离散时间傅里叶变换
第6章 离散时间信号的傅里叶变换汇总
例:周期单位脉冲序列dN[k]
1 N 1 1 - jk0 n X [m] d N [n]e N n 0 N
信号
?
系统
响应
6.3 离散时间信号的傅立叶变换
1.离散时间周期信号的傅立叶变换
设时限非周期信号 f [n] 如图所示,对它进行周期 拓展可构成周期信号 f N [n]
筛选性
(2)
F ()
d [n] 1
F
n n jn a u [ n ] e ,
a 1
1 , j 1 ae
a 1
信号
?
系统
响应
幅度谱
F ()
1 [1 a cos()]2 a2 sin 2 ()
F()
2
a 1/ 2
2/3 2
信号
?
系统
响应
1.离散时间周期信号的傅立叶级数
推导系数 ak 的计算公式 :
N 1 k 0
f [n] ak e jk 0n
两端乘以
e
jm0 n
并在一个周期 N内关于n求和
j ( k m ) 0 n
f [n]e
n 0
N 1
jm0 n
ak e
n 0 k 0
a
n
e
jn
1 a , a 1 2 1 2a cos a
N
0 d
k0
1 f [ n] 2
F ()e jn d
信号
?
系统
响应
频谱密度函数
F ()
n
f [n]e
离散时间傅里叶变换.
第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:图3-1离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
离散时间序列的傅里叶变换
j
( 1) A e
j T
j
e
j
1 Be
j
H (e
A ) B
( )
e
j
( 1) A e
A B
j
e
j
1 Be
j
幅频: H (e j )
相频:
( )
j Im[z]
e
z
j
200 150
100
p
离散系统的频率响应
全同系统和最小相移系统
一、频率 响应定义
H (e ) H ( z ) z e j
j
H ( e j ) H ( e j ) e j ( )
例:单位函数响应为h(k),激励为
e(k ) e jk
稳态响应.
r (k ) h(k )* e
j
jk
j ( k i ) j i jk h(i )e h(i)(e ) e i i 0
j
F (e j )e jk d
DTFT存在的充分必要条件是F(z)的收敛区间包含单位圆。
例1:求离散序列的傅里叶变换。 RN (k ) (k ) (k N )
解:
F (e )
j
k
R
N
(k )e
j k
e jk
k 0
N 1
50
Re[z ]
-3 -2 -1 0 1 2 3 4
0 -4
e j
0
2
H ( e j )
H (e )
j
A B
k 1 r 1 N
离散时间傅里叶变换
X
(e
j
)
sin
N1
sin
1 2
2
连续时间非周期矩形脉冲傅里叶变换: X(j)2sinT1
4. x[n][n]
X(ej) 1
Xej xnejn nejn1
n
n
20
三、离散时间傅里叶变换的收敛性
例5.1,5.2是无限长序列
x[n]a|n|,|a|1; 其傅里叶变换存在。 x[n]anu[n]|,a|1
X * ( e j ) X ( e j )即,X * ( e j ) X ( e j )
因此:
X (ej)X (e j) RX ( e ej) RX ( e e j) X (ej) X (e j) Im X (ej) Im X (e j)
❖ 若 x[n] 是实偶信号,则 x[n]x[n],
x% [n]X(ej)
ak2(k02l) kN l
23
如图P263 Fig5.9:下页
X (e j ) 2 a 0 ( 2 l) 2 a 1 (0 2 l)
l
l
.. .2aN1 ((N1)02l) ,02/N l
如果周期函数中包含连续相继的N次谐波,则有:
X(ej)2k ak(2N k)
调制特性在信息传输中是极其重要的。
一定是以 2 为周期的,因此,频域的冲激应该是周
期性的冲激串:
2(0 2k)
k
对其作反变换有
xn 1 X ej ejnd
2 2
0 ejnd ej0n
2
22
可见, 2( 02k) F 1 ej0n k
由DFS ,有 ~ xnkNakejk0n,02N
因此,周期信号 ~xn 可表示为DTFT
§5-6 离散时间傅里叶变换----DTFT
《信号与系统》
Electronic Technology Teaching & Research Section
