江苏大学物理练习册练习十六new

合集下载

大学物理练习册答案

大学物理练习册答案

练习一:1-3:D B D ;4、331ctv v +=,400121ctt v xx ++=5、s3;6、14rad, 15rad/s, 12rad/s27、解:(1)jt ti t r)4321()53(2-+++=; (2))/(73;)3(34s m j i v j t i dt rd v s t+=++===;(3))/(12s m j dtv d a == 68、解: ∵ xvvt x x v t v a d d d d d d d d === 分离变量: x x adx d )62(d 2+==υυ两边积分得c x x v ++=322221由题知,0=x 时,100=v ,∴50=c∴ 13sm 252-⋅++=x x v练习二:1、C ;2、B ;3、j8,ji 4+-,4412arctg arctg-+ππ或;4、32ct,ct 2,Rt c 42,R ct 2;5、212tt +,212t+;6、210θθθθtg tgtg tg ++7、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知 222s h l +=将上式对时间t 求导,得t s s t l l d d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的, ∴ tsv v tl v d d ,d d 0-==-=船绳即 θcos d d d d 00v v sl tl s l ts v==-=-=船或 sv s h slv v2/1220)(+==船将船v 再对t 求导,即得船的加速度32022222002)(d d d d d d sv h sv sls v slv s v v st s l tl s tv a =+-=+-=-==船船8、解:(1)由23RbtdtdRdtdsv-===θ得:Rbtdtdva6-==τ,4229tRbRvan==(2)nnnetRbeRbteaeaaˆ9ˆ6ˆˆ42+-=+=τττ练习三1、C,2、A,3、D,4、2121)(mmgmmF+-+,)2(1212gmFmmm++;5、0.41cm6、解:取弹簧原长时m2所在处为坐标原点,竖直向下为x轴,m1,m2的受力分析如上图所示。

《大学物理》习题册题目及答案第16单元 机械波

《大学物理》习题册题目及答案第16单元 机械波

第16单元 机械波(一)学号 姓名 专业、班级 课程班序号一 选择题[ C ]1.在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的 (B) 波源振动的速度与波速相同 (C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后 (D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前[ A ]2. 一横波沿绳子传播时的波动方程为)104cos(05.0t x y ππ-= (SI),则(A) 其波长为0.5 m (B) 波速为5 m ⋅s -1(C) 波速为25 m ⋅s -1 (D)频率为2 Hz[ C ]3. 一简谐波沿x 轴负方向传播,圆频率为ω,波速为u 。

设t = T /4时刻的波形如图所示,则该波的表达式为: (A) )/(cos u x t A y -=ω (B) ]2/)/([cos πω+-=u x t A y (C) )/(cos u x t A y +=ω (D) ])/([cos πω++=u x t A y[ D ]4. 一平面简谐波沿x 轴正向传播,t = T/4时的波形曲线如图所示。

若振动以余弦函数表示,且此题各点振动的初相取π-到π之间的值,则 (A) 0点的初位相为00=ϕ(B) 1点的初位相为 21πϕ-=(C) 2点的初位相为 πϕ=2(D) 3点的初位相为 23πϕ-=[ D ]5. 一平面简谐波在弹性媒质中传播,在媒质质元从平衡位置运动到最大位移处的过程中: (A) 它的动能转换成势能。

(B) 它的势能转换成动能。

(C) 它从相邻的一段质元获得能量其能量逐渐增大。

(D) 它把自己的能量传给相邻的一段质元,其能量逐渐减小。

二 填空题1.频率为100Hz 的波,其波速为250m/s ,在同一条波线上,相距为0.5m 的两点的相位差为52π. 2. 一简谐波沿x 轴正向传播。

1x 和2x 两点处的振动曲线分别如图(a)和(b)所示。

苏科版九年级物理全一册单元测试-第十六章(基础卷)

苏科版九年级物理全一册单元测试-第十六章(基础卷)

物理:第十六章电磁转换单元测试(基础卷)(苏科版九年级下)一.选择题1.下列所列举设备中,使用的电动机不是直流电动机的是( D )A.电力机车B.货运电瓶车C.电磁起重机D.家用电风扇2.(2011·北京)关于电磁现象,下列说法中正确的是( B )A.任何磁场都是由磁感线组成的B.磁场对放入其中的小磁针一定有力的作用C.当小磁针在磁场中静止,小磁针不受磁场力的作用D.利用撒在磁体周围的铁屑可以判断该磁体周围各点的磁场方向3.(2011·温州)如图是生活中常用来固定房门的“门吸”,它由磁铁和金属块两部分组成。

该金属块能被磁铁所吸引,是因为可能含有以下材料中的( B )A.银 B.铁 C.铝 D.锌4.(2011·聊城)在研究电和磁的漫长历史中,许多科学家做出了卓越贡献。

首先发现电流周围存在磁场的科学家是( A )A.奥斯特 B.瓦特 C.法拉第 D.焦耳5.(2011·天津)下图中通电螺线管的极性标注正确的是( C )6.(2011·杭州).如图所示,一个接有电源的螺线旁有甲、乙两个软铁片(在磁场中能够被磁化),当开关闭合后( D )A、甲、乙左端都是N极B、甲、乙右端都是N极C、甲右端是N极,乙左端是N极D、甲左端是N极,乙右端是N极7.(2011·聊城)用右图所示的电路研究“磁场对通电导线的作用“时,下列做法可以改变导线受力方向的是( A )A.只改变电流方向B.增大电流C.减小电流D.对调磁场同时改变电流方向8.(2011·福州)在制作简易电动机的过程中,若要改变电动机的转动方向,可以( B )A.改变通电电流的大小 B.将电源的正负极对调C.换用磁性更强的磁铁 D.增加电动机的线圈匝数9.直流电动机中换向器的作用是( C )A.当线圈在磁场内转动时,每转动一周,换向器改变一次线圈中的电流方向B.当线圈在磁场中转动时,换向器可随时改变线圈中的电流方向C.每当线圈刚转过平衡位置时,换向器就能自动改变线圈中的电流方向D.没有换向器,直流电动机也可以工作10.(2011·南京)如图所示的四幅图中能说明发电机工作原理的是( A )二.填空题11.(2011广安)如图所示,通电螺线管的右端是极(填“S”或“N”);电源的右端是极(填“正”或“负”)。

大学物理习题集

大学物理习题集

大学物理习题集目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习一质点力学中的基本概念和基本定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习二流体静力学与流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习三液体的表面性质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习四伯努力方程及应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习五黏滞流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习六流体力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习七简谐振动的特征及描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习八简谐振动的合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习九平面简谐波┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习十波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9 练习十一振动和波动习题┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10 练习十二几何光学基本定律球面反射和折射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 练习十三薄透镜显微镜望远镜┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十四光的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 练习十五光的衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十六光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17 练习十七光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 练习十八理想气体动理论的基本公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19 练习十九能量均分定理气体分子按速率分布律和按能量分布律┄┄┄┄┄┄┄20 练习二十热力学第一定律对理想气体的应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习二十一循环过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22 练习二十二热力学第二定律熵及熵增加原理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习二十三热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习二十四电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25 练习二十五高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习二十六电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27 练习二十七电场中的导体和电介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28 练习二十八电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十九电流及运动电荷的磁场┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31 练习三十磁场中的高斯定理和安培环路定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习三十一电流与磁场的相互作用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄331练习三十二磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 练习三十三光的二象性粒子的波动性┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习三十四量子力学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄37部分物理常量引力常量G=6.67×10-11N2·m2·kg-2重力加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1标准大气压1atm=1.013×105Pa玻耳兹曼常量k=1.38×10-23J·K-1真空中光速c=3.00×108m/s电子质量m e=9.11×10-31kg 中子质量m n=1.67×10-27kg质子质量m n=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2⋅N-1m-2真空中磁导率μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J ⋅s维恩常量b=2.897×10-3mK斯特藩-玻尔兹常量σ = 5.67×10-8 W/m2⋅K4说明:字母为黑体者表示矢量2练习一质点力学的基本概念和基本定律一.选择题1. 以下四种运动,加速度保持不变的运动是(A) 单摆的运动;(B)圆周运动;(C)抛体运动;(D)匀速率曲线运动.2. 质点在y轴上运动,运动方程为y=4t2-2t3,则质点返回原点时的速度和加速度分别为:(A) 8m/s, 16m/s2.(B)-8m/s, -16m/s2.(C)-8m/s, 16m/s2.(D)8m/s, -16m/s2.3. 物体通过两个连续相等位移的平均速度分别为v1=10m/s,v2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s.(B)11.75 m/s.(C) 12.5 m/s.(D) 13.75 m/s.二.填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t=秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).三、计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.练习二流体静力学与流体的流动一.选择题1.比重计分别浸在油、水、水银中,露在液体外的长度分别为l1,l2,l3,则三者关系是()。

