2018年3套高考数学终极押题卷答案解析
2018年高考理科数学全国三卷试题和答案解析
2018年高考理科数学全国三卷试题和答案解析2018年高考理科全国三卷1.已知集合 $A=\{1,2,3,4\}。
B=\{2,3,4\}。
C=\{3,4\}。
D=\{4\}$,则 $(A\cup B)\cap (C\cup D)$ 的元素为 $\{3,4\}$。
2.设 $f(x)=\dfrac{1-x}{1+x}$,则 $f(f(x))=\dfrac{x-1}{x+1}$。
3.中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是选项 B。
4.若 $\log_2 a=3$,$\log_3 b=4$,$\log_5 c=5$,则$a^2bc=\dfrac{2^6\cdot 3^8\cdot 5^{10}}{15}$。
5.$x^6+(x+1)^6$ 的展开方式中 $x^2$ 的系数为 $40$。
6.直线 $y=x+1$,$y=-x+3$ 分别与 $x$ 轴,$y$ 轴交于两点,点在圆 $x^2+y^2=1$ 上,则面积 $S$ 的取值范围是$0<S<2\pi$。
7.函数 $f(x)=\sqrt{1-x^2}$,$g(x)=\dfrac{1}{2}$,则$h(x)=f(x)g(x)+\dfrac{1}{2}$ 的图像大致为一个半径为$\dfrac{1}{2}$,圆心在 $y$ 轴上方 $\dfrac{1}{2}$ 的圆。
8.某群体中的每位成员使用移动支付的概率为 $0.8$,各成员的支付方式相互独立。
设使用移动支付的人数为 $n$,则$P(n\leq 3)$ 的概率为 $0.008+0.096+0.345+0.409=0.858$。
9.已知 $\triangle ABC$ 中,$\angle A=120^\circ$,$AB=AC$,$BC=2$,则 $S_{\triangle ABC}=\sqrt{3}$,$\sinA=\dfrac{\sqrt{3}}{2}$,$\cos A=-\dfrac{1}{2}$。
2018年高考全国3卷理科数学带答案解析
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号,回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答案卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP ∆面积的取值范围是 A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦, 7.函数422y x x =-++的图像大致为8.某群体中的每位成品使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p =A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC ∆的面积为2224a b c +-,则C = A .π2 B .π3 C .π4 D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为93三棱锥D ABC -体积的最大值为A .123B .183C .243D .54311.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为 A 5B .2C 3D 212.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+ 二、填空题:本题共4小题,每小题5分,共20分。
全国卷Ⅲ2018年理数高考试题解析(word档含答案解析)
为 9 3 ,则三棱锥 D ABC 体积的最大值为
A .0.7
B. 0.6
C. 0.4
D. 0.3
9.△ ABC 的内角 A ,B ,C 的对边分别为
a2 a ,b , c ,若 △ ABC 的面积为
b2
c2 ,则 C
4
A. π 2
B. π 3
C. π 4
D. π 6
10.设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三角形且其面积
项是符合题目要求的.
1.已知集合 A x | x 1≥ 0 , B 0,1,2 ,则 A B
A. 0
B. 1
C. 1,2
D. 0,1,2
2. 1 i 2 i
A. 3 i
B. 3 i
C. 3 i
D. 3 i
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图
中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长
2018 年普通高等学校招生全国统一考试
理科数学
注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。 写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
方体,则咬合时带卯眼的木构件的俯视图可以是
4.若 sin A. 8 9
1 ,则 cos 2
3
B. 7 9
2018 年全国 III 卷数学(理)答案及解析
a1 = 1 ,
an = 2n −1 或 an =
( −2 )
n −1
S = 63 , (2) mn −1 ∴ 当通项公式为 an = 2 时, 1 − 2
(1 − 2 ) = 63
m
,得 m =6
当通项公式为
an =
( −2 )
n −1
1 − ( −2 )m = 63 m −1) 2m = 188 ( + 1 2 时, ,得 ,
− x + x + 2 的图像大致为( 7.函数 y =
4 2
)
A.
B.
C.
D.
【答案】D 【考点】函数图像以及性质 【难易程度】基础题 【解析】当 x=1 时,函数值大于 0,排除 A、B;因为 F(x)=F(-x),函数为偶函数,图像关于 y 轴
−4 x 3 + 2 x =0 ,解得 x=0、 、 对称, 令F '( x) =
,函数在(-∞,
)单调递增, (
,0)
单调递减, (0, )单调递增, ( ,+∞)单调递减,故选 D。
8.某群体中的每位成员使用移动支付的概率都为 体的 10 位成员中使用移动支付的人数, A. 0.7 【答案】B 【考点】二项分布概率与方差 【难易程度】基础题 【解析】使用移动支付符合二项分布, B.0.6
是带卯眼的木构件的俯视图可以是(
)
A.
B.
C. 【答案】A 【考点】三视图 【难易程度】基础题
D.