二、离散时间傅里叶变换的举例
1、单边指数序列 于是
X (e ) =
jω ∞ n = −∞
x ( n)
a>0 0
1 2 3 45
x ( n) = a n u ( n)
− jω n
a <1
n − jωቤተ መጻሕፍቲ ባይዱn
π
《信号与系统》
Electronic Technology Teaching & Research Section
于是,我们得到一对变换关系:
X ( e ) = DTFT { x ( n )} =
jω − jω n x ( n ) e -------DTFT变换式 ∑ ∞
n = −∞
π
1 jω jω jωn x(n) = IDTFT{X (e )} = X ( e ) e dω -------DTFT反变换式 ∫ 2π −π
5、奇、偶、虚、实性 设
DTFT x ( n ) = x r ( n ) + jx i ( n ) ←⎯ ⎯→ X ( e jω ) = X R ( ω) + jX I ( ω)
= X ( e jω ) e jϕ ( ω )
当x(n)是实序列,即 则
x(n) = x* (n)
X ( e jω ) = X * ( e − jω )
ω
0
π
2π
ω
《信号与系统》
Electronic Technology Teaching & Research Section
DTFT x ( n ) ← ⎯ ⎯→ X ( e jω ) 例题:设
第3章离散时间傅里叶变换
第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。
与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。
本章将介绍离散时间系统的频域分析方法。
3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。
若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。
[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。
即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。
离散时间傅里叶变换
离散时间傅⾥叶变换1. 离散时间傅⾥叶变换的导出针对离散时间⾮周期序列,为了建⽴它的傅⾥叶变换表⽰,我们将采⽤与连续情况下完全类似的步骤进⾏。
考虑某⼀序列x[n],它具有有限持续期;也就是说,对于某个整数N1和N2,在 −N1⩽以外,x[n]=0。
下图给出了这种类型的⼀个信号。
由这个⾮周期信号可以构成⼀个周期序列\tilde x[n],使x[n]就是\tilde x[n]的⼀个周期。
随着N的增⼤,x[n]就在⼀个更长的时间间隔内与\tilde x[n]相⼀致。
⽽当N\to \infty,对任意有限时间值n⽽⾔,有\tilde x[n]=x[n]。
现在我们来考虑⼀下\tilde x[n]的傅⾥叶级数表⽰式\tag{1}\tilde x[n] = \sum_{k=(N)}a_ke^{jk{(2\pi/N)}n}\tag{2}a_k = \frac{1}{N} \sum_{n=(N)} \tilde x[n]e^{-jk{(2\pi/N)}n}因为在-N_1 \leqslant N \leqslant N_2区间的⼀个周期上\tilde x[n]=x[n],因此我们将上式的求和区间就选在这个周期上\tag{3}a_k = \frac{1}{N} \sum_{n=-N_1}^{N_2} x[n]e^{-jk{(2\pi/N)}n} = \frac{1}{N} \sum_{n=-\infty}^{+\infty} x[n]e^{-jk{(2\pi/N)}n}现定义函数\tag{4}X(e^{j\omega})=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\omega n}可见这些系数a_k正⽐于X(e^{j\omega})的各样本值,即\tag{5}a_k = \frac{1}{N}X(e^{jk\omega_0})式中,\omega_0=2\pi/N⽤来记作在频域中的样本间隔。
离散时间信号的傅里叶变换和离散傅里叶变换
离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。