江苏大学物理练习答案

江苏大学物理练习答案

练习一一、选择题:1.D ;2.B ;3.A ;4.A ;5.C ;6.B 二、填空题:1.0,0,2m2.24y x =,22ti j +,2i3.相反,相同4.24rad s α-=⋅,204.m s t a -=⋅,216.m s n a -=⋅5.变速直线运动;匀速(率)曲线运动;变速曲线运动6.2212122cos θ+-v v v v 或2212122cos θ++v v v v 三、计算题1.解:已知2x t =,21241y t t =++质点的运动轨迹方程为2321y x x =++质点的位置矢量221241()()r t i t t j =+++ (SI 制)质点的速度矢量2244)d d (i rtt j ++==v (SI 制)质点的加速度矢量24d d tj a ==v(SI 制)2.解:已知cos ,sin x a t y b tωω==(1)质点轨道方程为22221x y a b +=,质点轨道是椭圆。

(2)质点的速度sin co d s d ra ib t t t jωωωω==-+v 质点的加速度2(cos sin )d d a t i b t j a t ωωω+=-=v (3)加速度可以写为2a r ω=- ,加速度方向与位置矢量方向相反,即指向坐标原点。

3.解:已知212s bt ct =+质点的速率d d st=v b ct =+质点的法向加速度大小22()n t R a R b c +==v 质点的切向加速度大小d d t c a t==v 质点的角加速度大小t c Ra R α==4.解:已知03()x =,02()x =-v ,6x a t =质点的速度202623()d d tx x x ta tt tt =+=-+=-+⎰⎰v v 质点的运动方程320032332()d ()d tx tx x tt tt t =+=+-+=-+⎰⎰v 5.解:以θ 表示物体在运动轨道上任意点p 处其速度与水平方向的夹角,则有0cos cos θα=v v ,22202cos cos αθ=v v 法向加速度2cos n a g θρ==v 所以曲率半径22203cos cos n a g αρθ==v v 地面上方的轨道各点均有θα≤,即cos cos θα≥θα=处曲率半径最大,最大曲率半径20max cos g ρα=v 0θ=处曲率半径最小,最小曲率半径220min cos gρα=v练习二一、选择题:1.C ;2.B ;3.B ;4.B ;5.A ;6.C ;二、填空题:1.24cm2.BA Bm Fm m -+ 3.(cos sin )/F m g θμθμ+-,arctan μ4.0sin m θv ,竖直向下5.480N6.M m M+v三、计算题1.解:摆球受到重力mg 和摆线张力T 作圆周运动,半径为sin l θ。

大学物理练习册(上册)答案

大学物理练习册(上册)答案

练习一 (第一章 质点运动学) 一、选择题 1、(D )2、(C )3、(D )4、(B )5、(D ) 二、填空题1、(1)A (2)1.186s(或4133-s) (3)0.67s (或32s ) 2、8m 10m3、(1)t e t t A βωβωωωβ-+-]sin 2cos )[(22 (2)ωπωπk +2( ,2,1,0=k ) 4、3/30Ct v + 400121Ct t v x ++ 5、(1)5m/s (2) 17m/s 三、计算题1、解:dxdvv dt dx dx dv x dt dv a ==+==262分离变数积分⎰⎰+=xvdx x vdv 020)62(得 )1(422x x v +=质点在任意位置处的速度为 )1(22x x v +=(由初始时刻的加速度大于零,可知速度的大小为非负)。

2、解:(1)第二秒内的位移为 m x x x 5.0)1()2(-=-=∆ 第二秒内的平均速度为s m txv /5.0-=∆∆= (2)t 时刻的速度为 269t t dtdxv -==第二秒末的瞬时速度为 s m s m s m v /6/26/292-=⨯-⨯=(3)令0692=-==t t dtdxv ,解得s t 5.1= 第二秒内的路程为 m x x x x s 25.2)5.1()2()1()5.1(=-+-=。

3、解:(1)由几何关系θθsin cos r y r x ==质点作匀速率圆周运动故dtd θω=,代入初始条件0=t 时0=θ,得 t 时刻t ωθ=,所以j y i x r+=)sin (cos j t i t rωω+=(2)速度为)cos sin (j t i t r dtrd v ωωω+-==加速度为)sin (cos 2j t i t r dt vd a ωωω+-==(3)r j t i t r dtv d a 22)sin (cos ωωωω-=+-==由此知加速度的方向与径矢的方向相反,即加速度的方向指向圆心。

苏科版九年级物理第十六章电磁转换单元检测卷(含答案)(K12教育文档)

苏科版九年级物理第十六章电磁转换单元检测卷(含答案)(K12教育文档)

苏科版九年级物理第十六章电磁转换单元检测卷(含答案)(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(苏科版九年级物理第十六章电磁转换单元检测卷(含答案)(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为苏科版九年级物理第十六章电磁转换单元检测卷(含答案)(word版可编辑修改)的全部内容。

第十六章电磁转换单元检测卷(时间:90分钟满分:100分)一、选择题(每题2分,共24分)1.下列物体不会在其周围产生磁场的是()A.铝棒B.地球C.指南针D.通电导体2.下列关于磁场和磁感线的说法,正确的是 ( )A.磁体周围存在着磁场B.磁体周围存在着磁感线C.磁感线就是磁场D.磁感线总是从S极出发回到N极3.下列用电器或设备中,没有电磁铁的是( )A.电烙铁B.电铃C.电磁起重机D.电磁继电器4.如图是课本中的几个实验,演示磁场对通电导体有力的作用的是( )5.如图所示为条形磁铁和电磁铁,虚线表示磁感线,则甲、乙、丙、丁的极性依次是( ) A.S、N、S、S B.N、N、S、N C.S、S、N、N D.N、S、N、N6.在制作简易电动机的过程中,若要改变电动机的转动方向,可以 ( )A.改变通电电流的大小B.将电源的正负极对调C.换用磁性更强的磁铁D.增加电动机的线圈匝数7.如图所示是一种水位自动报警器的原理图,当水位到达金属块A时(一般的水能导电),电路中( )A.绿灯亮,红灯不亮B.红灯亮,绿灯不亮C.红灯和绿灯都亮D.红灯和绿灯都不亮8.我们唱卡拉OK时,要用到话筒.如图所示是动圈式话筒构造示意图,其工作原理是( ) A.电流周围存在磁场B.电磁感应现象C磁场对通电导线有力的作用D.电能转化为机械能9.如图所示,磁感线竖直向下,AB棒运动,电流表指针偏转 ( )A.AB棒可能是竖直向下运动的B.AB棒可能是水平向左运动的C.开关断开,电流表指针也会偏转D.实验说明电路中有电流不一定需要电源10.如图所示是小李探究电磁铁磁性强弱与什么因素有关的实验装置.下列措施中能使电磁铁磁性增强的是( )A.滑片P向右移动,其他条件不变B.滑片P向左移动,其他条件不变C.开关S由1扳到2,其他条件不变D.电源的正负极对调,其他条件不变11.如图所示是小滨探究“什么情况下磁可以生电”的实验装置,ab是一根直铜丝,通过导体与电流表的“3”、“-”两接线柱相连,当把ab迅速向右运动时,并未发现电流表指针明显偏转,你认为最可能的原因是 ( ) A.没有感应电流,指针不偏转B.感应电流太小,无法使指针明显偏转C.应把ab改为迅速向左运动D.应把ab改为迅速上下运动12.如图所示,在水平放置的磁体上方,有挂在弹簧测力计上的小磁体(下部N极).小辉提着弹簧测力计向右缓慢移动,挂在弹簧测力计下端的小磁体,沿图示水平路线从A缓慢移到B.则下图中能反映弹簧测力计示数F 随位置变化的是( )二、填空题(每空1分,共27分)13.小娴不小心将甲、乙两磁铁棒各摔成两半,破裂情况如图所示.若将两磁铁棒按原状自然接合,则甲棒两半将互相_______,乙棒两半将互相_______.第13题第14题第16题第17题14.如图所示是用来描绘某一磁体周围磁场的部分磁感线,由磁感线的分布特点可知,a点的磁场比b点的磁场_______(填“强”或“弱”);若在b点放置一个可自由转动的小磁针,则小磁针静止时,其N极指向_______(填“P”或“q")处.15.把螺线管水平悬挂起来,通电后它的外部磁场与_______磁体的磁场相似,静止时它的南极指向地磁场的_______(填“南”或“北”)极.16.如图所示,闭合开关使螺线管通电,可以观察到左边弹簧_______,右边弹簧_______(均填“伸长”“缩短”或“不变”).17.某市科技馆有机器人和参观者下象棋的展台.机器人取放棋子时用一根“手指”接触棋子表面就可以实现(如图所示),其奥秘是“手指”内部有电磁铁.(1)机器人取放棋子是利用了电磁铁的_______(填“磁性有无”或“磁极方向”)可以控制的特点.(2)制作象棋棋子的材料应该是下列常见金属材料中的_______.A.铁B.铜C.铝18.如图所示,直导线通电时发生偏转,说明_______对电流有力的作用,可以利用这个原理制作_______(填“电动机”或“发电机”).如果只改变电流方向,直导线偏转方向_______.第18题第19题第20题第21题19.如图是汽车启动装置电路简图,当钥匙插入钥匙孔并转动时,电磁铁得到磁性,此时电磁铁上端为_______极,触点B与C_______(填“接通”或“断开"),汽车启动.20.如图所示的手摇发电机模型是利用_______原理发电的,摇动手柄,线圈在_______中转动,把_______能转化为电能,供小灯泡发光.21.如图所示,把一条长约10 m的导线两端连在灵敏电流计的两个接线柱上,形成闭合电路,有两个同学迅速摇动这条导线,这两个同学沿_______(填“东西”或“南北")方向站立时,电流计指针更容易偏转.应用该原理制成了_______机。