【解析】卯眼的空间立体图如图,同时需要注意在三视图中,看不见的线用虚线表示, 故答案选 A
4、若
,则
(
)
A. 【答案】B
2018年普通高等学校招生全国统一考试押题卷 理科数学(三)解析版(含答案)
绝密 ★ 启用前2018年普通高等学校招生全国统一考试押题卷理 科 数 学(三)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}1,2,3A =,{}34xB x =>,则AB =( )A .{1,2}B .{2,3}C .{1,3}D .{1,2,3}【答案】B【解析】{}1,2,3A =,{}34xB x =>()3log 4,=+∞,{}2,3AB ∴=,选B .2.在ABC △中,“0AB BC ⋅>”是“ABC △是钝角三角形”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】A【解析】若0AB BC ⋅>,则B ∠为钝角,故ABC △为钝角三角形;若ABC △为钝角三角形,则B ∠可能为锐角,此时0AB BC ⋅<,故选A .3.已知实数a ,b 满足:122ab<<,则( )A .11a b<B .22log log a b <C>D .cos cos a b >【答案】B【解析】函数2xy =为增函数,故0b a >>.而对数函数2log y x =为增函数,所以22log log a b <,故选B . 4.已知函数()()sin f x x ωϕ=+(0ω>,π2ϕ<()y f x =y 轴对称,那么函数()y f x =的图象( ) A .关于点π,012⎛⎫⎪⎝⎭BC .关于直线π12x =对称 D【答案】A【解析】由题意得π22T =,πT ∴=,22T ωπ==,因为函数()y f x =象关于yy2ϕπ<,6ϕπ∴=-A .5.设等差数列{}n a 的前n 项和为n S ,若675S S S >>,则满足10n n S S +<⋅的正整数n 的值为( )A .10B .11C .12D .13【答案】C【解析】∵675S S S >>,∴111657654675222a d a d a d ⨯⨯⨯+>+>+,∴70a <,670a a +>,∴()113137131302a a S a +==<,()()112126712602a a S a a +==+>,∴满足10n n S S +<⋅的正整数n 的值为12,故选C . 6.将函数πsin 6y x ⎛⎫=-⎪⎝⎭的图象上所有的点向右平移π4个单位长度,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变),则所得图象的解析式为( ) A .5πsin 212y x ⎛⎫=-⎪⎝⎭B .πsin 212x y ⎛⎫=+⎪⎝⎭ C .5πsin 212x y ⎛⎫=- ⎪⎝⎭ D .5πsin 224x y ⎛⎫=-⎪⎝⎭ 【答案】C【解析】向右平移π4个单位长度得带5πsin 12x ⎛⎫- ⎪⎝⎭,再把图象上各点的横坐标扩大到原来的2倍(纵坐标不变)得到5πsin 212x y ⎛⎫=-⎪⎝⎭,故选C . 7.某几何体的三视图如图所示,则该几何体的体积是( )ABCD【答案】B【解析】由三视图得该几何体是由半个球和半个圆柱组合而成,根据图中所给数据得该几何体的体积为B . 8.函数()()22cos x x f x x -=-在区间[]5,5-上的图象大致为( )A .B .C .D .【答案】D【解析】因为当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x >;当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()0f x <;当352x π⎛⎫∈ ⎪⎝⎭,时,()0f x >.所以选D .9.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法.所谓割术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路刘徽把圆内接正多边形的面积一直算到了正3072边形,如图所示是利用刘徽的割圆术设计的程序框图,若输出的24n =,则p 的值可以是( )(参考数据:sin150.2588︒≈,sin7.50.1305︒≈,sin3.750.0654︒≈)A .2.6B .3C .3.1D .3.14【答案】C【解析】模拟执行程序,可得:6n =,,不满足条件S p ≥,12n =,6sin303S =⨯︒=,不满足条件S p ≥,24n =,12sin15120.2588 3.1056S =⨯︒=⨯=,满足条件S p ≥,退出循环,输出n 的值为24.故 3.1p =.故选C .10.已知点()0,1A -是抛物线22x py =的准线上一点,F 为抛物线的焦点,P 为抛物线上的点,且PF m PA =,若双曲线C 中心在原点,F 是它的一个焦点,且过P 点,当m 取最小值时,双曲线C 的离心率为( ) A 2 B 3C1 D1【答案】C【解析】由于A 在抛物线准线上,故2p =,故抛物线方程为24x y =,焦点坐标为()0,1.当直线PA 和抛物线相切时,m 取得最小值,设直线PA 的方程为1y kx =-,代入抛物线方程得2440x kx -+=,判别式216160k ∆=-=,解得1k =±,不妨设1k =,由2440x x -+=,解得2x =,即()2,1P .设双曲线方程为22221y x a b -=,将P 点坐标代入得22141a b-=,即222240b a a b --=,而双曲线1c =,故221a b =+,221b a =-,所以()22221410a a a a ----=,解得1a =,故离心率为1ca ==,故选C . 11.在三棱锥S ABC -中,SB BC ⊥,SA AC ⊥,SB BC =,SA AC =,12AB SC =,且三棱锥S ABC-,则该三棱锥的外接球半径是( ) A .1 B .2C .3D .4【答案】C【解析】取SC 中点O ,则OA OB OC OS ===,即O 为三棱锥的外接球球心,设半径为r,则3r ∴=,选C . 