二项分布与超几何分布区别
超几何分布和二项分布
超几何分布和二项分布超几何分布和二项分布是概率论中两种重要的离散型概率分布。
它们都在描述了离散型随机变量的分布规律,但在具体的描述和应用上有一定的区别。
本文将分别介绍超几何分布和二项分布的定义、特点、性质和应用,并对两者之间的关系和区别进行详细的比较分析。
一、超几何分布的定义、特点和性质超几何分布是描述了一种从有限个物件中抽出样本不放回地抽取成功次数的概率分布。
具体来说,超几何分布描述了在总体中有M个成功物件和N-M个失败物件时,从总体中抽取n个物件,其中成功物件的个数X的分布概率。
其概率质量函数为:P(X=k) = (M choose k) * (N-M choose n-k) / (N choose n),其中(M choose k)表示从M个物件中抽取k个物件的组合数。
超几何分布的特点有以下几点:1.超几何分布是离散型概率分布,其取值只能是非负整数。
2.超几何分布的期望值和方差分别为E(X) = n * M/N, Var(X) =n * M/N * (N-M)/N * (N-n)/(N-1)。
3.超几何分布的分布形状随着总体大小和成功物件的比例而改变,当总体很大时,超几何分布近似于二项分布。
超几何分布在实际应用中有着广泛的应用。
例如在质量抽样、抽样调查、生物统计学等领域,常常需要进行不放回地从总体中抽取物件的情况,而超几何分布恰好可以描述这类情况下随机变量的分布规律。
二、二项分布的定义、特点和性质二项分布是描述了n次独立重复的伯努利试验中成功次数的概率分布。
具体来说,二项分布描述了n次重复试验中成功的次数X的概率分布。
其概率质量函数为:P(X=k) = (n choose k) * p^k * (1-p)^(n-k),其中(n choose k)表示从n次试验中成功k次的组合数。
二项分布的特点有以下几点:1.二项分布是离散型概率分布,其取值只能是非负整数。
2.二项分布的期望值和方差分别为E(X) = np, Var(X) = np(1-p)。
二项分布与超几何分布的区别
(1)从中每次取出1个球然后放回,连续抽取三次,求取到红球 次数X的分布列和数学期望。 3k k k 解:由已知X~B(3,0.4), PX k C3 0.4 1 0.4 , (k 0,1,2,3)
X 所以,X的分布列为: p
0
1
2
3
27 54 36 8 E X 3 0.4 1.2 125 125 125 125
k n- k P(X=k)=Ck p (1 - p ) ,k=0,1,2,…,n. n
则称随机变量 X 服从参数为 n、p 的二项分布,记 作 X~B(n,p),并称 p 为成功概率.
2.超几何分布
一般地,在含有 M 件次品的 N 件产品中,任取 n 件,其 中恰有 X 件次品,则事件{X=k}发生的概率为
E X 3 0.6 1.8
0
1
2
3
8 36 54 27 125 125 125 125
变式:(3)把(2)改为:若随机在样本不赞成高考改革的家长中 抽取3个,记这3个家长中是城镇户口的人数为Y,试求Y的分布列 及数学期望E(Y). k 3 k C15 C10 解:由已知Y服从超几何分布, PY k , (k 0,1,2,3) 3 C25 所以,Y的分布列为: Y
2018届南宁市摸底考试18题
摸底考试18题第(1)问
(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家 长中抽取3个,记这3个家长中是城镇户口的人数为X,试求X的分 布列及数学期望E(X). 用样本的频率估计概率应怎样理解? 概率定义:对于给定的随机事件A,如果随着试验次数的增加,事 件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为 事件A的概率。 在样本中,不赞成高考改革的家长中是城镇户口的频率为0.6,因 此,估计全省从不赞成高考改革的家长中随机抽取1个,他是城镇 户口的概率为0.6,抽取3个,即进行3次独立重复试验,所以, X~(n,p)
超几何分布和二项分布的联系和区别
超几何分布和二项分布的联系和区别开滦一中 张智民在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢?好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释.诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处! 一、两者的定义是不同的教材中的定义: (一)超几何分布的定义在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)=nNk-n M -N k M C C C ,Λ,2,1,0k =, m,其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈N,称随机变量X 服从超几何分布(二)独立重复试验和二项分布的定义1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An) 2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=k n k p p --)1(C k n(k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。
1.本质区别(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题;(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题2.计算公式超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)=n Nk-n M -N k M C C C ,Λ,2,1,0k =, m,二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=kn k p p --)1(C k n(k=0,1,2,…,n), 温馨提示:当题目中出现“用样本数据估计XXX 的总体数据”时,均为二项分布问题。
二项分布与超几何分布问题区别举例
二项分布与超几何分布问题区别举例文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)关于“二项分布”与“超几何分布”问题举例一.基本概念1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件X=k 发生的概率为:P(X=k)= nNk n MN k M C C C --⋅,k= 0,1,2,3,,m ;其中,m = minM,n,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n MN2.二项分布在n 次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P,那么在n 次独立重复试中,事件A 恰好发生k 次的概率为:P(X=k)= C n kp k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X 服从二项分布.记作:X B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次试验只有两种结果,事件要么发生,要么不发生;随机变量是这n 次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;(3)“二项分布”和“超几何分布”是两种不同的分布,但其期望是相等的.即:把一个分布看成是“二项分布”或“超几何分布”时,它们的期望是相同的.分布”和“二项分布”的这种“巧合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。
