聚合物改性

合集下载

聚合物材料的改性与应用

聚合物材料的改性与应用

聚合物材料的改性与应用聚合物材料作为一类重要的材料,具有广泛的应用前景。

为了满足不同领域的需求,人们经过不断地研究与改良,开发出了许多改性方法以及相关的应用技术。

本文将介绍一些聚合物材料的改性方法,并探讨它们在不同领域中的应用。

一、改性方法1. 添加填料填料可以提高聚合物材料的性能,比如增加强度、改进耐热性、改善导电性等。

常见的填料包括纳米颗粒、纤维素、碳纤维等。

添加填料的改性方法可以通过挤出、共混等工艺实现。

2. 合金化改性聚合物可以通过与其他合适的材料进行合金化,改变聚合物的性质。

比如与金属合金化可以增加强度和刚度,与陶瓷合金化可以提高耐磨性和耐热性等。

3. 化学改性化学改性是通过引入功能基团或进行聚合反应来改变聚合物的特性。

比如,通过交联反应可以提高聚合物的热稳定性和耐化学性;通过接枝反应可以增加聚合物的附着力和耐老化性。

4. 表面修饰表面修饰可以通过改变聚合物材料的表面性质来得到所需的性能。

比如,通过等离子体处理可以增加聚合物的亲水性和粘附性;通过涂层技术可以提高聚合物的耐磨性和耐腐蚀性等。

二、应用领域1. 包装材料聚合物材料的优良特性使其成为广泛应用于包装领域的理想选择。

通过改性可以提高聚合物材料的耐撕裂性、耐渗透性、耐撞击性等,在食品包装、药品包装、电子产品包装等领域发挥重要作用。

2. 汽车工业改性后的聚合物材料在汽车工业中有着广泛的应用。

例如,通过纳米填料的添加可以显著提高塑料汽车零部件的强度和耐磨性,降低重量,提高燃油效率。

3. 医药领域聚合物材料在医药领域的应用也日益广泛。

通过改性可以提高聚合物的生物相容性、机械性能和药物释放性能等。

例如,改性后的聚合物可以用于制备人工骨骼、医疗器械和药物缓释系统等。

4. 纳米技术聚合物材料与纳米技术结合可以产生许多独特的性能和应用。

通过纳米颗粒的引入,可以改善聚合物的力学性能、导电性能和光学性能等。

这些改性后的聚合物材料在电子学、光电子学和纳米生物技术等领域有着广泛的应用。

聚合物改性总结

聚合物改性总结

零、绪论聚合物改性的定义:通过物理和机械方法在高分子聚合物中加入无机或有机物质,或将不同类高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达到使材料的成本下降,成型加工性能或最终使用性能得到改善,或使材料仅在表面以及电、磁、光、热、声、燃烧等方面赋予独特功能等效果,统称为聚合物改性。

聚合物改性的目的:所谓的聚合物改性,突出在一个改字。

改就是要扬长补短,要发扬和保留聚合物原有的优势,抑制和克服聚合物原有的缺点,并根据实际需要赋予聚合物新的性能。

聚合物改性的三个主要目的:①克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能②改善聚合物的加工工艺性能③降低材料的生产成本总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳的平衡点。

聚合物改性的意义:1.新品种的开发越来越困难(已开发的品种数以万计,工业化的三百余种。

资源限制、开发费用、环境污染)2.使用性能的多样化、复杂化,要求材料有多种性能及功能,单一聚合物难以实现。

3.聚合物改性科学应运而生——获取新性能聚合物的简洁而有效的方法。

聚合物改性的主要方法:共混改性;填充改性;纤维增强复合材料;化学改性;表面改性聚合物改性发展概况几个重要的里程碑事件:1942年,采用机械熔融共混法将NBR掺和于PVC之中,制成了分散均匀的共混物。

这是第一个实现了工业化生产的聚合物共混物。

1948年,HIPS1948年,机械共混法ABS问世,聚合物共混工艺获得重大进展。

二者可称为高分子合金系统研究开发的起点。

1942年,制成了苯乙烯和丁二烯的互穿聚合物网络(IPN),商品名为“Styralloy”,首先使用了聚合物合金这一名称。

1960年,建立了IPN的概念,开始了一类新型聚合物共混物的发展。

IPN已成为共混与复合领域一个独立的重要分支。

1965年,Kato研究成功OsO4电镜染色技术,使得可用透射电镜直接观察到共混物的形态,这一实验技术大大促进了聚合物改性科学理论和实践的发展,堪称聚合物发展史上重要的里程碑。

化学材料的改性方法

化学材料的改性方法

化学材料的改性方法化学材料的改性是指通过对原有的化学材料进行化学、物理或生物等方面的处理,以改变其特性和性能的一种方法。

化学材料的改性可以改善材料的力学性能、热稳定性、导电性等特性,使其更适合于特定的应用领域。

本文将介绍一些常见的化学材料改性方法。

一、聚合物材料的改性方法聚合物材料是一类重要的化学材料,其改性方法较为多样,常见的改性方法有以下几种:1. 共聚改性:将两种或多种不同的单体进行共聚反应,生成具有新特性的聚合物。

