高二数学月考试卷 (2)
湖北云学名校联盟2024-2025学年高二上学期10月月考数学试题(解析版)
2024年湖北云学名校联盟高二年级10月联考数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项考试时间:2024年10月15日15:00-17:00 时长:120分钟满分:150分是符合题目要求的.1. 已知i 为虚数单位,20253i 1i ++的虚部为( )A. i −B. iC. 1−D. 1【答案】C 【解析】【分析】根据复数乘方、乘法、除法运算法则结合复数的概念运算即可得出结果.【详解】根据复数的乘方可知()50620254i i i i =⋅=,则()()()()20253i 1i 3i 3i32i 12i 1i 1i1i 1i 2+−++−+====−+++−,其虚部为1−. 故选:C2. 已知一组数据:2,5,7,x ,10的平均数为6,则该组数据的第60百分位数为( ) A. 7 B. 6.5C. 6D. 5.5【答案】B 【解析】【分析】先根据平均数求x 的值,然后将数据从小到大排列,根据百分位数的概念求值. 【详解】因为2571065x ++++=⇒6x =.所以数据为:2,5,6,7,10.又因为560%3×=,所以这组数据的第60百分位数为:676.52+=. 故选:B3. 直线1l :20250ax y −+=,2l :()3220a x ay a −+−=,若12l l ⊥,则实数a 的值为( ) A 0 B. 1C. 0或1D.13或1 【答案】C.【分析】根据两直线垂直的公式12120A A B B +=求解即可. 【详解】因为1l :20250ax y −+=,2l :()3220a x ay a −+−=垂直, 所以()()3210a a a −+−=, 解得0a =或1a =,将0a =,1a =代入方程,均满足题意, 所以当0a =或1a =时,12l l ⊥. 故选:C .4. 为了测量河对岸一古树高度AB 的问题(如图),某同学选取与树底B 在同一水平面内的两个观测点C 与D ,测得15BCD ∠=°,30BDC ∠=°,48m CD =,并在点C 处测得树顶A 的仰角为60°,则树高AB 约为( )1.4≈1.7≈)A. 100.8mB. 33.6mC. 81.6mD. 57.12m【答案】D 【解析】【分析】先在BCD △中,利用正弦定理求出BC ,再在Rt ABC △中求AB 即可.【详解】在BCD △中,15BCD ∠=°,30BDC ∠=°,所以135CBD ∠=°,又48CD =,由正弦定理得:sin sin CD CBCBD CDB=∠∠⇒12CB=⇒CB =在Rt ABC △中,tan 60AB BC =°=24 1.4 1.7≈××57.12=. 故选:D5. 如果直线ax +by =4与圆x 2+y 2=4有两个不同的交点,那么点P (a ,b )与圆的位置关系是( ) A. P 在圆外 B. P 在圆上D. P 与圆的位置关系不确定 【答案】A 【解析】224a b ∴+,所以点(),a b 在圆外考点:1.直线与圆的位置关系;2.点与圆的位置关系6. 在棱长为6的正四面体ABCD 中,点P 与Q 满足23AP AB = ,且2CD CQ =,则PQ 的值为( )A.B.C.D.【答案】D 【解析】【分析】以{},,AB AC AD 为基底,表示出PQ,利用空间向量的数量积求模.【详解】如图:以{},,AB AC AD 为基底,则6AB AC AD ===,60BAC BAD CAD ∠=∠=∠=°,所以66cos 6018AB AC AB AD AC AD ⋅=⋅=⋅=××°=.因为()1223PQ AQ AP AC AD AB =−=+− 211322AB AC AD =−++. 所以22211322PQ AB AC AD =−++222411221944332AB AC AD AB AC AB AD AC AD =++−⋅−⋅+⋅ 169912129=++−−+19=.所以PQ =.故选:D7. 下列命题中正确的是( )A. 221240z z +=,则120z z ==; B. 若点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,则点P 、Q 、R 、S 、T 共面;C. 若()()1P A P B +=,则事件A 与事件B 是对立事件; D. 从长度为1,3,5,7,9的5条线段中任取3条,则这三条线段能构成一个三角形的概率为310; 【答案】D 【解析】【分析】举反例说明ABC 不成立,根据古典概型的算法判断D 是正确的.【详解】对A :若1i z =,22z =,则221240z z +=,但120z z ==不成立,故A 错误; 对B :如图:四面体S PRT −中,Q 是棱PR 上一点,则点P 、Q 、R 、S 共面,点P 、Q 、R 、T 共面,但点P 、Q 、R 、S 、T 不共面,故B 错误; 对C :掷1枚骰子,即事件A :点数为奇数,事件B :点数不大于3, 则()12P A =,()12P B =,()()1P A P B +=,但事件A 、B 不互斥,也不对立,故C 错误; 对D :从长度为1,3,5,7,9的5条线段中任取3条,有35C 10=种选法, 这三条线段能构成一个三角形的的选法有:{}3,5,7,{}3,7,9,{}5,7,9共3种, 所以条线段能构成一个三角形的的概率为:310P =,故D 正确. 故选:D8. 动点Q 在棱长为3的正方体1111ABCD A B C D −侧面11BCC B 上,满足2QA QB =,则点Q 的轨迹长度为( )A. 2πB.4π3C.D.【解析】【分析】结合图形,计算出||BQ =,由点Q ∈平面11BCC B ,得出点Q 的轨迹为圆弧 EQF,利用弧长公式计算即得.【详解】如图,易得AB ⊥平面11BCC B ,因BQ ⊂平面11BCC B ,则AB BQ ⊥,不妨设||BQ r =,则||2AQ r =, ||3AB ==,解得r =又点Q ∈平面11BCC B ,故点Q 的轨迹为以点B EQF,故其长度为π2. 故选:D.二、选择题:本题共36分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 在平面直角坐标系中,下列说法正确的是( ) A. 若两条直线垂直,则这两条直线的斜率的乘积为1−;B. 已知()2,4A ,()1,1B ,若直线l :20kx y k ++−=与线段AB 有公共点,则21,32k∈−; C. 过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=;D. 若圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1,则1b =−±. 【答案】BD 【解析】【分析】根据直线是否存在斜率判断A 的真假;数形结合求k 的取值范围判断B 的真假;根据截距的概念判断真假;转化为点(圆心)到直线的距离求b 判断D 的真假.【详解】对A :“若两条直线垂直,则这两条直线的斜率的乘积为1−”成立的前提是两条直线的斜率都存若两条直线1条不存在斜率,另一条斜率为0,它们也垂直.故A 是错误的. 对B :如图:对直线l :20kx y k ++−=⇒()21y k x −=−+,表示过点()1,2P −,且斜率为k −的直线, 且()422213APk −==−−,()121112BP k −==−−−, 由直线l 与线段AB 有公共点,所以:203k ≤−≤或102k −≤−<,即203k −≤≤或102k <≤,进而得:2132k −≤≤.故B 正确; 对C :过点()1,2,且在两坐标轴上截距互为相反数的直线l 的方程为10x y −+=或2y x =,故C 错误; 对D :“圆()2214x y −+=上恰有3个点到直线y x b =+的距离等于1”可转化为“圆心(1,0)到直线y x b =+的距离等于1”.1⇒1b =−±.故D 正确.故选:BD10. 如图所示四面体OABC 中,4OB OC ==,3OA =,OB OC ⊥,且60AOB AOC ∠=∠=°,23CD CB =,G 为AD 的中点,点H 是线段OA 上动点,则下列说法正确的是( )A. ()13OG OA OB OC =++ ;B. 当H 是靠近A 的三等分点时,DH ,OC ,AB共面;C. 当56OH OA = 时,GH OA ⊥ ;D. DH OH ⋅的最小值为1−.【答案】BCD 【解析】【分析】以{},,OA OB OC为基底,表示出相关向量,可直接判断A 的真假,借助空间向量共面的判定方法可判断B 的真假,利用空间向量数量积的有关运算可判断CD 的真假.【详解】以{},,OA OB OC 为基底,则3OA = ,4OB OC == ,6OA OB OA OC ⋅=⋅= ,0OB OC ⋅=.对A :因为23AD AC CD AC CB =+=+ ()23AC AB AC =+−2133AB AC +()()2133OB OA OC OA =−+−2133OA OB OC =−++ . 所以12OG OA AG OA AD =+=+ 121233OA OA OB OC =+−++111236OA OB OC =++ ,故A 错误;对B :当H 是靠近A 的三等分点,即23OH OA =时,DH AH AD =− 121333OA OA OB OC =−−−++221333OA OB OC =−− ,又AB OB OA =−,所以13DH AB OC − .故DH ,AB ,OC 共面.故B 正确;对C :因为HG OG OH OA AG OH =−=+− 1526OA AD OA =+−12152336OA OA OB OC OA =+−++− 111336OA OB OC =−++,所以:HG OA ⋅= 111336OA OB OC OA −++⋅ 2111336OA OB OA OC OA =−+⋅+⋅1119660336=−×+×+×=,所以HG OA ⊥ ,故GH OA ⊥,故C 正确;对D :设OH OA λ=,()01λ≤≤.因为:DH OH OD =−()OA OA AD λ=−+ 2133OA OA OA OB OC λ =−−++2133OA OB OC λ=−− .所以DH OH ⋅ 2133OA OB OC OAλλ =−−⋅()2233OA OA OB OA OCλλλ−⋅−⋅296λλ−,()01λ≤≤.当13λ=时,DH OH ⋅ 有最小值,为:1196193×−×=−,故D 正确. 故选:BCD11. 已知()2,3P 是圆C :22810410x y x y a +−−−+=内一点,其中0a >,经过点P 的动直线l 与C 交于A ,B 两点,若|AAAA |的最小值为4,则( ) A. 12a =;B. 若|AAAA |=4,则直线l 的倾斜角为120°;C. 存在直线l 使得CA CB ⊥;D. 记PAC 与PBC △的面积分别为PAC S ,PBC S ,则PAC PBC S S ⋅△△的最大值为8. 【答案】ACD 【解析】【分析】根据点()2,3P 在圆内,列不等式,可求a 的取值范围,在根据弦|AAAA |的最小值为4求a 的值,判断A 的真假;明确圆的圆心和半径,根据1l CP k k ⋅=−,可求直线AB 的斜率,进而求直线AB 的倾斜角,判断B 的真假;利用圆心到直线的距离,确定弦长的取值范围,可判断C 的真假;由三角形面积公式和相交弦定理,可求PAC PBC S S ⋅△△的最大值,判断D 的真假. 【详解】对A :由222382103410a +−×−×−+<⇒8a >. 此时圆C :()()2245x y a −+−=.因为过P 点的弦|AAAA |的最小值为4,所以CP=又CP =⇒12a =.故A 正确;对B :因为53142CP k −==−,1l CP k k ⋅=−,所以直线l 的斜率为1−,其倾斜角为135°,故B 错误; 对C :当|AAAA |=4时,如图:sin ACP ∠==,cos ACP ∠==41cos 1033ACB ∠=−=>, 所以ACB ∠为锐角,又随着直线AB 斜率的变化,ACB ∠最大可以为平角, 所以存在直线l 使得CA CB ⊥.故C 正确; 对D :如图:直线CP 与圆C 交于M 、N 两点,链接AM ,BN ,因为MAP BNP ∠=∠,APM NPB ∠=∠,所以APM NPB .所以AP MP NPBP=⇒(4AP BP MP NP ⋅=⋅=−+=.又1sin 2PACS PA PC APC APC =⋅⋅∠=∠ ,PBCS BPC =∠ ,且sin sin APC BPC ∠=∠.所以22sin PAC PBC S S PA PB APC⋅=⋅⋅∠ 28sin APC ∠8≤,当且仅当sin 1APC ∠=,即AB CP ⊥时取“=”.故D 正确. 故选:ACD【点睛】方法点睛:在求PAC PBC S S ⋅△△的最大值时,应该先结合三角形相似(或者蝴蝶定理)求出AP BP ⋅为定值,再结合三角形的面积公式求PAC PBC S S ⋅△△的最大值. 三、填空题:本题共3小题,每小题5分,共15分.12. 实数x 、y 满足224x y +=,则()()2243x y −++的最大值是______. 【答案】49 【解析】【分析】根据()()2243x y −++几何意义为圆上的点(),x y 与()4,3−距离的平方,找出圆上的与()4,3−的最大值,再平方即可求解.【详解】解:由题意知:设(),p x y ,()4,3A −,则(),p x y 为圆224x y +=上的点, 圆224x y +=的圆心OO (0,0),半径2r =, 则()()2243x y −++表示圆上的点(),p x y 与()4,3A −距离的平方,又因为max 27PA AO r=+=+=, 所以22max749PA==; 故()()2243x y −++的最大值是49. 故答案为:49.13. 记ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,已知()cos2cos a B c b A =−,其中π2B ≠,若ABC 的面积S =,2BE EC = ,且AE = ,则BC 的长为______.【解析】【分析】利用正弦定理对()cos 2cos a B c b A =−化简,可得π3A =,再由三角形面积公式求出8bc =,根据题意写出1233AE AB AC =+,等式两边平方后,可求出,b c 的值,由余弦定理2222cos a b c bc A =+−,求出BC 的长.【详解】()cos 2cos a B c b A =−,由正弦定理可得:sin cos 2sin cos sin cos A B C A B A =−,sin cos cos sin 2sin cos A B A B C A +=, ()sin 2sin cos A B C A +=,()sin πC 2sin cos C A −=,sin 2sin cos (sin 0)C C A C >,即1cos 2A =,π3A =,1sin 2ABC S bc A == ,得8bc =, ∵2BE EC = ,∴1233AE AB AC =+ ,221233AE AB AC =+, 即2228144cos 3999c b bc A =++,由8bc =,解得42b c = = 或18b c = = , 根据余弦定理2222cos a b c bc A =+−,当42b c = =时,a =,此时π2B =,不满足题意, 当18b c = =时,a =..14. 如图,已知四面体ABCD 的体积为9,E ,F 分别为AB ,BC 的中点,G 、H 分别在CD 、AD 上,且G 、H 是靠近D 的三等分点,则多面体EFGHBD 的体积为______.【答案】72##3.5 【解析】 【分析】多面体EFGHBD 的体积为三棱锥G DEH −与四棱锥E BFGD −的体积之和,根据体积之比与底面积之比高之比的关系求解即可.【详解】连接ED ,EG ,因为H 为AAAA 上的靠近D 的三分点,所以13DH AD =, 因为E 为AAAA 的中点,所以点E 到AAAA 的距离为点B 到AAAA 的距离的一半, 所以16DEH BAD S S = , 又G 为CCAA 上靠近D 的三分点,所以点G 到平面ABD 的距离为点C 到平面ABD 的距离的13, 所以111119663182G DEH G BAD C BAD V V V −−−==×=×=, 1233BCD FCG BCD BCD BCD BFGD S S S S S S =−=−= 四边形, 所以2211933323E BFGD E BCD A BCD V V V −−−==×=×=, 所以多面体EFGHBD 的体积为17322G DEH E BFGD V V −−+=+=. 故答案为:72. 【点睛】关键点点睛:将多面体转化为两个锥体的体积之和,通过体积之比与底面积之比高之比的关系求解.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 在对某高中1500名高二年级学生的百米成绩的调查中,采用按学生性别比例分配的分层随机抽样抽取100人,已知这1500名高二年级学生中男生有900人,且抽取的样本中男生成绩的平均数和方差分别为13.2秒和13.36,女生成绩的平均数和方差分别为15.2秒和17.56.(1)求抽取的总样本的平均数;(2)试估计高二年级全体学生的百米成绩的方差.【答案】(1)14 (2)16【解析】【分析】(1)先确定样本中男生、女生的人数,再求总样本的平均数.(2)根据方差的概念,计算总样本的方差.【小问1详解】 样本中男生的人数为:100900601500×=;女生的人数为:1006040−=. 所以总样本的平均数为:6013.24015.214100x ×+×=. 【小问2详解】记总样本的方差为2s , 则()(){}22216013.3613.2144017.5615.214100s =×+−+×+− 16=. 所以,估计高二年级全体学生的百米成绩的方差为16.16. 在平面直角坐标系xOy 中,ABC 的顶点A 的坐标为()4,2−,ACB ∠的角平分线所在的直线方程为10x y −+=,AC 边上中线BM 所在的直线方程为220x y +−=. (1)求点C 的坐标;(2)求直线BC 的方程.【答案】(1)(3,4)C ;(2)72130x y −−=【解析】【分析】(1)设(,1)C m m +,则43(,)22m m M −+,代入220x y +−=,求解即可; (2)设直线BC 的方程为:340x ny n +−−=,在直线10x y −+=取点(0,1)P ,利用点P 到直线AC 的距离等于点P 到直线BC 的距离,求解即可.【小问1详解】解:由题意可知点C 在直线0x y −+=上, 所以设(,1)C m m +,所以AC 中点43(,)22m m M −+, 又因为点43(,)22m m M −+在直线220x y +−=上, 所以34202m m +−+−=,解得3m =, 所以(3,4)C ;【小问2详解】解:因为(3,4)C ,设直线BC 的方程为:340x ny n +−−=, 又因为(4,2)A −,所以直线AC 的方程为:27220x y −+=, .又因为ACB ∠的角平分线所在的直线方程为10x y −+=, 在直线10x y −+=取点(0,1)P ,则点P 到直线AC 的距离等于点P 到直线BC 的距离,=,整理得21453140n n ++=, 解得:72n =−或27n =−, 当72n =−时,所求方程即为直线AC 的方程, 所以27n =−, 所以直线BC 的方程为: 72130x y −−=. 17. 直三棱柱111ABC A B C −中,12AB AC AA ===,其中,,E F D 分别为棱111,,BC B A B C 的中点,已知11AF A C ⊥,(1)求证:AF DE ⊥;(2)设平面EFD 与平面ABC 的交线为直线m ,求直线AC 与直线m 所成角的余弦值.【答案】(1)证明见解析(2【解析】【分析】(1)取AB 的中点G ,连接1,EG A G 证得四边形ADEG 为平行四边形,得到1//DE A G ,利用1A AG ABF ≌,证得90AHG ∠= ,得到1AF A G ⊥,即可证得AF DE ⊥;(2)根据题意,证得11A C ⊥平面11ABB A ,得到1111A C A B ⊥,以A 为原点,建立空间直角坐标系,求得(0,2,0)AC = ,再取AC 的中点M ,延长,MB DF 交于点N ,得到直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,求得(4,1,0)N −,得到(3,2,0)EN =− ,结合向量的夹角公式,即可求解.【小问1详解】证明:取AB 的中点G ,连接1,EG A G ,因为E 的中点,可得//EG AC ,且12EG AC =, 又因为1//A D AC ,且112A D AC =,所以1//EG A D ,且1EG A D =, 所以四边形ADEG 平行四边形,所以1//DE A G ,在正方形11ABB A 中,可得1A AG ABF ≌,所以1A GA AFB ∠=∠, 因为90AFB AFB ∠+∠= ,所以190AFB A GA ∠+∠= ,AGH 中,可得90AHG ∠= ,所以1AF A G ⊥,又因为1//DE A G ,所以AF DE ⊥.