七年级数学尖子生培优训练

合集下载

2020-2021学年七年级数学上册尖子生同步培优题典 专题2

2020-2021学年七年级数学上册尖子生同步培优题典 专题2

专题2.11有理数的混合运算姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•鼓楼区二模)计算4+(﹣8)÷(﹣4)﹣(﹣1)的结果是()A.2 B.3 C.7 D.【分析】先计算除法、将减法转化为加法,再计算加法可得答案.【解析】原式=4+2+1=7,故选:C.2.(2019秋•德城区校级期中)|﹣3|﹣(﹣1)2的值是()A.﹣2 B.4 C.2 D.﹣4【分析】根据有理数的乘方、有理数的减法和绝对值可以解答本题.【解析】|﹣3|﹣(﹣1)2=3﹣1=2,故选:C.3.(2020•金华模拟)下列计算正确的是()A.23×22=26B.C.D.﹣32=﹣9【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【解析】∵23×22=25,故选项A错误;∵()3,故选项B错误;∵,故选项C错误;∵﹣32=﹣9,故选项D正确;故选:D.4.(2019秋•海淀区校级期中)如果a、b互为相反数a≠0),x、y互为倒数,那么代数式的值是()A.0 B.1 C.﹣1 D.2【分析】利用相反数,倒数的性质求出各自的值,代入原式计算即可求出值.【解析】根据题意得:a+b=0,xy=1,1,则原式=0﹣1+1=0,故选:A.5.(2019秋•福田区期中)下列运算错误的是()A.B.(﹣1)2+(﹣1)3=0C.﹣(﹣3)2=﹣9 D.﹣8﹣2×6=﹣20【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解析】22,故选项A错误;(﹣1)2+(﹣1)3=1+(﹣1)=0,故选项B正确;﹣(﹣3)2=﹣9,故选项C正确;﹣8﹣2×6=﹣8﹣12=﹣20,故选项D正确;故选:A.6.(2019秋•双清区期末)定义一种新运算a⊙b=(a+b)×2,计算(﹣5)⊙3的值为()A.﹣7 B.﹣1 C.1 D.﹣4【分析】原式利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:原式=(﹣5+3)×2=﹣4,故选:D.7.(2019秋•武进区期中)下列说法:①最大的负整数是﹣1;②|a+2019|一定是正数;③若a,b互为相反数,则ab<0;⑥若a为任意有理数,则﹣a2﹣1总是负数.其中正确的有()A.1个B.2个C.3个D.4个【分析】利用相反数、非负数的性质,以及绝对值的代数意义判断即可.【解析】①最大的负整数是﹣1,符合题意;②|a+2019|一定非负数,不符合题意;③若a,b互为相反数,则ab≤0,不符合题意;⑥若a为任意有理数,则﹣a2﹣1总是负数,符合题意.故选:B.8.(2020•浙江自主招生)定义运算a⨂b,则(﹣2)⨂4=()A.﹣1 B.﹣3 C.5 D.3【分析】判断﹣2﹣4=﹣6<1,利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:﹣2﹣4=﹣6<1,则有(﹣2)⨂4=4﹣1=3,故选:D.9.(2019秋•新乐市期末)下列算式中:①(﹣2019)2020;②﹣18;③39.1﹣|﹣21.9|+(﹣10.5)﹣3;④;⑤;⑥;计算结果是正数的有()A.2个B.3个C.4个D.5个【分析】各项计算得到结果,判断即可.【解析】①原式=20192020,符合题意;②原式=﹣1,不符合题意;③原式=39.1﹣21.9﹣10.5﹣3=3.7,符合题意;④原式=()×(),符合题意;⑤原式=﹣24+30﹣16+39=29,符合题意;⑥原式=1.5+2.25﹣12﹣2,不符合题意,故选:C.10.(2019秋•德惠市期中)计算()÷()的结果是()A.B.C.D.﹣7【分析】根据有理数的混合运算的法则进行计算即可,在有括号的算式里,要先算括号内的,在没有括号的算式里,先算乘方、然后算乘除、最后算加减..【解析】()÷()=()÷()=(),故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•九龙坡区校级期中)对于任意有理数a,b,定义新运算:a⊗b=a2﹣2b+1,则2⊗(﹣6)=17.【分析】直接利用已知运算公式计算得出答案.【解析】∵a⊗b=a2﹣2b+1,∴2⊗(﹣6)=22﹣2×(﹣6)+1=4+12+1=17.故答案为:17.12.(2020春•海淀区校级月考)计算:﹣2.【分析】先将带分数化为假分数,再算乘除法,最后进行加法运算即可.【解析】原式()(),故答案为.13.(2019秋•资阳区校级期中)若定义一种新的运算,规定ad﹣bc,则﹣11.【分析】原式利用题中的新定义计算即可求出值.【解析】根据题中的新定义得:原式=﹣3﹣8=﹣11,故答案为:﹣1114.(2019秋•南京月考)已知4个有理数,1,﹣2,﹣3,﹣4,在这4个有理数之间用“+、﹣、×、÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是[(﹣2)+(﹣3)﹣1]×(﹣4)=24.【分析】根据“24点”游戏规则列出算式即可.【解析】根据题意得:[(﹣2)+(﹣3)﹣1]×(﹣4)=24,故答案为:[(﹣2)+(﹣3)﹣1]×(﹣4)=2415.(2019秋•思明区校级月考)计算:10242﹣128×(﹣43)×(﹣3)=10240000.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【解析】原式=1048576﹣24576=10240000,故答案为:1024000016.(2019秋•虹口区校级月考)若规定一种新运算:a*b=(a+b)÷3,则2*3=.【分析】根据a*b=(a+b)÷3,可以求得所求式子的值.【解析】∵a*b=(a+b)÷3,∴2*3=(2+3)÷3=5,故答案为:.17.(2019秋•建湖县期中)计算(1﹣2)•(3﹣4)•(5﹣6)•…•(2017﹣2018)•(2019﹣2020)的结果为1.【分析】先计算括号中的减法运算,再利用乘法法则计算即可求出值.【解析】原式=(﹣1)×(﹣1)×…×(﹣1)(1010个﹣1相乘)=1,故答案为:118.(2019秋•思明区校级期中)计算:(1)(1)×(﹣54)=59;(2)9992﹣999×715+284=284000.【分析】(1)根据乘法分配律可以解答本题;(2)根据提公因式法可以解答本题.【解析】(1)(1)×(﹣54)=9+(﹣10)+60=59,故答案为:59;(2)9992﹣999×715+284=999×(999﹣715)+284=999×284+284=284×(999+1)=284×1000=284000,故答案为:284000.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•钟楼区期中)计算:(1)10+(﹣16)﹣(﹣24);(2)5÷();(3)()×(﹣24);(4)﹣12+[20﹣(﹣2)3]+4.【分析】(1)先化简,再计算加减法;(2)将除法变为乘法,再约分计算即可求解;(3)根据乘法分配律简便计算;(4)先算乘方,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解析】(1)10+(﹣16)﹣(﹣24)=10﹣16+24=34﹣16=18;(2)5÷()=5×();(3)()×(﹣24)(﹣24)(﹣24)(﹣24)=﹣9﹣14+20=﹣3;(4)﹣12+[20﹣(﹣2)3]+4=﹣1+(20+8)+4=﹣1+28+4=31.20.(2019秋•崇川区校级期中)计算:(1)(﹣20)+(+3)﹣(﹣5)﹣(+7)(2)【分析】(1)首先写成省略括号的形式,再计算有理数的加减即可;(2)先算乘方,再算乘除,后算加减即可.【解析】(1)原式=﹣20+3+5﹣7,=﹣20﹣7+3+5,=﹣27+8,=﹣19;(2)原式=﹣16()+2,=﹣162,2,.21.(2019秋•海陵区校级期中)计算:(1)﹣3+34+0.25(2)﹣4÷(﹣14)(3)()×60(4)﹣14÷(﹣5)2×()【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法可以解答本题;(3)根据乘法分配律可以解答本题;(4)根据有理数的乘方、有理数的乘除法和减法可以解答本题.【解析】(1)﹣3+34+0.25=(﹣3﹣4)+(3)=﹣7+4=﹣3;(2)﹣4÷(﹣14)=﹣4×();(3)()×60=﹣45﹣50+55=﹣40;(4)﹣14÷(﹣5)2×()=﹣1÷25×()=﹣1().22.(2020春•姜堰区期中)观察下列各式:31﹣30=2×30…………①32﹣31=2×31…………②33﹣32=2×32…………③……探索以上式子的规律:(1)写出第5个等式:35﹣34=2×34;(2)试写出第n个等式,并说明第n个等式成立;(3)计算30+31+32+ (32020)【分析】(1)根据已知等式总结规律:3的相邻自然数次幂之差(大数减小数)等于较小次幂的2倍.据此写出第5个等式便可;(2)用字母n表示上述规律,通过提取公因式法进行证明便可;(3)把原式化成,再逆用(2)中公式,把分子每一项化成3的自然数幂之差进行计算便可.【解答】(1)根据题意得,35﹣34=2×34,故答案为:35﹣34=2×34;(2)根据题意得,3n﹣3n﹣1=2×3n﹣1,证明:左边=3n﹣1(3﹣1)=2×3n﹣1=右边,∴3n﹣3n﹣1=2×3n﹣1;(3)30+31+32+…+32020.23.(2020春•通州区期末)对于一个数x,我们用(x]表示小于x的最大整数,例如:(2.6]=2,(﹣3]=﹣4,(10]=9.(1)填空:(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)如果a,b都是整数,且(a]和(b]互为相反数,求代数式a2﹣b2+4b的值;(3)如果|(x]|=3,求x的取值范围.【分析】(1)(x]表示小于x的最大整数,依此即可求解;(2)根据(x]的定义求得a+b=2,代入解析式求得即可;(3)分两种情况列出关于x的不等式,解不等式即可.【解析】(1)(﹣2020]=﹣2021,(﹣2.4]=﹣3,(0.7]=0;(2)∵a,b都是整数,且(a]和(b]互为相反数,∴a﹣1+b﹣1=0,∴a+b=2,∴a2﹣b2+4b=(a﹣b)(a+b)+4b=2(a﹣b)+4b=2(a+b)=2×2=4;(3)当x<0时,∵|(x]|=3,∴x>﹣3,∴﹣3<x≤﹣2;当x>0时,∵|(x]|=3,∴x>3,∴3<x≤4.故x的范围取值为﹣3<x≤﹣2或3<x≤4.故答案为:﹣2021,﹣3,0.24.(2020春•南岗区校级期中)有20袋大米,以每袋30千克为标准,超过或不足的千克数分别用正负数来表述,记录如下:﹣3 1 0 2.5 ﹣2 ﹣1.5与标准质量的差值(单位:千克)袋数 1 2 3 8 4 2(1)20袋大米中,最重的一袋比最轻的一袋重多少千克?(2)与标准重量比较,20袋大米总计超过多少千克或不足多少千克?(3)若大米每千克售价3.5元,出售这20袋大米可卖多少元?【分析】(1)根据表格中的数据可以求得20袋大米中,最重的一袋比最轻的一袋重多少千克;(2)根据表格中的数据可以求得与标准重量比较,20袋大米总计超过或不足多少千克;(3)根据题意和(2)中的结果可以解答本题.【解析】(1)最重的一袋比最轻的一袋重:2.5﹣(﹣3)=2.5+3=5.5(千克),答:最重的一袋比最轻的一袋重5.5千克;(2)(﹣3)×1+(﹣2)×4+(﹣1.5)×2+1×2+0×3+2×2+2.5×8=8(千克),答:20 袋大米总计超过8千克;(3)3.5×(30×20+8)=2128(元),答:出售这20 袋大米可卖2128元.11。

七年级数学尖子生培优训练

七年级数学尖子生培优训练

七年级数学尖子生培优训练第一讲 绝对值 典型例题: 例1.(数形结合思想)已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( ) A .-3a B . 2c -a C .2a -2b D . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号例3.(分类讨论思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.(整体思想)方程x x -=-20082008 的解的个数是( ) A .1个 B .2个 C .3个 D .无穷多个例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.()()()()()()1111112220072007ab a b a b a b ++++++++++例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ . (2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 ________________. (3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ___. (4) 满足341>+++x x 的x 的取值范围为 ______ .例7.(带入求值问题)设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,ba,b 的形式,求20062007a b +。

巩固提高:1、若||||||0,a b ab ab a b ab+-则的值等于 ______ . 2、 如果m 是大于1的有理数,那么m 一定小于它的( ) A.相反数 B.倒数 C.绝对值 D.平方3、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。

七年级数学尖子生培优竞赛专题辅导第一讲因式分解的常用方法和技巧(含答案)

七年级数学尖子生培优竞赛专题辅导第一讲因式分解的常用方法和技巧(含答案)

第一讲因式分解的常用方法和技巧趣题引路】你知道如何分解因式^-+X9+/+/+1吗?试作一代换:若令疋= ),,贝IJ原式=h + ),3+y2 + y+l,指数为连续整数,可考虑用公式/-l = (^-l)(/ + / + / + y+l),则原式=V4 + V3 + V2 + V + 1 = —(y5 -1))‘一1x-l x2 + X + 1= (x4 + x3 +x2 +x+ l)(x8 -x7 +x5 +x3 -x + 1)一个代换,把一个复杂的问题转化为一个较简单的问题,这是数学方法之美.多项式的因式分解是数学中恒等变形的一种重要方法,它在初等数学乃至高等数学中都有广泛的应用,因式分解的方法很多,技巧性强,认真学好因式分解,不仅为以后学习分式的运算及化简、解方程和解不等式等奠定良好的基础,而且有利于思维能力的发展.知识拓展】因式分解与整式乘法的区别是:前者是把一个多项式变成几个整式的积,后者是把几个整式的积变成一个多项式,因式分解初中可在有理数域或实数域中进行,高中还可在复数域中进行.因式分解后每个因式应在指定数域中不能再分.“例如X4-A在有理数域内可分解为(X+2)(/-2),其中每个因式就不能再分,不然分解式的系数会超过有理数的范围;在实数域中,它的分解式是(X2+2)(X+>/2)(X->/2):在复数域中,它的分解式是因式分解的方法很多,除了数学教材中的提取公因式法、运用公式法、分组分解法和十字相乘法以外, 还有换元法、待定系数法、拆项添项法和因数定理法等.本讲在中学数学教材的基础上,对因式分解的方法、技巧作进一步的介绍.一、用换元法分解因式换元法是指将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来进行运算,从而使运算过程简单明了.换元法是中学数学中常用的方法之一.例1 (1999年希望杯题)分解因式(X2-1)(X +3)(X+5)+12.解析若全部展开,过于复杂,考虑局部重新组合.注意到在(x + l)(x + 3) = X + 4x + 3和(X-1)(X+5)= X2+4X-5中出现了相同部分X2+4X ,可考虑引入辅助元y = x2+4x分解(也可设y = F+4x + 3,y = x'+4x-l 等).解原式=[(x + l)(x + 3)][(A-1)(X + 5)] +12=(x2 +4x+ 3)(x2 + 4x-5)+12设y = x2 +4x f贝!I原式= (y+3)(y-5)+12= r-2y-3= (y-3)(y + l)=(x2+4x+ 3)(x2 +4x-l)点评换元法体现了数学中的整体代换思想,它是化繁为简的重要手段这里y取(x2 +4X + 3)和(x2 + 4X-1)的平均值时分解过程最为简便例2 (2001年天津初二题)分解因式(弓-1)= + (x+_ 2)(x+ > - 2xy).解析题中巧和卄y多次出现启发我们换元分解:设xy=d, x+y=b.解设xy=a, x+y=b,则,原式=(a -1): + (b - 2)(b - 2a)=cr -2a + l+br -2b-2cib+4a=a2 +b2 +l+2a-2ab-2b=(a-b+[)2注:这里用到公式a,+b2 +c2 + 2ab + 2bc + lac = (a + b +c)2.点评换元必须考虑多项式的结构特征:当代数式中出现相同、相近或相关联(如:互为相反数,互为倒数)的部分时都可以考虑换元.二、用待定系数法分解因式待定系数法是初中数学中的又一重要方法,其应用很广泛.在因式分解时,只要假定一个多项式能分解成某几个因式的乘积,而这些因式中某些系数未定,可用一些字母来表示待定的系数•根据两个多项式恒等的性质,即两边对应项的系数必相等,可列出关于待定系数的方程或方程组,解此方程(组)即可求出待定系数.这种因式分解的方法叫做待定系数法.例3 (第9届五羊杯初二题)设x3 + 3x2-2xy + kx-4y可分解为一次与二次因式之积,则k= ______________________ .解析首先确定两个因式的结构:因多项式中疋的系数是1,常数项是0,以及没有护项,所以分解所得因式可设为x+a 和x2+bx + cy,其中e b, c为待定系数.解设x3 + 3x2 - 2xy + kx-4y可分解为(x+a)(x2 +bx+cy),贝ijx3 + 3x2 -2xy + kx-4y = x3 +(a + b)x2 + cxy + abx + acy比较系数,得a+b=3 ,a +b = 3消去c,得\ab = -k ,消去a,b,解得k=-2.ab = -ka = 2ac = -4 i点评用待定系数法分解因式,关健在于确定因式分解的最终形式.三、用公式法分解因式初中教材中出现的公式有平方差公式,完全平方公式,在因式分解中还常用到下列公式:立方和公式:a3 +b3 = (a + b)(a2 -ab + b2)立方差公式:a3 -b3 =(a-b)(a2 +ab+b2)和的立方公式:(a + b)3 =a3 + 3a2b + 3ab2 + b3差的立方公式:(a - b)3 =a3 - 3crb + 3ab2 -b3三数和的平方公式:(tz + b + c)' =a2 +b2 +c2 + 2ab 4- lac + 2bc两数n 次方差公式:a” -b n =(a-b)(a n~l + a n~2b + • • • + ab"~2 + b n~l)三数立方和公式:a3 +b3+c‘ = (a + b +c)3 -3(a + b)(b + c)(a + c)在具体问题中要根据代数式的结构特征来选用适当的公式.例4 分解因式x l5+x l4+x l3+-+x2+x+l.解析对于指数成连续整数的多项式我们可以考虑公式a" - b n =(a- + a"~2b + ab"~2 + b n~l),令b=l,得a" = + a n~2 + …+ a + l).为化繁为简,及能用公式,给原式乘以x-1解原it= (x15 +x14 +X13 + - -X2 +X+1) -_ =- ---------------------- --x-l x-l=(土 + 1)(疋 + 1)(F + l)(x + 1)(— 1)=(x8 + l)(x4 + l)(x2 + l)(x + 1)点评这里原式乘以吕很必要,这种先乘以再除以(或先加上再减去)同一个式子的变形技能经常用到.例5 (昆明市初中数学竞赛题)分解因式(c-a)2-4(b-c)(a-b).解析把拾号展开后重新组合.解原式=c? 一 2ac十/ 一 4ab + 4ac — 4bc + 4b‘=c2 + lac + a2 - Aab一4bc + 4b2=(c2 + 2ac + a2)-4b(a + c) + (2b)2= (a + c- 2b)2点评欲进先退,这是为了更清楚地认识代数式的结构特征.例6 分解因式(x+2y_77),+ (3x_4y + 6zF_(4x_2y_z)B解析本题与三个数的立方和有关.联想到公式a3 + + c5 = (a + b + c)(«2 + b2 +c2 -ab-be- ca)+ 3abc , 而(x + 2y- 7z)+(3x - 4y + 6乙)+ (- 4x + 2y+ z)= 0.故原式可分解为3(x + 2y - 7z)(3x - 4y + 6乙)(-4x + 2y + z) ■四、用拆项添项法分解因式在对某些多项式分解因式时,需要对某些项作适当的变形,使其能分组分解,添项和拆项是两种重要的技巧例7分解因式:x3-9x+8.解析多项式有三项,若考虑拆项,有三种选择.注意只有让分解能继续的拆法才是可取的.若考虑添项,式中无二次项,可添加-F + F.解法1将常数项拆成一1+9,原式=/3_9大_] + 9 =疋_1_9(尤_1) = (—1)(疋+尤_8)解法2 将一次项-9兀拆成-x-3x ,原式=X3-X-3X +3=(X3-X)- 8(x-l)=x(x + l)(x-1)-8(x-1) = (x - l)(x: +x-8)解法3 将三次项/拆成9疋-8疋,原式=9X3-8X3-9X +8=(9X3-9X)+(-8X3+8)=9x(x + l)(x-1)-8(x - l)(x2 + x + l)=(X-1)(X2+ X-8)解法4添加-x2+x2,原式=x3 -x2 +x2 -9x+8= X2(X-1)+(X-8)(X-1)= (x-l)(x2 +x-8)点评一题四种解法,可谓“横看成岭侧成峰,左添右拆都成功”.拆项、添项是因式分解中技巧性最强的一种例8己知x2 + x+l = O ,试求X8 + x4 +1的值.解析设法使疋+疋+1变成含x2+x+l的式子,因x8 = (x4)2,可考虑完全平方公式,将十拆成2x4-%4.解原式=^8+2X4+1-X4=(X4+1)-(x2)2 =(x2+x + IX%2 -x + 1)因为疋+"1 = 0,所以原式的值为0.五、利用因式定理分解因式因式定理的内容:如果x=a时,多项式的值为零,即f(a) = 0 ,则/'(x)能被x-a整除,即/(兀)一定有因式x-d・运用因式定理和综合除法可以解决一些较复杂的多项式分解问题.例9 分解因式X4+2?-9X:-2X+8.解析设f(x) = x4 + 2x3-9x2-2x + 3,可知/(1) = 0, /(-1) = 0,因此/⑴有因式(x+l)(x-l),用综合除法可求另外因式.解依题意知y(l) = /(-l) = 0,故/'(x)有因式x-1, x+1,作综合除法:12-9-2811 3 -6 -813-6-80—]—1 — 2 812-80因此f(x) = (x- l)(x + l)(x2 + 2x- 8),则原式=(x- 1)(A-+l)(x一2)(A-+4) •好题妙解】佳题新题品味例1 (2001年呼和浩特市中考题)要使二次三项式x^rnx-6能在整数范围内分解因式,则加可取的整数为.解析该式可用十字相乘法分解.那么m等于一6的两个整因数之和.而—6=lx ( —6) = ( — 1) x6=2x ( —3) = ( —2) x3,因而m 可能的值为一5, 5, —1, 1. 点评本题训练逆向思维及枚举法.例2 (2003年江苏初中竞赛)若a, b, c为三角形三边,则下列关系式中正确的是()A. a2-b2-c2-2bc>QB. a2-b2-c2-2bc = QC. a2-b2-c2-2bc<0D. a2 -b2-c2-2bc<0解析因a' -b1 -c2 -2bc = a2 -(b2 +c2 + 2bc) = a2 -(b + c)1 =(a + b + c)(a-b-c)而在三角形中,a<b+c ,即a~b—c<Q,故选C.点评注意隐含条件:三角形中两边之和大于第三边中考真题欣赏例1 (武汉中考题)分解因式a2-l+b2-2ab= _________________________ .解析将a2 +b2 -2ab作一组恰为(«-b)2与1构成平方差,应填(a—b+1) (a—b—1).例2 (北京朝阳区)分解因式m3-2m2-4m+8.解析第一、二项作一组可提公因式沪,后两项作一组可提公因数4,于是m3 -2nr一4m+3 = m2(m-2)-4(m-2) = (m2一4)(m-2) = (m—2):(m+2).点评分解因式一定分解到不能再分解为止.例3 (1999年北京中考题)多项式x2 + axy + by1 -5x+ y + 6的一个因式是x+y-2,试求d+b的值.解析 利用待定系数法,设原式=(x+y-2)(x+^y-3)展开比较系数得号; 解得 a=~l, b=~2,因此 a+b=—3.竞赛样题展示例1 (江苏省第十七届初中数学竞赛)如果是ax 3+bx 2+l 的一个因式,则b 的值为()A.-2B.-lC.OD.2解析 运用待定系数法,依题可设另一因式为ax-1,比较系数可得b=—2,选A.(23 -1)(33 ~1)(43 -1) - (1003 -1)(23 +1](33 +1J43 +1)---(1003 +1)a 3 -1 _(a ~ 1)3 + a + l) _ fl-1 (a +1)3 +1 (a + 2)(a 2 4-ti + l) a + 2故呼式=(2-1X3-1)…(99-山00,-1) 収 玖 (23 +1)(3 +1X4+ 1)-(100-1)1X 2X 3X (1OO 3-1) 3367 小― (23 +1)x99x100x1015050例3设多项式与多项式F+x-a 有非常数公因式,贝仏= ______________________________ . 解析 0或6.因为(兀3-X-d ) - (F+x-d ) = x (x+l )(x-2),所以,X’-X-d 与 F +兀-4 的公因式必为 X 、兀+1、X-2中的一个.当公因式为x 或x+1时,£7=0;当公因式为X —2时,a = 6.例4 (2003年太原市初中数学竞赛)已知直角三角形的各边长为正整数,它的周长为80.则三边长分 别是 •解析涉及直角三角形问题勾股定理举足轻重! 解 30、 16、 34.设直角三角形的三边长分别为4、b 、c.由题设得a 2+b 2^c 2且a+b+c=80.将 c=SQ-a~b 代入a 2+b 2=c 2,整理得 6400—80a — 80b+ab=3200,即(80—。