例如,通过共聚改性可以调整聚合物的硬度、强度、透明度等性能。

2. 掺杂改性:将无机或有机物掺杂到聚合物基体中,以改变聚合物的性能。

例如,将导电材料掺杂到聚合物中,可以提高聚合物的导电性,使其具备导电功能。

3. 化学交联改性:通过引入交联剂,使聚合物发生交联反应,从而提高聚合物的热稳定性、力学性能等。

例如,将二烯类化合物用于交联改性可以增加聚合物的强度和耐热性。

4. 交联剂改性:在聚合物基体中加入交联剂,使其与聚合物发生交联反应,形成网络结构。

这样可以提高聚合物的强度、耐磨性和耐腐蚀性。

二、金属材料的改性方法金属材料是一类常用的结构材料,其改性方法可以通过以下几种途径实现:1. 合金化改性:将两种或多种金属元素按一定比例熔炼混合,形成新的合金材料。

合金化可以改变金属材料的硬度、强度、耐腐蚀性等性能。

2. 表面处理改性:通过对金属材料表面进行处理,如电镀、化学处理等,形成一层附着在金属表面的新材料,从而改善金属材料的耐腐蚀性、抗磨损性等性能。

3. 热处理改性:通过对金属材料进行加热或冷却处理,改变其组织结构和晶体状态,从而调整金属材料的硬度、韧性等性能。

4. 喷涂改性:将一种材料通过喷涂技术涂覆在金属材料表面,形成一层新的材料层。

喷涂改性可以提高金属材料的耐热性、耐腐蚀性等性能。

三、无机材料的改性方法无机材料是一类多种多样的化学材料,其改性方法包括以下几种:1. 表面改性:通过对无机材料表面进行处理,如溶液处理、离子注入等,形成新的表面层,从而改变无机材料的表面性能,如耐磨性、抗腐蚀性等。

聚 合 物 改 性

聚 合 物 改 性

聚合物改性聚合物定义:聚合物即高分子化合物,所谓的高分子化合物,就是指那些由众多原子或原子团主要以共价键结合而成的相对分子量在一万以上的化合物。

聚合物改性通过物理与机械的方法在聚合物中加入无机或有机物质,或将不同种类聚合物共混,或用化学方法实现聚合物的共聚、接枝、交联,或将上述方法联用、并用,以达到使材料的成本下降、成型加工性能或最终使用性能得到改善,或在电、磁、光、热、声、燃烧等方面被赋予独特功能等效果,统称为聚合物改性。

聚合物改性的方法总体上分为: 物理方法化学方法表面细分:共混改性、填充改性、纤维增强复合材料化学改性、表面改性、共混改性:两种或者两种以上聚合物经混合制备宏观均匀材料的过程。

可分为物理、化学共混。

填充改性:向聚合物中加入适量的填充材料(如无机粉体或者纤维),以使制品的某些性能得到改善,或降低原材料成本的改性技术。

纤维增强复合材料又称聚合物基复合材料,就就是以有机聚合物为基体,纤维类增强材料为增强剂的复合材料。

化学改性:在改性过程中聚合物大分子链的主链、支链、侧链以及大分子链之间发生化学反应的一种改性方法。

原理:主要靠大分子主链或支链或侧基的变化实现改性。

改性手段有:嵌段、接枝、交联、互穿网络等特点:改性效果耐久,但难度大,成本高,可操作性小,其一般在树脂合成厂完成,在高分子材料加工工厂应用不多。

表面改性:就是指其改性只发生在聚合物材料制品的表层而未深入到内部的一类改性。

特点:性能变化不均匀种类:表面化学氧化处理,表面电晕处理,表面热处理,表面接枝聚合,等离子体表面改性等适应于只要求外观性能而内部性能不重要或不需要的应用场合,常见的有:表面光泽,硬度,耐磨、防静电等的改性。