【小问2详解】解:在直三棱柱111ABC A B C −中,可得1AA ⊥平面111A B C ,因为11AC ⊂平面111AB C ,所以111AA A C ⊥, 又因为11AF A C ⊥,且1AA AF A ∩=,1,AA AF ⊂平面11ABB A ,所以11A C ⊥平面11ABB A , 因为11A B ⊂平面11ABB A ,所以1111A C A B ⊥,即直三棱柱111ABC A B C −的底面为等腰直角三角形,以A 为原点,以1,,AB AC AA 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,因为12AB AC AA ===,可得(0,0,0),(0,2,0)A C ,则(0,2,0)AC =, 为在取AC 的中点M ,连接,MB DM ,可得1//DM CC 且1DM CC =,因为11//BB DD 且11BB DD =,所以//BF DM ,且12BF DM =, 延长,MB DF 交于点N ,可得B 为MN 的中点,连接EN ,可得EN 即为平面DEF 与平面ABC 的交线,所以直线AC 与直线m 所成角,即为直线AC 与直线EN 所成角,又由(0,1,0),(2,0,0),(1,1,0)M B E , 设(,,)N x y z ,可得MB BN =,即(2,1,0)(2,,)x y z −=−, 可得4,1,0x y z ==−=,所以(4,1,0)N −,可得(3,2,0)EN =− ,设直线EN 与直线AC 所成角为θ,可得cos cos ,AC EN AC EN AC EN θ⋅=== 即直线AC 与直线m18. 已知圆C :22430x y y +−+=,过直线l :12y x =上的动点M 作圆C 的切线,切点分别为P ,Q .(1)当π3PMQ ∠=时,求出点M 的坐标; (2)经过M ,P ,C 三点的圆是否过定点?若是,求出所有定点的坐标;(3)求线段PQ 的中点N 的轨迹方程.【答案】(1)(0,0)或84(,)55(2)过定点(0,2)或42(,)55(3)22173042x y x y +−−+= 【解析】【分析】(1)点M 在直线l 上,设(2,)M m m ,由对称性可知30CMP ∠= ,可得2MC =,从而可得点M 坐标.(2)MC 的中点,12m Q m+,因为MP 是圆P 的切线,进而可知经过C ,P ,M 三点的圆是以Q 为圆心,以MC 为半径的圆,进而得到该圆的方程,根据其方程是关于m 的恒等式,进而可求得x 和y ,得到结果;(3)结合(2)将两圆方程相减可得直线PQ 的方程,且得直线PQ 过定点13,42R,由几何性质得MN RN ⊥,即点N 在以MR 为直径的圆上,进而可得结果.【小问1详解】(1)直线l 的方程为20x y −=,点M 在直线l 上,设(2,)M m m , 因为π3PMQ ∠=,由对称性可得:由对称性可知30CMP ∠= ,由题1CP =所以2MC =,所以22(2)(2)4+−=m m , 解之得:40,5==m m 故所求点M 的坐标为(0,0)或84(,)55. 【小问2详解】 设(2,)M m m ,则MC 的中点(,1)2m E m +,因为MP 是圆C 的切线, 所以经过,,C P M 三点的圆是以Q 为圆心,以ME 为半径的圆,故圆E 方程为:2222()(1)(1)22m m x m y m −+−−=+−化简得:222(22)0x y y m x y +−−+−=,此式是关于m 的恒等式,故2220,{220,x y y x y +−=+−=解得02x y = = 或4525x y = = , 所以经过,,C P M 三点的圆必过定点(0,2)或42(,)55.【小问3详解】 由()22222220,430x y mx m y m x y y +−−++= +−+=可得PQ :()22320mx m y m +−+−=,即()22230m x y y +−−+=, 由220,230x y y +−= −=可得PQ 过定点13,42R . 因为N 为圆E 的弦PQ 的中点,所以MN PQ ⊥,即MN RN ⊥,故点N 在以MR 为直径的圆上,点N 的轨迹方程为22173042x y x y +−−+=. 19. 四棱锥P ABCD −中,底面ABCD 为等腰梯形,224AB BC CD ===,侧面PAD 为正三角形;(1)当BD PD ⊥时,线段PB 上是否存在一点Q ,使得直线AQ 与平面ABCD所成角的正弦值为若存在,求出PQ QB 的值;若不存在,请说明理由. (2)当PD 与平面BCD 所成角最大时,求三棱锥P BCD −的外接球的体积.【答案】(1)存在;1.(2【解析】【分析】(1)先证平面PAD ⊥平面ABCD ,可得线面垂直,根据垂直,可建立空间直角坐标系,用空间向量,结合线面角的求法确定点Q 的位置.(2)根据PD 与平面BCD 所成角最大,确定平面PAD ⊥平面ABCD ,利用(1)中的图形,设三棱锥P BCD −的外接球的球心,利用空间两点的距离公式求球心和半径即可.【小问1详解】因为底面ABCD 为等腰梯形,224AB BC CD ===,所以60BAD ∠=°,120BCD ∠=°,30CBD ABD ∠=∠=°,所以90ADB ∠=°. 所以BD AD ⊥,又BD PD ⊥,,AD PD ⊂平面PAD ,且AD PD D = ,所以BD ⊥平面PAD .又BD ⊂平面ABCD ,所以平面PAD ⊥平面ABCD .取AD 中点O ,因为PAD △是等边三角形,所以PO AD ⊥,平面PAD ∩平面ABCD AD =,所以⊥PO 平面ABCD .再取AB 中点E ,连接OE ,则//OE BD ,所以OE AD ⊥.所以可以O 为原点,建立如图空间直角坐标系.则()0,0,0O ,()1,0,0A ,()1,0,0D −,()E ,()1,B −,(P ,()C −.(1,PB =−− .设PQ PB λ= ,可得)()1Q λλ−−所以)()1,1AQ λλ=−−− ,取平面ABCD 的法向量()0,0,1n = .因为AQ 与平面ABCD ,所以AQ nAQ n ⋅⋅ ,解得12λ=或5λ=(舍去). 所以:线段PB 上存在一点Q ,使得直线AQ 与平面ABCD ,此时1PQ QB =. 【小问2详解】当平面PAD ⊥平面ABCD 时, PD 与平面BCD 所成角为PDA ∠.当平面PAD 与平面ABCD 不垂直时,过P 做PH ⊥平面ABCD ,连接HD ,则PDH ∠为PD 与平面BCD 所成角,因为PH PO <,sin PH PDH PD ∠=,sin PO PDA PD∠=,s s n i i n PDA PDH ∠∠<,所以A PDH PD ∠∠<. 故当平面PAD ⊥平面ABCD 时,PD 与平面BCD 所成角最大.此时,设棱锥P BCD −的外接球球心为(),,G x y z ,GP GB GC GD R====,所以(()(()(()2222222222222222121x y z R x y z R x y z R x y z R ++= ++−+= ++−+=+++=,解得20133x y z R = = = = 所以三棱锥P BCD −的外接球的体积为:34π3V R ==. 【点睛】方法点睛:在空间直角坐标系中,求一个几何体的外接球球心,可以利用空间两点的距离公式,根据球心到各顶点的距离相等列方程求解..。
高二数学下学期第二次月考试题 理含解析 试题
智才艺州攀枝花市创界学校二中二零二零—二零二壹高二下学期第二次月考数学试卷(理科)一、选择题〔此题一共12小题,每一小题5分,一共60分.在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的〕1.,且,那么实数的值是〔〕A.0B.1C. D.【答案】C【解析】【分析】先计算,再求得,利用模的计算公式求得a.【详解】∵,∴∴=3,得,那么,∴a=,应选:C.【点睛】此题主要考察复数模的运算、虚数i的周期,属于根底题.2.①是三角形一边的边长,是该边上的高,那么三角形的面积是,假设把扇形的弧长,半径分别看出三角形的底边长和高,可得到扇形的面积;②由,可得到,那么①、②两个推理依次是A.类比推理、归纳推理B.类比推理、演绎推理C.归纳推理、类比推理D.归纳推理、演绎推理【答案】A【解析】试题分析:根据类比推理、归纳推理的定义及特征,即可得出结论.详解:①由三角形性质得到圆的性质有相似之处,故推理为类比推理;②由特殊到一般,故推理为归纳推理.应选:A.点睛:此题考察的知识点是类比推理,归纳推理和演绎推理,纯熟掌握三种推理方式的定义及特征是解答此题的关键.满足,那么〔〕A. B.C. D.【答案】A【解析】【分析】由求得,利用复数的除法运算法那么化简即可.【详解】由得,所以=,应选A.【点睛】复数是高考中的必考知识,主要考察复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、一共轭复数、复数的模这些重要概念,复数的运算主要考察除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.=(i是虚数单位),那么复数的虚部为〔〕A.iB.-iC.1D.-1【答案】C【解析】故答案为C的导数是()A. B. C. D.【答案】D【解析】【分析】将f〔x〕=sin2x看成外函数和内函数,分别求导即可.【详解】将y=sin2x写成,y=u2,u=sinx的形式.对外函数求导为y′=2u,对内函数求导为u′=cosx,故可以得到y=sin2x的导数为y′=2ucosx=2sinxcosx=sin2x应选:D.【点睛】此题考察复合函数的求导,熟记简单复合函数求导,准确计算是关键,是根底题=的极值点为()A. B.C.或者D.【答案】B【解析】【分析】首先对函数求导,判断函数的单调性区间,从而求得函数的极值点,得到结果.【详解】==,函数在上是增函数,在上是减函数,所以x=1是函数的极小值点,应选B.【点睛】该题考察的是有关利用导数研究函数的极值点的问题,属于简单题目.()A.5B.6C.7D.8【答案】D【解析】时,时,应选D.与直线及所围成的封闭图形的面积为()A. B. C. D.【答案】D【解析】曲线与直线及所围成的封闭图形如下列图,图形的面积为,选.考点:定积分的简单应用.9.某校高二(2)班每周都会选出两位“进步之星〞,期中考试之后一周“进步之星〞人选揭晓之前,小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,小赵说:“一定没有我,肯定有小宋〞,小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,小谭说:“小赵说的对〞.这四人中有且只有两人的说法是正确的,那么“进步之星〞是()A.小马、小谭B.小马、小宋C.小赵、小谭D.小赵、小宋【答案】C【解析】【分析】根据题意,得出四人中有且只有小马和小宋的说法是正确的,“进步之星〞是小赵和小谭.【详解】小马说:“两个人选应该是在小赵、小宋和小谭三人之中产生〞,假设小马说假话,那么小赵、小宋、小谭说的都是假话,不合题意,所以小马说的是真话;小赵说:“一定没有我,肯定有小宋〞是假话,否那么,小谭说的是真话,这样有三人说真话,不合题意;小宋说:“小马、小谭二人中有且仅有一人是进步之星〞,是真话;小谭说:“小赵说的对〞,是假话;这样,四人中有且只有小马和小宋的说法是正确的,且“进步之星〞是小赵和小谭.应选:C.【点睛】此题考察了逻辑推理的应用问题,分情况讨论是关键,是根底题目.,直线过点且与曲线相切,那么切点的横坐标为()A. B.1 C.2 D.【答案】B【解析】【分析】设出切点坐标,求出原函数的导函数,得到曲线在切点处的切线方程,把点〔0,﹣e〕代入,利用函数零点的断定求得切点横坐标.【详解】由f〔x〕=e2x﹣1,得f′〔x〕=2e2x﹣1,设切点为〔〕,那么f′〔x0〕,∴曲线y=f〔x〕在切点处的切线方程为y〔x﹣〕.把点〔0,﹣e〕代入,得﹣e,即,两边取对数,得〔〕+ln〔〕﹣1=0.令g〔x〕=〔2x﹣1〕+ln〔2x﹣1〕﹣1,显然函数g〔x〕为〔,+∞〕上的增函数,又g〔1〕=0,∴x=1,即=1.应选:B.【点睛】此题考察利用导数研究过曲线上某点处的切线方程,考察函数零点的断定及应用,是中档题.f(x)的导函数f'(x)的图象如下列图,f(-1)=f(2)=3,令g(x)=(x-1)f(x),那么不等式g(x)≥3x-3的解集是() A.[-1,1]∪[2,+∞) B.(-∞,-1]∪[1,2]C.(-∞,-1]∪[2,+∞)D.[-1,2]【答案】A【解析】【分析】根据图象得到函数f〔x〕的单调区间,通过讨论x的范围,从而求出不等式的解集.【详解】由题意得:f〔x〕在〔﹣∞,1〕递减,在〔1,+∞〕递增,解不等式g〔x〕≥3x﹣3,即解不等式〔x﹣1〕f〔x〕≥3〔x﹣1〕,①x﹣1≥0时,上式可化为:f〔x〕≥3=f〔2〕,解得:x≥2,②x﹣1≤0时,不等式可化为:f〔x〕≤3=f〔﹣1〕,解得:﹣1≤x≤1,综上:不等式的解集是[﹣1,1]∪[2,+∞〕,应选:A.【点睛】此题考察了函数的单调性问题,考察导数的应用,分类讨论思想,准确判断f(x)的单调性是关键,是一道中档题.在上存在导函数,对于任意的实数,都有,当时,.假设,那么实数的取值范围是〔〕A. B. C. D.【答案】A【解析】试题分析:∵,设,那么,∴为奇函数,又,∴在上是减函数,从而在上是减函数,又等价于,即,∴,解得.考点:导数在函数单调性中的应用.【思路点睛】因为,设,那么,可得为奇函数,又,得在上是减函数,从而在上是减函数,在根据函数的奇偶性和单调性可得,由此即可求出结果.二、填空题〔此题一共4小题,每一小题5分,一共20分〕为纯虚数,那么实数的值等于__________.【答案】0【解析】试题分析:由题意得,复数为纯虚数,那么,解得或者,当时,〔舍去〕,所以.考点:复数的概念.,,那么__________〔填入“〞或者“〞〕.【答案】.【解析】分析:利用分析法,逐步分析,即可得到与的大小关系.详解:由题意可知,那么比较的大小,只需比较和的大小,只需比较和的大小,又由,所以,即,即.点睛:此题主要考察了利用分析法比较大小,其中解答中合理利用分析法,逐步分析,得出大小关系是解答的关键,着重考察了推理与论证才能.15..【答案】.【解析】试题分析:根据定积分性质:,根据定积分的几何意义可知,表示以为圆心,1为半径的圆的四分之一面积,所以,而,所以.考点:定积分.,假设对任意实数都有,那么实数的取值范围是____________.【答案】【解析】构造函数,函数为奇函数且在上递减,即,即,即,所以即恒成立,所以,所以,故实数的取值范围是.三、解答题〔本大题一一共6小题,一共70分.解容许写出文字说明、证明过程或者演算步骤〕〔i为虚数单位〕.〔1〕当时,求复数的值;〔2〕假设复数在复平面内对应的点位于第二象限,求的取值范围.【答案】〔Ⅰ〕〔Ⅱ〕【解析】【分析】〔Ⅰ〕将代入,利用复数运算公式计算即可。
2024-2025学年湖北省十堰市郧阳中学高二上学期9月月考数学试卷(含答案)
2024-2025学年湖北省十堰市郧阳中学高二上学期9月月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.直线y=1−x tan72∘的倾斜角为( )A. 108∘B. 72∘C. 118∘D. 18∘2.向量a=(1,2,3),b=(−2,−4,−6),|c|=14,若(a+b)⋅c=−7,则a与c的夹角为( )A. 30∘B. 60∘C. 120∘D. 150∘3.已知直线l1:mx+y−1=0,l2:(3m−2)x+my−2=0,若l1//l2,则实数m的值为( )A. 2B. 1C. 1或2D. 0或134.将一枚均匀的骰子抛掷2次,事件A=“没有出现1点”,事件B=“出现一次1点”,事件C=“两次抛出的点数之和是8”,事件D=“两次掷出的点数相等”,则下列结论中正确的是( )A. 事件A与事件B是对立事件B. 事件A与事件D是相互独立事件C. 事件C与事件D是互斥事件D. 事件C包含于事件A5.已知点M是直线y=x+1上一点,A(1,0),B(2,1),则|AM|+|BM|的最小值为( )A. 2B. 22C. 1+2D. 106.已知在矩形ABCD中,AB=1,BC=3,将矩形ABCD沿对角线AC折起,使平面ABC与平面ACD垂直,则|BD|=( )A. 102B. 62C. 52D. 27.在棱长为2的正方体ABCD−A1B1C1D1中,E为AB的中点,则点A1到平面ECC1的距离为( )A. 15B. 55C. 255D. 258.古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上.下底面均为半圆形的柱体.若AA1垂直于半圆柱下底面半圆所在平面,AA1=3,AB=4,CD=2,E为弧A1B1的中点,则直线CE与平面DEB1所成角的正弦值为( )A. 39921B. 27321C. 24221D. 4221二、多选题:本题共3小题,共18分。
数学高二月考试卷
数学高二月考试卷一、选择题(每题5分,共60分)1. 椭圆frac{x^2}{25}+frac{y^2}{16}=1的长轴长为()A. 5B. 4C. 10D. 8.2. 双曲线x^2-frac{y^2}{3}=1的渐近线方程为()A. y = ±√(3)xB. y=±(√(3))/(3)xC. y = ± 3xD. y=±(1)/(3)x3. 抛物线y^2=2px(p>0)的焦点坐标为()A. ((p)/(2),0)B. (-(p)/(2),0)C. (0,(p)/(2))D. (0,-(p)/(2))4. 已知向量→a=(1,2),→b=(x,1),若→a⊥→b,则x=()A. - 2B. 2C. -(1)/(2)D. (1)/(2)5. 若直线y = kx + 1与圆x^2+y^2=1相切,则k=()A. ±√(3)B. ±1C. ±2D. ±√(2)6. 在空间直角坐标系中,点P(1,2,3)关于xOy平面的对称点为()A. (1,2,- 3)B. (-1,2,3)C. (1,-2,3)D. (-1,-2,-3)7. 设等差数列{a_n}的首项a_1=2,公差d = 3,则a_5=()A. 14B. 17C. 20D. 23.8. 等比数列{b_n}中,b_1=1,公比q = 2,则b_4=()A. 8B. 16C. 32D. 64.9. 函数y=sin(2x+(π)/(3))的最小正周期为()A. πB. 2πC. (π)/(2)D. (2π)/(3)10. 已知函数f(x)=x^3-3x^2+1,则函数f(x)的单调递增区间为()A. (-∞,0)∪(2,+∞)B. (0,2)C. (-∞,1)∪(3,+∞)D. (1,3)11. 若∫_0^a(2x + 1)dx=6,则a=()A. 2B. 3C. 4D. 5.12. 从5名男生和3名女生中任选3人参加志愿者活动,则所选3人中至少有1名女生的选法共有()A. 46种B. 56种C. 70种D. 80种。
鞍山市第一中学2024-2025学年高二上学期第一次月考(10月)月考数学试卷
鞍山市第一中学2024-2025学年高二上学期第一次月考(10月)月考数学试卷一、单选题1310y -+=的倾斜角是( ) A .30oB .60oC .120oD .150o2.若方程2224240x y mx y m m ++-+-=表示一个圆,则实数m 的取值范围是( ) A .1m ≤- B .1m <- C .1m ≥-D .1m >-3.已知直线l 的一个方向向量为()1,2,1m =-r ,平面α的一个法向量为1,1,2n x ⎛⎫= ⎪⎝⎭r ,若//l α,则x =( )A .52B .52-C .12-D .124.已知直线()12:20,:2120l ax y l x a y +-=+++=,若1l ∥2l ,则a =( ) A .1-或2B .1C .1或2-D .2-5.如图,在正方体1111ABCD A B C D -中,,M N 分别为11,DB AC 的中点,则直线1A M 和BN 夹角的余弦值为( )A B C .23D .126.当点()2,1P --到直线()()():131240l x y λλλλ+++--=∈R 的距离最大时,直线l 的一般式方程是( ) A .3250x y +-= B .2310x y -+= C .250x y ++=D .2320x y -+=7.如图,在直三棱柱111ABC A B C -中,190,1,,,BAC AB AC AA G E F ∠=︒===分别是棱111,A B CC 和AB 的中点,点D 是线段AC 上的动点(不包括端点).若GD EF ⊥,则线段AD 的长度是( )A .14B .12C .34D .138.如图,在四裬锥P ABCD -中,PA ⊥平面,90,ABCD BAD BC ∠=o ∥AD ,12,2PA AB BC AD Q ====是四边形ABCD 内部一点(包括边界),且二面角Q PD A --的平面角大小为π3,若点M 是PC 中点,则四棱锥M ADQ -体积的最大值是( )A B .43C D .1二、多选题9.已知m ∈R ,若过定点A 的动直线1l :20x my m -+-=和过定点B 的动直线2l :240mx y m ++-=交于点P (P 与A ,B 不重合),则以下说法正确的是( )A .A 点的坐标为 2,1B .PA PB ⊥C .2225PA PB +=D .2PA PB +的最大值为510.如图,已知二面角l αβ--的棱l 上有,A B 两点,,,C AC l D αβ∈⊥∈,BD l ⊥,若2,AC AB BD CD ====,则( )A .直线AB 与CD 所成角的余弦值为45o B .二面角l αβ--的大小为60oC .三棱锥A BCD -的体积为D .直线CD 与平面β11.如图,M 为棱长为2的正方体1111ABCD A B C D -表面上的一个动点,则( )A .当M 在平面1111D CB A 内运动时,四棱锥M ABCD -的体积是定值 B .当M 在直线11AC 上运动时,BM 与AC 所成角的取值范围为ππ,42⎡⎤⎢⎥⎣⎦C .使得直线MA 与平面ABCD 所成的角为60°的点M D .若N 为棱11A B 的中点,当M 在底面ABCD 内运动,且//MN 平面11B CD 时,MN 的三、填空题12.已知空间直角坐标系中的三点()2,0,2A 、()0,0,1B 、()2,2,2C ,则点A 到直线BC 的距离为.13.一条光线从点(4,0)A -射出,经直线10x y +-=反射到圆22:(2)2C x y ++=上,则光线经过的最短路径的长度为.14.已知梯形CEPD 如图1所示,其中8,6PD CE ==,A 为线段PD 的中点,四边形ABCD为正方形,现沿AB 进行折叠,使得平面PABE ⊥平面ABCD ,得到如图2所示的几何体.已知当点F 满足(01)AF AB λλ=<<u u u r u u u r 时,平面DEF ⊥平面PCE ,则λ的值为.图1 图2四、解答题15.已知直线l 的方程为:()()211740m x m y m +++--=. (1)求证:不论m 为何值,直线必过定点M ;(2)过点M 引直线1l 交坐标轴正半轴于A B 、两点,当AOB V 面积最小时,求AOB V 的周长. 16.在棱长为2的正方体1111ABCD A B C D -中,E 为11AC 的中点.(1)求异面直线AE 与1B C 所成角的余弦值; (2)求三棱锥1A B CE -的体积.17.已知圆满足:截y 轴所得弦长为2;被x 轴分成两段弧,其弧长的比为3:1, (1)若圆心在直线20x y -=上,求圆的标准方程;(2)在满足条件的所有圆中,求圆心到直线1:20x y -=的距离最小的圆的方程.18.如图,PD ⊥平面,,ABCD AD CD AB ⊥∥,CD PQ ∥,222CD AD CD DP PQ AB =====,点,,E F M 分别为,,AP CD BQ 的中点.(1)求证:EF ∥平面CPM ;(2)求平面QPM 与平面CPM 夹角的余弦值;(3)若N 为线段CQ 上的点,且直线DN 与平面QPM 所成的角为π6,求N 到平面CPM 的距离.19.如图,在ABC V 中,,2,AC BC AC BC D ⊥==是AC 中点,E F 、分别是BA BC 、边上的动点,且EF ∥AC ;将BEF △沿EF 折起,将点B 折至点P 的位置,得到四棱锥P ACFE -;(1)求证:EF PC ⊥;(2)若2BE AE =,二面角P EF C --是直二面角,求二面角P CE F --的正弦值; (3)当PD AE ⊥时,求直线PE 与平面ABC 所成角的正弦值的取值范围.。