同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。
1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。
时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。
)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。
上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。
数字信号处理____第二章 离散时间傅里叶变换(DTFT)
x a (t )e
st
e
jk
2 T
t
dt
用傅里叶级数表示
即:Z变换可看成是x(n)乘以指数序列r-n后的傅里叶变换。 2、单位圆上的Z变换就是序列的傅里叶变换
X a ( s jk s )
k
周期延拓
z re
j
r 1 z e
j
X (z)
ze
sT
X (e
M N
y (n)
m 0
bm x (n m )
k 1
ak y (n k )
23
24
4
§2.3 离散线性移不变(LSI)系统的频域特征
2、变换域中的表述 用系统函数H(z)来表征(指明收敛域)
§2.3 离散线性移不变(LSI)系统的频域特征
用频率响应来H(ejω)表征
H (e
x ( n )e
j ( n )
]
X (e
*
j
)
满足共轭反对称性
X o (e
j
) X o (e
)
19
20
§2.2 离散时间傅里叶变换(DTFT)
4、信号的实部和虚部的傅里叶变换
x ( n ) Re[ x ( n )] j Im[ x ( n )]
§2.2 离散时间傅里叶变换(DTFT)
j
)] X e ( e
j
)
Im[ X ( e
j
)] Im[ X ( e
j
奇函数
j Im[ x ( n )]
1 2
[ x ( n ) x ( n )] 1 2
离散时间序列的傅里叶变换
傅里叶变换: 傅里叶反变换:
F ( j ) f ( t )e jt dt
1 f (t ) 2
F ( j )e jt d
一、离散序列傅里叶变换DTFT公式
F (e j ) F ( z )
T
z e jT
F (e j )
围内。
四、几种特殊的离散时间系统:
低通、高通、带通、带阻
全通系统
最小相位系统 最小相位系统:极零点全部在单位圆内。
全通
1) m=n;
2)
H (e j ) H 0 H ( z) |z 1
全通系统:对任意频率的离散正弦时间信号都有相同的幅
频响应,除了在z=0处的极点外,其余的极点和零点关于单
r (k )
i
k i k h ( i )( 1 ) ( 1 )
i
( 1) k H ( z ) z 1
H(-1)=32/3
32 r (k ) ( 1) k 3
k
作业:8.17 (2) , (3);
8.18(1)(5)
解:
F (e )
j
k
R
N
(k )e
j k
e jk
k 0
N 1
1 e 1 e j
j N
N sin j N 1 2 e 2 sin 2
| F (e j ) | e j ( )
|F(e j)| 幅频特性曲线 ()相频特性曲线
位圆镜像对称(即两者相角相等,幅度互为倒数, 或 zi
1 pi*
)
数字信号处理之离散傅里叶变换
共轭对称性
对于实数输入信号,DFT 的结果X[k]满足共轭对称 性,即X[-k] = X[k]*。
离散傅里叶变换的矩阵表示
DFT可以表示为一个矩阵运算, 即X = W * x,其中X是DFT的输 出,x是输入信号,W是DFT的
权重矩阵。
权重矩阵W是一个复数矩阵,具 有特殊的结构,可以通过快速傅 里叶变换(FFT)算法进行高效
03
其他信号处理方法还包括短时 傅里叶变换、Wigner-Ville分 布等,可根据具体应用场景选 择合适的信号处理方法。
ቤተ መጻሕፍቲ ባይዱ 06
结论
离散傅里叶变换的重要性和应用价值
离散傅里叶变换(DFT)是数字信号处理领域 中的重要工具,它能够将信号从时域转换到频 域,从而揭示信号的频率成分和特征。
DFT在通信、雷达、声呐、图像处理、语音识 别等领域有着广泛的应用,是实现信号分析和 处理的关键技术之一。
图像压缩
通过对图像进行DFT变换,将图像从空间域变换到频域,可以提取出图像的主要频率成分 ,从而实现图像压缩。常见的图像压缩算法有JPEG和JPEG2000等。