接枝反应:以含极性基团的取代基,按自由基反应的规律与聚合物作用,生成接枝链,从而改变高聚物的极性,或引入可反应的官能团。

官能团反应:可以发生在聚合物与低分子化合物之间,也可发生在聚合物与聚合物之间。

可以就是聚合物侧基官能团的反应,也可以就是聚合物端基的反应接枝共聚改性对聚合物进行接枝,在大分子链上引入适当的支链或功能性侧基,所形成的产物称作接枝共聚物。

聚合物工艺学第七章_聚合物改性工艺

聚合物工艺学第七章_聚合物改性工艺

3. 乳液共混(胶乳混合法)
乳液共混是将两种或两种以上的聚合物乳液进行 共混,然后再经凝聚、分离、干燥而得到共混聚合物 的方法。与熔融混合法比较,此法在较低温度和低剪 切场下进行。凝聚后胶乳颗粒可以良好的混合。 在橡胶的共混改性中,可以采用两种胶乳进行共 混。如果共混产品以乳液的形式应用(如用作乳液型 涂料或粘合剂),亦可考虑采用乳液共混的方法。
2. 溶液共混(溶液浇铸混合法)
与熔融共混不同,溶液共混主要应用于基础研究领域。
溶液共混是将聚合物组分溶于溶剂后,进行共混。该方法 具有简便易行、用料量少等特点,适用于数量少或不适于 加热熔融的聚合物的共混,特别适合于在实验室中进行的 某些基础研究工作。在实验室研究中,通常是将经溶液共 混的物料浇铸成薄膜,测定其形态和性能。需要指出的是, 经溶液共混制备的样品,其形态和性能与熔融共混的样品 是有较大差异的。另外,溶液共混法也可以用于工业上一 些溶液型涂料或粘合剂的制备。
♦聚合物共混物中的“均相”概念: 在聚合物共混中形成的均相体系,不同于小分子混合 时可能达到的均相体系。在高分子领域,即使是在均聚物 中,亦会有非均相结构存在。对于聚合物共混物,不可能 实现绝对的“均相” 。 聚合物共混物的均相体系判定标准:
如果一种共混物具有类似于均相材料所具有的性能, 这种共混物就可以认为是具有均相结构的共混物。
3. 增韧塑料 有些塑料如聚苯乙烯为脆性材料,抗冲性能较低, 为了增加韧性提高其抗冲强度,采用橡胶与之共混或共 聚的改性方法。橡胶改性塑料是橡胶相域分散在塑料母 体中的物料体系。橡胶相域的大小与混合方法有关。熔 融混合所得聚氯乙烯-丙烯酸酯橡胶共混聚合物的相域 约0.1μm、聚苯乙烯-聚丁二烯共混聚合物的相域尺寸 为1μm左右。相域时常是多相的,微小的塑料相域包埋 在橡胶相域内。其形态学与混合方法大有关系。 橡胶增韧塑料提高抗冲性能的原因在于它受到冲击 后,靠近橡胶颗粒赤道附近形成许多银纹,这些银纹增 长遇到障碍物(如橡胶颗粒)为止,并且使应力均匀分散 而达到提高抗冲性能的目的。

聚合物改性(完整版)

聚合物改性(完整版)

聚合物改性的目的、意义;聚合物改性的定义、改性的方法(大分类和小分类)答:改性目的及意义:①改善材料的某些物理机械性能②改善材料的加工性能③降低成本④赋予材料某些特殊性能、获得新材料的低成本方法⑤提高产品技术含量,增加其附加值的最适宜的途径⑥调整塑料行业产品结构、增加企业经济效益最常采用的途径聚合物改性的定义:通过各种化学的、物理的或二者结合的方法改变聚合物的结构,从而获得具有所希望的新的性能和用途的改性聚合物的过程改性的方法:①化学改性:a、改变聚合物的分子链结构b、接枝、嵌段共聚、互穿聚合物网络、交联、氯化、氯磺化等②物理改性:a、改变聚合物的高次结构b、共混改性、填充改性、复合材料、表面改性等1.化学改性(改变分子链结构)和物理改性(高次结构)的本质区别答:化学改性—改变聚合物分子的链结构物理改性—改变聚合物分子的聚集状态2.共混物和合金的区别答:共混(指物理共混)的产物称聚合物共混物。

高分子合金:不能简单等同于聚合物共混物,高分子合金---指含多种组分的聚合物均相或多相体系,包括聚合物共混物、嵌段和接枝共聚物,而且一般言,高分子合金具有较高的力学性能。

工业上称:塑料合金。

3.共混改性的分类(熔融、溶液、乳液、釜内)答:分类一:化学方法:如接枝、嵌段等;--化学改性物理方法:机械混合、溶液混合、胶乳混合、粉末混合---混合物理-化学方法---反应共混分类二:熔融共混:机械共混的方法,最具工业价值,是共混改性的重点;溶液共混:用于基础研究领域,工业上用于涂料和黏合剂的制备;乳液共混:共混产品以乳液的形式应用;釜内共混:是两种或两种以上聚合物单体同在一个反应釜中完成其;聚合过程,在聚合的同时也完成了共混。

4.共混物形态研究的重要性5.共混物形态的三种基本类型(均相、海-岛、海-海)答:均相体系:一般本体聚合、溶液聚合才形成均相体系非均相体系:①海-岛结构:连续相+分散相(基体)②海-海结构:两相均连续,相互贯穿6.相容性对共混物形态结构的影响答:①在许多情况下,热力学相容性是聚合物之间均匀混合的主要推动力;良好的相容性是聚合物共混物获得良好性能的重要前提。