大学物理 十六章 课后答案

大学物理 十六章 课后答案

习题十六16-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳:K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--m bT λ16-2 用辐射高温计测得炉壁小孔的辐射出射度(总辐射本领)为22.8W ·cm -2,求炉内温度. 解:炉壁小孔视为绝对黑体,其辐出度242m W 108.22cm W 8.22)(--⋅⨯=⋅=T M B按斯特藩-玻尔兹曼定律:=)(T M B 4T σ41844)1067.5108.22()(-⨯⨯==σT M T BK 1042.110)67.58.22(3341⨯=⨯=16-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21 eV 0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mv E eU a ==Θ ∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U (3)红限频率0υ,∴000,λυυcA h ==又∴截止波长1983401060.12.41031063.6--⨯⨯⨯⨯⨯==A hc λm 0.296m 1096.27μ=⨯=- 16-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J 1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcnnh E 功率 W1099.118-⨯==t E16-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量λυhch E ==1秒钟落到2m 1地面上的光子数为21198347m s 1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hc E n λ每秒进入人眼的光子数为11462192s 1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==d nN π16-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz 10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--h c m υο12A02.0m 104271.2=⨯==-υλc122831020122s m kg 1073.21031011.9s m kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m c c m c E p cpE hp 或λ16-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同?答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.16-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少?解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h c m mc E kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.110=υυ则52.0112.110==-=-υυυ16-9 波长οA 708.0=λ的X 射线在石腊上受到康普顿散射,求在2π和π方向上所散射的X射线波长各是多大? 解:在2πϕ=方向上:ο1283134200A 0243.0m 1043.24sin 1031011.91063.622sin 2Δ=⨯=⨯⨯⨯⨯⨯==-=---πϕλλλc m h散射波长ο0A 732.00248.0708.0Δ=+=+=λλλ在πϕ=方向上ο120200A0486.0m 1086.422sin 2Δ=⨯===-=-c m h c m h ϕλλλ散射波长 ο0A756.00486.0708.0Δ=+=+=λλλ16-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有000,ελλεhchc =∴=经散射后000020.1020.0λλλλ∆λλ=+=+=此时能量为 002.112.1ελλε===hc hc反冲电子能量MeV 10.060.0)2.111(0=⨯-=-=εεE16-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角.解:反冲电子的能量增量为202022020225.06.01c m c m c m c m mc E =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量,故有 20025.0c m hchc=-λλ散射光子波长ο1210831341034000A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin 0243.022sin 22200ϕϕλλλ∆⨯==-=c m h 可得 2675.00243.02030.0043.02sin 2=⨯-=ϕ散射角为7162'=οϕ16-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n或者)111(22n Rhc E -=∆ 75.12)11.(1362=-=n解出 4=n题16-12图 题16-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.16-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221n Rhc n Rhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A6563536,3653121~:23A121634,432111~:12A 1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n R R R n λυλυλυ从从从可以发出以上三条谱线.题16-14图16-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hc E E hc E E hch VE V E V E a mn m n βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态∴λυhcE E h =-=14 Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--h E E υ16-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解:eV 09.12]11[6.1321=-=-n E E n26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n ,19r r n =轨道半径增加到9倍.16-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.16-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压?解:oo A1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏16-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mv E k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==m E v k -15s m 100.7⋅⨯= 其德布罗意波长为:o 953134A10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mv h λ16-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少?解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV102.63⨯=cp而eV 100.51MeV 51.0620⨯==c m ∴cp c m >>20 ∴MeV51.0)()(202202==+=c m c m cp E16-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少?解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能m p KT E k 2232== 德布罗意波长 o A456.13===mkT hp h λ16-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值. 解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,x m hv x ∆≥∆这粒子最小动能应满足222222min22)(21)(21mL h x m h x m h m v m E x =∆=∆≥∆=16-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命.解:光子的能量λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为:λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c E h t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=16-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm30A 103103000o 962=⨯=====-λ∆λλ∆λ∆∆p h x16-24波函数在空间各点的振幅同时增大D 倍,则粒子在空间分布的概率会发生什么变化?解:不变.因为波函数是计算粒子t 时刻空间各点出现概率的数学量.概率是相对值.则21、点的概率比值为:22212221φφφφD D =∴ 概率分布不变.16-25 有一宽度为a 的一维无限深势阱,用测不准关系估算其中质量为m 的粒子的零点能. 解:位置不确定量为a x =∆,由测不准关系:h p x x ≥∆⋅∆,可得:x h P x ∆≥∆,x hP P x x ∆≥∆≥∴222222)(22ma h x m h m P E x x =∆≥=,即零点能为222ma h . 16-26 已知粒子在一维矩形无限深势阱中运动,其波函数为:a xax 23cos1)(πψ=︒ )(a x a ≤≤-那么,粒子在ax 65=处出现的概率密度为多少? 解:22*)23cos 1(a x a πψψψ==a a a a a a aa 21)21(14cos 1)4(cos 145cos 12653cos 122222===+===πππππ16-27 粒子在一维无限深势阱中运动,其波函数为:)sin(2)(a x n a x n πψ=)0(a x <<若粒子处于1=n 的状态,在0~a41区间发现粒子的概率是多少?解:xa x a x w d sin 2d d 22πψ==∴ 在4~0a 区间发现粒子的概率为: ⎰⎰⎰===40020244)(d sin 2d sin 2a a ax a a x a ax a x a dw p ππππ 091.0)(]2cos 1[2124/0=-=⎰x a d a x a πππ16-28 宽度为a 的一维无限深势阱中粒子的波函数为xa n A x πψsin )(=,求:(1)归一化系数A ;(2)在2=n 时何处发现粒子的概率最大?解:(1)归一化系数⎰⎰==+∞∞-ax x 0221d d ψψ即⎰⎰=aa x a n x a n A n a x x a n A 00222)(d sin d sin ππππ⎰-=a x a n x a n A n a 02)(d )2cos 1(2πππ12222===A a n A n a ππ∴ =A a 2粒子的波函数x a n a x πψsin 2)(=(2)当2=n 时,x a a πψ2sin 22=几率密度]4cos 1[12sin 2222x a a x a a w ππψ-===令0d d =x w ,即04sin 4=x a a ππ,即,04sin =x a π,Λ,2,1,0,4==k k x a ππ∴4a kx = 又因a x <<0,4<k ,∴当4a x =和ax 43=时w 有极大值, 当2a x =时,0=w . ∴极大值的地方为4a ,a 43处16-29 原子内电子的量子态由s l m m l n ,,,四个量子数表征.当l m l n ,,一定时,不同的量子态数目是多少?当l n ,一定时,不同的量子态数目是多少?当n 一定时,不同的量子态数目是多少?解:(1)2)21(±=s m Θ (2))12(2+l ,每个l 有12+l 个l m ,每个l m 可容纳21±=s m 的2个量子态.(3)22n16-30求出能够占据一个d 分壳层的最大电子数,并写出这些电子的s l m m ,值.解:d 分壳层的量子数2=l ,可容纳最大电子数为10)122(2)12(2=+⨯=+=l Z l 个,这些电子的:0=l m ,1±,2±,21±=s m16-31 试描绘:原子中4=l 时,电子角动量L 在磁场中空间量子化的示意图,并写出L 在磁场方向分量z L 的各种可能的值. 解:ηηη20)14(4)1(=+=+=l l L题16-31图磁场为Z 方向,ηl Z m L =,0=l m ,1±,2±,3±,4±.∴ )4,3,2,1,0,1,2,3,4(----=Z L η16-32写出以下各电子态的角动量的大小:(1)s 1态;(2)p 2态;(3)d 3态;(4)f 4态.解: (1)0=L (2)1=l , ηη2)11(1=+=L (3)2=l ηη6)12(2=+=L(4)3=l ηη12)13(3=+=L 16-33 在元素周期表中为什么n 较小的壳层尚未填满而n 较大的壳层上就开始有电子填入?对这个问题我国科学工作者总结出怎样的规律?按照这个规律说明s 4态应比d 3态先填入电子.解:由于原子能级不仅与n 有关,还与l 有关,所以有些情况虽n 较大,但l 较小的壳层能级较低,所以先填入电子.我国科学工作者总结的规律:对于原子的外层电子,能级高低以)7.0(l n +确定,数值大的能级较高.s 4(即0,4==l n ),代入4)07.04()7.0(=⨯+=+l n)2,3(3==l n d ,代入4.4)27.03(=⨯+s 4低于d 3能级,所以先填入s 4壳层.。