不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。
关于二项分布与超几何分布问题区别举例
关于二项分布与超几何分布问题区别举例Company number:【0089WT-8898YT-W8CCB-BUUT-202108】关于“二项分布”与“超几何分布”问题举例一.基本概念 1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件X=k 发生的概率为:P(X=k)=n Nk n MN k M C C C --⋅,k= 0,1,2,3,,m ;其中,m = minM,n,且n N , M N . n,M,N N 为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n MN2.二项分布在n次独立重复试验中,设事件A 发生的次数为X,在每次试验中,事件A 发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为:P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,,n),此时称随机变量X服从二项分布.记作:X B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件每次试验中,事件发生的概率是相同的;是一种放回抽样.各次试验中的事件是相互独立的;每次试验只有两种结果,事件要么发生,要么不发生;随机变量是这n次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;合”,使得“超几何分布”期望的计算大简化.共同点:每次试验只有两种可能的结果:成功或失败。
不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。
因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的. 二.典型例题例1:袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫⎪⎝⎭,. 03031464(0)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭; 333141(3)55125P X C ⎛⎫⎛⎫==⨯=⎪ ⎪⎝⎭⎝⎭.因此,X 的分布列为(2).不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P YC ===.因此,Y 的分布列为例2.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1) 取出的3件产品中一等品件数多于二等品件数的概率.(2) 记:X表示“取出的3件产品中一等品件数多于二等品件数的数量”,求X 的分布列并求EX;分析:由题可知:从10件产品中分别任取两次得到“一等品”或“二等品”的概率是不相等的,因此是一种不放回抽样;随机变量 X服从超几何分布.解:(1) 记A1:取出3件一等品;A2:取出2件一等品;A3:取出1件一等品,二件三等品.A1、A2、A3互斥,P(A 1)= C 33C 103 = 1120 , P(A 2)= C 32C 71C 103 =740,P(A 3)= C 31C 72C 103 = 340 ; 所以,P =P(A 1)+ P(A 2)+ P(A 3)= 31120 .(2)X=0,1,2,3; X 服从超几何分布,所以P(X=0)= P(一件一等品,一件二等品,一件三等品)=310131413C C C C =310;P(X=1)=P (二件一等品,一件二等品) =3101423C C C =110; P(X=2)=P(三件一等品,一件二等品)=3101433C C C =130 ; P(X=3)= P (三件一等品,零件二等品)= 3100433C C C = 1120;EX = nM N = 3310=说明:谨防错误地认为随机变量X 服从二项分布,即:XB(3, 31120).例3.从某高中学校随机抽取16名学生,经校医检查得到每位学生的视力,其中“好视力”4人,以这16人的样本数据来估计整个学校的整体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.分析:本题就是从“该校(人数很多)任选3人”,由此得到“好视力”人数X,若每次从该校任取一名学生为“好视力”这一事件的概率显然是相等的,因为该校“人数很多”相当于“有放回抽样”,因此,随机变量X服从“二项分布”而不是“超几何分布”.解:由题可知:X= 0,1,2,3;由样本估计总体,每次任取一人为“好视力”的概率为: P = 416 = 14,则XB(3,14 );P(X=0)= C 30( 14 )0(1- 14)3-0 = 2764; P(X=1)= C 31( 14 )1(1- 14)3-1 = 2764 ;P(X=2)= C 32( 14 )2(1- 14 )3-2 = 964 ;P(X=3)= C 33( 14 )3(1- 14 )3-3 = 164;EX = 3×14 = 34. 说明:假设问题变为:“从16名学生中任取3名,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望”.那么X 服从“超几何分布”,即:P(X=k)= 3163124C C C k k ,(X=0,1,2,3),其中,数学期望值不变,即为:EX= 3×416 = 34.。
二项分布与超几何分布的区别
二项分布与超几何分布
的区别
Company number【1089WT-1898YT-1W8CB-9UUT-92108】
二项分布与超几何分布的区别:
定义:若有N 件产品,其中M 件是废品,无返回...
地任意抽取n 件,则其中恰有的废品件数X 是服从超几何分布的。
概率为()k n K M N M n N
C C P X k C --==. 若有N 件产品,其中M 件是废品,有.返回..
地任意抽取n 件,则其中恰有的废品件数X 是服从二项分布的。
概率为()()1n k k k n P X k C p p -==-,其中M p N
=. 区别:(1)二项分布是做相同的n 次试验(n 次独立重复试验),
(2)当样本个数为无穷大时,超几何分布和二项分布的对应概率就相等,换而言之超几何分布的极限就是二项分布。
在废品为确定数M 的足够多的产品中,任意抽取n 个(由于产品个数N 无限多,无返回与有返回无区别,故可看作n 次独立重复试验)中含有k 个废品的概率当然服从二项分布。
在这里,超几何分布转化为二项分布的条件是①产品个数应无限多,否则无返回地抽取n 件产品是不能看作n 次独立试验的.②在产品个数N 无限增加的过程中,废品数应按相应的“比例”增大,否则上述事实也是不成立的。
(3)实际上,在以样本估计总体时,从样本中无返回地任意抽取n 件,当然废品件数X 服从超几何分布的;而从总体中无返回地任意抽取n 件,理想认为....