12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b ≥+和()G x kx b ≤+恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”,已知函数()()2f x x x =∈R ,()2eln h x x =,有下列命题: ①()()()F x f x g x =-在x ⎛⎫∈ ⎪⎝⎭内单调递增; ②()f x 和()g x 之间存在“隔离直线”,且b 的最小值为4-;③()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是](40 -,; ④()f x 和()h x 之间存在唯一的“隔离直线其中真命题的个数有( ) A .1个 B .2个C .3个D .4个【答案】C【解析】①()F x f =x ⎛⎫∈ ⎪⎝⎭,()2120F x x x '∴=+>,()()()F x f x g x ∴=-,在x ⎛⎫∈ ⎪⎝⎭内单调递增,故①正确;②,③设()(),f x g x 的隔离直线为y kx b =+,则2x kx b ≥+对一切实数x 成立,即有10∆≤,240k b +≤,又1kx b x≤+对一切0x <成立,则210kx bx +-≤,即20∆≤,240b k +≤,0k ≤,0b ≤,即有24k b ≤-且24b k ≤-,421664k b k ≤≤-,40k -≤≤,同理421664b k b ≤≤-,可得40b -≤≤,故②正确,③错误,④函数()f x 和()h x 的图象在()f x 和()h x 的隔离直线,那么该直线过这个公共点,设隔离直线的斜率为k ,2e e 0x kx k -+-≥,当x ∈R恒成立,则2e e y x =-,下面证明()()2e ex G x x-'=,当时,()0G x '=;当0x <<时,()'0G x <;当x >()'0G x >;当x e =时,()G x '取到极小值,极小值是0()2e e h x x ≤-,∴函数()f x 和()h x 故选C .第Ⅱ卷本卷包括必考题和选考题两部分。
泄露天机2018高考押题卷理科数学(一)
泄露天机2018高考押题卷理科数学(一) 2018年普通高等学校招生全国统一考试理科数学(一)注意事项:1.在答题卡上填写姓名和准考证号。
2.选择题用铅笔在答题卡上标记选项,非选择题在答题卡上作答。
3.考试结束后将试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:共12小题,每小题5分,共60分。
1.复数z=a+ai(a∈R)的共轭复数为z,满足z=1,则复数z 为()A。
2+iB。
2-iC。
1+iD。
i解析】根据题意可得,z=a-ai,所以z^2=a^2+1=1,解得a=0,所以复数z=i。
2.集合A={θ|0<θ<π/2.2<sinθ≤1},B={φ|4/5<φ<1},则集合AB={θ|π/4<θ<π/2.4/5<sinθ≤1}。
解析】A可以化为{θ|π/6<θ<π/2},所以AB为{θ|π/4<θ<π/2.4/5<sinθ≤1}。
3.从有2对不同表征的小鼠(白色斑块和短鼻子野生小鼠各一对)的实验箱中每次拿出一只,不放回地拿出2只,则拿出的野生小鼠不是同一表征的概率为3/4.解析】分别设一对白色斑块的野生小鼠为A,a,另一对短鼻子野生小鼠为B,b,从2对野生小鼠中不放回地随机拿出2只,所求基本事件总数为4×3=12种,拿出的野生小鼠不是同一表征的事件为(A,a),(a,A),(B,b),(b,B),所以概率为3/4.1.将函数f(x)=2sin(ωx+ϕ)的图像向左平移π/6个单位长度后得到函数y=sin2x+3cos2x的图像,求ϕ的可能值。
解析:将函数y=sin2x+3cos2x=2sin(2x+π/3)的图像向右平移π/6个单位长度,得到函数y=2sin2x的图像。
因此,ϕ=π/6.2.在XXX墓中发掘出堆积如山的“汉五铢”铜钱,假设把2000余缗铜钱放在一起码成一堆,摆放规则如下:底部并排码放70缗,然后一层一层往上码,每层递减一缗,最上面一层为31缗,则这一堆铜钱的数量为多少?解析:构成一个以首项为70缗,末项为31缗,项数为40层,公差为1的等差数列,则和为S=40×(70+31)=2020缗,这一堆铜钱的数量为2020×1000=2.02×106枚。
2018年高考理科数学(3卷)答案详解(附试卷)
2018年普通高等学校招生全国统一考试文科理学3卷答案详解一、选择题:本题共12小题,每小题5分,共60分。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B = A .{}0B .{}1C .{}12,D .{}012,,【解析】∵}1|{≥=x x A ,}2,1{=B A .【答案】C 2.()()1i 2i +-=A .3i--B .3i-+C .3i-D .3i+【解析】i i i +=-+3)2)(1(.【答案】D3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【解析】看不见的线应该用虚线表示.【答案】A 4.若1sin 3α=,则cos 2α=A .89B .79C .79-D .89-【解析】227cos 212sin 199αα=-=-=.【答案】B5.252()x x+的展开式中4x 的系数为A .10B .20C .40D .80【解析】由二项式定理得252()x x +的展开式的通项为251031552()2rr r r r r r T C x C x x --+⎛⎫== ⎪⎝⎭,由1034r -=,得2r =,∴252()x x+的展开式中4x 的系数为225240C =.【答案】C6.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则△ABP 面积的取值范围是A .[]26,B .[]48,C .D .⎡⎣【解析】如图所示,由题意可知)0,2(-A 、)0,2(-B ,∴22||=AB .过点P 作△ABP 的高PH ,由图可以看出,当高PH 所在的直线过圆心)0,2(时,高PH 取最小值或最大值.此时高PH 所在的直线的方程为02=-+y x .将02=-+y x 代入22(2)2x y -+=,得到与圆的两个交点:)1,1(-N 、)1,3(M ,因此22|211|min =+-=|PM|,232|213|max =++=|PM|.所以222221min =⨯⨯=S ,6232221max =⨯⨯=S .图A67.函数422y x x =-++的图像大致为【解析】设2)(24++-==x x y x f ,∵02)0(>=f ,因此排除A 、B ;)12(224)(23--=+-='x x x x x f ,由0)(>'x f 得22-<x 或220<<x ,由此可知函数)(x f 在),(220内为增函数,因此排除C.【答案】D8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数,4.2=DX ,)6()4(=<=x P x P ,则p=A .0.7B .0.6C .0.4D .0.3【解析】某群体中的每位成员使用移动支付的概率都为p ,看做独立重复事件,满足),10(~p B X .