专题1.1正数和负数-2022-2023学年七年级数学上册尖子生同步培优题典(解析版)【人教版】

专题1.1正数和负数-2022-2023学年七年级数学上册尖子生同步培优题典(解析版)【人教版】

2022-2023学年七年级数学上册尖子生同步培优题典【人教版】专题1.1正数和负数【名师点睛】1、在以前学过的0以外的数叫做正数,在正数前面加负号“-”,叫做负数,一个数前面的“+”“-”号叫做它的符号.2、0既不是正数也不是负数.0是正负数的分界点,正数是大于0的数,负数是小于0的数.3、用正负数表示两种具有相反意义的量.具有相反意义的量都是互相依存的两个量,它包含两个要素,一是它们的意义相反,二是它们都是数量.【典例剖析】【知识点1】正数和负数【例1】(2022·江西吉安·七年级期末)把下列各数分别填在相应的集合内:125,10,−213,0,3.1415,−5,0.6,−113,712.(1)正数集合:{ …};(2)负数集合:{ …};【答案】(1)125,10,3.1415,0.6,712(2)−213,−5,−113【解析】根据“正数是大于0的数,负数是小于0的数”进行解答即可.(1)12…故答案为:125,10,3.1415,0.6,712(2)负数集合:−213,−5,−113…故答案为:−213,−5,−113【变式1.1】(2022·内蒙古·呼和浩特市回民区教育局教科研室一模)有如下一些数:3,−3.14,0,+2.3,−2,其中负数有()A.2个B.3个C.4个D.5个【答案】A【解析】【分析】根据负数的概念求解即可.【详解】解:负数有:−3.14,−2,∴共有2个负数,故选∶A.【点睛】此题考查了负数的概念,解题的关键是熟练掌握负数的概念.【变式1.2】(2022·广西·藤县教学研究室一模)在下列的数中,是负数的是()A.1B.3C.-1D.0【答案】C【解析】【分析】根据负数的定义判断即可.【详解】根据负数的定义,可得-1是负数,故选:C.【点睛】本题考查了负数的定义,即任何正数前加上负号都等于负数,熟练掌握知识点是解题的关键.【知识点2】相反意义的量(2022·河北邯郸·三模)规定:(↑30)表示零上30°C,记作+30,(↓5)表示零下5°C,记作()A.+5B.−5C.+15D.−15【答案】B 【解析】【分析】先明确“正”和“负”所表示的意义,然后根据题意作答即可.【详解】解:规定:(↑30)表示零上30摄氏度,记作+30;则(↓5)表示零下5摄氏度,记作﹣5.故选:B.【点睛】本题考查了正数和负数表示相反意义,弄清题意、知道“正”和“负”所表示的意义是解答本题的关键.【变式2.1】(2022·新疆·伊宁市教育教学研究室一模)中国是最早采用正负数表示相反意义的量的国家.某仓库运进小麦6吨,记为+6吨,那么仓库运出小麦8吨应记为()吨.A.+8B.-8C.±8D.-2【答案】B【解析】【分析】根据正负数的意义,直接写出答案即可.【详解】解:因为题目运进记为正,那么运出记为负,所以运出面粉8吨应记为-8吨,故B正确.故选:B.【变式2.2】(2022·山东淄博·二模)现实生活中经常用正数和负数来表示具有相反意义的量.如果收入50元记作+50元,那么支出20元应记作__________元.【答案】-20【解析】【分析】根据相反意义的量的定义求解即可.【详解】解:∵收入50元记作+50元,∴支出20元应记作-20元.故答案为:-20.【点睛】本题考查相反意义的量,熟练掌握该知识点是解题关键.【知识点3】0的认识【例3】(2021·四川绵阳·七年级阶段练习)下列语句中正确的是( )A.自然数是正数B.0是自然数C.带“﹣”号的数是负数D.一个数不是正数就是负数【答案】B【解析】【分析】由正数和负数的定义可依次判断.【详解】解:A.自然数是0和正整数,故A选项错误,不符合题意;B.0是自然数,选项正确,符合题意;C.带“−”号的数不一定是负数,比如−(−1)=1,故C选项错误,不符合题意;D.一个数不是正数,可能是0或负数,故D选项错误,不符合题意;故选:B.【点睛】本题考查了对正数和负数的概念的理解,解题的关键是在分类中时刻注意“0”的存在是关键.【变式3.1】(2020·宁夏·银川市第三中学七年级阶段练习)下列说法中正确的是()A.一个数不是正数就是负数B.不存在既不是正数,也不是负数的数C.0既不是正数,也不是负数D.不带“−”号的数都是正数【答案】C【解析】【分析】根据有理数的概念和分类分别判断即可.【详解】解:A、一个数不是正数就是负数,还可以是0,故错误;B、0既不是正数也不是负数,故错误;C、0既不是正数,也不是负数,故正确;D、0不含“-”号也不是正数,故错误;故选C.【变式3.2】(2020·浙江温州·七年级阶段练习)下列说法正确的有( )①不带负号的数都是正数;②带负号的数不一定是负数;③0℃表示没有温度;④0既不是正数,也不是负数.A.0个B.1个C.2个D.3个【答案】C【解析】【分析】根据正数、负数的定义以及有理数的分类逐个选项分析即可完成.【详解】①0不带负号,但不是正数,故①错误;②﹣(﹣1),带负号,是正数1,故②正确;③0℃表示没有温度,③错误;④0既不是正数,也不是负数,④正确.正确的是:②④,共2个故选C【满分训练】一.选择题(共10小题,每小题5分,共50分)1.(2022•舟山)若收入3元记为3+,则支出2元记为( )A.1B.1-C.2D.2-【分析】根据正负数的意义可得收入为正,支出为负解答即可.【解答】解:若收入3元记为3-,+,则支出2元记为2故选:D.2.(2022•云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10C°记作10C°+,则零下10C°可记作( )A .10C °B .0C °C .10C °-D .20C°-【分析】根据正数和负数可以用来表示具有相反意义的量解答即可.【解答】解:Q 零上10C °记作10C °+,\零下10C °记作:10C °-,故选:C .3.(2022•碑林区校级模拟)如果零上8C °记做8C °+,那么零下7C °可记作( )A .7C °-B .7C °+C .15C °+D .15C°-【分析】根据实数中正、负数的意义可知,“正”和“负”相对,表示相反的意思.所以如果零上8C °记作8C °+,那么零下7C °就记作7C °-.【解答】解:“正”和“负”相对,\如果零上8C °记作8C °+,那么零下7C °应该记作7C °-.故答案为:A .4.(2022•榆阳区二模)妈妈的微信账单明细中40+元表示收入40元,那么25-元表示( )A .收入25元B .支出25元C .收入15元D .支出15元【分析】根据正数和负数表示具有相反意义的量即可得出答案.【解答】解:40+Q 元表示收入40元,25\-元表示支出25元,故选:B .5.(2022•丽江二模)2022年5月1日上午7时,丽江市主城区的气温为零上8C °,记作8C °+.此时玉龙雪山海拔最高点的气温为零下3C °,可记作( )A .3C °+B .5C °+C .3C °-D .5C°-【分析】利用正负数的含义,确定答案即可.【解答】解:Q 气温为零上8C °,记作8C °+,\气温为零下3C °,记作3C °-,故选:C .6.(2022•官渡区二模)我国古代的《九章算术》在世界数学史上首次正式引入负数.如果零上5C °记作5C °+,那么零下10C °记作( )A .10C °-B .10C °+C .5C °-D .5C°+【分析】根据正数和负数是表示一对意义相反的量进行求解.【解答】解:Q 正数和负数是表示一对意义相反的量,\如果零上5C °记作5C °+,那么零下10C °记作10C °-.故选:A .7.(2022•藤县一模)在下列的数中,是负数的是( )A .1B .3C .1-D .0【分析】根据负数的定义可以判断选项中哪些数是负数,从而可以解答本题.【解答】解:10>Q ,30>,10-<,00=,1\-是负数,故选:C .8.(2021秋•凤凰县期末)如果收入100元记作100+元,那么20-元表示( )A .支出20元B .支出80元C .收入20元D .收入80元【分析】用正数和负数可以表示一对相反的量,如果收入记作正,则支出则记作负.【解答】解:若100+元表示收入100元,则20-元可表示为支出20元,故选:A .9.(2021秋•沙坪坝区校级期中)哈根达斯“双球冰淇淋”标准净含量为1555g ±,下列“双球冰淇淋”合格的是( )A .131gB .142gC .153gD .164g【分析】根据标准净含量为1555g ±算出合格产品净含量范围,即可求得结果.【解答】解:Q 标准净含量为1505g ±,即净含量范围在145~155g g ,又Q 在这范围内的只有C 选项,故选:C .10.(2020秋•大石桥市月考)下列说法正确的是( )A .“向东10米”与“向西10米”不是相反意义的量B .如果气球上升25米记作25+米,那么15-米的意义就是下降15-米C .如果气温下降6C °,记为6C °-,那么8C °+的意义就是下降8C°D .若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米【分析】根据正数与负数的意义逐项判定可求解.【解答】解:A.“向东10米”与“向西10米”是相反意义的量,故不符合题意;B.如果气球上升25米记作25-米的意义就是下降15米,故不符合题意;+米,那么15C.如果气温下降6C°,记为6C°+的意义就是上升8C°,故不符合题意;-,那么8C°D.若将高1米设为标准0,高1.20米记作0.20+米,那么0.05-米所表示的高是0.95米,故符合题意.故选:D.二.填空题(共10小题,每小题5分,共50分)11.(2022春•杨浦区校级期中)如果把收入1200元记作1200-元表示 支出1000+元,那么1000元 .【分析】根据正数和负数的概念即可得出结论.【解答】解:Q收入1200元记作1200+元,\-元表示支出1000元,1000故答案为:支出1000元.12.如果30-米表示 向西15米 .+米表示向东30米,那么15【分析】根据正数和负数表示相反意义的量,向东记为正,可得向西的表示方法.【解答】解如果30-米表示向西15米.+米表示向东30米,那么15故答案为:向西15米.13.(2021秋•同心县校级期末)如果水位升高5m记作5m+,那么水位下降6m记作 6- m.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:如果水位升高5m记作5m-,+,那么水位下降6m记作6m故答案为:6-.14.(2021秋•许昌期末)如果向东走5m记为:5m+,那么向西走8m记为: 8- m.【分析】根据正数和负数的意义解答.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示,“正”和“负”相对.【解答】解:如果向东走5m记为:5m-.+,那么向西走8m记为:8m故答案为:8m-.15.(2020秋•沂南县期中)若5+元表示收入5元,则支出3元记作 3- 元.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,若5-元.+元表示收入5元,则支出3元记作3故答案为3-.16.下列数中,哪些是正数?哪些是负数?3+,2-,1+,0,6.9,8,34-.正数有:{ 3+,1+,6.9,8 }¼;负数有:{ }¼.【分析】根据正数与负数的定义求解.【解答】解:正数有:3+,1+,6.9,8;负数有2-,34-.故答案为:3+,1+,6.9,8;2-,34-.17.(2021秋•德保县期中)下表是4个城市在同一时刻的时间,那么北京与多伦多的时差为 12 时.城市伦敦北京东京多伦多时间(时)08+9+4-【分析】根据题意列出算式,然后利用有理数的减法法则计算即可.【解答】解:北京比伦敦相差8h ,多伦多与伦敦相差-4h ,所以北京与多伦多相差12h .故答案为:12.18.(2019秋•宁波期中)某种零件,标明要求是250.02(mm F ±F 表示直径,单位:毫米),经检查,一个零件直径是25.1mm 该零件 不合格 (填“合格”或“不合格“).【分析】根据零件的要求判断即可.【解答】解:Q 零件,标明要求是250.02mm F ±,即24.9825.02mm mm F ……,\直径是25.1mm 的零件不合格,故答案为:不合格19.(2020秋•顺义区期末)某粮店出售三种品牌的大米,袋上分别标有质量为(250.1)kg ±,(250.2)kg ±,(250.3)kg ±的字样,其中任意拿出两袋,它们最多相差 0.6 kg .【分析】“+”表示在原来固定数上增加,“-”表示在原来固定数上减少.最多相差应该是原来固定数上增加最多的减去原来固定数上减少最多的.即为(250.3)(250.3)0.6kg +--=.【解答】解:这几种大米的质量标准都为25千克,误差的最值分别为:0.1±,0.2±,0.3±.根据题意其中任意拿出两袋,它们最多相差(250.3)(250.3)0.6kg +--=.20.(2020秋•丹徒区月考)巴黎与北京的时间差为7-时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:00,那么巴黎时间是 7月2日7时 .【分析】“正”和“负”相对,正数表示同一时刻比北京时间早的时数,那么负数就是表示比北京时间晚的时数.【解答】解:比7月2日14:00晚七小时就是7月2日7时.故答案为:7月2日7时.。

七年级数学尖子生培优训练(马欣奕、徐唯哲)

七年级数学尖子生培优训练(马欣奕、徐唯哲)

七年级数学尖子生培优训练第一讲 绝对值典型例题: 例1.(数形结合思想)已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )A .-3aB . 2c -aC .2a -2bD . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号例3.(分类讨论思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.(整体思想)方程x x -=-20082008 的解的个数是( ) A .1个 B .2个 C .3个 D .无穷多个例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.()()()()()()1111112220072007ab a b a b a b ++++++++++例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3.并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ . (2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 ________________. (3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值范围为 ___. (4) 满足341>+++x x 的x 的取值范围为 ______ .例7.(带入求值问题)设三个互不相等的有理数,既可表示为1,,a b a +的形式式, 又可表示为0,ba,b 的形式,求20062007a b +。

巩固提高:1、若||||||0,a b ab ab a b ab+-则的值等于 ______ . 2、 如果m 是大于1的有理数,那么m 一定小于它的( ) A.相反数 B.倒数 C.绝对值 D.平方3、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2,求220062007()()()x a b cd x a b cd -+++++-的值。

七年级数学尖子生培优训练第五讲-线段和角

七年级数学尖子生培优训练第五讲-线段和角

七年级数学尖子生培优训练第五讲 线段和角典型例题:例1、下图是某一立方体的侧面展开图,则该立方体是( )例2、由下列条件一定能得到“P 是线段AB 的中点”的是( )A 、AP=21AB B 、AB =2PB C 、AP =PB D 、AP =PB=21AB 例3、将长为10厘米的一条线段用任意方式分成5小段,以这5小段为边可以围成一个五边形.问其中最长的一段的取值范围____ __ 。

例4、已知线段MN ,P 是MN 的中点,Q 是PN 的中点,R 是MQ 的中点,那么MR = ______ MN .例5、同学们,闹钟都见过吧!它的时针和分针如同兄弟俩在赛跑,可你是否知道时针每分钟走多少度?分针每分针走多少度?当你弄清楚这个问题后,你能解决很多关于闹钟有趣的问题:(1)三点整时时针与分针所夹的角是度 .(2)7点25分时针与分针所夹的角是度 .(3)一昼夜(0点到24点)时针与分针互相垂直的次数有多少?例6、α为锐角,β为钝角,甲、乙、丙、丁四人在计计算()βα+61时结果依次为10°,23°,46°,51°,其中只有一个是正确的,你知道四人中谁的结果正确吗?A B CD例7、我们知道:平面上有一个点,过这一点可以画无数条直线.若平面上有两个点,则过这两点可以画的直线的条数是;若平面上有三个点,过每两点画直线,则可以画的直线的条数是;若平面上有四个点,过每两点画直线,则可以画的直线的条数是.例8、如图,已知∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中∠AOB=α,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(3)从(1)、(2)的结果中能得出什么结论?巩固提高:1、如图,一个瓶身为圆柱体的玻璃瓶内装有高a厘米的墨水,将瓶盖盖好后倒置,墨水水面高为h厘米,则瓶内的墨水的体积约占玻璃瓶容积的()A.baa+B.bab+C.ha b+D.ha h+2、已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,则∠AOC=____________度3、若点B在直线AC上,下列表达式:①ACAB21=;②AB=BC;③AC=2AB;④AB+BC=AC.其中能表示B是线段AC的中点的有()A.1个B.2个C.3个D.4个4、如图所示,B、C是线段AD上任意两点,M是AB的中点,N是CD中点,若MN=a,BC=b,则线段AD的长是()A 2(a-b)B 2a-bC a+bD a-b5、已知∠1、∠2互为补角,且∠1>∠2,则∠2的余角是()A DBM C N不考虑瓶子的厚度.A.12(∠1+∠2)B.12∠1 C.12(∠1-∠2)D.12∠26、在晚6点到7点之间,时针与分针何时成90°角?7、已知∠1=71°28′36″,∠1的两边和∠2的两边互相垂直,那么∠2= 。