广东省湛江市第二中学2022-2023学年高二下学期第二次月考数学试题
广东省湛江市第二中学2022-2023学年高二下学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知随机变量X的分布列为二、多选题9.关于()7-的展开式,下列判断正确的是()7xA.展开式共有8项B.展开式的各二项式系数的和为128C.展开式的第7项的二项式系数为49D.展开式的各项系数的和为76三、填空题中点,将ADEV沿AE翻折,使点D与点P重合,如图2.(1)证明:PB⊥AE;(2)当二面角P AE B--等于90°时,求P A与平面PEC所成角的正弦值.20.2023年春节期间,电影院有多部新片上映,某传媒公司调查了消费者的购票途径,数据显示超八成用户选择线上购买电影票,已知有A,B,C,D,E,F,G,H这8个线上购票平台,现随机抽取了200名线上消费者并统计他们在这8个平台上购买春节档电影票的人数(假设每个消费者只选用一个购票平台购买春节档电影票)以及曾经使用过这8个平台购买电影票的人数(每个消费者可用多个平台购买电影票),得到如下表格:当1a =时,()010f a =-=,函数()f x 有一个零点.(2)由(1)知:当1a <时,()010f a =-<,则函数()f x 无零点,当1a =时,()010f a =-=,函数()f x 有一个零点.当1a >时,()010f a =->, ()e 0a f a --=-<,()2e a f a a =-,()2e a f a ¢=-,当ln 2a <时,()0f a ¢>,()f a 在 (),ln 2-¥上递增;当 ln 2a >时,()0f a ¢<,()f a 在()ln 2,+¥上递减;所以()()maxln 22ln 220f a f ==-<,则 ()0f a <,所以()f x 在(),0¥-, ()0,¥+上各有一个零点;则1a >,且120a x x a -<<<<,要证1220x x +<,则证212x x <-,因为()f x 在(),0¥-上递减,所以只需证()()212f x f x >-,又()()210f x f x ==,只需证()()112f x f x >-,令()()()2g x x f x f =--,则()()()22e 2e 3e e x x x x g x x x x a a --=-+---+=-+,则()23e -2e x x g x -=-¢,设()23e -2e x x h x -=-,则()()20e +4e 0x x h x h -¢=->¢=,。
广东省部分学校2024—2025学年高二上学期第一次月考联考数学试卷
2024—2025学年高二上学期第一次月考联考高二数学试卷本试卷共5页 满分150分,考试用时120分钟注意事项:1. 答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码贴在答题卡上的指定位置.2. 选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3. 非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4. 考试结束后,请将本试卷和答题卡一并上交.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知()()2,1,3,1,1,1a b =−=− ,若()a a b λ⊥− ,则实数λ的值为( )A .2−B .143−C .73D .22.P 是被长为1的正方体1111ABCD A B C D −的底面1111D C B A 上一点,则1PA PC ⋅ 的取值范围是( )A .11,4 −−B .1,02 −C .1,04 −D .11,42 −−3.已知向量()4,3,2a =− ,()2,1,1b = ,则a 在向量b 上的投影向量为( ) A .333,,22 B .333,,244 C .333,,422 D .()4,2,24.在棱长为2的正方体1111ABCD A B C D −中,E ,F 分别为棱1AA ,1BB 的中点,G 为棱11A B 上的一点,且()102A G λλ=<<,则点G 到平面1D EF 的距离为( )AB C D 5.已知四棱锥P ABCD −,底面ABCD 为平行四边形,,M N 分别为棱,BC PD 上的点,13CM CB =,PN ND =,设AB a =,AD b =,AP c = ,则向量MN 用{},,a b c 为基底表示为( )A .1132a b c ++B .1162a b c −++ C .1132a b c −+ D .1162a b c −−+ 6.在四面体OABC 中,空间的一点M 满足1146OM OA OB OC λ=++ .若,,MA MB MC 共面,则λ=( ) A .12 B .13 C .512 D .7127.已知向量()()1,21,0,2,,a t t b t t =−−= ,则b a − 的最小值为( ) AB C D 8.“长太息掩涕兮,哀民生之多艰”,端阳初夏,粽叶飘香,端午是一大中华传统节日.小玮同学在当天包了一个具有艺术感的肉粽作纪念,将粽子整体视为一个三棱锥,肉馅可近似看作它的内切球(与其四个面均相切的球,图中作为球O ).如图:已知粽子三棱锥P ABC −中,PAPB AB AC BC ====,H 、I 、J 分别为所在棱中点,D 、E 分别为所在棱靠近P 端的三等分点,小玮同学切开后发现,沿平面CDE 或平面HIJ 切开后,截面中均恰好看不见肉馅.则肉馅与整个粽子体积的比为( ).A B C D 二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对得6分,部分选对的得部分分,有选错的得0分)9.如图,在棱长为2的正方体1111ABCD A B C D −中,E 为1BB 的中点,F 为11A D 的中点,如图所示建立空间直角坐标系,则下列说法正确的是( )A .13DB =B .向量AE 与1AC C .平面AEF 的一个法向量是()4,1,2−D .点D 到平面AEF 10.在正三棱柱111ABC A B C −中,1AB AA =,点P 满足][1([0,1,0,])1BP BC BB λµλµ=+∈∈ ,则下列说法正确的是( )A .当1λ=时,点P 在棱1BB 上B .当1µ=时,点P 到平面ABC 的距离为定值C .当12λ=时,点P 在以11,BC B C 的中点为端点的线段上 D .当11,2λµ==时,1A B ⊥平面1AB P 11.布达佩斯的伊帕姆维泽蒂博物馆收藏的达・芬奇方砖在正六边形上画了具有视觉效果的正方体图案,如图1,把三片这样的达・芬奇方砖拼成图2的组合,这个组合再转换成图3所示的几何体.若图3中每个正方体的棱长为1,则( )A .122CG AB AA =+B .直线CQ 与平面1111DC B A 所成角的正弦值为23C .点1C 到直线CQD .异面直线CQ 与BD 三、填空题(本大题共3小题,每小题5分,共15分)12.正三棱柱111ABC A B C −的侧棱长为2,底面边长为1,M 是BC 的中点.在直线1CC 上求一点N ,当CN 的长为 时,使1⊥MN AB .13.四棱锥P ABCD −中,PD ⊥底面ABCD ,底面ABCD 是正方形,且1PD =,3AB =,G 是ABC 的重心,则PG 与平面PAD 所成角θ的正弦值为 .14.坡屋顶是我国传统建筑造型之一,蕴含着丰富的数学元素.安装灯带可以勾勒出建筑轮那,展现造型之美.如图,某坡屋顶可视为一个五面体,其中两个面是全等的等腰梯形,两个面是全等的等腰三角形.若25m AB =,10m BC =,且等腰梯形所在平面、等腰三角形所在平面与平面ABCD 的夹角的正切值均为,则该五面体的所有棱长之和为 .四、解答题(本大题共5小题,共77分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本小题13分)如图,在长方体1111ABCD A B C D −中,11,2AD AA AB ===,点E 在棱AB 上移动.(1)当点E 在棱AB 的中点时,求平面1D EC 与平面1DCD 所成的夹角的余弦值;(2)当AE 为何值时,直线1A D 与平面1D EC 所成角的正弦值最小,并求出最小值.16.(本小题15分)如图所示,直三棱柱11ABC A B C −中,11,92,0,,CA CB BCA AA M N °==∠==分别是111,A B A A 的中点.(1)求BN 的长;(2)求11cos ,BA CB 的值.(3)求证:BN ⊥平面1C MN .17.(本小题15分)如图,在四棱维P ABCD −中,平面PAD ⊥平面ABCD ,PA PD ⊥,PA PD =,AB AD ⊥,1AB =,2AD =,AC CD ==(1)求直线PB 与平面PCD 所成角的正切值;(2)在PA 上是否存在点M ,使得//BM 平面PCD ?若存在,求AM AP的值;若不存在,说明理由. 18.(本小题17分) 如图1,在边长为4的菱形ABCD 中,60DAB ∠=°,点M ,N 分别是边BC ,CD 的中点,1AC BD O ∩=,AC MN G ∩=.沿MN 将CMN 翻折到PMN 的位置,连接PA ,PB ,PD ,得到如图2 所示的五棱锥P ABMND −.(1)在翻折过程中是否总有平面PBD ⊥平面PAG ?证明你的结论;(2)若平面PMN ⊥平面MNDB ,线段PA 上是否存在一点Q ,使得平面QDN 与平面PMN 所成角的余弦值为Q 的位置;若不存在,请说明理由. 19.(本小题17分)如图,四棱锥P ABCD −中,四边形ABCD 是菱形,PA ⊥平面,60ABCD ABC ∠= ,11,,2PA AB E F ==分别是线段BD 和PC 上的动点,且()01BE PF BD PC λλ==<≤.(1)求证://EF 平面PAB ;(2)求直线DF 与平面PBC 所成角的正弦值的最大值;(3)若直线AE 与线段BC 交于M 点,AH PM ⊥于点H ,求线段CH 长的最小值.。
广东省广州市番禺中学2024-2025学年高二上学期9月月考数学试卷(含答案)
高二数学9月月考试题一、单选题(每小题5分)1.已知,则( )A. B.C.D.2.函数)A. B. C. D.3.函数是( )A.最小正周期为的奇函数 B.最小正周期为的偶函数C.最小正周期为的奇函数 D.最小正周期为的偶函数4.若函数是定义在上的奇函数,,,则( )A.2B.0C.60D.625.已知空间向量,,则在上的投影向量坐标是( )A. B. C. D.6.在正四面体中,过点作平面的垂线,垂足为点,点满足,则( )A. B.C. D.7.在空间直角坐标系中,若直线的方向向量为,平面的法向量为,则( )A B. C.或 D.与斜交8.已知向量,,且平面,平面,若平面与平面的夹角的余弦的值为( )A.或 B.或1 C.或2D.二、多选题(每小题6分)9.三棱锥中,平面与平面的法向量分别为,,若,则二面角2i z =+izz =+3i 4-1i 4-3i4+1i 4+y =[3,4)(,3]-∞[3,)+∞(,4]-∞2π2cos 14y x ⎛⎫=-- ⎪⎝⎭πππ2π2()f x R (2)()f x f x -=(1)2f =(1)(2)(30)f f f ++⋅⋅⋅+=(3,4,0)a =(3,1,4)b =- b a (3,4,0)--34,,055⎛⎫--⎪⎝⎭314,,555⎛⎫--⎪⎝⎭(3,1,4)--P ABC -A PBC H M 34AM AH = PM =131444PA PB PC -+111444PA PB PC ++111424PA PB PC -+113444PA PB PC -+l (1,2,1)a =-α(2,3,4)n =//l αl α⊥l α⊂//l αl α(1,2,1)m =- (,1,)n t t =- m ⊥ αn ⊥βαβt 121-151-12-A BCD -ABD BCD 1n 2n 12π,3n n =的大小可能为( )A. B. C.D.10.随机抽取8位同学对2024年数学新高考|卷的平均分进行预估,得到一组样本数据如下:97,98,99,100,101,103,104,106,则下列关于该样本的说法正确的有( )A.均值为101 B.极差为9C.方差为8D.第60百分位数为10111.已知空间中三点,,,则( )A.与是共线向量B.与向量方向相同的单位向量坐标是C.与D.在三、填空题(每小题5分)12.已知是定义在上的奇函数,当时,,当时,,则_______.13.已知向量,,,若,,共面,则_______.14已知向量,,若与的夹角为钝角,则实数的取值范围是_______.四、解答题(五个大题共77分)15.(本题13分)(2024年新课标全国Ⅱ卷数学真题)记的内角,,的对边分别为,,,已知.(1)求.(2)若,求的周长.16(本题15分)某中学根据学生的兴趣爱好,分别创建了“书法”、“诗词”、“理学”三个社团,据资料统计新生通过考核选拔进入这三个社团成功与否相互独立.2015年某新生入学,假设他通过考核选拔进入该校的“书法”、“诗词”、“理学”三个社团的概率依次为、、,已知三个社团他都能进入的概率为,至少进入一个社团的概率为,且.(1)求与的值;(2)该校根据三个社团活动安排情况,对进入“书法”社的同学增加校本选修学分1分,对进入“诗词”A BD C --π6π32π35π6(0,1,0)A (2,2,0)B (1,3,1)C -AB AC AB ⎫⎪⎪⎭AB BC BC AB ()f x R 0x >2()22xxf x -=+0x <()22x x f x m n -=⋅+⋅m n +=(2,3,4)a x = (0,1,2)b = (1,0,0)c =a b c x =(2,,1)a t =--(2,1,1)b = a b t ABC △A B C a b c sin 2A A +=A 2a =sin sin 2C c B =ABC △m 13n 12434m n >m n社的同学增加校本选修学分2分,对进入“理学”社的同学增加校本选修学分3分.求该新同学在社团方面获得校本选修课学分分数不低于4分的概率.17.(本题15分)如图,在以,,,,,为顶点的六面体中(其中平面),四边形是正方形,平面,,且平面平面.(1)设为棱的中点,证明:,,,四点共面;(2)若,求六面体的体积.18.(本题17分)一家水果店为了解本店苹果的日销售情况,记录了过去200天的日销售量(单位:kg ),将全部数据按区间,,,分成5组,得到图所示的频率分布直方图.(1)求图中的值;并估计该水果店过去200天苹果日销售量的平均数(同一组中的数据用该组区间的中点值为代表);(2)若一次进货太多,水果不新鲜,进货太少,又不能满足顾客的需求.店长希望每天的苹果尽量新鲜,又能地满足顾客的需要(在100天中,大约有85天可以满足顾客的需求).请问,每天应该进多少水果?(3)在日销售量为苹果中用分层抽样方式随机抽6个苹果,再从这6苹果中随机抽取2个苹果,求抽取2个苹果都来自日销售量在的概率.19(本题17分)(2022年新高考天津数学高考真题)直三棱柱中,,,为的中点,为的中点,为的中点.A B C D E F F ∈EDC ABCD ED ⊥ABCD BF FE =FEB ⊥EDB M EB A C F M 24ED AB ==EFABCD [50,60)[60,70)⋅⋅⋅[90,100]a 85%[70,90]kg [80,90]111ABC A B C -12AA AB AC ===AC AB ⊥D 11A B E 1AA F CD(1)求证:平面;(2)求直线与平面所成角的正弦值;(3)求平面与平面夹角的余弦值.//EF ABC BE 1CC D 1ACD 1CC D高二数学9月月考试题参考答案一、单选题(每小题5分共40分)1.A2.A3.A4.A【详解】由题意,所以的周期为4,且关于直线对称,而,所以.5.B【详解】因为空间向量,,所以,,,则在上的投影向量坐标是:.6.B【详解】在正四面体中,因为平面,所以是的中心,连接,则,所以.7.C【解析】由可得,所以或,即可得正确选项.【详解】直线的方向向量为,平面的法向量为,因为,所以,所以或.8.B【详解】因为,所以,,,因为平面,平面,若平面与平面,,解得或1.二、多选题(每小题6分共18分)9.BC【详解】二面角的大小与法向量的夹角相等或互补,二面角的大小可能为或.10.ABD【详解】A选项,均值为,A正确;(2)()()(2)f x f x f x f x-==--=--()f x()f x1x=(1)(2)(3)(4)(0)(1)(1)(2)(2)(0)0f f f f f f f f f f+++=++-+===(1)(2)(30)(29)(30)(1)(2)(0)(1)022f f f f f f f f f++⋅⋅⋅+=+=+=+=+=(3,4,0)a=(3,1,4)b=-9405a b⋅=-++=-5a==b==ba 5134(3,4,0),,05555a b aa a⋅-⎛⎫⋅=⨯=--⎪⎝⎭P ABC-AH⊥PBC H PBC△PH()()211323PH PB PC PB PC=⨯+=+()33334444PM PA AM PA AH PA PH PA PA PH PA=+=+=+-=+-()3331311144434444PA PH PA PA PB PC PA PA PB PC=+-=+⨯+-=++a n⋅=a n⊥lα⊂//lαl(1,2,1)a=-α(2,3,4)n=(2,3,4)(1,2,1)2640a n⋅=⋅-=-+=a n⊥lα⊂//lα(1,2,1)m=-(,1,)n t t=-22m n t⋅=+m=n=m⊥αn⊥βαβ=25610t t-+=15t=∴A BD C--π3π2ππ33-=9798991001011031041061018+++++++=B 选项,极差为,B 正确;C 选项,方差为,C 错;D 选项,因为,故从小到大,选择第5个数作为第60百分位数,即101.11.BD 【详解】由已知,,,,因此与不共线,A 错;,所以与向量,B 正确;,,,C 错;在上的投影是,D 正确.三、填空题(每小题5分共15分)12.【详解】令,则,所以.因为是定义在上的奇函数,所以,所以,所以,,所以.13.【详解】由题意得,存在,使得,即,故解得,.14.【详解】由,得,解得,又,得,解得,所以与夹角为钝角,实数的取值范围为且.四、解答题(五个大题共77分)15.(本题13分)【解析】(1)由可得,即,由于,故,解得.