∵4.2=DX ,∴4.2)1(10=-p p ,解得6.0=p 或4.0=p .∵)6()4(=<=x P x P ,∴4661064410)1()1(p p C p p C -<-,解得021<-p ,即21>p .∴6.0=p .9.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为4222c b a -+,则C =A .2πB .3πC .4πD .6π【解析】由已知和△ABC 的面积公式有,4sin 21222c b a C ab -+=,解得C ab c b a sin 2222=-+.∴C abCab ab c b a C sin 2sin 22cos 222==-+=,又∵1cos sin 22=+C C ,∴22sin cos ==C C ,4π=C .【答案】C10.设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为39,则三棱锥D-ABC 体积的最大值为A .312B .318C .324D .354【解析】如图A12所示,球心为O ,△ABC 的外心为O ′,显然三棱锥D-ABC 体积最大时D 在O′O 的延长线与球的交点.△ABC 为为等边三角形且其面积为39,因此有39432=⨯AB ,解得AB =6.∴3260sin 32=⋅⨯=' AB C O ,2)32(42222=-='-='O O OC O O ,∴642=+='D O .∴三棱锥D-ABC 体积的最大值为31863931=⨯⨯=V .图A1011.设F 1、F 2是双曲线C :22221(0,0)x y a b a b-=>>的左、右焦点,O 是坐标原点.过F 2作C 的一条渐近线的垂线,垂足为P.若1PF =,则C 的离心率为AB .2CD【解析】双曲线C 的渐近线方程为by x a=±,即0bx ay ±=.∴点F 2到渐近线的距离为b ba bc d =+=22,即b ||PF =2,∴a b c ||PF ||OF |OP|=-=-=222222,∴a |OP|||PF 661==,在Rt △OPF 2中,cbOF ||PF OPF ==∠||cos 222,在Rt △F 1PF 2中,bca cb |F |F ||PF ||PF |F |F ||PF O PF 4642cos 22221221221222-+=⋅-+=∠,∴bc a c b c b 464222-+=,化简得222364b a c =-,将222a c b -=代入其中得223a c =,∴3222==ac e ,3=e.图A11【答案】C12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab+<<D .0ab a b<<+【解析】∵0.20.20.2log 1log 0.3log 0.2<<,∴01a <<.∵221log 0.3log 2<,∴1b <-.∴0ab <,0a b +<.∵0.30.30.30.311=log 2log 0.2log 0.4log 0.31a b ab a b++=+=<=,0ab <,∴ab a b <+.综上所述0ab a b <+<.【答案】B二、填空题:本题共4小题,每小题5分,共20分。
2018全国[三卷]高考数学[理]试题及答案解析
2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|10A x x =-≥,{}012B =,,,则A B =I A .{}0B .{}1C .{}12,D .{}012,, 2.()()1i 2i +-= A .3i --B .3i -+C .3i -D .3i +3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是4.若1sin 3α=,则cos2α=A .89B .79C .79-D .89-5.522x x ⎛⎫+ ⎪⎝⎭的展开式中4x 的系数为A .10B .20C .40D .806.直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C .232⎡⎤⎣⎦,D .2232⎡⎤⎣⎦, 7.函数422y x x =-++的图像大致为8.某群体中的每位成员使用移动支付的概率都为p ,各成员的支付方式相互独立,设X 为该群体的10位成员中使用移动支付的人数, 2.4DX =,()()46P X P X =<=,则p = A .0.7B .0.6C .0.4D .0.39.ABC △的内角A B C ,,的对边分别为a ,b ,c ,若ABC △的面积为2224a b c +-,则C =A .π2B .π3C .π4D .π610.设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93D ABC -体积的最大值为A .B .C .D .11.设12F F ,是双曲线22221x y C a b-=:(00a b >>,)的左,右焦点,O 是坐标原点.过2F作C 的一条渐近线的垂线,垂足为P .若1PF =,则C 的离心率为AB .2CD 12.设0.2log 0.3a =,2log 0.3b =,则A .0a b ab +<<B .0ab a b <+<C .0a b ab +<<D .0ab a b <<+二、填空题:本题共4小题,每小题5分,共20分。
2018年全国新课标Ⅲ卷全国3卷高考文科数学试卷及参考答案与试题解析
2018年全国新课标Ⅲ卷全国3卷高考文科数学试卷及参考答案与试题解析2018年云南省高考数学试卷(文科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5.00分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4.(5.00分)若sinα=,则cos2α=( )A. B. C.- D.-5.(5.00分)若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为( )A.0.3B.0.4C.0.6D.0.76.(5.00分)函数f(x)=的最小正周期为( )A. B. C.π D.2π7.(5.00分)下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是( )A.y=ln(1-x)B.y=ln(2-x)C.y=ln(1+x)D.y=ln(2+x)8.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[,3]D.[2,3]9.(5.00分)函数y=-x4+x2+2的图象大致为( )A. B. C.D.10.(5.00分)已知双曲线C:-=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为( )A. B.2 C. D.211.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=( )A. B. C. D.12.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.54二、填空题:本题共4小题,每小题5分,共20分。