2020-2021学年七年级数学上册尖子生同步培优题典 专题1

2020-2021学年七年级数学上册尖子生同步培优题典 专题1

专题1.6第1章丰富的图形世界单元测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•越秀区期末)将一个直角三角形绕着它的一条直角边所在直线旋转一周,得到的立体图形是()A.圆柱B.圆锥C.圆台D.球【分析】根据“点动成线,线动成面,面动成体”,将一个直角三角形绕着它的一条直角边所在直线旋转一周,得到的立体图形是圆锥体.【解析】根据“点动成线,线动成面,面动成体”,将一个直角三角形绕着它的一条直角边所在直线旋转一周,所得到的立体图形是圆锥体.故选:B.2.(2020春•道里区期末)下列立体图形中,从正面看到的平面图形是圆的立体图形是()A.正方体B.圆柱C.圆锥D.球【分析】找到从正面看所得到的图形是圆即可.【解析】A.正方体的主视图是正方形,故本选项不合题意;B.圆柱的主视图是矩形,故本选项不合题意;C.圆锥的主视图是等腰三角形,故本选项不合题意;D.球的主视图是圆,故本选项符合题意;故选:D.3.(2020春•哈尔滨期末)如图,从正面看这个几何体得到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,注意所有的看到的棱都应表现在左视图中.【解析】从正面看,底层是两个正方形,上层左边是一个正方形.故选:B.4.(2020春•南岗区期末)如图,左侧几何体是由六个相同的小正方体组合而成,从正面看得到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解析】从正面看,底层是三个正方形,上层右边是一个正方形.故选:A.5.(2019秋•彭水县期末)如图所示的几何体,从上往下看得到的平面图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形判定则可.【解析】从上面可看是一层三个等长等宽的矩形.故选:C.6.(2019秋•邗江区校级期末)已知某多面体的平面展开图如图所示,其中是棱锥的有()A.1个B.2个C.3个D.4个【分析】根据三棱柱是各个侧面的高相等,底面是三角形,上表面和下表面平行且全等,所有的侧棱相等且相互平行且垂直于两底面的棱柱.并且上下两个三角形是全等三角形,可得答案.【解析】第1个图是三棱锥;第2个图是三棱柱;第3个图是四棱锥;第4个图是三棱柱.∴是棱锥的有2个.故选:B.7.(2020春•绥棱县期末)把一支新的圆柱形铅笔削出笔尖,笔尖(圆锥部分)的体积是削去部分的()A.B.C.D.2倍【分析】把一个圆柱削成一个最大的圆锥,则这个圆柱与圆锥等底等高,所以圆柱与圆锥的体积之比是3:1,则笔尖(圆锥部分)的体积是削去部分的,由此即可判断.【解析】根据题干分析可得:圆柱与圆锥的体积之比是3:1,则笔尖(圆锥部分)的体积是削去部分的.故选:C.8.(2019秋•九龙坡区校级期末)把50个同样大小的立方体木块堆砌成如图所示的形状,现在从前、后、左右和上面五个方向朝这堆木块喷漆,则有()块完全喷不到漆.A.5 B.7 C.17 D.22【分析】根据从前、后、左、右和上面五个方向朝这堆木块喷漆,得出每一层能喷到漆的立方体个数,即可得出答案.【解析】∵50个同样大小的立方体木块堆砌成如图所示的形状,现在从前、后、左、右和上面五个方向朝这堆木块喷漆,∴从下面数第1层有12个立方体木块会喷到漆,从下数第2层有12个立方体木块都喷到漆,从下面数第3层有12个立方体木块都会喷到漆,从下数第4层有7个立方体木块都会喷到漆.∴一点儿漆都喷不到的木块个数是:50﹣(12+12+12+7)=7(块).故选:B.9.(2020春•南岗区期末)下列平面图形中,经过折叠不能围成正方体的是()A.B.C.D.【分析】根据正方体展开图的常见形式作答即可.【解析】由展开图可知:A、B、D能围成正方体,故不符合题意;C、围成几何体时,有两个面重合,不能围成正方体,故符合题意.故选:C.10.(2019秋•密云区期末)一个正方体的六个面分别标有六个不同的点数,其展开图如图所示,则该正方体可能是()A.B.C.D.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解析】A、“5”的对面是“2”,故本选项错误;B、“6”的对面是“1”,故本选项错误;C、符合,故本选项正确;D、“5”的对面是“2”,故本选项错误.故选:C.二、填空题(本大题共10小题,每小题3分,共30分)请把答案直接填写在横线上11.(2019秋•崇川区校级期末)如图是一个立体图形的平面展开图,则这个立体图形是三棱柱.【分析】根据展开图的形状,判断几何体的底面和侧面,进而得出几何体的形状.【解析】根据展开图可知,这个几何体两个底面是三角形,三个侧面是长方形的,因此这个几何体是三棱柱,故答案为:三棱柱.12.(2019秋•青岛期末)如图(1),在边长为acm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个如图(2)所示的无盖的长方体.设剪去的小正方形的边长为4cm,则这样折成的无盖长方体的容积是4a2﹣64a+256cm3.【分析】由于正方形的边长为acm,同时在正方形纸片的四个角各剪去一个同样大小的正方形,剪去的小正方形的边长为4cm,由此得到长方体的长、宽、高,最后利用长方体的容积公式即可求解;【解析】依题意得长方体的容积为:4×(a﹣2×4)2=4a2﹣64a+256(cm2),故答案为:4a2﹣64a+256.13.(2019秋•渠县期末)如图,是由一些相同的小正方体搭成的几何体从三个方向看到的图形,搭成这个几何体的小正方体的个数是4.【分析】在俯视图上摆小立方体,确定每个位置上摆小立方体的个数,得出答案.【解析】在俯视图标出相应位置摆放小立方体的个数,如图所示:因此需要小立方体的个数为4,故答案为:4.14.(2019秋•望花区期末)“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中.”这是宋代诗人苏轼的著名诗句(《题西林壁》).其“横看成岭侧成峰”中所含的数学道理是从不同的方向观察同一物体时,看到的图形不一样.【分析】根据三视图的观察角度,可得答案.【解析】根据三视图是从不同的方向观察物体,得到主视图、左视图、俯视图,“横看成岭侧成峰”从数学的角度解释为从不同的方向观察同一物体时,看到的图形不一样.故答案为:从不同的方向观察同一物体时,看到的图形不一样.15.(2019秋•三明期末)一个几何体由若干个大小相同的小正方体组成,从正面和从上面看到的形状图如图所示,则这个几何体中小正方体的个数最多是5.【分析】根据主视图、左视图,得出俯视图的性质,再在俯视图中相应位置标出摆放小立方体的块数即可.【解析】根据主视图、左视图可知,其俯视图,如图所示,其中数字表示该位置最多能摆放的小立方体的个数,所以,这个几何体中小正方体的个数最多是5个,故答案为:5.16.(2019秋•辉县市期末)如图,由十个小正方体组成的几何体中,若每个小正方体的棱长都是2,则该几何体的主视图和左视图的面积之和是48.【分析】画出主视图、左视图,再求出面积和即可;【解析】该几何体的主视图和左视图如下:2×2×(6+6)=48,故答案为:48.17.(2019秋•李沧区期末)用平面去截球体与圆柱,如果得到的截面形状相同,那么截面的形状是圆.【分析】根据球体与圆柱用一个平面截一下,看看符合条件的图形是什么图形即可.【解析】∵用一个平面去截球体与圆柱,得到的截面形状相同,∴这个截面的形状是圆,故答案为:圆.18.(2019秋•松北区期末)将一根长4米的圆柱体木料锯成2段(2段都是圆柱体),表面积增加60平方分米,这根木料的体积是1200立方分米.【分析】将一根长4米的圆柱体木料锯成2段,增加两个底面,又知表面积增加60平方分米,由此求出这根木料的底面积,根据圆柱的体积公式即可计算.【解析】4米=40分米,60÷2=30(平方分米),30×40=1200(立方分米),所以这根木料的体积是1200立方分米.故答案为:1200.19.(2019秋•郑州期末)一个小立方块的六个面分别标有字母A、B、C、D、E、F,从三个不同方向看到的情形如图所示,其中A、B、C、D、E、F分别代表数字﹣2、﹣1、0、1、2、3,则三个小立方块的下底面所标字母代表的数字的和为﹣2.【分析】依据图形可知A的邻面有B、D、E、F,故此点A和C为对面,进一步得到B和D为对面;E 和F为对面;从而可求得三个小立方块的下底面所标字母代表的数字的和.【解析】由图形可知:A与B、D、E、F是邻面,故A和C为对面;则B与A、C、E、F是邻面,故B和D为对面;故E和F为对面;则三个小立方块的下底面所标字母代表的数字的和为﹣1﹣2+1=﹣2.故答案为:﹣2.20.(2019秋•市北区期末)如图,是由小立方体组合而成的几何体从正面、左面、上面看到的图形,则至少再加22个小立方体该几何体可成为一个正方体.【分析】观察三视图,可知这个几何体的小正方体的个数,如俯视图上的数字所示,共有5个小正方体.由题意可以拼成3×3×3的几何体,共有27个小正方体,由此即可解决问题.【解析】观察三视图,可知这个几何体的小正方体的个数,如俯视图上的数字所示,共有5个小正方体.最小可以拼成3×3×3的几何体,共有27个小正方体,27﹣5=22,故答案为22.三、解答题(本大题共6小题,共60分.解答时应写出文字说明、证明过程或演算步骤)21.(2019秋•邗江区校级期末)图1所示的三棱柱,高为8cm,底面是一个边长为5cm的等边三角形.(1)这个三棱柱有9条棱,有5个面;(2)图2框中的图形是该三棱柱的一种表面展开图的一部分,请将它补全(一种即可);(3)要将该三棱柱的表面沿某些棱剪开,展开成一个平面图形,至少需剪开5条棱,需剪开棱的棱长的和的最大值为34cm.【分析】(1)n棱柱有n个侧面,2个底面,3n条棱,2n个顶点;(2)利用三棱柱及其表面展开图的特点解题;(3)三棱柱有9条棱,观察三棱柱的展开图可知没有剪开的棱的条数是条,相减即可求出需要剪开的棱的条数.【解析】(1)这个三棱柱有条9棱,有个5面;故答案为:9,5;(2)如图;(3)由图形可知:没有剪开的棱的条数是4条,则至少需要剪开的棱的条数是:9﹣4=5(条).故至少需要剪开的棱的条数是5条.需剪开棱的棱长的和的最大值为:8×3+5×2=34(cm).故答案为:5,34.22.(2019秋•行唐县期末)已知下图为一几何体的三视图.(1)写出这个几何体的名称;(2)画出这个几何体的侧面展开图;(3)若主视图的长为8cm,俯视图中圆的半径为3cm,求这个几何体的表面积和体积?(结果保留π)【分析】(1)根据三视图的知识,主视图以及左视图都是长方形,俯视图为圆形,故可判断出该几何体是圆柱;(2)应该会出现三个长方形,两个圆形;(3)这个几何体的表面积=侧面积+底面积×2;体积=底面积×高.【解析】(1)这个几何体的名称是圆柱体;(2)如图所示:(3)π×3×2×8+π×32×2=66π(cm2),π×32×8=72π(cm3).故这个几何体的表面积是66πcm2;体积是72πcm3.23.(2019秋•大田县期末)已知下图为从正面、左面、上面看到的一个几何体的形状图.(1)写出这个几何体的名称;(2)若从正面看到的长方形的宽为3cm,从上面看到的正方形的边长为8cm,求这个几何体的表面积.【分析】(1)直接利用三视图可得出几何体的形状;(2)利用已知各棱长得出长方体的表面积即可.【解析】(1)这个几何体的名称是长方体(四棱柱);(2)S=8×8×2+8×3×4=64×2+24×4=224(cm2).故这个几何体的表面积是224cm2.24.(2019秋•唐山期末)如图,是由两个长方体组合而成的一个立体图形的主视图和左视图,根据图中所标尺寸(单位:mm).(1)直接写出上下两个长方体的长、宽、高分别是多少;(2)求这个立体图形的体积.【分析】(1)根据三视图得到两个长方体的长,宽,高即可;(2)根据(1)中各部分的尺寸计算体积即可.【解析】(1)根据三视图可得:上面的长方体长4mm,高4mm,宽2mm,下面的长方体长6mm,宽8mm,高2mm;(2)立体图形的体积是:4×4×2+6×8×2=128(mm3).25.(2019秋•乐清市期中)仓库里有以下四种规格数量足够多的长方形、正方形的铁片(尺寸单位:分米):从中选5块铁片,焊接成一个无盖的长方体(或正方体)铁盒(不浪费材料),甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,乙型盒是容积最小的铁盒.(1)甲型盒的容积为:40分米3;乙型盒的容积为:8分米3;(直接写出答案)(2)现取两个装满水的乙型盒,再将其内部所有的水都倒入一个水平放置的甲型盒,求甲型盒中水的高度是多少分米?【分析】(1)甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的铁盒,可得一个长为2分米,宽为4分米,高为5分米的长方体,其中规格②为长方体的底,可求体积为40立方分米,乙型盒是容积最小,即长宽高最小,可得到长宽高都为2分米的正方体,体积为8立方分米,(2)甲盒的底面为长2分米,宽为4分米的长方形,根据体积相等,可求出高度.【解析】(1)∵甲型盒是由2块规格①、1块规格②和2块规格③焊接而成的,∴甲盒的长为2分米,宽为4分米,高为5分米,∴甲型盒容积为2×4×5=40分米3;乙型盒容积最小,即长、宽、高最小,因此乙盒为长、宽、高均为2分米的正方体,体积为2×2×2=8分米3,故答案为40,8.(2)甲盒的底面积为:2×4=8平方分米,两个乙盒的水的体积为8×2=16立方分米,甲盒内水的高度为:16÷8=2分米,答:甲型盒中水的高度是2 分米.26.(2019秋•城固县期中)一个几何体由大小相同的小立方体搭成,从三个方向看到的几何体的形状图如图所示.(1)求A,B,C,D这4个方格位置上的小立方体的个数;(2)这个几何体是由多少块小立方体组成的?【分析】(1)根据三视图解答即可;(2)根据三视图得出正方体的个数即可.【解析】(1)由三视图可得:从正面看有3列,每列小正方数形数目分别为1,2,2,从左面看有2列,每列小正方形数目分别为2,2.从上面看有3列,每列小正方形数目分别为1,2,2.所以A小立方体的个数是2,B小立方体的个数是1,C小立方体的个数是3,D小立方体的个数是2,(2)这个几何体是由1+2+2=5块小立方体组成的。

绝对值-2020-2021学年七年级数学上册尖子生同步培优题【人教版】

绝对值-2020-2021学年七年级数学上册尖子生同步培优题【人教版】

2020-2021学年七年级数学上册尖子生同步培优题【人教版】专题1.3绝对值姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•胶州市一模)−117的绝对值是()A.−117B.711C.117D.−7112.(2019秋•石景山区期末)2的相反数为()A.|2|B.−12C.12D.﹣23.(2019秋•成都期末)下面的说法正确的是()A.有理数的绝对值一定比0大B.有理数的相反数一定比0小C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等4.(2019秋•来宾期末)|−12019|的相反数是()A.−12019B.12019C.﹣2019D.20195.(2018秋•菏泽期末)设m为一个有理数,则|m|﹣m一定是()A.负数B.正数C.非负数D.非正数6.(2020•宣城模拟)﹣1绝对值的相反数是()A.﹣2B.﹣1C.0D.1 7.(2020春•南岗区校级期中)设x为有理数,若|x|=x,则()A.x为正数B.x为负数C.x为非正数D.x为非负数8.(2018秋•惠民县校级月考)|x﹣3|+|y﹣2|=0 成立的条件是()A.x=3B.y=2C.x=3且y=2D.x、y为任意数9.(2019秋•新蔡县期中)如果x 为有理数,式子2019﹣|x ﹣2|存在最大值,这个最大值是( ) A .2016B .2017C .2019D .202110.(2019秋•越秀区期末)在0,−23,−32,0.05这四个数中,最大的数是( ) A .0B .−23C .−32D .0.05二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上 11.(2020•乐山)用“>”或“<”符号填空:﹣7 ﹣9.12.(2020春•普陀区期末)比较大小:﹣2 ﹣312.(填“<”或“>”)13.(2019秋•吉安县期末)绝对值小于2的整数有 个. 14.(2020•湘西州)−13的绝对值是 .15.(2019秋•新昌县期末)已知|a |=2020,则a = . 16.(2019秋•内乡县期末)化简:﹣|−35|= .17.(2019秋•北海期末)若|x +2|+|y ﹣5|=0,则x +y = .18.(2019秋•荆州区校级月考)若|﹣x |=|﹣7|,则x = ;若|x |=﹣(﹣8),则x = ;若|x |=|7|,则x = .三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤) 19.(2017秋•马山县校级月考)化简下列各式: ﹣(﹣3.5)= ﹣(+8)= ﹣|﹣2|= +(+1.4)= +(−78)= |﹣(−35)|= .20.(2019秋•思明区校级月考)在数轴是表示出下列各数,并用“<”连接比较各数的大小. ﹣(+4),+(﹣1),|﹣3.5|,0,﹣2.521.分别写出下列各数的绝对值.−135,﹣(+6.3),+(﹣32),12,312. 22.(2019秋•沙雅县期中)把下列各数填在相应的括号里:﹣8,0.275,227,0,﹣1.04,﹣(﹣3),−13,|﹣2|正数集合{ …} 负整数集合{ …} 分数集合{ …} 负数集合{ …}.23.(2019秋•黔东南州期末)把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“>”连接起来.0,112,﹣3,﹣(﹣0.5),﹣|−34|,+(﹣413).24.(2019秋•垦利区期末)已知下列有理数:﹣(﹣3)、﹣4、0、+5、−12 (1)这些有理数中,整数有 个,非负数有 个. (2)画数轴,并在数轴上表示这些有理数. (3)把这些有理数用“<“号连接起来: .2020-2021学年七年级数学上册尖子生同步培优题典【人教版】专题1.3绝对值姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•胶州市一模)−117的绝对值是( ) A .−117B .711C .117D .−711【分析】直接利用绝对值的性质得出答案. 【解析】−117的绝对值是:117.故选:C .2.(2019秋•石景山区期末)2的相反数为( )A.|2|B.−12C.12D.﹣2【分析】由相反数的定义可知:2的相反数是﹣2.【解析】2的相反数是﹣2,故选:D.3.(2019秋•成都期末)下面的说法正确的是()A.有理数的绝对值一定比0大B.有理数的相反数一定比0小C.如果两个数的绝对值相等,那么这两个数相等D.互为相反数的两个数的绝对值相等【分析】直接利用绝对值的性质以及相反数的定义分别分析得出答案.【解析】A、有理数的绝对值一定大于等于0,故此选项错误;B、正有理数的相反数一定比0小,故原说法错误;C、如果两个数的绝对值相等,那么这两个数互为相反数或相等,故此选项错误;D、互为相反数的两个数的绝对值相等,正确.故选:D.4.(2019秋•来宾期末)|−12019|的相反数是()A.−12019B.12019C.﹣2019D.2019【分析】根据绝对值、相反数的意义,直接可得结论.【解析】因为|−12019|=12019,所以|−12019|的相反数是−12019,故选:A.5.(2018秋•菏泽期末)设m为一个有理数,则|m|﹣m一定是()A.负数B.正数C.非负数D.非正数【分析】m为有理数,则|m|≥0,由于m的值不确定,所以应分三种情况进行讨论.【解析】∵m为有理数,∴|m|≥0,当m>0,|m|﹣m=m﹣m=0;当m<0,|m|﹣m=﹣m﹣m=﹣2m>0;当m=0,|m|﹣m=0﹣0=0.综上所述,当m为有理数时,|m|﹣m一定是非负数.故选:C.6.(2020•宣城模拟)﹣1绝对值的相反数是()A.﹣2B.﹣1C.0D.1【分析】先根据负数的绝对值是其相反数,再利用相反数得出答案.【解析】﹣1的绝对值为1,所以﹣1绝对值的相反数是﹣1,故选:B.7.(2020春•南岗区校级期中)设x为有理数,若|x|=x,则()A.x为正数B.x为负数C.x为非正数D.x为非负数【分析】直接利用绝对值的性质得出答案.【解析】设x为有理数,若|x|=x,则x≥0,即x为非负数.故选:D.8.(2018秋•惠民县校级月考)|x﹣3|+|y﹣2|=0 成立的条件是()A.x=3B.y=2C.x=3且y=2D.x、y为任意数【分析】根据非负数的性质列方程求解即可.【解析】由题意得,x﹣3=0且y﹣2=0,解得x=3,y=2.故选:C.9.(2019秋•新蔡县期中)如果x为有理数,式子2019﹣|x﹣2|存在最大值,这个最大值是()A.2016B.2017C.2019D.2021【分析】直接利用绝对值的性质得出|x﹣2|的最小值为0.进而得出答案.【解析】∵x为有理数,式子2019﹣|x﹣2|存在最大值,∴|x﹣2|=0时,2019﹣|x﹣2|最大为2019,故选:C.10.(2019秋•越秀区期末)在0,−23,−32,0.05这四个数中,最大的数是()A .0B .−23C .−32D .0.05【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解析】∵0.05>0>−23>−32, ∴最大的数是0.05. 故选:D .二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上 11.(2020•乐山)用“>”或“<”符号填空:﹣7 > ﹣9.【分析】根据正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小,即可解答.【解析】∵|﹣7|=7,|﹣9|=9,7<9, ∴﹣7>﹣9, 故答案为:>.12.(2020春•普陀区期末)比较大小:﹣2 > ﹣312.(填“<”或“>”)【分析】先进行绝对值的化简,然后通分,根据两个负数,绝对值大的其值反而小即可进行判断. 【解析】∵|﹣2|<|﹣312|,∴﹣2>−312. 故答案为:>.13.(2019秋•吉安县期末)绝对值小于2的整数有 3 个. 【分析】运用绝对值定义求出小于2的整数即可. 【解析】绝对值小于2的整数有±1,0.共3个. 故答案为:3.14.(2020•湘西州)−13的绝对值是 13.【分析】根据绝对值的意义,求出结果即可.【解析】根据负数的绝对值等于它的相反数可得,|−13|=13, 故答案为:13.15.(2019秋•新昌县期末)已知|a|=2020,则a=±2020.【分析】直接利用绝对值的性质得出答案.【解析】∵|a|=2020,∴a=±2020.故答案为:±2020.16.(2019秋•内乡县期末)化简:﹣|−35|=−35.【分析】根据绝对值的性质化简即可求解.【解析】﹣|−35|=−35.故答案为:−3 5.17.(2019秋•北海期末)若|x+2|+|y﹣5|=0,则x+y=3.【分析】根据绝对值的非负性可得x+2=0,y﹣5=0,再解方程即可.【解析】∵|x+2|+|y﹣5|=0,∴x+2=0,y﹣5=0,解得:x=﹣2,y=5,∴x+y=﹣2+5=3,故答案为:3.18.(2019秋•荆州区校级月考)若|﹣x|=|﹣7|,则x=±7;若|x|=﹣(﹣8),则x=±8;若|x|=|7|,则x=±7.【分析】根据绝对值和相反数解答即可.【解析】因为|﹣x|=|﹣7|,则x=±7;因为|x|=﹣(﹣8),则x=±8;因为|x|=|7|,则x=±7;故答案为:±7;±8;±7.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2017秋•马山县校级月考)化简下列各式:﹣(﹣3.5)= 3.5﹣(+8)=﹣8﹣|﹣2|=﹣2+(+1.4)= 1.4+(−78)=−78|﹣(−35)|=35.【分析】根据相反数和绝对值的定义解答可得.【解析】﹣(﹣3.5)=3.5,﹣(+8)=﹣8,﹣|﹣2|=﹣2+(+1.4)=1.4.+(−78)=−78|﹣(−35)|=35,故答案为:3.5、﹣8、﹣2、1.4、−78、35.20.(2019秋•思明区校级月考)在数轴是表示出下列各数,并用“<”连接比较各数的大小.﹣(+4),+(﹣1),|﹣3.5|,0,﹣2.5【分析】首先在数轴上确定各数的位置,再根据在数轴上表示的两个实数,右边的总比左边的大用“<”号把它们连接起来.【解析】如图所示﹣(+4)<﹣2.5<+(﹣1)<0<|﹣3.5|.21.分别写出下列各数的绝对值.−135,﹣(+6.3),+(﹣32),12,312.【分析】由于一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,所以根据绝对值的性质即可解答.【解析】|−135|=135,|﹣(+6.3)|=|﹣6.3|=6.3,|+(﹣32)|=|﹣32|=32,|12|=12,|312|=312.22.(2019秋•沙雅县期中)把下列各数填在相应的括号里: ﹣8,0.275,227,0,﹣1.04,﹣(﹣3),−13,|﹣2|正数集合{ 0.275,227,﹣(﹣3),|﹣2| …}负整数集合{ ﹣8 …} 分数集合{ 0.275,227,﹣1.04,−13…}负数集合{ ﹣8,﹣1.04,−13 …}.【分析】根据正、负数以及分数的定义,在给定有理数中分别挑出正数、负整数、分数以及负数,此题得解.【解析】在﹣8,0.275,227,0,﹣1.04,﹣(﹣3),−13,|﹣2|中,正数有:0.275,227,﹣(﹣3),|﹣2|;负整数有:﹣8;分数有:0.275,227,﹣1.04,−13;负数有:﹣8,﹣1.04,−13. 故答案为:0.275,227,﹣(﹣3),|﹣2|;﹣8;0.275,227,﹣1.04,−13;﹣8,﹣1.04,−13.23.(2019秋•黔东南州期末)把下列各数表示在数轴上,然后把这些数按从大到小的顺序用“>”连接起来.0,112,﹣3,﹣(﹣0.5),﹣|−34|,+(﹣413).【分析】先把各数化简,在数轴上表示出各数,再根据数轴的特点把这些数按从大到小的顺序用“>”连接起来. 【解析】如图所示:根据数轴的特点把这些数按从大到小的顺序用“>”连接起来为112>−(﹣0.5)>0>﹣|−34|>﹣3>+(﹣413).24.(2019秋•垦利区期末)已知下列有理数:﹣(﹣3)、﹣4、0、+5、−12 (1)这些有理数中,整数有 4 个,非负数有3 个.(2)画数轴,并在数轴上表示这些有理数.(3)把这些有理数用“<“号连接起来:﹣4<−12<0<﹣(﹣3)<+5.【分析】(1)根据整数和非负数的概念求解可得;(2)将各数表示在数轴上.(3)根据数轴上的数右边的总比左边的大可得答案.【解析】(1)这些有理数中,整数有:﹣(﹣3)、﹣4、0、+5,共4个,非负数有:﹣(﹣3)、0、+5,共3个.故答案为:4,3;(2)在数轴上表示这些有理数如图:(3)根据数轴可得﹣4<−12<0<﹣(﹣3)<+5.故答案为:﹣4<−12<0<﹣(﹣3)<+5.。