大学物理习题集加答案解析

大学物理习题集加答案解析

大学物理习题集(一)大学物理教研室2010年3月目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2练习一库伦定律电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3练习二电场强度(续)电通量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4练习三高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5练习四静电场的环路定理电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6练习五场强与电势的关系静电场中的导体┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8练习六静电场中的导体(续)静电场中的电介质┄┄┄┄┄┄┄┄┄┄┄┄9练习七静电场中的电介质(续)电容静电场的能量┄┄┄┄┄┄┄┄┄┄10练习八恒定电流┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄11练习九磁感应强度洛伦兹力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13练习十霍尔效应安培力┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄14练习十一毕奥—萨伐尔定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16练习十二毕奥—萨伐尔定律(续)安培环路定律┄┄┄┄┄┄┄┄┄┄┄┄17练习十三安培环路定律(续)变化电场激发的磁场┄┄┄┄┄┄┄┄┄┄┄18练习十四静磁场中的磁介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄20练习十五电磁感应定律动生电动势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21练习十六感生电动势互感┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23练习十七互感(续)自感磁场的能量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24练习十八麦克斯韦方程组┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26练习十九狭义相对论的基本原理及其时空观┄┄┄┄┄┄┄┄┄┄┄┄┄27练习二十相对论力学基础┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28练习二十一热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29练习二十二光电效应康普顿效应热辐射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄30练习二十三德布罗意波不确定关系┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32练习二十四薛定格方程氢原子┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33部分物理常量万有引力常量G=×1011N·m2·kg2重力加速度g=s2阿伏伽德罗常量N A=×1023mol1摩尔气体常量R=·mol1·K1玻耳兹曼常量k=×1023J·K1斯特藩玻尔兹曼常量= ×10-8 W·m2·K4标准大气压1atm=×105Pa真空中光速c=×108m/s基本电荷e=×1019C电子静质量m e=×1031kg质子静质量m n=×1027kg中子静质量m p=×1027kg真空介电常量0= ×1012 F/m真空磁导率0=4×107H/m=×106H/m普朗克常量h = ×1034 J·s维恩常量b=×103m·K说明:字母为黑体者表示矢量练习一库伦定律电场强度一.选择题1.关于试验电荷以下说法正确的是(A) 试验电荷是电量极小的正电荷;(B) 试验电荷是体积极小的正电荷;(C) 试验电荷是体积和电量都极小的正电荷;(D) 试验电荷是电量足够小,以至于它不影响产生原电场的电荷分布,从而不影响原电场;同时是体积足够小,以至于它所在的位置真正代表一点的正电荷(这里的足够小都是相对问题而言的).2.关于点电荷电场强度的计算公式E = q r / (4 0 r3),以下说法正确的是(A) r→0时, E→∞;(B) r→0时,q不能作为点电荷,公式不适用;(C) r→0时,q仍是点电荷,但公式无意义;(D) r→0时,q已成为球形电荷,应用球对称电荷分布来计算电场.3.关于电偶极子的概念,其说法正确的是(A) 其电荷之间的距离远小于问题所涉及的距离的两个等量异号的点电荷系统;(B) 一个正点电荷和一个负点电荷组成的系统;(C) 两个等量异号电荷组成的系统;(D) 一个正电荷和一个负电荷组成的系统.(E) 两个等量异号的点电荷组成的系统4.试验电荷q0在电场中受力为f , 其电场强度的大小为f / q0 , 以下说法正确的是(A) E正比于f;(B) E反比于q0;(C) E正比于f 且反比于q0;(D) 电场强度E是由产生电场的电荷所决定的,不以试验电荷q0及其受力的大小决定.5.在没有其它电荷存在的情况下,一个点电荷q1受另一点电荷q2的作用力为f12,当放入第三个电荷Q后,以下说法正确的是(A) f12的大小不变,但方向改变, q1所受的总电场力不变;(B) f12的大小改变了,但方向没变, q1受的总电场力不变;(C) f12的大小和方向都不会改变, 但q1受的总电场力发生了变化;(D) f12的大小、方向均发生改变, q1受的总电场力也发生了变化.二.填空题1.如图所示,一电荷线密度为的无限长带电直线垂直通过图面上的A点,一电荷为Q的均匀球体,其球心为O点,ΔAOP是边长为a的等边三角形,为了使P点处场强方向垂直于OP, 则和Q的数量关系式为,且与Q为号电荷(填同号或异号) .2.在一个正电荷激发的电场中的某点A,放入一个正的点电荷q ,测得它所受力的大小为f1;将其撤走,改放一个等量的点电荷q,测得电场力的大小为f2 ,则A点电场强度E的大小满足的关系式为.3.一半径为R的带有一缺口的细圆环, 缺口宽度为d (d<<R)环上均匀带正电, 总电量为q ,如图所示, 则圆心O处的场强大小E = ,场强方向为.三.计算题1.一“无限长”均匀带电的半圆柱面,半径为R, 设半圆柱面沿轴线单位长度上的电量为,如图所示.试求轴线上一点的电场强度.2.一带电细线弯成半径为R的半圆形, 电荷线密度为= 0 sin, 式中0为一常数, 为半径R与X 轴所成的夹角, 如图所示,试求环心O处的电场强度.练习二电场强度(续)电通量一.选择题1. 以下说法错误的是(A) 电荷电量大,受的电场力可能小;(B)电荷电量小,受的电场力可能大;(C)电场为零的点,任何点电荷在此受的电场力为零;(D)电荷在某点受的电场力与该点电场方向一致.2.在点电荷激发的电场中,如以点电荷为心作一个球面,关于球面上的电场,以下说法正确的是(A) 球面上的电场强度矢量E处处不等;(B) 球面上的电场强度矢量E处处相等,故球面上的电场是匀强电场;(C) 球面上的电场强度矢量E的方向一定指向球心;(D) 球面上的电场强度矢量E的方向一定沿半径垂直球面向外.3.关于电场线,以下说法正确的是(A) 电场线上各点的电场强度大小相等;(B) 电场线是一条曲线,曲线上的每一点的切线方向都与该点的电场强度方向平行;(A) 开始时处于静止的电荷在电场力的作用下运动的轨迹必与一条电场线重合;(D) 在无电荷的电场空间,电场线可以相交.4.如图,一半球面的底面园所在的平面与均强电场E的夹角为30°,球面的半径为R,球面的法线向外,则通过此半球面的电通量为(A)R2E/2 .(B) R2E/2.(C) R2E.(D) R2E.5.真空中有AB两板,相距为d ,板面积为S(S>>d2),分别带+q和q,在忽略边缘效应的情况下,两板间的相互作用力的大小为(A)q2/(40d2 ) .(B) q2/(0 S) .(C) 2q2/(0 S).(D) q2/(20 S) .二.填空题1.真空中两条平行的无限长的均匀带电直线,电荷线密度分别为+ 和,点P1和P2与两带电线共面,其位置如图所示,取向右为坐标X正向,则= ,= .2.为求半径为R带电量为Q的均匀带电园盘中心轴线上P点的电场强度, 可将园盘分成无数个同心的细园环, 园环宽度为d r,半径为r,此面元的面积d S= ,带电量为d q = ,此细园环在中心轴线上距圆心x的一点产生的电场强度E = .3.如图所示,均匀电场E中有一袋形曲面,袋口边缘线在一平面S内,边缘线所围面积为S0,袋形曲面的面积为S ,法线向外,电场与S面的夹角为,则通过袋形曲面的电通量为.三.计算题1.一带电细棒弯曲线半径为R的半圆形,带电均匀,总电量为Q,求圆心处的电场强度E.2.真空中有一半径为R的圆平面,在通过圆心O与平面垂直的轴线上一点P处,有一电量为q 的点电荷,O、P间距离为h ,试求通过该圆平面的电通量.练习三高斯定理一.选择题1.