2018年高等学校招生全国统一考试押题卷文科数学试卷(三)及解析
绝密 ★ 启用前2018年普通高等学校招生全国统一考试押题卷文科数学(三)本试题卷共14页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
★祝考试顺利★注意事项:1、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集{}1,2,3,4U =,若{}1,3A =,{}3B =,则()()U U A B 痧等于( )A .{}1,2B .{}1,4C .{}2,3D .{}2,4【答案】D【解析】根据题意得到{} 2,4U A =ð,U B ð{}1,2,4=,故得到()()U U A B 痧{}2,4=.故答案为:D .2.在下列函数中,最小值为2的是( ) A .1y x x=+ B 1sin (0)sin 2y x x xπ=+<<C .2y =D .122x xy =+【答案】D【解析】A 选项x 可以是负数;B 选项2y ≥=,等号成立时sin 1x =,在定义域内班级 姓名 准考证号 考场号 座位号无法满足;C 由基本不等式知D 选项正确.3.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中视力情况进行统计,其结果的频率分布直方图如图所示:若某高校A 专业对视力的要求在0.9以上,则该班学生中能报A 专业的人数为( )A . 30B .25C .22D .20【答案】D【解析】()50 1.000.750.250.220⨯++⨯=,故选D . 4.函数sin 21cos xy x=+的部分图象大致为( )A .B .C .D .【答案】A【解析】因为函数为奇函数,所以其图象关于原点成中心对称,所以选项C ,D 错误;又当0,2x π⎛⎫∈ ⎪⎝⎭时,sin 201cos xy x=>+,所以选项B 错.本题选择A 选项.5.已知等差数列{}n a 的前n 项和为n S ,且233215S S -=,则数列{}n a 的公差为( ) A .3 B .4- C .5- D .6【答案】C【解析】设数列{}n a 的公差为d ,233215S S -=,()()121233215a a a a a ∴+-++=,315d =-,5d =-,故选C .6.某几何体由上、下两部分组成,其三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则该几何体上部分与下部分的体积之比为( )A .13B .12C .23D .56【答案】C【解析】根据题意得到原图是半个圆锥和半个圆柱构成的图形,圆锥的地面半径为2,圆柱底面半径为2,故得到圆锥的体积为142233⨯π⨯=π,半个圆柱的体积为14122π⨯⨯=π,该几何体上部分与下部分的体积之比为23.故答案为:C . 7.如果函数()()()()2128122f x m x n x m =-+-+>在区间[]2,1--上单调递减,那么mn 的最大值为( ) A .16 B .18 C .25 D .30【答案】B【解析】因为2m >,所以抛物线开口向下,所以822nm---≤,也即是()822n m ---≥,也即是122n m -≤,故()()22122212231818nm m m m m m -=-+=--+≤≤,当且仅当3m =,6n =等号成立,故选B . 8.已知函数()sin cos f x a x b x =+(x ∈R ),若0x x =是函数()f x 的一条对称轴,且0tan 2x =,则()a b ,所在的直线为( )A .20x y -=B .20x y +=C .20x y -=D .20x y +=【答案】C【解析】函数()sin cos f x a x b x =+(x ∈R ),若0x x =是函数()f x 的一条对称轴, 则0x x =是函数()f x 的一个极值点,()cos sin f x a x b x -'=,根据题意有()000c o s s i n 0f x a x b x =-=',又0tan 2x =,故0tan 2a b x b ==,结合选项,点()a b ,所在的直线为20x y -=.故选C .9.在如图所示的程序框图中,若输入的2s =,输出的2018s >,则判断框内可以填入的条件是( )开始输入x结束是否输出s 2s s =1i =1i i =+A .9i >B .10i ≤C .10i ≥D .11i ≥【答案】D【解析】输入2S =,1i =,242S ==;2i =,382S ==;当10i =,1122048S ==; 当10111i =+=,当11i ≥时,满足条件,退出循环,2048S =,故选D .10.函数()()sin (0,0)f x A x A ωϕω=+>>的图像如图所示,则()()()()12318f f f f++++的值等于()A B C 2+ D .1【答案】C【解析】由图知2A =,622T =-,8T ∴=,284ωππ==,2sin 224ϕπ⎛⎫⨯+= ⎪⎝⎭, ()2k k ϕ=π∈Z ,()2sin 4f x x π⎛⎫∴= ⎪⎝⎭, 所以()()()()12318f f f f ++++()()()()()21222812f f f f f =+++++()()1222f f =+=,选C .11.阿波罗尼斯(约公元前262-190年)证明过这样一个命题:平面内到两定点距离之比为常数k (0k >且1k ≠)的点的轨迹是圆.后人将这个圆称为阿氏圆.若平面内两定点A ,B 间的距离为2,动点P 与A ,B 2当P ,A ,B 不共线时,PAB △面积的最大值是( ) A .B 2C 22D 2【答案】A【解析】如图,以经过A ,B 的直线为x 轴,线段AB 的垂直平分线为y 轴,建立直角坐标系,则()1,0A -,()1,0B 设(),P x y ;2PA PB=()()2222121x y x y++-+=,两边平方并整理得:()222261038x y x x y +-+=⇒-+=,PAB △面积的最大值是122222⨯⨯=A .12.已知函数()f x 是定义在R 上的奇函数,其导函数为()f x ',若对任意的正实数x ,都有()()20xf x f x '+>恒成立,且21f =(),则使22x f x <()成立的实数x 的集合为( )A .(()22-∞+∞,B .(22-,C .(-∞D .)+∞【答案】C【解析】构造函数()()2g x x f x =,当0x >时,依题意有()()()20g x x xf x f x ⎡⎤=+⎣'>⎦',所以函数()g x 在0x >上是增函数,由于函数为奇函数,故在0x <时,也为增函数,且()00g =,22gf ==,所以不等式()()22xf xg x g<⇔<,根据单调性有x <C .第Ⅱ卷本卷包括必考题和选考题两部分。