期中必刷真题01(选择易错60道提升练,七下浙教)七年级数学下册尖子生培优必刷题(原卷版)【浙教版】

期中必刷真题01(选择易错60道提升练,七下浙教)七年级数学下册尖子生培优必刷题(原卷版)【浙教版】

【拔尖特训】2022-2023学年七年级数学下册尖子生培优必刷题【浙教版】期中必刷真题01(选择易错60道提升练,七下浙教)一.选择题(共60小题)1.(2022春•鹿城区校级期中)已知,则x+y的值是()A.4B.5C.6D.72.(2022春•萧山区期中)已知,若x﹣y=7,则m的值为()A.1B.﹣1C.2D.﹣23.(2022春•西湖区校级期中)在解关于x,y的方程组时,小明由于将方程①的“﹣”,看成了“+”,因而得到的解为,则原方程组的解为()A.B.C.D.4.(2022春•嘉兴期中)用代入法解方程组时,将方程①代入②中,所得方程正确的是()A.x﹣15x+1=7B.x﹣15x﹣1=7C.x﹣15x﹣5=7D.x﹣15x+5=75.(2022春•嘉兴期中)解关于x,y的方程组可以用①×3﹣②,消去未知数x,也可以用①+②×4消去未知数y,则a,b的值分别为()A.1,﹣2B.﹣1,﹣2C.1,2D.﹣1,26.(2022春•嵊州市期中)对x,y定义一种新运算“※”,规定:x※y=mx+ny(其中m,n均为非零常数),若1※1=4,1※2=3.则2※1的值是()A.3B.5C.9D.117.(2022春•江干区校级期中)由方程组可得x与y的关系式是()A.3x=7+3m B.5x﹣2y=10C.﹣3x+6y=2D.3x﹣6y=28.(2020春•越城区校级期中)已知关于x、y的方程组的解是,则关于x、y的方程组的解是()A.B.C.D.9.(2022春•鹿城区校级期中)《九章算术》中记载:“今有大器五、小器一容三斛:大器一、小器五容二斛,问大小器各容几何?”译文:“今有大容器5个、小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛.问大小容器的容器各是多少斛?”设1个大容器的容积为x斛,1个小容器的容积y斛,则根据题意可列方程组()A.B.C.D.10.(2022春•吴兴区校级期中)某药店以同样的价格卖出同样的口罩和酒精,以下是4天的记录:第1天,卖出13包口罩和7瓶酒精,收入222元;第2天,卖出18包口罩和11瓶酒精,收入327元;第3天,卖出7包口罩和11瓶酒精,收入228元;第4天,卖出23包口罩和20瓶酒精,收入468元,聪明的小方发现这四天中有一天的记录有误,其中记录有误的是()A.第1天B.第2天C.第3天D.第4天11.(2022春•拱墅区期中)从甲地到乙地有一段上坡路与一段平路,如果保持上坡速度为每小时3千米,平路速度为每小时4千米,下坡速度为每小时5千米,那么从甲地到乙地需56分钟,从乙地到甲地需42分钟.问:从甲地到乙地全程是多少千米?小红将这个实际问题转化为二元一次方程组问题,设未知数x、y,已经列出一个方程为,那么另一个方程是()A.B.C.D.12.(2022春•嘉兴期中)要用19张白卡纸做包装盒,准备把这些白卡纸分成两部分,一部分x张做侧面,另一部分y张做底面.已知每张白卡纸可以做侧面2个,或做底面3个,如果5个侧面可以和2个底面做成一个包装盒.依题意列方程组为()A.B.C.D.13.(2022春•慈溪市期中)用如图①中的长方形和正方形纸板作侧面和底面,做成如图②的竖式和横式的两种无盖纸盒.现有m张正方形纸板和n张长方形纸板,如果做两种纸盒若干个,恰好将纸板用完,则m+n的值可能是()A.2019B.2020C.2021D.202214.(2022春•长兴县期中)《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1,图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中x的值为3,则被墨水所覆盖的图形为()A.|B.||C.|||D.||||15.(2022春•拱墅区校级期中)某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x名工人生产镜片,y名工人生产镜架,则可列方程组()A.B.C.D.16.(2021春•北仑区期中)若方程组的解x与y相等,则k的值为()A.3B.2C.1D.不能确定17.(2022春•绍兴期中)关于x,y的二元一次方程(m﹣3)x+(m+2)y=3m﹣4,当m取一个确定的值时就得到一个方程,所有这些方程有一个相同解,则这个相同解是()A.B.C.D.18.(2022春•吴兴区校级期中)如表中给出的每一对x,y的值都是二元一次方程ax﹣by=3的解,则表中m的值为()x0123y31﹣1mA.﹣5B.﹣3C.0D.319.(2022春•杭州期中)已知关于x,y的方程组,以下结论其中不成立是()A.不论k取什么实数,x+3y的值始终不变B.存在实数k,使得x+y=0C.当y﹣x=﹣1时,k=1D.当k=0,方程组的解也是方程x﹣2y=﹣3的解20.(2022春•拱墅区期中)已知关于xy的方程组和的解相同,则(a+b)2022的值为()A.0B.﹣1C.1D.202221.(2022秋•越城区期中)计算的值是()A.3B.C.D.﹣322.(2021春•西湖区校级期中)若x+y=3且xy=1,则代数式(2﹣x)(2﹣y)的值等于()A.2B.1C.0D.﹣123.(2022春•衢州期中)我们知道下面的结论:若a m=a n(a>0,且a≠1),则m=n.设2m=3,2n=6,2p=18,下列关于m,n,p三者之间的关系正确的是()A.m﹣n=p B.m+n=p C.m+p=n D.p+n=m24.(2022春•南湖区校级期中)下列式子中,不能用平方差公式运算的是()A.(﹣x﹣y)(﹣x+y)B.(﹣x+y)(x﹣y)C.(y+x)(x﹣y)D.(y﹣x)(x+y)25.(2022春•衢州期中)在矩形ABCD内,将两张边长分别为a和b(a>b)的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),矩形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.当AD﹣AB=3时,S2﹣S1的值是()A.3a B.3b C.3a﹣3b D.﹣3a26.(2022春•南湖区校级期中)在矩形ABCD内,将一张边长为a的正方形纸片和两张边长为b的正方形纸片(a>b),按图1,图2两种方式放置(两个图中均有重叠部分),矩形中未被这三张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2,当AD﹣AB=2时,S1﹣S2的值是()A.2a B.2b C.﹣2b+b2D.2a﹣2b27.(2022秋•慈溪市校级期中)如图1,以直角三角形的各边分别向外作正方形,再把较小的两个正方形按图2的方式放置在大正方形内,记四边形ABCD的面积为S1,四边形DCEG的面积为S2.四边形HGFP 的面积为S3,△GEF面积为S4,若知道图中阴影部分的面积,则一定能求出()A.S1B.S2C.S3D.S428.(2022秋•萧山区期中)如右图:下列整式中不能正确表示图中阴影部分的面积的是()A.x2+3(x+2)B.x(x+3)+6C.x(x+3)+2(x+3)D.(x+3)(x+2)﹣2x29.(2022春•鹿城区校级期中)如图,在长方形ABCD中,AB=6,BC=10,其内部有边长为a的正方形AEFG与边长为b的正方形HIJK,两个正方形的重合部分也为正方形,且面积为5,若S2=4S1,则正方形AEFG与正方形HIJK的面积之和为()A.20B.25C.D.30.(2022春•海曙区校级期中)若m,n均是正整数,且2m+1×4n=128,则m+n的所有可能值为()A.2或3B.3或4C.5或4D.6或531.(2022春•鹿城区校级期中)已知a,b,c均为常数,若(x﹣1)2+bx+c=x2﹣ax+16,则a+b+c的值为()A.18B.17C.16D.1532.(2022春•温州期中)用如图所示的正方形和长方形卡片若干张,拼成一个长为3a+2b,宽为a+b的长方形,需要B类卡片()张.A.3B.4C.5D.633.(2022春•江干区校级期中)如图①,现有边长为b和a+b的正方形纸片各一张,长和宽分别为b,a 的长方形纸片一张,其中a<b.把纸片Ⅰ,Ⅲ按图②所示的方式放入纸片Ⅱ内,已知a,b满足b=a,则图②中阴影部分的面积满足的关系式为()A.S1=4S2B.S1=6S2C.S1=8S2D.S1=10S234.(2022春•龙湾区期中)在数学活动课上,一位同学用四张完全一样的长方形纸片(长为a,宽为b,a >b)搭成如图一个大正方形,面积为132,中间空缺的小正方形的面积为28.下列结论中,正确的有()①(a﹣b)2=28;②ab=26;③a2+b2=80;④a2﹣b2=64A.①②③B.①②④C.①③④D.②③④35.(2022春•镇海区校级期中)如图,为了美化校园,某校要在面积为60平方米长方形空地ABCD中划出长方形EBKR和长方形QFSD,若两者的重合部分GFHR恰好是一个边长为3米的正方形,现将图中阴影部分区域作为花圃,若长方形空地ABCD的长和宽分别为m和n,m>n,花圃区域AEGQ和HKCS 总周长为20米,则m﹣n的值为()A.4米B.7米C.5米D.3.5米36.(2022春•杭州期中)若a、b两数互为相反数,且b>a,则以下结论:=﹣1;②ab是非正数;③是负数;④是正数;⑤(a+66)(b+66)可以利用平方差公式计算.其中正确的是()A.③⑤B.①③⑤C.①②③④D.①②③⑤37.(2022春•拱墅区校级期中)已知实数a,b,c满足a+b=ab=c,有下列结论:①若c=5,则a2+b2=15;②若a=3,则b+c=9;③若c≠0,则=﹣;④若c≠0,则(1﹣a)(1﹣b)=.其中结论正确的有()A.①③B.①②④C.①②③D.①③④38.(2022春•龙湾区期中)如图所示的正方形和长方形卡片各有若干张,若要拼成一个长为(a+2b),宽为(2a+b)的长方形,则需要A类,B类,C类卡片各()张A.2,3,2B.2,4,2C.2,5,2D.2,5,439.(2022春•洞头区期中)如图,将一个正方形纸板按图中虚线裁剪切成9块,其中4块是边长为m的大正方形,1块是边长为n的小正方形和4块长为m宽为n的长方形(m>n),若每块长方形的面积是2,n=2m﹣3,则原正方形纸板的边长是()A.B.4C.D.540.(2022春•鄞州区校级期中)有两个正方形A,B,现将B放在A的内部如图甲,将A,B并排放置后构造新的正方形如图乙,若图甲和图乙中阴影部分的面积分别为4和52,则正方形A,B的面积之和为()A.48B.56C.64D.7241.(2022春•洞头区期中)若(x﹣3)(x+1)=x2+mx﹣3,则常数m的值是()A.m=﹣2B.m=2C.m=﹣3D.m=342.(2022春•嘉兴期中)下列多项式的乘法中,不能用平方差公式计算的是()A.(4x﹣3y)(﹣3y﹣4x)B.(a+b﹣c)(﹣c﹣b+a)C.(﹣x+y)(x﹣y)D.(2x2﹣y2)(2x2+y2)43.(2021秋•余姚市期中)木条a、b、c如图用螺丝固定在木板α上且∠ABM=50°,∠DEM=70°,将木条a、木条b、木条c看作是在同一平面α内的三条直线AC、DF、MN,若使直线AC、直线DF达到平行的位置关系,则下列描述错误的是()A.木条b、c固定不动,木条a绕点B顺时针旋转20°B.木条b、c固定不动,木条a绕点B逆时针旋转160°C.木条a、c固定不动,木条b绕点E逆时针旋转20°D.木条a、c固定不动,木条b绕点E顺时针旋转110°44.(2019春•杭州期中)若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE45.(2022春•南湖区校级期中)如图,AB∥CD,∠1=∠ABF,CE平分∠DCF,设∠ABE=∠1,∠E=∠2,∠F=∠3,则∠1、∠2、∠3的数量关系是()A.∠1+2∠2+∠3=360°B.2∠2+∠3﹣∠1=360°C.∠1+2∠2﹣∠3=90°D.3∠1+∠2+∠3=360°46.(2022春•南湖区校级期中)小明、小亮、小刚、小颖一起研究一道数学题,如图,BD⊥AC与点D,点E是BC边上的一动点,过E作EF⊥AC与点F,点G在AB上,连DG,GE.小明说:“如果还知道∠GDB=∠FEC,则能得到∠AGD=∠ABC.”小亮说:“如果∠AGD=∠ABC,可得到∠GDB=∠FEC.”则下列判断正确的是()A.小明说法正确,小亮说法错误B.小明说法正确,小亮说法正确C.小明说法错误,小亮说法正确D.小明说法错误,小亮说法错误47.(2022春•温州期中)如图,已知长方形纸片ABCD,点E和点F分别在边AD和BC上,且∠EFC=37°,点H和点G分别是边AD和BC上的动点,现将点A,B,C,D分别沿EF,GH折叠至点N,M,P,K,若MN∥PK,则∠KHD的度数为()A.37°或143°B.74°或96°C.37°或105°D.74°或106°48.(2022春•西湖区校级期中)如图,AB∥CD,PG平分∠EPF,∠A+∠AHP=180°,下列结论:①CD ∥PH;②∠BEP+∠DFP=2∠EPG;③∠FPH=∠GPH;④∠A+∠AGP+∠DFP﹣∠FPG=180°;其中正确结论是()A.①②③④B.①②④C.①③④D.①②49.(2022春•杭州期中)如图所示,在下列四组条件中,不能判定AD∥BC的是()A.∠1=∠2B.∠3=∠4C.∠BAD+∠ABC=180°D.∠BAC=∠ACD50.(2022春•下城区期中)如图,AB∥CD,BF平分∠ABE,且BF⊥DE,垂足为F,则∠ABE与∠EDC 的数量关系是()A.∠EDC﹣∠ABE=90°B.∠ABE+∠EDC=180°C.∠ABE=∠EDC D.∠ABE+∠EDC=90°51.(2022春•镇海区校级期中)一条两边沿互相平行的围巾按图甲所示折叠并将其绘制成图乙,已知∠DAB ﹣∠ABC=20°,且DF∥CG,则3∠DAB+∠ABC=()A.180°B.150°C.160°D.200°52.(2022春•温州期中)已知,EF∥BC,BE∥CF,现将两块直角三角板OAB(∠OAB=45°)和直角三角板OCD(∠OCD=30°)按如图所示放置,直角顶点O重合,点A,D在EF上,若∠1+∠2=70°,∠3:∠4=4:3,则∠DAB的度数为()A.110°B.115°C.120°D.140°53.(2022春•西湖区校级期中)如图,AB∥CD,点E为AB上方一点,FB、CG分别为∠EFG、∠ECD的角平分线,若∠E+2∠G=210°,则∠EFG的度数为()A.140°B.150°C.130°D.160°54.(2021春•嘉兴期中)将一张边沿互相平行的纸条如图折叠后,若边AD∥BC,则翻折角∠1与∠2一定满足的关系是()A.∠1=2∠2B.∠1+∠2=90°C.∠1﹣∠2=30°D.2∠1﹣3∠2=30°55.(2022春•拱墅区期中)如图a∥b,c与a相交,d与b相交,下列说法:①若∠1=∠2,则∠3=∠4;②若∠1+∠4=180°,则c∥d;③∠4﹣∠2=∠3﹣∠1;④∠1+∠2+∠3+∠4=360°,正确的有()A.①③④B.①②③C.①②④D.②③56.(2022春•台州期中)如图,已知直线AB,CD被直线AC所截,AB∥CD,E是平面内CD上方的一点(点E不在直线AB,CD,AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④180°﹣α﹣β,⑤360°﹣α﹣β中,∠AEC的度数可能是()A.①②③B.①②④⑤C.①②③⑤D.①②③④⑤57.(2022春•西湖区校级期中)如图,两个直角三角形重叠在一起,将其中一个沿点B到点C的方向平移到△DEF的位置,AB=10,DH=4,BC=15,平移距离为6,则阴影部分的面积()A.40B.42C.45D.4858.(2022春•拱墅区校级期中)如图,将直角△ABC沿斜边AC的方向平移到△DEF的位置,DE交BC于点G,BG=4,EF=10,△BEG的面积为4,下列结论:①∠A=∠BED;②△ABC平移的距离是4;③BE=CF;④四边形GCFE的面积为16,正确的有()A.②③B.①②③C.①③④D.①②③④59.(2016春•上城区校级期中)如图,AB∥EF,∠C=90°,则α、β和γ的关系是()A.β=α+γB.α+β+γ=180°C.α+β﹣γ=90°D.β+γ﹣α=180°60.(2022春•椒江区校级期中)如图,结合图形作出了如下判断或推理:①如图甲,CD⊥AB,D为垂足,那么点C到AB的距离等于C、D两点间的距离;②如图乙,如果AB∥CD,那么∠B=∠D;③如图丙,如果∠ACD=∠CAB,那么AD∥BC;④如图丁,如果∠1=∠2,∠D=120°,那么∠BCD=60°.其中正确的个数是()个.A.1B.2C.3D.4。

七年级一元一次方程能力提升培优尖子生题训练

七年级一元一次方程能力提升培优尖子生题训练

七年级一元一次方程能力提升培优尖子生题训练下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!七年级一元一次方程能力提升培优尖子生题训练简介一元一次方程是初中阶段数学学习的基础,掌握好这一知识点对学生在数学学习中具有重要意义。

七年级数学尖子生培优训练

七年级数学尖子生培优训练

七年级数学尖子生培优训练第一讲 绝对值 典型例题:例1.(数形结合思想)已知a 、b 、c 在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( ) A .-3a B . 2c -a C .2a -2b D . b例2.已知:z x <<0,0>xy ,且x z y >>, 那么y x z y z x --+++的值( )A .是正数B .是负数C .是零D .不能确定符号例3.(分类讨论思想)已知甲数的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?例4.(整体思想)方程x x -=-20082008 的解的个数是( ) A .1个 B .2个 C .3个 D .无穷多个例5.(非负性)已知|a b -2|与|a -1|互为相互数,试求下式的值.()()()()()()1111112220072007ab a b a b a b ++++++++++例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与2-,3与5,2-与6-,4-与3. 并回答下列各题:(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ . (2)若数轴上的点A 表示的数为x ,点B 表示的数为―1,则A 与B 两点间的距离可以表示为 ________________.(3)结合数轴求得23x x -++的最小值为 ,取得最小值时x 的取值围为 ___.(4) 满足341>+++x x 的x 的取值围为 ______ .例7.(带入求值问题)设三个互不相等的有理数,既可表示为1,,a b a +的形式式,又可表示为0,ba,b 的形式,求20062007a b +。

巩固提高: 1、若||||||0,a b ab aba b ab+-则的值等于 ______ . 2、 如果m 是大于1的有理数,那么m 一定小于它的( ) A.相反数 B.倒数 C.绝对值 D.平方3、已知两数a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2, 求220062007()()()x a b cd x a b cd -+++++-的值。

七年级上册数末培优检测(尖子生专用C)七年级数学上册期末复习重难点突破(人教版)(解析版)

七年级上册数末培优检测(尖子生专用C)七年级数学上册期末复习重难点突破(人教版)(解析版)

七年级上学期数学期末培优检测(尖子生专用C)考试范围:七年级上册全部;考试时间:120分钟;满分:120分学校:___________姓名:___________班级:___________考号:___________试卷说明:本试卷难系数约0.4,只适合尖子生考前查漏补缺使用。

