l 的极坐标方程是 4
4 l
4
x O
思考:用极坐标表示直线时方程是否唯一?
探究 2、如何表示过点 A(a, 0)(a 0) ,且垂直于极轴的直线 l 的极坐标方程,化为
直角坐标方程是什么?过点 A(a, 0)(a 0二、知识应用: 例 1、已知点 P 的极坐标为 (2, ) ,直线 l 过点 P 且与极轴所成的角为 ,求直线
1、直角坐标系建立可以描述点的位置极坐标也有同样作用? 2、直角坐标系的建立可以求曲线的方程
极坐标系的建立是否可以求曲线方程?
学生回顾 1、直角坐标系和极坐标系中怎样描述点的位置? 2、曲线的方程和方程的曲线(直角坐标系中)定义 3、求曲线方程的步骤 4、极坐标与直角坐标的互化关系式:
二、讲解新课: 1、引例.如图,在极坐标系下半径为 a 的圆的圆心坐标为
(a,0)(a>0),你能用一个等式表示圆上任意一点, 的极坐标(,)满足的条件? 解:设 M (,)是圆上 O、A 以外的任意一点,连接 AM,

选修4-4第一章《简单曲线的极坐标方程》

选修4-4第一章《简单曲线的极坐标方程》
学科教师辅导讲义
讲义编号_
学员编号: 学员姓名: 课 题 年 级: 辅导科目:数学 简单曲线的极坐标方程 1、进一步理解极坐标系和极坐标方程。 教学目的 2、能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的 极坐标方程。 教学内容 课 时 数: 3 学科教师:
授课日期及时段

, ) 的极坐标满足方程 . 4 4
5 , ) 可以表示为 ( , 2 )或( , 2 )或(- , ) 等多种形式 , 其 4 4 4 4 4 4 4 4
三、重难点突破
例 1 、 在 极 坐 标 系 中 , 如 果 A(2,

4
), B (2,
cos 4, 设A(0 ,0 ),P( , ),∵点 A 在直线 cos 4 上,
∴ 0 cos 0 4 ∵⊿OPA 为等腰直角三角形,且∠OPA= ∴ 0 = 2 ,且 0 ①
4
,而|OP|= ,|OA|= 0 ,以及 POA , 4 2
二、知识梳理
1、极坐标系的概念 (1)极坐标系
如图所示
,在平面内取一个定点 O ,叫做极点,自极点 O 引一条射线 Ox ,叫做极轴;再选定一
个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. 注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标
sin sin( ) 3

(0

3
), 即为所求极坐标方程.
例 3、如图,点 A 在直线 x=4 上移动,⊿OPA 为等腰直角三角形,⊿OPA 的顶角为∠OPA(O,P,A 依次按顺时针 方向排列) ,求点 P 的轨迹方程,并判断轨迹形状。

高中数学_简单曲线的极坐标方程教学设计学情分析教材分析课后反思

高中数学_简单曲线的极坐标方程教学设计学情分析教材分析课后反思

简单曲线的极坐标教学设计简单曲线的极坐标方程学情分析本班学生是高二文科班,学生数学基础比较薄弱。

知识上:刚学习了极坐标的概念和极坐标和直角坐标的互化,为学习简单曲线的极坐标方程作了必要的知识准备,虽然进行了简单的坐标互化练习,由于极坐标是全新的概念学生还不是很熟悉,还需要一段接受熟知的过程。

思维上:文科学生数学思维稍弱,注意提前预习,浅入浅出。

能力上:注意引导学生主动探究,学会分析问题,探究问题,解决问题,自主归纳总结得出结论。

简单曲线的极坐标方程效果分析本节课实现了“三维”教学目标的有机统一,教学目标可观测,可评价;教师能根据教学过程中的新情况、新变化,生成新的教学目标,及时解决学生遇到的新问题。

教学目标达成度高。

本节课做到了面向全体,鼓励学生积极探索,交流合作,教师及时地鼓。

另外,抓知识选择的切入点,从学生原有的认知水平和所需的知识特点入手,让学生在解决预习问题过程中学习,观察,类比,思考,探究,概括,动手尝试相结合,体现学生的主体地位,突出了重点,突破了难点,增强了学生由特殊到一般的数学思维能力,增强了探索精神,形成了严谨的科学态度。

简单曲线的极坐标方程教材分析本节课是选修4-4简单曲线的极坐标方程,包括圆的极坐标方程和直线的极坐标方程,其核心重点是直角坐标方程和极坐标方程的互化。

理解它的关键是从根本上理解直角坐标和极坐标互化公式。

因此,通过本节课对简单极坐标方程的推导,不仅能复习巩固互化公式,还可使学生更深的理解极坐标系和互化公式,从而更熟练的进行方程互化,解决实际问题。

而且通过对方程的探究,能使学生体验到数学发现和创造的历程,进而培养学生自主探究,合作探究等研究性学习能力。

文科学生数学思维稍弱,注意提前预习,浅入浅出。

根据学生具体情况,制定如下教学目标:1、知识与技能:掌握简单图形(过极点的圆,圆心在极点的圆,过极点的直线,垂直或平行于极径的直线)的极坐标方程;能熟练进行两种方程的互化2、方法与过程:通过课前预习自主研究简单图形的极坐标方程的特点,比较简单图形在极坐标系和平面直角坐标系中的方程。