05
离散傅里叶变换的局限性和改进方法
离散傅里叶变换的局限性
计算量大
离散傅里叶变换需要进行大量复杂的复数运算,对于大数据量信 号处理效率较低。
方式。
离散傅里叶变换的编程实现
01
编程语言如Python、C等提供了离散傅里叶变换的库函数,可 以直接调用进行计算。
02
编程实现时需要注意数据的输入输出、内存管理、异常处理等
问题,以保证程序的正确性和稳定性。
编程实现离散傅里叶变换时,可以根据实际需求选择不同的库
03
函数和算法,以达到最优的计算效果。
2.1离散时间序列的傅里叶变换DTFT
jω
n = −∞ π
−
∑ x ( n )e
∫ π X (e
jω
∞
− jωn
)e
jωn
dω
2、时移与频移性 4、时域卷积定理 6、帕斯维尔定理 8、周期性
DTFT的周期性
由序列的傅里叶变换公式:
X ( e jω ) =
n取整数,可以把频率分成两部分 ω → ω + 2πM
n = −∞
∑ x(n)e − jωn
-28-
序列分成共轭对称部分和共轭反对称部分 x(n) = xe (n) + xo (n)
傅里叶变换
= X ( e jω ) DTFT = [ x ( n )] DTFT [ xe ( n ) + xo ( n )] = DTFT [ xe ( n )] + DTFT [ xo ( n )] =
n = −∞
∞ *
( )
( )
( ) ( )
DTFT性质应用举例
例2.1.7
P38
-19-
时域卷积定理
设 则
y (n ) = x(n ) * h(n )
Y (e jω )=X (e jω )H (e jω )
该定理说明,两序列卷积的DTFT,服从相乘的 关系。对于线性时不变系统输出的DTFT等于输 。 入信号的 DTFT乘以单位脉冲响应DTFT。因此 求系统的输出信号,可以在时域用卷积公式计算, 也可以在频域求出输出的DTFT,再作逆DTFT 求出输出信号。
由上式表明,共轭对称序列的实部确实是偶 函数,虚部是奇函数。
-25-
一般序列 分解为 其中
= x ( n ) xe ( n ) + xo (n )
离散时间傅里叶变换
1、DTFT是离散时间傅里叶变换,DFT是离散傅里叶变换。
2、DTFT变换后的图形中的频率是一般连续的(cos(wn)等这样的特殊函数除外,其变换后是冲击串),而DFT是DTFT的等间隔抽样,是离散的点。
从表示中可以看出,其函数表示为X(k),而DTFT的函数表示为X(exp(jw))。
(这里主要突出DFT是DTFT的等间隔抽样,DTFT变化后的频率响应一般是连续的,DFT变换后的频率响应是离散的)3、DTFT是以2pi为周期的。
而DFT的序列X(k)是有限长的。
4、DTFT是以复指数序列{exp(-jwn)}的加权和来表示的,而DFT是等间隔抽样,既然是等间隔,那么间隔是多少呢?DFT里面有个重要的参数就是N,我们一般都会说,多少点DFT运算,这个点就是N(离散序列的长度),抽样间隔就是将单位元分成N个间隔来抽样,绕圆一周,(2*pi)/N是间隔(这个应该很明显吧,一个圆周是2*pi,分成N个等分,就像我们生日的时候切蛋糕一样)。
5、DTFT和DFT都能表征原序列的信息。
因为现在计算主要使用计算机,必需要是离散的值才能参与运算,因此在工程中DFT应用比较广泛,DFT还有一个快速算法,那就是FFT。
基本上你答了上面的5点,面试官至少会对你刮目相看的。
因为很多人对概念是很模糊的。
快速傅立叶变换(The Fast Fourier Transform,FFT)是离散傅立叶变换(Discrete Fourier Transform,DFT)的一种快速算法,它是库利(Cooley)和图基(Tukey)于1965年提出的。
FFT使DFT的次数由N^2减少到Nlog2(N)次,使DFT应用于实际变为现实,使DFT进一步得到完善。
1976年,S.Winograd等人提出一种新算法:Winograd快速变换(Winograd Fast Fourier Transform Algorithm),该算法是基于中国剩余定理提出的,比FFT的运算速度更快。
第三章.离散时间信号的傅里叶变换
4、时域卷积定理
∞
) = x ( 0 ) + 2∑ x ( n ) cos (ω n )
n =1
y (n) = x ( n) * h ( n)
Y ( e jω ) = X ( e jω ) H ( e jω )
X I ( e jω ) = 0 x ( n) =