请列举一种改性方法

请列举一种改性方法

请列举一种改性方法改性是指通过对物质进行化学、物理和生物性质的改变,从而改变其原有性质和用途的技术过程。

改性方法在现代科技中广泛应用于材料、化工、生物等领域,以满足不同的性能和应用需求。

下面将列举一种改性方法——聚合物改性,并详细介绍其原理、应用和影响。

聚合物改性是指通过对聚合物进行改变,以改善其性能、调整其特性或增加新功能的方法。

聚合物是由重复单体基元组成的大分子化合物,其特点是具有高分子量、可塑性、可加工性、化学稳定性等。

在实际应用中,常常需要对聚合物进行改性以满足特定性能的要求。

聚合物改性的方法多种多样,主要包括物理改性、化学改性和生物改性等。

物理改性是将一些物理方法应用于聚合物材料中,从而改变聚合物的性能。

物理改性的方法有增塑、填料增强、纤维增强、自由基辐照、电子束辐照等。

通过这些方法,可以改变聚合物的硬度、韧性、刚度、耐热性、耐腐蚀性等。

化学改性是通过引入一些化学改性剂或在聚合物中引入新的官能团,从而改变聚合物的化学性质和结构。

常用的化学改性方法包括接枝共聚、交联改性、接枝共混、对接枝等。

通过这些方法,可以改变聚合物的熔点、玻璃化转变温度、抗氧化性能、降解性能、电子输运性能等。

生物改性是利用生物材料对聚合物进行改性,从而改变聚合物的特性和用途。

常见的生物改性方法包括生物降解性改性、生物医用改性、抗菌改性等。

生物改性能够赋予聚合物生物相容性、药物缓释性、组织工程性和抗菌性等新功能,扩展了聚合物的应用领域和用途。

聚合物改性的应用范围广泛,涉及到材料、化工、生物、医药、电子等领域。

在材料领域中,通过对聚合物的改性,可以制备出具有特定性能和用途的材料,如聚酰胺纤维、聚醚酮薄膜、聚二甲基硅氧烷弹性体等。

在化工领域中,聚合物改性可以用于生产高效的催化剂、吸附剂、离子交换树脂等。

在生物和医药领域中,聚合物改性可以制备出生物可降解的骨科材料、缓释药物载体、人工器官等。

在电子领域中,聚合物改性可以制备出具有导电性、光学性、磁性等特殊功能的聚合物材料。

聚合物改性(完整版)

聚合物改性(完整版)

聚合物改性的目的、意义;聚合物改性的定义、改性的方法(大分类和小分类)答:改性目的及意义:①改善材料的某些物理机械性能②改善材料的加工性能③降低成本④赋予材料某些特殊性能、获得新材料的低成本方法⑤提高产品技术含量,增加其附加值的最适宜的途径⑥调整塑料行业产品结构、增加企业经济效益最常采用的途径聚合物改性的定义:通过各种化学的、物理的或二者结合的方法改变聚合物的结构,从而获得具有所希望的新的性能和用途的改性聚合物的过程改性的方法:①化学改性:a、改变聚合物的分子链结构b、接枝、嵌段共聚、互穿聚合物网络、交联、氯化、氯磺化等②物理改性:a、改变聚合物的高次结构b、共混改性、填充改性、复合材料、表面改性等1.化学改性(改变分子链结构)和物理改性(高次结构)的本质区别答:化学改性—改变聚合物分子的链结构物理改性—改变聚合物分子的聚集状态2.共混物和合金的区别答:共混(指物理共混)的产物称聚合物共混物。

高分子合金:不能简单等同于聚合物共混物,高分子合金---指含多种组分的聚合物均相或多相体系,包括聚合物共混物、嵌段和接枝共聚物,而且一般言,高分子合金具有较高的力学性能。

工业上称:塑料合金。

3.共混改性的分类(熔融、溶液、乳液、釜内)答:分类一:化学方法:如接枝、嵌段等;--化学改性物理方法:机械混合、溶液混合、胶乳混合、粉末混合---混合物理-化学方法---反应共混分类二:熔融共混:机械共混的方法,最具工业价值,是共混改性的重点;溶液共混:用于基础研究领域,工业上用于涂料和黏合剂的制备;乳液共混:共混产品以乳液的形式应用;釜内共混:是两种或两种以上聚合物单体同在一个反应釜中完成其;聚合过程,在聚合的同时也完成了共混。

4.共混物形态研究的重要性5.共混物形态的三种基本类型(均相、海-岛、海-海)答:均相体系:一般本体聚合、溶液聚合才形成均相体系非均相体系:①海-岛结构:连续相+分散相(基体)②海-海结构:两相均连续,相互贯穿6.相容性对共混物形态结构的影响答:①在许多情况下,热力学相容性是聚合物之间均匀混合的主要推动力;良好的相容性是聚合物共混物获得良好性能的重要前提。

聚合物改性总结

聚合物改性总结

零、绪论聚合物改性的定义:通过物理和机械方法在高分子聚合物中加入无机或有机物质,或将不同类高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达到使材料的成本下降,成型加工性能或最终使用性能得到改善,或使材料仅在表面以及电、磁、光、热、声、燃烧等方面赋予独特功能等效果,统称为聚合物改性。

聚合物改性的目的:所谓的聚合物改性,突出在一个改字。

改就是要扬长补短,要发扬和保留聚合物原有的优势,抑制和克服聚合物原有的缺点,并根据实际需要赋予聚合物新的性能。

聚合物改性的三个主要目的:①克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能②改善聚合物的加工工艺性能③降低材料的生产成本总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳的平衡点。