如果对某一闭合曲面的电通量为=0,以下说法正确的是(A) S面上的E必定为零;(B) S面内的电荷必定为零;(C) 空间电荷的代数和为零;(D) S面内电荷的代数和为零.2.如果对某一闭合曲面的电通量0,以下说法正确的是(A) S面上所有点的E必定不为零;(B) S面上有些点的E可能为零;(C) 空间电荷的代数和一定不为零;(D) 空间所有地方的电场强度一定不为零.3.关于高斯定理的理解有下面几种说法,其中正确的是(A) 如高斯面上E处处为零,则该面内必无电荷;(B) 如高斯面内无电荷,则高斯面上E处处为零;(C) 如高斯面上E处处不为零,则高斯面内必有电荷;(D) 如高斯面内有净电荷,则通过高斯面的电通量必不为零;(E) 高斯定理仅适用于具有高度对称的电场.4.图示为一轴对称性静电场的E~r关系曲线,请指出该电场是由哪种带电体产生的(E表示电场强度的大小, r表示离对称轴的距离)(A) “无限长”均匀带电直线;(B) 半径为R的“无限长”均匀带电圆柱体;(C) 半径为R的“无限长”均匀带电圆柱面;(D) 半径为R的有限长均匀带电圆柱面.5.如图所示,一个带电量为q 的点电荷位于立方体的A角上,则通过侧面a b c d 的电场强度通量等于:(A) q / 240.(B) q / 120.(C) q / 6 0 .(D) q / 480.二.填空题1.两块“无限大”的均匀带电平行平板,其电荷面密度分别为( 0)及2 ,如图所示,试写出各区域的电场强度EⅠ区E的大小,方向;Ⅱ区E的大小,方向;Ⅲ区E的大小,方向.2.如图所示,真空中两个正点电荷,带电量都为Q,相距2R,若以其中一点电荷所在处O点为中心,以R为半径作高斯球面S,则通过该球面的电场强度通量= ;若以r0表示高斯面外法线方向的单位矢量,则高斯面上a、b 两点的电场强度的矢量式分别为,.3.点电荷q1、q2、q3和q4在真空中的分布如图所示,图中S为闭合曲面,则通过该闭合曲面的电通量= ,式中的E是哪些点电荷在闭合曲面上任一点产生的场强的矢量和答:是.三.计算题1.厚度为d的无限大均匀带电平板,带电体密度为,试用高斯定理求带电平板内外的电场强度.2.半径为R的一球体内均匀分布着电荷体密度为的正电荷,若保持电荷分布不变,在该球体内挖去半径r的一个小球体,球心为O′ , 两球心间距离= d, 如图所示, 求:(1) 在球形空腔内,球心O处的电场强度E0;(2) 在球体内P点处的电场强度E.设O、O、P三点在同一直径上,且= d .练习四静电场的环路定理电势一.选择题1.真空中某静电场区域的电力线是疏密均匀方向相同的平行直线,则在该区域内电场强度E和电位U是(A) 都是常量.(B) 都不是常量.(C) E是常量, U不是常量.(D) U是常量, E不是常量.2.电量Q均匀分布在半径为R的球面上,坐标原点位于球心处,现从球面与X轴交点处挖去面元S, 并把它移至无穷远处(如图,若选无穷远为零电势参考点,且将S移走后球面上的电荷分布不变,则此球心O点的场强E0与电位U0分别为(注:i为单位矢量)(A)-i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(B) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(C) i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].(D) -i QS/[(4 R2 )20 ];[Q/(40R)][1-S/(4R2)].3.以下说法中正确的是(A) 沿着电力线移动负电荷,负电荷的电势能是增加的;(B) 场强弱的地方电位一定低,电位高的地方场强一定强;(C) 等势面上各点的场强大小一定相等;(D) 初速度为零的点电荷, 仅在电场力作用下,总是从高电位处向低电位运动;(E) 场强处处相同的电场中,各点的电位也处处相同.4.如图,在点电荷+q的电场中,若取图中P点处为电势零点,则M点的电势为(A) .(B) .(C) .(D) .5.一电量为q的点电荷位于圆心O处,A、B、C、D为同一圆周上的四点,如图所示,现将一试验电荷从A点分别移动到B、C、D各点,则(A) 从A到B,电场力作功最大.(B) 从A到各点,电场力作功相等.(C) 从A到D,电场力作功最大.(D) 从A到C,电场力作功最大.二.填空题1.电量分别为q1 , q2 , q3的三个点电荷分别位于同一圆周的三个点上,如图所示,设无穷远处为电势零点,圆半径为R, 则b点处的电势U = .2.如图,在场强为E的均匀电场中,A、B两点距离为d, AB连线方向与E方向一致, 从A点经任意路径到B点的场强线积分= .3.如图所示,BCD是以O点为圆心, 以R为半径的半圆弧, 在A点有一电量为+q的点电荷, O点有一电量为–q的点电荷, 线段= R, 现将一单位正电荷从B点沿半圆弧轨道BCD移到D点,则电场力所作的功为.三.计算题1.电量q均匀分布在长为2 l的细杆上, 求在杆外延长线上与杆端距离为a的P点的电势(设无穷远处为电势零点) .2.一均匀带电的球层, 其电荷体密度为, 球层内表面半径为R1 , 外表面半径为R2 ,设无穷远处为电势零点, 求空腔内任一点的电势.练习五场强与电势的关系静电场中的导体一.选择题1.以下说法中正确的是(A) 电场强度相等的地方电势一定相等;(B) 电势梯度绝对值大的地方场强的绝对值也一定大;(C) 带正电的导体上电势一定为正;(D) 电势为零的导体一定不带电2.以下说法中正确的是(A) 场强大的地方电位一定高;(B) 带负电的物体电位一定为负;(C) 场强相等处电势梯度不一定相等;(D) 场强为零处电位不一定为零.3. 如图,真空中有一点电荷Q及空心金属球壳A, A处于静电平衡, 球内有一点M, 球壳中有一点N, 以下说法正确的是(A) E M≠0, E N=0 ,Q在M处产生电场,而在N处不产生电场;(B) E M =0, E N≠0 ,Q在M处不产生电场,而在N处产生电场;(C) E M =E N =0 ,Q在M、N处都不产生电场;(D) E M≠0,E N≠0,Q在M、N处都产生电场;(E) E M =E N =0 ,Q在M、N处都产生电场.4.如图,原先不带电的金属球壳的球心处放一点电荷q1, 球外放一点电荷q2,设q2、金属内表面的电荷、外表面的电荷对q1的作用力分别为F1、F2、F3 , q1受的总电场力为F, 则(A) F1=F2=F3=F=0.(B) F1= q1 q2 / ( 4 0d2 ) ,F2 = 0 , F3 = 0, F=F1 .(C) F1= q1 q2 / ( 4 0d2 ) , F2 = 0,F3 = q1 q2 / ( 4 0d2 ) (即与F1反向), F=0 .(D) F1= q1 q2 / ( 4 0d2 ) ,F2 与F3的合力与F1等值反向,F=0 .(E) F1= q1 q2 / ( 4 0d2 ) , F2= q1 q2 / ( 4 0d2 ) (即与F1反向), F3 = 0, F=0 .5.如图,一导体球壳A,同心地罩在一接地导体B上,今给A球带负电Q, 则B球(A)带正电.(B) 带负电.(C) 不带电.(D) 上面带正电,下面带负电.二.填空题1.一偶极矩为P的电偶极子放在电场强度为E的均匀外电场中, P与E的夹角为角,在此电偶极子绕过其中心且垂直于P与E组成平面的轴沿角增加的方向转过180°的过程中,电场力作功为A = .2.若静电场的某个立体区域电势等于恒量, 则该区域的电场强度分布是;若电势随空间坐标作线性变化, 则该区域的场强分布是.3.一“无限长”均匀带电直线,电荷线密度为,在它的电场作用下,一质量为m,带电量为q 的质点以直线为轴线作匀速圆周运动,该质点的速率v = .三.计算题1.如图所示,三个“无限长”的同轴导体圆柱面A、B和C,半径分别为R A、R B、R C,圆柱面B上带电荷,A和C 都接地,求B的内表面上电荷线密度1,和外表面上电荷线密度之比值1/2.22.已知某静电场的电势函数U=-+ ln x(SI) ,求点(4,3,0)处的电场强度各分量值.练习六静电场中的导体(续)静电场中的电介质一.选择题1.一孤立的带正电的导体球壳有一小孔,一直导线AB穿过小孔与球壳内壁的B点接触,且与外壁绝缘,如图、D分别在导体球壳的内外表面上,A、C、D三点处的面电荷密度分别为A、C、D , 电势分别为U A、U C、U D ,其附近的电场强度分别为E A、E C、E D , 则:(A) A>D ,C = 0 , E A> E D , E C = 0 , U A = U C = U D .(B) A>D ,C = 0 , E A> E D , E C = 0 , U A > U C = U D .(C) A=C ,D≠0 , E A= E C=0, E D ≠0 , U A = U C =0 , U D≠0.(D) D>0 ,C <0 ,A<0 , E D沿法线向外, E C沿法线指向C ,E A平行AB指向外,U B >U C > U A .2.如图,一接地导体球外有一点电荷Q,Q距球心为2R,则导体球上的感应电荷为(A)0.(B) Q.(C) +Q/2.(D) –Q/2.3.导体A接地方式如图,导体B带电为+Q,则导体A(A) 带正电.(B) 带负电.(C) 不带电.(D) 左边带正电,右边带负电.4.半径不等的两金属球A、B ,R A = 2R B ,A球带正电Q ,B球带负电2Q,今用导线将两球联接起来,则(A) 两球各自带电量不变.(B) 两球的带电量相等.(C) 两球的电位相等.(D) A球电位比B球高.5. 