(2)由题设条件和正弦定理,106979-=222(97101)(98101)(106101)169410492517882-+-+⋅⋅⋅+-+++++++==60%8 4.8⨯=(2,1,0)AB = (1,2,1)AC =- (3,1,1)BC =-1221-≠AB AC AB = AB ⎫=⎪⎪⎭6105AB BC ⋅=-++=- BC = cos ,AB BC AB BC AB BC⋅〈〉===BC AB BC AB AB⋅==5-0x <0x ->2()22xx f x -+-=+()f x R ()()f x f x -=-2()22422xx x x f x +--=--=-⨯-4m =-1n =-5m n +=-23m n a mb nc =+ (2,3,4)(0,1,2)(1,0,0)x m n =+2342nx m m=⎧⎪=⎨⎪=⎩2m =23x =(,1)(1,5)-∞-- 0a b ⋅<(2)2(1)10t -⨯++-⨯<5t <//a b 21211t --==1t =-a b t 5t <1t ≠-67=+sin 2A A +=1sin 12A A +=πsin 13A ⎛⎫+= ⎪⎝⎭ππ4π(0,π),333A A ⎛⎫∈⇒+∈ ⎪⎝⎭ππ32A +=π6A =sin sin 2sin 2sin sin cos C c B B C C B B =⇔=又,,则,进而,于是,,由正弦定理可得,,即,解得,,故的周长为.16.(本题15分)【详解】(1)依题,解得.(2)由题令该新同学在社团方面获得本选修课学分的分数为,获得本选修课学分分数不低于4分为事件A ,则;;.故.17.(本题15分)【详解】(1)连接,由四边形是正方形,故,又平面,平面,故,由,,平面,故平面,又为棱的中点,,故,又平面平面,平面平面,平面,故平面,故,所以,,,四点共面;(2)设与交于点,连接,则,又平面,平面,则平面,又因为六面体,则平面平面,又平面,故,则四边形为矩形,则,且平面,又,故,则.18(本题17分)【详解】(1)由直方图可得,样本落在,,,的频率分别为,,0.2,0.4,0.3,由,解得.B (0,π)C ∈sin sin 0B C ≠cos B =π4B =7π12C A B π=--=sin sin(π)sin()sin cos sin cos C A B A B A B B A =--=+=+=sin sin sin a b c A B C ==2ππ7πsin sin sin 6412b c==b =c =+ABC △2++78=+11324131(1)1(1)34mn m n m n ⎧=⎪⎪⎪⎛⎫----=⎨ ⎪⎝⎭⎪⎪>⎪⎩1214m n ⎧=⎪⎪⎨⎪=⎪⎩i X ()4121123412P X =⨯⨯=()5111123424P X =⨯⨯=()6111123424P X =⨯⨯=1111()1224246P A =++=78+AC ABCD AC DB ⊥ED ⊥ABCD AC ⊂ABCD ED AC ⊥DE BD D = DE BD ⊂EDB AC ⊥EDB M EB BF FE =FM EB ⊥FEB ⊥EDB FEB EDB EB =FM ⊂EFB FM ⊥EDB //FM AC A C F M AC BD O OM //OM DE OM ⊂ACFM DE ⊂/ACFM //DE ACFM EFABCD CDEF ACFM CF =DE ⊂CDEF //DE CF OCFM 1CF =CF ⊥ABCD BF FE =122CF DE ==11204422333EFABCD E ABCD B EFC V V V --=+=⨯⨯+⨯⨯=557=++[50,60)[60,70)⋅⋅⋅[90,100]10a 10a 10100.20.40.31a a ++++=0.005a =则样本落在,,,频率分别为0.05,0.05,0.2,0.4,0.3,所以,该苹果日销售量的平均值为:.(2)为了能地满足顾客的需要,即估计该店苹果日销售量的分位数.依题意,日销售量不超过90kg 的频率为,则该店苹果日销售量的分位数在,所以日销售量的分位数为.所以,每天应该进95kg 苹果.(3)由日销售量为,的频率分别为0.2,0.4知,抽取的苹果来自日销售量中的有2个,不妨记为,,来自日销售量为的苹果有4个,不妨记为,,,,任意抽取2个苹果,有,,,,,,,,,,,,,,,共有15个基本事件,其中2个苹果都来自日销售中的有6个基本事件,由古典概型可得.19.(本题17分)【解析】(1)证明:在直三棱柱中,平面,且,则以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、、、、、,则,易知平面的一个法向量为,则,故,平面,故平面.[50,60)[60,70)⋅⋅⋅[90,100]5060607070808090901000.050.050.20.40.383.5(kg)22222+++++⨯+⨯+⨯+⨯+⨯=85%85%10.03100.7-⨯=85%[90,100]85%0.850.7901095(kg)10.7-+⨯=-[70,80)[80,90][70,80)1a 2a [80,90]1b 2b 3b 4b ()12,a a ()11,a b ()12,a b ()13,a b ()14,a b ()21,a b ()22,a b ()23,a b ()24,a b ()12,b b ()13,b b ()14,b b ()23,b b ()24,b b ()34,b b [80,90]62155P ==557++111ABC A B C -1AA ⊥111A B C AC AB ⊥1111A C A B ⊥1A 1A A 11A B 11A C x y z (2,0,0)A (2,2,0)B (2,0,2)C 1(0,0,0)A 1(0,2,0)B 1(0,0,2)C (0,1,0)D (1,0,0)E 11,,12F ⎛⎫⎪⎝⎭10,,12EF ⎛⎫= ⎪⎝⎭ABC (1,0,0)m =0EF m ⋅= EF m ⊥ EF ⊂/ ABC //EF ABC(2),,,设平面的法向量为,则,取,可得,.因此,直线与平面夹角的正弦值为.(3),,设平面的法向量为,则,取,可得,则因此,平面与平面.1(2,0,0)C C = 1(0,1,2)C D =- (1,2,0)EB =1CC D ()111,,u x y z = 111112020u C C x u C D y z ⎧⋅==⎪⎨⋅=-=⎪⎩ 12y =(0,2,1)u =4cos ,5EB u EB u EB u ⋅==⋅BE 1CC D 451(2,0,2)AC = 1(0,1,0)A D =1ACD ()222,,v x y z = 122122200v A C x z v A D y ⎧⋅=+=⎪⎨⋅==⎪⎩ 21x =(1,0,1)v =-cos ,u v u v u v ⋅〈〉===⋅ 1ACD 1CC D。
广东省广州市铁一中学2024-2025学年高二上学期10月月考数学试卷(含答案)
广州市铁一中学2024-2025学年第一学期10月月考高二数学本试卷共4页,19小题,满分150分。
考试用时120分钟。
一、单项选择题:本大题8小题,每小题5分,共40分。
1.已知空间的一组基,则可以与向量,构成空间的另一组基的向量是()A .B .C .D .2.空间中一个静止的物体用三根绳子悬挂起来,已知三根绳子上的拉力大小分别为1N 、2N 、3N ,且三根绳子中任意两根绳子的夹角均为,则该物体的重力大小为()A .B .C .D .3.“”是“直线和直线平行”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.如图,在平行六面体中,为、的交点.若,,则向量()A .B.C D .5.已知点,,若,则直线的倾斜角的取值范围为()A .B .C .D .6.如图所示,四面体的体积为,点为棱的中点,点、分别为线段的三等分点,点为线段的中点,过点的平面与棱、、分别交于、、,设四面体的体积为,则的最小值为(){,,}a b c2a b c -- a b c ++ 22a b +2a b- 3a c+ 32b c+ 60︒NN5N6N4a =()1:220l a x ay +++=()()2:1210l a x a y -+--=1111ABCD A B C D -M 11A C 11B D ,AB a AD b == 1AA c =BM =1122a b c-++ 1122a b c++1122a b c--+ 1122a b c-+ ()2,1A -()3,B m 1m ⎡⎤∈--⎢⎥⎣⎦AB π5π,36⎡⎤⎢⎥⎣⎦π5π0,,π36⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭π2π0,,π63⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ ππ5π,,π326⎡⎫⎛⎤⎪ ⎢⎥⎣⎭⎝⎦ABCD V M BC E F DM N AF N αAB AC AD O P Q AOPQ V 'V V'A.B .C .D .7.在棱长为的正方体中,M ,N 分别为的中点,点在正方体表面上运动,且满足,点轨迹的长度是().A .B .C .D .8.如图所示,三棱锥中,平面,,点为棱的中点,、分别为直线、上的动点,则线段的最小值为()ABCD二、多项选择题:本大题3小题,每小题6分,共18分。
2023-2024学年全国高中高二下数学苏教版月考试卷(含解析)
2023-2024学年全国高二下数学月考试卷考试总分:110 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上;卷I (选择题)一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1. 已知为虚数单位,复数满足=,则复数对应的点位于复平面内的( )A.第一象限B.第二象限C.第三象限D.第四象限2. 设集合=,集合=,则=( )A.B.C.D.3. 已知直线经过椭圆 的左焦点 ,且与椭圆在第二象限的交点为,与轴的交点为 ,是椭圆的右焦点,且 ,则椭圆的方程为()A.B.C.D.i z (1+2i)z 4+3i z M {x |−5x +6<0}x 2N {x |x >0}M ∪N {x |x >0}{x |x <3}{x |x <2}{x |2<x <3}2x −y +4=02–√2–√+=1(a >b >0)x 2a 2y 2b 2F 1M y N F 2|MN|=|M |F 2+=1x 240y 24+=1x 25y 2+=1x 210y 2+=1x 29y 25抛物线的焦点到准线的距离是( )A.B.C.D.5. 已知平面向量,,若,则( )A.B.C.D.6. 规定:若双曲线与双曲线 的渐近线相同,则称双曲线与双曲线为“等渐双曲线”设为双曲线右支上一点,,分别为双曲线的左顶点和右焦点,为等边三角形,双曲线 与双曲线 为”等渐双曲线”,且双曲线 的焦距为,则双曲线的标准方程是( )A.B.C.D.7. 若抛物线的准线经过双曲线的一个焦点,则实数的值是( )A.B.C.D.=8x y 21248a →=(−4,3)−2=(k,−6)a →b →⊥a →b →k =8−8434−434C 1C 2C 1C 2.M :−=1(a >0,b >0)C 1x 2a 2y 2b 2A F C 1△MAF C 1:−=1(>0,>0)C 2x 2a ′2y 2b ′2a ′b ′C 282–√C 2−=1x 230y 22−=1x 22y 230−=1x 260y 24−=1x 24y 260=4x y 22–√−=1x 2y 2mm 12348. 已知椭圆的离心率,则的取值范围是( )A.B.C.D.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9. 已知椭圆的左、右焦点分别为,,且,点在椭圆内部,点在椭圆上,则以下说法正确的是( )A.的最小值为B.椭圆的短轴长可能为C.椭圆的离心率的取值范围为D.若,则椭圆的长轴长为10. 已知直线,动直线,则下列结论正确的是A.存在,使得的倾斜角为B.对任意的,与都有公共点C.对任意的,与都不重合D.对任意的,与都不垂直11. 数学家华罗庚曾说:“数缺形时少直观,形少数时难人微.”事实上,很多代数问题可以转化为几何问题加以解决,例如,与相关的代数问题,可以转化为点与点之间的距离的几何问题.结合上述观点,可得方程的解为( )A.B. C.+=1x 24y 2m e >2–√2m (0,1)∪(2,+∞)(0,2)∪(8,+∞)(−∞,2)(−∞,2)∪(8,+∞)C :+=1(a >b >0)x 2a 2y 2b 2F 1F 2||=2F 1F 2P (1,1)Q |Q |+|QP|F 12a −1C 2C (0,)−15–√2=PF 1−→−Q F 1−→−C +5–√17−−√:x −y −1=0l 1:(k +1)x +ky +k =0(k ∈R)l 2()k l 290∘k l 1l 2k l 1l 2k l 1l 2+(x −a)2(y −b)2−−−−−−−−−−−−−−−√A (x,y)B (a,b)|−|+4x +5x 2−−−−−−−−−√−4x +5x 2−−−−−−−−−√=223–√33–√6−23–√3–√D.12. 已知抛物线的焦点为,过点倾斜角为的直线与抛物线交于,两点(点在第一象限),与抛物线的准线交于,则以下结论正确的是( )A.B.为的中点C.D.卷II (非选择题)三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13. 抛物线的准线方程为________.14. 直线的斜率为________.15. 设点是椭圆上异于长轴端点的任意一点,,为两焦点,动点满足,则动点的轨迹方程为________.16. 已知双曲线的左、右焦点分别为,过点作圆的切线交双曲线右支于点,若,则双曲线的离心率为________.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17. 已知双曲线的离心率为,点为上位于第二象限的动点.若点的坐标为,求双曲线的方程;设,分别为双曲线的右顶点、左焦点,是否存在常数,使得,如果存在,请求出的值;如果不存在,请说明理由.18. 已知点,圆.(1)若直线=与圆相交于,两点,且弦的长为,求的值;(2)求过点的圆的切线方程.19. 已知函数,,.−3–√6C :=10x y 2F F 60∘l C A B AD |AF|=10F AD 2|BD|=|BF||BF|=83y =8x 2y =−5x +9Q +=1x 236y 29F 1F 2P ++=PF 1−→−PF 2−→−PQ −→−0→P −=1x 2a 2y 2b 2(a >b >0),F 1F 2F 1+=x 2y 2a 2M ∠M =F 1F 2π4C :−=1(a >0,b >0)x 2a 2y 2b22A C (1)A (−2,3)C (2)B F C λ∠AFB =λ∠ABF λM(3,1)+=4C :(x −1)2(y −2)2ax −y +40C A B AB 23–√a M C =(2sin x,sin x −cos x)a →=(cos x,cos x +sin x)b →3–√f (x)=⋅a →b →0,]π求的最小正周期及在区间上的最大值和最小值;若,,求的值.20. 已知抛物线,为其焦点,点在抛物线上,且,过点作抛物线的切线,为上异于点的一个动点,过点作直线交抛物线于,两点.求抛物线的方程;若,求直线的斜率,并求的取值范围. 21. 已知过点的曲线的方程为.求曲线的标准方程;已知点,为直线上任意一点,过作的垂线交曲线于点,,求的最大值. 22. 已知双曲线的中心在原点,焦点,在坐标轴上,一条渐近线方程为,且过点.求双曲线方程;若点在此双曲线上,求.(1)f (x)f (x)[0,]π2(2)f ()=x 065∈[,]x 0π4π2cos 2x 0C :=2px y 2F Q (1,y)(y >0)C |FQ|=2Q C l 1P (,)x 0y 0l 1Q P l 2C A B (1)C (2)|PQ =|PA|⋅|PB||2l 2x 0P (1,)32C +=2a +(x −1)2y 2−−−−−−−−−−−√+(x +1)2y 2−−−−−−−−−−−√(1)C (2)F (1,0)A x =4F AF C BD |BD||AF|F 1F 2y =x (4,−)10−−√(1)(2)M(3,m)⋅MF 1−→−−MF 2−→−−参考答案与试题解析2023-2024学年全国高二下数学月考试卷一、 选择题 (本题共计 8 小题 ,每题 5 分 ,共计40分 )1.【答案】D【考点】复数的运算复数的代数表示法及其几何意义【解析】把已知等式变形,然后利用复数代数形式的乘除运算化简复数,求出复数对应的点的坐标得答案.【解答】由=,得,则复数对应的点的坐标为,位于复平面内的第四象限.2.【答案】A【考点】并集及其运算【解析】可求出集合,然后进行并集的运算即可.【解答】∵=,=,∴=.3.【答案】z z (1+2i)z 4+3i z ====2−i 4+3i 1+2i (4+3i)(1−2i)(1+2i)(1−2i)10−5i 5z (2,−1)M M {x |2<x <3}N {x |x >8}M ∪N {x |x >0}D【考点】椭圆的标准方程椭圆的定义【解析】此题暂无解析【解答】解:由题意得,直线与轴的交点为,又直线过椭圆的左焦点 ,∴,即,∵直线与椭圆在第二象限的交点为,与轴的交点为,且,∴,即,又由,∴椭圆的方程为.故选.4.【答案】C【考点】抛物线的求解【解析】本题主要考查抛物线的基本性质.【解答】解:,∴抛物线的焦点到准线的距离是.故选.5.【答案】D【考点】2x −y +4=02–√2–√x (−2,0)2x −y +4=02–√2–√+=1(a >b >0)x 2a 2y 2b 2F 1(−2,0)F 1c =22x −y +4=02–√2–√M y N(0,4)2–√|MN|=|M |F 2|M |+|M |=|N|=2a F 1F 2F 1a =|N|==312F 112+(4222–√)2−−−−−−−−−−√=−=9−4=5b 2a 2c 2+=1x 29y 25D ∵2p =8,∴p =4=8x y 24C数量积判断两个平面向量的垂直关系平面向量的坐标运算【解析】此题暂无解析【解答】解:由,,得.若,则,解得.故选.6.【答案】B【考点】双曲线的渐近线双曲线的标准方程【解析】此题暂无解析【解答】解:据题意可知, ,a →=(−4,3)−2=(k,−6)a →b →=b →−(−2)a →a →b →2=(−4,3)−(k,−6)2=(,)−4−k 292⊥a →b →⋅=(−4,3)⋅(,)a →b →−4−k 292=8+2k +=0272k =−434D =,+=(=32b ′a ′b a a ′2b ′282–√2)2,(a +c))–√,−(a +c))–√由分析知,点坐标为 或 ,点在双曲线上,∴ .又∴,∴ 解得故双曲线 的标准方程是 .故选7.【答案】A【考点】抛物线的标准方程双曲线的标准方程【解析】此题暂无解析【解答】此题暂无解答8.【答案】B【考点】椭圆的离心率【解析】答案未提供解析.【解答】解:,M (,(a +c))−a +c 23–√2(,−(a +c))−a +c 23–√2M C 1−=1(−a +c 2)2a 2(a +c 34)2b 2=+,c 2a 2b 2(=15b a )2==b ′a ′b a 15−−√.=2,=30.a ′2b ′2C 2−=1x 22y 230B.e =>1−b 2a 2−−−−−−√2–√22,当时,或,∴或.故选.二、 多选题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )9.【答案】A,C,D【考点】椭圆的标准方程椭圆的离心率椭圆的定义【解析】【解答】解:选项,由椭圆的第一定义得,当且仅当,,三点共线,且在与中间时,等号成立,故正确;选项,若,即,因为,所以,则椭圆方程为,所以,点在椭圆外,故错误;选项,因为在椭圆内部,所以,解得,所以,故正确;选项,因为,所以点的坐标为,所以,故正确.故选.10.【答案】∴<b 2a 212∴m >0<m 412<4m 120<m <2m >8B A |Q |+|QP|=2a −|Q |+|QP|F 1F 2≥2a −|P|=2a −1F2F2P Q P F 2Q B 2b =2b =1c =1a =2–√+=1x 22y 2+1>112P C P =>1b 2a −1a 2aa >+15–√2e =∈(0,)c a −15–√2D =PF 1−→−Q F 1−→−Q (−3,−1)2a=|Q |+|Q |F 1F 2=+(−3+1+(−1)2)2−−−−−−−−−−−−−−−√(−3−1+(−1)2)2−−−−−−−−−−−−−−−√=+5–√17−−√ACDA,B,D【考点】两条直线垂直与倾斜角、斜率的关系直线的倾斜角【解析】(1)根据题目所给信息进行求解即可.【解答】解:已知动直线 ,当时,斜率不存在,其倾斜角为,选项正确;联立,可得,此方程有解,即两直线存在交点,选项正确;当时,动直线成立,此时两直线重合,选项错误;当时,,与不垂直,当时,,即对任意的,与都不垂直,选项正确.故选.11.【答案】A,C【考点】双曲线的应用双曲线的定义点到直线的距离公式【解析】【解答】解:由,得,其几何意义为平面内一点与两定点,距离之差的绝对值为.平面内与两定点,距离之差的绝对值为的点的轨迹是双曲线.设该双曲线的方程为,,:(k +1)x +ky +k =0(k ∈R)l 2k =090°A {x −y −1=0(k +1)x +ky +k =0(2k +1)x =0B k =−12:==l 2k +11k −1k −1C k =0:x =0l 2l 1k ≠0⋅=1×=−1−≠−1k l 1k l 2k +1−k 1k k l 1l 2D ABD |−|=2+4x +5x 2−−−−−−−−−√−4x +5x 2−−−−−−−−−√|−|=2+(x +2)2(1−0)2−−−−−−−−−−−−−−−√+(x −2)2(1−0)2−−−−−−−−−−−−−−−√(x,1)(−2,0)(2,0)2(−2,0)(2,0)2−=1(a >0x 2a 2y 2b 2b >0)则 解得,.所以该双曲线的方程是.联立方程组 解得.故选.12.