人教版高中数学选修(4-4)-1.3《简单曲线的极坐标方程》参考教案2

人教版高中数学选修(4-4)-1.3《简单曲线的极坐标方程》参考教案2

简单曲线的极坐标方程知识与技能:通过本节知识的学习,使我们对圆的极坐标方程有了全面的认识,今通过建立不同的极坐标系来描述圆的极坐标方程.理解直线的各种极坐标方程并注意极坐标与直角坐标之间的互化关系,会由直角坐标化为极坐标.过程与方法:(1)先复习平面直角坐标系中曲线的直角坐标方程与曲线的关系,逐步引出曲线的极坐标方程,使学生有了一个初步的了解.(2)以过极点O的圆为例,通过作图、设角,利用直角三角形中的边角关系,得出极坐标系中,过极点O的圆的极坐标方程,由此得出了曲线的极坐标方程的概念,使极坐标中曲线与方程联系起来.(3)通过变换极点的位置,写出不同极坐标系中圆的不同的极坐标方程,并注意与极坐标系中圆的方程相比较,理解它们之间的联系与不同之处,探寻各自的优点,使我们对圆的方程有一个全面的认识,并会直角坐标方程与极坐标方程二者之间的互化(4)从经过极点的直线入手分析极坐标系中不同的直线的极坐标方程,先是过极点从极轴到直线的角为,写出它的极坐标方程这是一条射线,完整的直线可以用表示.与直角坐标方程y = x表示的直线相比较,我们可以看出,用极坐标方程表示直线并不方便,为了更方便地表示直线,可以允许r 取全体实数,从而有或都表示同一条直线.(5)最后通过例2和例3对不同的直线的极坐标方程作了一个全面的分析,使我们对各种各样的直线的极坐标方程有了一个全面的认识.情感、态度与价值观:通过为本节知识的学习,使我们了解到事物的多样性及其中必然的内在的联系性,为我们全面的、正确的分析问题和处理问题打好基础.它也会教会我们多角度、多层次地分析问题.教学过程复习回顾1. 极坐标系的概念在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立一个极坐标系.设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,记为r;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记为q.有序实数对(r,q)叫做点M的极坐标,记作M(r, q).一般地,不作特殊说明时,我们认为r≥0,q可取任意实数.2. 极坐标与直角坐标的互化讲授新课1. 圆的极坐标方程如图,半径为a的圆的圆心坐标为C(a,0)(a>0).你能用一个等式表示圆上任意一点的极坐标(r,q)满足的条件吗?圆经过极点O.设圆和极轴的另一个交点是A,那么|OA|=a.设M(r,q)为圆上除点O,A以外的任意一点,则OM⊥AM.在Rt△AMO中,|OM|=|OA|cos∠MOA,即r=2a cos q ①一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(r,q)=0,并且坐标适合方程f(r,q)=0的点都在曲线C上,那么方程f (r,q)=0叫做曲线C的极坐标方程.①就是圆心在C(a,0)(a>0),半径为a的极坐标方程.例1.已知圆O的半径为r,建立怎样的极坐标系,可以使圆的极坐标方程更简单?2. 直线的极坐标方程(课本图1-17)直线l经过极点,从极轴到直线l的角是,求直线l的极坐标方程.。

选修4-4曲线极坐标方程-教案

选修4-4曲线极坐标方程-教案

选修4-4曲线极坐标方程-教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN简单曲线的极坐标方程【教学目标】1.掌握极坐标方程的意义2.能在极坐标中求直线和圆的极坐标方程3.通过观察圆的极坐标方程的推导过程,体会圆的极坐标方程的简介美【重难点分析】教学重点:直线和圆的极坐标方程的求法教学难点:对不同位置的直线和圆的极坐标方程的理解【教学方法】引导发现、讲授【教学过程】1.导入问题设置1、直角坐标系中怎样描述点的位置?2、曲线的方程和方程的曲线(直角坐标系中)定义怎样?3、直角坐标系的建立可以求曲线的方程;极坐标系的建立是否可以求曲线方程?2、极坐标方程的概念引例如图,在极坐标系下半径为a的圆的圆心坐标为(a,0)(a>0),你能用一个等式表示圆上任意一点,的极坐标(ρ,θ)满足的条件?[解] 设M (ρ,θ)是圆上O 、A 以外的任意一点,连接AM ,则有,OM=OAcos θ,所以,ρ=2acos θ.[思考] 曲线上的点的坐标都满足这个方程吗?定义:一般地,在极坐标中,如果一条曲线C 上任意一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合0),(=θρf 的点都在曲线C 上,那么这个方程称为这条曲线C 的极坐标方程,这条曲线C 称为这个极坐标方程的曲线。

[注] 1.定义中的所涉及到的两个方面.2.极坐标系下求曲线方程的步骤:Step1找到曲线上点满足的几何条件;Step2 几何条件坐标化;Step3 化简.例1 已知圆O 的半径为r,建立怎样的坐标系,可以使圆的极坐标方程更简单?[分析] 建系;设点M (ρ,θ);列式OM =r , 即:ρ=r.[思考] 和直角坐标方程222r y x =+相比较,此方程有哪些优点?[变式练习] 求下列圆的极坐标方程(1)中心在C(a ,0),半径为a ;(2)中心在(a,π/2),半径为a ;答案:(1)ρ=2acos θ (2) ρ=2asin θ例2.(备选)(1)化在直角坐标方程0822=-+y y x 为极坐标方程,(2)化极坐标方程)3cos(6πθρ-= 为直角坐标方程。

高中数学选修4-4极坐标系的教学设计-Word版

高中数学选修4-4极坐标系的教学设计-Word版

课题极坐标系的概念(微课教案)一、教学背景(一)教学内容分析:本节内容选自《选修4-4》第一单元第二节,由于生活中的很多问题都是用方位角和距离来确定点的位置,再用直角坐标表示不太方便,从而建立极坐标系(二)学情分析:学生对直角坐标系已经有了系统的学习,而极坐标系对学生来说是个全新的概念二、教学目标:知识目标:理解极坐标的概念能力目标:能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.德育目标:通过观察、探索、发现的创造性过程,培养创新意识。

三、重难点:教学重点:理解极坐标的意义教学难点:能够在极坐标系中用极坐标确定点位置四、教学方法:启发、诱导发现教学.五、教学过程:(一)、新课导入:问题引出:看到极坐标系这个标题你能想到什么?(1)已经有了直角坐标系,为什么要引入极坐标系?(2)极坐标系与直角坐标系有什么不同?(3)如何建立极坐标系?(4)点的极坐标如何表示?(5)点的极坐标与点的直角坐标之间有什么联系和区别?情境导入:情境1:某人问路人,到某某学校怎么走?路人:从这里出发,向北走2000米思考:从路人的回答中,你发现路人告诉问路人几个问题?情境2:根据刚才的指路过程,回答以下问题:如图为某校园的平面示意图,假设某同学在教学楼处。