完整版)2018年高考理科数学全国三卷试题及答案解析
完整版)2018年高考理科数学全国三卷试题及答案解析2018年高考理科全国三卷1.已知集合 A={1,2,3,4}。
B={2,3,4}。
C={3,4}。
D={4},则(A∩B)∪(C∩D) 的元素个数是多少?2.已知函数 f(x)=x^2-2x+1,g(x)=2x-1,则 f(g(x)) 的值为多少?3.中国古建筑借助榫卯将木构件连接起来,构建的突出部分叫榫头,凹进部分叫卯眼。
图中木构件右边的小长方体是榫头,若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是哪一个?4.若 a,b,c 是正整数,且 a^2+b^2=c^2,则 a+b+c 的值是多少?5.将 (2x-y+3z)^4 展开后,x^2y^2z^2 的系数是多少?6.平面直角坐标系中,直线与 x 轴交于 A,与 y 轴交于B,直线与 x 轴交于 C,与 y 轴交于 D。
点 P 在圆 x^2+y^2=1 上,且线段 AP 与线段 CD 相交于点 O。
则△AOD 的面积的取值范围是什么?7.已知函数 f(x)=x^3-3x,则 f(x+2)-f(x-2) 的图像大致是什么?8.某群体中的每位成员使用移动支付的概率为 p,各成员的支付方式相互独立。
设 N 为该群体的成员数,X 为使用移动支付的人数,则 P(X=k) 的值是多少?9.△ABC 中,∠A=60°,BC=2,AD 是 BC 的中线,点 E 在 AB 上,使得 AE=AD。
若△ADE 为等边三角形且其面积为 1/3,则△ABC 的面积是多少?10.设 V 是半径为 R 的球的球面上四点 A,B,C,D 所构成的四面体的体积,V 的最大值是多少?11.双曲线 H 的左、右焦点分别为 F1(-c,0)、F2(c,0),坐标原点为 O,过 F1 作 H 的一条渐近线,垂足为 P。
若 OP=2c,则 H 的离心率是多少?12.设函数 f(x)=x^3-ax^2+bx-1,若 f(x) 在点 x=1 处的切线的斜率为 3,在 x=2 和抛物线 y=x^2+cx+d 的零点个数为 2,过点 (2,0) 的直线 y=kx+m 与 y=f(x) 的交点为 (3,4),则 a,b,c,d 的值分别是多少?13.已知向量 a=3i+2j,b=-2i+5j,则 a·b 的值是多少?14.曲线 y=2x^3-3x^2+6x-1 的切线在点 (1,4) 处的斜率是多少?15.函数 f(x)=x^2-2x+3 在区间 [-1,3] 上的最小值是多少?16.已知点 A(1,0,0),B(0,1,0),C(0,0,1),D(1,1,1),且 AD 与平面 BCD 垂直,AD 的长度为 2.则 BD 的长度是多少?17.等比数列 {an} 的首项为 a1=2,公比为 q=1/2.求 S10 的值和 a10 的值。
2018新课标全国卷3高考理科数学试题及答案解析
(2)设圆M过点P(4,-2),求直线l与圆M的方程.
21.(12分)
已知函数 =x﹣1﹣alnx.
(1)若 ,求a的值;
(2)设m为整数,且对于任意正整数n, ﹤m,求m的最小值.
(二)选考题:共10分。请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分。
14.设等比数列 满足a1+a2= –1,a1–a3= –3,则a4= ___________.
15.设函数 则满足 的x的取值范围是_________。
16.a,b为空间中两条互相垂直的直线,等腰直角三角形ABC的直角边AC所在直线与a,b都垂直,斜边AB以直线AC为旋转轴旋转,有下列结论:
①当直线AB与a成60°角时,AB与b成30°角;
绝密★启用前
2017年普通高等学校招生全国统一考试(新课标Ⅲ)
理科数学
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
设 是平面DAE的法向量,则
可取
设 是平面AEC的法向量,则 同理可得
则所以二面Βιβλιοθήκη D-AE-C的余弦值为20.解
(1)设
由 可得
又 =4
因此OA的斜率与OB的斜率之积为
所以OA⊥OB
故坐标原点O在圆M上.
(2)由(1)可得
故圆心M的坐标为 ,圆M的半径
由于圆M过点P(4,-2),因此 ,故
即
由(1)可得 ,
②当直线AB与a成60°角时,AB与b成60°角;
2018全国Ⅲ卷高考压轴卷理科数学含答案解析
2018全国Ⅲ卷高考压轴卷理科数学本试卷共23题(含选考题)。
全卷满分150分。
考试用时120分钟。
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}()(){}0,150=A x B x x x A B =≥=+-<⋂,则 A .[-1,4)B .[0,5)C .[1,4]D .[-4,-1) ⋃ [4,5)2. 在ABC △中,60A =︒,4AC =,23BC =ABC △的面积为( ) A. B .4 C .23 D .223. 边长为8的等边△ABC 所在平面内一点O ,满足23OA OB OC --=0,若M 为△ABC 边上的点,点P 满足||19OP =|MP|的最大值为A.B. 63C. 219D. 3194. 设实数x y ,满足20401x y x y y -+⎧⎪+-⎨⎪⎩,,,≥≤≥则2x y -的最小值为A. -5B.-4C.-3D.-15.已知一个几何体的三视图如图所示,则该几何体的体积为A .8163π+ B .1683π+C .126π+D .443π+6. 执行如图所示的程序框图,则输出的S 的值是( )A .1B .2C .4D .7 7. 若直线()1:110l ax a y -++=与直线2:210l x ay --=垂直,则实数a = A .3B .0C .3-D .03-或8. 若双曲线C: 22221x y a b-=(0a >,0b >)的一条渐近线被圆2240x y x +-=所截得的弦长为2,则双曲线C 的离心率为A .32239. 已知12a xdx =⎰,函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则函数4f x a π⎛⎫-+ ⎪⎝⎭图象的一个对称中心是A .,112π⎛⎫-⎪⎝⎭B .,212π⎛⎫⎪⎝⎭C .7,112π⎛⎫⎪⎝⎭D .3,24π⎛⎫⎪⎝⎭10. 甲、乙、丙、丁四位同学参加朗读比赛,其中只有一位获奖,有同学走访这四位同学,甲说:“是乙或丙获奖”,乙说:“甲、丙都未获奖”,丙说:“我获奖了”,丁说:“是乙获奖了”。