【答案】A,B【考点】抛物线的性质直线的倾斜角解三角形抛物线的定义【解析】无【解答】解:如图,分别过点,作抛物线的准线的垂线,垂足分别为点,,抛物线的准线与轴交于点,则,由于直线的倾斜角为,轴,由抛物线定义可知,,则为正三角形,所以,则,所以,,正确;因为,,所以点为的中点,正确;2a =2,c =2,=+,c 2a 2b 2a =1b =3–√−=1x 2y 23y =1,−=1,x 2y 23x =±23–√3AC A B C m E M m x P |PF|=5l 60∘AE//x |AE|=|AF|△AEF ∠EFP =∠AEF =60∘∠PEF =30∘|AF|=|EF|=2|PF|=10A |AE|=|EF|=2|PF|PF//AE因为,所以,所以,错误;,错误.故选.三、 填空题 (本题共计 4 小题 ,每题 5 分 ,共计20分 )13.【答案】【考点】抛物线的性质【解析】先将抛物线的方程化为准线方程,进而根据抛物线的性质可求得答案.【解答】解:∵抛物线,可化为,∴,即,∴抛物线的准线方程为.故答案为:.14.【答案】【考点】直线的斜截式方程直线的斜率【解析】根据直线的斜截式方程,结合题中的数据即可得到已知直线的斜率值.【解答】∠DAE =60∘∠ADE =30∘|BD|=2|BM|=2|BF|C |BF|=|DF|=|AF|=1313103D AB y =−132y =8x 2=y x 2182p =18p =116y =−132y =−132−5解:∵直线中,一次项系数,∴直线的斜率为.故答案为:.15.【答案】【考点】轨迹方程椭圆的标准方程【解析】设, ,由,可得,,利用在椭圆上,即可求解.【解答】解:设,,又,,,,,,∵动点满足,则,,,即.故答案为:.16.【答案】【考点】双曲线的离心率双曲线的标准方程【解析】此题暂无解析【解答】解:设切点为,连接,作作,垂足为,y =−5x +9k =−5y =−5x +9−5−5+=1(x ≠±2)x 24y 2P (x,y)Q (,)x 0y 0++=PF 1−→−PF 2−→−PQ −→−0→=3x x 0=3y y 0Q (,)x 0y 0P(x,y)Q(,)x 0y 0(−c,0)F 1(c,0)F 2(≠±6)x 0=(−c −x,−y)PF 1−→−=(c −x,−y)PF 2−→−=(−x,−y)PQ −→−x 0y 0P ++=PF 1−→−PF 2−→−PQ −→−0→=3x x 0=3y y 0∴+=19x 2369y 29+=1(x ≠±2)x 24y 2+=1(x ≠±2)x 24y 23–√N ON F 2A ⊥MN F 2A由,且为的中位线,可得,,即有,在直角三角形中,可得,即有,由双曲线的定义可得,可得,∴,∴.故答案为:.四、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 )17.【答案】解:∵离心率.∴,又,∴双曲线方程,把点代入双曲线方程得,,解得,故双曲线的方程为:.由知:双曲线方程,∴.①当直线的斜率不存在时,则,∴,此时;②当直线的斜率存在时,设,其中∵,故,故渐近线方程为:,∴,又 ,|ON|=a ON △A F 1F 2A =2a F 2N =F 1−c 2a 2−−−−−−√|A|=2b F 1M A F 2|M |=2a F 22–√|M |=2b +2a F 1|M |−|M |=2b +2a −2a =2a F 1F 22–√b =a 2–√c ==a +a 2b 2−−−−−−√3–√e ==c a3–√3–√(1)e ==2c ac =2a =−=3b 2c 2a 2a 2C :−=1x 2a 2y 23a 2A (−2,3)−=14a 293a 2=1a 2C −=1x 2y 23(2)(1)C :−=1x 2a 2y 23a 2B (a,0),F (−2a,0)AF ∠AFB =,|FB|=3a,|AF|==3a 90∘b 2a ∠ABF =45∘λ=2AF ∠AFB =α,∠ABF =β,A (,)x 0y 0<−a ,y >0.x 0e =2c =2a,b =a 3–√y =±x 3–√α∈(0,),β∈(0,)2π3π3tan α=,tan β=y 0+2a x 0y 0a −x 0,∴,又,∴综上:存在常数满足.【考点】双曲线的标准方程双曲线的离心率双曲线的应用双曲线的渐近线【解析】此题暂无解析【解答】解:∵离心率.∴,又,∴双曲线方程,把点代入双曲线方程得,,解得,故双曲线的方程为:.由知:双曲线方程,∴.①当直线的斜率不存在时,则,∴,此时;②当直线的斜率存在时,设,其中∵,故,故渐近线方程为:,∴,又 ,=2(a −)y 0x 0(a −−3(−1)x 0)2a 2x 20a 2=2(a −)y 0x 0(a −−3(−)x 0)2x 20a 2==2y 0(a −)+3(+a)x 0x 0y 0+2a x 0tan α=tan 2βα,2β∈(0,)2π3α=2β.λ=2∠AFB =2∠ABF (1)e ==2c ac =2a =−=3b 2c 2a 2a 2C :−=1x 2a 2y 23a 2A (−2,3)−=14a 293a 2=1a 2C −=1x 2y 23(2)(1)C :−=1x 2a 2y 23a 2B (a,0),F (−2a,0)AF ∠AFB =,|FB|=3a,|AF|==3a 90∘b 2a ∠ABF =45∘λ=2AF ∠AFB =α,∠ABF =β,A (,)x 0y 0<−a ,y >0.x 0e =2c =2a,b =a 3–√y =±x 3–√α∈(0,),β∈(0,)2π3π3tan α=,tan β=y 0+2a x 0y 0a −x 0,∴,又,∴综上:存在常数满足.18.【答案】根据题意,圆:=,圆心为,半径=,若弦的长为,则圆心到直线=的距离,又由圆心为,直线=,则有,解得;根据题意,分种情况讨论:当切线斜率不存在时,其方程为=,与圆相切,符合条件,当切线斜率存在时,设其方程为=,圆心到它的距离,解得,切线方程为=,所以过点的圆的切线方程为=或=.【考点】圆的切线方程直线与圆相交的性质【解析】(1)由直线与圆的位置关系可得圆心到直线=的距离,结合点到直线的距离公式可得,解可得的值,即可得答案;(2)根据题意,分切线的斜率是否存在种情况讨论,分别求出切线的方程,综合即可得答案.【解答】根据题意,圆:=,圆心为,半径=,若弦的长为,则圆心到直线=的距离,又由圆心为,直线=,则有,解得;根据题意,分种情况讨论:=2(a −)y 0x 0(a −−3(−1)x 0)2a 2x 20a 2=2(a −)y 0x 0(a −−3(−)x 0)2x 20a 2==2y 0(a −)+3(+a)x 0x 0y 0+2a x 0tan α=tan 2βα,2β∈(0,)2π3α=2β.λ=2∠AFB =2∠ABF O 1(x −1+(y −2)2)24(1,2)r 2AB 23–√ax −y +40d ==1−22()3–√2−−−−−−−−−√(1,2)ax −y +40d ==1|a +2|+1a 2−−−−−√a =−342x 3y −1k(x −3)=2|2k +1|+1k 2−−−−−√k =343x −4y −50M x 33x −4y −50ax −y +40d d ==1|a +2|+1a 2−−−−−√a 2O 1(x −1+(y −2)2)24(1,2)r 2AB 23–√ax −y +40d ==1−22()3–√2−−−−−−−−−√(1,2)ax −y +40d ==1|a +2|+1a 2−−−−−√a =−342当切线斜率不存在时,其方程为=,与圆相切,符合条件,当切线斜率存在时,设其方程为=,圆心到它的距离,解得,切线方程为=,所以过点的圆的切线方程为=或=.19.【答案】解:,其最小正周期为.又,,,.,,又,,,.【考点】二倍角的正弦公式二倍角的余弦公式两角和与差的余弦公式三角函数的化简求值三角函数的最值【解析】此题暂无解析【解答】解:,其最小正周期为.又,x 3y −1k(x −3)=2|2k +1|+1k 2−−−−−√k =343x −4y −50M x 33x −4y −50(1)f (x)=⋅=sin 2x −cos 2x a →b →3–√=2sin(2x −)π6πx ∈[0,]π2∴2x −∈[−,]π6π65π6∴f =2(x)max f =−1(x)min (2)∵f ()=x 065∴sin(2−)=x 0π635∈[,]x 0π4π2∴2−∈[,]x 0π6π35π6∴cos(2−)=−x 0π645∴cos 2=cos(2−)cos −x 0x 0π6π6sin(2−)sin x 0π6π6=−3+43–√10(1)f (x)=⋅=sin 2x −cos 2x a →b →3–√=2sin(2x −)π6πx ∈[0,]π2,,.,,又,,,.20.【答案】解:因为点在抛物线上,所以,所以,所以抛物线的方程为: .由可知,.设切线的方程为:,代入,得,由,得,所以切线的方程为:.因为在直线上,所以.设直线方程为:,代入,得.设,,则且,得,所以.又,所以,所以 (由题意取负),所以直线的斜率为,代入,得,所以,所以.又,所以的取值范围为:且.【考点】圆锥曲线的综合问题∴2x −∈[−,]π6π65π6∴f =2(x)max f =−1(x)min (2)∵f ()=x 065∴sin(2−)=x 0π635∈[,]x 0π4π2∴2−∈[,]x 0π6π35π6∴cos(2−)=−x 0π645∴cos 2=cos(2−)cos −x 0x 0π6π6sin(2−)sin x 0π6π6=−3+43–√10(1)Q |FQ|=1+=2p 2p =2C =4x y 2(2)(1)Q (1,2)l 1y −2=k (x −1)=4x y 2k −4y −4k +8=0y 2Δ=0k =1l 1y =x +1P (,)x 0y 0l 1=−1x 0y 0l 2x −=m(y −)x0y 0=4x y 2−4my +4m −4=0y 2y 0x 0A (,)x 1y 1B (,)x 2y 2{+=4m,y 1y 2=4m −4,y1y 2y 0x 0Δ=16−16m +16>0m 2y 0x 0−m +>0m 2y 0x0|PA|⋅|PB|=|−|⋅|−|1+m 2−−−−−−√y1y 01+m 2−−−−−−√y2y 0=(1+)(−)(−)m 2y 1y 0y 2y 0=(1+)[−(+)+]m 2y 1y 2y 0y 1y 2y 20=(1+)(4m −4−4m +)m 2y 0x 0y 0y 20=(1+)[−4(−1)]m 2y 20y 0=(1+)(−2m 2y 0)2|PQ =2|2(−2)y 021+=2m 2m =±1l 2−1Δ>01++>0y 0x 02(+1)>0x 0>−1x0≠1x 0x 0>−1x 0≠1x 0抛物线的标准方程抛物线的定义【解析】【解答】解:因为点在抛物线上,所以,所以,所以抛物线的方程为: .由可知,.设切线的方程为:,代入,得,由,得,所以切线的方程为:.因为在直线上,所以.设直线方程为:,代入,得.设,,则且,得,所以.又,所以,所以 (由题意取负),所以直线的斜率为,代入,得,所以,所以.又,所以的取值范围为:且.21.【答案】解:将代入曲线的方程得.由椭圆定义可知曲线的轨迹为以,为焦点的椭圆,所以的标准方程为.设,,由题意知,直线的斜率不为,可设的方程为,则的方程为,所以,所以.(1)Q |FQ|=1+=2p 2p =2C =4x y 2(2)(1)Q (1,2)l 1y −2=k (x −1)=4x y 2k −4y −4k +8=0y 2Δ=0k =1l 1y =x +1P (,)x 0y 0l 1=−1x 0y 0l 2x −=m(y −)x 0y 0=4x y 2−4my +4m −4=0y 2y 0x 0A (,)x 1y 1B (,)x 2y 2{+=4m,y 1y 2=4m −4,y 1y 2y 0x 0Δ=16−16m +16>0m 2y 0x 0−m +>0m 2y 0x 0|PA|⋅|PB|=|−|⋅|−|1+m 2−−−−−−√y 1y 01+m 2−−−−−−√y 2y 0=(1+)(−)(−)m 2y 1y 0y 2y 0=(1+)[−(+)+]m 2y 1y 2y 0y 1y 2y 20=(1+)(4m −4−4m +)m 2y 0x 0y 0y 20=(1+)[−4(−1)]m 2y 20y 0=(1+)(−2m 2y 0)2|PQ =2|2(−2)y 021+=2m 2m =±1l 2−1Δ>01++>0y 0x 02(+1)>0x 0>−1x 0≠1x 0x 0>−1x 0≠1x 0(1)P (1,)32C a =2C (−1,0)(1,0)C +=1x 24y 23(2)B (,)x 1y 1D (,)x 2y 2BD 0BD x =my +1AF y =−m(x −1)A (4,−3m)AF ==3(4−1+(−3m −0)2)2−−−−−−−−−−−−−−−−−−√+1m 2−−−−−−√将直线与椭圆的方程联立得,所以,,所以,所以.令,所以.令,.因为,所以在上单调递增,所以,所以,所以的最大值为【考点】椭圆的标准方程轨迹方程直线与椭圆结合的最值问题【解析】(1)将点的坐标代入曲线的方程可求出的值,再由曲线方程的几何意义即可求出曲线的方程;设,设直线的方程为,令即可求出点坐标,再由两点间距离公式即可求出,将直线的方程为与椭圆的方程联立消去,利用根与系数关系求出,由弦长公式的最小值即可.【解答】解:将代入曲线的方程得.由椭圆定义可知曲线的轨迹为以,为焦点的椭圆,所以的标准方程为.设,,BD C x =my +1,+=1,x 24y 23(3+4)+6my −9=0m 2y 2+=y 1y 2−6m 3+4m 2=y 1y 2−93+4m 2|BD|=+1m 2−−−−−−√−4(+)y 1y 22y 1y 2−−−−−−−−−−−−−−√=12(+1)m 23+4m 2=|BD ||AF |4+1m 2−−−−−−√3+4m 2t =≥1+1m 2−−−−−−√==|BD ||AF |4t 3+1t 243t +1t f (t)=3t +1t t ≥1(t)=3−=>0f ′1t 23−1t 2t 2f (t)=3t +1t [1,+∞)f (t)=3t +≥f (1)=41t =≤=1|BD ||AF |43t +1t 44|BD||AF |1.P C 4C C (2)B (,)D (,)x 1y 1x 2y 2BD x =my +1x =4A |AF |BD x =my +1C x +,y 1y 2y 1y 2(1)P (1,)32C a =2C (−1,0)(1,0)C +=1x 24y 23(2)B (,)x 1y 1D (,)x 2y 2由题意知,直线的斜率不为,可设的方程为,则的方程为,所以,所以.将直线与椭圆的方程联立得,所以,,所以,所以.令,所以.令,.因为,所以在上单调递增,所以,所以,所以的最大值为22.【答案】解:∵双曲线的中心在原点,焦点,在坐标轴上,一条渐近线方程为,∴设双曲线方程为,,∵双曲线过点,∴,即,∴双曲线方程为.∵点在此双曲线上,∴,解得.∴,或,∵,,∴当时,,,;当时,,,.BD 0BD x =my +1AF y =−m(x −1)A (4,−3m)AF ==3(4−1+(−3m −0)2)2−−−−−−−−−−−−−−−−−−√+1m 2−−−−−−√BD C x =my +1,+=1,x 24y 23(3+4)+6my −9=0m 2y 2+=y 1y 2−6m 3+4m 2=y 1y 2−93+4m 2|BD|=+1m 2−−−−−−√−4(+)y 1y 22y 1y 2−−−−−−−−−−−−−−√=12(+1)m 23+4m 2=|BD ||AF |4+1m 2−−−−−−√3+4m 2t =≥1+1m 2−−−−−−√==|BD ||AF |4t 3+1t 243t +1t f (t)=3t +1t t ≥1(t)=3−=>0f ′1t 23−1t 2t 2f (t)=3t +1t [1,+∞)f (t)=3t +≥f (1)=41t =≤=1|BD ||AF |43t +1t 44|BD||AF | 1.(1)F 1F 2y =x −=λx 2y 2λ≠0(4,−)10−−√16−10=λλ=6−=1x 26y 26(2)M(3,m)−=196m 26m =±3–√M(3,)3–√M(3,−)3–√(−2,0)F 13–√(2,0)F 23–√M(3,)3–√=(−2−3,−)MF 1−→−−3–√3–√=(2−3,−)MF 2−→−−3–√3–√⋅=−12+9+3=0MF 1−→−−MF 2−→−−M(3,−)3–√=(−2−3,)MF 1−→−−3–√3–√=(2−3,)MF 2−→−−3–√3–√⋅=−12+9+3=0MF 1−→−−MF 2−→−−=0−→−−−→−−故.【考点】直线与双曲线结合的最值问题双曲线的标准方程平面向量数量积坐标表示的应用【解析】(1)设双曲线方程为,,由双曲线过点,能求出双曲线方程.(2)由点在此双曲线上,得.由此能求出的值.【解答】解:∵双曲线的中心在原点,焦点,在坐标轴上,一条渐近线方程为,∴设双曲线方程为,,∵双曲线过点,∴,即,∴双曲线方程为.∵点在此双曲线上,∴,解得.∴,或,∵,,∴当时,,,;当时,,,.故.⋅=0MF 1−→−−MF 2−→−−−=λx 2y 2λ≠0(4,−)10−−√M(3,m)m =±3–√⋅MF 1−→−−MF 2−→−−(1)F 1F 2y =x −=λx 2y 2λ≠0(4,−)10−−√16−10=λλ=6−=1x 26y 26(2)M(3,m)−=196m 26m =±3–√M(3,)3–√M(3,−)3–√(−2,0)F 13–√(2,0)F 23–√M(3,)3–√=(−2−3,−)MF 1−→−−3–√3–√=(2−3,−)MF 2−→−−3–√3–√⋅=−12+9+3=0MF 1−→−−MF 2−→−−M(3,−)3–√=(−2−3,)MF 1−→−−3–√3–√=(2−3,)MF 2−→−−3–√3–√⋅=−12+9+3=0MF 1−→−−MF 2−→−−⋅=0MF 1−→−−MF 2−→−−。
宁波镇海中学2024-2025学年高二上学期第一次月考数学试卷(解析)
2026届高二数学秋季月考卷第一期考试范围:大部分学校已经学习过的内容:考试时间:120分钟:满分:150分注意事项:1.答题前填写好自已的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知向量()2,4a =,()1,1b =− ,则2a b −=A. ()5,7B. ()5,9C. ()3,7D. ()3,9【答案】A 【解析】【详解】因为2(4,8)a =,所以2(4,8)(1,1)a b −=−−=(5,7),故选A. 考点:本小题主要考查平面向量的基本运算,属容易题.2. 已知直线12:320,:310l x y l x ay −+=−−=,若12l l ⊥,则实数a 的值为( ) A. 1 B.12C. 12−D. 1−【答案】D 【解析】【分析】对a 进行分类讨论,代入121k k =− 求解即可.【详解】当0a =时,直线1:320l x y −+=的斜率113k =, 直线2:310l x ay −−=的斜率不存在,此时两条直线不垂直; 当0a ≠时,直线1:320l x y −+=的斜率113k =, 直线2:310l x ay −−=的斜率23k a=,因为12l l ⊥,所以121k k =− , 所以13113a a×==−,解得:1a =−. 故选:D.3. 已知m 是实常数,若方程22240x y x y m ++++=表示的曲线是圆,则m 的取值范围为( ) A. (),20−∞ B. (),5−∞C. ()5,+∞D. ()20,+∞【答案】B 【解析】分析】由方程表示的曲线为圆,可得出关于实数m 的不等式,解出即可.【详解】由于方程22240x y x y m ++++=表示的曲线为圆,则222440m +−>,解得5m <. 因此,实数m 的取值范围是(),5−∞. 故选:B.【点睛】本题考查利用圆的一般方程求参数,考查计算能力,属于基础题.4. 设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( ) A. 若a b ,与α所成的角相等,则aa ∥bb B. 若a αβ∥,b ∥,αβ∥,则aa ∥bb C. 若a b a b αβ⊂⊂ ,,,则αβ∥ D. 若a b αβ⊥⊥,,αβ⊥,则a b ⊥【答案】D 【解析】【详解】试题分析:A 项中两直线a b ,还可能相交或异面,错误; B 项中两直线a b ,还可能相交或异面,错误; C 项两平面αβ,还可能是相交平面,错误; 故选D.5. 直线3y kx =+与圆()()22324x y −+−=相交于M 、N两点,若MN =,则k 等于( )A. 0B. 23−C. 23−或0 D. 34−或0 【【答案】D 【解析】【分析】求出MN 到圆心的距离和圆心 (3,2) 到直线 3y kx =+ 的距离,即可求出k 的值. 【详解】由题意,∵MN =,∴MN 到圆心的距离为1=,∴圆心 (3,2) 到直线 3y kx =+ 的距离为:1=,即229611k k k ++=+.解得:0k =或34−, 故选:D.6. 过点()1,3P 作直线l ,若l 经过点(),0A a 和()0,B b ,且,a b 均为正整数,则这样的直线l 可以作出( ), A. 1条 B. 2条C. 3条D. 无数条【答案】B 【解析】【分析】假设直线截距式方程,代入已知点坐标可得,a b 之间关系,根据,a b 为正整数可分析得到结果. 【详解】,a b 均为正整数,∴可设直线:1x yl a b+=, 将()1,3P 代入直线方程得:131a b+=, 当3b =时,10a =,方程无解,3331333b b a b b b −+∴===+−−−, a ∗∈N ,303b ≠−,33b ∗∴∈−N ,31b ∴−=或33b −=,44b a = ∴ =或62b a = = ,即满足题意的直线l 方程有2条.