废品件数X 服从二项分布的。
超几何分布和二项分布的联系和区别
超几何分布和二项分布的联系和区别超几何分布和二项分布的联系和区别开滦一中 张智民在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢?好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释.诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处! 一、 两者的定义是不同的教材中的定义: (一)超几何分布的定义在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)=nNk-n M -N k M C C C , ,2,1,0k =, m,其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈N,称随机变量X 服从超几何分布(二)独立重复试验和二项分布的定义1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An) 2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=k n k p p --)1(C k n(k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。
1.本质区别(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题;(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题2.计算公式超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)[错解分析]第二问的选人问题是不放回抽样问题,按照定义先考虑超几何分布,但是题目中又明确给出:“以这16人的样本数据来估计整个社区的总体数据,从该社区(人数很多)任选3人”,说明不是从16人中任选3人,而是从该社区(人数很多)任选3人,所以可以近似看作是3次独立重复试验,应该按照二项分布去求解,而不能按照超几何分布去处理【正解】(1) (1)由茎叶图可知,抽取的16人中“幸福”的人数有12人,其他的有4人;记“从这16人中随机选取3人,至少有2人是“幸福”,”为事件A.由题意得140121709140111)(3161122431634=--=⨯--=C C C C C A P 2)由茎叶图知任选一人,该人幸福度为“幸福”的概率为43,ξ的可能取值为0,1,2,3,显然)43,3(B ~ξ则64141)0(3=⎪⎭⎫ ⎝⎛==ξP ;6494143)1(213=⎪⎭⎫ ⎝⎛⋅⋅==C P ξ; 64274143)2(223=⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛⋅==C P ξ;642743)3(3=⎪⎭⎫⎝⎛==ξP ;从以上解题过程中我们还发现,错解中的期望值与正解中的期望值相等,好多学生都觉得不可思议,怎么会出现相同的结果呢?其实这还是由于前面解释过的原因,超几何分布与二项分布是有联系的,看它们的期望公式:(1)在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,随机变量Ⅹ服从超几何分布,超几何分布的期望计算公式为EX=NnM(可以根据组合数公式以及期望的定义推导);(2)随机变量X 服从二项分布,记作X~B(n,p), EX=np;当超几何分布中的∞→N 时,p NM→,此时可以把超几何分布中的不放回抽样问题,近似看作是有放回抽样问题,再次说明∞→N 时,可以把超几何分布看作是二项分布。
超几何分布和二项分布的联系和区别
超几何分布和二项分布的联系和区别开滦一中张智民在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢?好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3 从两个方面给出了很好的解释.诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处!一、两者的定义是不同的教材中的定义:(一)超几何分布的定义在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)= C kMCC nNnN- k- M ,k 0 ,1, 2,, m,其中m=min{M,n}, 且n≤N,M ≤N,n,M,N ∈N,称随机变量X服从超几何分布(二)独立重复试验和二项分布的定义1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n次独立重复试验,其中A(i=1,2,⋯,n)是第ⅰ次试验结果,则P(A1A2A3⋯An)=P(A 1)P(A2)P(A3) ⋯P(An)2)二项分布在n 次独立重复试验中,用X 表示事件 A 发生的次数,设每次试验中事件 A 发生的概率为P,则P(X=k)= C k k np (1p )k并称P为成功概率。
1.本质区别(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题;(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题2.计算公式超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)第1页共7 页= C kMCC nNnN- k- M ,k 0 ,1, 2,, m,二项分布:在n 次独立重复试验中,用X 表示事件 A 发生的次数,设每次试验中事件 A 发生的概率为P,则P(X=k)= C k k np (1 p )k温馨提示:当题目中出现“用样本数据估计XXX 的总体数据”时,均为二项分布问题。
关于二项分布与超几何分布问题区别举例
关于“二项分布”与“超几何分布”问题举例一.基本概念1.超几何分布一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件?X=k ?发生的概率为:P(X=k)= n N k n MN k M C C C --⋅,k= 0,1,2,3,??,m ;其中,m =min ?M,n ?,且n ? N , M ? N . n,M,N ? N?为超几何分布;如果一个变量X 的分布列为超几何分布列,则称随几变量X 服从超几何分布.其中,EX= n ?M N2.二项分布在n次独立重复试验中,设事件A发生的次数为X,在每次试验中,事件A发生的概率为P,那么在n次独立重复试中,事件A恰好发生k次的概率为:P(X=k)= C n k p k(1-p)n-k(k=0,1,2,3,?,n),此时称随机变量X服从二项分布.记作:X ? B(n,p),EX= np3.“二项分布”与“超几何分布”的联系与区别(1)“二项分布”所满足的条件✍每次试验中,事件发生的概率是相同的;是一种放回抽样.✍各次试验中的事件是相互独立的;✍每次试验只有两种结果,事件要么发生,要么不发生;✍随机变量是这n次独立重复试验中事件发生的次数.(2)“超几何分布”的本质:在每次试验中某一事件发生的概率不相同,是不放回抽样,“当样本容量很大时,超几何分布近似于二项分布;共同点:每次试验只有两种可能的结果:成功或失败。
不同点:1、超几何分布是不放回抽取,二项分布是放回抽取;2、超几何分布需要知道总体的容量,二项分布不需要知道总体容量,但需要知道“成功率”;联系:当产品的总数很大时,超几何分布近似于二项分布。