(1)他向东偏60°方向走120M 后到达什么位置?该位置唯一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述?问题1:为了简便地表示上述问题中点的位置,应创建怎样的坐标系呢? 问题2:如何刻画这些点的位置?这一思考,能让学生结合自己熟悉的背景,体会在某些情况下用距离与角度来刻画点的位置的方便性,为引入极坐标提供思维基础.(二)、讲解新课:从情镜2中探索出:在生活中人们经常用方向和距离来表示一点的位置。

这种用方向和距离表示平面上一点的位置的思想,就是极坐标的基本思想。

1、极坐标系的建立:在平面上取一个定点O ,自点O 引一条射线OX ,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。

1[1].2《极坐标系--简单曲线的极坐标方程》教案(新人教选修4-4)

1[1].2《极坐标系--简单曲线的极坐标方程》教案(新人教选修4-4)

三、简单曲线的极坐标方程 【基础知识导学】1、极坐标方程的定义:在极坐标系中,如果平面曲线C 上任一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程0),(=θρf 叫做曲线C 的极坐标方程。

1. 直线与圆的极坐标方程① 过极点,与极轴成α角的直线极坐标议程为αθραθtan tan )(=∈=或R ②以极点为圆心半径等于r 的圆的极坐标方程为 r =ρ 【知识迷航指南】例1求(1)过点)4,2(πA 平行于极轴的直线。

(2)过点)3,3(πA 且和极轴成43π角的直线。

解(1)如图,在直线l 上任取一点),(θρM ,因为)4,2(πA ,所以|MH|=224sin =⋅π在直角三角形MOH 中|MH|=|OM|sin θ即2sin =θρ,所以过点)4,2(πA 平行于极轴的直线为2sin =θρ。

(2)如图 ,设M ),(θρ为直线l 上一点。

)3,3(πA , OA =3,3π=∠AOB xO由已知43π=∠MBx ,所以125343πππ=-=∠OAB ,所以127125πππ=-=∠OAM又θπθ-=-∠=∠43MBx OMA 在∆MOA 中,根据正弦定理得127sin)43sin(3πρθπ=- 又426)34sin(127sin +=+=πππ将)43sin(θπ-展开化简可得23233)cos (sin +=+θθρ所以过)3,3(πA 且和极轴成43π角的直线为:23233)cos (sin +=+θθρ 〔点评〕求曲线方程,关键是找出曲线上点满足的几何条件。

将它用坐标表示。

再通过代数变换进行化简。

例2(1)求以C(4,0)为圆心,半径等于4的圆的极坐标方程。

(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程。

解:(1)设),(θρp 为圆C 上任意一点。

圆C 交极轴于另一点A 。

由已知 OA =8 在直角∆AOD 中θcos OA OD =,即 θρcos 8=, 这就是圆C 的方程。

高中数学 1.3 简单曲线的极坐标方程教案 新人教A版选修4-4#优选.

高中数学 1.3 简单曲线的极坐标方程教案 新人教A版选修4-4#优选.