故选:B.7. 已知长方体1111ABCD A B C D −中,12AA AB ==,若棱AB 上存在点P ,使得1D P PC ⊥,则AD 的取值范围是( )A [)1,2B. (C. (]0,1D. ()0,2【答案】C 【解析】【分析】建立空间直角坐标系,设AD a =,求出1D P 、CP,利用10D P CP ⋅= ,求出a 的范围.【详解】解:如图建立坐标系,设(0)ADa a =>,(02)AP x x =<<, 则(),,2P a x ,()0,2,2C ,()10,0,0D ,∴()1,,2D P a x = ,(),2,0CP a x =−,1D P PC ⊥ ,∴10D P CP ⋅=,即2(2)0a x x +−=,所以a , 当02x <<时,所以(]2(1)10,1x −−+∈,所以(]0,1a ∈.故选:C .8. 已知点P 在直线3y x =−−上运动,M 是圆221x y +=上的动点,N 是圆22(9)(2)16x y −+−=上的动点,则PM PN +的最小值为( ) A. 13 B. 11 C. 9 D. 8【答案】D 【解析】【分析】根据圆的性质可得5PM PN PO PC +≥+−,故求PM PN +的最小值,转化为求.PC PO +的最小值,再根据点关于线对称的性质,数形结合解.【详解】如图所示,圆22(9)(2)16x y −+−=的圆心为()9,2C ,半径为4, 圆221x y +=的圆心为()0,0O ,半径为1,可知44,11PC PN PC PO PM PO −≤≤+−≤≤+, 所以5PM PN PO PC +≥+−,故求PM PN +的最小值,转化为求PC PO +的最小值,设()0,0O 关于直线3y x =−−的对称点为G ,设G 坐标为(),m n , 则1322nmn m ==−− ,解得33m n =− =− ,故()3,3G −−, 因为PO PG =,可得13PO PC PG PC GC +=+≥=,当,,P G C 三点共线时,等号成立, 所以PM PN +的最小值为1358−=. 故选:D.二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.)9. 三条直线0x y +=,0x y −=,3x ay +=构成三角形,则a 的值不能为( ) A. 1 B. 2 C. 1− D. -2【答案】AC【解析】【分析】由三条直线可构成三角形可知,直线3x ay +=不经过两条直线的交点,且与两条直线任意一条不平行.【详解】直线0x y +=与0x y −=都经过原点,而无论a 为何值,直线3x ay +=总不经过原点, 因此,要满足三条直线构成三角形,只需直线3x ay +=与另两条直线不平行, 所以1a ≠±. 故选:AC.10. 正方体1111ABCD A B C D −中,下列结论正确的是( ) A. 直线1AD 与直线11A C 所成角为3πB. 直线1AD 与平面ABCD 所成角为3πC. 二面角1D AB D −−的大小为4πD. 平面11AB D ⊥平面11B D C【答案】AC 【解析】【分析】选项A :先判断出1AD 与11A C 所成角即为1AC B ,利用1ABC 为正三角形,即可判断; 选项B :1AD 与平面ABCD 所成角为14DAD π∠=,即可判断;选项C :二面角1D AB D −−的平面角为14DAD π∠=,即可判断; 选项D :设1111D B AC O = ,连结,,AO CO AC ,可以判断出AOC ∠即为二面角11A B D C −−的平面角.在三角形ACO 中,求出各边长,可以判断出90AOC ∠≠°,即可判断.【详解】选项A :先判断出1AD 与11A C 所成角即为1BC 与11A C 所成角,1ABC 为正三角形,所以该角为3π;故A正确.选项B :1AD 与平面ABCD 所成角为14DAD π∠=;故B 错误.选项C :二面角1D AB D −−的平面角为14DAD π∠=;故C 正确. 选项D :设1111D B AC O = ,连结,,AO CO AC ,因为11AD AB =,所以11AO B D ⊥. 同理可证:11CO B D ⊥,所以AOC ∠即为二面角11A B D C −−的平面角。
吉林省2024-2025学年高二上学期第一次月考数学试卷含答案
2024—2025学年上学期高二年级数学学科阶段验收考试试卷(答案在最后)考试时间:90分钟满分:120分命题人:一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若随机试验的样本空间为{}Ω0,1,2=,则下列说法不正确的是()A.事件{}1,2P =是随机事件B.事件{}0,1,2Q =是必然事件C.事件{}1,2M =--是不可能事件D.事件{}1,0-是随机事件【答案】D 【解析】【分析】根据随机事件,必然事件,不可能事件的概念判断即可.【详解】随机试验的样本空间为{}Ω0,1,2=,则事件{}1,2P =是随机事件,故A 正确;事件{}0,1,2Q =是必然事件,故B 正确;事件{}1,2M =--是不可能事件,故C 正确;事件{}1,0-是不可能事件,故D 错误.故选:D2.已知点()1,0A ,(1,B -,则直线AB 的倾斜角为()A.5π6B.2π3C.π3 D.π6【答案】B 【解析】【分析】由两点坐标求出斜率,由倾斜角与斜率的关系即可求【详解】0tan 11AB k α-===--,()0,πα∈,故直线AB 的倾斜角2π3α=.故选:B3.投壶是从先秦延续至清末的汉民族传统礼仪和宴饮游戏,在春秋战国时期较为盛行.如图为一幅唐朝的投壶图,甲、乙、丙是唐朝的三位投壶游戏参与者,假设甲、乙、丙每次投壶时,投中的概率均为0.6且投壶结果互不影响.若甲、乙、丙各投壶1次,则这3人中至少有2人投中的概率为()A.0.648B.0.432C.0.36D.0.312【答案】A 【解析】【分析】由独立事件概率乘法公式可得.【详解】记甲、乙、丙投中分别即为事件123,,A A A ,由题知()()()()()()1231230.6,0.4P A P A P A P A P A P A ======,则3人中至少有2人投中的概率为:()()()()123123123123P P A A A P A A A P A A A P A A A =+++320.630.60.40.648=+⨯⨯=.故选:A.4.设,A B 是一个随机试验中的两个事件,且()()()131,,+252P A P B P A B ===,则()P AB =()A.13B.15C.25D.110【答案】D 【解析】【分析】先利用和事件的概率公式求出()P AB ,然后利用()()()P AB P A P AB =-求解即可.【详解】因为1()2P A =,3()5P B =,所以()251,()2P A P B ==,又()()()()()122512P A B P A P B P AB P AB +=+-=+-=,所以()25P AB =,所以()()()1102512P P P A AB A B ==-=-.故选:D.5.若()2,2,1A ,()0,0,1B ,()2,0,0C ,则点A 到直线BC 的距离为()A.5B.5C.5D.5【答案】A 【解析】【分析】由题意得()2,2,0BA = ,()2,0,1BC =-,再根据点线距离的向量公式即可求解.【详解】()2,2,0BA = ,()2,0,1BC =- ,则BA 在BC上的投影向量的模为BA BC BC⋅= 则点A 到直线BC5=.故选:A.6.某乒乓球队在长春训练基地进行封闭式集训,甲、乙两位队员进行对抗赛,每局依次轮流....发球,连续赢2个球者获胜,通过分析甲、乙过去对抗赛的数据知,甲发球甲赢的概率为23,乙发球甲赢的概率为14,不同球的结果互不影响,已知某局甲先发球.则该局打4个球甲赢的概率为()A.13B.16C.112 D.524【答案】C 【解析】【分析】由于连胜两局者赢,则可写出四局的结果,计算即可.【详解】由于连胜两局者赢,甲先发球可分为:该局:第一个球甲赢、第二个球乙赢、第三个球甲赢、第四个球甲赢,则概率为22133231441⨯⨯⨯=;故选:C.7.据史书记载,古代的算筹是由一根根同样长短和粗细的小棍制成,如图所示,据《孙子算经》记载,算筹记数法则是:凡算之法,先识其位,一纵十横,百立千僵,千十相望,万百相当.即在算筹计数法中,表示多位数时,个位用纵式,十位用横式,百位用纵式,千位用横式,以此类推.例如⊥‖表示62,=T 表示26,现有6根算筹,据此表示方式任意表示两位数(算筹不剩余且个位不为0),则这个两位数不小于50的概率为()A.13B.12C.23D.35【答案】B 【解析】【分析】根据6根算筹,分为五类情况:51,42,33,24,15+++++,逐一分类求解满足要求的两位数,即可求解概率.【详解】根据题意可知:一共6根算筹,十位和个位上可用的算筹可以分为51,42,33,24,15+++++一共五类情况;第一类:51+,即十位用5根算筹,个位用1根算筹,那十位可能是5或者9,个位为1,则两位数为51或者91;第二类:42+,即十位用4根算筹,个位用2根算筹,那十位可能是4或者8,个位可能为2或者6,故两位数可能42,46,82,86;第三类:33+,即十位用3根算筹,个位用3根算筹,那么十位可能是3或者7,个位可能为3或者7,故两位数可能是33,37,73,77;第四类:24+,即十位用2根算筹,个位用4根算筹,那么十位为2或6,个位可能为4或者8,则该两位数为24或者28或者64或者68,第五类:15+,即十位用1根算筹,个位用5根算筹,那十位是1,个位为5或者9,则两位数为15或者19;综上可知:用6根算筹组成的满足题意的所有的两位数有:15,19,24,28,33,37,42,46,51,64,68,73,77,82,86,91共计16个,则不小于50的有:51,64,68,73,77,82,86,91共计8个,故概率为81=162,故选:B.8.正三棱柱111ABC A B C -中,12,3,AB AA O ==为BC 的中点,M 为棱11B C 上的动点,N 为棱AM上的动点,且MN MOMO MA=,则线段MN 长度的取值范围为()A.4⎡⎫⎢⎣⎭B.,27⎢⎣⎦C.34747⎢⎣⎦D.【答案】B 【解析】【分析】根据正三棱柱建立空间直角坐标系,设动点坐标,结合线线关系求线段MN 的表达式,利用函数求最值即可.【详解】因为正三棱柱11ABC A B C -中,O 为BC 的中点,取11B C 中点Q ,连接OQ ,如图,以O 为原点,,,OC OA OQ 为,,x y z轴建立空间直角坐标系,则()()((110,0,0,,1,0,,1,0,O A B C -,因为M 是棱11B C上一动点,设(M a ,且[1,1]a ∈-,所以(()0OM OA a ⋅=⋅=,则OA OM ⊥,因为ON AM ⊥,且MN MOMO MA=所以在直角三角形OMA 中可得:~OMN AMO 即222MO MN MA===,于是令tt =∈,2233tt t t-==-,t ∈,又符合函数3=-y t t 为增增符合,所以在t ∈上为增函数,所以当t =min 32t t ⎛⎫-== ⎪⎝⎭,即线段MN 长度的最小值为62,当t =时,max 37t t ⎛⎫-== ⎪⎝⎭,即线段MN长度的最大值为7,故选:B.【点睛】关键点睛:1.找到~OMN AMO ,再利用函数单调性求出最值.2.建系,设出动点(M a ,利用空间向量法求出ON AM ⊥,再结合线线关系求线段MN 的表达式,利用函数求最值即可.二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列命题中正确的是()A.若表示两个空间向量的有向线段的终点不同,则这两个向量可能相等;B.在所有棱长都相等的直平行六面体1111ABCD A B C D -中,BD ⊥平面11ACC A ;C.对于空间三个非零向量,,a b c,一定有()()a b c a b c ⋅⋅=⋅⋅r r r r r r 成立;D.在棱长为2的正方体1111ABCD A B C D -中,点,M N 分别是棱11A D ,AB 的中点,则异面直线MD 与NC 所成角的余弦值为25.【答案】ABD 【解析】【分析】由相等向量的概念即可判断选项A ,利用线面垂直的判定定理证明即可判断选项B ,由数量积的性质即可判断选项C ,建立空间直角坐标系利用向量的坐标即可计算异面直线MD 与NC 所成角的余弦值判断选项D.【详解】若表示两个空间向量的有向线段的终点不同,而当两向量方向和长度相等时,这两个向量相等;故A 正确;在所有棱长都相等的直平行六面体1111ABCD A B C D -中,即直棱柱1111ABCD A B C D -中底面为菱形,因为BD AC ⊥,1AA ⊥平面ABCD ,BD ⊂平面ABCD ,所以1AA BD ⊥,又1AA AC A = ,所以BD ⊥平面11ACC A ;故B 正确;对于空间三个非零向量,,a b c ,有()a b c c λ⋅⋅= ,()a b c a μ⋅⋅=,所以不一定有()()a b c a b c ⋅⋅=⋅⋅成立,故C错误;建立如图所示的空间直角坐标系,则()0,0,0D ,()1,0,2M ,()2,1,0N ,()0,2,0C ,所以()1,0,2DM = ,()2,1,0NC =-,所以2cos ,5DM NC ==-,所以异面直线MD 与NC 所成角的余弦值为25,故D 正确.故选:ABD.10.连续抛掷一枚质地均匀的骰子两次,用数字x 表示第一次抛掷骰子的点数,数字y 表示第二次抛掷骰子的点数,用(),x y 表示一次试验的结果.记事件A =“7x y +=”,事件B =“3x ≤”,事件C =“()21N xy k k *=-∈”,则()A.()14P C =B.A 与B 相互独立C.A 与C 为对立事件D.B 与C 相互独立【答案】AB 【解析】【分析】用列举法列出所有可能结果,再结合互斥事件、对立事件、相互独立事件及古典概型的概率公式计算可得.【详解】依题意依次抛掷两枚质地均匀的骰子,基本事件总数为6636⨯=个;其中事件A =“7x y +=”包含的样本点有:()1,6,()2,5,()3,4,()4,3,()5,2,()6,1共6个;事件C =“()*21Nxy k k =-∈”,包含的样本点有:()1,1,()3,3,()5,5,()1,3,()1,5,()3,1,()3,5,()5,1,()5,3共9个,事件B =“3x ≤”,包含的样本点有:()1,1,()1,2,()1,3,()1,4,()1,5,()1,6,()2,1,()2,2,()2,3,()2,4,()2,5,()2,6,()3,1,()3,2,()3,3,()3,4,()3,5,()3,6共18个,对于A ,()91364P C ==,故A 正确;对于B ,事件AB 包含的样本点有()1,6,()2,5,()3,4共3个,所以()()()6118131,,3663623612P A P B P AB ======,所以()()()P A P B P AB =,所以A 与B 相互独立,故B 正确;对于C ,A C U 包含的样本点个数满足691536+=<,所以A 与C 不为对立事件,故C 错误;对于D ,事件BC 包含的样本点有:()1,1,()1,3,()1,5,()3,1,()3,3,()3,5,共6个,而()14P C =,()12P B =,()61366P BC ==,从而()()()1816P P P BC B C ≠==,所以B 与C 不相互独立,故D 错误.故选:AB.11.在棱长为1的正方体1111ABCD A B C D -中,P 为棱1BB 上一点,且12B P PB =,Q 为正方形11BB C C 内一动点(含边界),则下列说法中正确的是()A.若1D Q ∥平面1A PD ,则动点Q 的轨迹是一条长为3的线段B.存在点Q ,使得1D Q ⊥平面1A PD C.三棱锥1Q A PD -的最大体积为518D.若12D Q =,且1D Q 与平面1A PD 所成的角为θ,则sin θ【答案】ACD 【解析】【分析】在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,证得平面//DEF 平面1A PD ,进而得到1//D Q 平面1A PD ,可判定A 正确;以1D 为原点,建立空间直角坐标系,求得平面1A PD 的一个法向量(3,2,3)m =-,根据1D Q m λ= ,得出矛盾,可判定B 不正确;利用向量的数量积的运算及三角形的面积公式,求得16A PD S =,在求得点Q 到平面1A PD的最大距离max d =,结合体积公式,可判定C 正确;根据题意,求得点点Q 的轨迹,结合线面角的公式,求得11(,1,)22Q 时,取得最大值,进而可判定D 正确.【详解】对于A 中,如图所示,分别在111,BC CC 取点,E F ,使得1112,2C E B E C F CF ==,可得1//EF B C ,因为11//A D B C ,所以1//EF A D ,因为1A D ⊂平面1A PD ,EF ⊄平面1A PD ,所以//EF 平面1A PD ,又由11//D F A P ,且1A P ⊂平面1A PD ,1D F ⊄平面1A PD ,所以1//D F 平面1A PD ,又因为1EF D F F ⋂=,且1,EF D F ⊂平面DEF ,所以平面//DEF 平面1A PD ,且平面DEF ⋂平面11BCC B EF =,若1//D Q 平面1A PD ,则动点Q 的轨迹为线段EF ,且223EF =,所以A 正确;对于B 中,以1D 为原点,以11111,,D A D C D D 所在的直线分别为,,x y z 轴,建立空间直角坐标系,如图所示,可得12(1,0,0),(0,0,1),(1,1,)3A D P ,则112(1,0,1),(0,1,)3A D A P =-= ,设(,1,)(01,01)Q x z x z ≤≤≤≤,可得1(,1,)D Q x z =,设(,,)m a b c = 是平面1A PD 的一个法向量,则110203m A D a c m A P b c ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取3c =,可得3,2z b ==-,所以(3,2,3)m =-,若1D Q ⊥平面1A PD ,则1//D Q m,所以存在R λ∈,使得1D Q m λ= ,则3[0,1]2x z ==-∉,所以不存在点Q ,使得1D Q ⊥平面1A PD ,所以B 错误;对于C 中,由112(1,0,1),(0,1,3A D A P =-=,可得1111132,33A D A P A D A P ==⋅=,则11cos ,A D A P =11sin ,A D A P = ,所以111111sin 2236A PD S A D A P DA P =⋅∠=⨯ ,要使得三棱锥1Q A PD -的体积最大,只需点Q 到平面1A PD 的距离最大,由1(1,1,)AQ x z =- ,可得点Q 到平面1A PD的距离1)5A Q m d x z m ⋅==+-,因为01,01x z ≤≤≤≤,所以当0x z +=时,即点Q 与点1C重合时,可得max d =,所以三棱锥1Q A PD -的最大体积为111533618A PD S =⋅=,所以C 正确;对于D 中,在正方体中,可得11D C ⊥平面11BCC B ,且1C Q ⊂平面11BCC B ,所以111D C C Q ⊥,则12C Q ==,所以点Q 的轨迹是以1C为圆心,以2为半径的圆弧,其圆心角为π2,则1(,0,)C Q x z =,所以12C Q == ,即2212x z +=,又由1(,1,)D Q x z =,设1D Q 与平面1A PD 所成的角θ,所以111sin cos ,m D Q m D Q m D Qθ⋅===,因为2212x z +=,可得222()2()x z x z +≤+,当且仅当x z =时,等号成立,所以1x z +≤,即12x z ==时,1D Q 与平面1A PD 所成的角最大值,sin θ=D 正确.故选:ACD.【点睛】方法点睛:求解立体几何中的动态问题与存在性问题的策略:1、解答方法:一般时根据线面平行,线面垂直的判定定理和性质定理,结合圆或圆锥曲线的定义推断出动点的轨迹,有时也可以利用空间向量的坐标运算求出动点的轨迹方程;2、对于线面位置关系的存在性问题,首先假设存在,然后再该假设条件下,利用线面位置关系的相关定理、性质进行推理论证,寻找假设满足的条件,若满足则肯定假设,若得出矛盾的结论,则否定假设;3、对于探索性问题用向量法比较容易入手,一般先假设存在,设出空间点的坐标,转化为代数方程是否有解的问题,若由解且满足题意则存在,若有解但不满足题意或无解则不存在,同时,用已知向量来表示未知向量,一定要结合图形,以图形为指导思想是解答此类问题的关键.三、填空题:本大题共3小题,每小题5分,第14题第一个空2分,第二个空3分,共15分.12.已知()3,2,1a =- ,()2,1,2b =r,当()()2ka b a b +⊥- 时,实数k 的值为____________.【答案】6【解析】【分析】由题意依次算得22,,a b a b ⋅ 的值,然后根据()()2ka b a b +⊥-列方程即可求解.【详解】因为()3,2,1a =-,()2,1,2b = ,所以()2294114,4149,3221126a ba b =++==++=⋅=⋅+⋅+-⋅=,因为()()2ka b a b +⊥-,所以()()()()22221214186122120ka b a b ka b k a b k k k +⋅-=-+-⋅=-+-=-=,解得6k =.