因此,二项分布模型和超几何分布模型最主要的区别在于是有放回抽样还是不放回抽样.所以,在解有关二项分布和超几何分布问题时,仔细阅读、辨析题目条件是非常重要的.二.典型例题例1:袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.解:(1)有放回抽样时,取到的黑球数X可能的取值为0,1,2,3.又由于每次取到黑球的概率均为15,3次取球可以看成3次独立重复试验,则1~35X B ⎛⎫ ⎪⎝⎭,. 03031464(0)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭∴;12131448(1)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭; 21231412(2)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭;3033141(3)55125P X C ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭. 因此,X 的分布列为(2).不放回抽样时,取到的黑球数Y可能的取值为0,1,2,且有:03283107(0)15C C P Y C ===;12283107(1)15C C P Y C ===;21283101(2)15C C P YC ===.因此,Y 的分布列为例2.在10件产品中,有3件一等品,4件二等品,3件三等品,从这10件产品中任取3件,求:(1) 取出的3件产品中一等品件数多于二等品件数的概率.(2) 记:X 表示“取出的3件产品中一等品件数多于二等品件数的数量”,求X 的分布列并求EX;分析:由题可知:从10件产品中分别任取两次得到“一等品”或“二等品”的概率是不相等的,因此是一种不放回抽样;随机变量X服从超几何分布.解:(1) 记A1:取出3件一等品;A2:取出2件一等品;A3:取出1件一等品,二件三等品.A1、A2、A3互斥,P(A1)=C33 C103=1120, P(A2)=C32?C71C103=740,P(A3)= C31?C72C103=340; 所以,P =P(A1)+ P(A2)+ P(A3)= 31 120.(2)X=0,1,2,3; X服从超几何分布,所以P(X=0)= P(一件一等品,一件二等品,一件三等品)=310131413C C C C = 310 ; P(X=1)=P (二件一等品,一件二等品) = 3101423C C C = 110 ; P(X=2)=P(三件一等品,一件二等品)= 3101433C C C = 130; P(X=3)= P (三件一等品,零件二等品)= 3100433C C C= 1120; EX = nM N = 3 310= 0.9 说明:谨防错误地认为随机变量X 服从二项分布,即:X B(3, 31 120).例3.从某高中学校随机抽取16名学生,经校医检查得到每位学生的视力,其中“好视力”4人,以这16人的样本数据来估计整个学校的整体数据,若从该校(人数很多)任选3人,记X表示抽到“好视力”学生的人数,求X的分布列及数学期望.分析:本题就是从“该校(人数很多)任选3人”,由此得到“好视力”人数X,若每次从该校任取一名学生为“好视力”这一事件的概率显然是相等的,因为该校“人数很多”相当于“有放回抽样”,因此,随机变量X服从“二项分布”而不是“超几何分布”.解:由题可知:X= 0,1,2,3;由样本估计总体,每次任取一人为“好视力”的概率为: P = 416 = 14 ,则X B(3,14 );P(X=0)= C 30( 14 )0(1- 14)3-0 = 2764; P(X=1)= C 31( 14 )1(1- 14)3-1 = 2764 ;P(X=2)= C 32( 14 )2(1- 14 )3-2 = 964 ;P(X=3)= C 33( 14 )3(1- 14 )3-3 = 164;EX = 3×14 = 34. 说明:假设问题变为:“从16名学生中任取3名,记X 表示抽到“好视力”学生的人数,求X 的分布列及数学期望”.那么X 服从“超几何分布”,即:P(X=k)= 3163124C C C k k ,(X=0,1,2,3),其中,数学期望值不变,即为:EX= 3×416 = 34 .。
超几何分布和二项分布的联系和区别
超几何分布和二项分布的联系和区别开滦一中 张智民在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢?好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释.诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处! 一、两者的定义是不同的教材中的定义: (一)超几何分布的定义在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)=nNk-n M -N k M C C C , ,2,1,0k =, m,其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈N,称随机变量X 服从超几何分布(二)独立重复试验和二项分布的定义1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An) 2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=k n k p p --)1(C k n(k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。
1.本质区别(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题;(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题2.计算公式超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)=n Nk-n M -N k M C C C , ,2,1,0k =, m,二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=kn k p p --)1(C k n(k=0,1,2,…,n), 温馨提示:当题目中出现“用样本数据估计XXX 的总体数据”时,均为二项分布问题。
超几何分布和二项分布
超几何分布和二项分布在教学过程中发现学生在学习完超几何分布和二项分布以后,学生不能正确的理解什么是超几何分布(古典概型利用组合数计数)、什么是二项分布(利用独立性,互斥性)及其区别.下面我通过几个例子说明一下两者的区别超几何分布:在产品质量的不放回抽检中,若N 件产品中有M 件次品,抽检n 件时所得次品数X=k 则P(X=k)此时我们称随机变量X 服从超几何分布(hypergeometric distribution ) 1)超几何分布的模型是不放回抽样 2)超几何分布中的参数是M,N,n上述超几何分布记作X~H(n ,M ,N)。
二项分布:二项分布(Binomial Distribution ),即重复n 次的伯努力试验(Bernoulli Experiment ),用ξ表示随机试验的结果.如果事件发生的概率是P,则不发生的概率q=1-p ,N 次独立重 复试验中发生k 次的概率是k n k kn q p k P C -==)(ξ 上述二项分布记作),(~p n B ξ下面我通过几个例子说明一下两者的区别【例1】某人参加一次英语考试,已知在备选题的10道试题中能答出其中的4道题,规定每次考试从备选题中随机抽取3题进行测试,求答对题数ξ的分布列?解:由题意得0=ξ,1,2,3.ξ服从参数为10=N ,4=M ,3=n 的超几何分布.6112020)0(31036====C C P ξ2112060)1(3102614==∙==C C C P ξ10312036)2(3101624==∙==C C C P ξ3011204)3(31034====CC P ξ故ξ的分布列把事件发生的概率看做是0.4。