如图,真空中有一点电荷q , 旁边有一半径为R的球形带电导体,q距球心为d ( d > R ) 球体旁附近有一点P ,P在q与球心的连线上,P点附近导体的面电荷密度为.以下关于P点电场强度大小的答案中,正确的是(A) / (20 ) + q /[40 ( d-R )2 ];(B) / (20 )-q /[40 ( d-R )2 ];(C) / 0 + q /[40 ( d-R )2 ];(D)/ 0-q /[40 ( d-R )2 ];(E)/ 0;(F) 以上答案全不对.二.填空题1.如图,一平行板电容器, 极板面积为S,,相距为d,若B板接地,,且保持A板的电势U A=U0不变,,如图, 把一块面积相同的带电量为Q的导体薄板C平行地插入两板中间, 则导体薄板C的电势U C = .2.地球表面附近的电场强度约为100N/C ,方向垂直地面向下,假设地球上的电荷都均匀分布在地表面上,则地面的电荷面密度= , 地面电荷是电荷(填正或负).3.如图所示,两块很大的导体平板平行放置,面积都是S,有一定厚度,带电量分别为Q1和Q2,如不计边缘效应,则A、B、C、D四个表面上的电荷面密度分别为、、、.三.计算题1.半径分别为r1 = cm 和r2 = cm 的两个球形导体, 各带电量q = ×108C, 两球心相距很远, 若用细导线将两球连接起来, 并设无限远处为电势零点,求: (1)两球分别带有的电量;(2)各球的电势.2.如图,长为2l的均匀带电直线,电荷线密度为,在其下方有一导体球,球心在直线的中垂线上,距直线为d,d大于导体球的半径R,(1)用电势叠加原理求导体球的电势;(2)把导体球接地后再断开,求导体球上的感应电量.练习七静电场中的电介质(续)电容静电场的能量一.选择题1.极化强度P是量度介质极化程度的物理量, 有一关系式为P = 0(r1)E , 电位移矢量公式为D = 0E + P ,则(A) 二公式适用于任何介质.(B) 二公式只适用于各向同性电介质.(C) 二公式只适用于各向同性且均匀的电介质.(D) 前者适用于各向同性电介质, 后者适用于任何电介质.2.电极化强度P(A) 只与外电场有关.(B) 只与极化电荷产生的电场有关.(C) 与外场和极化电荷产生的电场都有关.(D) 只与介质本身的性质有关系,与电场无关.3.真空中有一半径为R, 带电量为Q的导体球, 测得距中心O为r 处的A点场强为E A =Q r /(40r3) ,现以A为中心,再放上一个半径为,相对电容率为r的介质球,如图所示,此时下列各公式中正确的是(A) A点的电场强度E A=E A / r;(B) ;(C) =Q/0;(D) 导体球面上的电荷面密度= Q /( 4R2 ).4.平行板电容器充电后与电源断开,然后在两极板间插入一导体平板,则电容C, 极板间电压V,极板空间(不含插入的导体板)电场强度E以及电场的能量W将(↑表示增大,↓表示减小)(A) C↓,U↑,W↑,E↑.(B) C↑,U↓,W↓,E不变.(C) C↑,U↑,W↑,E↑.(D) C↓,U↓,W↓,E↓.5.如果某带电体电荷分布的体电荷密度增大为原来的2倍,则电场的能量变为原来的(A) 2倍.(B) 1/2倍.(C) 1/4倍.(D) 4倍.二.填空题1.一平行板电容器,充电后断开电源, 然后使两极板间充满相对介电常数为r的各向同性均匀电介质, 此时两极板间的电场强度为原来的倍, 电场能量是原来的倍.2.在相对介电常数r= 4 的各向同性均匀电介质中,与电能密度w e=2×106J/cm3相应的电场强度大小E = .3.一平行板电容器两极板间电压为U,其间充满相对介电常数为r的各向同性均匀电介质,电介质厚度为d , 则电介质中的电场能量密度w = .三.计算题1.一电容器由两个很长的同轴薄圆筒组成,内外圆筒半径分别为R 1=2cm ,R2= 5cm,其间充满相对介电常数为r的各向同性、均匀电介质、电容器接在电压U=32V的电源上(如图所示为其横截面),试求距离轴线R=处的A点的电场强度和A点与外筒间的电势差.2.假想从无限远处陆续移来微电荷使一半径为R的导体球带电.(1) 球上已带电荷q时,再将一个电荷元dq从无限远处移到球上的过程中,外力作多少功(2) 使球上电荷从零开始加到Q的过程中,外力共作多少功练习八恒定电流一.选择题1.两个截面不同、长度相同的用同种材料制成的电阻棒,串联时如图(1)所示,并联时如图(2)所示,该导线的电阻忽略,则其电流密度J与电流I应满足:(A) I1 =I2 J1 = J2 I1 = I2 J1 = J2.(B) I1 =I2 J1 >J2 I1<I2 J1 = J2.(C) I1<I2 J1 = J2 I1 = I2 J1>J2.(D) I1<I2 J1 >J2 I1<I2 J1>J2.2.两个截面相同、长度相同,电阻率不同的电阻棒R1 、R2(1>2)分别串联(如上图)和并联(如下图)在电路中,导线电阻忽略,则(A) I1<I2 J1<J2 I1= I2 J1 = J2.(B)I1 =I2 J1 =J2 I1= I2 J1 = J2.(C)I1=I2 J1 = J2 I1<I2 J1<J2.(D)I1<I2 J1<J2 I1<I2 J1<J2.3.室温下,铜导线内自由电子数密度为n= × 1028个/米3,电流密度的大小J= 2×106安/米2,则电子定向漂移速率为:(A)×10-4米/秒.(B) ×10-2米/秒.(C) ×102米/秒.(D) ×105米/秒.4.在一个长直圆柱形导体外面套一个与它共轴的导体长圆筒,两导体的电导率可以认为是无限大,在圆柱与圆筒之间充满电导率为的均匀导电物质,当在圆柱与圆筒上加上一定电压时,在长度为l的一段导体上总的径向电流为I,如图所示,则在柱与筒之间与轴线的距离为r 的点的电场强度为:(A) 2rI/ (l2).(B) I/(2rl).(C) Il/(2r2).(D) I/(2rl).5.在如图所示的电路中,两电源的电动势分别为1、2、,内阻分别为r1、r2,三个负载电阻阻值分别为R1、R2、R,电流分别为I1、I2、I3 ,方向如图,则由A到B的电势增量U B-U A为:(A) 2-1-I1 R1+I2 R2-I3 R .(B) 2+1-I1(R1 + r1)+I2(R2 + r2)-I3 R.(C) 2-1-I1(R1-r1)+I2(R2-r2) .(D) 2-1-I1(R1 + r1)+I2(R2 + r2) .二.填空题1.用一根铝线代替一根铜线接在电路中,若铝线和铜线的长度、电阻都相等,那么当电路与电源接通时铜线和铝线中电流密度之比J1:J2 = .(铜电阻率×106·cm , 铝电阻率×106 · cm , )2.金属中传导电流是由于自由电子沿着与电场E相反方向的定向漂移而形成, 设电子的电量为e , 其平均漂移率为v , 导体中单位体积内的自由电子数为n , 则电流密度的大小J = , J的方向与电场E的方向.3.有一根电阻率为、截面直径为d、长度为L的导线,若将电压U加在该导线的两端,则单位时间内流过导线横截面的自由电子数为;若导线中自由电子数密度为n,则电子平均漂移速率为.(导体中单位体积内的自由电子数为n)三.计算题1.两同心导体球壳,内球、外球半径分别为r a , r b,其间充满电阻率为的绝缘材料,求两球壳之间的电阻.2.在如图所示的电路中,两电源的电动势分别为1=9V和2 =7V,内阻分别为r1 = 3和r2= 1,电阻R=8,求电阻R两端的电位差.练习九磁感应强度洛伦兹力一.选择题1.一个动量为p电子,沿图所示的方向入射并能穿过一个宽度为D、磁感应强度为B(方向垂直纸面向外)的均匀磁场区域,则该电子出射方向和入射方向间的夹角为(A) =arccos(eBD/p).(B) =arcsin(eBD/p).(C) =arcsin[BD /(ep)].(D) =arccos[BD/(e p)].2.一均匀磁场,其磁感应强度方向垂直于纸面,两带电粒子在该磁场中的运动轨迹如图所示,则(A)两粒子的电荷必然同号.(B) 粒子的电荷可以同号也可以异号.(C) 两粒子的动量大小必然不同.(D) 两粒子的运动周期必然不同.3.一运动电荷q,质量为m,以初速v0进入均匀磁场,若v0与磁场方向的夹角为,则(A)其动能改变,动量不变.(B) 其动能和动量都改变.(C) 其动能不变,动量改变.(D) 其动能、动量都不变.4.两个电子a和b同时由电子枪射出,垂直进入均匀磁场,速率分别为v和2v,经磁场偏转后,它们是(A)a、b同时回到出发点.(B) a、b都不会回到出发点.(C) a先回到出发点.(D) b先回到出发点.5. 如图所示两个比荷(q/m)相同的带导号电荷的粒子,以不同的初速度v1和v2(v1v2)射入匀强磁场B中,设T1、T2分别为两粒子作圆周运动的周期,则以下结论正确的是:(A) T1 = T2,q1和q2都向顺时针方向旋转;(B) T1 = T 2,q1和q2都向逆时针方向旋转(C) T1T2,q1向顺时针方向旋转,q2向逆时针方向旋转;(D) T1 = T2,q1向顺时针方向旋转,q2向逆时针方向旋转;二.填空题1. 一电子在B=2×10-3T的磁场中沿半径为R=2×10-2m、螺距为h=×10-2m的螺旋运动,如图所示,则磁场的方向, 电子速度大小为.2. 磁场中某点处的磁感应强度B=-(T), 一电子以速度v=×106i+×106j (m/s)通过该点,则作用于该电子上的磁场力F= .3.在匀强磁场中,电子以速率v=×105m/s作半径R=的圆周运动.则磁场的磁感应强度的大小B= .三.计算题1.如图所示,一平面塑料圆盘,半径为R ,表面均匀带电,电荷面密度为,假定盘绕其轴线OO以角速度转动,磁场B垂直于轴线OO,求圆盘所受磁力矩的大小。