聚合物改性的意义:1. 新品种的开发越来越困难(已开发的品种数以万计,工业化的三百余种。

资源限制、开发费用、环境污染)2. 使用性能的多样化、复杂化,要求材料有多种性能及功能,单一聚合物难以实现。

3. 聚合物改性科学应运而生一一获取新性能聚合物的简洁而有效的方法。

聚合物改性的主要方法:共混改性;填充改性;纤维增强复合材料;化学改性;表面改性聚合物改性发展概况几个重要的里程碑事件:1942年,采用机械熔融共混法将NBR掺和于PVC之中,制成了分散均匀的共混物。

这是第一个实现了工业化生产的聚合物共混物。

1948 年,HIPS1948年,机械共混法ABS问世,聚合物共混工艺获得重大进展。

二者可称为高分子合金系统研究开发的起点。

1942年,制成了苯乙烯和丁二烯的互穿聚合物网络(IPN),商品名为“ Styralloy ” ,首先使用了聚合物合金这一名称。

1960 年,建立了IPN 的概念,开始了一类新型聚合物共混物的发展已成为共混IPN 与复合领域一个独立的重要分支。

1965年,Kato研究成功0s04电镜染色技术,使得可用透射电镜直接观察到共混物的形态,这一实验技术大大促进了聚合物改性科学理论和实践的发展,堪称聚合物发展史上重要的里程碑。

第一章聚合物的化学改性

第一章聚合物的化学改性

是在酯基的甲基上。
2.活性基团引入法 原理:首先在聚合物的主干上导入易分解的活性基团,然后 在光、热作用下分解成自由基与单体进行接枝共聚。
Br C H2 H C C H2 C
hv
BBB C H2 C C H2 C
nB
叔碳上的氢很容易氧化,生成氢过氧化基团,进而分解为自由 基,由此可利用聚对异丙基苯乙烯支取甲基丙烯酸甲酯接枝物。
PMMA-g-NR
第三节 嵌段共聚改性
一.基本原理
定义:嵌段共聚物分子链具有线型结构,是由至少两种以上 不同单体聚合而成的长链段组成。嵌段共聚可以看成是接枝 共聚的特例,其接枝点位于聚合物主链的两端。 嵌段共聚物可分为三种链段序列基本结构形式:
图2-2
放射状嵌段共聚物的链段序列结构

嵌段共聚类型
Si
O
C
2.嵌段共聚物的应用
主要应用材料可分为三类:嵌段共聚物弹性体,增韧热塑性
弹性树脂和表面活性剂。
●嵌段共聚物弹性体:嵌段共聚物热塑性弹性体主
合成大单体的主要方法有阴离子聚合、阳离子聚合、自由基 聚合等方法。
(2)大单体与小单体合成接枝共聚物技术:
主链由小单体聚合而成;
支链为相对分子质量分布均匀的大单体。
优点:
●更简单、更广泛的合成接枝共聚物;
●能合成数量繁多的接枝共聚物; ●大单体技术还可将两种性能差异较大的聚合物(如亲水和亲 油)以化学键结合。
定义:利用反应体系中的自由基夺取聚合物主链上的氢而链
转移,形成链自由基,进而引发单体进行聚合,产生接枝。
CH2
CH2
CH
CH
CH2
CH
+ R
+ RH
CH