【例2】甲乙两人玩秒表游戏,按开始键,然后随机按暂停键,观察秒表最后一位数,若出现0,1,2,3则甲赢,若最后一位出现6,7,8,9则乙赢,若最后一位出现4,5是平局.玩三次,记甲赢的次数为变量X ,求X 的分布列解:由题意得:0=X ,1,2,3216.06.0)0(303===C X P 432.04.06.0)1(213=⨯⨯==C X P 288.04.06.0)2(223=⨯⨯==C X P 064.04.0)3(333===C X P点评:学生这是一道二项分布的题目,学生容易看成超几何分布,认为服从10=N ,4=M ,3=n 的超几何分布。
如何快速识别“二项分布”与“超几何分布”
如何快速识别“二项分布”与“超几何分布”二项分布和超几何分布都是概率论中常见的离散概率分布。
尽管它们可能在一些方面相似,但它们在定义、应用和特性上存在一些明显的区别。
下面将介绍如何快速识别这两种分布。
首先,我们需要了解二项分布和超几何分布的定义。
二项分布是指在一系列相互独立的重复试验中,每次试验只有两个可能的结果,成功和失败。
每次试验中成功的概率为p,失败的概率为1-p。
试验的次数固定为n次。
二项分布描述的是在给定试验次数和成功概率的情况下,成功次数的概率分布。
超几何分布是指从一个有限总体中抽取固定数量的样本,且每次抽样都是无放回抽样。
总体中成功的个数为M,总体中失败的个数为N-M。
样本的大小为n,成功的个数为k。
超几何分布描述的是在给定总体大小、成功个数和样本大小的情况下,成功次数的概率分布。
根据定义,我们可以看出二项分布和超几何分布在试验方式上的不同:-二项分布是有放回抽样的结果,即每次试验之间是相互独立的。
例如,我们可以使用一枚硬币进行多次投掷,每次投掷只能出现正面或反面的结果。
-超几何分布是无放回抽样的结果,即每次试验之间是相关的。
例如,我们从一批产品中取出其中几个进行质检,一旦一个产品被选中,它就不再参与后续的抽样。
1.参数设置:-二项分布有两个参数:试验次数n和成功概率p。
-超几何分布有三个参数:总体大小N,成功个数M和抽样大小n。
2.应用领域:-二项分布通常适用于描述重复试验中一个事件发生的概率,如硬币抛掷和赌博游戏等。
-超几何分布通常适用于描述从有限总体中抽取样本的成功次数,如质量控制和调查调研等。
3.概率计算:-二项分布的概率计算可以使用二项式定理或计算器进行计算。
-超几何分布的概率计算需要使用超几何分布的概率质量函数。
4.概率特性:-二项分布的期望值和方差可以通过试验次数和成功概率计算得到。
-超几何分布的期望值和方差可以通过总体大小、成功个数和抽样大小计算得到。
所以,通过参数设置、应用领域、概率计算和概率特性等方面可以快速识别二项分布和超几何分布。
超几何分布与二项分布的区别与联系-二项分布与超几何分布的区别
吉林教育·教学7/2013二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。
在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。
一、超几何分布与二项分布的定义1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为P (X=k)=C M k C n-m n-kC Nn,k=0,1,2,…,m其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。
其分布列为超几何分布列。
如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。
2.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。
在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X=k)=C n k P k(1-p )n-k,k=0,1,2,…,n 。
此时称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。
二、超几何分布与二项分布的区别从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。
超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。
实质上,超几何分布是古典概型的一种特例。
二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。
这就是二者之间的区别。
本文笔者举例说明:例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。
解:(1)是不放回地抽取,X 服从超几何分布。
【数学】超几何分布与二项分布的区别与联系
二项分布与超几何分布是两个非常重要的、应用广泛的概率模型,实际中的许多问题都可以利用这两个概率模型来解决。
在实际应用中,如何理解它们的关联性同时又能区分两个概率模型呢?本文笔者就此问题予以阐述。
一、超几何分布与二项分布的定义1.一般地,在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品数,则事件{X=k}发生的概率为P (X=k)=C M k C n-m n-kC Nn,k=0,1,2,…,m其中m=min {M,n},且n ≤N ,M ≤N ,n ,M ,N ∈N*。
其分布列为超几何分布列。
如果随机变量X 的分布列为超几何分布列,则称随机变量X 服从超几何分布。
2.一般地,在相同条件下重复做的n 次试验称为n 次独立重复试验。
在n 次独立重复试验中,设事件A 发生的次数X ,在每次试验事件A 发生的概率为p,那么在n 次独立重复试验中,事件A 恰好发生k 次的概率为P (X=k)=C n k P k(1-p )n-k,k=0,1,2,…,n 。
此时称随机变量X 服从二项分布,记作X ~B (n ,p),并称p 为成功概率。
二、超几何分布与二项分布的区别从它们的定义不难看出超几何分布研究的是试验后的结果(不研究试验中先后取的顺序),并且是无放回的抽取;二项分布研究的是既有研究先后发生的顺序又有试验结果,并且是有放回的抽取。
超几何分布是无放回的抽取,即每做一次试验,下一次再发生同一事件A 的概率已经发生了变化,即每次发生的概率都不相等。
实质上,超几何分布是古典概型的一种特例。
二项分布是有放回的抽取,每做一次试验,发生同一事件A 的概率都相同。
这就是二者之间的区别。
本文笔者举例说明:例1:在装有4个黑球6个白球的袋子中,任取2个,试求:(1)不放回地抽取,取到黑球数X 的分布列;(2)有放回地抽取,取到黑球数的分布列。
解:(1)是不放回地抽取,X 服从超几何分布。
从10个球中任取2球的结果数为C 102,从10个球中任取2个,其中恰有k 个黑球的结果数为C 4k C 62-k,那么从10个球中任取2个,其中恰有k 个黑球的概率为P (X=k )=C 4k C 62-kC 102,k=0,1,2。
超几何分布和二项分布的联系和区别