故答案为:6.13.柜子里有3双不同的鞋子,分别用121212,,,,,a a b b c c 表示6只鞋,从中有放回地....取出2只,记事件M =“取出的鞋是一只左脚一只右脚的,但不是一双鞋”,则事件M 的概率是____________.【答案】13【解析】【分析】列举法写出试验的样本空间,根据古典概型的概率公式直接可得解.【详解】设111,,a b c 表示三只左鞋,222,,a b c 表示三只右鞋,则从中有放回取出2只的所有可能为:()()()()()()111211121112,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()212221222122,,,,,,,,,,,a a a a a b a b a c a c ()()()()()()111211121112,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()212221222122,,,,,,,,,,,b a b a b b b b b c b c ()()()()()()111211121112,,,,,,,,,,,c a c a c b c b c c c c ()()()()()()212221222122,,,,,,,,,,,c a c a c b c b c c c c ,共计36种,其中满足取出的鞋一只左脚一只右脚,但不是一双鞋的有12种,()121363P M ∴==.故答案为:13.14.已知正四面体ABCD 的棱切球1T (正四面体的中心与球心重合,六条棱与球面相切)的半径为1,则该正四面体的内切球2T 的半径为______;若动点,M N 分别在1T 与2T 的球面上运动,且满足MN x AB y AC z AD =++,则2x y z ++的最大值为______.【答案】①.3②.26+【解析】【分析】第一空:将正四面体ABCD 放入正方体中,由等体积法可知,只需求出正四面体的表面积以及体积即可列式求解该正四面体的内切球2T 的半径;第二空:由不等式可知,()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,只需求出max MN 、minAT 即可.【详解】第一空:连接,AD EF ,设交点为M ,则M 是AD 中点,如图所示,将正四面体ABCD 放入正方体中,由对称性可知正方体中心就是正四面体ABCD 的中心,设正方体棱长为2a ,则棱切球球心到正四面体ABCD 的六条棱的距离都等于a ,设正四面体ABCD 的棱切球1T 的半径为1r ,所以11r a ==,正方体棱长为2,AD =,而正四面体ABCD 的体积为1182224222323A BCD V -⎛⎫=⨯⨯-⨯⨯⨯⨯⨯=⎪⎝⎭,正四面体ABCD的表面积为(21422A BCD S -=⨯⨯⨯=设该正四面体的内切球2T 的半径为r,则由等体积法可知,1833⨯=,解得33r =;第二空:取任意一点T ,使得()22x y z AT MN xAB y AC z AD xAO y AC z AD ++==++=++,所以点T 在面OCD 内(其中O 是AB 中点),所以()13213x y z AT MN r r ++=≤+=+,而点A 到平面OCD 的距离为d AO ==所以()1232226x y z AT x y z x y z AT+++++≤++=≤+,等号成立当且仅当2x y z ++是正数且,T O重合且13MN =+ ,综上所述,2x y z ++的最大值为26+.故答案为:33,2626+.【点睛】关键点点睛:第二空的关键是得出()maxmin222MN x y z AT MN x y z x y z AT AT AT++++≤++==≤,由此即可顺利得解.四、解答题:本大题共4小题,共47分.解答应写出文字说明,证明过程或演算步骤.15.如图,在三棱柱111ABC A B C -中,,M N 分别是111,A B B C 上的点,且1112,2A M MB B N NC ==.设1,,AB a AC b AA c ===.(1)试用,,a b c 表示向量MN;(2)若11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,求异面直线MN 与AC 的夹角的余弦值.【答案】(1)122333a b c-++(2)11【解析】【分析】(1)由空间向量的基本定理求解即可;(2)先用基向量,,a b c 表示AC 与MN ,然后求解MN 与AC 以及数量积MN AC ⋅,然后计算夹角的余弦值即可.【小问1详解】由图可得:()()1111111112123333MN MB BB B N A B AA B C AB AA AA AC AB=++=++=-++- 1122122333333AB AC AA a b c =-++=-++.【小问2详解】由(1)可知122333MN a b c =-++ ,因为11190,60,1BAC BAA CAA AB AC AA ∠=∠=∠====,所以0a b ⋅=,12a c ⋅= ,12b c ⋅= ,2222212214444814424110333999999999999MN a b c a b c a b a c b c ⎛⎫=-++=++-⋅-⋅+⋅=++--+= ⎪⎝⎭ ,所以113MN = ,AC b = ,1AC =,212212221·133333333MN AC a b c b a b b c b ⎛⎫⋅=-++=-⋅++⋅=+= ⎪⎝⎭所以cos ,11MN AC MN AC MN AC⋅==,所以异面直线MN 与AC的夹角的余弦值为11.16.如图,在正四棱柱1111ABCD A B C D -中,122AA AB ==,,E F 分别为1BB ,1CC的中点.(1)证明:1A F ∥平面CDE ;(2)求三棱锥1A CDE -的体积;(3)求直线1A E 与平面CDE 所成的角.【答案】(1)证明过程见解析(2)16(3)π6【解析】【分析】(1)借助正四棱柱的性质可建立空间直角坐标系,求出空间向量1A F与平面CDE 的法向量后,借助空间向量计算即可得;(2)求出空间向量1A E与平面CDE 的法向量后,借助空间向量夹角公式计算即可得直线1A E 与平面CDE 所成的角的正弦值,进一步求得三棱锥的高以及底面积即可得解.(3)由(2)可知直线1A E 与平面CDE 所成的角的正弦值,从而即可得解.【小问1详解】在正四棱柱1111ABCD A B C D -中,AB ,AD ,1AA 两两垂直,且122AA AB ==,以A 为坐标原点,AB ,AD ,1AA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()1,1,0C ,()0,1,0D ,()10,0,2A.因为E ,F 分别为11,BB CC 的中点,所以()1,0,1E ,()1,1,1F ,则()1,0,0CD =- ,()0,1,1CE =- ,()11,1,1A F =-,设平面CDE 的法向量为(),,m x y z = ,则00CD m CE m ⎧⋅=⎪⎨⋅=⎪⎩,即00x y z -=⎧⎨-+=⎩,令1y =,则有0x =,1z =,即()0,1,1m =,因为()11011110A F m ⋅=⨯+⨯+-⨯= ,所以1A F m ⊥ ,又1⊄A F 平面CDE ,所以1//A F 平面CDE ;【小问2详解】由(1)可知,()11,0,1A E =-,1111cos ,2A E m A E m A E m⋅==-,所以1A E 与平面CDE 所成角的正弦值为12.注意到1A E =所以点1A 到平面CDE122=,而()1,0,0CD =- ,()0,1,1CE =-,从而0CD CE =⋅,1,CD CE == 所以CD CE ⊥,三角形CDE的面积为1122⨯=,所以三棱锥1A CDE -的体积为113226⨯⨯=;【小问3详解】由(2)可知,1A E 与平面CDE 所成角的正弦值为12,所以直线1A E 与平面CDE 所成的角为π6.17.2023年10月31日,东北师大附中以“邂逅数学之美,闪耀科技之光”为主题的第17届科技节在自由、青华两校区开幕.在科技节中数学教研室组织开展了“送书券”活动.该活动由三个游戏组成,每个游戏各玩一次且结果互不影响.连胜两个游戏可以获得一张书券,连胜三个游戏可以获得两张书券.游戏规则如下表:游戏一游戏二游戏三箱子中球的颜色和数量大小质地完全相同的红球4个,白球2个(红球编号为“1,2,3,4”,白球编号为“5,6”)取球规则取出一个球有放回地依次取出两个球不放回地依次取出两个球获胜规则取到白球获胜取到两个红球获胜编号之和不超过m 获胜(1)分别求出游戏一,游戏二的获胜概率;(2)甲同学先玩了游戏一,当m 为何值时,接下来先玩游戏三比先玩游戏二获得书券的概率更大.【答案】(1)13,49(2)m 可能取值为7,8,9,10,11【解析】【分析】(1)利用列举法,结合古典概型的概率公式即可得解;(2)利用互斥事件与独立事件的概率公式求得先玩游戏二与先玩游戏三获得书券的概率,从而得到游戏三获胜的概率,由此得解.【小问1详解】设事件A 表示“游戏一获胜”,B 表示“游戏二获胜”,C 表示“游戏三获胜”,游戏一中取出一个球的样本空间为{}1Ω1,2,3,4,5,6=,则()1Ω6n =,()2n A =,()2163P A ∴==,所以游戏一获胜的概率为13.游戏二中有放回地依次取出两个球的样本空间(){}21Ω,,Ωx y x y =∈,则()2Ω36n =,而(){}{},,1,2,3,4B x y x y =∈,所以()16n B =,()164369P B ∴==,所以游戏二获胜的概率为49.【小问2详解】设M 表示“先玩游戏二,获得书券”,N 表示“先玩游戏三,获得书券”,则M ABC ABC ABC =⋃⋃,且ABC ,ABC ,ABC 互斥,,,A B C 相互独立,()()()()()P M P ABC ABC ABC P ABC P ABC P ABC ∴=⋃⋃=++()()()()()()()()()11P A P B P C P A P B P C P A P B P C ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()1424141393939P C P C P C ⎡⎤=⨯-+⨯+⨯⎣⎦()482727P C =+,则N AC B ACB ACB =⋃⋃,且,AC B ACB ACB 互斥,,,A B C 相互独立,()P N =()()()()P ACB ACB ACB P ACB P ACB P ACB ⋃⋃=++()()()()()()()()()11P A P C P B P A P C P B P A P C P B ⎡⎤⎡⎤=-+-+⎣⎦⎣⎦()()()152414393939P C P C P C =⨯⨯+⨯⨯+⨯⨯()1727P C =,若要接下来先玩游戏三比先玩游戏二获得书券的概率更大,则()()P N P M >,即()()1748272727P C P C >+,解得()49P C >,设游戏三中两次取球的编号和为X ,则()26113C 15P X ===,()26114C 15P X ===,()26225C 15P X ===,()26226C 15P X ===,()26337C 15P X ===,()26228C 15P X ===,()26229C 15P X ===,()261110C 15P X ===,()261111C 15P X ===,所以当3m =时,()()143159P C P X ===<,不合题意;当4m =时,()()()2434159P C P X P X ==+==<,不合题意;当5m =时,()()()()44345159P C P X P X P X ==+=+==<,不合题意;当6m =时,()()()()()643456159P C P X P X P X P X ==+=+=+==<,不合题意;当7m =时,()()()()()()9434567159P C P X P X P X P X P X ==+=+=+=+==>,符合题意;所以当7m ≥时,都有()49P C >,所以符合题意的m 的取值有7,8,9,10,11.18.球面三角学是研究球面三角形的边、角关系的一门学科.如图,球O 的半径为R ,A 、B 、C 为球面上的三点,设a O 表示以O 为圆心,且过B 、C 的圆,劣弧BC 的长度记为a ,同理,圆b O ,c O 的劣弧AC 、AB 的长度分别记为b ,c ,曲面ABC (阴影部分)叫做球面三角形.如果二面角,,C OA B A OB C B OC A ------的大小分别为,,αβγ,那么球面三角形的面积为()2++πABC S R αβγ=- 球面.(1)若平面OAB 、平面OAC 、平面OBC 两两垂直,求球面三角形ABC 的面积;(2)若平面三角形ABC 为直角三角形,AC BC ⊥,设1AOC θ∠=,2BOC θ∠=,3AOB θ∠=.①求证:123cos cos cos 1θθθ+-=;②延长AO 与球O 交于点D ,若直线DA ,DC 与平面ABC 所成的角分别为ππ,43,,(0,1]BE BD λλ=∈,S 为AC 的中点,T 为BC 的中点.设平面OBC 与平面EST 的夹角为θ,求cos θ的最大值及此时平面AEC 截球O 的面积.【答案】(1)2π2R (2)①证明见解析;②cos 5θ=,253π78R 【解析】【分析】(1)根据题意结合相应公式分析求解即可;(2)①根据题意结合余弦定理分析证明;②建系,利用空间向量求线面夹角,利用基本不等式分析可知点E ,再利用空间向量求球心O 到平面AEC 距离,结合球的性质分析求解.【小问1详解】若平面,,OAB OAC OBC 两两垂直,有π2αβγ===,所以球面三角形ABC 面积为()22ππ2ABC S R R αβγ=++-= 球面.【小问2详解】①证明:由余弦定理有:2222122222222232cos 2cos 2cos AC R R R BC R R R AB R R R θθθ⎧=+-⎪=+-⎨⎪=+-⎩,且222AC BC AB +=,消掉2R ,可得123cos cos cos 1θθθ+-=;②由AD 是球的直径,则,AB BD AC CD ⊥⊥,且AC BC ⊥,CD BC C ⋂=,,CD BC ⊂平面BCD ,所以AC ⊥平面BCD ,且BD ⊂平面BCD ,则AC BD ⊥,且AB AC A ⋂=,,AB AC ⊂平面ABC ,可得BD ⊥平面ABC ,由直线DA ,DC 与平面ABC 所成的角分别为ππ,43,所以ππ,43DAB DCB ∠=∠=,不妨先令R =,则2AD AB BD BC AC =====,由AC BC ⊥,AC BD ⊥,BC BD ⊥,以C 为坐标原点,以CB ,CA 所在直线为x ,y 轴,过点C 作BD 的平行线为z 轴,建立如图空间直角坐标系,设(,BE t t =∈,则())()0,2,0,,0,0,0,A B C D ,可得()20,1,0,,0,02S T ⎛⎫ ⎪ ⎪⎝⎭,)26,,1,22E t O ⎛⎫ ⎪ ⎪⎝⎭,则),22CB CO ⎛⎫== ⎪ ⎪⎝⎭,,1,0,22ST TE t ⎛⎫⎛⎫=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭设平面OBC 法向量()111,,m x y z =,则11110022m CB m CO x y z ⎧⋅==⎪⎨⋅=++=⎪⎩,取12z =-,则110y x ==,可得()2m =- ,设平面EST 法向量()222,,n x y z =,则222202202n ST x y n TE x tz ⎧⋅=-=⎪⎪⎨⎪⋅=+=⎪⎩,取2x =,则22,1y t z ==-,可得),,1n t =- ,因为cos cos ,m n m n m n θ⋅======,令(]1,1,13m m=+∈,则()2218mt t-==,可得()2221888293129621218m mt m mm mm+===≤=+-+--+-+,当且仅当3,m t==取等.则cosθ5=,此时点E,可得CE=,()0,2,0CA=,设平面AEC中的法向量(),,k x yz=,则20k CE zk CA y⎧⋅==⎪⎨⎪⋅==⎩,取1x=,则0,y z==-,可得(1,0,k=-,可得球心O到平面AEC距离为AO kdk⋅==设平面AEC截球O圆半径为r,则2225326r R d=-=,所以截面圆面积为225353πππ2678r R==.【点睛】方法点睛:1.利用空间向量求线面角的思路:直线与平面所成的角θ主要通过直线的方向向量与平面的法向量的夹角ϕ求得,即sin cosθϕ=.2.利用空间向量求点到平面距离的方法:设A为平面α内的一点,B为平面α外的一点,n为平面α的法向量,则B到平面α的距离AB ndn⋅=.。
安徽省泗县第一中学2022-2023学年高二下学期第二次月考数学试卷
安徽省泗县第一中学2022-2023学年高二下学期第二次月考数学试卷学校:___________姓名:___________班级:___________考号:___________【分析】令()()2,3x x f x x g x x =+=+,结合题意可知01b a <<<,进而有b b a a b b >>,再利用对数函数的单调性和运算性质即可求解【详解】令()()2,3x x f x x g x x =+=+,则当0x >时,()()g x f x >,当0x <时,()()g x f x <;由22,32a b a b +=+=,得()()2,2f a g b ==考虑到()()2f a g b ==得01b a <<<,b b aa b b \>>由b a a b >,得()()lg lg b a a b >,即lg lg b a a b >故选:C 7.B【分析】结合导数和二次函数的性质可求出()f x 和()g x 的值域,结合已知条件可得[0e 4[]a Í-,,]a ,从而可求出实数a 的取值范围.【详解】解:()2e x g x x =的导函数为()()22e e 2e x x x g x x x x x ¢=+=+,由[)1,0x Î-时,()0g x ¢<,(]0,1x Î时,()0g x ¢>,可得g (x )在[–1,0]上单调递减,在(0,1]上单调递增,故g (x )在[–1,1]上的最小值为g (0)=0,最大值为g (1)=e ,所以对于任意的2[1,1]x Î-,()[]20,e g x Î.因为2y x a =-+开口向下,对称轴为y 轴,所以当0x =时,max ()f x a =,当2x =时,min ()4f x a =-,所以1a £,C 正确.故选:BCD.【点睛】关键点点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.13.(0,1)(1,]e È【分析】利用对数、分式、根式的性质列不等式,求x 的范围,即得定义域.【详解】由函数解析式,知:01ln 0220x x x ì>ï-³íï-¹î,解得0x e <£且1x ¹.故答案为:(0,1)(1,]e È.14.(]2,2-【详解】当20a -=,2a =时不等式即为4<0- ,对一切x R Î恒成立 ①当2a ¹时,则须()()220{421620a a a -<-+-<V = ,∴22a -<<②由①②得实数a 的取值范围是(]2,2-,故答案为(]2,2-.15.2e【解析】先利用换元法求出()f x 的解析式,再对函数求导,从而可求出()1f ¢的值【详解】令ln t x =,()t f t te =,所以()x f x xe =,()()1x f x x e ¢=+,()12f e ¢=.故答案:2e ,。
重庆市北碚区朝阳中学2024-2025学年高二(上)第一次月考数学试卷(含答案)
2024-2025学年重庆市北碚区朝阳中学高二(上)第一次月考数学试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设空间向量a =(1,2,−1),b =(−2,−4,k),若a //b ,则实数k 的值为( )A. 2B. −10C. −2D. 102.已知空间向量p =2a−3b +3c ,q =3a +b +c ,则p +q 以{a ,b ,c }为单位正交基底时的坐标为( )A. (5,−3,4)B. (5,−2,4)C. (2,−3,3)D. (3,1,1)3.点A(2,3−μ,−1+v)关于x 轴的对称点为A′(λ,7,−6),则( )A. λ=−2,μ=−1,v =−5B. λ=2,μ=−4,v =−5C. λ=2,μ=10,v =8D. λ=2,μ=10,v =74.已知空间向量a =(1,0,3),b =(2,1,0),c =(5,2,z),若a ,b ,c 共面,则实数z 的值为( )A. 0B. 1C. 2D. 35.已知a =(−1,2,1),b =(2,−2,0),则a 在b 方向上的投影为( )A. − 6B. 6C. −3 22D. 3 226.如图,在平行六面体ABCD−A′B′C′D′中,AB =5,AD =3,AA′=7,∠BAD =60°,∠BAA′=∠DAA′=45°,则AC′的长为( )A. 98+56 2B. 98−56 2C. 89+56 2D. 89−56 27.已知向量a =(2,−1,3),b =(−4,2,t)的夹角为钝角,则实数t 的取值范围为( )A. (−∞,−6)B. (−∞,−6)∪(−6,103)C. (103,+∞) D. (−∞,103)8.如图,已知正四棱锥P−ABCD 的所有棱长均为1,E 为PC 的中点,则线段PA 上的动点M 到直线BE 的距离的最小值为( )A. 33 B. 22C. 13D. 12二、多选题:本题共3小题,共18分。