初三物理全册第十六章第1节电压课时练新版新苏版20220818419

初三物理全册第十六章第1节电压课时练新版新苏版20220818419

初三物理全册第十六章第1节电压课时练新版新苏版20220818419学校:姓名:班级:考号:一、单选题1. 下列各种说法中错误的是()A. 教室内的电压为220V B. 0. 6kV=60000mVC. 一节干电池的电压一样是2VD. 不高于36V的电压是安全电压2. 下列有关电压的说法中,正确的是()A. 某电路中有电流,它的两端不一定有电压B. 某电路两端有电压,电路中一定有电流C. 电压是使自由电荷发生定向移动形成电流的缘故D. 电源是提供电压的装置,不同的电源提供的电压差不多上一样的3. 比较电流表和电压表的使用方法,下列说法错误的是()A. 接入电路前要估量测量值的范畴,来选定量程B. 接入电路时都要使电流从正接线柱流入,从负接线柱流出C. 接入电路时都严禁将表的两个接线柱直截了当接到电源的两极上D. 使用前都要检查指针是否对准零刻度线4. 某同学连了如图所示的电路,其后果是()A. 电压表和电流表都可能烧坏 B. 电压表可不能烧坏C. 电压表可能烧坏,电流表可不能烧坏D. 两表都可不能烧坏5. 如图所示的四个电路图中,电流表和电压表的接法都正确的是()A. AB.B C.C D.D6. 如图所示,能正确地测出小灯泡L1两端电压的电路是()A. B.C. D.7. 如图所示,闭合开关S,则下列说法正确的是()A. 电压表测L1两端电压B. 电压表测L 1和电源的电压C. 电压表测L2两端电压D. 电压表测电源电压8. 如图所示的电路中a、b是电表,闭合开关要使电灯发光,则()A. a、b差不多上电流表 B. a、b差不多上电压表C. a是电流表,b是电压表D. a是电压表,b 是电流表9. 为了爱护电压表免受损坏,在不能充分估测电压大小的情形下,要用试触的方法选择电压表的量程,在试触过程中,下列哪种做法是正确的()A. 先试触电压表的“3”“15”接线柱B.先试触电压表的“-”“3”接线柱C. 先试触电压表的“-”“15'接线柱 D. 以上说法均可10. 在实验室,小璐同学发觉一个电压表有两个量程,大量程是0~9V,小量程模糊不清。

大学物理16章物理答案3

大学物理16章物理答案3

16.20 两个共轴的螺线管A 和B 完全耦合,A 管的自感系数L 1 = 4.0×10-3H ,通有电流I 1 = 2A ,B 管的自感L 2 = 9×10-3H ,通有电流I 2 = 4A .求两线圈内储存的总磁能.[解答]A 管储存的自能为211112m W L I = 32314102810(J)2--=⨯⨯⨯=⨯,B 管储存的自能为222212m W L I = 323191047210(J)2--=⨯⨯⨯=⨯;由于两线圈完全耦合,互感系数为M =3610(H)-==⨯,A 管和B 管储存的相互作用能为W m 12 = MI 1I 2 = 6×10-3×2×4 = 48×10-3(J),两线圈储存的总能量为W m = W m 1 + W m 2 + W m 12 = 0.128(J).16.21 一螺绕环中心轴线的周长L = 500mm ,横截面为正方形,其边长为 b = 15mm ,由N = 2500匝的绝缘导线均匀密绕面成,铁芯的相对磁导率μr = 1000,当导线中通有电流I = 2.0A 时,求:图16.21(1)环内中心轴线上处的磁能密度;(2)螺绕环的总磁能.[解答](1)设螺绕环单位长度上的线圈匝数为 n = N/L , 中心的磁感应强度为B = μnI ,其中μ = μr μ0.磁场强度为H = B/μ = nI ,因此中心轴线上能量密度为2111()222w BH nI μ=⋅==B H72125001000410(2)20.5π-=⨯⨯⨯⨯ = 2π×104(J·m -3).(2)螺绕环的总体积约为V = b 2L ,将磁场当作匀强磁场,总磁能为W = wV= 2π×104×(0.015)2×0.5=2.25π = 7.07(J).16.22试证:平行板电容器中的位移电流可写成d d d UI C t =的形式,式中C 是电容器的电容,U 是两板间的电势差.对于其他的电容器上式可以应用吗?[证明]根据麦克斯韦理论:通过电场任意截面的位移电流强度等于通过该截面电位移通量的时间变化率,即I d = d ΦD /d t .在平行板电容器中,由于ΦD= DS,而电位移D等于电容器的面电荷密度,即D = σ.因为电容器带电量为q = σS = DS = ΦD,所以I d= d q/d t,即:位移电流等于极板上电量的时间变化率.根据电容的定义 C = q/U,可得I d= C d U/d t.其他电容器可以看作由很多平等板电容器并联而成,总电容等于各电容之和,所以此式对于其他电容器也可以应用.16.23 如果要在一个1.0PF的电容器中产生1.0A的位移电流,加上电容器上的电压变化率为多少?[解答]因为I d= C d U/d t,所以电压变化率为d U/d t = I d/C = 1/10-12 = 1012(V·s-1).16.24在圆形极板的平行板电容器上,加上频率为50Hz,峰值为2×105V的交变电压,电容器电容C = 2PF,求极板间位移电流的最大值为多少?[解答]交变电压为U = U m cos2πνt,位移电流为I d= C d U/d t = -CU m2πνsin2πνt,电流最大值为I m = CU m 2πν= 2×10-12×2×105×2π×50 = 4π×10-5(A).16.25一平行板电容器的两极板面积为S 的圆形金属板,接在交流电源上,板上电荷随时间变化,q = q m sin ωt .求:(1)电容器中的位移电流密度;(2)两极板间磁感应强度的分布.[解答](1)平行板电容器的面电荷密度为σ = q/S ,位移电流密度为 d d cos d d m d q q t t S t S ωσδω===.(2)在安培-麦克斯韦环路定律中dL I I +=⋅⎰l H d ,两极板间没有传导电流,即I = 0.由于轴对称,在两板之间以轴为圆心作一个半径为r 的圆,其周长为 C = 2πr ,使磁场的方向与环路的方向相同,左边为rHl H L π2d d L =⋅=⋅⎰⎰l H .环路所包围的面积为S` = πr 2,右边的位移电流为2`(cos )m d d q I S t r S ωδωπ==.因此,两极板间磁场强度的分布为cos 2m q r H t S ωω=,磁感应强度的分布为00cos 2m q rB H t S μωμω==.16.26 如图所示,电荷+q 以速度v 向O 点运动(电荷到O 点的距离以x 表示).以O 点O 圆心作一半径为a 的圆,圆面与v 垂直.试计算通过此圆面的位移电流. [解答]在圆面上取一半径为R 的环,其面积为d S = 2πR d R , 环上任一面元的法线方向与场强方向之间的夹角为φ,场强大小为 E = q /4πε0r 2,其中r = (x 2 + R 2)1/2,通过环的电通量为d Φe = E ·d S = E d S cos φ,其中cos φ = x/r ,所以得3223/200d d d 22()e qxR R qx R R r x R Φεε==+,积分得电通量为22223/200d()22()a e qx x R x R Φε+=+⎰0(12q ε=.由于电位移强度D 和电场强度E 的关系为 D = ε0E ,图16.26a所以电位移通量和电通量之间的关系为Φd = ε0Φe ,因此点电荷在圆面上通过的电位移通量为(12d q Φ=.当电荷q 以速度v 向O 运动时,可认为圆面以d x /d t = -v 向电荷运动,因此,通过此圆面的位移电流为d d dd I t Φ=2q -=2223/22()q a v x a =+.16.27在真空中,一平面电磁波的电场为70.3cos[210()]y x E t c π=⨯-(V·m -1).求:(1)电磁波的波长和频率;(2)传播方向;(3)磁场的大小和方向. [解答](1)电磁波的角频率为ω = 2π×107(rad·s -1),频率为 ν = ω/2π = 107(Hz).波长为 λ = cT = c/ν = 3×108/107 = 30(m).(2)电磁波的传播方向为x 方向.(3)磁场的方向在z 方向,由于y z =,所以磁场强度为001z y y yH E E c μ===871310410y E π-=⨯⨯⨯71cos[210()]400xt c ππ=⨯-.磁感应强度为01z z y B H E c μ==9710cos[210()]xt c π-=⨯-.71cos[210()]400xt c ππ=⨯-.磁感应强度为01z z y B H E c μ==9710cos[210()]xt c π-=⨯-.16.28 一个长直螺线管,每单位长度有n 匝线圈,载有电流i ,设i随时间增加,d i /d t >0,设螺线管横截面为圆形,求:(1)在螺线管内距轴线为r 处某点的涡旋电场;(2)在该点处坡印廷矢量的大小和方向.[解答](1)长直螺线管通有电流i 时,在轴线上产生的磁感应强度为μ0ni , B = 磁场是均匀的,也是轴对称的.以轴线上某点为圆心,以r 为半径作一环路,环路的周长为 C = 2πr ,面积为 S=πr 2,根据电场的环路定理S B l Εd d d d ⋅-=⋅⎰⎰S L k t ,可得 2πrE = -πr 2d B /d t ,因此涡旋电场为0d 2d nr iE t μ=-,负号表示涡旋电场的方向与环路的环绕方向相反.(2)管中磁场强度为H = B/μ0 = ni .坡印廷矢量为S = E ×H ,其大小为20d 2d n r iS EH i t μ==.当d i /d t > 0时,S 的方向沿径向指向轴线;当d i /d t < 0时,S 的方向沿径向向外.。