超几何分布和二项分布的联系和区别超几何分布和二项分布的联系和区别开滦一中 张智民在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢?好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释.诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处! 一、 两者的定义是不同的教材中的定义: (一)超几何分布的定义在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)=nNk-n M -N k M C C C ,Λ,2,1,0k =, m,其中m=min{M,n},且n ≤N,M ≤N,n,M,N ∈N,称随机变量X 服从超几何分布(二)独立重复试验和二项分布的定义1)独立重复试验:在相同条件下重复做的n 次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An) 2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=k n k p p --)1(C k n(k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。
1.本质区别(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题;(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题2.计算公式超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k)的球的数目N 很大时,X 的分布列近似于二项分布,并且随着N 的增加,这种近似的精度也增加。
超几何分布与二项分布
二项分布与超几何分布的区别与联系1.定义:(1)超几何分布:设有总数为N件的两类..物品,其中一类有M件,从所有物品中任取n件(n≤N),这n件中所含这类物品件数X是一个离散型随机变量,它取值为m时的概率为()m n mM N MnNC CP X mC --== (0≤m≤l,l为n和M中较小的一个),则称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X服从参数为N,M,n的超几何分布.(2)二项分布:若将事件A发生的次数设为X,发生的概率为p,不发生的概率q=1-p,那么在n次独立重复试验中,事件A恰好发生k次的概率是P(X=k)=C k n p k(1-p)n-k(k=0,1,2,…,n) ,于是得到X的分布列(q+p)n=C0n p0q n+C1n p1q n-1+…+C k n p k q n-k+…+C n n p n q0各对应项的值,称这样的离散型随机变量X服从参数为n,p的二项分布,记做X~B(n,p).2.本质区别:(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题,也就是说二项分布中每个事件之间是相互独立的,而超几何分布不是;(2)超几何分布中的概率计算实质上是古典概型问题,二项分布中的概率计算实质上是相互独立事件的概率问题.温馨提示:(1)超几何分布需要知道总体的容量,也就是总体个数有限;而二项分布不需要知道总体容量,但需要知道“成功率”.(2)当题目中出现“用样本数据估计×××的总体数据”是均为二项分布;(3)二项分布与超几何分布两者之间存在着联系:当调查研究的样本容量非常大时,在有放回地抽取与无放回地抽取条件下,计算得到的概率非常接近,可以近似把超几何分布认为是二项分布.概率论中的二项分布与超几何分布都是古典概型。
【典例】某批n 件产品的次品率为2%,现从中任意地依次抽出3件进行检验,问: (1)当500,5000,50000n =时,分别以放回和不放回的方式抽取,恰好抽到1件次品的概率是多少?(2)根据(1)你对超几何分布与二项分布的关系有何认识?【解】(1)在放回的方式抽取中,每次抽取时都从这n 件产品中抽取,从而抽到品的概率都为0.02.可以把3次抽取看成是3次独立重复试验,这样抽到的次品数X ~(3,0.02)B ,恰好抽到1件次品的概率为1223(1)0.02(10.02)30.020.980057624=.P X C ==⨯⨯-⨯⨯≈在不放回的方式抽取中,抽到的次品数X 是随机变量,X 服从超几何分布,X 的分布与产品的总数n 有关,所以需要分3种情况计算:①500n =时,产品的总数为500件,其中次品的件数为500⨯2%=10,合格品的件数为490件。
超几何分布和二项分布的联系和区别
超几何分布和二项分布的联系和区别开滦一中张智民在最近的几次考试中,总有半数的的学生搞不清二项分布和超几何分布,二者到底该如何区分呢?什么时候利用二项分布的公式解决这道概率问题?什么时候用超几何分布的公式去解决呢?好多学生查阅各种资料甚至于上网寻找答案,其实这个问题的回答就出现在教材上,人教版新课标选修2-3从两个方面给出了很好的解释.诚可谓:众里寻他千百度,蓦然回首,那人却在灯火阑珊处!一、两者的定义是不同的教材中的定义:(一)超几何分布的定义在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=nNk-nM-NkMCCC,Λ,2,1,0k=, m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N,称随机变量X服从超几何分布(二)独立重复试验和二项分布的定义1)独立重复试验:在相同条件下重复做的n次试验,且各次试验试验的结果相互独立,称为n 次独立重复试验,其中A(i=1,2,…,n)是第ⅰ次试验结果,则P(A1A2A3…An)=P(A 1)P(A2)P(A3)…P(An)2)二项分布在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=k n k p p --)1(C k n (k=0,1,2,…,n),此时称随机变量X 服从二项分布,记作X~B(n,p),并称P 为成功概率。
1.本质区别(1)超几何分布描述的是不放回抽样问题,二项分布描述的是放回抽样问题;(2)超几何分布中的概率计算实质上是古典概型问题;二项分布中的概率计算实质上是相互独立事件的概率问题2.计算公式超几何分布:在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则P(X=k) =n Nk -n M -N kM C C C ,Λ,2,1,0k =, m, 二项分布:在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为P,则P(X=k)=k n k p p --)1(C k n (k=0,1,2,…,n), 温馨提示:当题目中出现“用样本数据估计XXX 的总体数据”时,均为二项分布问题。
二项分布与超几何分布的区别与联系
谢谢
谢谢
例题解析
1、从含有 2 件优等品的 5 件产品中,随机抽取 2 件,求
抽取的 2 件产品中的优等品数 的分布列及其均值。
解: 可能的取值为 0,1,2,
P( i) C2i C32i
C52
(i 0, 1, 2) ,
的分布列为
012
P
3 10
3 5
1 10
均值
E( )
1
3 52 1 10源自4 5结论:在实际应用 时,只要N≥10n, 不放回抽取可以近 似看成是放回抽取, 可用二项分布近似 描述不合格品个数 , 即当超几何分布计 算非常困难时应考 虑用二项分布近似 代替。
练习:
[2009 广东理 17 题部分]对某城市一年(365 天)的空 气质量进行监测,发现一年中有 219 天空气质量为良或 轻度污染,求该城市某一周至少有 2 天的空气质量为轻 微污染的概率.