2018年高考文科数学全国卷3(含答案与解析)
2018年高考文科数学全国卷3(含答案与解析)2018年普通高等学校招生全国统一考试课标全国卷III数学(文科)本试卷满分150分,考试时间120分钟。
第Ⅰ卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合$A=\{x|x-1\geq0\}$,$B=\{0,1,2\}$,则$AB=$A。
$\emptyset$ B。
$\{1\}$ C。
$\{1,2\}$ D。
$\{0,1,2\}$2.$(1+i)(2-i)=$A。
$-3-i$ B。
$-3+i$ C。
$3-i$ D。
$3+i$3.中国古建筑借助榫卯将木构件连接起来。
构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头。
若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是ABCD4.若$\sin\alpha=\frac{1}{3}$,则$\cos2\alpha=$A。
$\frac{8}{9}$ B。
$\frac{7}{99}$ C。
$-\frac{7}{9}$ D。
$-\frac{8}{9}$5.若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A。
0.3 B。
0.4 C。
0.6 D。
0.76.函数$f(x)=\frac{\tan x}{1+\tan^2x}$的最小正周期为A。
$\frac{\pi}{4}$ B。
$\frac{\pi}{2}$ C。
$\pi$ D。
$2\pi$7.下列函数中,其图象与函数$y=\ln x$的图象关于直线$x=1$对称的是A。
$y=\ln(1-x)$ B。
$y=\ln(2-x)$ C。
$y=\ln(1+x)$ D。
$y=\ln(2+x)$成任务的时间,得到以下数据:第一组:12.15.13.14.16.18.17.14.16.15.13.12.14.15.13.16.17.14.15.13第二组:16.17.14.18.15.16.13.14.15.16.17.15.14.16.15.17.15.16.18.141)分别计算两组工人完成任务的平均时间和标准差;2)根据以上数据,判断两种生产方式哪一种更有效,并说明理由.19.(12分)已知函数f(x)在区间[0,1]上连续,且f(0)=f(1)=0.证明:对于任意正整数n。
2018年全国3卷理科数学真题(解析版)
18年全国3卷理科数学一、选择题:本题共12小题,每小题5分,共60分.1.已知集合AT x |x ・120}, B={0. 1. 2},贝iJACBA. {0JB. HIC. {1 . 2}D. (0. k 2}【答案】C【解析】分析:由题意先解出集合A.进而得到结果。
详解:由集合A 得X2 1,所以AOBTL2}故答案选C.2. (1 +A. -3rB. -3+iC. 3-iD. 3 + i【答案】D【解析】分析:由0数的乘法运算展开即可。
详解:(I + iX2 • i) = 2 . 1 + 2」.『=3 + l故选D.3.中国古建筑借助棵卯将木构件连接起来.构件的凸出部分叫桦头,凹进部分叫卯眼,图中 木构件右边的小长方体是桦头.若如留摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯限的木构件的俯视图可以是fS徵方向A C D. DC DA. AB. BC.【答案】A【解析】分析:观察图形可得。
详解:观擦图形图可知,俯视图为_____:故答案为A.4.若gma-,则cos2a7SA. B. C.— D.—99【答案】B【解析】分析:由公式脉2«=1”28静(1可得。
,27详解:cos2a•1-2sin"a■1--1■-99故答案为B.5.的展开式中的系数为A.10B.20C.40D.80【答案】C【解析】分析:与出然后可得结果详解:由鼬可得T"」C^x2)5'r(-)r C;2r-x10JrX令10.3r=4,则r=2所iUC;-2,=C^x2z=40故选C.6直线x+y+2=0分别与轴,轴交于,两点,点在圆(x-2)'y'=2上,则△ABP面积的取值范围是A.|2.6|B.[4.8]C.匝.^1D.[20.3因【答案】A【解析】分析:先求出A・B两点坐标得到|AB|•再计算圆心到直线距离,得到点P到直线距离范围・由而枳公式计算叩可详解:•・Fgr+2=0分别与轴,轴交于,两点•・•点P在圆&.2尸+广=2上12+0+21 l W 同心为(2, 0).则圆心到I • L .项小一f —"夕故点P 到立线x +y f =0的距离的范"I 为[也3卤则 S &AB P -*!AB|<i 2-^d,e[16]故答案选A.D. DC. C A. A B. B【答案】D 【解析】分析:由特殊值排除即可详解:% = 0时.y = 2,排除ABy ,= + ・2\(2^・ 1)•场丘• y AO,排除C故正确答案选D.8.某群体中的每位成员使用移动支付的概率都为,备成员的支付方式相互独立,设为该群体 的10位成员中使用移动支付的人数,DX = 24, P(X = 4)<P(X 6),则pA. 0.7B. 0.6C. 0.4D. 0.3【答案】B【解析】分析;判断出为二项分布.利用公mx)=np(l・p)进行计算即可•IXX)二np(l・P)••・p=04或p=06P(X=4)=C加」(】.p)6<P(X=6)=C,y(1-p)1,.-.(I『)2<^,可知1>>。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】令2f(工) = l,9llj f(.r) =÷当乓0时,.r = 0;当.r > 0时 ,.1- = 、主 j e 或.r = 布在
同一直角坐标系中作出函数
Y =J(.)r 和y =
0,y
=
工,y
le
=
le 的图象如图所示,观察可
c. 知.这些直线与 y = f(.1·)的图象有5个交点.即函数 g( 又) = 2.ff_.f(:r)] - 1有5个零点.故选
[ +·: 0(1.m十1) .λ÷ (m + l 一 ÷)+ (2,什l) J×1 = 1,解-�� m =
/
当直线 z = x-2y过点�
D(Lf)时,Z = X 一2y的最小值为一 ÷故选A
11.C E命题意图】本题考查双曲线的定义 、 性质.