黑龙江省海林市朝鲜族中学2022-2023学年高二下学期第二次月考数学试题
黑龙江省海林市朝鲜族中学2022-2023学年高二下学期第二次月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若266C C x =,则x 的值为( )A .2B .4C .4或2D .32.5名运动员争夺3项比赛冠军(每项比赛无并列冠军),那么获得冠军的可能种数为( )A .35B .53C .35A D .35C 3.在()52x -的展开式中,2x 的系数是A .80-B .10-C .5D .404.编号为1、2、3、4、5、6、7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有A .60种B .20种C .10种D .8种5.若()62601261+=+++×××+mx a a x a x a x ,且012664a a a a ++++=…,则实数m 的值为( )A .1或3-B .3-C .1D .1或36.如图所示,积木拼盘由A ,B ,C,D ,E 五块积木组成,若每块积木都要涂一种颜色,且为了体现拼盘的特色,相邻的区域需涂不同的颜色(如:A 与B 为相邻区域,A 与D 为不相邻区域),现有五种不同的颜色可供挑选,则不同的涂色方法的种数是( )A .780B .840C .900D .9607.函数()f x 的图象在5x =处的切线方程是8y x =-+,则()()55f f ¢+等于( )A .10B .8C .3D .2三、单选题10.若()f x 是可导函数,则“'()0f x >,x D Δ是“x D Î内()f x 单调递增”的A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件11.若函数()31y x ax a R =++Î在区间()3,2--上单调递减,则a 的取值范围是 ()A .[)1,¥+B .[)2,0-C .(],3¥--D .(],27¥--四、多选题12.已知函数()f x 的导函数()f x ¢的图象如图所示,则下列选项中正确的是( )A .1x =是函数()f x 的极值点B .()f x 在区间(2,3)-上单调递减C .函数()f x 在=1x -处取得极小值D .()f x 的图象在0x =处的切线斜率小于零六、解答题17.4个男生,3个女生站成一排.(必须写出算式再算出结果才得分)(1)3个女生必须排在一起,有多少种不同的排法?(2)任何两个女生彼此不相邻,有多少种不同的排法?(3)甲乙二人之间恰好有三个人,有多少种不同的排法?18.若()()()()()821020121011222xx a a x a x a x +-=+-+-+×××+-.(Ⅰ)求12310a a a a +++×××+的值;(Ⅱ)求13579a a a a a ++++的值.参考答案:1.C【分析】利用组合数性质计算即可.【详解】当2x =时,满足题意;当26x +=,即4x =时,满足题意.故选:C.2.A【分析】依次考察3项冠军被获得的可能情况,分为3个步骤,利用分步计数原理求解.【详解】5名运动员争夺3项比赛冠军(每项比赛无并列冠军),依次考察3项冠军被获得的可能情况,分为3个步骤,每个步骤都有5种不同的可能,根据分步计数原理可知获得冠军的可能种数为35,故选:A.【点睛】本题考查分步计数原理的实际应用,关键是按什么标准分步骤的问题,分步计数原理,要保证每一步的不同选择对下一步选择的方法数的影响是相同的,本题属于基础题,重点题,易错题.3.A【分析】由二项展开式的通项公式,可直接得出结果.【详解】因为()52x -的展开式的通项为()()5515522kkk k k k k T C x C x --+=-=-,令3k =,则2x 的系数是()335280C ´-=-.故选A【点睛】本题主要考查二项展开式中指定项的系数,熟记二项式定理即可,属于基础题型.4.C【分析】试题分析:根据题意,先安排4盏不亮的路灯,有1种情况,排好后,有5个空位;在5个空位中任意选3个,插入3盏亮的路灯,有3510C =种情况,则不同的开灯方案有10种,故选C . 考点:1、排列;2、组合.5.A【分析】令1x =代入已知等式可解得m 值.【详解】在()62601261+=+++×××+mx a a x a x a x 中令1x =得6016(1)64m a a a +=+++=L ,解得1m =或3-.故选:A .【点睛】本题考查二项式定理,考查用赋值法求二项展开式中各项系数和.在求二项展开式中系数和时对变量的赋值是解题关键.6.D【分析】先涂A ,再涂B ,再涂C ,再涂D ,最后涂E ,由分步乘法计数原理,可得不同的涂色方法种数.【详解】解:先涂A ,则A 有15C =5种涂法,再涂B ,因为B 与A 相邻,所以B 的颜色只要与A 不同即可,有14C =4种涂法,同理C 有13C =3种涂法,D 有14C =4种涂法,E 有14C =4种涂法,由分步乘法计数原理,可知不同的涂色方法种数为54344960´´´´=.故选:D.7.D【分析】根据切线方程可求()()55f f ¢,的值.【详解】因为函数()f x 的图象在5x =处的切线方程是8y x =-+,所以()51f ¢=- ,()53f =,所以()()552f f ¢+=,故选:D.8.BCD【分析】根据导数的几何意义和常用函数的导数对选项一一分析即可.【点睛】本小题主要考查函数导数与单调性的相互关系,导数大于零时,函数单调递增;函数单调递增时,导数是非负数.属于基础题.11.D【分析】由 2'30y x a =+£在区间()3,2--上恒成立,结合二次函数的性质即可求解.【详解】解: ()31y x ax a R =++ÎQ 在区间 ()3,2--上单调递减,2'30y x a \=+£在区间 ()3,2--上恒成立,即 23a x £-在区间 ()3,2--上恒成立,()2327,12x -Î--Q ,27a \£-.故选:D .【点睛】本题主要考查导数法研究函数的单调性,是基础题.12.BD【分析】对于选项ABC :首先利用导函数()f x ¢的图像判断()f x 的单调区间,然后根据极值和极值点的定义即可求解;对于选项D :通过图像并结合导函数的几何意义即可求解.【详解】由图像可知,当<2x -时,'()0f x >;当23x -<<时,'()0f x £,从而()f x 在(,2)-¥-上单调递增,在(2,3)-上单调递减,故()f x 有极大值点2x =-,故AC 错误,B 正确;又由图像可知,'(0)0f <,从而()f x 的图像在0x =处的切线斜率小于零,故D 正确.故选BD.13.23【分析】先计算得到四个字的全排列,减去不满足题意的即可.【详解】“我爱中国”,这四个字的全排列有4424A =种,其中有一种是正确的,故错误的给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解.16.e【详解】f (x )=xlnx∴f'(x )=lnx+1则f′(x 0)=lnx 0+1=2解得:x 0=e17.(1)720;(2)1440;(3)720.【分析】(1)先排3个女生作为一个元素与其余的4个元素进行全排列,即可得到答案;(2)男生排好后,5个空中再插入3个女生,即可得到答案;(3)甲、乙先排好后,再从其余的5人中选出3人排在甲、乙之间,把排好的5个元素与最后剩余的2个元素全排列,由分步计数原理,即可求解结果.【详解】(1)解:先排3个女生作为一个元素与其余的4个元素进行全排列有3535A A 720=种.(2)解:男生排好后,5个空再插女生有4345A A 1440=种.(3)解:甲、乙先排好后,再从其余的5人中选出3人排在甲、乙之间,把排好的5个元素与最后剩余的2个元素全排列,分步有233253A A A 720=种.18.(Ⅰ)2555(Ⅱ)1280【分析】(Ⅰ)令2x =,则05a =,再取3x =代入计算得到答案.(Ⅱ)令1x =得到012310+0a a a a a --+×××+=,联立(1)中方程计算得到答案.【详解】(Ⅰ)令2x =,则05a =.令3x =,则012310++2560a a a a a ++×××+=,所以12310+2555a a a a ++×××+=;(Ⅱ)令1x =,则012310+0a a a a a --+×××+=,故13579+1280a a a a a +++=.【点睛】本题考查了二项展开式中的系数和,取特殊值是解题的关键.19.(1)60(2)360(3)15(4)90【分析】(1)根据有序不均匀分组,结合分步乘法计数原理即可求解;(2)根据有序不均匀分组分配,结合分步乘法计数原理即可求解;(3)根据有序平均分组,结合分步乘法计数原理即可求解;(4)根据有序平均分组分配,结合分步乘法计数原理即可求解;【详解】(1)依题意,先选1本有16C 种选法;再从余下的5本中选2本有25C 种选法;最后余下3本全选有33C 种方法,故共有123653C C C 60=种;(2)由(1)知,分组后共有60种方法,分别分给甲乙丙的方法共有、、12336533C C C A 360=种;(3)分三步,先从6本书选2本,再从4本书选2本,剩余的就是最后一份2本书,共有222642C C C 种方法,该过程出现了重复;因此f(x)的递增区间是[lna,+∞).﹣在(﹣2,3)上恒成立.(2)由f′(x)=e x a≤0∴a≥e x在x∈(﹣2,3)上恒成立.又∵﹣2<x<3,∴e﹣2<e x<e3,只需a≥e3.﹣3在x∈(﹣2,3)上,f′(x)<0,当a=e3时f′(x)=e x e即f(x)在(﹣2,3)上为减函数,∴a≥e3.故存在实数a≥e3,使f(x)在(﹣2,3)上单调递减.考点:利用导数研究函数的单调性.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SWhile End i i i S S While i S P rint 1 12 1-←*←←←高二数学月考试卷一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题意要求的.1.①某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户,为了了解社会购买力的某项指标,要从中抽取一个容量为100户的样本;②从10名同学中抽取3人参加座谈会。
Ⅰ.随机抽样法;Ⅱ.系统抽样法;Ⅲ.分层抽样法,则问题与方法配对正确的是( )A .① Ⅲ,② ⅠB .① Ⅰ,② ⅡC .① Ⅱ,② ⅢD .① Ⅲ,② Ⅱ2.若R ∈k ,则“3>k ”是“方程13322=+--k y k x 表示双曲线”的( ) A .充分不必要条件. B .必要不充分条件.C .充要条件.D .既不充分也不必要条件.3.在5件产品中,有3件一等品和2件二等品,从中任取2件,那么以0.7为概率的事件 是 ( ) A. 都不是一等品 B. 恰有1件一等品 C. 至少有1件一等品 D. 至多有1件一等品A .3.4B .34C .0.34D .3475.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .46.(文)下列程序: Read 1←SFor I from 1 to 5 step 2 I S S S ⨯+← print SEnd for End输出的结果S 是 ( ) A .2,8,48 B .48 C .2,11,36 D .36(理)已知曲线C 上的点的坐标都是方程0),(=y x f 的解,则下列命题正确的是 ( ) A .满足方程0),(=y x f 的点都在曲线C 上 B .方程0),(=y x f 是曲线C 的方程C .不在曲线C 上的点的坐标一定不是方程0),(=y x f 的解D .方程0),(=y x f 的曲线包含曲线C 上的任意一点7.如果在左边程序中运行后输出的结果为132,那么在程序 While 后面的“条件”应为( )A 、11<iB 、11≤iC 、11>iD 、11≥i则线性回归方程 y a bx =+所表示的直线必经过点 ( ) A .(0,0) B .(1.5,5) C .(4,1.5) D .(2,2)9.在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为( )A .2B .22 C . 21 D .4210.设P 是双曲线()222109x y a a -=>上的一点,双曲线的一条渐近线方程为320x y +=,12,F F 分别为双曲线的左右焦点,若13PF =,则2PF 等于( )A .9B .7C .6D .1或711.下图是函数()y f x =的导函数()y f x '=的图象,则下面判断正确的是( )A .在区间()2,1-内()f x 是增函数B .在区间()1,3内()f x 是减函数C .在区间()5,6内()f x 是增函数D .在2x =时,()f x 取到极小值12.双曲线141222=-y x 的右焦点为F ,若过点F 的直线与双曲线的右支有且只有一个交点,则此直线斜率的取值范围是( ) A.(33-,33) B. (-3,3) C.[ 33-,33] D. [-3,3] 二、填写题:本大题共6小题,每小题5分,共30分.13.写出命题:“至少有一个实数x ,使23+x =0”的否定 。
14.曲线()ln 21y x =-上的点到直线230x y -+=的最短距离是 。
15.抛物线22y x =上有一动点P ,焦点为F ,点A 坐标为(2,1),当P A +PF 取最小值时,点P 的坐标为 。
16.某人午觉醒来,发现表停了,他打开收音机,想听电台报时,则他等待的时间不多于10分钟的概率为 。
17.过点()1,2P 作曲线()32f x x x =-+的切线,则切线方程是 。
18.以下四个关于圆锥曲线的命题中: ①设A 、B 为两个定点,k 为非零常数,PA PB k -=,则动点P 的轨迹为双曲线; ②以定点A 为焦点,定直线l 为准线的椭圆(A 不在l 上)有无数多个;③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率; ④过原点O 任做一直线,若与抛物线23y x =,27y x =分别交于A 、B 两点,则OAOB为定值。
其中真命题的序号为 (写出所有真命题的序号)三、解答题:本大题共5小题,共70分。
解答应写出文字说明、证明过程或演算步骤.19.(本题12分)从数字1,2,3,4,5中任取2个数,组成没有重复数字的两位数,试求: (1)这个两位数是5的倍数的概率; (2)这个两位数是偶数的概率;(3)若题目改为“从1,2,3,4,5中任取3个数,组成没有重复数字的三位数”,则这个三位数大于234的概率.20.(本题14分)已知直线y ax a =+与抛物线24y x =相交于AB 两点(1)若线段AB 中点的横坐标为1,求a 的值及线段AB 的长;(2)是否存在这样a 使得以AB 为直径的圆经过坐标原点,若存在求出a 的值,若不存在说明理由?21.(本题14分)已知函数[]2,1,3x y x e x -=∈-(1)求导函数;(2)求单调区间;(3)求函数的最大值、最小值。
22.(本题15分)已知在平面直角坐标系xOy 中的一个椭圆,它的中心在原点,左焦点为(F ,右顶点为(2,0)D ,设点11,2A ⎛⎫ ⎪⎝⎭. (1)求该椭圆的标准方程;(2)(文)若P 是椭圆上的点,PA 中点在y 轴上,求P 点坐标。
(理)若P 是椭圆上的动点,求线段PA 中点M 的轨迹方程。
(3)过原点O 的直线交椭圆于点,B C ,求AOB ∆面积的最大值。
23.(本题15分)已知()2f x x c =+,且()()21f f x f x =+⎡⎤⎣⎦(1)设()()g x f f x =⎡⎤⎣⎦,求()g x ;(2)设()()()x g x f x ϕλ=-⋅,试问:是否存在实数λ,使()x ϕ在(),1-∞-内为减函数,且在()1,0-内是增函数。
理科附加题(加试30分钟)1、下列说法正确的是( )A .x 2=y 2⇒x=yB .等比数列是递增数列的一个必要条件是公比大于1.C .a ≥2的否定是a <2.D .若a+b>3,则a>1或b >2. 2.设集合A={x |x 2+x -6=0},B={x |m x +1=0} ,则B A 的充要的条件是( )A .11,23m ⎧⎫∈-⎨⎬⎩⎭B .12m =-C .110,,23m ⎧⎫∈-⎨⎬⎩⎭ D .10,3m ⎧⎫∈⎨⎬⎩⎭ 3、如图,已知抛物线)0(22>=p px y 的焦点恰好是椭圆12222=+by a x 的右焦点F ,且两条曲线的交点连线也过焦点F ,则该椭圆的离心率为 ( ) A .12- B .)12(2-C .215-D .224.某公共汽车站,每隔15分钟有一辆车出发,并且发出前在车站停靠3分钟,则乘客到站候车时间大于10分钟的概率为 。
5、当m 满足 时,曲线161022=-+-m y m x 与曲线19522=-+-my m x 的焦距相等. 6.已知02x π<<,求证:sin tan x x x <<.高二数学月考试卷答案一、选择题:(5...×12) 二、填写题:(5 (6)13. 02,3≠+∈∀x R x 使1(,1)2px ⊂ ≠16.1617. 20x y -=或490x y +-= 18.(2)(3)(4) 三、解答题:(70) 19. (12分)(解:(1)51454=⨯;…………………4分; (2)524542=⨯⨯;………………8分 (3)15734523)431=⨯⨯⨯⨯++()(…………………………………………12分20.(14分)(1)8a =,AB =(2)不存在 21.(14分)解:(1)()22xy ex x -=-;(2)增区间()0,2,减区间()()1,0,2,3- (3)最大值为e ,最小值为022. (15分)(解:(1)椭圆的标准方程为1422=+y x (2)(文)点P 的坐标是()','x y ,线段P A 的中点在y 轴,1'02x +∴=,'1x =-, 代入1422=+y x,'2y =±1,P ⎛∴- ⎝⎭ (理)设线段P A 的中点为(),M x y ,点P 的坐标是()','x y ,则1'21'22x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,可化为'211'22x x y y =-⎧⎪⎨=-⎪⎩,()','x y 适合方程1422=+y x ,代入并化简得: 线段P A 中点M 的轨迹方程是1)41(4)21(22=-+-y x .(3)直线OA 的方程为:20x y -=,设与直线OA 平行的直线为20x y c -+=,联立方程组得:222014x y c x y -+=⎧⎪⇒⎨+=⎪⎩消去x 得 ()22214y c y -+=,化简得228440y cy c -+-=,由()22164840c c ∆=-⨯⨯-=,得c =±故直线20x y -±=与直线20x y -=的距离等于d =故max 1122AOB S OA d ∆=⋅==23.(15分)(解:(1)()4222g x x x =++;(2)∵()()4222x x x ϕλλ=+-+-,∴()()()32422222x x x x x ϕλλ'=+-=+-∵()x ϕ在(),1-∞-内为减函数,∴()0x ϕ'<在(),1-∞-上恒成立,即:2220x λ+->在(),1-∞-上恒成立,∴2λ-小于22x 的最小值,∴4λ≤又()x ϕ在()1,0-内是增函数,∴()0x ϕ'>在()1,0-上恒成立,即:2220x λ+-<在()1,0-上恒成立,222x λ->在()1,0-上恒成立,即:2λ-大于22x 的最大值,∴4λ≥,从而4λ=。
22.解:(1)设过点T (3,0)的直线l 交抛物线y 2=2x 于点A(x 1,y 1)、B(x 2,y 2).当直线l 的钭率不存在时,直线l 的方程为x =3,此时,直线l 与抛物线相交于点A(3,6)、B(3,-6). ∴⋅=3; 当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,由22(3)y x y k x =⎧⎨=-⎩得 2122606ky y k y y --=⇒=-又 ∵ 22112211,22x y x y ==,∴2121212121()34OA OB x x y y y y y y =+=+= ,综上所述,命题“如果直线l 过点T(3,0),那么OB OA ⋅=3”是真命题;(2)逆命题是:设直线l 交抛物线y 2=2x 于A 、B 两点,如果⋅=3,那么该直线过点T (3,0).该命题是假命题.例如:取抛物线上的点A (2,2),B (21,1),此时OA OB=3,直线AB 的方程为:2(1)3y x =+,而T (3,0)不在直线AB 上; 说明:由抛物线y 2=2x 上的点A (x 1,y 1)、B (x 2,y 2) 满足⋅=3,可得y 1y 2=-6,或y 1y 2=2,如果y 1y 2=-6,可证得直线AB 过点(3,0);如果y 1y 2=2,可证得直线AB 过点(-1,0),而不过点(3,0). 22.解:设()','P x y ,则直线PB 方程为()''y y x a x a=--,将x =0代入, 得''N ay y x a =--,则直线PA 方程为()''y y x a x a=++,将x =0代入, 得''N ay y x a =+,2222''N M a y ON OM y y x a∴⋅=⋅=-,2222''1x y a b -= , 即22222''a x a y b-=,代入得:222222''a y ON OM b a y b∴⋅==。