一、单选题(共33分)1.(3分)一个两位数,它的十位数字是x,个位数字是y,那么这个两位数是().A.x+y B.10xy C.10(x+y)D.10x+y【答案】D【详解】解:∵一个两位数,它的十位数是x,个位数字是y,∴根据两位数的表示方法,这个两位数表示为:10x+y.故选:D2.(3分)有理数a,b在数轴上的位置如图所示,则|a−b|−|b|=()A.2b−a B.−a C.a−2b D.a【答案】B【详解】解:由题意得a<0<b,|a|>|b|,∴a−b<0,∴|a−b|−|b|=−(a−b)−b=b−a−b=−a,故选B3.(3分)如图,OC在∠AOB外部,OM,ON分别是∠AOC,∠BOC的平分线.∠AOB=110°,∠BOC=60°,则∠MON的度数为()A.50°B.75°C.60°D.55°【答案】D【详解】解:∵∠AOB=110°,∠BOC=60°,∴∠AOC=∠AOB+∠BOC=170°,∵OM 平分∠AOC ,ON 平分∠BOC ,∴∠COM =12∠AOC =85°,∠CON =12∠BOC =30°,∴∠MON =∠COM−∠CON =55°.故选:D .4.(3分)如图,点C 是线段AB 上任意一点(不与端点重合),点M 是AB 的中点,点P 是AC 的中点,点Q 是BC 的中点,给出下列结论:①PQ =MB ;②PM =12(AM−MC );③PQ =12(AQ +AP );④MQ =12(MB +MC ).其中正确的有( )A .1个B .2个C .3个D .4个【答案】C 【详解】解:∵M 是AB 中点,∴AM =BM =12AB ,∵P 是AC 中点,∴AP =CP =12AC ,∵点Q 是BC 中点,∴CQ =BQ =12BC ,对于①:PQ =PC +CQ =12(AC +BC)=12AB =BM ,故①正确;对于②:PM =AM−AP =12(AB−AC)=12BC ,PM =AM−AP =12(AB−AC)=12BC ,故②正确;对于③:PQ =PC +CQ =12(AC +BC)=12AB ,而12(AQ +AP)=12[(AP +PQ)+AP ]=AP +12PQ =12(AC +PQ)=12(AC +BM)>12AB ,故③错误;对于④:12(MB +MC)=12(MA +MC)=12AC ,MQ =MC +CQ =(AC−AM)+12BC =AB−BC−12AB +12BC =12(AB−BC)=12AC ,故④正确;故对3个,故选C.5.(3分)计算机按如图所示程序工作,如果输入的数是1,那么输出的数是()A.657B.−657C.−639D.639【答案】C【详解】解:当x=1时,(1−8)×9=−63,∵|−63|<100,∴当x=−63时,(−63−8)×9=−639∵|−639|>100,∴输出的数是−639,故选:C6.(3分)东汉初年,我国的《周髀算经》里就有“径一周三”的古率,提出了圆的直径与周长之间存在一定的比例关系.将图中的半圆弧形铁丝(MN)向右水平拉直(保持M 端不动).根据该古率,与拉直后铁丝N端的位置最接近的是()A.点A B.点B C.点C D.点D【答案】A【详解】解:∵半圆的直径是1,∴由“径一周三”知圆的周长,,∴半圆的周长为32∴拉直后铁丝N端的位置最接近的是点A,故选:A.x m−3y与2x2y n−2是同类项,则(m−2n)2023的值为()7.(3分)若−13A.2022B.−2022C.−1D.1【答案】Cx m−3y与2x2y n−2是同类项,【详解】解:∵−13∴m−3=2,n−2=1,∴m =5,n =3,∴(m−2n )2023=(5−2×3)2023=−1,故选:C .8.(3分)如图,把一个圆剪去一部分,所得涂色部分的图形周长比原来圆的周长小,能正确解释这一现象的数学知识是( )A .垂线段最短B .两点确定一条直线C .两点之间,线段最短D .经过一点有无数条直线【答案】C【详解】解:由于两点之间线段最短,∴把一个圆剪去一部分,所得涂色部分的图形周长比原来圆的周长小.故选:C .9.(3分)如果一个正方形的周长为(2a +b )(其中a >0,b >0),则该正方形的面积为( ).A .a 24+ab 4+b 216B .a 24+b 216C .4a 2+b 2D 【答案】A【详解】解:∵一个正方形的周长为(2a +b ),∴正方形的边长为2a b 4,∴=a 24+ab 4+b 216,故选:A .10.(3分)下列说法中正确的有( )①过两点有且只有一条直线;②连接两点的线段的长度叫两点的距离;③两点之间线段最短;④如果AB =BC ,则点B 是AC 的中点;⑤直线经过点A ,那么点A 在直线上.A .2个B .3个C .4个D .5个【答案】C【详解】解:∵过两点有且只有一条直线,故①正确;∵连接两点的线段的长度叫两点的距离,故②正确;∵两点之间,线段最短,故③正确;当B在直线AC外时,AB=BC,则点B不是AC的中点,故④错误;∵直线l经过点A,那么点A在直线l上,故⑤正确,即正确的有4个,故选:C.x+3=2x+b的解为x=−3,则关于y的一元11.(3分)若关于x的一元一次方程12022(y+1)+3=2(y+1)+b的解为()一次方程12022A.y=1B.y=−2C.y=−3D.y=−4【答案】Dx+3=2x+b的解为x=−3,【详解】解:∵关于x的一元一次方程12022(y+1)+3=2(y+1)+b中,有y+1=−3,∴关于y的一元一次方程12022∴y=−4;(y+1)+3=2(y+1)+b的解为y=−4;即方程12022故选:D二、填空题(共15分)AC且AC=6cm,AB=CD.则AD= 12.(3分)点C和点D都在直线AB上,若BC=23cm.【答案】4或8或16AC且AC=6cm,【详解】解:∵BC=23∴BC=4cm,①当点C在点B左侧,点D在点C右侧时,如图1,∴AB=AC+BC=10cm,∵AB=CD,∴CD=10cm,∴AD=AC+CD=16cm;②当点C在点B左侧,点D在点C左侧时,如图2,∴AB=AC+BC=10cm,∵AB=CD,∴CD=10cm,∴AD=CD−AC=4cm;③当点C在点B右侧,点D在点C右侧时,如图3,∴AB=AC−BC=2cm,∵AB=CD,∴CD=2cm,∴AD=AC+CD=8cm,④当点C在点B右侧,点D在点C左侧时,如图3,∴AB=AC−BC=2cm,∵AB=CD,∴CD=2cm,∴AD=AC−CD=4cm,故答案为:4或8或16.13.(3分)中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初键步不为难,次日脚痛减一半,六朝才得到其关”其大意是:“有人要去某关口,路程378里,第一天键步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,”则此人第六天走的路程为【答案】6里【详解】解:设第六天走了x里,依题意得:x+2x+4x+8x+16x+32x=378,解得x=6(里).故答案为6里.14.(3分)有两根木条,一根AB长为100cm,另一根CD长为150cm,在它们的中点处各有一个小圆孔MN(圆孔直径忽略不计,MN 抽象成两个点),将它们的一端重合,放置在同一条直线上,此时两根木条的小圆孔之间的距离MN 是 cm.【答案】125或25【详解】本题有两种情形:(1)当A 、C (或B 、D )重合,且剩余两端点在重合点同侧时,MN=CN-AM=12CD-12AB ,=75-50=25cm ;(2)当B 、C (或A 、C )重合,且剩余两端点在重合点两侧时,MN=CN+BM=12CD+12AB ,=75+50=125cm .故两根木条的小圆孔之间的距离MN 是25cm 或125cm .15.(3分)已知数轴上有A 、B 两点分别表示数2和4,点C 表示数为x ,A 、B 、C 三点中,有一点恰好是另外两点为端点的线段的中点,x 的值为 .【答案】0或3或6【详解】解:根据题意,∵数轴上有A 、B 两点分别表示数2和4,点C 表示数为x ,当点A 为线段BC 的中点时,x 42=2,∴x =0;当点B 为线段AC 的中点时,2x 2=4,∴x =6;当点C 为线段AB 的中点时,x =242=3;∴x 的值为:0或3或6故答案为:0或3或6.16.(3分)由若干个相同的小正方体堆成的几何体从正面、上面看得到的图形如图所示,则堆成这个几何体最少需要 个正方体.【答案】12【详解】结合主视图,可得小正方体的分布情况如下,则共有3+2+3+1+1+1+1=12(个)故答案为:12三、解答题(共72分)17.(6分)计算(1)-3+2-4×(-5);(2)79÷−13×(−4)2【答案】(1)19;(2)-113【详解】(1)-3+2-4×(-5)=-3+2+20=19;(2)79÷−13×(−4)2=79÷715−13×16=53−163=−11318.(6分)解方程(1)x -4=43x +2;(2)7y−14−1=5y−46【答案】(1)x =-18;(2)y =711【详解】(1)∵x−4=43x+2,∴3x-12=4x+6,∴3x-4x=12+6∴-x=18∴x=-18;(2)∵7y−14−1=5y−46,∴3(7y-1)-12=2(5y-4),∴21y-3-12=10y-8,∴21y-15=10y-8,∴21y-10y=15-8∴11y=7∴y=71119.(6分)已知A=4x2−23y2+2x2+x,B=6y2−3xy+4.(1)若x=−12,y=−1,求A+B的值;(2)若A+B的值与x的取值无关,则y=______.【答案】(1)−2x−3xy+4,72(2)−23【详解】(1)解:∵A=4x2−23y2+2x2+x,B=6y2−3xy+4∴A+B=4x2−23y2+2x2+x+6y2−3xy+4=4x2−6y2−4x2−2x+6y2−3xy+4=−2x−3xy+4,当x=−12,y=−1时,原式=−2×−×−×(−1)+4=72;(2)解:由(1)知A+B=−2x−3xy+4=−(2+3y)x+4,∵A+B的值与x的取值无关,∴−(2+3y)=0解得:y=−23.20.(8分)定义:关于x的方程ax−b=0与方程bx−a=0(a,b均为不等于0的常数)互为“反对方程”.例如:方程2x−1=0与方程x−2=0互为“反对方程”.(1)若方程2x−3=0与方程3x−c=0互为“反对方程”,则c=______.(2)若关于x的方程4x+3m+1=0与方程5x−n+2=0互为“反对方程”.求m,n的值.(3)若关于x的方程2x+3b−1=0与其“反对方程”的解都是整数,求常数b的值.【答案】(1)2;(2)m=−2,n=6;(3)b=−13或b=1.【详解】(1)解:∵2x−3=0与方程3x−c=0互为“反对方程”∴c=2,故答案为:2;(2)解:将4x+3m+1=0转化为:4x−(−3m−1)=0,将5x−n+2=0转化为:5x−(n−2)=0,∵4x+3m+1=0与5x−n+2=0互为“反对方程”,∴−3m−1=5,n−2=4,∴m=−2,n=6;(3)解:类比(2)同理可得方程2x+3b−1=0的“反对方程”为(1−3b)x−2=0,由2x+3b−1=0解得:x=1−3b2,由(1−3b)x−2=0解得:x=21−3b,∵2x+3b−1=0与(1−3b)x−2=0的解都是整数,∴1−3b2与21−3b都是整数,∴1−3b=±2,当1−3b=2时解得b=−13,当1−3b=−2时解得b=1,∴b=−13或b=1.21.(8分)如图①,已知线段AB=12cm,点C 为AB 上的一个动点,点D,E 分别是AC 和BC的中点.(1)若 AC =4cm ,求 DE 的长.(2)若 AC =acm (不超过 12cm ),求 DE 的长.(3)知识迁移:如图②,已知∠AOB =120°,过角的内部任意一点 C 画射线OC ,若OD ,OE 分别平分∠AOC 和∠BOC ,求∠DOE 的度数.【答案】(1)6(2)6(3)60°【详解】(1)∵AB =12cm ,AC =4cm ,∴BC=8cm ,∵点 D ,E 分别是 AC 和 BC 的中点,∴CD=2cm ,CE=4cm ,∴DE=6cm.(2)∵AC =acm ,∴BC=AB-AC=12-a ,∵点 D ,E 分别是 AC 和 BC 的中点,∴DE=CD+CE=12(AC+BC )=12(a+12-a ) =6cm ,(3)∵OD ,OE 分别平分∠AOC 和∠BOC ,∴∠DOE =∠DOC +∠COE =12(∠AOC +∠COB)=12∠AOB∵∠AOB =120°,∴∠DOE =60°.22.(8分)某花店先后以每支2元和每支4元的价格两次共购进玫瑰700支,且第二次付款是第一次付款的1.5倍.(1)求两次各购进玫瑰多少支?共付款多少钱?(2)若花店起初以每支6元的价格销售玫瑰,但售出500支后,受市场影响,花店把剩下的玫瑰每支标价9元,再打折后全部售出,已知这两次销售共获利1900元,请问花店对剩下的玫瑰是打几折销售的?【答案】(1)第一次购进玫瑰400支,第二次购进玫瑰300支,共用了2000元;(2)五折.【详解】(1)设第一次购进玫瑰x 支,则第二次购进玫瑰(700−x )支.根据题意得方程:4(700−x)=2x ×1.5.解方程得:x =400.∴700−x =300(支).2×400+4×300=2000(元).答:第一次购进玫瑰400支,第二次购进玫瑰300支,共用了2000元.(2)设花店对剩下的玫瑰是打a 折销售的.根据题意得方程:6×500+9×a 10×(700−500)=2000+1900,解方程得:a =5.答:花店对剩下的玫瑰是打五折销售的.23.(8分)数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.如图,将一条数轴在原点O 和点B 处各折一下,得到一条“折线数轴”.图中点A 表示-10,点B 表示10,点C 表示18,我们称点A 和点C 在数轴上相距28个长度单位.动点P 从点A 出发,以2单位秒的速度沿着折线数抽”的正方向运动,从点O 运动到点B 期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q 从点C 出发,以1单位秒的速度沿着数轴的负方向运动,从点B 运动到点O 期间速度变为原来的两倍,之后也立刻恢复原速.当点P 到达点C 时,两点都停上运动.设运动的时间为1秒.问:(1)t =2秒时,点P 在“折线数轴”上所对应的数是_______;点P 到点Q 的距离是_____单位长度;(2)动点P 从点4运动至C 点需要_______秒;(3)P 、Q 两点相遇时,求出t 的值和此时相遇点M 在“折线数轴”上所对应的数;(4)如果动点P 、O 两点在数轴上相距的长度与Q 、B 两点在数轴上相距的长度相等,直接写出t 的值.【答案】(1)−6,22 (2)10 (3)t =313,163(4)2,6.5,11,17【详解】解:(1)当t =2秒时,点P 运动了4,此时对应的数为:−10+4=−6,点Q 运动了2,此时Q 对应的数为:18−2=16,(2)∵点P到点Q的距离是16−(−6)=16+6=22单位长度.此时分为三段:PO、OB、BC,点P在点4运动到B点需要时间:t1=6÷1=6(秒),=4(秒),从B到C需要时间:t2=82∴一共需要:t1+t2=6+4=10(秒);(3)经分析可得相遇一定在OB上,设经过时间t两者相遇,此时在OB上点Q的时间为:t−8,在OB上点P的时间为:t−5,根据总路程为28,列出方程:10+(t−5)×1+8+(t−8)×2=28,解得:t=313即:经过31秒,P、Q两点相遇,3.−5×1=163(4)动点P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等,有4种可能:①动点Q在CB上,动点P在AO上,则:8−t=10−2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:(t−5)×1=8−t,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:(t−5)×1=(t−8)×2,解得:t=11.④动点Q在OA上,动点P在BC上,则:(t−13)×1+10=(t−15)×2+10,解得:t=17.24.(10分)我们知道,借助天平和一些物品可以探究得到等式的基本性质.【提出问题】能否借助一架天平和一个10克的砝码测量出一个乒乓球和一个一次性纸杯的质量?【实验探究】准备若干相同的乒乓球和若干相同的一次性纸杯(每个乒乓球的质量相同,每个纸杯的质量也相同),设一个乒乓球的质量是x克,经过试验,将有关信息记录在下表中:记录天平左边天平右边天平状乒乓球总一次性纸杯的总态质量质量记录一5个乒乓球,1个10克的砝码15个一次性纸杯平衡5x______记录二3个乒乓球1个一次性纸杯1个10克的砝码平衡3x______【解决问题】(1)将表格中两个空白部分用含x的代数式表示;(2)分别求出一个乒乓球的质量和一个一次性纸杯的质量.【及时迁移】(3)借助以上相关数据以及实验经验,你能设计一种方案,使实验中选取的乒乓球的个数是纸杯的个数的3倍吗?请补全下面横线上内容,完善方案,并说明方案设计的合理性.方案:将天平左边放置______,天平右边放置______,使得天平平衡.理由:【答案】(1)5x+10;3x−10;(2)一个乒乓球的质量为4克,一个一次性纸杯的质量为2克;(3)3个乒乓球,1个一次性纸杯和1个10克的砝码,详见解析;【详解】解:(1)根据题意可得:记录一中的一次性纸杯的总质量为:5x+10;记录二中的一次性纸杯的总质量为:3x−10,故答案为:5x+10;3x−10,(2)由题意得:5x+10=15(3x−10),解得:x=4,∴3x−10=2答:一个乒乓球的质量为4克,一个一次性纸杯的质量为2克.及时迁移:将天平左边放置3个乒乓球,天平右边放置1个一次性纸杯和1个10克的砝码,使得天平平衡.故答案为:3个乒乓球,1个一次性纸杯和1个10克的砝码,理由:不唯一,算术方法或者方程方法说明都可以,言之有理即可.25.(12分)【阅读材料】我们知道,“角”是由一条射线绕着它的端点旋转而成的图形.射线在单位时间内以固定的角度绕其端点沿某一方向旋转,经过不同的旋转时间都会形成不同的角.在行程问题中,我们知道:运动路程=运动速度×运动时间;类似的,在旋转问题中,我们规定:旋转角度=旋转角速度×旋转时间.例如(如图),射线OM从射线OA出发,以每秒10°的旋转速度(称为“旋转角速度”)绕点逆时针旋转.旋转1秒得旋转角度∠MOA=10°×1=10°,旋转2秒得旋转角度∠MOA =10°×2=20°,……,旋转t秒得旋转角度∠MOA=10°×t=(10t)°.【问题解决】如图1,射线OA上有两点M、N.将射线OM以每秒10°的旋转角速度绕点O逆时针旋转(OM最多旋转9秒);射线OM旋转3秒后,射线ON开始以每秒20°的旋转角速度绕点O逆时针旋转,如图2所示.设射线ON旋转时间为t秒.(1)当t=2时,∠MON=_____°;(2)当∠MON=20°时,求t的值;(3)如图3,OM、ON总是在某个角∠AOB的内部旋转,且当ON为∠AOB的三等分线时,OM恰好平分∠AOB,求∠AOB的度数.【答案】(1)10;(2)1或5;(3)90°或180°【详解】(1)解:当t=2时,∠MOA=10°×(2+3)=50°,∠NOA=20°×2=40°,∴∠MON=∠MOA-∠AON=10°,故答案为:10;(2)当OM与ON重合前,10(t+3)-20=20t,解得t=1;当OM与ON重合后,10(t+3)-20=20t,解得t=5,故t的值为1或5;(3)解:①如图,当OM与ON重合前,设∠AON=x,则∠AOB=3x,∠AOM=1.5x,∴∠AOM=1.5∠AON,∴10(t+3)=1.5×20t,解得t=1.5,∴∠AON=20t=30°,∴∠AOB=3×30°=90°;②如图,当OM与ON重合后,设∠BON=a,则∠AOB=3a,∠AOM=1.5a,∠AON=2a,∠AON,∴∠AOM=34×20t,∴10(t+3)=34解得t=6,∴∠AON=20t=120°=2a,∴a=60°,∴∠AOB=3a=180°;∴∠AOB的度数为90°或180°.。

科学记数法与近似数-2020-2021学年七年级数学上册尖子生同步培优题【人教版】

科学记数法与近似数-2020-2021学年七年级数学上册尖子生同步培优题【人教版】

2020-2021学年七年级数学上册尖子生同步培优题【人教版】专题1.10科学记数法与近似数姓名:班级:得分:注意事项:本试卷满分100分,试题共20题.答卷前,考生务必用0.5亳米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.1.(2020•福田区模拟)华为Ma72 30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了 103亿个晶体管,将103亿用科学记数法表示为()A. 1.03 X109B. 10.3 X109C. 1.03 X1O10D. 1.03 X10112.(2020•丰台区模拟)为应对疫情,许多企业跖界抗疫,生产口罩.截至2月29日,全国口罩日产量达到116000000只.将116000000用科学记数法表示应为()A. 116X106B. 11.6X107C. 1.16X107D. 1.16X1083.(2020•广东模拟)据统计,2019年杭州市区初中毕业生为25000余人,25000用科学记数法表示为()A. 25X103B. 2.5X103C. 2.5X104D. 0.25X1054.(2020•五华县模拟)截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了 47.24亿,47.24亿用科学记数法表示为()A. 47.24X109B. 4.724X109C. 4.724X105D. 472.4X1055.(2019秋•曲靖期末)已知。

=20.18是由四舍五入得到的近似数,则。

的可能取值范围是()A. 20.175^^^20.185B. 20.175WaV20.185C. 20.175VaW20.185D. 20.175<。

<20.1856.(2019秋•广安期末)下列说法正确的是()A.将310万用科学记数法表示为3.1X107B.用四舍五入法将L097精确到百分位为L10C.近似数2.3与2.30精确度相同D.若用科学记数法表示的数为2.01X105,则其原数为201007.(2020春•南岗区期末)用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A. 0.1 (精确到01)B. 0.05 (精确到百分位)C. 0.05 (精确到千分位)D. 0.0502 (精确到0.0001)8.(2020•深圳模拟)截至北京时间2020年3月22日14时30分,全球新冠肺炎确诊病例达305740例,超过30万,死亡病例累计12762人,将“305740”这个数字用科学记数法表示保留两位有效数字为()飞% >A. 3.05740X105B. 3.05X105C. 3.OX1O5D. 3.1 X1059.(2020•上城区模拟)某种鲸鱼的体重约为L36X 1()5千克,关于这个近似数,下列说法正确的是()A.精确到百分位B.精确到十分位C.精确到个位D.精确到千位10.(2019秋•行唐县期末)用四舍五入法得到的近似数是2.003万,关于这个数下列说法正确的是()A.它精确到万分位B.它精确到0.001C.它精确到万位D.它精确到十位二.填空题(共10小题)11.(2020•东莞市一模)根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为.12.(2020•宿迁)2020年6月30日,北斗全球导航系统最后一颗组网卫星成功定点在距离地球36000千米的地球同步轨道上,请将36000用科学记数法表示为.13.(2020•岳阳一模)国家发改委2月7日紧急下达第二批中央预算内投资2亿元人民币,专项补助承担重症感染患者救治任务的湖北多家医院重症治疗病区建设,其中数据2亿用科学记数法表示为元.14.(2020•建湖县校级模拟)根据美国约翰斯•霍普金斯大学实时统计数据,截至北京时间3月27日早5 时37分,全球新冠肺炎确诊病例累计超过520000,数据520000用科学记数法表示为.15.(2020•葫芦岛三模)港珠澳大桥被英国《卫报》誉为“新世界七大奇迹”之一,它是世界总体跨度最长的跨海大桥,全长55000米,数字55000用科学记数法表示为.16.(2020•温岭市一模)疫情无情人有情,截止2月18日17时,仅我市慈善总会就接收到防控新冠肺炎疫情捐赠12525390元,用科学记数法表示这个捐赠款数,并精确到万元,可记作元.17.(2019秋•海淀区校级期中)将0.249用四舍五入法保留到十分位的结果是.18.(2019秋•昭通期中)把0.0158四舍五入精确到千分位为.19.(2019秋•高安市校级期末)把80800精确到千位约等于.20.(2020春•香坊区校级期中)把67.758精确到0.01位得到的近似数是.2020-2021学年七年级数学上册尖子生同步培优题典【人教版】1.10科学记数法与近似数姓名:班级:得分:注意事项:本试卷满分100分,试题共20题.答卷前,考生务必用0.5亳米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.1.(2020•福田区模拟)华为AG也30 5G系列是近期相当火爆的5G国产手机,它采用的麒麟990 5G芯片在指甲盖大小的尺寸上集成了 103亿个晶体管,将103亿用科学记数法表示为()A. 1.03 X109B. 10.3 X109C. 1.03 X1O10D. 1.03 X1011【分析】科学记数法的表示形式为aXl0n的形式,其中lW|a|V10, 〃为整数.确定〃的值时,要看把原数变成a时,小数点移动了多少位,〃的绝对值与小数点移动的位数相同.当原数绝对值210时,〃是正数:当原数的绝对值VI时,〃是负数.【解析】103 亿= 103 0000 0000=1.03X1()1°,故选:C.2.(2020•丰台区模拟)为应对疫情,许多企业跨界抗疫,生产口罩.截至2月29日,全国口罩日产量达3HJ 116000000只.将116000000用科学记数法表示应为()A. 116X106B. 11.6X107C. 1.16X107D. 1.16X108【分析】科学记数法的表示形式为aXl0n的形式,其中lW|a|V10, 〃为整数.确定〃的值时,要看把原数变成a时,小数点移动了多少位,〃的绝对值与小数点移动的位数相同.当原数绝对值210时,〃是正数:当原数的绝对值<1时,"是负数.【解析】将116000000用科学记数法表示应为1.16X108.故选:D.3.(2020•广东模拟)据统计,2019年杭州市区初中毕业生为25000余人,25000用科学记数法表示为()A. 25X103B. 2.5X103C. 2.5X104D. 0.25X105【分析】科学记数法的表示形式为aXl0n的形式,其中lW|a|V10, 〃为整数.确定〃的值是易错点,由于25000有5位,所以可以确定“=5-1=4.【解析】25000=2.5X1()4.故选:C.4.(2020•五华县模拟)截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了 47.24亿,47.24亿用科学记数法表示为(A. 47.24X109B. 4.724X109C. 4.724X1O5D. 472.4X1O5【分析】科学记数法的表示形式为aXl0n的形式,其中lW|a|V10, 〃为整数.确定〃的值时,要看把原数变成。