三简单曲线的极坐标方程课标解读1.了解极坐标方程的意义,了解曲线的极坐标方程的求法.2.会进行曲线的极坐标方程与直角坐标方程的互化;了解简单图形(如过极点的直线、过极点或圆心在极点的圆)表示的极坐标方程.3.能够运用直线和圆的极坐标方程解决问题.1.曲线与方程的关系在平面直角坐标系中,平面曲线C可以用方程f(x,y)=0表示.曲线与方程满足如下关系:(1)曲线C上点的坐标都是方程f(x,y)=0的解;(2)以方程f(x,y)=0的解为坐标的点都在曲线C上.2.曲线的极坐标方程一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中至少有一个满足方程f(ρ,θ)=0,并且坐标适合方程f(ρ,θ)=0的点都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.3.常见曲线的极坐标方程曲线图形极坐标方程圆心在极点,半径为r的圆ρ=r(0≤θ<2π)圆心为(r,0),半径为r的圆ρ=2r cos_θ(-π2≤θ≤π2)圆心为(r,π2),半径为r的圆ρ=2r sin_θ(0≤θ<π)过极点,倾斜角为α的直线θ=α或θ=α+π过点(a,0),与极轴垂直的直线ρcos_θ=a(-π2<θ<π2)过点(a,π2),与极轴平行的直线ρsin_θ=a(0<θ<π)1.曲线的极坐标方程是否惟一? 【提示】 由于平面上点的极坐标的表示形式不惟一,所以曲线上的点的极坐标有多种表示,曲线的极坐标方程不惟一.2.如何求圆心为C (ρ1,θ1),半径为r 的圆的极坐标方程?【提示】 如图所示,设圆C 上的任意一点为M (ρ,θ),且O 、C 、M 三点不共线,不妨以如图所示情况加以说明,在△OCM 中,由余弦定理得|OM |2+|OC |2-2|OM |·|OC |·cos∠COM =|CM |2,∴ρ2+ρ21-2ρρ1cos(θ-θ1)=r 2,可以检验,当O 、C 、M 三点共线时的点M 的坐标也适合上式,当θ<θ1时也满足该式,所以半径为r ,圆心在C (ρ1,θ1)的圆的极坐标方程为ρ2+ρ21-2ρρ1cos(θ-θ1)-r 2=0.圆的极坐标方程求圆心在C (2,3π2)处并且过极点的圆的极坐标方程,并判断点(-2,sin 5π6)是否在这个圆上.【思路探究】 解答本题先设圆上任意一点M (ρ,θ),建立等式转化为ρ,θ的方程,化简可得,并检验特殊点.【自主解答】如图,由题意知,圆经过极点O ,OA 为其一条直径,设M (ρ,θ)为圆上除点O ,A 以外的任意一点,则|OA |=2r ,连接AM ,则OM ⊥MA .在Rt △OAM 中,|OM |=|OA |cos ∠AOM ,即ρ=2r cos(3π2-θ),∴ρ=-4sin θ,经验证,点O (0,0),A (4,3π2)的坐标满足上式.∴满足条件的圆的极坐标方程为ρ=-4sin θ.∵sin 5π6=12,∴ρ=-4sin θ=-4sin 5π6=-2,∴点(-2,sin 5π6)在此圆上.1.求曲线的极坐标方程通常有以下五个步骤:①建立适当的极坐标系(本题无需建);②在曲线上任取一点M(ρ,θ);③根据曲线上的点所满足的条件写出等式;④用极坐标(ρ,θ)表示上述等式,并化简得曲线的极坐标方程;⑤证明所得的方程是曲线的极坐标方程.(一般只要对特殊点加以检验即可).2.求曲线的极坐标方程,关键是找出曲线上的点满足的几何条件,并进行坐标表示.(2012·江西高考)曲线C的直角坐标方程为x2+y2-2x=0,以原点为极点,x轴的正半轴为极轴建立极坐标系,则曲线C的极坐标方程为________.【解析】直角坐标方程x2+y2-2x=0可化为x2+y2=2x,将ρ2=x2+y2,x=ρcos θ代入整理得ρ=2cos θ.【答案】ρ=2cos θ直线或射线的极坐标方程求过点A(1,0),且倾斜角为π4的直线的极坐标方程.【思路探究】画出草图―→设点M(ρ,θ)是直线上的任意一点―→建立关于ρ,θ的方程――→化简检验【自主解答】法一设M(ρ,θ)为直线上除点A以外的任意一点.则∠xAM=π4,∠OAM=3π4,∠OMA=π4-θ.在△OAM中,由正弦定理得|OM|sin∠OAM=|OA|sin∠OMA,即ρsin3π4=1sinπ4-θ,故ρsin(π4-θ)=22,即ρ(sinπ4cos θ-cosπ4sin θ)=22,化简得ρ(cos θ-sin θ)=1,经检验点A(1,0)的坐标适合上述方程,所以满足条件的直线的极坐标方程为ρ(cos θ-sin θ)=1,其中,0≤θ<π4,ρ≥0和5π4<θ<2π,ρ≥0.法二以极点O为直角坐标原点,极轴为x轴,建立平面直角坐标系xOy.∵直线的斜率k=tanπ4=1,∴过点A(1,0)的直线方程为y=x-1.将y=ρsin θ,x=ρcos θ代入上式,得ρsin θ=ρcos θ-1,∴ρ(cos θ-sin θ)=1,其中,0≤θ<π4,ρ≥0和5π4<θ<2π,ρ≥0.法一通过运用正弦定理解三角形建立了动点M 所满足的等式,从而集中条件建立了以ρ,θ为未知数的方程;法二先求出直线的直角坐标方程,然后通过直角坐标向极坐标的转化公式间接得解,过渡自然,视角新颖,不仅优化了思维方式,而且简化了解题过程.若本例中条件不变,如何求以A 为端点且在极轴上方的射线的极坐标方程? 【解】 由题意,设M (ρ,θ)为射线上任意一点,根据例题可知,ρsin(π4-θ)=22,化简得ρ(cos θ-sin θ)=1.经检验点A (1,0)的坐标适合上述方程.