聚合物改性第二章共混改性基本原理

聚合物改性第二章共混改性基本原理

聚合物改性第二章共混改性基本原理共混改性是指将两种或多种不相溶的聚合物在液态或熔融状态下混合,并在适当的条件下加工成形,以获得具有新特性和性能的材料。

共混改性的基本原理是在两种或多种聚合物之间形成相容子,使它们能够相互溶解和交互作用。

这种相容子可以是物理上的相互作用,也可以是化学上的相互作用。

在共混改性的过程中,相容子的形成是关键步骤。

相容子的形成可以通过以下几种方式实现:1.极性相互作用:聚合物分子中的极性基团可以与另一种聚合物中的极性基团相互作用,从而形成相容子。

这种相互作用可以是氢键、离子键或极性键等。

2.分子间键合:两种聚合物分子可以通过化学键合形成相容子,例如共聚反应或化学交联等。

3.混合体积效应:当两种聚合物的分子量相近并具有相似的化学结构时,它们可以通过混合体积效应形成相容子。

这是由于相似的分子量和化学结构使两种聚合物的互溶性增加。

共混改性的基本原理还涉及相分离和相互作用的平衡。

在相互溶解体系中,聚合物分子之间存在相互吸引和排斥的力量。

当相互作用力足够强时,聚合物分子会相互混合形成均一的相。

而当相互作用力不足以克服排斥力时,聚合物分子会相互聚集形成分散的相。

相分离的程度与聚合物之间的亲疏水性、极性和分子量等因素有关。

共混改性的过程还受到加工温度和时间、共混物组成比例等因素的影响。

适当的加工温度和时间可以促进相容子的形成和相分离的平衡。

共混物中不同聚合物的组成比例也会影响相容性和相分离的程度。

共混改性可以使两种或多种聚合物的性能相互补充和提高,如强度、韧性、耐热性、耐化学性等。

共混改性材料在各个领域有广泛的应用,例如塑料、橡胶、涂料、粘合剂等。

总之,共混改性是将不相溶的聚合物通过形成相容子相互溶解和交互作用,从而获得具有新特性和性能的材料的过程。

它的基本原理包括相容子的形成、相分离和相互作用的平衡。

共混改性材料具有广泛的应用前景。

聚合物的改性方法

聚合物的改性方法

聚合物的改性方法
聚合物的改性方法有很多种,常见的改性方法包括物理改性和化学改性。

物理改性方法主要包括以下几种:
1. 混合改性:将两种或多种聚合物混合并加热或者进行机械混合,以改变聚合物的物理性质,如增加韧性、改善加工性能等。

2. 加填料改性:向聚合物中加入填料(如纤维、颗粒等)以增强其力学性能,如增加强度、刚度等。

3. 拉伸改性:通过拉伸、冷拉伸等方式对聚合物进行物理拉伸改性,可使聚合物的结晶度增加,从而改善其力学性能。

4. 放射线改性:通过辐射(如γ射线、电子束)照射聚合物,使其分子链断裂或交联,从而改变其性能。

化学改性方法主要包括以下几种:
1. 共聚改性:通过将两种或多种不同单体反应聚合,得到共聚物来改变聚合物的性能,如共聚物可以提高聚合物的强度、耐热性等。

2. 交联改性:通过交联剂对聚合物进行交联反应,使聚合物分子之间发生交联,从而增加聚合物的热稳定性、耐化学腐蚀性等。

3. 功能改性:向聚合物中引入具有特殊功能的化学基团,如引入亲水基团可以增加聚合物的亲水性,引入光敏基团可以实现光响应性等。

4. 化学修饰:通过对聚合物表面进行化学修饰,如引入活性基团、磁性粒子等,以改变聚合物表面的性质,如增加亲附性、增强稳定性等。

不同的改性方法适用于不同的聚合物和需求,通过合理选择和组合这些改性方法,可以获得特定性能的改性聚合物。

聚合物改性的方法

聚合物改性的方法

聚合物改性的方法聚合物改性是在聚合物基础上进行化学或物理性质调整的过程,旨在改善聚合物的性能,以满足特定要求。

聚合物改性方法包括物理改性、化学改性和混合改性等。

物理改性是通过物理手段改变聚合物的性能。

常用的物理改性方法有填充改性、增强改性、合金化改性和辐射改性等。

填充改性是将填料添加到聚合物中,例如纤维素、石墨、玻璃纤维、纳米颗粒等。

填料可以改变聚合物的力学性能、热稳定性、尺寸稳定性等。

常见的填充改性材料有增强剂、助剂、着色剂等。

增强改性是通过增强聚合物的强度和刚度来改善其力学性能。

常用的增强改性方法有增加纤维素纤维、添加无机颗粒、引入纤维素纤维等。

这些增强材料可以提高聚合物的抗压强度、抗弯强度和抗冲击性能。

合金化改性是将两种或更多种聚合物材料混合制备成新材料。

通过合金化改性,可以获得具有综合性能的新材料。

合金化改性可使聚合物改善机械性能、耐热性、耐老化性、耐化学性等。

合金化改性还可以解决单一聚合物的固有缺点,例如脆化、收缩等。

辐射改性是利用辐射源(例如电子束、γ射线、紫外线)照射聚合物,从而改善其性能。

辐射改性可以提高聚合物的物理性能、化学性能和耐候性。

