北师大版高中数学必修一对数与对数函数同步练习题及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数与对数函数同步练习

一、选择题:(本题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的)

1、已知32a =,那么33log 82log 6-用a 表示是()

A 、2a -

B 、52a -

C 、2

3(1)a a -+D 、2

3a a -

2、2log (2)log log a a a M N M N -=+,则N

M

的值为() A 、

4

1

B 、4

C 、1

D 、4或1 3、已知221,0,0x y x y +=>>,且1

log (1),log ,log 1y a a a x m n x

+==-则等于() A 、m n +B 、m n -C 、

()12m n +D 、()1

2

m n - 4、如果方程2lg (lg5lg 7)lg lg5lg 70x x +++=g

的两根是,αβ,则αβg 的值是() A 、lg5lg7g B 、lg35C 、35D 、

35

1 5、已知732log [log (log )]0x =,那么12

x -等于()

A 、1

3B C D 6、函数2lg 11y x ⎛⎫

=-

⎪+⎝⎭

的图像关于()

A 、x 轴对称

B 、y 轴对称

C 、原点对称

D 、直线y x =对称

7、函数(21)log x y -=

A 、()2,11,3⎛⎫+∞ ⎪⎝⎭U

B 、()1,11,2⎛⎫

+∞ ⎪⎝⎭U

C 、2,3⎛⎫+∞ ⎪⎝⎭

D 、1,2⎛⎫+∞ ⎪⎝⎭

8、函数212

log (617)y x x =-+的值域是()

A 、R

B 、[)8,+∞

C 、(),3-∞-

D 、[)3,+∞

9、若log 9log 90m n <<,那么,m n 满足的条件是() A 、 1 m n >>B 、1n m >>C 、01n m <<

10、2

log 13

a <,则a 的取值范围是()

A 、()20,1,3⎛⎫+∞ ⎪⎝⎭U

B 、2,3⎛⎫+∞ ⎪⎝⎭

C 、2,13⎛⎫ ⎪⎝⎭

D 、220,,33⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭

U

11、下列函数中,在()0,2上为增函数的是()

A 、12

log (1)y x =+B 、2log y =C 、2

1

log y x =D 、2

log (45)y x x =-+ 12、已知()log x+1 (01)a g x a a =>≠且在()10-,上有()0g x >,则1

()x f x a +=是()

A 、在(),0-∞上是增加的

B 、在(),0-∞上是减少的

C 、在(),1-∞-上是增加的

D 、在(),0-∞上是减少的

二、填空题:(本题共4小题,每小题4分,共16分,请把答案填写在答题纸上) 13、若2log 2,log 3,m n a a m n a +=== 。 14、函数(-1)log (3-)x y x =的定义域是 。 15、2lg 25lg 2lg 50(lg 2)++=g 。

16、函数)

()lg

f x x =是 (奇、偶)函数。

对数与对数函数同步练习答题卷

班级姓名学号成绩

13、 14、 15、 16、

三、解答题:(本题共3小题,共36分,解答应写出文字说明,证明过程或演算步骤.)

17、已知函数

1010

()

1010

x x

x x

f x

-

-

-

=

+

,判断()

f x的奇偶性和单调性。

18、已知函数

2

2

2 (3)lg

6

x

f x

x

-=

-

(1)求()

f x的定义域;

(2)判断()

f x的奇偶性。

19、已知函数

2

32

8

()log

1

mx x n

f x

x

++

=

+

的定义域为R,值域为[]

0,2,求,m n的值。

对数与对数函数同步练习参考答案

13、1214、{}132x x x <<≠且由301011x x x ->⎧⎪

->⎨⎪-≠⎩

解得132x x <<≠且15、2

16、奇,)(),()1lg(11lg )1lg()(222x f x f x x x

x x x x f R x ∴-=-+-=-+=++=-∈且Θ为

奇函数。 三、解答题

17、(1)221010101(),1010101x x x x

x x f x x R ----==∈++,221010101

()(),1010101

x x x x x

x f x f x x R -----==-=-∈++ ∴()f x 是奇函数

(2)2122101

(),.,(,)101

x x f x x R x x -=∈∈-∞+∞+设,且12x x <,

相关文档
最新文档