因此,以A 为端点且在极轴上方的射线的极坐标方程为ρ(cos θ-sin θ)=1(其中ρ≥0,0≤θ<π4).极坐标方程与直角坐标方程的互化若曲线C 的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x轴的正半轴建立直角坐标系.(1)求曲线C 的直角坐标方程;(2)若直线ρsin(θ-π4)=0与曲线C 相交于A 、B ,求|AB |.【思路探究】 利用极坐标化为直角坐标的公式将直线和圆的极坐标方程化为直角坐标方程求解.【自主解答】 (1)因为⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,所以ρ2=x 2+y 2,由ρ=2sin θ+4cos θ,得ρ2=2ρsin θ+4ρcos θ ∴x 2+y 2-4x -2y =0,即(x -2)2+(y -1)2=5.(2)由ρsin(θ-π4)=0,得ρ(22sin θ-22cos θ)=0, 即ρsin θ-ρcos θ=0,∴x -y =0.由于圆(x -2)2+(y -1)2=5的半径为r =5,圆心(2,1)到直线x -y =0的距离为d =|2-1|2=12, ∴|AB |=2r 2-d 2=3 2.1.直角坐标方程化为极坐标方程,只需把公式x =ρcos θ及y =ρsin θ直接代入并化简即可;而极坐标方程化为直角坐标方程要通过变形,构造形如ρcos θ,ρsin θ,ρ2的形式,进行整体代换.其中方程的两边同乘以(或同除以)ρ及方程两边平方是常用的变形方法.但对方程进行变形时,方程必须保持同解,因此应注意对变形过程的检验.2.对方程进行合理变形,并注重公式的正向、逆向与变形使用.(2013·北京高考)在极坐标系中,点(2,π6)到直线ρsin θ=2的距离等于________.【解析】 极坐标系中点(2,π6)对应的直角坐标为(3,1).极坐标系中直线ρsin θ=2对应直角坐标系中直线y =2.故所求距离为1.【答案】 1极坐标方程的应用 从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使|OM |·|OP |=12.(1)求点P 的轨迹方程;(2)设R 为l 上的任意一点,试求|RP |的最小值.【思路探究】 建立点P 的极坐标方程,完成直角坐标与极坐标方程的互化,根据直线与圆的位置关系,数形结合求|RP |的最小值.【自主解答】 (1)设动点P 的极坐标为(ρ,θ),M 的极坐标为(ρ0,θ),则ρρ0=12.∵ρ0cos θ=4,∴ρ=3cos θ即为所求的轨迹方程. (2)将ρ=3cos θ化为直角坐标方程,得x 2+y 2=3x ,即(x -32)2+y 2=(32)2,知P 的轨迹是以(32,0)为圆心,半径为32的圆.直线l 的直角坐标方程是x =4. 结合图形易得|RP |的最小值为1.1.用极坐标法可使几何中的一些问题得出很直接、简单的解法.当然,因为建系的不同,曲线的极坐标方程也会不同.2.解题时关键是极坐标要选取适当,这样可以简化运算过程,转化为直角坐标时也容易一些.过极点O 作圆C :ρ=8cos θ的弦ON ,求ON 的中点M 的轨迹方程. 【解】 法一 如图,圆心C (4,0),半径r =|OC |=4,连接CM .∵M 为弦ON 的中点,∴CM ⊥ON ,故M 在以OC 为直径的圆上. 所以,动点M 的轨迹方程是ρ=4cos θ.法二 设M 点的坐标是(ρ,θ),N (ρ1,θ1). N 点在圆ρ=8cos θ上,∴ρ1=8cos θ1. ① ∵M 是ON 的中点, ∴⎩⎪⎨⎪⎧ρ1=2ρ,θ1=θ,将它代入①式得2ρ=8cos θ, 故M 的轨迹方程是ρ=4cos θ.(教材第15页习题1.3,第5题)已知直线的极坐标方程为ρsin(θ+π4)=22,求点A (2,74π)到这条直线的距离.(2013·安徽高考)在极坐标系中,圆ρ=2cos θ的垂直于极轴的两条切线方程分别为( )A .θ=0(ρ∈R )和ρcos θ=2B .θ=π2(ρ∈R )和ρcos θ=2C .θ=π2(ρ∈R )和ρcos θ=1D .θ=0(ρ∈R )和ρcos θ=1【命题意图】 考查极坐标方程与直角坐标方程之间的转化,圆的方程及其切线的求解.通过极坐标方程和直角坐标方程之间的转化考查了知识的转化能力、运算求解能力和转化应用意识.【解析】 由ρ=2cos θ,得ρ2=2ρcos θ,化为直角坐标方程为x 2+y 2-2x =0,即(x -1)2+y 2=1,其垂直于极轴的两条切线方程为x =0和x =2,相应的极坐标方程为θ=π2(ρ∈R )和ρcos θ=2. 【答案】B1.(2013·安阳质检)下列点不在曲线ρ=cos θ上的是( )A .(12,π3)B .(-12,2π3)C .(12,-π3)D .(12,-2π3)【解析】 点(12,-23π)的极坐标满足ρ=12,θ=-23π,且ρ≠cos θ=cos(-23π)=-12.【答案】 D2.圆心在(1,0)且过极点的圆的极坐标方程为( ) A .ρ=1 B .ρ=cos θC .ρ=2cos θD .ρ=2sin θ【解析】 圆的直角坐标方程是(x -1)2+y 2=1,将x =ρcos θ,y =ρsin θ代入上式,整理得,ρ=2cos θ,即为此圆的极坐标方程.【答案】 C3.极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是( ) A .两个圆 B .两条直线C .