常用的辐射改性方法有交联、致孔、溶解破坏等。

化学改性是通过化学手段改变聚合物的性质。

常用的化学改性方法有共聚改性、交联改性、引入功能基团改性等。

共聚改性是将两种或更多种具有不同性质的单体共聚,得到具有新性质的共聚物。

共聚改性可以改善聚合物的力学性能、热稳定性、耐刺破性等。

例如,丙烯酸甲酯与苯乙烯共聚可以提高聚合物的韧性和抗冲击性。

交联改性是通过引入交联剂使聚合物形成三维网络结构,从而提高其力学性能和耐热性。

交联改性可以改善聚合物的抗拉强度、抗切割性、耐磨性等。

交联改性常用的交联剂有环氧树脂、双酮、多官能团化合物等。

引入功能基团改性是通过引入具有特定功能的化学基团来改变聚合物的性能。

例如引入亲水基团可以提高聚合物的吸湿性和增湿性,引入官能团可以提高聚合物的活性和选择性。

聚合物材料的改性与应用

聚合物材料的改性与应用

聚合物材料的改性与应用聚合物材料是指在聚合物基础上对其进行物理、化学或者结构上的改变,以满足特殊的性能需求。

聚合物材料具有广泛的应用领域,从日常生活中的塑料制品到高科技领域中的薄膜、纤维等都有着重要的地位。

然而,传统的聚合物材料在某些方面的性能还有待提升,如强度、耐热性、防腐性等。

因此,聚合物材料的改性与应用成为了研究的重点。

一、聚合物材料的改性聚合物材料的改性是指在聚合物基础上进行物理、化学或结构上的改变,以改善其性能。

改性的方式主要有以下几种:1.添加剂改性添加剂是指一些能够在聚合物材料中协同作用,改善其性能的化学品。

常见的添加剂包括增塑剂、稳定剂、填料等。

增塑剂可以增加聚合物的可加工性和柔韧性,稳定剂可以提高聚合物的抗氧化性、抗紫外线性等,填料可以增加聚合物的硬度和耐磨性。

2.共聚改性共聚改性是指将两种或更多的单体聚合在一起,形成聚合物混合物。

由于其中不同单体聚合时的结构不同,所以可以通过共聚来得到更好的性能。

例如,将苯乙烯与丁苯橡胶共聚,可以得到一个既有坚硬度又有韧性的ABS材料。

3.交联改性交联改性是指通过一定的化学反应,在聚合物材料中形成交联结构,使其硬度、强度、耐热性等性能得到提升。

通常采用的交联剂有过氧化物、硫化剂等。

交联改性的聚合物又称为热塑性弹性体(TPE)。

二、聚合物材料的应用聚合物材料具有轻质、耐腐蚀、高强度、绝缘性好等优点,因此在众多领域中有广泛的应用。

1.包装领域聚合物材料在包装领域中应用广泛,如塑料袋、瓶子、盒子等。

经过改性后,聚合物材料的各项性能得到提升,可以更好地保护物品,并增加包装的美观性。

2.建筑领域聚合物材料在建筑领域中应用广泛,如隔热材料、防水材料、地板材料等。

通过改性,聚合物材料可以满足建筑材料的强度、耐腐蚀性等要求,同时还具有重量轻、易加工等优点。

3.汽车领域汽车零部件中常常采用聚合物材料,如车身外壳、车门、座椅等。

聚合物材料的轻量化、材质坚韧可塑性好等特点,可以满足汽车制造中的要求。

第七章 聚合物改性工艺

第七章 聚合物改性工艺

互穿聚合物网络制备
• 两种制备方法的比较: • 由于同步IPN要求两种聚合反应互不干扰、
具有大致相同的聚合温度和聚合速率,故 IPN的应用范围较窄,不适合大部分IPN结构 的制备。
互穿聚合物网络制备
(3)胶乳IPN (Latex IPNs) 胶乳IPN是指用乳液聚合法制得IPN,是目前 IPN中研究较多的一种。因为互穿网络仅限于 各个乳胶粒范围之内,所以也称微观IPN
互穿聚合物网络制备
可通过2种方法制备:(1)熔融状态或在共 同溶剂下的机械共混(机械共混IPN);(2)
模板聚合技术(化学共IPN)即把单体Ⅱ溶胀 到聚合物Ⅰ中(或在单体Ⅱ中溶解聚合物 Ⅰ)并就地聚合形成IPN。
互穿聚合物网络应用
• 阻尼材料是一种能吸收机械振动并将其转 化为热能而耗散的新型功能材料。高分子 材料在一定温度和频率范围内发生的玻璃 化转变,是阻尼作用的根本原因。但是, 阻尼材料的应用必须有一个合适的Tg。
4)光子:激发态中间体回落低能级,能使分子 断裂,由于分子密度低,作用小
5)自由基 占绝大多数,高活性
• 等离子体存在处:
宇宙中99%物质处于等离子体态。由地球 表面向外,等离子体是几乎所有可见物质 的存在形式,它与众所周知的物质三态也 就是气态、液态、固态并列称为物质的第 四态,即等离子体态。
固体 冰
液体 水
气体
水汽
等离子体
电离气体
00C
1000C
100000C
温度
1)高温等离子体:也叫聚变或热平衡等离子 体,在此类等离子体中,电子与其它粒子的温 度相等,一般在5000K以上。 Te≈Ti,Te-电子温度; Ti-离子温度
由于高温等离子体对聚合物表面的作用过 于强烈,因此在日常实际应用中很少使 用,目前投入使用的只有低温等离子体。