超几何分布一般地在含有m件次品的n件产品中任取n件其中恰有x件次品则事件xk发生的概率为服从参数为nmn的超几何分布1从含有2件优等品的5件产品中随机抽取2抽取的2件产品中的优等品数10均值2011广东理17部分从含有2件优等品的5件产品中随机抽取2件求抽取的2件产品中的优等品数的分布列及其均值
二项分布与超几何分布的区别与 联系
C1MCnN--1M CnN
…
CmMCnN--mM CnN
为超几何分布列,如果随机变量X的分布列为超几何 分布列,则称随机变量X服从超几何分布.
3、二项分布、超几何分布的均值、方差 (1)若 X~B(n,p),则 E(X)=np,D(X)=np(1-p). ※(2)若 X 服从参数为 N、M、n 的超几何分布, 则 E(X)=nNM.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项分布与超几何分布辨析超几何分布和二项分布都是离散型分布超几何分布和二项分布的区别:超几何分布需要知道总体的容量,而二项分布不需要;超几何分布是不放回抽取,而二项分布是放回抽取(独立重复)当总体的容量非常大时,超几何分布近似于二项分布.........例1 袋中有8个白球、2个黑球,从中随机地连续抽取3次,每次取1个球.求:(1)有放回抽样时,取到黑球的个数X的分布列;(2)不放回抽样时,取到黑球的个数Y的分布列.例2.某市十所重点中学进行高三联考,共有5000名考生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在这次测试中的数学成绩,制成如下频率分布表: (1)根据上面的频率分布表,求①,②,③,④处的数值;(2)根据上面的频率分布表,在所给的坐标系中画出在区间[]80,150上的频率分布直方图; (3)如果把表中的频率近似地看作每个学生在这次考试中取得相应成绩的概率,那么从总体中任意抽取3个个体,成绩落在[]100,120中的个体数为ξ,求ξ的分布列和数学期望.练习2.为从甲、乙两名运动员中选拔一人参加2010年广州亚运会跳水项目,对甲、乙两名运动员进行培训.现分别从他们在培训期间参加的若干次预赛成绩中随机抽取6次,得出茎叶图如图所示(Ⅰ)从平均成绩及发挥稳定性的角度考虑,你认为选派哪名运动员合适? (Ⅱ)若将频率视为概率,对甲运动员在今后3次比赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望E ξ。
分组频数 频率 [)80,90 ① ② [)90,100 0.050 [)100,110 0.200 [)110,12036 0.300 [)120,130 0.275 [)130,14012 ③ [)140,1500.050 合计④甲 乙5 32 58 0 3 5 5 4 1 9 8 7 9123510152025 参加人数 活动次数例3.按照新课程的要求, 高中学生在每学期都要至少参加一次社会实践活动(以下简称活动).某校高一· 一班50名学生在上学期参加活动的次数统计如条 形图所示.(I )求该班学生参加活动的人均次数x ;(II )从该班中任意选两名学生,求他们参加活动 次数恰好相等的概率;(III )从该班中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列及数学期望E ξ.(要求:答案用最简分数表示)练习3.某校参加高一年级期中考试的学生中随机抽出60名学生,将其数学成绩分成六段[40,50]、[50,60]、…、[90,100]后得到如下部分频率分布直方图,观察图形的信息,回答下列问题: (1)求分数在[70,80]内的频率,并补全这个频率分布直方图; (2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的平均分;(3)若从60名学生中随抽取2人,抽到的学生成绩在[40,60]记0分,在[60,80]记1分,在[80,100]记2分,用ξ表示抽取结束后的总记分,求ξ的分布列和数学期望。
二项分布与超几何分布练习1.(本大题满分12分)上海世博会在游客入园参观的试运营阶段,为了解每个入口的通行速度,在一号入口处随机抽取甲、乙两名安检人员在一小时内完成游客入园人数的8次记录,记录人数的茎叶图如下:(1)现在从甲、乙两人中选一人担任客流高峰阶段的安检员,从统计学的角度考虑,你认为选派哪位安检员参加合适?请说明理由;(2)若将频率视为概率,甲安检员在正式开园的一个工作日的4小时内,每个单位小时段安检人数高于80人的次数记为ξ,求ξ的分布列及数学期望Eξ.2.下图是某城市通过抽样得到的居民某年的月均用水量(单位:吨)的频率分布直方图,(Ⅰ)求直方图中x的值;(Ⅱ)若将频率视为概率,从这个城市随机抽取3位居民(看作有放回的抽样),求月均用水量在3至4吨的居民数X的分布列和数学期望.3.某学院为了调查本校学生2011年9月“健康上网”( 健康上网是指每天上网不超过两小时)的天数情况,随机抽取了40名本校学生作为样本,统计他们在该月30天内健康上网的天数,并将所得数据分成以下六组: [](](]0,5,5,10,,25,30⋅⋅⋅,由此画出样本的频率分布直方图,如图所示.(Ⅰ)根据频率分布直方图,求这40名学生中健康上网天数超过20天的人数; (Ⅱ)现从这40名的学生中任取2名,设Y 为取出的2名学生中健康上网天数超过20天的人数,求Y 的分布列及其数学期望E (Y ).4.甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.(1)求甲答对试题数ξ的概率分布; (2)求甲、乙两人至少有一人入选的概率.5.学校游园活动有这样一个游戏项目:甲箱子里装有3个白球、2个黑球,乙箱子里装有1个白球、2个黑球,这些球除颜色外完全相同,每次游戏从这两个箱子里各随机摸出2个球,若摸出的白球不少于2个,则获奖.(每次游戏结束后将球放回原箱) (Ⅰ)求在1次游戏中,(i )摸出3个白球的概率; (ii )获奖的概率;(Ⅱ)求在2次游戏中获奖次数X 的分布列及数学期望()E X .6.某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品.