π∫
1
π
0
X R ( e jω ) cos (ω n ) d ω
jω jω 2 2 ⎤ X ( e jω ) = ⎡ ⎣ X R ( e ) + X I ( e )⎦
12
如果 x ( n ) 是实信号,根据DTFT的正、反变换的定义,有 如下性质: ① X ( e jω ) 的实部 X R ( e jω ) 是 ω 的偶函数,即 ② X (e
jω
= X ( e − jω )
x (t ) =
k =−∞
X ( k Ω0 ) =
1 T /2 x ( t ) e − jk Ω0t dt T ∫−T / 2
X ( k Ω 0 )代表了x ( t ) 中第k次谐波的幅度,并且它是离散的。
∑ X ( kΩ ) e
0
∞
jk Ω0 t
并非所有周期信号都可展开成傅里叶级数。一个周期信号 能展开成傅里叶级数,除满足前面指出的平方可积条件 外,还需要满足如下的Dirichlet条件: ① 在任一周期内若存在间断点,则间断点的数目应是有限 的。 ② 在任一周期内的极大值和极小值的数目应是有限的。 ③ 在一个周期内应是绝对可积的,即
第三章
离散时间信号的傅里叶变换
第三章 离散时间信号的 傅里叶变换
内容概要
1、连续时间信号的傅氏变换 2、离散时间信号的傅氏变换(DTFT) 3、连续时间信号的抽样 4、离散时间周期信号的傅氏级数 5、离散傅氏变换(DFT) 6、利用DFT计算线性卷积 7、希尔伯特变换
离散傅里叶变换(DFT)
k=floor((-Nw/2+0.5):(Nw/2+0.5)); %建立关于纵轴对称的频率相量
for r=0:3;
K=3*r+1;
% 1,4,7,10
nx=0:(K*Nx-1); x=xn(mod(nx,Nx)+1);
%周期延拓后的时间向量 %周期延拓后的时间信号x
Xk=x*(exp(-j*dw*nx'*k))/K; %DFS
0
DFT的提出:
离散傅里叶变换不仅具有明确的物理意义,相对于DTFT, 它更便于用计算机处理。但是,直至上个世纪六十年代,由 于数字计算机的处理速度较低以及离散傅里叶变换的计算量 较大,离散傅里叶变换长期得不到真正的应用,快速离散傅 里叶变换算法的提出,才得以显现出离散傅里叶变换的强大 功能,并被广泛地应用于各种数字信号处理系统中。近年来, 计算机的处理速率有了惊人的发展,同时在数字信号处理领 域出现了许多新的方法,但在许多应用中始终无法替代离散 傅里叶变换及其快速算法。
X (e j ) x(n)e jn n
x(n) 1 X (e j )e jnd
2
其中ω为数字角频率,单位为弧度。 注意:非周期序列,包含了各种频率的信号。
局限性:离散时间傅里叶变换(DTFT)是特殊的Z变换,在数学和信号分 析中具有重要的理论意义。但在用计算机实现运算方面比较困难。这是因为, 在DTFT的变换对中,离散时间序列在时间n上是离散的,但其频谱在数字角
§1、傅里叶级数
周期为N的序列 ~x(n) ~x(n rN), (r为整数)
j( 2 )n
基频序列为 e1(n) e N
k次谐波序列为
ek (n)
j( 2 )nk
e N
离散时间傅里叶变换对
离散时间傅里叶变换对介绍离散时间傅里叶变换(Discrete Fourier Transform, DFT)是信号处理中常用的一种变换方法,它将时域中的离散信号转换到频域中,通过分析信号在频域上的特性,可以揭示信号中隐藏的信息。
离散时间傅里叶变换对作为傅里叶变换对的一种形式,在数字图像处理、通信系统等领域有着广泛的应用。
一级标题DFT的定义离散时间傅里叶变换对将离散时间域序列x[n](n为整数)转换为离散频率域序列X[k](k为整数)。
其数学定义如下:其中,N为序列的长度,k为频率序列的索引。
DFT的计算复杂度较高,通常采用快速傅里叶变换(Fast Fourier Transform, FFT)算法来加速计算。
DFT的性质DFT具有一些重要的性质,它们对于理解和应用DFT至关重要。
1.线性性质:DFT是线性的,即对信号的线性组合的DFT等于DFT的线性组合。
2.循环移位性质:对于输入信号x[n],将其向右循环移位m个单位,得到新的信号x_m[n]=x[(n-m) mod N],则x_m[n]的DFT等于x[n]的DFT乘以旋转因子的m次幂。
3.对称性质:当输入信号x[n]是实数序列时,其DFT具有共轭对称性,即X[k]=X^*[N-k]。
4.周期性质:对于周期为N的信号,其DFT为离散频率域上的周期函数,频率分辨率为1/N。