聚合物改性1

聚合物改性1

聚合物改性1、塑料,与钢材、木材和水泥并称为材料领域的四大支柱。

2、改性的主要方法:共混改性、填充和增强改性、化学改性、表面改性。

3、聚合物的化学改性定义:通过聚合物的化学反应,改变大分子链上的原子或原子团的种类及其结合方式的一类改性方法。

4、接枝共聚是指在大分子链上通过化学键结合适当支链或功能性侧基的反应,所形成的产物称作接枝共聚物。

5、活性点处于链的末端,聚合后将形成嵌段共聚物;活性点处于链的中间,聚合后才形成接枝共聚物。

6、接枝方法主要分为:链转移法、活性基团引入法和功能基反应法。

7、嵌段共聚物分子链具有线型结构,是由至少两种以上不同单体聚合而成的长链段组成。

嵌段共聚可以看成是接枝共聚的特例,其接枝点位于聚合物主链的两端。

8、嵌段共聚物的应用:嵌段共聚物弹性体,增韧热塑性弹性树脂和表面活性剂。

9、反应挤出改性是在聚合物和/或可聚合单体的连续挤出过程完成一系列化学反应的操作过程。

10、聚合物共混: 是指两种或两种以上聚合物经混合制成宏观均匀物质的过程。

共混的产物称为聚合物共混物。

更广义的共混还包括以聚合物为基体的无机填充共混物。

此外,聚合物共混的涵盖范围还可以进一步扩展到短纤维填充聚合物体系。

11、高分子合金(alloy):指含多种组分的聚合物均相或多相体系,包括聚合物共混物和嵌段、接枝共聚物。

而且,高分子合金材料通常应具有较高的力学性能,可用作工程塑料。

因此,在工业上又常常直接称之为塑料合金。

12、共混改性的基本方法可分为物理共混、化学共混和物理/化学共混三大类。

此外,共混改性的方法又可按共混时物料的状态,分为熔融共混、溶液共混、乳液共混等。

13、相容性(compatility),是指共混物各组分彼此相互容纳,形成宏观均匀材料的能力。

14、相容性判断依据:玻璃化转变温度法判定,溶解度参数法,红外光谱法,电镜法,浊点法,反相色谱法。

15、提高聚合物相容化的方法:加入相容剂(或称增容剂),或者对聚合物进行化学改性,引入某些官能闭,以提高共混组分之间的相容性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主要复习题
1.在聚合物共混物中,控制分散相粒径的方法有哪些?答:P36
2.写出共混物熔体粘度与剪切速率的关系式,并画出共混物熔体的粘度与剪切
速率的关系曲线的三种基本类型。

答:P23
3.聚合物共混物的形态与哪些因素有关?答:P15
4.PVC/ABS 共混体系的制品较纯PVC和纯ABS制品具有哪些优越性?P53
答:ABS为丙烯腈-丁二烯-苯乙烯共聚物,具有冲击性能较高、易于成型加工、手感良好以及易于电镀等特性。

PVC则具有阻燃、耐腐蚀、价格低廉等特点。

将PVC与ABS共混,可综合二者的优点。

5.简述共混物形态研究的染色法、刻蚀法及低温折断法三种制样方法。

P9
6.PET、PC、ABS、PPO、POM、PPS、PES、PSF、PP、PE、BR、PMMA、CR、CPE分
别代表什么聚合物?
答:PES--聚苯醚砜;PSF--聚砜;BR--1,2-聚丁二烯橡胶;PMMA--聚甲基丙烯酸甲酯;CR--氯丁橡胶。

7. PVC、CPE、MBS、NBR、SBS、TPU、ABS、EPDM、PC、PET分别
代表什么聚合物?
8.鉴于PE对烃类溶剂的阻隔性差,为提高PE的阻隔性,可采用PE/PA共混的
方法,简述其阻隔原理。

答:P59
9.简述在PP/PE共混体系中,PE使PP冲击性能得到提高的机理。

答:P57
10.互穿聚合物网络(IPN)可分为哪几种类型?请简述之。

答:P108
11.聚合物填充改性的主要填充剂品种有哪些?答:P78
12.什么是结晶性聚合物和非结晶性聚合物?指出PS, ABS, PC, PO, PA, PET,
PSF, PAR, PBT, POM, PPS这些聚合物品种中哪些可归属于结晶性聚合物品种?
13.如何区分两相共混物中不同相之间的相容性?
14.工业上应用最广的硅橡胶为甲基硅橡胶,简述它的制备原理
并写出它的化学反应式。

怎样解决甲基硅橡胶的力学性能较低和耐油性差的问题。

甲基硅橡胶由聚二甲基硅氧烷硫化得到的橡胶。

15.PET/PBT共混,对于PET而言,可以使结晶速度加快。

对于PBT而言,在PET
用量较高时,可提高冲击性能。

请画出其共混物T g及T m与组成的关系曲线图。

16.写出以双酚A与二氯二苯砜为原料制备末端为羟基聚砜的化学反应式?
17.简述以苯为基础原料制备尼龙6的主要生产工艺。

18.写出末端为二甲基胺的硅氧烷与带有羟基末端的聚砜为原料制备聚砜-聚
(二甲基硅氧烷)嵌段共聚物的化学反应式。

19.解释聚合物共混物中的分散相分散状况表征的“均一性”与“分散度”这两
个术语,并说明它们之间的关系。

主要针对“海-岛结构”两相体系的形态。

为了表征分散相分散状况,需要引入两个术语:均一性与分散度。

“均一性”是指分散相浓度的起伏大小,“分散度”则是指分散相颗粒的破碎情况。

对于均一性,可采用数理统计的方法进行定量计算;分散度则以分散相平均粒径来表征。

P10关系
20.怎样区分硬制PVC制品和软制PVC制品?在硬质PVC制品中添加氯化聚乙烯
后,对制品的力学性能有什么影响?答:P48
21. EPDM、CR、IIR、NR和SBR分别代表什么橡胶?
答:EPDM--三元乙丙橡胶;CR--氯丁橡胶;IIR--丁基橡胶;NR--天然橡胶;SBR--丁苯橡胶。

P69
22.热固性树脂基纤维增强复合材料的成型方法主要有哪几种?
答:手糊成型、缠绕成型、喷射成型、拉挤成型、层压成型。

P86
23.解释聚合物非弹性体增韧机理,并画出脆性塑料对韧性基体的增韧机理图。

答:P31。

相关文档
最新文档