现用两种新配方(分别称为A 配方和B 配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:(II )已知用B 配方生产的一种产品利润y (单位:元)与其质量指标值t 的关系式为2,942,941024,102t y t t -<⎧⎪=≤<⎨⎪≥⎩从用B 配方生产的产品中任取一件,其利润记为X (单位:元).求X 的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率).二项分布与超几何分布练习1.【解析】(1)派甲参赛比较合适.理由如下:x 甲 = 18(70×2 + 80×4 + 90×2 + 8 + 9 + 1 + 2 + 4 + 8 + 3 + 5) = 85,18x =乙(70×1 + 80×4 + 90×3 + 5 + 0 + 0 + 3 + 5 + 0 + 2 + 5) = 85,218s =甲[(78 – 85)2+ (79 – 85)2 + (81 – 85)2 + (82 – 85)2 + (84 – 85)2 + (88 – 85)2 + (90– 85)2 + (92 – 85)2 + (95 – 85)2 ] = 35.5S 乙2=2222221[(7585)(8085)(8585)(9085)(9285)(9585)]8-+-+-+-+-+-=41∵22,x x s s =<甲乙乙甲,∴甲的成绩较稳定,派甲参赛比较合适. (6分)注:本小题的结论及理由均不唯一,如果考生能从统计学的角度分析,给出其他合理回答,同样给分.如派乙参赛比较合适,理由如下:从统计的角度看,甲检测85人以上(含85人)的概率P 1 = 38,乙检测85人以上(含85人)的概率241.82P ==∵P 2>P 1,∴派乙参赛比较合适.(2)记“甲安检员在一小时内完成安检人数高于80人”为事件A ,63().84P A ==随机变量ξ的可能取值为0、1、2、3,且ξ~B (4,34).∴P (ξ= k ) =4431,44k kk C -⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭k = 01,2,3,4 …………8分所以变量ξ的分布列为:ξ0 1 2 3 4 P1256122565425610825681256E ξ = 4×34= 3(12分)2解:(Ⅰ)依题意及频率分布直方图知,0.02+0.1+x+0.37+0.39=1,解得x=0.12; (Ⅱ)由题意知,X~B(3,0.1), 因此,,,故随机变量X 的分布列为∴X 的数学期望为EX=3×0.1=0.3。
3解:(Ⅰ)由图可知,健康上网天数未超过20天的频率为(0.010.020.030.09)50.1550.75+++⨯=⨯=, ………2分∴ 健康上网天数超过20天的学生人数是40(10.75)400.2510⨯-=⨯=. ………4分(Ⅱ)随机变量Y 的所有可能取值为0,1,2. ………5分P (Y =0)=2302402952C C =, P (Y =1)= 111030240513C C C =, P (Y =2)= 210240352C C =. ……8分 所以Y 的分布列为Y 0 1 2P2952 513 35211分∴ E (Y )=0×2952+1×513+2×352=12. 4.解析:(1)依题意,甲答对试题数ξ的可能取值为0、1、2、3,则P (ξ=0)=C 34C 310=130,P (ξ=1)=C 16·C 24C 310=310,P (ξ=2)=C 26·C 14C 310=12,P (ξ=3)=C 36C 310=16,其分布列如下:ξ0 1 2 3 P1303101216(2)法一:设甲、乙两人考试合格的事件分别为A 、B ,则P (A )=C 26C 14+C 36C 310=60+20120=23,P (B )=C 28C 12+C 38C 310=56+56120=1415.因为事件A 、B 相互独立,∴甲、乙两人考试均不合格的概率为 P()A ·B =P()A·P()B=⎝⎛⎭⎫1-23⎝⎛⎭⎫1-1415=145, ∴甲、乙两人至少有一人考试合格的概率为 P =1-P()A ·B =1-145=4445.答:甲、乙两人至少有一人考试合格的概率为4445.法二:甲、乙两人至少有一个考试合格的概率为 P =P ()A ·B+P()A ·B +P ()A ·B =23×115+13×1415+23×1415=4445.答:甲、乙两人至少有一人考试合格的概率为44455.解:本小题主要考查古典概型及其概率计算公式、离散型随机变量的分布列、互斥事件和相互独立事件等基础知识,考查运用概率知识解决简单的实际问题的能力. (I )(i )解:设“在1次游戏中摸出i 个白球”为事件(0,1,2,3),i A i ==则2132322531().5C C P A C C =⋅=(ii )解:设“在1次游戏中获奖”为事件B ,则23B A A =U ,又22111322222222253531(),2C C C C C P A C C C C =⋅+⋅= 且A2,A3互斥,所以23117()()().2510P B P A P A =+=+=(II )解:由题意可知X 的所有可能取值为0,1,2.212279(0)(1),101007721(1)(1),101050749(2)().10100P X P X C P X ==-===-====X 的数学期望921497()012.100501005E X =⨯+⨯+⨯=6(Ⅰ)由试验结果知,用A 配方生产的产品中优质的平率为228=0.3100+,所以用A 配方生产的产品的优质品率的估计值为0.3.由试验结果知,用B 配方生产的产品中优质品的频率为32100.42100+=,所以用B 配方生产的产品的优质品率的估计值为0.42(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[)[)[] 90,94,94,102,102,110的频率分别为0.04,,054,0.42,因此P(X=-2)=0.04,P(X=2)=0.54,P(X=4)=0.42,即XX。