DFT的应用DFT在信号处理中有着广泛的应用,如下所示:1.频谱分析:通过计算信号的DFT,可以将信号转换到频域中,从而分析信号中各个频率成分的强度和相位,揭示信号的频域特性。
2.信号压缩:DFT可以将时域信号转换为频域信号,在频域中进行处理,然后再通过逆变换将频域信号转换为时域信号,实现信号的压缩。
3.滤波器设计:DFT可以用来设计滤波器,通过将滤波器的频率响应转换为时域响应,从而得到滤波器的系数。
4.信号恢复:通过对信号的部分采样数据进行DFT,可以恢复出信号的完整信息,实现信号的恢复。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8 / 3
8 / 3
2020/8/19
X e j X s j /Ts
4 / 3 2 / 3
2 / 3 4 / 3 2 8 / 3
X e j X s j /Ts
4 / 3 2 / 3
2 / 3 4 / 3 2 8 / 3
电气信息工程学院
Digital Signal Processing
2.2 离散时间傅里叶变换 2.2 离散时间傅里叶变换
2020/8/19
DTFT定义 IDTFT定义 性质
电气信息工程学院
Digital Signal Processing
性 质
2020/8/19
2.2 离散时间傅里叶变换
周期性 对称性
线性 移位 时间翻转 调制 卷积 能量守恒
电气信息工程学院
Digital Signal Processing
2.3 连续信号FT与DTFT
xs (t) xa (t)sa (t) xa (nTs ) (t nTs ) n
FT
(t nTs ) FT e jnTs
X s ( j)
xa (nTs )e jnTs
n
DTFT
x(n) xa (nTs )
X (e j ) x(n)e jn xa (nTs )e jn
2.3 连续信号FT与DTFT
xs (t) xa (t)sa (t)
卷积
X s ( j)
1
2
X a ( j) Sa ( j)
1 2
[
2 Ts
X a ( j) ( ks )]
k
1
Ts
X a ( j ) ( ks )d
k
1
Ts k
X a ( j ) ( ks )d
移位
2.2 离散时间傅里叶变换
习题
x(n n0 ) e jn0 X (e j )
求 X (e j ) cos2 的IDTFT
2020/8/19
电气信息工程学院
Digital Signal Processing
2.2 离散时间傅里叶变换
时间翻转 x(n) X (e j )
设
x(n) (n 1) (n) 2 (n 1) 3 (n 2)
x(2n 1) 的DTFT
2020/8/19
电气信息工程学院
Digital Signal Processing
卷积
2.2 离散时间傅里叶变换
x(n) h(n) X (e j )H (e j )
x(n)h(n) 1 [ X (e j ) H (e j )]
2
2020/8/19
电气信息工程学院
xa (t) cos(16000 t)
用 Ts 1/ 6000 对其采样,分析其频谱特性 。
2020/8/19
电气信息工程学院
Digital Signal Processing
Ts
16000
16000
2020/8/19
2.4 6000
Ts
16000
Xs j
Ts
x(n) 2 1 X (e j ) 2
n
2
2020/8/19
电气信息工程学院
Digital Signal Processing
2.1 引言 2.2 离散时间傅里叶变换 2.3 连续信号的傅里叶变换
与序列傅里叶变换
2.4 采样定理 2.5 离散时间信号截短对频谱的影响
2020/8/19
2020/8/19
2.4 采样定理
X e j X s j /Ts
Xs j
Ts
4000 2 / 3
4000 2 / 3
8000 12000 16000 4 / 3 2 8 / 3
电气信息工程学院
Digital Signal Processing
2.4 采样定理
已知连续时间信号 xa (t) cos(4000 t)
anu(n), a 1
1 1 ae j
anu(n 1), a 1 1 1 ae j
cos n 2020/8/19 0
电气信息工程学(院 高丙坤
0
)
(
0
)
性 质
2020/8/19
2.2 离散时间傅里叶变换
周期性 对称性
线性 移位 时间翻转 调制 卷积 能量守恒
电气信息工程学院