[二 = fl, ,a
E解析】由题意 f导 b = 1,
"""'一一、 f
、.
J川
理科擞学(押题卷l)
I. H E 命题意图】本题考查 一 元二次不等式的解法 、 集合的运算.
ε n E解析】·.·A= Lrl (.r+2H.γ - 3)《O} = Lr 二: | 一 2《 .T :;, 1},日= i y I y = zx斗3 ,:r /\l c::- { y I 一1《 y <;饵,:./\
.8 E命题意图】本题考查抛物线的方程 、抛物线的定义 、三角函数的诱导公式.
5x
【解析】由题意得ρ = 2,二抛物线C:/ = 4.r.由抛物线定义可知IANI= IAFI.又ζAMN =ζANM,.." IANI =
!AMI-二IAM I = IAF I ':. 点A在线段!V'JF'的垂直平分线上,二x,1 = 2,.'.y�=8.记儿F的中点为8(2 ,0),则
B=〔一l .3].战选且
::?. 13 E命题意回】本题考查复敬的四则运算 、复数的几何意义.
·:::: E解析】
一一2 +一’一”i一 一 (2十川i)(4十5i)
- 4-Si (4 一 5i) <4 + Si)
=一8-一 4.t5二,n + - 4rnI+T一 lo.1 ' .• •
18-Sm<O,
ε τ τ ε τ 刁I 一 专11: (I 一 7石π ,一2π)飞’.·. cos (/ 2.r 一 π)飞 |广一1. 一 l )飞 ':.f(工. ) = 』c /
π\ 广
3、
10. A E命题意图】本题考查二元 一 J欠不等式组与乎面区域、线性规划.
/Y
E 解析】作出不等式组表示的平面区域 M 阴影部分所示其中A (1,÷),BC2.0),C<2,2m十1)'
cos LMAN =cos CiMAB + LBAN) =- sin Ll\lLL\.B = 一 」二 一 川选B
J8 十 l
j
.B (命题意图】本题考查三角函数的图象与性质.
【解析】由题意知M=3,一 54T=一 1192π一 一π 3 =一 54π,... .T =
π…. ω =一 2π = π
误;该校学生体能测试成绩的中位数为73 l3_ .c 错误;所求平均数为45×0. 1 + 55×0.1 + 65×0. 2 + 75×0. 3 + 85×
0. 2 + 95×0.1 = 4.5 + 5. 5 + 13 + 22.5 + 17十9.5 = 72,D正确 . 故选D. 6. A (命题意图】本题考查算法与程序框困.
【解析】运行该程序,r =1,” = 2 ;r = 2 ,i = l ,S =2 ,n =3 ;r = O,n = 4;r = I ,n =5;r = 2 ,i = 2,S = 7,n = 6 ;r = 0, 11 = 7: r = I, 11 =8: r = 2, i = 3, S =15, 11 = 9; r = 0,n =10; r = 1,η = ll;r = 2,i = 4,S = 26 ,η = l2;r = O,n = 13 ; r = 1 .11 = 14 ; r = 2 , i = 5 ,S = 40.11 = 15,此时输出的S的值为40.故选A. .C (命题意图】本题考查分段函数、函数的零点 、函数的图象.
1I 4m + 10 > o.
解得m >
一.故逃且
3.8 (命题意圈】本题考查等差中项的应用、等比数列的通项公式 、 等比数列的前n项和公式,
(Mffil
由题意得“:十a5
=
18,二2a 1 十l6a1
= 18,解得“IFra bibliotek=1, :,Su,v,=
1- 220 一一= 1一2
220
一1
=
41n
-
1.故选B.
4. l3 (命题意图】本题考查空间线面的位置关系.
.: 【解析】γ I J_α,l矿川 .n, _Lα.又α II f3,λm iβ故选B.
.D (命题意图】本题考查频率分布直方国、样本的数字特征 .
【解析】成绩在60分以下的人数为600×0.02×10 = 120(人) ,A错误;可以估计该校学生体能测试成绩的众数为75,B错
2.二 f(:r)
=
3cos (2x十Yψ) '... 2× 」 ]192咽十-ψr=π+ 2kn
τ τ : τ 、 "f , ωεZ),解得ψ =一 13 π+2k1CC k E Z) , ...俨一 π, .f(:r) = 3cos (Irι,工 一 π)当乓(一言π’ 一 ?)时 ,2x E (- 1(, - )’
/川
〕 ?
州州,1 r:r ·(} ,_\、0 (11 �'二乎11-tfi幽挝阳;J二.
J; 如
t
_/IT 2
�}, 川J邸<1 Ji杭!沟.飞 ·.c r I点. .V 」俨,. 1-,N,y
1. (命题慧图 E 本题考查导.ft与函,敬的单调性、导批与品极的最值.
+ -一” E 解析】<t)tr ,,为偶数,l1, !1J /(x) =αIn .r co:-; x, :. /(.r> .l"
:. :. 解得a = b = 1, 双曲线C的方程为x z - y2 = 1..川PF 1 I 一 I PF2 I= 2, 点P
+ I az b2 =c2,
理科参考答案 第7页
: I II<; !
i ,EF:. :. 矗 /a,:'
f
I)-.
-fi,ik' ’.\k'
I
:�:. P
ji� k·.-- I I ,”J'I!川I 11�·· :,t-il,’I :-n (},阳仰h f !'览 k