2020-2021学年七年级数学上册尖子生同步培优题典 专题2

2020-2021学年七年级数学上册尖子生同步培优题典 专题2

专题2.5有理数的减法姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•枣庄)计算()的结果为()A.B.C.D.【分析】根据有理数的减法法则计算即可.【解析】().故选:A.2.(2019秋•桥西区校级月考)计算﹣1﹣1﹣1的结果是()A.﹣3 B.3 C.1 D.﹣1【分析】原式利用减法法则计算即可求出值.【解析】原式=﹣(1+1+1)=﹣3,故选:A.3.(2019秋•裕华区校级月考)若()﹣(﹣2)=3,则括号内的数是()A.﹣5 B.﹣1 C.1 D.5【分析】根据被减数=减数+差,列出算式计算即可求解.【解析】3+(﹣2)=1.答:括号内的数是1.故选:C.4.(2019秋•高邮市月考)下列各式错误的是()A.1﹣(+5)=﹣4 B.0﹣(+3)=﹣3C.(+6)﹣(﹣6)=0 D.(﹣15)﹣(﹣5)=﹣10【分析】根据有理数的减法运算法则对各选项分析判断利用排除法求解.【解析】A、1﹣(+5)=1﹣5=﹣4,故本选项错误;B、0﹣(+3)=0﹣3=﹣3,故本选项错误;C、(+6)﹣(﹣6)=6+6=12,故本选项正确;D、(﹣15)﹣(﹣5)=﹣15+5=﹣10,故本选项错误.故选:C.5.(2019秋•碑林区校级月考)若a<0,b<0,则下列各式一定成立的是()A.a﹣b<0 B.a﹣b>0 C.a﹣b=0 D.﹣a﹣b>0【分析】根据相反数的定义和有理数的减法运算法则解答.【解析】∵b<0,∴﹣b>0,∴a﹣b正负情况无法确定,∵a<0,b<0,∴﹣a>0,﹣b>0,∴﹣a﹣b>0.故选:D.6.(2020•河西区模拟)计算8﹣(2﹣5)的结果等于()A.2 B.11 C.﹣2 D.﹣8【分析】依据减法法则进行计算即可.【解析】原式=8﹣(﹣3)=8+3=11.故选:B.7.(2018•南岗区模拟)2018南1月24日是腊八节,这天哈尔滨市的最低气温是﹣35℃,最高气温是﹣24℃,这一天哈尔滨市的温差为()A.9℃B.10℃C.11℃D.59℃【分析】根据有理数的减法,即可解答.【解析】﹣24﹣(﹣35)=﹣24+35=11(℃),故选:C.8.(2019秋•南通期中)已知|a|=6,|b|=2,且a>0,b<0,则a+b的值为()A.8 B.﹣8 C.4 D.﹣4【分析】根据|a|=6,|b|=2,可得:a=±6,b=±2,再根据a>0,b<0,可得:a=6,b=﹣2,据此求出a+b的值是多少即可.【解析】∵|a|=6,|b|=2,∴a=±6,b=±2,∵a>0,b<0,∴a=6,b=﹣2,∴a+b=6+(﹣2)=4.故选:C.9.(2019秋•翠屏区期中)写成省略加号和的形式后为﹣6﹣7﹣2+9的式子是()A.(﹣6)﹣(+7)﹣(﹣2)+(+9)B.﹣(+6)﹣(﹣7)﹣(+2)﹣(+9)C.(﹣6)+(﹣7)+(+2)﹣(﹣9)D.﹣6﹣(+7)+(﹣2)﹣(﹣9)【分析】根据有理数的减法运算,减去一个数等于加上这个数的相反数对各选项进行省略整理即可得解.【解析】A、(﹣6)﹣(+7)﹣(﹣2)+(+9)=﹣6﹣7+2+9,故本选项错误;B、﹣(+6)﹣(﹣7)﹣(+2)﹣(+9)=﹣6+7﹣2﹣9,故本选项错误;C、(﹣6)+(﹣7)+(+2)﹣(﹣9)=﹣6﹣7+2+9,故本选项错误;D、﹣6﹣(+7)+(﹣2)﹣(﹣9)=﹣6﹣7﹣2+9,故本选项正确.故选:D.10.(2020春•淮阴区期中)如图,已知表格中竖直、水平、对角线上的三个数的和都相等,则m+n等于()m﹣3 43 1nA.7 B.5 C.﹣1 D.﹣2【分析】由题意竖直、水平、对角线上的三个数的和都相等,则有3+1+n﹣(m+3)=﹣3+1+n﹣(4+1),即可解出m=2,从而求出n值即可【解析】由题意得竖直、水平、对角线上的三个数的和都相等,则有3+1+n﹣(m+3)=﹣3+1+n﹣(4+1),整理得m=2则有2﹣3+4=﹣3+1+n,解得n=5∴m+n=5+2=7故选:A.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•崇川区校级期中)若x是3的相反数,|y|=4,则x﹣y的值是1或﹣7.【分析】分别求出x与y的值,然后代入x﹣y中即可求出答案.【解析】由题意可知:x=﹣3,y=±4,当y=4时,x﹣y=﹣3﹣4=﹣7当y=﹣4时,x﹣y=﹣3+4=1,故答案为:1或﹣7.12.(2019秋•秦淮区期中)把式子﹣2﹣3写成﹣2+(﹣3)的依据是有理数减法法则.【分析】根据有理数减法法则解答即可.【解析】把式子﹣2﹣3写成﹣2+(﹣3)的依据是有理数减法法则.故答案为:有理数减法法则.13.(2019秋•当涂县期末)8﹣(+11)﹣(﹣20)+(﹣19)写成省略加号的和的形式是8﹣11+20﹣19.【分析】在一个式子里,有加法也有减法,根据有理数加减法法则,把8﹣(+11)﹣(﹣20)+(﹣19)写成省略加号的和的形式即可.【解析】8﹣(+11)﹣(﹣20)+(﹣19)写成省略加号的和的形式是:8﹣11+20﹣19.故答案为:8﹣11+20﹣19.14.(2019秋•南京月考)若|x|=9,|y|=5,且x+y>0,那么x﹣y=4或14.【分析】根据题意,利用绝对值的代数意义求出x与y的值,即可确定出x﹣y的值.【解析】∵|x|=9,|y|=5,且x+y>0,∴x=9,y=5;x=9,y=﹣5,则x﹣y=4或14.故答案为:4或1415.(2019秋•市中区校级月考)的相反数是.【分析】首先根据有理数减法的运算方法,求出的值是多少;然后根据:求一个数的相反数的方法就是在这个数的前边添加“﹣”,求出的相反数是多少即可.【解析】∵,∴的相反数是:﹣().故答案为:.16.(2019秋•东阳市期末)甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高29米.【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【解析】20﹣(﹣9)=20+9=29,故答案为:29.17.(2019秋•沈河区校级月考)若A.B两地的海拔高度分别是﹣129.5米和﹣71.3米,则A.B两地相差58.2米.【分析】用最高的高度减去最低的高度,然后根据减去一个是等于加上这个数的相反数计算即可得解.【解析】根据题意得:﹣71.3﹣(﹣129.5)=58.2(米),答:A.B两地相差58.2米;故答案为:58.2.18.(2019秋•宣州区校级月考)比0小4的数是﹣4,比3小4的数是﹣1,比﹣5小﹣2的数是﹣3.【分析】根据题意列出算式,计算即可求出值.【解析】根据题意得:0﹣4=﹣4;3﹣4=﹣1;﹣5﹣(﹣2)=﹣5+2=﹣3,故答案为:﹣4;﹣1;﹣3三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•袁州区校级期中)计算题﹣5﹣(﹣3)﹣(﹣4)﹣[﹣(﹣2)]【分析】先去括号,再根据有理数的加减法法则计算即可.【解析】原式=﹣5+3+4﹣2=(3+4)﹣(5+2)=7﹣7=0.20.(2019秋•利川市期中)计算75﹣(﹣17)﹣37﹣(﹣25)【分析】根据有理数的加减法法则计算即可.【解析】75﹣(﹣17)﹣37﹣(﹣25)=75+17﹣37+25=(75+25)﹣(37﹣17)=100﹣20=80.21.(2019秋•邗江区校级月考)计算题.①8+(﹣10)+(﹣2)﹣(﹣5)②【分析】分别根据有理数的加减法法则计算即可.【解析】①原式=8+(﹣10)+(﹣2)+5=(8+5)﹣(10+2)=13﹣12=1;②原式1﹣9=﹣10.22.(2018秋•浦江县期中)小明在电脑中设置了一个有理数的运算程序:输入数a,加*键,在输入数b,就可以得到运算:a*b=(a﹣b)﹣|b﹣a|.(1)求(﹣3)*2的值;(2)求(3*4)*(﹣5)的值.【分析】(1)根据题中给出的例子列出有理数相加减的式子,再进行计算即可;(2)先计算出3*4的值,再代入原式进行计算即可.【解析】(1)(﹣3)*2=(﹣3﹣2)﹣|2﹣(﹣3)|=﹣5﹣5=﹣10;(2)∵3*4=(3﹣4)﹣|4﹣3|=﹣2,(﹣2)*(﹣5)=[(﹣2)﹣(﹣5)]﹣|﹣5﹣(﹣2)|=0,∴(3*4)*(﹣5)=0.23.(2019秋•袁州区校级月考)有一只青蛙,坐在深井底,井深4m,青蛙第一次向上爬了1.2m,又下滑了0.4m;第二次向上爬了1.4m,又下滑了0.5m;第三次向上爬了1.1m,又下滑了0.3m;第四次向上爬了1.2m,又下滑了0.2m……(1)青蛙爬了四次后,距离爬出井口还有多远?(2)青蛙第四次之后,一共经过多少路程?(3)若青蛙第五次向上爬的路程与第一次相同,问能否爬出井?【分析】(1)首先把青蛙四次向上爬的路程相加,求出青蛙爬了四次后,一共向上爬的路程是多少;然后用井深减去青蛙爬了四次后,一共向上爬的路程,求出距离爬出井口还有多远即可.(2)把青蛙四次向上爬和下滑的距离相加,求出青蛙第四次之后,一共经过多少路程即可.(3)用青蛙爬了四次后,一共向上爬的路程加上青蛙第五次向上爬的路程,再把它和井深比较大小,判断出能否爬出井即可.【解析】(1)1.2﹣0.4+1.4﹣0.5+1.1﹣0.3+1.2﹣0.2=3.5(m)4﹣3.5=0.5(m)答:青蛙爬了四次后,离井口还有0.5m.(2)1.2+0.4+1.4+0.5+1.1+0.3+1.2+0.2=6.3(m)答:青蛙第四次之后,一共经过6.3m.(3)3.5+1.2=4.7(m)∵4.7>4,∴能爬出井.答:能爬出井.24.(2018秋•高邮市期末)定义:对于确定位置的三个数:a,b,c,计算a﹣b,,,将这三个数的最小值称为a,b,c的“分差”,例如,对于1,﹣2,3,因为1﹣(﹣2)=3,1,,所以1,﹣2,3的“分差”为.(1)﹣2,﹣4,1的“分差”为;(2)调整“﹣2,﹣4,1”这三个数的位置,得到不同的“分差”,那么这些不同“分差”中的最大值是;【分析】(1)按“新定义”代入三个代数式求值再比较大小.(2)三个数顺便不同可以有6种组合,除第(1)题的顺序,计算其余五种情况的“分差”,再比较大小.【解析】(1)∵a=﹣2,b=﹣4,c=1∴a﹣b=﹣2﹣(﹣4)=2,,,∴﹣2,﹣4,1的“分差”为故答案为:(2)①若a=﹣2,b=1,c=﹣4则a﹣b=﹣2﹣1=﹣3,1,,∴﹣2,1,﹣4的“分差”为﹣3②若a=﹣4,b=﹣2,c=1则a﹣b=﹣4﹣(﹣2)=﹣2,,∴﹣4,﹣2,1的“分差”为③若a=﹣4,b=1,c=﹣2则a﹣b=﹣4﹣1=﹣5,,∴﹣4,1,﹣2的“分差”为﹣5④若a=1,b=﹣4,c=﹣2则a﹣b=1﹣(﹣4)=5,,∴1,﹣4,﹣2的“分差”为⑤若a=1,b=﹣2,c=﹣4则a﹣b=1﹣(﹣2)=3,,∴1,﹣2,﹣4的“分差”为综上所述,这些不同“分差”中的最大值为故答案为:。

2020-2021学年七年级数学上册尖子生同步培优题典 专题3

2020-2021学年七年级数学上册尖子生同步培优题典 专题3

专题3.8第3章整式及其加减单元测试(基础卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020•椒江区模拟)单项式4ab2的系数为()A.1B.2C.3D.4【分析】单项式的系数就是所含字母前面的数字,由此即可求解.【解析】解:单项式4ab2的系数是4,故选:D.2.(2020春•淇县期中)﹣2a2m+3b5与3a5b m﹣2n是同类项,则(m+n)2020的值是()A.1B.﹣1C.2D.4【分析】先根据同类项的概念得出2m+3=5,5=m﹣2n,解之求出m、n的值,再代入计算可得.【解析】解:∵﹣2a2m+3b5与3a5b m﹣2n是同类项,∴2m+3=5,5=m﹣2n,解得m=1,n=﹣2,则(1﹣2)2020=(﹣1)2020=1,故选:A.3.(2019秋•皇姑区校级期中)在下列各式中(1)3a,(2)4+8=12,(3)2a﹣5b>0,(4)0,(5)s=πr2,(6)a2﹣b2,(7)1+2,(8)x+2y,其中代数式的个数是()A.3个B.4个C.5个D.6个【分析】根据代数式的概念:用运算符号把数字与字母连接而成的式子叫做代数式,单独的一个数或一个字母也是代数式.依此作答即可.【解析】解:由题可得,属于代数式的有:(1)3a,(4)0,(6)a2﹣b2,(7)1+2,(8)x+2y,共5个,故选:C.4.(2020•宁波模拟)小文在计算某多项式减去2a2+3a﹣5的差时,误认为是加上2a2+3a﹣5,求得答案是a2+a﹣4(其他运算无误),那么正确的结果是()A.﹣a2﹣2a+1B.﹣3a2﹣5a+6C.a2+a﹣4D.﹣3a2+a﹣4【分析】先根据加减互逆运算关系得出这个多项式为(a2+a﹣4)﹣(2a2+3a﹣5),去括号、合并同类项可得此多项式,再根据题意列出算式(﹣a2﹣2a+1)﹣(2a2+3a﹣5),进一步计算可得.【解析】解:根据题意,这个多项式为(a2+a﹣4)﹣(2a2+3a﹣5)=a2+a﹣4﹣2a2﹣3a+5=﹣a2﹣2a+1,则正确的结果为(﹣a2﹣2a+1)﹣(2a2+3a﹣5)=﹣a2﹣2a+1﹣2a2﹣3a+5=﹣3a2﹣5a+6,故选:B.5.(2018秋•德惠市期末)当x+y=3时,5﹣x﹣y等于()A.6B.4C.2D.3【分析】将x+y=3代入5﹣x﹣y=5﹣(x+y)计算可得.【解析】解:当x+y=3时,5﹣x﹣y=5﹣(x+y)=5﹣3=2,故选:C.6.(2019秋•睢宁县期中)如果a2﹣ab=8,ab+b2=2,那么a2+b2的值是()A.10B.6C.﹣6D.﹣10【分析】根据整式的加减,整体代入计算即可求解.【解析】解:∵a2﹣ab=8,ab+b2=2,∴a2=8+ab,b2=2﹣ab,∴a2+b2=8+ab+2﹣ab=10.故选:A.7.(2019秋•武昌区期中)某商品每件成本为a元,按成本增加50%定出价格,现由于库存积压减价,按定价的80%出售,现在每件商品的利润为()A.0.02a元B.0.2a元C.1.02a元D.1.2a元【分析】先根据成本为a元,按成本增加50%定出价格,求出定价,再根据按定价的80%出售,求出售价,最后根据售价﹣进价=利润,列式计算即可.【解析】解:根据题意可得:(1+50%)a•80%﹣a=0.2a,故选:B.8.(2019秋•海安市期中)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第1个三角形数,3是第2个三角形数,6是第3个三角形数,…,依此类推,那么第11个三角形数是(),2016是第()个三角形数.A.55,63B.66,63C.55,64D.66,64【分析】根据所给的数据发现:第n个三角形数是1+2+3+…+n,由此代入分别求得答案即可.【解析】解:第11个三角形数是1+2+3+4+5+6+7+8+9+10+11=66,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故选:B.9.(2019秋•海州区校级期末)找出以如图形变化的规律,则第2020个图形中黑色正方形的数量是()A.3030B.3029C.2020D.2019【分析】仔细观察图形并从中找到规律,然后利用找到的规律即可得到答案.【解析】解:∵当n为偶数时第n个图形中黑色正方形的数量为n n个;当n为奇数时第n个图形中黑色正方形的数量为n个,∴当n=2020时,黑色正方形的个数为2020+1010=3030个.故选:A.10.(2019秋•淮安区期中)如图是一数值转换机的示意图,则输出结果是()A.B.C.D.【分析】根据数值转换机中的运算顺序列出代数式即可.【解析】解:根据数值转换机得:输出结果为,故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•黄浦区月考)列代数式表示:“x的1倍减去y的一半的差”x y.【分析】要明确给出文字语言中的运算关系,先求x的倍数,y的一半,再求它们的差.【解析】解:x×1y÷2x y.故答案为:x y.12.(2019秋•蜀山区校级期末)已知2a y+3b3x和﹣3a2x b8﹣2y是同类项,则x=2,y=1.【分析】根据同类项的意义列方程组解析即可.【解析】解:∵2a y+3b3x和﹣3a2x b8﹣2y是同类项,∴,解得.故答案为:2;113.(2020•长春)长春市净月潭国家森林公园门票的价格为成人票每张30元,儿童票每张15元.若购买m 张成人票和n张儿童票,则共需花费(30m+15n)元.【分析】根据单价×数量=总价,用代数式表示结果即可.【解析】解:根据单价×数量=总价得,共需花费(30m+15n)元,故答案为:(30m+15n).14.(2020•甘孜州)若m2﹣2m=1,则代数式2m2﹣4m+3的值为5.【分析】原式变形后,把已知等式代入计算即可求出值.【解析】解:∵m2﹣2m=1,∴原式=2(m2﹣2m)+3=2+3=5.故答案为:5.15.(2019秋•长宁区校级月考)多项式9x2y2﹣8xy2﹣4x2y2+7xy2﹣5x2y2﹣y2+8x是三次三项式.【分析】单项式的个数就是多项式的项数,多项式中次数最高的项的次数叫做多项式的次数,由此可得出答案.【解析】解:9x2y2﹣8xy2﹣4x2y2+7xy2﹣5x2y2﹣y2+8x=﹣xy2﹣y2+8x,∴多项式9x2y2﹣8xy2﹣4x2y2+7xy2﹣5x2y2﹣y2+8x是三次三项式.故答案为:三;三16.(2019秋•襄汾县期末)某种衣服售价为m元时,每天的销量为n件,经调研发现:每降价1元可多卖5件,那么降价x元后,一天的销售额是(m﹣x)(n+5x)元.【分析】先得出降价后每件的售价及每天的销售量,根据销售额=售价×销量,可得答案.【解析】解:由题意可知,每件衣服降价x元后,售价为(m﹣x)元,每天的销量为(n+5x)件,根据销售额=售价×销量,可得销售额为:(m﹣x)(n+5x)元.故答案为:(m﹣x)(n+5x).17.(2019秋•江阴市期中)若关于x、y的多项式3x2+2xy+y2﹣mx2中不含x2项,则m=3.【分析】先合并同类项,从而可得x2的系数为0,解出m即可.【解析】解:将多项式合并同类项得(3﹣m)x2+xy+y2,∵不含x2项,∴3﹣m=0,∴m=3.故答案为:318.(2018秋•上海期中)下面是按某种规律列出的七个分数:、、、、、a、、根据上面的规律a是.【分析】首先根据已知分数的分子分别是1、2、3、4、5、7,可得a的分子是6;然后根据5﹣2=3,10﹣5=5,17﹣10=7,26﹣17=9,可得a的分母减去26等于11,用26加上11,求出a的分母是多少,进而判断出a的大小即可.【解析】解:根据已知分数的分子分别是1、2、3、4、5、7,可得a的分子是6;因为5﹣2=3,10﹣5=5,17﹣10=7,26﹣17=9,所以a的分母减去26等于11,因此a的分母是:26+11=37,则a是.故答案为:.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•盐都区期末)化简:(1)﹣3x+2y+5x﹣7y;(2)2(x2﹣2x)﹣(2x2+3x).【分析】(1)原式合并同类项即可得到结果;(2)原式去括号合并即可得到结果.【解析】解:(1)原式=2x﹣5y;(2)原式=2x2﹣4x﹣2x2﹣3x=﹣7x.20.(2019秋•建湖县期末)已知A=2x2+3xy﹣2x﹣1,B=x2﹣xy+1(1)求3A﹣6B的值;(2)若3A﹣6B的值与x的值无关,求y的值.【分析】(1)将已知代入即可得到3A﹣6B=3(2x2+3xy﹣2x﹣1)﹣6(x2﹣xy+1)=6x2+9xy﹣6x﹣3﹣6x2+6xy﹣6=15xy﹣6x﹣9;(2)由已知可得15y=6,解得y.【解析】解:(1)3A﹣6B=3(2x2+3xy﹣2x﹣1)﹣6(x2﹣xy+1)=6x2+9xy﹣6x﹣3﹣6x2+6xy﹣6=15xy﹣6x﹣9;(2)∵3A﹣6B的值与x的值无关,∴15xy﹣6x﹣9的值与x无关,∴15y=6,∴y.21.(2019秋•高新区期末)化简求值:7a2b+2(2a2b﹣3ab2)﹣3(4a2b﹣ab2),其中a,b满足|a+2|+(b)2=0.【分析】原式去括号合并得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.【解析】解:原式=7a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣a2b﹣3ab2,∵|a+2|+(b)2=0,∴a+2=0,b0,即a=﹣2,b,当a=﹣2,b时,原式=﹣(﹣2)23×(﹣2)×()2=﹣2.22.(2019秋•清江浦区期末)a※b是新规定的这样一种运算法则:a※b=a2+2ab,例如3※(﹣2)=32+2×3×(﹣2)=﹣3(1)试求(﹣2)※3的值(2)若1※x=3,求x的值(3)若(﹣2)※x=﹣2+x,求x的值.【分析】(1)根据规定的运算法则求解即可.(2)(3)将规定的运算法则代入,然后对等式进行整理从而求得未知数的值即可.【解析】解:(1)(﹣2)※3=(﹣2)2+2×(﹣2)×3=4﹣12=﹣8;(2)∵1※x=3,∴12+2x=3,∴2x=3﹣1,∴x=1;(3)﹣2※x=﹣2+x,(﹣2)2+2×(﹣2)x=﹣2+x,4﹣4x=﹣2+x,﹣4x﹣4=﹣2﹣4,﹣5x=﹣6,x.23.(2018秋•南岸区期中)2018年“11.11”将近,天猫、京东等各大网络销售平台竞相推出大型优惠活动.小明家准备在此期间购买一台笔记本电脑,据了解,天猫商城电脑销售的优惠方案是:在原价基础上,先直降500元,再打9折;而京东商城电脑销售的优惠方案是:在原价基础上先打8折,再降150元.(说明:两个商城同一品牌同一型号电脑的原价一致.)(1)如果小明家欲购进一台原价为x元的电脑,则在天猫商城和京东商城购买分别需要花费多少元,请用含x的代数式表示;(2)若小明家最后选中的电脑原价为5000元,请问小明家应选择在哪个商城购买?为什么?【分析】(1)根据天猫商城和京东商城不同的优惠活动要求,分别用代数式表示所需费用的代数式,(2)求出当x=5000时,相应的代数式的值,通过比较做出选择.【解析】解:(1)在天猫商城购买:(x﹣500)×0.9=0.9x﹣450,在京东商城购买:0.8x﹣150答:在天猫商城和京东商城购买需要(0.9x﹣450)元,(0.8x﹣150)元.(2)当x=5000时,0.9x﹣450=4050元,0.8x﹣150=3850元,因此在京东商城购买合算.答:小明家应选择在京东商城购买.24.(2019秋•江都区月考)a,b互为相反数,c,d互为倒数,m的绝对值等于3,求m2+(cd+a+b)+(cd)2018的值.【分析】根据a,b互为相反数,c,d互为倒数,m的绝对值等于3,得到a+b=0,cd=1,|m|=3,代入原式进行计算即可.【解析】解:∵a,b互为相反数,c,d互为倒数,m的绝对值等于3,∴a+b=0,cd=1,|m|=3,∴m2+(cd+a+b)+(cd)2018=9+(1+0)+1=11;答:m2+(cd+a+b)+(cd)2018的值为11.25.(2019秋•栖霞区期末)根据表,回答问题:x…﹣2﹣1012…﹣2x+5…9753a…2x+8…46810b…【初步感知】(1)a=1;b=12;【归纳规律】(2)随着x值的变化,两个代数式的值变化规律是什么?【问题解决】(3)比较﹣2x+5与2x+8的大小;(4)请写出一个含x的代数式,要求x的值每增加1,代数式的值减小5,当x=0时,代数式的值为﹣7.【分析】(1)根据规律可得a,b的值;(2)语言叙述(1)中的规律即可;(3)先计算两代数式相等时x的值,即解方程,由此可解答;(4)根据当x=0时,代数式的值为﹣7,可以设这个代数式为一次式:ax﹣7,再由已知确定符合条件的a值即可.【解析】解:(1)根据表格中的数据可知:﹣2x+5对应的数为9,7,5,3,…,连续的奇数,则a=1;2x+8对应的数为4,6,8,10,…,连续的偶数,则b=12;故答案为:1,12;(2)随着x值的变化,x每增加1,﹣2x+5的值减少2,2x+8的值增加2;(3)﹣2x+5=2x+8,4x=﹣3,x,当x时,两式相等;当x时,﹣2x+5>2x+8,当x时,﹣2x+5<2x+8,(4)∵当x=0时,代数式的值为﹣7,∴设这个代数式为:ax﹣7,∵x的值每增加1,代数式的值减小5,∴ax﹣7﹣5=a(x+1)﹣7,ax﹣12=ax+a﹣7,a=﹣5,∴这个代数式可以为:﹣5x﹣7.(答案不唯一)26.(2019秋•大丰区期末)在数学活动课上,同学们利用如图所示的程序进行计算,计算按箭头指向循环进行.如,当初始输入5时,即x=5,第1次计算结果为16,第2次计算结果为8,第3次计算结果为4,…(1)当初始输入1时,第1次计算结果为4;(2)当初始输入4时,第3次计算结果为4;(3)当初始输入3时,依次计算得到的所有结果中,有7个不同的值,第20次计算结果为4.【分析】(1)把x=1代入指定的关系式求值即可;(2)把x=4代入指定的关系式计算第1次的结果,再根据结果的奇偶数,进行第2次运算,依此类推,求出第3次计算结果即可;(3)把x=3代入指定的关系式计算第1次的结果,再根据结果的奇偶数,进行第2次运算……依此类推,发现其计算结果有规律,按照规律,求出第20次计算结果即可;【解析】解:(1)当x=1时,3x+1=4,故答案为:4;(2)当x=4时,第1次结果为:2,第2次结果为1,第3次结果为3x+1=4;故答案为:4;(3)当x=3时,第1次结果为:3x+1=10,第2次结果为5,第3次结果为3x +1=16;第4次结果为8,第5次结果为4,第6次结果为2,第7次结果为1,第8次结果为3x+1=4,……∵(20﹣4)÷3=5……1,∴第20次运算的结果为4.∴有7个不同的值,故答案为:7,4.11。