Digital Signal Processing
电气信息工程学院
Digital Signal Processing
信号的采样
xa t
sa t t nTs n
把脉冲转 化为采样
xn xa nTs
xs t xa t t nTs n
xa nTs t nTs n
2020/8/19
电气信息工程学院
Digital Signal Processing
e jn0 x(n) X (e j(0 ) )
x(n) cosn0
1 2
X (e j(0 ) )
1 2
X (e j(0 ) )
2020/8/19
电气信息工程学院
Digital Signal Processing
调制
2.2 离散时间傅里叶变换
设 x(n) 是一个具有DTFT
X (e j ) 的序列,请用 X (e j ) 表示
2.5 离散时间信号截短对频谱的影响
2020/8/19
电气信息工程学院 图2.5.2 窗函数的影响
高丙坤
本章重点
2020/8/19
2.2 离散时间傅里叶变换 2.2.1 DTFT定义
X (e j ) x(n)e jn n
2020/8/19
电气信息工程学院
Digital Signal Processing
其DTFT为 X (e j ) X R (e j ) jX I (e j )
求序列 y(n) 它具有如下给出的DTFT
Y (e j ) X I (e j ) jX R (e j )e j2
2020/8/19
电气信息工程学院
Digital Signal Processing
调制
2.2 离散时间傅里叶变换
Digital Signal Processing
Ts
4000
4000
2020/8/19
2.4 采样定理
Xa j
1500
1500
Ts
4000
Xs j
Ts
2000 1000
1000
电气信息工程学院
Digital Signal Processing
2000
3000
4000
2.4 采样定理
2.3 连续信号FT与DTFT
x(t) FT
采样
x(n)
DTFT
X j
什么关系?
X e j
2020/8/19
电气信息工程学院
Digital Signal Processing
1.5 信号的采样、量化和编码
1
sa t 把脉冲转 xn xa nTs
xa t
xs t 化为采样
2020/8/19
X a ( j) 0 0 且采样频率
2
s Ts 20 那么 xa (t) 可以唯一地
从其采样 xa (nTs ) 中恢复
2020/8/19
电气信息工程学院
Digital Signal Processing
2.4 采样定理
已知连续时间信号 xa (t) cos(4000 t) 用 Ts 1/ 6000 对其采样,分析其频谱特性 。
2.3 连续信号FT与DTFT
X (e j ) X s ( j) /Ts
2020/8/19
电气信息工程学院
Digital Signal Processing
X a ( j) 0 0
2.4 采样定理
采样定理
如果 xa (t) 是严格带限的,即
X a ( j) 0 0 且采样频率
2
s Ts 20 那么 xa (t) 可以唯一地
k
冲激函数特性
系数求解定义
Ak
1 Ts
Ts / 2
(t)e jkst dt
Ts / 2
Ak 1 Ts
e jkst FT 2 ( ks )
Sa ( j) S ( ks ) k
2020/8/19
电气信息工程学院
Digital Signal Processing
(
ks
)
1
0
ks 为其他值
Digital Signal Processing
卷积
2.2 离散时间傅里叶变换
设 x(n) 是一个具有DTFT
X (e j ) 的序列,请用 X (e j ) 表示
x(n) x* (n) 的DTFT
2020/8/19
电气信息工程学院
Digital Signal Processing
2.2 离散时间傅里叶变换 能量守恒定理
e jN / 2 (e jN / 2 e jN / 2 ) e j / 2 (e j / 2 e j / 2 )
e j(N 1) / 2 sin(N / 2) / sin( / 2)
RNg (e j ) sin(N / 2) / sin( / 2)
2020/8/19
电气信息工程学院
Digital Signal Processing
(
ks
)
1
0
ks 为其他值
X s (
j)
1 Ts
k
Xa(
j
jks )
2020/8/19