大学物理习题集农科

大学物理习题集农科

大学物理习题集(农科类)大学物理课部1目录部分物理常量┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习一质点力学中的基本概念和基本定律┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习二流体静力学与流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄1 练习三液体的表面性质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄2 练习四伯努力方程及应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄3 练习五黏滞流体的流动┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄4 练习六流体力学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄5 练习七简谐振动的特征及描述┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄6 练习八简谐振动的合成┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄7练习九平面简谐波┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄8 练习十波的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄9 练习十一振动和波动习题┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄10 练习十二几何光学基本定律球面反射和折射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄12 练习十三薄透镜显微镜望远镜┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄13 练习十四光的干涉┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄15 练习十五光的衍射┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄16 练习十六光的偏振┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄17 2练习十七光学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄18 练习十八理想气体动理论的基本公式┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄19 练习十九能量均分定理气体分子按速率分布律和按能量分布律┄┄┄┄┄┄┄20 练习二十热力学第一定律对理想气体的应用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄21 练习二十一循环过程┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄22 练习二十二热力学第二定律熵及熵增加原理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄23 练习二十三热学习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄24 练习二十四电场强度┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄25 练习二十五高斯定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄26 练习二十六电势┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄27 练习二十七电场中的导体和电介质┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄28 练习二十八电场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄29 练习二十九电流及运动电荷的磁场┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄31 练习三十磁场中的高斯定理和安培环路定理┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄32 练习三十一电流与磁场的相互作用┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄33 练习三十二磁场习题课┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄34 练习三十三光的二象性粒子的波动性┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄36 练习三十四量子力学┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄37部分物理常量3引力常量G=6.67×10-11N2·m2·kg-2重力加速度g=9.8m/s-2阿伏伽德罗常量N A=6.02×1023mol-1摩尔气体常量R=8.31J·mol-1·K-1标准大气压1atm=1.013×105Pa玻耳兹曼常量k=1.38×10-23J·K-1真空中光速c=3.00×108m/s电子质量m e=9.11×10-31kg 中子质量m n=1.67×10-27kg质子质量m n=1.67×10-27kg元电荷e=1.60×10-19C真空中电容率ε0= 8.85×10-12 C2⋅N-1m-2真空中磁导率μ0=4π×10-7H/m=1.26×10-6H/m 普朗克常量h = 6.63×10-34 J ⋅s维恩常量b=2.897×10-3mK斯特藩-玻尔兹常量σ = 5.67×10-8 W/m2⋅K4说明:字母为黑体者表示矢量练习一质点力学的基本概念和基本定律一.选择题1. 以下四种运动,加速度保持不变的运动是(A) 单摆的运动;(B)圆周运动;(C)抛体运动;(D)匀速率曲线运动.2. 质点在y轴上运动,运动方程为y=4t2-2t3,则质点返回原点时的速度和加速度分别为:(A) 8m/s, 16m/s2.(B)-8m/s, -16m/s2.(C)-8m/s, 16m/s2.(D)8m/s, -16m/s2.3. 物体通过两个连续相等位移的平均速度分别为v1=10m/s,v2=15m/s,若物体作直线运动,则在整个过程中物体的平均速度为(A) 12 m/s.(B)11.75 m/s.(C) 12.5 m/s.(D) 13.75 m/s.二.填空题1. 一小球沿斜面向上运动,其运动方程为s=5+4t-t2 (SI),则小球运动到最高点的时刻为t=秒.2. 一质点沿X轴运动, v=1+3t2 (SI), 若t=0时,质点位于原点.则质点的加速度a= (SI);质点的运动方程为x= (SI).三、计算题1. 湖中有一条小船,岸边有人用绳子通过岸上高于水面h的滑轮拉船,设人收绳的速率为v0,求船的速度u和加速度a.2. 一人站在山脚下向山坡上扔石子,石子初速为v0,与水平夹角为θ(斜向上),山坡与水平面成α角.(1) 如不计空气阻力,求石子在山坡上的落地点对山脚的距离s;(2) 如果α值与v0值一定,θ取何值时s最大,并求出最大值s max.练习二流体静力学与流体的流动一.选择题121.比重计分别浸在油、水、水银中,露在液体外的长度分别为l 1,l 2,l 3,则三者关系是( )。

精品解析2021-2022学年苏教版九年级物理下册第十六章电磁转换综合练习练习题(含详解)

精品解析2021-2022学年苏教版九年级物理下册第十六章电磁转换综合练习练习题(含详解)

苏教版九年级物理下册第十六章电磁转换综合练习考试时间:90分钟;命题人:物理教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列说法中正确的是()A.金属导体中的负电荷在做定向移动时一定产生磁场B.条形磁体周围的磁场是由磁感线组成的C.导体在磁场中做切割磁感线运动时,导体中就产生感应电流D.利用撒在磁体周围的铁屑可以判断该磁体周围各点的磁场方向2、以下说法中正确的是()A.磁场是真实存在的B.磁感线是从磁场中实际存在的曲线C.毛皮摩擦过的橡胶棒具有吸引铁钴镍的性质D.小磁针N极在磁场中某点所受磁力的方向跟该点的磁场方向相反3、在下图的四个实验装置中,能说明电动机工作原理的是()A.B.C.D.4、通电螺线管周围的磁感线如图所示,则下列说法正确的是()A.A端为电源的正极B.通电螺线管左端为N极C.小磁针左端为S极D.改变电流的大小可以改变通电螺线管的磁场方向5、在物理学的发展过程中,首先发现电流的磁效应的是()A.安培B.焦耳C.法拉第D.奥斯特6、下列著名科学家与其主要成就对应不正确的是()A.欧姆发现了电流与电压、电阻的关系,从而得到欧姆定律B.奥斯特首先通过实验证实了通电导体周围存在磁场C.法拉第发现了通电导体在磁场中受到力的作用D.焦耳最先精确确定了电流产生的热量跟电流、电阻和通电时间的关系,从而得到焦耳定律7、电梯为居民上下楼带来很大的便利,出于安全考虑,电梯设置了超载自动报警系统,其工作原理如图所示。

电梯厢底层装有压敏电阻R1,R2为保护电阻,K为动触点,A、B为静触点,当出现超载情况时,电铃将发出报警声,电梯停止运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、解: S

2
1
2 dE pdV dQ 1 T T

2
1
2 dV CV dT R 1 V T
T2 V2 CV ln R ln T1 V1

V21 4V1
循环过程中系统作的功为
Va A Aab Abc Aca 0 pb (Vc Vb ) paVa ln Vc
p1 V1 3 (4V1 V1 ) p1V1 ln p1V1 ( ln4) 4 4V1 4
Q A
3、解:设AB压强为 P1。CD压强为 P2。
TC 300 1 1 25% TB 400
T2 1 1 。所以 T1 T2 4、证明:因为 T1 1 1
T3 又因为 2 1 。所以 T3 T2 (1 2 ) T2
T3 T2 (1 2 ) 1 1 1 (1 1 ) 2 T2 T1 1 1
5.
分子热运动无序性(或混乱性)
三、计算题:
1、(1) 因为 Q2 T2 。 Q1 T1 所以 T2 Q2 T1 80 400 320( K )
Q1
100
T2 20% (2) 1 T1
2、解:设c状态的体积为V2 。a和c两状态温度相同,所以有
p1 p1V1 p2V2 。所以 1 T P2 TC P2 1 TA P 。所以 TB TA 。所以 同理 1 TC TD TD P2
1
1

M C P (TC TD ) M mol (TC TD ) Q2 1 1 1 M Q1 (TB TA ) C P (TB TA ) M mol
所以
5、解:冰在 0 C 时等温融化,可以设想它和一个 0 C 的恒 温热源接触而进行可逆的吸热过程,因而
dQ Q m 10 334 S 1.22 103 T T T 273
3
2 2 8.8410 25 3.8410 25 e 10 。所以 又 S k ln 1 1
练习十六:(循环过程、卡诺循环、热机效 率、热力学第二定律、熵) 一、选择题: CCADCA 二、填空题:
1.
3. 4.
500K,100K
概率,概率大的状态
2.
23J/K,0
不可能制成一种循环动作的热机,只从一个热源吸 取热量使之全部变为有用的功,而其它物体不发生 任何变化。 热量不可能自动地从低温物体传向 高温物体。
相关文档
最新文档