一个圆和一条射线D .一条直线和一条射线【解析】 由题设,得ρ=1,或θ=π, ρ=1表示圆,θ=π(ρ≥0)表示一条射线. 【答案】 C4.已知曲线C 1,C 2的极坐标方程分别为ρcos θ=3,ρ=4cos θ(ρ≥0,0≤θ<π2),则曲线C 1与C 2交点的极坐标为________.【解析】 由ρcos θ=3,ρ=4cos θ,得4cos 2θ=3.又0≤θ<π2,则cos θ>0.∴cos θ=32,θ=π6,故ρ=2 3. ∴两曲线交点的极坐标为(23,π6).【答案】(23,π6)(时间40分钟,满分60分)一、选择题(每小题5分,共20分)1.极坐标方程ρ=cos(π4-θ)表示的曲线是( )A .双曲线B .椭圆C .抛物线D .圆【解析】 ρ=cos(π4-θ)=cos π4cos θ+sin π4sin θ=22cos θ+22sin θ,∴ρ2=22ρcos θ+22ρsin θ,即x 2+y 2=22x +22y . 化简整理,得(x -24)2+(y -24)2=14,表示圆. 【答案】 D2.(2013·三门峡质检)过极点倾斜角为π3的直线的极坐标方程可以为( )A .θ=π3B .θ=π3,ρ≥0C .θ=4π3,ρ≥0 D.θ=π3和θ=4π3,ρ≥0【解析】 以极点O 为端点,所求直线上的点的极坐标分成两条射线.∵两条射线的极坐标方程为θ=π3和θ=43π.∴直线的极坐标方程为θ=π3和θ=43π(ρ≥0).【答案】 D3.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标是( )A .(1,π2)B .(1,-π2)C .(1,0)D .(1,π) 【解析】 由ρ=-2sin θ得ρ2=-2ρsin θ,化成直角坐标方程为x 2+y 2=-2y ,化成标准方程为x 2+(y +1)2=1,圆心坐标为(0,-1),其对应的极坐标为(1,-π2).【答案】 B4.在极坐标系中与圆ρ=4sin θ相切的一条直线的方程为( )A .ρcos θ=12 B .ρcos θ=2C .ρ=4sin(θ+π3)D .ρ=4sin(θ-π3)【解析】 极坐标方程ρ=4sin θ化为ρ2=4ρsin θ,即x 2+y 2=4y ,即x 2+(y -2)2=4.由所给的选项中ρcos θ=2知,x =2为其对应的直角坐标方程,该直线与圆相切. 【答案】 B二、填空题(每小题5分,共10分)5.(2013·鹤壁调研)点Q 是圆ρ=4cos θ上的一点,当Q 在圆上移动时,OQ (O 是极点)中点P 的轨迹的极坐标方程是________.【解析】 ρ=4cos θ是以(2,0)为圆心,半径为2的圆,则P 的轨迹是以(1,0)为圆心,半径为1的圆,所以极坐标方程是ρ=2cos θ.【答案】 ρ=2cos θ6.(2012·安徽高考)在极坐标系中,圆ρ=4sin θ的圆心到直线θ=π6(ρ∈R )的距离是________.【解析】 极坐标系中的圆ρ=4sin θ转化为平面直角坐标系中的一般方程为:x2+y 2=4y ,即x 2+(y -2)2=4,其圆心为(0,2),直线θ=π6转化为平面直角坐标系中的方程为y =33x ,即3x -3y =0. ∴圆心(0,2)到直线3x -3y =0的距离为|0-3×2|3+9= 3.【答案】 3三、解答题(每小题10分,共30分)7.(2012·江苏高考)在极坐标系中,已知圆C 经过点P (2,π4),圆心为直线ρsin(θ-π3)=-32与极轴的交点,求圆C 的极坐标方程. 【解】 在ρsin(θ-π3)=-32中,令θ=0,得ρ=1,所以圆C 的圆心坐标为(1,0),因为圆C 经过点P (2,π4),所以圆C 的半径PC =22+12-2×1×2cos π4=1,于是圆C 过极点,所以圆C 的极坐标方程为ρ=2cos θ.8.在直角坐标系xOy 中,以O 为极点,x 正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρcos(θ-π3)=1,M ,N 分别为C 与x 轴,y 轴的交点.(1)写出C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.【解】 (1)由ρcos(θ-π3)=1,得ρ(12cos θ+32sin θ)=1.又x =ρcos θ,y =ρsin θ.∴曲线C 的直角坐标方程为x 2+32y =1,即x +3y -2=0.当θ=0时,ρ=2,∴点M (2,0).当θ=π2时,ρ=233,∴点N (233,π2).(2)由(1)知,M 点的坐标(2,0),点N 的坐标(0,233).又P 为MN 的中点,∴点P (1,33),则点P 的极坐标为(233,π6).所以直线OP 的极坐标方程为θ=π6(ρ∈R ).9.在极坐标系中,P 是曲线ρ=12sin θ上的一动点,Q 是曲线ρ=12cos(θ-π6)上的动点,试求|PQ |的最大值.【解】 ∵ρ=12sin θ,∴ρ2=12ρsin θ, ∴x 2+y 2-12y =0,即x 2+(y -6)2=36.又∵ρ=12cos(θ-π6),∴ρ2=12ρ(cos θcos π6+sin θsin π6),∴x 2+y 2-63x -6y =0,∴(x -33)2+(y -3)2=36. ∴|PQ |max =6+6+332+32=18.教师备选10.(2012·大连模拟)在极坐标系中,O 为极点,已知圆C 的圆心为(2,π3),半径r=1,P 在圆C 上运动。