2020-2021学年七年级数学上册尖子生同步培优题典 专题4

2020-2021学年七年级数学上册尖子生同步培优题典 专题4

专题4.7第4章基本平面图形单元测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2019秋•雅安期末)如图所示,下列对图形描述不正确的是()A.直线AB B.直线BC C.射线AC D.射线AB2.(2019秋•东湖区校级期末)下列生活现象:①用两个钉子就可以把木条固定在墙上;②从A地到B地架设电线,总是尽可能沿着线段AB架设;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④把弯曲的公路改直,就能缩短路程.其中能用“两点之间,线段最短”来解释的现象个数有()A.1 B.2 C.3 D.43.(2020春•肇东市期末)在直线l上取三点A、B、C,使线段AB=8cm,AC=3cm,则线段BC的长为()A.5cm B.8cm C.5cm或8cm D.5cm或11cm4.(2019秋•铁西区期末)如图,小明从A处沿北偏东40°方向行走至B处,又从B处沿东偏南21°方向行走至C处,则∠ABC的度数为()A.131°B.129°C.109°D.101°5.(2019秋•青山区期末)如图,下列说法错误的是()A.∠ECA是一个平角B.∠ADE也可以表示为∠DC.∠BCA也可以表示为∠1 D.∠ABC也可以表示为∠B6.(2019秋•兰考县期末)如图,OB平分平角∠AOD,∠AOB:∠BOC=3:2,则∠COD等于()A.30°B.45°C.60°D.75°7.(2019秋•海淀区期末)若扇形的半径为2,圆心角为90°,则这个扇形的面积为()A.B.πC.2πD.4π8.(2019秋•通州区期末)如图,OC为∠AOB内的一条射线,下列条件中不能确定OC平分∠AOB的是()A.∠AOC=∠BOC B.∠AOB=2∠BOCC.∠AOC+∠COB=∠AOB D.∠AOC∠AOB9.(2019秋•南山区期末)已知三条不同的射线OA、OB、OC,有下列条件,其中能确定OC平分∠AOB 的有()①∠AOC=∠BOC②∠AOB=2∠AOC③∠AOC+∠COB=∠AOB④∠BOC∠AOBA.1个B.2个C.3个D.4个10.(2019秋•埇桥区期末)已知:线段AB,点P是直线AB上一点,直线上共有3条线段:AB,P A和PB.若其中有一条线段的长度是另一条线段长度的两倍,则称点P是线段AB的“巧分点”,线段AB的“巧分点”的个数是()A.3 B.6 C.8 D.9二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•新泰市期末)已知点A、B、C在一条直线上,AB=5cm,BC=3cm,则AC的长为.12.(2019秋•沙坪坝区期末)已知线段AB,延长AB至点C,使BC AB.若点D为线段AC的中点,点E为线段AB的中点,且DE=1cm,则线段AB=cm.13.(2019秋•沙河口区期末)如图,建筑工人在砌墙时,经常用细线绳在墙的两端之间拉一条直的参照线,这样做的依据是.14.(2020春•舒兰市期末)34°18′36″=°.15.(2019秋•曲阳县期末)如图,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为①AD平分∠BAF;②AF平分∠DAC;③AE平分∠DAF;④AE平分∠BAC.16.(2019秋•兰考县期末)如图所示,OB是∠AOC的平分线,OC是∠AOD的平分线,若∠COD=76°,那么∠AOD=,∠BOC=.17.(2019秋•北仑区期末)将两个正方形与直角三角板的一个直角顶点重合放置,如图所示,则∠1的度数为.18.(2019秋•吉州区期末)过一个多边形的一个顶点的所有对角线把多边形分成2019个三角形,则这个多边形的边数为.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2019秋•襄城县期末)如图,已知三点A、B、C.(1)请读下列语句,并分别画出图形①画直线AB;②画射线AC;③连接BC.(2)在(1)的条件下,图中共有条射线.(3)从点C到点B的最短路径是,依据是.20.观察下面图形,并回答问题.(1)四边形有条对角线;五边形有条对角线;六边形有条对角线?(2)根据规律七边形有条对角线,n边形有条对角线.21.(2019秋•潮州期末)如图所示,OC是∠AOD的平分线,OE是∠BOD的平分线,∠EOC=65°,∠DOC=25°,求∠AOB的度数.22.(2020春•河口区期末)如图,点C为线段AB的中点,点E为线段AB上的点,点D为线段AE的中点.(1)若线段AB=a,CE=b且(a﹣16)2+|2b﹣8|=0,求a,b的值:(2)在(1)的条件下,求线段CD的长,23.(2019秋•宁都县期末)某一野外探险队由基地A处向北偏东30°方向前进了40千米到达B点,然后又向北偏西60°方向前进了30千米到达C点处工作.(1)请在图中画出行走路线图.(1厘米表示10千米)(2)通过度量,请你算出C点离基地A的距离.(精确到1千米)(3)若基地要派一指导员赶往C点,要求在2小时内赶到,问指导员应以不低于多大的平均速度前进才能按时到达?24.(2019秋•海州区校级期末)如图1,点A、O、B依次在直线MN上,现将射线OA绕点O沿顺时针方向以每秒4°的速度旋转,同时射线OB绕点O沿逆时针方向以每秒6°的速度旋转,直线MN保持不动,如图2,设旋转时间为t(0≤t≤60,单位秒)(1)当t=3时,求∠AOB的度数;(2)在运动过程中,当∠AOB第二次达到72°时,求t的值;(3)在旋转过程中是否存在这样的t,使得射线OB与射线OA垂直?如果存在,请求出t的值;如果不存在,请说明理由.25.(2019秋•肇庆期末)已知O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图①,若∠AOC=30°,求∠DOE的度数.(2)在图①中,若∠AOC=a,求∠DOE的度数(用含a的代数式表示).(3)将图①中的∠DOC绕顶点O顺时针旋转至图②的位置,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.26.(2019秋•金牛区期末)已知线段AB=m(m为常数),点C为直线AB上一点(不与点A、B重合),点M、N分别在线段BC、AC上,且满足CN=3AN,CM=3BM.(1)如图,当点C恰好在线段AB中点,且m=8时,则MN=;(2)若点C在点A左侧,同时点M在线段AB上(不与端点重合),请判断CN+2AM﹣2MN的值是否与m有关?并说明理由.(3)若点C是直线AB上一点(不与点A、B重合),同时点M在线段AB上(不与端点重合),求MN 长度(用含m的代数式表示).。

2020-2021学年七年级数学下册尖子生同步培优题典 专题4

2020-2021学年七年级数学下册尖子生同步培优题典 专题4

专题4.6用尺规作三角形姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•恩施市期末)按下列语句画图:点M在直线a上,也在直线b上,但不在直线c上,直线a、b、c两两相交,下列图形符合题意的是()A.B.C.D.【分析】点M在直线a上,也在直线b上,但不在直线c上,即点M是直线a与直线b的交点,是直线c外的一点,依此即可作出选择.【解析】∵点M在直线a上,也在直线b上,但不在直线c上,直线a、b、c两两相交,∴点M是直线a与直线b的交点,是直线c外的一点,∴图形符合题意的是选项B.故选:B.2.(2020秋•邢台期中)如图是黑板上出示的尺规作图题,需要回答横线上符号代表的内容()A.♡表示点E B.☺表示PQC.⊗表示OQ D.⊕表示射线EF【分析】根据尺规作图作一个角等于已知角的方法即可判断.【解析】作法:(1)以点O为圆心,任意长为半径画弧,分别交OA、OB于点P、Q;(2)作射线EG,并以点E为圆心OP长为半径画弧交EG于点D;(3)以点D为圆心,PQ长为半径画弧交(2)步中所画弧于点F;(4)作射线EF,∠DEF即为所求作的角.所以A,B,C选项都错误,D选项正确.故选:D.3.(2020•河北)如图1,已知∠ABC,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在∠ABC内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.a>0,b DE的长C.a有最小限制,b无限制D.a≥0,b DE的长【分析】根据角平分线的画法判断即可.【解析】以B为圆心画弧时,半径a必须大于0,分别以D,E为圆心,以b为半径画弧时,b必须大于DE,否则没有交点,故选:B.4.(2020秋•滦南县期末)如图,在△ABC中.∠C=90°,∠CAB=60°,按以下步骤作图:①以点A为圆心,小于AC长为半径画弧,分别交AB,AC于点E、F;②分别以点E、F为圆心,大于EF长为半径画弧,两弧交于点G;③作射线AG,交BC边于点D,则∠ADC的度数为()A.40°B.50°C.60°D.70°【分析】根据作图过程可得AD是∠CAB的平分线,进而可得结果.【解析】在△ABC中,∠C=90°,∠CAB=60°,根据作图过程可知:AD是∠CAB的平分线,∴∠DAC=∠DAB CAB=30°,∵∠C=90°,∴∠ADC=60°.故选:C.5.(2020秋•涪城区期末)根据下列条件,能画出唯一△ABC的是()A.AB=3,BC=4,CA=7 B.AC=4,BC=6,∠A=60°C.∠A=45°,∠B=60°,∠C=75°D.AB=5,BC=4,∠C=90°【分析】根据全等三角形的判定,三角形的三边关系一一判断即可.【解析】A、不满足三边关系,本选项不符合题意.B、边边角三角形不能唯一确定.本选项不符合题意.C、没有边的条件,三角形不能唯一确定.本选项不符合题意.D、斜边直角边三角形唯一确定.本选项符合题意.故选:D.6.(2020秋•丛台区校级期末)根据下列条件不能唯一画出△ABC的是()A.AB=5,BC=6,AC=7 B.AB=5,BC=6,∠B=45°C.AB=5,AC=4,∠C=90°D.AB=5,AC=4,∠C=45°【分析】判断其是否为三角形,即两边之和大于第三边,两边之差小于第三边,两边夹一角,或两角夹一边可确定三角形的形状,否则三角形并不是唯一存在,可能有多种情况存在.【解析】A、∵AC与BC两边之和大于第三边,∴能作出三角形,且三边知道能唯一画出△ABC;B、∠B是AB,BC的夹角,故能唯一画出△ABC;C、AB=5,AC=4,∠C=90°,得出BC=3,可唯一画出△ABC;D、AB=5,AC=4,∠C=45°,不能画出一个三角形.故选:D.7.(2020秋•莒南县期末)已知:如图,在△ABC与△AEF中,点F在BC上,AB=AE,BC=EF,∠B=∠E,AB交EF于点D,下列结论:①∠EAB=∠F AC;②AF=AC;③F A平分∠EFC;④∠BFE=∠F AC中,正确的有()个.A.1 B.2 C.3 D.4【分析】根据SAS证明△AEF≌△ABC,由全等三角形的性质和外角性质可依次判断即可求解.【解析】在△AEF和△ABC中,,∴△AEF≌△ABC(SAS),∴∠EAF=∠BAC,AF=AC,∠C=∠EF A,∴∠EAB=∠F AC,∠AFC=∠C,∴∠EF A=∠AFC,即F A平分∠EFC.又∵∠AFB=∠C+∠F AC=∠AFE+∠BFE,∴∠BFE=∠F AC.故①②③④正确.故选:D.8.(2020秋•卢龙县期末)如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE =4,BF=3,EF=2,则AD的长为()A.3 B.5 C.6 D.7【分析】只要证明△ABF≌△CDE,可得AF=CE=4,BF=DE=3,推出AD=AF+DF=4+(3﹣2)=5;【解析】∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.9.(2020秋•卢龙县期末)如图,已知线段AB=20米,MA⊥AB于点A,MA=6米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走3米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.5 B.5或10 C.10 D.6或10【分析】分两种情况考虑:当△APC≌△BQP时与当△APC≌△BPQ时,根据全等三角形的性质即可确定出时间.【解析】当△APC≌△BQP时,AP=BQ,即20﹣x=3x,解得:x=5;当△APC≌△BPQ时,AP=BP AB=10米,此时所用时间x为10秒,AC=BQ=30米,不合题意,舍去;综上,出发5秒后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:A.10.(2020秋•恩施市期末)已知△ABC的六个元素,下面甲、乙、丙三个三角形中标出了某些元素,则与△ABC全等的三角形是()A.只有乙B.只有丙C.甲和乙D.乙和丙【分析】根据全等三角形的判定ASA,SAS,AAS,SSS,看图形中含有的条件是否与定理相符合即可.【解析】甲、边a、c夹角不是50°,∴甲错误;乙、两角为58°、50°,夹边是a,符合ASA,∴乙正确;丙、两角是50°、72°,72°角对的边是a,符合AAS,∴丙正确.故选:D.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•海淀区校级期末)为作∠AOB的平分线OM,小齐利用尺规作图,作法如下:①以O为圆心,任意长为半径作弧,分别交OA、OB于点P、Q;②分别以点P、Q为圆心,OA长为半径作弧,两弧交于点M.则射线OM为∠AOB的平分线.OM为∠AOB的平分线的原理是SSS.【分析】根据SSS判断三角形全等即可.【解析】如图,连接PM,PQ.∵OP=OQ,PM=QM,OM=OM,∴△POM≌△QOM(SSS),∴∠POM=∠QOM,即OM是∠AOB的角平分线.故答案为SSS.12.(2020秋•东城区校级期中)阅读下面材料:在数学课上老师提出如下问题:尺规作图:作∠A′O′B′=∠AOB.已知:∠AOB,求作:∠A′O′B′=∠AOB.小米的作法如下:如图:(1)作射线O′A′;(2)以点O为圆心,任意长为半径作弧,交OA于点C,交OB于点D;(3)以点O′为圆心,OC为半径作弧C′E′,交O′A′于点C′;(4)以点C′为圆心,CD为半径作弧,交弧C′E′于D′;(5)过点D′作射线O′B′.所以∠A′O′B′就是所求作的角.老师说:“小米的做法正确.”请回答:小米的作图依据是全等三角形对应角相等.【分析】根据作一个角等于已知角的过程可得△OCD≌△OC′D′,全等三角形的对应角相等.【解析】根据作图过程可知:在△OCD和△OC′D′中所以△OCD≌△OC′D′(SSS)所以∠A′O′B′=∠AOB(全等三角形对应角相等).故答案为:全等三角形对应角相等.13.(2019春•海淀区校级期末)阅读下面材料.数学课上,老师提出如下问题:小明解答如图所示,其中他所画的弧MN是以E为圆心,以CD长为半径的弧老师说:“小明作法正确.”请回答小明的作图依据是:SSS【分析】利用“SSS“可证明△BEF≌△OCD,从而可得到∠EBF=∠COD.【解析】由作法得OC=OD=BE=BF,EF=CD,所以△BEF≌△OCD(SSS).所以∠EBF=∠COD,故答案为SSS.14.(2020秋•中山区期末)如图,已知AO=CO,若以“SAS”为依据证明△AOB≌△COD,还要添加的条件BO=DO.【分析】根据题意和图形,可以得到AO=CO,∠AOB=∠COD,然后即可得到△AOB≌△COD需要添加的条件.【解析】∵AO=CO,∠AOB=∠COD,∴添加条件BO=DO,则△AOB≌△COD(SAS),故答案为:BO=DO.15.(2020秋•鼓楼区校级月考)如图,在△ABC与△A′B′C′中,AC=A′C′,BC=B′C′,∠B=∠B′,且∠B和∠B′都是钝角,那么能否证明△ABC与△A′B′C′全等?能.(填“能”或“否”)【分析】根据题目中的图形,作CD⊥AB,交AB的延长线于点D,作C′D′⊥A′B′,交A′B′的延长线于点D′,然后根据全等三角形的判定和性质,可以证明△ABC≌△A'B'C'.【解析】能证明△ABC与△A′B′C′全等.证明:作CD⊥AB,交AB的延长线于点D,作C′D′⊥A′B′,交A′B′的延长线于点D′,则∠CDB=∠C′D′B′=90°,∵∠CBA=∠C′B′A′,∴∠CBD=∠C′B′D′,在△CBD和△C′B′D′中,,∴△CBD≌△C′B′D′(AAS),∴CD=C′D′,BD=B′D′,∵∠CDB=∠C′D′B′=90°,∴在Rt△CDA和Rt△C′D′A′中,,∴Rt△CDA≌Rt△C′D′A′(HL),∴∠A=∠A′,AD=A′D′,又∵BD=B′D′,∴AB=A′B′,在△ABC和△A′B′C′中,,∴△ABC≌△A′B′C′(SAS).故答案为:能.16.(2020秋•沂源县期中)如图,把长短确定的两根木棍AB、AC的一端固定在A处,和第三根木棍BM 摆出△ABC,木棍AB固定,木棍AC绕A转动,得到△ABD,这个实验说明有两边和其中一边的对角分别相等的两个三角形不一定全等.【分析】根据全等三角形的判定方法即可判断.【解析】由题意可知:AB=AB,AC=AD,∠ABC=∠ABD,满足有两边和其中一边的对角分别相等,但是△ABC与△ABD不全等,所以这个实验说明有两边和其中一边的对角分别相等的两个三角形不一定全等;故答案为:有两边和其中一边的对角分别相等的两个三角形不一定全等.17.(2020秋•天津期中)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB =CB,M,N分别是AE、CD的中点.若BN=4cm,则BM的长为4cm.【分析】根据SAS推出△ABE≌△DBC,推出AE=DC,∠EAB=∠BDC,再结合已知条件可证明△BAM ≌△BDN,然后全等三角形的性质可得到BM=BN,∠ABM=∠DBN,最后由∠MBE+∠DBN=90°可得到问题的答案.【解析】在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴∠BAE=∠BDC,∴AE=CD,∵M、N分别是AE、CD的中点,∴AM=DN,在△ABM和△DBN中,,∴△ABM≌△DBN(SAS),∴BM=BN=4cm.故答案为:4.18.(2020秋•长汀县期中)如图,在△ABC中,点D、E、F分别是BC,AB,AC上的点,若∠B=∠C,BF=CD,BD=CE,∠EDF=54°,则∠A=72°.【分析】由“SAS”可证△BDF≌△CED,可得∠BFD=∠CDE,由外角的性质∠B=∠EDF=54°,可求解.【解析】在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE,∵∠FDC=∠B+∠BFD=∠FDE+∠EDC,∴∠B=∠EDF=54°,∴∠A=180°﹣∠B﹣∠C=180°﹣54°﹣54°=72°,故答案为:72.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•天河区期末)如图,已知线段a和线段AB.(1)尺规作图:延长线段AB到C,使BC=a(不写作法,保留作图痕迹)(2)在(1)的条件下,若AB=4,BC=2,取线段AC的中点O,求线段OB的长.【分析】(1)根据线段的定义即可延长线段AB到C,使BC=a;(2)根据AB=4,BC=2,取线段AC的中点O,即可求线段OB的长.【解析】(1)如图,BC=a即为所求;(2)∵AB=4,BC=2,∴AC=AB+BC=6,∵点O是线段AC的中点,∴OA=OC AC6=3,∴OB=AB﹣OA=4﹣3=1.答:线段OB的长为1.20.(2020秋•西城区校级月考)尺规作图:已知:∠AOB.求作:∠A'O'B',使∠A'O'B'=∠AOB.(不写作法,保留作图痕迹,画在答题纸的方框中)写出这样作图的两点依据:①三边对应相等两三角形全等;②全等三角形的对应角相等.【分析】①以点O为圆心,以任意长度为半径画弧,交OA于点C,交OB于点D.②画射线O′M.③以点O′为圆心,以OC为半径画弧,交O′M于点B′.④以点B′为圆心,以CD为半径画弧,与已知画的弧交点与点A′.⑤作射线O′A′,作∠A′O′B′即为所求.【解析】如图∠A′O′B′即为所求;作图的依据:①三边对应相等两三角形全等.②全等三角形的对应角相等.故答案为:三边对应相等两三角形全等.全等三角形的对应角相等.21.(2020春•碑林区校级期中)如图(1)利用尺规作∠CED,使得∠CED=∠A.(不写作法,保留作图痕迹).(2)判断直线DE与AB的位置关系:平行或相交.【分析】(1)利用基本作图画出∠DEC;(2)根据平行线的判定方法进行判断.【解析】(1)如图1,如图2;(2)如图1,∵∠CED=∠A,∴DE∥AB,;如图2,DE与AB相交.故答案为平行或相交.22.(2020秋•武威期末)如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.(1)求证:△AEC≌△BED;(2)若∠1=40°,求∠BDE的度数.【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数.【解析】证明:(1)∵AE和BD相交于点O,∴∠AOD=∠BOE.在△AOD和△BOE中,∠A=∠B,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO,∴∠AEC=∠BED.在△AEC和△BED中,,∴△AEC≌△BED(ASA).(2)∵△AEC≌△BED,∴EC=ED,∠C=∠BDE.在△EDC中,∵EC=ED,∠1=40°,∴∠C=∠EDC=70°,∴∠BDE=∠C=70°.23.(2020秋•南关区校级期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=4cm,点P从点A 出发,沿A→B→A方向以3cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点A时,P、Q两点同时停止运动.设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连结PQ,当线段PQ经过点C时,求t的值.【分析】(1)由SAS证明△ABC≌△EDC(SAS),得∠A=∠E,即可得出结论;(2)分两种情况计算即可;(3)先证△ACP≌△ECQ(ASA),得AP=EQ,再分两种情况,当0≤t时,3t=4﹣t,解得t=1;当t时,8﹣3t=4﹣t,解得t=2即可.【解析】(1)证明:在△ABC和△EDC中,,∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE.(2)当0≤t时,AP=3tcm;当t时,BP=(3t﹣4)cm,则AP=4﹣(3t﹣4)=(8﹣3t)cm;综上所述,线段AP的长为3tcm或(8﹣3t)cm;(3)由(1)得:∠A=∠E,ED=AB=4cm,在△ACP和△ECQ中,,∴△ACP≌△ECQ(ASA),∴AP=EQ,当0≤t时,3t=4﹣t,解得:t=1;当t时,8﹣3t=4﹣t,解得:t=2;综上所述,当线段PQ经过点C时,t的值为1s或2s.24.(2020秋•盘龙区期末)如图,已知C是线段AE上的一点,DC⊥AE,DC=AC,B是CD上一点,且CB=CE.(1)△ABC与△DEC全等吗?请说明理由.(2)若∠A=20°,求∠E的度数.【分析】(1)由“SAS”可证△ABC≌△DEC;(2)由全等三角形的性质和直角三角形的性质可得∠E的度数.【解析】(1)△ABC≌△DEC,理由如下:∵DC⊥AE,∴∠ACB=∠DCE=90°,在△ABC与△DEC中,,∴△ABC≌△DEC(SAS);(2)∵△ABC≌△DEC,∴∠A=∠D=20°,∴∠E=90°﹣∠D=90°﹣20°=70°.。

2020-2021学年七年级数学上册尖子生同步培优题典 专题6

2020-2021学年七年级数学上册尖子生同步培优题典 专题6

专题6.1数据的收集姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•西湖区校级期中)某校为了解七年级14个班级学生吃零食的情况,下列做法中,比较合理的是()A.了解每一名学生吃零食情况B.了解每一名女生吃零食情况C.了解每一名男生吃零食情况D.每班各抽取7男7女,了解他们吃零食情况【分析】根据样本抽样的原则要求,逐项进行判断即可.【解析】根据样本抽样具有普遍性、代表性和可操作性,选项D比较合理,选项A为普查,没有必要,也不容易操作;选项B、C仅代表男生或女生的情况,不能反映全面的情况,不具有代表性,故选:D.2.(2020春•滨江区期末)某市有9个区,为了解该市初中生的体重情况,有人设计了四种调查方案,你认为比较合理的是()A.测试该市某一所中学初中生的体重B.测试该市某个区所有初中生的体重C.测试全市所有初中生的体重D.每区随机抽取5所初中,测试所抽学校初中生的体重【分析】利用抽样调查的中样本的代表性即可作出判断.【解析】某市有9个区,为了解该市初中生的体重情况,设计了四种调查方案.比较合理的是:每区随机抽取5所初中,测试所抽学校初中生的体重,故选:D.3.(2020•扬州)某班级组织活动,为了解同学们喜爱的体育运动项目,设计了如图尚不完整的调查问卷:准备在“①室外体育运动,②篮球,③足球,④游泳,⑤球类运动”中选取三个作为该调查问卷问题的备选项目,选取合理的是()A.①②③B.①③⑤C.②③④D.②④⑤【分析】根据体育项目的隶属包含关系,以及“户外体育项目”与“其它体育项目”的关系,综合判断即可.【解析】根据体育项目的隶属包含关系,选择“篮球”“足球”“游泳”比较合理,故选:C.4.(2020•安顺)2020年为阻击新冠疫情,某社区要了解每一栋楼的居民年龄情况,以便有针对性进行防疫,一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是()A.直接观察B.实验C.调查D.测量【分析】直接利用调查数据的方法分析得出答案.【解析】一志愿者得到某栋楼60岁以上人的年龄(单位:岁)数据如下:62,63,75,79,68,85,82,69,70.获得这组数据的方法是:调查.故选:C.5.(2020春•集贤县期末)要调查某校初一学生的学习时间,选取调查对象最合适的是()A.选取50名男生B.选取一个班的学生C.选取50名女生D.随机选取50名学生【分析】抽样要具有随机性和代表性,比每个层次都要考虑到,并且每个被调查的对象被抽到的机会相同.【解析】要调查某校初一学生的学习时间,选取调查对象最合适的是随机选取50名学生,故选:D.6.(2020春•房县期末)中考结束后,小明想了解今年杭州各普高的录取分数线,他需要通过什么方法获得这些数据?()A.测量B.查阅文献资料、互联网C.调查D.直接观察【分析】根据获得数据的特点,选择适当的方法进行收集和整理.【解析】想了解今年杭州各普高的录取分数线,只要上网查阅或查阅文献资料即可,故选:B.7.(2020•永嘉县模拟)如图,截止5月1日浙江抗击新冠肺炎部分城市治愈总人数统计表,下列说法错误的是()城市杭州宁波金华温州台州治愈总人数181 157 55 503 146A.金华治愈总人数最少B.杭州治愈总人数最多C.温州治愈总人数503人D.宁波治愈总人数比台州多【分析】根据统计表数据进行分析即可.【解析】A、金华治愈总人数最少,说法正确;B、杭州治愈总人数最多,说法错误,应为温州治愈总人数最多;C、温州治愈总人数503人,说法正确;D、宁波治愈总人数比台州多,说法正确;故选:B.8.(2019秋•兖州区期末)如表是某校七~九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同.课外小组活动总时间/h文艺小组活动次数科技小组活动次数七年级12.5 4 3八年级10.5 3 3九年级7 ☆☆则九年级文艺小组活动次数和科技小组活动次数(表中的两个五星)分别是()A.2,2 B.1,3 C.3,1 D.1,2【分析】根据七、八年级表格中的数据,列方程组求出每次文艺小组活动时间、科技小组的活动时间,再利用九年级的活动时间,求出活动次数的正整数解即可.【解析】设文艺小组每次活动时间为x小时,科技小组每次活动时间为y小时,由题意得,,解得,x=2,y=1.5,设九年级文艺小组活动次数为a、科技小组活动次数为b,则2a+1.5b=7,又∵a、b都是正整数,∴a=2,b=2;故选:A.9.(2020春•焦作期末)为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,某班实践活动小组的同学给出了以下几种调查方案:方案一:在多家旅游公司随机调查400名导游;方案二:在恭王府景区随机调查400名游客;方案三:在北京动物园景区随机调查400名游客;方案四:在上述四个景区各随机调查400名游客.在这四种调查方案中,最合理的是()A.方案一B.方案二C.方案三D.方案四【分析】根据调查收集数据应注重代表性以及全面性,进而得出符合题意的答案.【解析】为了解游客对恭王府、北京大观园、北京动物园和景山公园四个旅游景区的满意率情况,应在上述四个景区各随机调查400名游客.故选:D.10.(2020秋•海淀区校级月考)北京市体育中考现场考试共有三个项目,分为耐力、素质和球类三项,其中耐力为男子1000米跑,女子800米跑.所有同学都要参加,此外,参加考试的同学需在素质和球类项目中分别选择一项参加考试.选项规则如表1所示:表1:北京市体育中考现场考试选项规则项目耐力(必选)素质(任选一项)球类(任选一项)男生1000米跑引体向上、实心球篮球绕杆、排球垫球、足球绕杆女生800米跑仰卧起坐、实心球篮球绕杆、排球垫球、足球绕杆小宇对初三A班40名同学的体育选项情况进行了统计,并根据其中部分信息给制了表2表2:初三4班体育中考选项情况统计表项目素质球类仰卧起坐引体向上实心球篮球绕杆排球垫球足球绕杆男生20 2女生16总计17 15 16 2以下有四个推断①一定有女生选择了实心球②一定有男生同时选择引体向上和足球绕杆③至少有一名女生同时选择仰卧起坐和篮球绕杆④男生中同时选择实心球和篮球绕杆的至多有5人所有合理推断的序号是()A.①②B.①③C.②④D.③④【分析】本题主要考察统计表的读取.其中①②③④每个选项都需在读懂题目,并判断出各个项目人数的前提下进行判断,因此本题的重难点在于判断各个项目的人数多少.【解析】本题各个项目人数的多少,解题的关键在于球类里面.通过排球垫球,我们可以得知,女生是16人,合计是16人,因此没有男生选择排球垫球.同理,没有女生选择足球垫球.又因为每位同学均需要在球类中选择一项,对于男同学而言,因为没有选择排球垫球的,因此全部男同学都选择了篮球绕杆和足球绕杆,因此该班男生共有20+2=22人,其中选择篮球绕杆20人,足球绕杆2人.同理,因为全班共有40名同学,因此女生共有18人,其中选择排球垫球16人,因此篮球绕杆有2人.对于素质项目,因为全班共有40人,出去仰卧起坐17人,引体向上15人,还剩余8人选择实心球.又因为仰卧起坐只能女生选择,选择仰卧起坐的人数为17人,因此18名女生中,有1人选择实心球.实心球中有7名是男生,另外15名男生选择的引体向上.下面我们分析选项:①一定有女生选择了实心球,正确,有1名女生选择.②一定有男生同时选择引体向上和足球绕杆,无法判断,可能有.但是因为选择足球绕杆的男生只有2人,这2人完全可以选择实心球,这种情况下②就不对.③因为女生只有1人选择实心球,而选择篮球绕杆的女生为2人,因此另外1人就既选择了篮球绕杆,又选择了仰卧起坐.选项正确.④无法判断.不一定至多是5人,假如选择实心球的7名男生全部选择了篮球,此时同时选择实心球和篮球绕杆的就有7人.选项错误.综上,正确选项为①③,故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•新沂市期末)为统计了解某市4万名学生平均每天读书的时间,有以下步骤:①得出结论,提出建议;②分析数据;③从4万名学生中随机抽取400名学生,调查他们平均每天读书的时间;④利用统计图表将收集的数据整理和表示,请您对以上步骤进行合理排序③④②①.(只填序号)【分析】根据调查的一般步骤,得出结论.【解析】调查的一般步骤:先随机抽样,再收集整理数据,然后分析数据,最后得出结论.故答案为:③④②①.12.(2020春•西城区期末)小芸为了解同学们最感兴趣的在线学习方式,设计了如下的调查问题(选项不完整):你最感兴趣的一种在线学习方式是()(单选)A.B.C.D.其他她准备从“①在线听课,②在线讨论,③在线学习2~3小时,④用手机在线学习,⑤在线阅读”中选取三个作为该问题的备选答案,合理的选取是①②⑤.(填序号)【分析】根据题意可得“①在线听课,②在线讨论,⑤在线阅读”合理.【解析】根据题意可知:①在线听课,②在线讨论,⑤在线阅读,作为该问题的备选答案合理,故答案为:①②⑤.13.(2020•门头沟区一模)抗击肺炎期间,小明准备借助网络评价选取一家店铺,购置防护用品.他先后选取三家店铺,对每家店铺随机选取了1000条网络评价,统计结果如表:评价等级一星二星三星四星五星合计评价频数店铺甲93 30 54 338 485 1000乙80 56 69 340 455 1000丙92 128 125 155 500 1000 小明选择在甲(填“甲”“乙”“丙”)店铺购买防护用品,能获得良好的购物体验(即评价不低于四星)的可能性最大.【分析】不低于四星,即四星与五星的和居多为符合题意的餐厅.【解析】不低于四星,即比较四星和五星的和,甲最多.故答案是:甲.14.(2020•北京一模)某大学为了解学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行了评分,统计如下:人数满意度评分餐厅非常满意(20分)较满意(15分)一般(10分)不太满意(5分)非常不满意(0分)合计A28 40 10 10 12 100B25 20 45 6 4 100 若小芸要在A,B两家餐厅中选择一家用餐,根据表格中数据,你建议她去A餐厅(填A或B),理由是在A餐厅用餐非常满意和较满意的人员比例更大.【分析】根据表格中的数据,建议她去A餐厅,然后表格中的数据可知非常满意和较满意的人数A餐厅较多,即可解答本题.【解析】若小芸要在A,B两家餐厅中选择一家用餐,根据表格中数据,你建议她去A餐厅,理由是:在A餐厅用餐非常满意和较满意的人员比例更大,故答案为:A,在A餐厅用餐非常满意和较满意的人员比例更大.15.(2019秋•海安市期末)下表是某校七﹣九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,但表格中九年级的两个数据被遮盖了,记得九年级文艺小组活动次数与科技小组活动次数相同.年级课外小组活动总时间(单位:h)文艺小组活动次数科技小组活动次数七年级17 6 8八年级14.5 5 7九年级12.5则九年级科技小组活动的次数是5.【分析】设每次文艺小组活动时间为xh,每次科技小组活动的时间为yh.九年级科技小组活动的次数是m次.构建方程组求出x,y即可解决问题.【解析】设每次文艺小组活动时间为xh,每次科技小组活动的时间为yh.九年级科技小组活动的次数是m次.由题意,解得,1.5m+m=12.5,解得m=5故答案为5.16.(2019春•道里区期末)为了解某区2019年初一学生的社会实践成绩等级的分布情况,随机抽取了该区若干名学生的社会实践成绩进行统计分析,并根据抽取的成绩绘制了如下的统计表:根据统计表提供的信息可以得出m(x﹣y)=6.成绩等级A B C D人数60 x y20百分比30% 45% 15% m【分析】首先确定总人数,再求出x,y,m即可解决问题.【解析】总人数=60÷30%=200(人),∴x=200×45%=90(人),y=200×15%=30(人),m10%,∴m(x﹣y)=10%×(90﹣30)=6.故答案为6.17.(2019春•广饶县期末)为了解我县初中2.3万名学生平均每天的读书时间,请你运用所学的统计知识,将统计的主要步骤进行排序:①从2.3万名学生中随机抽取400名学生,调查他们平均每天的读书时间;②分析数据;③得出结论,提出建议;④利用统计图表将收集的数据整理和表示.合理的排序是①④②③.(只填写序号)【分析】根据题目提供的问题情境,采取抽样调查的方式进行,于是先确定抽查样本,紧接着统计收集来的数据,对数据进行分析,最后得出结论,提出建议.【解析】根据提供的问题情境,采用抽查的方式进行,因此首先确定样本收集收集,然后对收集的数据进行整理表示数据,再对数据进行分析,最后得出结论,提出建议,因此合理的排序为:①④②③故答案为:①④②③.18.(2020春•潮南区期末)七年级一班的小明根据本学期“从数据谈节水”的课题学习,知道了统计调查活动要经历5个重要步骤:①收集数据;②设计调查问卷;③用样本估计总体;④整理数据;⑤分析数据.但他对这5个步骤的排序不对,请你帮他正确排序为②①④⑤③.(填序号)【分析】根据已知统计调查的一般过程:①问卷调查法﹣﹣﹣﹣﹣收集数据;②列统计表﹣﹣﹣﹣﹣整理数据;③画统计图﹣﹣﹣﹣﹣描述数据进而得出答案.【解析】解决上述问题要经历的几个重要步骤进行排序为:②设计调查问卷,①收集数据,④整理数据,⑤分析数据,③用样本估计总体.故答案为:②①④⑤③.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2018春•婺源县期末)小李在家门口进行了一项社会调查,对从家门口经过的车辆进行记录,分析出本地车与外地车辆的数据,同时也对汽车牌照的尾号进行记录.(1)在这过程中他要收集哪些数据?(2)设计出记录用的表格.【分析】(1)根据题意可知需要收集2种数据,本地车辆与外地车辆的数据,汽车牌照的尾号的数据;(2)设计表格合理即可.【解析】(1)收集两种数据:本地车与外地车数据;汽车尾号数据.(2)记录用的表格如下:上午下午车牌尾号外地本地20.(2019秋•浦东新区校级期中)小明家去年下半年用电的情况统计如下:(电表显示数单位为千瓦时)月份 6 7 8 9 10 11 12电表显示数300 505 714 853 953 1016 1105(1)用电量最少月份的用电量占第四季度用电总量的几分之几?(2)第四季度的用电量占下半年用电总量的几分之几?【分析】(1)求出7,8,9,10,11,12月份的用电量即可解决问题.(2)根据百分比的定义解答即可.【解析】(1)7月份用电205度.8月份用电209度.9月份用电139度.10月份用电100度.11月份用电63度.12月份用电89度.∴第四季度用电100+63+89=252度,∴用电量最少月份的用电量占第四季度用电总量的25%.(2)四季度的用电量占下半年用电总量的31%.21.(2019秋•青浦区校级期中)统计列车上下人数的情况为调节客流量发挥着重要作用,从上海开往北京的T32次图中停靠徐州、天津西车站,开车后,某节软卧车厢的列车员在换车票时作了以下统计.(1)请帮列车员填写表格中空缺的数字:站名上海徐州天津西北京上车人数44 10 0下车人数0 2 10(2)徐州停靠站下车人数占本站开车后车厢人数的几分之几?(3)北京站下车人数占乘坐该节软卧车厢总人数的几分之几?【分析】(1)始发站“上海站”上车44人,由有理数的加减法的意义可求出在终点站“北京站”实有人数,即下车人数,因为是终点站,因此上车人数为0,可补全表格;(2)求出在“徐州站”开出时的人数即可求出徐州停靠站下车人数占本站开车后车厢人数的几分之几;(3)只要上车均是坐本节车厢的人数,即44+10=54人,在终点站下车有42人,可求出答案.【解析】(1)44+10﹣2﹣10=42,北京站是终点站,故上车人数为0,补全表格中空缺的数字,如下表所示:(2)在终点站北京站下车人数为42人,可得在它的前一站“天津西”开出时有42人,在“徐州站”开出时有42+10=52人,因此徐州停靠站下车人数占本站开车后车厢人数的.(3)北京站下车的有42人,乘坐该节软卧车厢的有44+10=54人,因此北京站下车人数占乘坐该节软卧车厢总人数的.22.(2018春•丰台区期末)调查作业:了解你所在学校学生家庭的教育消费情况.小华、小娜和小阳三位同学在同一所学校上学,该学校共有3个年级,每个年级有4个班,每个班的人数在20~30之间.为了了解该校学生家庭的教育消费情况,他们各自设计了如下的调查方案:小华:我准备给全校每个班都发一份问卷,由班长填写完成.小娜:我准备把问卷发送到随机抽取的某个班的家长微信群里,通过网络提交完成.小阳:我准备给每个班学号分别为1,5,10,15,20的同学各发一份问卷,填写完成.根据以上材料回答问题:小华、小娜和小阳三人中,哪一位同学的调查方案能较好的获得该校学生家庭的教育消费情况,并简要说明其他两位同学调查方案的不足之处.【分析】根据题意分析解答即可.【解析】小阳的调查方案能较好的获得该校学生家庭的教育消费情况.小娜的调查方案的不足之处:抽样调查所抽取的样本的代表性不够好;小华的调查方案的不足之处:抽样调查所抽取的学生数量太少.23.(2019秋•黄陂区期末)下表是某校七~九年级某月课外兴趣小组活动时间统计表,其中各年级同一兴趣小组每次活动时间相同,文艺小组每次活动时间比科技小组每次活动时间多5小时.设文艺小组每次活动时间为x小时,请根据表中信息完成下列解答.(1)科技小组每次活动时间为(x﹣0.5)小时(用含x的式子表示);(2)求八年级科技小组活动次数a的值;(3)直接写出m=2,n=2.课外小组活动总时间(小时)文艺小组活动次数科技小组活动次数七年级12.5 4 3 八年级10.5 3 a九年级7 m n【分析】(1)根据文艺小组每次活动时间为x小时,再根据文艺小组每次活动时间比科技小组每次活动时间多5小时,即可得出答案;(2)根据七年级的课外小组活动总时间和文艺小组、科技小组的活动次数求出每次活动的时间,再根据八年级课外小组活动总时间列出方程,求出a的值即可;(3)根据九年级课外小组活动总时间为7小时列出方程,再根据m与n是自然数,即可求出m与n的值.【解析】(1)∵文艺小组每次活动时间为x小时,文艺小组每次活动时间比科技小组每次活动时间多5小时,∴科技小组每次活动时间为(x﹣0.5)小时;故答案为:(x﹣0.5);(2)根据题意得:4x+3(x﹣0.5)=12.5,解得:x=2,即文艺小组、科技小组每次活动时间分别为2小时、1.5小时;根据题意得:3×2+1.5a=10.5,解得:a=3,答:八年级科技小组活动次数a的值是3;(3)∵九年级课外小组活动总时间为7小时,∴2m+1.5n=7,∵m与n是自然数,∴m=2,n=2.故答案为:2,2.24.(2020•海淀区一模)某校举办球赛,分为若干组,其中第一组有A,B,C,D,E五个队.这五个队要进行单循环赛,即每两个队之间要进行一场比赛,每场比赛采用三局两胜制,即三局中胜两局就获胜.每场比赛胜负双方根据比分会获得相应的积分,积分均为正整数.这五个队完成所有比赛后得到如下的积分表.根据上表回答下列问题:(1)第一组一共进行了10场比赛,A队的获胜场数x为3;(2)当B队的总积分y=6时,上表中m处应填0:2,n处应填2:0;(3)写出C队总积分p的所有可能值为:9或10.【分析】(1)按照5个队中每个队都要和另外4个队进行一场比赛,而A与B和B与A属于同一场比赛,列式计算或直接从表中数一下即可得比赛场数;根据表中比赛结果可直接得出A队的获胜场数x的值;(2)每场比赛的结果有四种:0:2,1:2,2:1,2:0,设以上四种得分为a,b,c,d,且a<b<c <d,根据E和A的总分可得关于a,b,c,d的等式,化简即可得出a,b,c,d的值,设m对应的积分为x,根据题意得关于x的方程,解得x的值,则可得答案;(3)C队胜2场,分两种情况:当C、B的结果为2:0时;当C、B的结果为2:1时,分别计算出p 的值即可.【解析】(1)∵10(场),∴第一组一共进行了10场比赛;∵每场比赛采用三局两胜制,A、B的结果为2:1,A、C的结果为2:0,A、E的结果为2:0,∴A队的获胜场数x为3;故答案为:10,3;(2)由题可知:每场比赛的结果有四种:0:2,1:2,2:1,2:0,根据题意可知每种结果都会得到一个正整数积分,设以上四种得分为a,b,c,d,且a<b<c<d,根据E的总分可得:a+c+b+c=9,∴a=1,b=2,c=3,根据A的总分可得:c+d+b+d=13,∴d=(13﹣c﹣b)÷2=(13﹣3﹣2)÷2=4,设m对应的积分为x,当y=6时,b+x+a+b=6,即2+x+1+2=6,∴x=1,∴m处应填0:2;∴B:C=0:2,∴C:B=2:0,∴n处应填2:0;(3)∵C队胜2场,∴分两种情况:当C、B的结果为2:0时,p=1+4+3+2=10;当C、B的结果为2:1时,p=1+3+3+2=9;∴C队总积分p的所有可能值为9或10.故答案为:9或10.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

并回答下列各题:
(1)你能发现所得距离与这两个数的差的绝对值有什么关系吗?答:___ .
(2)若数轴上的点A表示的数为x,点B表示的数为―1,则A与B两点间的距

可以表示为 ________________.
(3)结合数轴求得x?2?x?3的最小值为 ,取得最小值时x的取值范围为 ___.
七年级数学尖子生培优训练
第一讲 绝对值
典型例题:
例1.(数形结合思想)已知a、b、c在数轴上位置如图:则代数式 | a | + | a+b | + | c-a | - | b-c | 的值等于( )
A.-3a B. 2c-a C.2a-2b D. b
(4) 满足x??x?4?3的x的取值范围为
______ .
例2.已知:x?0?z,xy?0,且y?z?x, 那么x?z?y?z?x?y的值( )
A.是正数 B.是负数 的绝对值是乙数绝对值的3倍,且在数轴上表示这两数的点位于原点的两侧,两点之间的距离为8,求这两个数;若数轴上表示这两数的点位于原点同侧呢?
例4.(整体思想)方程x??2008?x 的解的个数是( )
A.1个 B.2个 C.3个 D.无穷多个
例5.(非负性)已知|ab-2|与|a-1|互为相互数,试求下式的值. 1111 ?????aba?1b?1a?2b?2a?2007b?2007
例6.(距离问题)观察下列每对数在数轴上的对应点间的距离 4与?2,3与5,?2与?6,?4与3.
相关文档
最新文档