高中数学第一讲坐标系三简单曲线的极坐标方程学案新人教A版选修4-4(2021学年)

高中数学第一讲坐标系三简单曲线的极坐标方程学案新人教A版选修4-4(2021学年)

高中数学第一讲坐标系三简单曲线的极坐标方程学案新人教A版选修4-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一讲坐标系三简单曲线的极坐标方程学案新人教A版选修4-4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一讲坐标系三简单曲线的极坐标方程学案新人教A版选修4-4的全部内容。

三简单曲线的极坐标方程1.能在极坐标系中给出简单图形(如过极点的直线,过极点或圆心在极点的圆)的方程.2.通过比较这些图形在极坐标系和平面直角坐标系中的方程,体会在用方程刻画平面图形时选择适当坐标系的意义.1.圆的极坐标方程(1)曲线C的极坐标方程:一般地,在极坐标系中,如果平面曲线C上任意一点的极坐标中____________________,并且坐标________________________都在曲线C上,那么方程f(ρ,θ)=0叫做曲线C的极坐标方程.(1)由于平面上点的极坐标的表示形式不惟一,因此曲线的极坐标方程与直角坐标方程也有不同之处.一条曲线上点的极坐标有多组表示形式,这里要求至少有一组能满足极坐标方程.有些表示形式可能不满足方程.例如,对极坐标方程ρ=θ,点M(\f(π,4),\f(π,4))可以表示为(错误!,错误!+2π)或(错误!,错误!-2π)等多种形式,其中只有(错误!,错误!)的形式满足方程,而其他表示形式都不满足方程.(2)今后我们遇到的极坐标方程多是ρ=ρ(θ)的形式,即ρ为θ的一个函数.(3)由极坐标系中点的对称性可得到极坐标方程ρ=ρ(θ)的图形的对称性:若ρ(θ)=ρ(-θ),则相应图形关于极轴对称;若ρ(θ)=ρ(π-θ),则图形关于射线θ=错误!所在的直线对称;若ρ(θ)=ρ(π+θ),则图形关于极点O对称.(2)圆经过极点O,圆与极轴的另一个交点是A(2a,0),圆的半径是a,圆心坐标是C(a,0)(a>0),则圆的极坐标方程是________________.【做一做1-1】极坐标方程ρ=1表示().A.直线 B.射线 C.圆 D.椭圆【做一做1-2】在极坐标系中,求圆心为A(8,\f(π,3)),半径为5的圆的方程.2.直线的极坐标方程直线l经过极点,极轴与直线l的夹角是α,则直线l的极坐标方程为________(ρ∈R).求平面曲线的极坐标方程,就是要找极径ρ和极角θ之间的关系,常用解三角形(正弦定理、余弦定理)的知识、利用三角形的面积相等等来建立ρ,θ之间的关系.【做一做2-1】极坐标方程sin θ=错误!(ρ∈R)表示的曲线是( ).A.两条相交直线 B.两条射线C.一条直线D.一条射线【做一做2-2】曲线θ=0,θ=错误!(ρ≥0)和ρ=4所围成图形的面积是__________.【做一做2-3】极坐标方程ρcosθ=sin2θ所表示的曲线是__________.答案:1.(1)至少有一个满足方程f(ρ,θ)=0 适合方程f(ρ,θ)=0的点(2)ρ=2a cos θ【做一做1-1】C【做一做1-2】解:在圆上任取一点P(ρ,θ),那么,在△AOP中,|OA|=8,|AP|=5,∠AOP=错误!-θ或θ-错误!.由余弦定理得cos ∠AOP=错误!,即ρ2-16ρcos (θ-错误!)+39=0为所求圆的极坐标方程.2.θ=α【做一做2-1】A【做一做2-2】错误!【做一做2-3】一条直线和一个圆∵ρcos θ=sin 2θ=2sin θcos θ,∴cos θ=0或ρ=2sin θ.cos θ=0表示一条直线(y轴);ρ=2sin θ=2cos (θ-错误!)表示圆心为(1,错误!),半径为1的圆.1.直角坐标系与极坐标系的区别剖析:(1)在平面直角坐标系内,点与有序实数对即坐标(x,y)是一一对应的,可是在极坐标系内,虽然一个有序实数对(ρ,θ)只能与一个点P对应,但一个点P却可以与无数多个有序实数对(ρ,θ)对应.例如(ρ,2nπ+θ)与(-ρ,(2n+1)π+θ)(n为整数)表示的是同一个点,所以在极坐标系内点与有序实数对(ρ,θ)不是一一对应的.(2)在直角坐标系内,一条曲线如果有方程,那么曲线和它的方程是一一对应的(解集完全相同且互相可以推导的等价方程,只看作一个方程).可是在极坐标系内,虽然是一个方程只能与一条曲线对应,但一条曲线却可以与多个方程对应,所以曲线和它的方程不是一一对应的.(3)在直角坐标系内,曲线上每一点的坐标一定适合它的方程,可是在极坐标系内,曲线上一点的所有坐标不一定都适合方程.例如给定曲线ρ=θ,设点P的一个极坐标为(错误!,\f(π,4)),那么点P适合方程ρ=θ,从而是曲线上的一个点,但点P的另一个极坐标(错误!,\f(9π,4))就不适合方程ρ=θ了.所以在极坐标系内,确定某一个点P是否在某一曲线C 上,只需判断点P的极坐标中是否有一种形式适合曲线C的方程即可.2.求极坐标方程的步骤剖析:求曲线的极坐标方程的方法和步骤与求直角坐标方程的步骤类似,就是把曲线看作适合某种条件的点的集合或轨迹.将已知条件用曲线上的点的极坐标ρ,θ的关系式f(ρ,θ)=0表示出来,就得到曲线的极坐标方程,具体如下:(1)建立适当的极坐标系,设P(ρ,θ)是曲线上任意一点.(2)由曲线上的点所适合的条件,列出曲线上任意一点的极径ρ和极角θ之间的关系式.(3)将列出的关系式进行整理,化简,得出曲线的极坐标方程.(4)证明所得方程就是曲线的极坐标方程,若方程的推导过程正确,化简过程都是同解变形,证明可以省略.3.常见的直线和圆的极坐标方程剖析:(1)直线的极坐标方程(a>0).①过极点,并且与极轴成α角的直线的极坐标方程:θ=α(ρ∈R);②垂直于极轴和极点间的距离为a的直线的极坐标方程:ρcos θ=a;③平行于极轴和极轴间的距离为a的直线的极坐标方程:ρsin θ=a;④不过极点,和极轴成α角,到极点距离为a的直线的极坐标方程:ρsin(α-θ)=a。

高二数学(人教版)选修4-4教案:第6节 常用曲线的极坐标方程(1)

高二数学(人教版)选修4-4教案:第6节 常用曲线的极坐标方程(1)

第6节:常用曲线的极坐标方程(1)
教学目的:
知识目标:了解掌握极坐标系中直线和圆的方程;
能力目标:巩固求曲线方程的方法和步骤。

教学重点:求直线与圆的极坐标方程。

教学难点:求直线与圆的极坐标方程的方法和步骤。

授课类型:新授课
教学模式:启发、诱导发现教学.
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
问题情境
情境1:3cos =θρ , 5=ρ, 2=θρsis , πθ4
3=分别表示什么曲线? 情境2:上述方程分别表示了直线与圆,把这些直线与圆一般化,它们的方程分别是什么?
二、讲解新课:
1、若直线l 经过),(00θρM 且极轴到此直线的角为α,求直线l 的极坐标方程。

变式训练:直线l 经过)2,3(π
M 且该直线到极轴所成角为4
π,求此直线l 的极坐标方程。

把前面所讲特殊直线用此通式来验证。

2、若圆心的坐标为),(00θρM ,圆的半径为r ,求圆的方程。

运用此结果可以推出哪些特殊位置的圆的极坐标方程。

3、例题讲解
在圆心的极坐标为)0,4(A ,半径为4的圆中,求过极点O 的弦的中点的轨迹。

三、巩固与练习
在极坐标系中,已知圆C 的圆心)6,
3(πC ,半径3=r ,
(1)求圆C 的极坐标方程。

(2)若Q 点在圆C 上运动,P 在OQ 的延长线上,且2:3:=OP OQ ,求动点P 的轨迹方程。

四、小 结:
本节课学习了以下内容:求直线与圆的极坐标方程。

五、课后作业:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、简单曲线的极坐标方程 【基础知识导学】
1、极坐标方程的定义:在极坐标系中,如果平面曲线C 上任一点的极坐标中至少有一个满足方程0),(=θρf ,并且坐标适合方程0),(=θρf 的点都在曲线C 上,那么方程
0),(=θρf 叫做曲线C 的极坐标方程。

1. 直线与圆的极坐标方程
① 过极点,与极轴成α角的直线
极坐标议程为
αθραθtan tan )(=∈=或R
②以极点为圆心半径等于r 的圆的
极坐标方程为 r =ρ
【知识迷航指南】 例1求(1)过点)4
,2(π
A 平行于极轴的直线。

(2)过点)3
,
3(πA 且和极轴成
4

角的直线。

解(1)如图,在直线l 上任取一点),(θρM ,因为)4
,2(π
A ,所以|MH|=224
sin
=⋅π
在直角三角形MOH 中|MH|=|OM|sin θ即2sin =θρ,所以过点)4
,2(π
A 平行于极轴的直线
为2sin =
θρ。

(2)如图 ,设M ),(θρ为直线l 上一点。

)3
,
3(π
A , OA =3,3
π
=
∠AOB
x
O
由已知4
3π=∠MBx ,所以125343π
ππ=-=∠OAB ,所以127125πππ=
-=∠OAM 又θπ
θ-=
-∠=∠4
3MBx OMA 在∆MOA 中,根据正弦定理得 12
7sin
)43sin(3πρ
θπ=
- 又426)34sin(127sin
+=+=πππ 将)4
3sin(θπ
-展开化简可得23233)cos (sin +=
+θθρ 所以过)3
,3(π
A 且和极轴成
4

角的直线为:23233)cos (sin +=+θθρ
〔点评〕求曲线方程,关键是找出曲线上点满足的几何条件。

将它用坐标表示。

再通过代数变换进行化简。

例2(1)求以C(4,0)为圆心,半径等于4的圆的极坐标方程。

(2)从极点O 作圆C 的弦ON ,求ON 的中点M 的轨迹方程。

解:(1)设),(θρp 为圆C 上任意一点。

圆C 交极轴于另一点A 。

由已知 OA =8 在直角∆AOD 中θcos OA OD =,即 θρcos 8=, 这就是圆C 的方程。

(2)由4==OC r 。

连接CM 。

因为M 为弦ON 的中点。

所以ON CM ⊥,故M 在以OC 为直径的圆上。

所以,动点M 的轨迹方程是:θρcos 4=。

〔点评〕 在直角坐标系中,求曲线的轨迹方程的方法有直译法,定义法,动点转移法。

在极坐标中。

求曲线的极坐标方程这几种方法仍然是适用的。

例2中(1)为直译法,(2)为定义法。

此外(2)还可以用动点转移法。

请同学们尝试用转移法重解之。

例3 将下列各题进行直角坐标方程与极坐标方程的互化。

(1)x y 42= (2)3
π
θ=
(3)12
cos 2

ρ (4)42cos 2=θρ
解:(1)将θρθρsin ,cos ==y x 代入x y 42=得θρθρcos 4)sin (2=化简得
θθρsin 4sin 2=
(2)∵x y =
θtan ∴ 33tan ==x y
π 化简得:)0(3≥=x x y (3)∵12cos 2=θρ ∴ 12
cos 1=+θ
ρ。

即2cos =+θρρ 所以
222=++x y x 。

化简得 )1(42--=x y 。

(4)由42cos 2=θρ 即4)sin (cos 222=-θθρ 所以 422=-y x 〔点评〕 (1)注意直角坐标方程与极坐标方程互化的前提。

(2)由直角坐标求极坐标时,理论上不是唯一的,但这里约定πθρ20,0<≤>
(3)由极坐标方程化为极坐标方程时,要注意等价性。

如本例(2)中。

由于 一般约定.0>ρ故3
π
θ=表示射线。

若将题目改为)(3
R ∈=
ρπ
θ 则方程化为:x y 3=
〔解题能力测试〕 1 判断点)35,21(π-
是否在曲线2
cos θ
ρ=上。

2.将下列各题进行直角坐标方程与极坐标方程的互化。

(1)01222=--+x x y ;
(2)θ
ρcos 21
-=。

3.下列方程各表示什么曲线?
(1)a y =: 。

(2)a =ρ: 。

(3)αθ=: 。

〔潜能强化训练〕
1 极坐标方程分别是θρcos =和θρsin =的两个圆的圆心距是( )
A 2 B 2 C 1 D
2
2 2 在极坐标系中,点)2
,
3(π
关于6
π
θ=
)(R ∈ρ的对称的点的坐标为 ( ) A )0,3( B )2,3(π C )32,3(π- D )6
11,3(π
3在极坐标系中,过点)3
,3(π
且垂直于极轴的直线方程为( )
A 2
3cos =
θρ B 23sin =θρ C θρcos 23= D θρsin 23
=
4 极坐标方程 )0(2
2
cos ≥=
ρθ 表示的曲线是 ( ) A 余弦曲线 B 两条相交直线 C 一条射线 D 两条射线 5 已知直线的极坐标方程为 2
2)4
sin(=

θρ,则极点到该直线的距离是: 。

6 圆)sin (cos 2θθρ+=
的圆心坐标是: 。

7 从原点O 引直线交直线0142=-+y x 于点M ,P 为OM 上一点,已知1=OM OD 。

求P 点的轨迹并将其化为极坐标方程。

〔知识要点归纳〕
1 直线,射线的极坐标方程。

2 圆的极坐标方程
三、简单曲线的极坐标方程 〔解题能力测试〕
1、在
2、(1)2
222cos 10
(2)34210x y x ρρθ--=+--=
3、(1)在直角坐标下,平行于X 轴的直线。

(2)在极坐标下,表示圆心在极点半径为a 的圆。

(3)在极坐标下,表示过极点倾斜角为α的射线。

〔潜能强化训练〕 1、D 2、D 3、A
4、D
5、
2 6.(1,)2
4
π
7、以O 为极点,x 轴正方向为极轴建立极坐标系,直线方程化为2cos 4sin 10ρθρθ+-=,
设000000(,).(,)2cos 4sin 10M P ρθρθρθρθ+-=则又000011θθ
θθρρρρ⎧=⎧=⎪⎪
⎨⎨==⎪⎪⎩⎩

代入得:1
1
2
cos 4
sin 10,2cos 4sin θθρθθ
ρ
ρ
+-=∴=+。

相关文档
最新文档